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Abstract

We investigate Hartman functions on a topological group G. Recall that (ι, C) is a group com-
pactification of G if C is a compact group, ι : G→ C is a continuous group homomorphism and
ι(G) ⊆ C is dense. A bounded function f : G→ C is a Hartman function if there exists a group
compactification (ι, C) and F : C → C such that f = F ◦ ι and F is Riemann integrable, i.e.
the set of discontinuities of F is a null set with respect to the Haar measure. In particular, we
determine how large a compactification for a given group G and a Hartman function f : G→ C
must be to admit a Riemann integrable representation of f . The connection to (weakly) almost
periodic functions is investigated.

In order to give a systematic presentation which is self-contained to a reasonable extent, we
include several separate sections on the underlying concepts such as finitely additive measures
on Boolean set algebras, means on algebras of functions, integration on compact spaces, com-
pactifications of groups and semigroups, the Riemann integral on abstract spaces, invariance of
measures and means, continuous extensions of transformations and operations to compactifica-
tions, etc.
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1. Introduction

1.1. Motivation. By a topological dynamical system (X,T ) we mean a continuous
transformation T : X → X acting on a compact space X (which in many cases is
supposed to be metrizable). Symbolic dynamics is concerned with the special caseX = AN

or X = AZ with a finite set A, called the alphabet. Here the transformation is the shift
T = σ : (an) ∈ X 7→ (an+1) ∈ X. The importance of this special case is due to the fact
that, for a suitable finite partition (Markov partition) X = X1 ∪ · · · ∪Xn of a metrizable
space X and the alphabet A = {1, . . . , n}, most information on the original system (X,T )
is contained in the associated symbolic system which is defined below.

Consider the coding F : X → A, F (x) = i if x ∈ Xi. Let ϕ : X → AN, x 7→ (Tnx)n∈N
or, if T is bijective, ϕ : X → AZ, x 7→ (Tnx)n∈Z. The case of bijective T applies for the
major part of the exposition. The associated dynamical system (Y, σ) with Y = ϕ(X) is
a subshift, i.e. Y is a closed and σ-invariant subset of AZ. The connection between (X,T )
and (Y, σ) is expressed by the commuting diagram

X
T- X

Y

ϕ
?

σ- Y

ϕ
?

If ϕ is continuous this means that (Y, σ) is a factor of (X,T ). However, this can be
guaranteed only if the Xi are clopen subsets of X, which, for instance for connected X,
is impossible. The classical way of avoiding this disadvantage is to choose the partition
in such a way that ϕ is injective and ϕ−1 has a continuous extension ψ such that (X,T )
is a factor of (Y, T ):

Y
σ- Y

X

ψ
?

T- X

ψ
?

In order to apply results from ergodic theory (such as Birkhoff’s Theorem) one looks for
invariant measures. Assume that µ is a σ-invariant measure on Y , i.e. µ(σ−1[B])=µ(B) for
all Borel sets B ⊆ Y . Then µT (M) := µ(T−1[M ]) defines a T -invariant measure µT on X.

The situation is particularly nice if T is uniquely ergodic, i.e. if there is a unique
T -invariant Borel measure. In this case the limit relation

lim
N→∞

1
N

n−1∑
n=0

f(Tnx) =
∫
X

f dµT (1.1)

[5]



6 1. Introduction

does hold not only up to a set of zero µT -measure, but even uniformly for all x ∈
X whenever f : X → R is continuous and bounded. By obvious approximation this
statement extends to all bounded f : X → R with

∀ε > 0 ∃f1, f2 : X → R continuous, f1 ≤ f ≤ f2,
∫
X

(f2 − f1) dµT < ε. (1.2)

In the case X = [0, 1], equipped with the Lebesgue measure, (1.2) is equivalent to the
requirement µT (disc) = 0, i.e. that the set disc(f) of discontinuity points of f is a null set.
In other words, f is Riemann integrable. If f takes only finitely many values r1, . . . , rs this
condition is equivalent to µT (∂Xi) = 0 for the topological boundary of Xi := f−1[{ri}],
i = 1, . . . , s. Indeed, this condition is usually assumed for partitions in the context of
symbolic dynamics. In this paper we allow F : X → C to have infinitely many values,
but, motivated by the above considerations, we assume that F is Riemann integrable.

A very important class of uniquely ergodic systems are group rotations, i.e. T : C → C,
x 7→ x + g, where g ∈ C is a topological generator of the compact (abelian) group
C, meaning that the cyclic group generated by g is dense in C. The unique invariant
measure for the transformation T is given by the Haar measure µC on C. The induced
coding sequences (an)n∈Z are given by an = F (x+ng) and may be used to form a factor
of (ι, C). Indeed, if we consider the mapping ι : Z→ C, n 7→ ng, we have a = F ◦ ι. (ι, C)
is a group compactification of Z since ι is a (trivial) continuous group homomorphism
with image ι(Z) dense in C. Allowing Z to be replaced by an arbitrary topological group,
we finally arrive at the definition of Hartman functions, the main objects of our paper:

A function f : G → C on a topological group G is called a Hartman function if
there is a group compactification (ι, C) of G and a function F : C → C which is Rie-
mann integrable with respect to the Haar measure and satisfies f = F ◦ ι; F is called a
representation of (ι, C).

In particular, almost periodic functions (defined by continuous F ) are Hartman func-
tions. The name Hartman function refers to the Polish mathematician Stanis law Hartman
who was, up to our knowledge, the first to consider these objects in the 1960s in his work
in harmonic analysis [19, 20, 21]. He focused on the Bohr compactification (ιb, bG) of the
group G. It is not difficult to see that our definition is equivalent to the analogous require-
ment for (ι, C) = (ιb, bG). The question whether for a given Hartman function f , there
are small compactifications with a representation f = F ◦ ι is one of our major topics.

Additionally we investigate the connection of Hartman functions and weak almost
periodicity. Recall that a function is weakly almost periodic if it has a continuous repre-
sentation in a semitopological semigroup compactification, or, equivalently, in the weak
almost periodic compactification (ιw, wG). While every almost periodic function is Hart-
man, this is not true in the weak case. A more systematic overview of the content of this
paper is given at the end of this section.

1.2. Recent results on Hartman sets, sequences and functions. For an extended
survey on recent research on Hartman sets, Hartman sequences and Hartman functions
we refer to [57]. Here we only give a very brief summary.

The series of papers we report on was initiated by investigations of M. Paštéka and
R. F. Tichy [31, 32, 33] on the distribution of sequences induced by the algebraic structure
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in commutative rings R. The authors used the completion R with respect to a natural
metric structure such thatR is compact and thus carries a Haar measure µ. The restriction
of µ to the µ-continuity sets M , i.e. to those sets with µ(∂M) = 0 has been pulled back
in order to obtain a natural concept of uniform distribution in the original structure R.

One easily observes that the measure-theoretic part of the construction depends only
on the additive group structure of R. Thus the natural framework for a systematic investi-
gation is that of group compactifications (ι, C) of a topological group G and of the finitely
additive measure µ(ι,C) on G defined for ι-preimages of µ-continuity sets as follows:

µ(ι,C)(ι−1[M ]) := µ(M), M ⊆ C. (1.3)

This has been studied in [12]. Results for the special case G = Z are presented in [44, 45]:
Hartman sets ι−1[M ] ⊆ Z are identified with the functions 1ι−1[M ] : Z → {0, 1} and
called Hartman sequences. The relation to Beatty resp. Sturmian sequences and continued
fractions expansion is described. It is shown that the system of Hartman sequences is
generated by the system of Beatty sequences by means of Boolean combinations and
approximation in measure.

The connection to ergodic theory already mentioned in [45] is stressed further in [56]:
Hartman sequences can be considered as symbolic coding sequences of group rotations
(as described in the previous section). The problem to identify the underlying dynamical
system turns out to be equivalent to the identification of the group compactification
(ι, C) of Z inducing the Hartman set ι−1[M ] ⊆ Z. As an alternative to classical methods
such as spectral analysis of the dynamical system, a purely topological method has been
presented. Each Hartman set ι−1[M ] ⊆ Z defines in a natural way a filter on Z. Under
rather mild assumptions this filter is the ι-preimage of the neighborhood filter U(0C) of
the identity in C and contains all necessary information about (ι, C).

These methods have been applied to questions from number theory in [2] and gener-
alized to the setting of topological groups in [3].

The aspect of symbolic dynamics has been studied further in [47] by investigation
of subword complexity of Hartman sequences. Recall that the subword complexity pa :
N → N induced by the sequence a ∈ {0, 1}Z is a function associating to each n ∈ N the
number of different 0-1 blocks of length n occurring in a. Clearly 1 ≤ pa(n) ≤ 2n. The
main facts in this context are:

1. limn→∞ n−1 log pa(n) = 0, corresponding to the fact that group rotations have en-
tropy 0.

2. Whenever limn→∞ n−1 log pn = 0 for a sequence pn with 1 ≤ pn ≤ 2n, then there is a
Hartman sequence a with pn(a) ≥ pn for every n ∈ N.

3. The Hartman sequence a = 1ι−1[M ], where M ⊆ Ts, an s-dimensional cube, satisfies
pa(n) ∼ cM · ns with an explicit constant cM > 0 (we omit the number-theoretic
assumptions).

An amazing geometric interpretation of the constant cM was recently given in [46],
where statement 3 has been generalized to convex polygons M and cM corresponds to
the volume of the projection body of M .
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The investigation of Hartman functions has been started in [27] where, for instance,
results from [56] on Hartman sequences have been generalized. In the present paper we
continue these investigations and include a systematic and considerably self-contained
treatment of the topological and measure-theoretic background.

1.3. Content of the paper. Chapter 2 presents measure-theoretic and topological
preliminaries. Section 2.1 fixes notation concerning (Boolean) set algebras and related al-
gebras of functions. In Section 2.2 we investigate finitely additive measures on set algebras
and the integration of functions from corresponding function algebras. Then we present
the connection between measures and means. One of the most fundamental phenomena
in analysis is that compactness is used to obtain σ-additivity of measures and thus makes
Lebesgue’s integration theory work. Riesz’ Representation Theorem plays a crucial rôle
in this context; we recall it in Section 2.3. If compactness is absent one can try to force
it by considering compactifications. In Section 2.4 we construct compactifications in such
a way that a given set of bounded functions admits continuous extensions. We touch the
classical representation theorems of Gelfand and Stone. Among all compactifications of
a given (completely regular) topological space X there is a, in a natural sense, maximal
compactification, the Stone–Čech compactification (ιβ , βX). In Section 2.5 we collect its
important properties. Having presented the basics concerning compactifications, mea-
sures, means and the Riemann integral, we put these concepts together in Section 2.6.
Section 2.7, the last one in Chapter 2, presents the interpretation of the Stone–Čech
compactification (ιβ , βX) of a discrete space X as the set of all multiplicative means
on X. This motivates us to investigate means with more restrictive properties, such as
invariance.

Chapter 3 is concerned with invariance of measures and means under transformations
and operations. In particular, we investigate in Section 3.1 questions of existence and
uniqueness. For a transformation T : X → X invariance is closely related to the behavior
of Cesàro means along T -orbits, a concept which leads to the notion of Banach density.
In Section 3.2 we treat several examples and applications: finite X, X = Z and T : x 7→
x + 1, compact X and continuous T : X → X, shift spaces and symbolic dynamics,
the free group generated by two elements. In Section 3.3 we consider compactifications
under the additional aspect of extending transformations and (semi)group actions in a
continuous way. For binary or, more generally, n-ary, operations continuous extensions
do not always exist. The arising problems are treated in Section 3.4. In particular, n-ary
operations on X, n ≥ 2, can be continuously extended to (ιβ , βX) only in very special
cases. Nevertheless, it is useful to formulate a general framework in order to unify the
most interesting classical situations: topological and semitopological group and semigroup
compactifications. This is done in Section 3.5. In Section 3.6 these constructions are
discussed in the context of invariant means and measures. We mention the notion of
weak almost periodicity and touch amenable groups and semigroups very briefly.

Chapter 4 develops the basic theory of Hartman functions. Section 4.1 presents sev-
eral equivalent conditions describing the connection with almost periodicity and the Bohr
compactification, i.e. the maximal group compactification. Replacing group compactifica-
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tions by semitopological semigroup compactifications one obtains the weak almost peri-
odic compactification, weak almost periodic functions and weak Hartman functions. This
is presented in Section 4.2. The category of all group compactifications of a topological
group G is particularly well understood if G is abelian and carries a locally compact
group topology. The key ingredient is Pontryagin’s Duality Theorem. We recall this situ-
ation in Section 4.3. One of the most interesting questions concerning a Hartman function
f : G → C is how small a group compactification (ι, C) can be taken if one asks for a
Riemann integrable representation of f . This question is treated in Section 4.4. We give
an answer for LCA groups in terms of the minimal cardinality of a dense subgroup in the
Pontryagin dual Ĝ of G.

Chapter 5 is devoted to the comparison of Hartman functions and weakly almost pe-
riodic functions. It turns out that a generalization of what is called a jump discontinuity
in basic analysis plays an important rôle. Generalized jump discontinuities are estab-
lished in Section 5.1 and used in Section 5.2 to give necessary conditions of weak almost
periodicity of Hartman functions. This leads to the investigation of Hartman functions
without such generalized jumps in Section 5.3. Hartman functions with small support are
treated in 5.4. Finally, Section 5.5 discusses particular examples of Hartman functions
on the integers which are neither almost periodic nor converge to 0. The results use the
Fourier–Stieltjes transform of measures.

Finally, a short summary is given, including a diagram which illustrates the relation
between several spaces of functions which are interesting in our context.

2. Measure-theoretic and topological preliminaries

2.1. Set algebras A and A-functions. We start by fixing notation which is suitable
to imitate the construction of the Riemann integral in the slightly more general context
which will be ours.

Definition 2.1.1. A (boolean) set algebra A (on a set X) is a system of subsets of X
with ∅, X ∈ A for which A,B ∈ A implies A ∪B,A ∩B,X \A ∈ A.

Example 2.1.2. Let X = [0, 1] ⊆ R be the unit interval and A = A([0, 1]) the system of
all finite unions of subintervals I ⊆ [0, 1] (open, closed and one-sided closed, also including
singletons and the empty set). This is the most classical situation. But it is worth noting
that we might replace [0, 1] by any totally ordered X, for instance by any D ⊆ [0, 1] dense
in [0, 1] (as D = Q ∩ [0, 1]).

We are interested in integration of complex-valued functions on X:

Definition 2.1.3. Let A be a set of functions f : X → C. We call the subset AR of all
f ∈ A with f(X) ⊆ R the real part of A. A is called real if AR = A. If A is a vector
space or an algebra over R (or C) we call A a real (or complex ) space resp. a real (or
complex ) algebra of functions. For any A ⊆ X let 1A(x) = 1 for x ∈ A and 1A(x) = 0 for
x ∈ X \ A. For an algebra A we always assume 1X ∈ A. A complex space or algebra A
of functions is called a ∗-space resp. a ∗-algebra if f ∈ A implies f ∈ A for the complex
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conjugate f of the function f . We write B(X) for the set of all bounded f : X → C,
BR(X) := B(X)R for its real part. (Later we will also use the notation B for the Fourier–
Stieltjes algebra.) A ∗-algebra A on X which is complete with respect to the topology of
uniform convergence on X is called a C∗-algebra.

Note that whenever A is a real space we can form the complexification AC = {f1+if2 :
f1, f2 ∈ A} which is a complex vector space, and a ∗-algebra whenever A is a real algebra.
For any complex linear space or algebra A, to be a ∗-space resp. a ∗-algebra is equivalent
to the following property: Whenever f = f1 + if2 is the decomposition of f into the
real part f1 and imaginary part f2, then f ∈ A if and only if f1, f2 ∈ AR. Thus for
the investigation of ∗-algebras A it suffices to investigate the real part AR whenever
convenient. Furthermore, any C∗-algebra of bounded functions is closed under taking
absolute values: |f | =

√
ff , a fact which can be seen by approximating the square root

by polynomials.

Definition 2.1.4. Let A be a set algebra on X. A function f : X → C is called A-simple
if it has a representation

f =
n∑
i=1

ci1Ai

with Ai ∈ A and ci ∈ C. The set of all A-simple f is denoted by SA. We denote the
uniform closure SA of SA by B(A). Members of B(A) are also called A-functions.

More explicitly, for a set algebra A on X the function f : X → C lies in B(A) if and
only if for all ε > 0 there is an f ′ ∈ SA with |f(x)− f ′(x)| < ε for all x ∈ X.

Proposition 2.1.5. All the sets SA ⊆ B(A) ⊆ B(X) are ∗-algebras. In general, the
inclusions are strict.

Proof. It is clear that SA, B(A) and B(X) are ∗-algebras satisfying the stated inclusions.
Thus it suffices to show that SA 6= B(A) 6= B(X) if one takes X = [0, 1] and A = A([0, 1]),
the set algebra of all finite unions of subintervals of [0, 1]. Then f ∈ C(X) ⊆ B(A) but
f /∈ SA if we take f(x) = x, hence SA 6= B(A). On the other hand, all f ∈ B(A) are
Riemann integrable in the classical sense, which is not the case for arbitrary f ∈ B(X).

For every set algebra A, B(A) is a C∗-algebra. But not every C∗-algebra A can be
written as A = B(A) for an appropriate A. The situation is explained by the following
facts.

Proposition 2.1.6. For a set A of complex-valued functions f : X → C define AA :=
{A ⊆ X : 1A ∈ A}. Then:

(i) AA is a set algebra whenever A is an algebra.
(ii) Every set algebra A on X satisfies A = AB(A).
(iii) For every uniformly closed algebra A one has B(AA) ⊆ A, while the converse inclu-

sion does not hold in general.

Proof. (i) Follows from 1X ∈ A, 1A1∩A2 = 1A1 · 1A2 , 1X\A = 1X − 1A and the identity
A1 ∪A2 = X \ ((X\A1) ∩ (X\A2)).
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(ii) The inclusion A ⊆ AB(A) is obvious. For the converse assume A ∈ AB(A), i.e.
1A ∈ B(A). Then there are fn ∈ SA uniformly converging to 1A. There are representa-
tions fn =

∑kn
i=1 αi,n1An,i such that for each n the An,i ∈ A, i = 1, . . . , kn, are pairwise

disjoint. For sufficiently large fixed n, each x ∈ X satisfies either |fn(x) − 1| < 1/2 (if
x ∈ A) or |fn(x)| < 1/2 (if x /∈ A). This shows that An,i ⊆ A or An,i ⊆ X \ A for any
such fixed n and all i = 1, . . . , kn, hence A =

⋃
i:An,i⊆AAn,i ∈ A.

(iii) The stated inclusion is obvious. The example A = C([0, 1]), AA = {∅, X},
B(AA) = {c1X : c ∈ C} shows that the inclusion may be strict.

2.2. Finitely additive measures and means

Definition 2.2.1. Let A be a set algebra on X. A function p : A→ [0,∞] with p(∅) = 0
is called a finitely additive measure, briefly fam (on X or, more precisely, on A) if it is
finitely additive, i.e. if p(A1 ∪ A2) = p(A1) + p(A2) whenever A1 ∩ A2 = ∅. p is called a
finitely additive probability measure, briefly fapm, if furthermore p(X) = 1.

Example 2.2.2. Continuing Example 2.1.2, for X = [0, 1] and A = A([0, 1]), the system
of all finite unions of intervals, one takes p(I) = b − a for I = [a, b] with 0 ≤ a ≤ b ≤ 1.
This definition uniquely extends to a fapm on the set algebra A([0, 1]) of all finite unions
of intervals. We will refer to this p as the natural measure. The construction does not
depend on the completeness (compactness) of [0, 1] and hence can be done as well for
dense subsets D ⊂ X. For instance, one could consider (finite unions of) intervals of
rationals.

Definition 2.2.3. Let A be a linear space of functions on a set X. Then a mean m on
A is a linear functional m : A → C which is positive, i.e. f ≥ 0 implies m(f) ≥ 0, and
satisfies m(1X) = 1.

Note that whenever A is real and m is a mean on A then m(f1+if2) := m(f1)+im(f2)
for f1, f2 ∈ A is the unique extension of m to the complexification AC of A. Very often
we simply write m for m.

For real functions f every mean m, by positivity, satisfies inf f ≤ m(f) ≤ sup f . As a
consequence we have:

Proposition 2.2.4. Every mean m on A is continuous with respect to the norm ‖f‖∞ :=
supx∈X |f(x)| and thus has a unique extension to the uniform closure A of A.

Every mean induces a further notion of closure:

Definition 2.2.5. Let m be a mean on a linear space A of functions on X. Then the
real m-closure A(m)

R of A is the set of all f : X → R such that for all ε > 0 there are
f1, f2 ∈ AR with f1 ≤ f ≤ f2 and m(f2 − f1) < ε. For f ∈ A(m)

R , m(f) is defined to be
the unique value α ∈ R with m(f1) ≤ α ≤ m(f2) for all f1, f2 ∈ A with f1 ≤ f ≤ f2. The
(complex) m-closure A(m) is the set of all f = f1 + if2 with f1, f2 ∈ A(m)

R . Furthermore,
we define m(f) := m(f1) + im(f2) for such f = f1 + if2. m is called the completion of
m, sometimes also simply denoted by m. In the case A(m) = A we call m complete and
A m-closed.
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Remark 2.2.6. Distinguish the m-closure from the completion with respect to the
pseudo-metric dm(f, g) := m(|f − g|). By definition (m is continuous with respect to dm)
the m-closure is always contained in the dm-completion: A(m) ⊆ A(dm). The closure with
respect to m corresponds to the integral in the sense of Riemann, the completion with
respect to dm to that of Lebesgue (modulo null-sets).

Every fapm p defined on a set algebra A on a set X induces a linear functional mp in
the natural way. Standard arguments (using the fact that A is closed under intersections
and that p is finitely additive) show that for an A-simple f =

∑n
i=1 ci1Ai ∈ SA the value

mp(f) = mp

( n∑
i=1

ci1Ai

)
:=

n∑
i=1

cip(Ai)

does not depend on this particular representation of f as a linear combination. Obviously
this mp is a mean on SA and thus, by Proposition 2.2.4, has a unique extension to the

algebra B(A) = SA as well as to S(mp)

A .
We want to extend the domain of mp from SA to the space Ip defined as follows.

Definition 2.2.7. For a given fapm p on A let Ip := S(mp)

A . The members f ∈ Ip are
called integrable (with respect to p). The extension of mp to Ip, usually also denoted by
mp, is called the mean induced by p.

We leave the proof of the following easy properties to the reader:

Proposition 2.2.8. Let A be a set algebra on the set X, and p a fapm defined on A.
Then B(A) ⊆ Ip ⊆ B(X), Ip is mp-closed and mp is a mean on Ip.

Remark 2.2.9. Ip is uniformly closed. In particular, Ip is a C∗-algebra. Indeed, let fn→ f

uniformly where fn ∈ Ip. For given ε > 0 there exists fn such that ‖f − fn‖∞ ≤ ε/4 and
fn,1, fn,2 ∈ B(A) such that fn,1 ≤ fn ≤ fn,2 and mp(fn,2 − fn,1) ≤ ε/2. Observe that

fn,1 − ε/4 ≤ fn − ε/4 ≤ f ≤ fn + ε/4 ≤ fn,2 + ε/4

and thus mp((fn,2 + ε/4)− (fn,1 − ε/4)) ≤ ε shows f ∈ Ip.
The inclusions stated in Proposition 2.2.8 are in general strict as the following example

shows.
Example 2.2.10. Let again A = A([0, 1]) be the set algebra of all finite unions of subin-
tervals of X = [0, 1], p the natural measure on A. Then Ip is the set of all f : [0, 1]→ C
which are integrable in the classical Riemann sense, thus a proper subset of B(X). Con-
sider f := 1C where C = {

∑∞
n=1 an/3

n : an ∈ {0, 2}} is Cantor’s middle third set. Then
f ∈ Ip, but f /∈ B(A): f ∈ B(A) would yield the existence of f1 =

∑n
i=1 ci1Ai ∈ SA with

Ai ∈ A, ci ∈ C and ‖f − f1‖∞ < 1/2. We may assume that the Ai are pairwise disjoint.
Consider A :=

⋃
i:|ci−1|<1/2Ai ∈ A and f2 := 1A ∈ SA. Then ‖f − f2‖∞ < 1/2, which,

since f and f2 only take the values 0 and 1, implies f = f2 and C = A, a finite union of
intervals, a contradiction.

We have seen that each fapm p on a set algebra in a natural way induces a mean m

on the C∗-algebra Ip. Recall from the first statement in Proposition 2.1.6 that AA :=
{A ⊂ X : 1A ∈ A} is a set algebra whenever A is an algebra of functions. Given a mean
m on A, pm(A) := m(1A) clearly defines a fapm on Am := AA. We ask whether the
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constructions ϕ : (A, p) 7→ (Ip,mp) and ψ : (A,m) 7→ (Am, pm) are inverse to each other.
In general this is not the case.

Example 2.2.11. Consider any algebra A of continuous functions on a nontrivial con-
nected space X (for instance X = [0, 1]) containing functions which are not constant,
and any nontrivial mean m on A. Then AA = {∅, X} and hence Ipm only contains the
constant functions and does not coincide with A.

However, this is not surprising if we note that A in the above example is not m-closed,
while Ip is mp-closed. Thus we have to assume this property for all function algebras and
means, and to use the analogous property for fapm’s.

Definition 2.2.12. Consider a fapm p on a set algebra A on the set X. Then the p-
completion A

(p)
of A is defined as the set of all A ⊆ X with the following property: For

each ε > 0 there are A1, A2 ∈ A with A1 ⊆ A ⊆ A2 and p(A2 \ A1) < ε. For A ∈ A
(p)

we define p(A) to be the unique α with p(A1) ≤ α ≤ p(A2) for all A1, A2 ∈ A with
A1 ⊆ A ⊆ A2. In this way we canonically extend p to all of A

(p)
. In the case A

(p)
= A

we call p complete and A p-closed.

It is clear that the p-completion of a set algebra is again a set algebra. Note further-
more that for p σ-additive the notion coincides with the usual concept of a complete
measure.

Proposition 2.2.13. Let A be a set algebra on X and p a fapm on A.

(i) A ⊆ Amp and pmp(A) = p(A) whenever A ∈ A.

(ii) A
(p)

= Amp . In particular, the equality A = Amp holds if and only if A is p-closed.

Proof. (i) is obvious. To prove (ii) assume first that A ∈ Amp and pick any ε > 0. Then
1A ∈ Ip by definition of Amp . By definition of Ip this means that there are f1, f2 ∈ SA

such that f1 ≤ 1A ≤ f2 and mp(f2 − f1) < ε. There is a representation f2 − f1 =∑n
i=1 ci1Ai such that the Ai are nonempty, pairwise disjoint and both f1 and f2 are

constant on each Ai. f2 − f1 ≥ 0 implies ci ≥ 0 for all i. Consider the partition of
{1, . . . , n} into three sets I1, I2, I3 in such a way that Ai ⊆ A for i ∈ I1 and Ai ∩ A = ∅
for i ∈ I2. For i ∈ I3 we require that Ai intersects A as well as X \ A. We define
B1 :=

⋃
i∈I1 Ai and B2 := B1 ∪

⋃
i∈I3 Ai, hence B1 ⊆ A ⊆ B2 and B1, B2 ∈ A. Note that

f1 ≤ 1A ≤ f2 together with the fact that the f1 and f2 are constant on each Ai implies
that for i ∈ I3 we have f1 ≤ 0 and f2 ≥ 1, therefore ci ≥ 1. We conclude

p(B2 \B1) =
∑
i∈I3

p(Ai) ≤
∑
i∈I3

cip(Ai) = mp

(∑
i∈I3

ci1Ai

)
≤ mp

( n∑
i=1

ci1Ai

)
= mp(f2 − f1) < ε.

Since ε > 0 was arbitrary this implies A ∈ A
(p)

.

If on the other hand we are given a set A ∈ A
(p)

and ε > 0, then there exist B1, B2 ∈ A

such that B1 ⊆ A ⊆ B2 and p(B2 \ B1) < ε. Passing to the indicator functions 1B1 ≤
1A ≤ 1B2 and noting 1B1 ,1B2 ∈ SA we see that A ∈ Amp .
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The analogous statement for the converse construction says that, given a mean m

on a C∗-algebra A, A = Ipm if and only if A is m-closed. Later we will use topological
constructions for a proof of this fact (see Proposition 2.6.6).

2.3. Integration on compact spaces. Throughout this text the notion of compactness
always includes the Hausdorff separation axiom. In this section we assume that X is a
compact space. If µ is a Borel probability measure on X then m = mµ : f 7→

∫
X
fdµ

defines a mean on A = C(X), the C∗-algebra of all continuous f : X → C. One of
the main reasons that integration theory is particularly successful on (locally) compact
spaces is that also a converse is true: Positive functionals induce σ-additive measures.
This is the content of the celebrated Riesz’ Representation Theorem, which we use in the
following version:

Proposition 2.3.1 (Riesz). Let X be compact and m a mean on C(X). Then there is
a unique regular probability measure µ = µm which is the completion of its restriction to
the σ-algebra of Borel sets on X and such that m(f) =

∫
X
f dµ for all f ∈ C(X). (Recall

that regular means that for every µ-measurable A and all ε > 0 there are closed F and
open G with F ⊆ A ⊆ G and µ(G \ F ) < ε.)

A proof can be found for instance in Rudin’s book [38].
On the compact unit interval X = [0, 1] the classical Riemann integral can be taken as

a mean m on C(X). Then the measure µm according to Riesz’ Representation Theorem
is the Lebesgue measure on [0, 1]. Note that in this case A = C(X) is not mµ-closed,
since all Riemann integrable functions (essentially by the very definition of the Riemann
integral) are members of the m-closure of A but not necessarily continuous. Sets A with
topological boundary ∂A of measure 0 play an important rôle.

Definition 2.3.2. Let µ be a complete Borel measure on X. A set A ⊆ X is called
µ-Jordan measurable or a µ-continuity set if the topological boundary ∂A of A satisfies
µ(∂A) = 0. The system of all µ-continuity sets (which forms a set algebra on X) is
denoted by Cµ(X).

In the classical case X = [0, 1], µ the Lebesgue measure, the continuity sets A are
exactly those A ⊆ [0, 1] for which 1A is integrable in the Riemann sense. The uniform
closure of the linear span of such 1A coincides with the Riemann integrable functions.
In order to treat the Riemann integral in the context of compactifications we fix well-
known characterizations of classical Riemann integrability in our somewhat more general
context.

For a function f , defined on the topological space X, we will denote by disc(f) the
set of discontinuity points of f .

Proposition 2.3.3. Let X be compact, µ a finite complete regular Borel measure on X

and f : X → R bounded. Then the following conditions are equivalent:

(i) disc(f) is µ-measurable and a µ-null set.
(ii) f ∈ SCµ = B(Cµ), i.e. f can be approximated by simple Cµ-functions with respect to

uniform convergence.
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(iii) f ∈ C(X)
mµ , i.e. for every ε > 0 there exist f1, f2 ∈ C(X) such that f1 ≤ f ≤ f2

and
∫
X

(f2 − f1) dµ < ε.

If one (and hence all) of these conditions are satisfied, then f is µ-measurable.

Proof. First we prove that (i) implies that f is measurable. By regularity there is a
decreasing sequence of open sets On, n ∈ N, of measure µ(On) < 1/n with disc(f) ⊆ On.
Let fn be the restriction of f to X \ On. For any Borel set B ⊆ R we have f−1[B] =⋃
n∈N f

−1
n [B] ∪ N with N ⊆ D :=

⋂
n∈N On, µ(D) = 0. By the completeness of µ we

conclude that N and thus f−1[B] and finally f is measurable. Now we start with the
cyclic proof of the equivalences.

(i)⇒(ii): Assume that µ(disc(f)) = 0 and (without loss of generality) f(X) ⊆ [0, 1].
We introduce the level sets Mt := [0 ≤ f < t], which are measurable by the first part of
the proof, and the function

ϕf (t) := µ(Mt).

Since ϕf is increasing, it has at most countably many points of discontinuity. Consider
µ({x : f(x) = t}) ≤ ϕf (r)− ϕf (s) for s < t < r. If ϕf is continuous at t this implies

sup
s<t

ϕf (s) = f(t) = inf
r>t

ϕf (r),

and so {x : f(x) = t} is a µ-null set for t /∈ disc(ϕf ). Now let x ∈ ∂Mt. If f is continuous
at x we clearly have f(x) = t. So

∂Mt ⊆ disc(f) ∪ {x : f(x) = t}.

The first set on the right-hand side is a µ-null set by our assumption and the second one is
a µ-null set at least for each continuity point t of ϕf . So for all but at most countably many
t the set Mt is a µ-continuity set. In particular, the set Nf := {t : µ(∂Mt) = 0} ⊆ [0, 1]
is dense.

Now we approximate f uniformly by members of SCµ : Given ε > 0, pick n ∈ N such
that n > 1/ε and pick real numbers {ti}ni=0 ⊂ Nf with

t0 = 0 < t1 <
1
n
< · · · < ti <

i

n
< ti+1 < . . . <

n− 1
n

< tn = ‖f‖∞ ≤ 1.

Let Ai := Mti \Mti−1 . Then
∣∣f(x)− i−1

n

∣∣ < ε on Ai, i = 1, . . . , n. Since X = M1 \M0 =⋃n
i=1Ai we conclude ∣∣∣∣ n∑

i=1

i

n
1Ai(x)− f(x)

∣∣∣∣ < ε.

(ii)⇒(iii): Let A0 denote the set of all bounded g : X → R satisfying (iii), i.e. such
that for each ε > 0 there are g1, g2 ∈ C(X) with g1 ≤ g ≤ g2 and

∫
X

(g2 − g1) dµ < ε. It
is a routine check that A0 is a linear space and uniformly closed. Thus it suffices to show
that 1A ∈ A0 whenever A ∈ Cµ. For such an A and any given ε > 0 we use the regularity
of µ to get an open set O with ∂A ⊆ O and µ(O) < ε. Since compact spaces are normal
we can find closed sets A1, A2 and open sets O1, O2 with

A \O ⊆ O1 ⊆ A1 ⊆ Ao ⊆ A ⊆ O2 ⊆ A2 ⊆ A ∪O.
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Take continuous Urysohn functions f1 for A \O and X \O1, f2 for A2 and X \ (A ∪O),
i.e.

1A\O ≤ f1 ≤ f ≤ f2 ≤ 1A∪O.

Then
∫
X

(f2 − f1) dµ ≤ µ(O) < ε.
(iii)⇒(i): Define the oscillation Osf (x) of f at a point x by

Osf (x) := lim sup
y→x

f(y)− lim inf
y→x

f(y).

Let Ak := [Osf (x) ≥ 1/k] be the set of all x ∈ X where the oscillation of f is at least 1/k.
Pick any ε > 0 and k ∈ N. By (iii) there are continuous fε1 , f

ε
2 with fε1 ≤ f ≤ fε2 and∫

X
(fε2 − fε1 ) dµ < ε/k. Note that Ak ⊆ Bεk := {x ∈ X : fε2 (x) − fε1 (x) ≥ 1/k} and

µ(Bεk) < 2ε. Since ε > 0 was arbitrary we have µ(Ak) = 0. Since disc(f) =
⋃
k∈N Ak this

proves (i).

The equivalence of (i) and (iii) can also be found in [49].

Definition 2.3.4. Let µ be a finite, complete and regular Borel measure on the compact
space X and f : X → C be a bounded function with decomposition f = f1 + if2 into real
and imaginary parts. Then f is called µ-Riemann integrable if both f1 and f2 satisfy the
equivalent conditions of Proposition 2.3.3. We denote the set of all µ-Riemann integrable
f by Rµ(X) or Rµ.

The three conditions in Proposition 2.3.3 immediately transfer to complex-valued
functions.

Corollary 2.3.5. Let µ be a finite, complete and regular Borel measure on the compact
space X. For a bounded f : X → C the following conditions are equivalent.

(i) f ∈ Rµ, i.e. f is µ-Riemann integrable.
(ii) µ(disc(f)) = 0.
(iii) f ∈ B(SCµ).

In particular, Rµ = Ip if p(A) := µ(A) for A ∈ Cµ.

Every f ∈ Rµ is µ-measurable and the set disc(f) of discontinuities of a Riemann
integrable f is small not only in the measure-theoretic but also in the topological sense.

Proposition 2.3.6. Let X be compact and µ a finite regular Borel measure with
supp(µ) = X. Let f ∈ Rµ(X) be Riemann integrable. Then disc(f) is a meager µ-null
set, in particular the set of continuity points of f is dense in X.

Proof. We may assume that f ∈ Rµ(X) is real-valued. It suffices to show that disc(f)
is meager. As in the proof of Proposition 2.3.3 let us denote the oscillation of f at x by
Osf (x). A standard argument shows that the sets An := [Osf ≥ 1/n], n > 0, are closed.
The sets An are all µ-null sets since An ⊆ disc(f). Since µ has full support, this implies
that all sets An are nowhere dense, i.e. disc(f) =

⋃
n>0An is a meager Fσ-set of zero

µ-measure.

We want to illustrate the rôle of the regularity assumption on µ in Proposition 2.3.3.
For this we use the example of a nonregular Borel measure occurring in Rudin’s book
[38, Exercise 2.18].
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Example 2.3.7. Let X = [0, ω1] be the set of all ordinals up to the first uncountable one
equipped with the order topology. Thus X is a compact space.

We need the fact that every (at most) countable family of uncountable compact
subsets Kn ⊆ X has an uncountable intersection K. To see this consider any increasing
sequence x0 < x1 < x2 < · · · ∈ X which meets every Kn infinitely many times. It follows
that α0 := supn xn < ω1 is in the closure of all Kn, hence in K. Since we may require
x0 > x for any given x < ω1 the same construction can be repeated in order to obtain
an α1 ∈ K with α1 > α0. Transfinite induction with the limit step αλ := supν<λ αν
generates the closed and thus compact subset of all αν , ν < ω1, which is contained in K.

Easy consequences: We call a set S ⊆ X of type 1 if S∪{ω1} contains an uncountable
compact K. If S is of type 1 the complement of S cannot have the same property. Call
S ⊆ X of type 0 if (X \ S) ∪ {ω1} contains an uncountable compact K. The system of
all sets of either type 0 or type 1 forms a σ-algebra A containing all Borel sets.

Let µ(S) = i if S is of type i = 0, 1; then µ is a complete measure defined on A.
Note that every countable set is a µ-null set. The set {ω1} has measure 0 and is a
counterexample for outer regularity: The function 1{ω1} obviously satisfies conditions
(i) and (ii) in Proposition 2.3.3, but not (iii). To see this last assertion consider any
continuous f : X → C and take βn such that |f(x)− f(ω1)| < 1/n for all x ≥ βn. Then
β := supn βn < ω1 has the property that f(x) = f(ω1) for all x ≥ β. It follows that∫
X
f dµ = f(ω1) for all f ∈ C(X). In particular, g ≤ 1ω1 ≤ h, g, h ∈ C(X) implies∫

X
(h− g) dµ ≥ 1, contradicting (iii).
Nevertheless, we can apply Riesz’ Representation Theorem 2.3.1 to the functional

m(f) :=
∫
X
f dµ. A quick inspection shows that µm = δω1 , i.e. the associated unique

regular Borel measure is the point measure concentrated at the point ω1. As a com-
plete measure, this µm is defined on the whole power set of X. Finally, we observe that
1ω1 /∈ Iµm .

2.4. Compactifications and continuity. The previous section has illustrated that
compactness plays an important rôle in integration theory. This motivates us to investi-
gate compactifications, the topic of this purely topological section. Let X be a, possibly
discrete, topological space.

We will interpret functions f : X → C as restrictions of functions F : K → C on
compact spaces K. For our needs the following setting is appropriate.

Definition 2.4.1. A pair (ι,K), K compact, ι : X → K a continuous mapping, is called
a compactification of X whenever ι(X) = K, i.e. whenever the image of X under ι is
dense in K. The function F : K → C is called a representation of f : X → C whenever
f = F ◦ ι, i.e. whenever the diagram

K

X
f-

ι
-

C

F

?

commutes. In this case we also say that f can be represented in (ι,K). If F ∈ C(K) we
say that F is a continuous representation.
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Note that in the definition of a compactification ι is not required to be a homeomorphic
embedding nor to be injective. If there is a continuous representation F of f in (ι,K),
then this F is uniquely determined by continuity and the fact that ι(X) is dense in K.
Furthermore, f = F ◦ ι is continuous as well. In this section we are therefore mainly
interested in continuous f . Let us consider first a rather trivial example.

Example 2.4.2.

• Let f : X → C be bounded and continuous. Surely Kf := f(X) is compact. Define
ιf : x 7→ f(x) and let Ff : Kf → C be the inclusion mapping. Then (ιf ,Kf ) is a
compactification of X and Ff is a continuous representation of f in (ιf ,Kf ). We call
Ff the natural continuous representation of f .
• Let f : X → C be merely bounded. If we impose the discrete topology on X, then f

is continuous and the associated compactification (ιf ,Kf ) is a compactification of the
discrete space Xdis.

One observes the following minimality property of the natural continuous representa-
tion: If F : K → C is any continuous representation of f in any compactification (K, ι)
of X, then π : K → Kf = f(X), π(k) := F (k), is continuous, onto and satisfies π ◦ ι = ιf .
This motivates the following definition.

Definition 2.4.3. Let (ι1,K1) and (ι2,K2) be two compactifications ofX. Then we write
(ι1,K1) ≤ (ι2,K2) (via π) and say that (ι1,K1) is smaller than (ι2,K2) or, equivalently,
(ι2,K2) is bigger than (ι1,K1), if π : K2 → K1 is continuous satisfying ι1 = π ◦ ι2, i.e.
making the diagram

K2

X
ι1-

ι2
-

K1

π

?

commutative. If π is a homeomorphism we say that (ι1,K1) and (ι2,K2) are equivalent
via π and write (ι1,K1) ∼= (ι2,K2).

A consequence of the continuity of the maps involved and of the fact that the images
ιi(X) are dense is that π as in Definition 2.4.3 is unique. By compactness, π is onto as
well. If π happens to be injective it is a homeomorphism, i.e. (ι1,K1) and (ι2,K2) are
equivalent. Furthermore, one easily sees that, whenever (ι1,K1) ≤ (ι2,K2) via π1 and
(ι2,K2) ≤ (ι1,K1) via π2 then π2 ◦ π1 is the identity on K1 and π1 ◦ π2 is the identity
on K2, hence π2 = π−1

1 , π1 and π2 are isomorphisms and both compactifications are
equivalent.

Proposition 2.4.4. (ι1,K1) ∼= (ι2,K2) if and only if both (ι1,K1) ≤ (ι2,K2) and
(ι2,K2) ≤ (ι1,K1).

Note that maps π1, π2 as in Definition 2.4.3 may as well be considered to be the
morphisms in a category whose objects are all compactifications of X. Other related
categories arise if one allows only continuous representations of one fixed f : X → C. In
these terms the minimality property of the natural compactification asserts that (ιf ,Kf )
is a universal object and thus unique up to equivalence.
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Proposition 2.4.5. Let F1 be a representation of f : X → C in a compactification
(ι1,K1) of X, and suppose (ι1,K1) ≤ (ι2,K2) via π. Then F2 := F1◦π is a representation
of f in (ι2,K2) which is continuous whenever F1 is continuous.

Given a family of compactifications (ιi,Ki), i ∈ I, of X, we get a common upper
bound by taking products: Let ι(x) := (ιi(x))i∈I ∈ P :=

∏
i∈I Ki and K := ι(X) ⊆ P .

Then one obtains a compactification (ι,K) which, via the projections πi0 : K → Ki0 ,
i0 ∈ I, (ki)i∈I 7→ ki0 , indeed satisfies (ιi,Ki) ≤ (ι,K) for all i ∈ I. Sometimes we use the
notation

∨
i∈I(ιi,Ki) for (ι,K).

Definition 2.4.6. For compactifications (ιi,Ki) of X, i ∈ I, the compactification (ι,K),
ι : x 7→ (ιi(x))i∈I , K := ι(X) ⊆

∏
i∈I Ki, is called the product compactification of all

(ιi,Ki), i ∈ I.

Proposition 2.4.7. For any compactifications (ιi,Ki) of X, i ∈ I, the supremum
supi∈I(ιi,Ki) is equivalent to the product compactification (ι,K) of all (ιi,Ki), i ∈ I.

Proof. We have already seen that supi∈I(ιi,Ki) ≤ (ι,K). Let (ι′,K ′) be another com-
pactification of X such that (ιi,Ki) ≤ (ι′,K ′), i ∈ I. Denote by πi : K ′ → Ki the ith
projection. Define a mapping π : K ′ → K via k′ 7→ (πi(k′))i∈I . Note that π ◦ ι′ = ι, hence
π(ι′(X)) ⊆ K and

π(K ′) = π(ι′(X)) ⊆ π(ι′(X)) ⊆ K.

It is immediate to check that π is continuous; thus (ι,K) ≤ (ι′,K ′).

Analogously the product compactification can be used to obtain a minimal compacti-
fication where all functions from an arbitrary given family have a continuous representa-
tion: Let fi : X → C, i ∈ I, be bounded and continuous functions on X. We consider the
natural continuous representations of the fi, i.e. (ιi,Ki) := (ιfi ,Kfi), and Fi : Ki → C
the inclusion mappings. Let (ι,K) be the product of all (ιi,Ki), i ∈ I.

Definition 2.4.8. Let us denote the C∗-algebras of bounded resp. continuous resp.
bounded and continuous f : X → C by B(X), C(X) resp. Cb(X). For a given fam-
ily of fi ∈ Cb(X), i ∈ I, the compactification (ι,K) constructed as above is called the
natural compactification for the family of all fi, i ∈ I. If A = {fi : i ∈ I} we also write
(ιA,KA) for (ι,K).

Proposition 2.4.9. Let A ⊆ Cb(X). Then:

(i) Every f ∈A has a continuous representation in the natural compactification (ιA,KA)
of A.

(ii) Suppose that (ι,K) is any compactification of X where every f ∈ A has a contin-
uous representation. Then (ιA,KA) ≤ (ι,K), i.e. (ιA,KA) is minimal among the
compactifications with this property.

(iii) {F ◦ ι : F ∈ C(KA)} is a C∗-algebra and the ∗-algebra generated by A is dense in
this C∗-algebra. In particular, if A is C∗-algebra, then A contains exactly those f
which have a continuous representation in (ιA,KA).

Proof. (i) For each i0 ∈ I, Gi0 : K → C, (ci)i∈I 7→ ci0 , is continuous and satisfies
fi0 = Gi0 ◦ ι for each i0 ∈ I. Thus all fi can be continuously represented in (ιA,KA).
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(ii) Let (ι′,K ′) be an arbitrary compactification ofX where continuous representations
G′i : K ′ → C of fi = G′i ◦ι′ exist. As in Proposition 2.4.7, we define π : k′ 7→ (G′i(k

′))i∈I ∈∏
i∈I fi(X). Then π is continuous because all components are. Again we have π(K ′) ⊆ K,

π : K ′ → K and (ι,K) ≤ (ι′,K ′). Furthermore, G′i = Gi ◦ π for all i ∈ I, since the
mappings on both sides are continuous and coincide on the dense set ι′(X).

(iii) It is clear that the mapping F 7→ F ◦ ι maps the C∗-algebra C(KA) again onto
a C∗-algebra and that this map is a continuous homomorphism between C∗-algebras.

For the rest of the proof we can assume that A is a ∗-algebra. It remains to prove
that the ∗-algebra A′ := {F ∈ C(KA) : F ◦ ι ∈ A} is dense in C(KA). We employ the
Stone–Weierstraß theorem. Obviously A′ is a ∗-algebra containing all constant functions.
We are done if A′ is point separating. Pick c 6= c′ ∈ KA. Recall that the points in KA
are of the form c = (cf )f∈A and c′ = (c′f )f∈A with cf , c

′
f ∈ C. Hence there is some

f0 ∈ A such that cf0 6= c′f0 . By definition, KA is the closure of the set of all (f(x))f∈A,
x ∈ X. It follows that there are x, x′ ∈ X with f0(x) arbitrary close to cf0 , f0(x′) to c′f0 ,
hence f0(x) 6= f0(x′). Let F0 = πf0 ∈ Cb(X), implying f0 = F0 ◦ ι and F0 ∈ A′ with
F0(c) = f0(x) 6= f0(x′) = F0(c′). Thus A′ is indeed point separating, which completes
the proof.

Proposition 2.4.10. Let A be a C∗-algebra on X. Then A separates points of X if and
only if in the natural compactification (ιA,KA) the map ιA : X → KA is one-one.

Proof. Recall that ιA(x) := (f(x))x∈A. Now, A separates points of X if and only if
for all x1, x2 ∈ X with x1 6= x2 there exists f ∈ A such that f(x1) 6= f(x2), i.e.
ιA(x1) 6= ιA(x2).

Corollary 2.4.11 (Gelfand). The mapping A 7→ (ιA,KA) is (modulo equivalence of
compactifications) a bijective and order-preserving correspondence between compactifica-
tions of X and C∗-subalgebras of Cb(X) which contain 1X . In particular, A and C(KA)
are isomorphic as C∗-algebras.

Remark 2.4.12. Note that Corollary 2.4.11 applies to C∗-subalgebras of B(X) as well.
All one has to do is to identify B(X) with Cb(Xdis). Thus B(X) is a C∗-algebra of
continuous functions.

Example 2.4.13. Let us consider the special case where A = B(AA) ⊆ Cb(Xdis) and
write A = AA. We consider the set A1 := {1A : A ∈ A}, the corresponding compactifica-
tion (ι1,K1) := (ιA1 ,KA1) and the commutative diagram

KA

X
ιA1-

ιA
-

K1

π

?

with π : (cf )f∈A 7→ (cf )f∈A1 ∈ {0, 1}A1 . We claim that π is injective. Suppose first
1A(x) = 1A(y) for all A ∈ A. Then f(x) = f(y) for all f ∈ SA and hence for all f
from the closure B(A) = A. Suppose now that c = (cf )f∈A1 = π(a) = π(b) ∈ ιA1(X)
with a = (af )f∈A and b = (bf )f∈A. Then af = bf = cf for all f ∈ A1. There is a
net (xν)ν∈N , N a directed set, such that ιA1(xν) → c. Define ιA1(xν) = (cνf )f∈A. Note
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that cνf = f(xν). Thus we have f(xν) → cf = af = bf for all f ∈ A1, hence, by
linearity, for all f ∈ SA and, by uniform closure, for all f ∈ B(A) = A. Therefore we
conclude that ιA(xν) = (f(xν))f∈A → a = (af )f∈A = (bf )f∈A = b, proving that π
is injective. Thus (ιA,KA) ∼= (ιA1 ,KA1). A clopen subbasis of K1 is given by all sets
A′0 := {(cA)A∈A : cA0 = 1}, A0 ∈ A.

Corollary 2.4.14 (Stone). If A = B(AA) then the compact space KA is totally dis-
connected.

Note that the natural context of our discussion are classical theorems due to Gelfand,
Banach and Stone. Without going into formal details these results are as follows. Gelfand’s
representation theorem states that every (abstract) commutative unital C∗-algebra A
(meaning that complex conjugation is replaced by an abstract operation with correspond-
ing properties) is isometrically isomorphic to some C(K) where K is a suitable compact
space. In this context K is also called the structure space or Gelfand compactum for A.
By the Banach–Stone theorem, two compact spaces K1 and K2 are homeomorphic if and
only if C(K1) ∼= C(K2) as unital Banach algebras. Furthermore, by Stone’s theorem, for
every Boolean algebra B there is a totally disconnected compact space K, the so called
Stone space associated to B, such that for the systems Cl(K) of all clopen subsets of K
we have B ∼= Cl(K) as Boolean algebras. Two such spaces K1 and K2 are homeomorphic
if and only if Cl(K1) ∼= Cl(K2). Finally, the Stone space of a Boolean set algebra A is
homeomorphic to the Gelfand compactum for B(A). The interested reader is referred
to [8] and [9].

2.5. The Stone–Čech compactification βX. We now apply the construction of the
natural compactification for an algebra A to the case A = Cb(X), i.e. to the algebra of
all bounded and continuous f : X → C.

Definition 2.5.1. The maximal compactification (ιβ , βX) of a topological space X,
corresponding to the algebra Cb(X) in the sense of Corollary 2.4.11, is denoted by (ιβ , βX)
and is called the Stone–Čech compactification of X.

(ιβ , βX) is characterized uniquely up to equivalence by the universal property that
for every continuous ϕ : X → K, K compact, there is a (unique) continuous ψ : βX → K

with ϕ = ψ◦ιβ . To see this we may assume K = ϕ(X), so that (ϕ,K) is a compactification
of X. By the maximality of (ιβ , βX) and Corollary 2.4.11 this just means that there is
a ψ as claimed. For uniqueness assume that (ι,K) is another compactification of X with
this universal property. Every f ∈ Cb(X) has a range contained in a compact set K0 ⊆ C.
By the universal property there is a continuous ψ : K → K0 with ψ ◦ ι = f . Hence, again
by Corollary 2.4.11, the algebra corresponding to (ι,K) contains Cb(X). Thus (ι,K) has
to be maximal, i.e. equivalent to (ιβ , βX).

Nevertheless, in order to obtain an interesting and rich structure one needs sufficiently
many bounded and continuous functions.

Definition 2.5.2. X is called completely regular if it has the following separation prop-
erty: For every closed A ⊆ X and x ∈ X \ A there is a continuous f : X → [0, 1] with
f(x) = 1 and f(a) = 0 for all a ∈ A. Such an f is called an Urysohn function for A and x.
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Under this assumption every Urysohn function gives rise to a compactification sepa-
rating two points x 6= y ∈ X, implying that ιβ is injective. ιβ is even a homeomorphic
embedding of X into βX. To see this, it suffices to show that for x ∈ O ⊆ X, O open,
there is an open set Oβ ⊆ βX containing ιβ(x) such that ιβ(O) ⊇ Oβ ∩ ιβ(X). Take an
Urysohn function f0 for x and A := X \O, recall that ιβ : x 7→ (f(x))f∈Cb(X) and observe
that Oβ := {(cf )f∈Cb(X) : cf0 > 0} has the required properties.

Let us now consider the case of discrete X, i.e. Cb(X) = B(X). Then each 1A ∈ B(X),
A ⊆ X, has a continuous representation in (ιβ , βX) which must be of the form 1A∗ with
some clopen A∗ = ιβ(A) ⊆ βX. (Therefore the usual notation A∗ = A as a closure,
though not rigorously correct in our setting, does not lead to contradictions.)

Conversely, every clopen set B ⊆ βX can be written as B = A∗ with A := ι−1
β [B].

Furthermore, such sets form a basis for the topology in βX: Let O ⊆ βX be open and
x ∈ O. Then, by the separation properties of compact spaces, there is an open set Ox
such that x ∈ Ox ⊆ Ox ⊆ O. For Ax := ι−1

β [Ox] we obtain x ∈ A∗x ⊆ O. This shows that
O =

⋃
x∈O A

∗
x can be written as a union of clopen sets.

Let A = {a}, a ∈ X, be a singleton and x 6= ιβ(a). There is an open neighborhood
O of x not containing ιβ(a). Thus the continuous representation of 1A in (ιβ , βX) has
to take the constant value 0 on O, hence 1A∗ = 1{ιβ(a)}. By continuity this shows that
{ιβ(a)} is open, i.e. ιβ(a) is an isolated point in βX. A further consequence is that
A∗ ∩ ιβ(X \A) = ∅ and A∗ ∩ (X \A)∗ = ∅. Since

βX = ιβ(X) = ιβ(A) ∪ ιβ(X \A) = ιβ(A) ∪ ιβ(X \A) = A∗ ∪ (X \A)∗

we conclude that Φ : A 7→ A∗ is an isomorphism of Boolean set algebras between P(X),
the powerset of X, and Cl(βX), the system of all clopen sets in βX.

Consider Fx := {ι−1
β [O] : x ∈ O ⊆ βX,O open}. Obviously Fx is a filter on X. For

arbitrary A ⊆ X, as A∗ ∪ (X \ A)∗ = βX, we have either x ∈ A∗ or x ∈ (X \ A)∗. In
the first case this means A = ι−1

β [A∗] ∈ Fx, in the second case X \ A ∈ Fx. Thus Fx
is an ultrafilter. Conversely, every ultrafilter F on X induces an ultrafilter Fβ on βX

consisting of all Fβ ⊆ βX which contain ιβ(F ) for at least one F ∈ F . The compactness
of βX guarantees that Fβ converges to some x ∈ βX, which is possible only if F = Fx.
This shows that the points in βX are in a natural bijective correspondence with the
ultrafilters on X.

We summarize the collected facts about βX.

Proposition 2.5.3. Let X be a completely regular topological space. Then the Stone–
Čech compactification (ιβ , βX) of X has the following properties.

(i) For every continuous f : X → K, K compact, there is a continuous ϕ : βX → K

with f = ϕ ◦ ιβ, i.e. making the diagram
βX

X
f-

ιβ
-

K

ϕ

?

commutative.
(ii) ιβ : X → ιβ(X) ⊆ βX is a homeomorphism.
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(iii) Assume that X is discrete.

(a) The mapping A 7→ A∗ := ιβ(A) is an isomorphism of Boolean set algebras
between P(X), the powerset of X, and Cl(βX), the system of all clopen sets
in βX.

(b) The clopen subsets of βX form a topological basis in βX.
(c) The isolated points in βX are exactly those of the form ιβ(x), x ∈ X.
(d) βX can be represented as the set of all ultrafilters on X where ιβ(x) = Fx :=
{F ⊆ X : x ∈ F} for all x ∈ X. Then A∗ consists of those ultrafilters F on X

with A ∈ F .

2.6. Compactifications, measures, means and Riemann integral. We are now
going to consider compactifications (ι,K) of a set (or a topological space) X in connection
with complete Borel probability measures µ on K.

Definition 2.6.1. Let (ι,K) be a compactification of X, µ a complete and regular Borel
probability measure on K, and A a set of complex-valued µ-measurable functions on K.
Then we call the quadruple (ι,K, µ,A) admissible if the following condition is satisfied:
Whenever F1 ◦ ι = F2 ◦ ι for F1, F2 ∈ A then∫

K

F1 dµ =
∫
K

F2 dµ.

For arbitrary A define A∗ := ι∗(A) = {F ◦ ι : F ∈ A}. For admissible (ι,K, µ,A) we
define

mµ : f = F ◦ ι 7→
∫
K

F dµ, F ∈ A.

Note that mµ is well defined on A∗ and a bounded linear functional whenever A is a
linear space, called the mean induced by (ι,K, µ,A).

It is clear that for all compactifications (ι,K) of X and all µ we get an admissible
quadruple if we take A := C(K). In this case F1 ◦ ι = F2 ◦ ι with F1, F2 ∈ A is possible
only for F1 = F2 (recall that ι(X) is dense in K). For our subsequent investigations the
following similar statement for A = Rµ is fundamental.

Proposition 2.6.2. For every compactification (ι,K) of X and every complete and
regular Borel probability measure on µ on K the quadruple (ι,K, µ,Rµ) is admissible.
Hence

m(F ◦ ι) :=
∫
K

F dµ

is a well defined mean on the algebra R∗µ.

Proof. We may assume that µ has full support, i.e. all nonempty open sets in K have
positive measure. Let f = F1 ◦ ι = F2 ◦ ι with Fi ∈ Rµ. First we assume that Fi = 1Ai

for certain µ-continuity sets Ai ∈ Cµ. The symmetric difference A := A1 4 A2 is a µ-
continuity set with empty interior. We conclude that ∂A has zero measure and hence∫
1A1 dµ =

∫
1A2 dµ. By linearity this property extends to functions Fi ∈ SCµ and, using

a standard approximation argument, to arbitrary Fi ∈ Rµ.
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We have to compare compactifications also in a measure-theoretic sense. For this
reason we fix further notation.

Definition 2.6.3. Suppose that µi is a complete Borel probability measure on Ki, where
(ιi,Ki) is a compactification of X, i = 1, 2. Then we write (ι1,K1, µ1) ≤ (ι2,K2, µ2) if
(ι1,K1) ≤ (ι2,K2) via π : K2 → K1 which, in addition to being continuous is also measure
preserving, i.e. whenever A1 ⊆ K1 is µ1-measurable then its pre-image A2 := π−1[A1] is
µ2-measurable with µ2(A2) = µ1(A1).

Remark 2.6.4. In the above situation we also could have defined the measure on K1 via
µ1(A1) := µ2(π−1[A1]). This construction is called pullback, and µ1 is often denoted by
π ◦ µ2.

We know by Proposition 2.4.5 that every f : X → C which has a continuous repre-
sentation F1 : K1 → C in the compactification (ι1,K1) has a continuous representation
F2 := F1 ◦ π in (ι2,K2) whenever (ι1,K1) ≤ (ι2,K2) via π : K2 → K1. We get a similar
assertion if we replace continuity by Riemann integrability.

Proposition 2.6.5. Suppose that f : X → C has a µ1-Riemann integrable representation
F1 : K1 → C in the compactification (ι1,K1, µ1). Whenever (ι1,K1, µ1) ≤ (ι2,K2, µ2)
via π then F2 := F1 ◦ π is a µ2-Riemann integrable representation of f in (ι2,K2, µ2).

Proof. It is clear that F2 := F1 ◦ π is a realization of f whenever F1 is. It is immediate
to check that disc(F2 ◦ π) ⊆ π−1[disc(F1)]. Thus one obtains

µ2(disc(F2)) ≤ µ2(π−1[disc(F1)]) = µ1(disc(F1)) = 0.

Thus F2 is µ2-Riemann integrable whenever F1 is µ1-Riemann integrable.

Proposition 2.6.5 shows that (ι1,K1, µ1) ≤ (ι2,K2, µ2) implies {F1 ◦ ι : F1 ∈ Rµ1} ⊆
{F2 ◦ ι : F2 ∈ Rµ2}. This observation is of particular interest if there exists a maximal
(ι,K, µ).

Conversely, assume that a C∗-algebra A of bounded functions f : X → C and a
mean m on A are given. Let (ιA,KA) be the natural compactification for A. By Propo-
sition 2.4.9 the mapping ι∗ : F → F ◦ ι is a bijection between C(KA) and A. Thus
m′(F ) := m(F ◦ ι) is well defined and a mean on C(KA). By Riesz’ Representation The-
orem 2.3.1, m′ induces a Borel probability measure µ on KA with m′(F ) =

∫
F dµ for

all F ∈ C(KA) which is unique on the σ-algebra of Borel sets and its µ-completion. So
it is not surprising that the m-closure of A contains all f = F ◦ ι with F ∈ Rµ.

Proposition 2.6.6. Let A be a C∗-algebra on X and m a mean on A. Let (ιA,KA, µ)
be the compactification where (ιA,KA) is the natural compactification for A and µ is the
complete and regular Borel measure on KA which satisfies

∫
F dµ = m(F ◦ ιA) for all

F ∈ C(KA). Then

R∗µ := {F ◦ ιA : F ∈ Rµ} ⊆ A(m)

for the m-completion A(m) of A. Furthermore, if A separates points of X, then
R∗µ =A(m).
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Proof. Let F ∈ Rµ. Then it is straightforward to check that F ◦ ιA is in the m-closure
of A, i.e. R∗µ ⊆ A(m). Assume now that A separates points and take the real-valued
function f ∈ A(m). By definition, for every ε > 0 there are real-valued F1, F2 ∈ C(KA)
such that F1 ◦ ιA ≤ f ≤ F2 ◦ ιA with

∫
(F2 − F1) dµ ≤ ε. Observe

F[ := sup
F1◦ιA≤f

F1 ≤ F ≤ inf
f≤F2◦ιA

F2 =: F#, F1, F2 ∈ C(KA).

The fact that f is in the m-closure of A implies that every F with F[ ≤ F ≤ F# is
µ-Riemann integrable. Since A separates points of X the map ιA : X → KA is one-one
(cf. Proposition 2.4.10). Thus we can define a function F ◦ : KA → R via

F ◦(k) =

{
f(x) if k = ιA(x),

0 otherwise.

Then F := max{F ◦, F [} is µ-Riemann integrable and satisfies F ◦ ιA = f . Hence
R∗µ ⊇ A(m).

Remark 2.6.7. In any case R∗µ is a C∗-algebra. ι∗A : F 7→ F ◦ ιA is a bounded ∗-
homomorphism which maps Rµ into B(X), and the image of every bounded ∗-homo-
morphism is again a C∗-algebra (cf. [8, Theorem I.5.5]).

In the general case of a non-point-separating algebra A ⊆ B(X) we can do a general
construction: Consider the equivalence relation on X defined by x ≈ y if for every f ∈ A
we have f(x) = f(y). Then A induces an algebra A/≈ ⊆ B(X/≈) which is isomorphic to
A but point separating.

Example 2.6.8. Let X = {a, b, c}, A := {f : X → C : f(a) = f(b)} and consider the
fapm δc. Then KA := {α, β} is a two-element set and ιA(a) = ιA(b) =: α. The inclusion
A=R∗δβ ⊂ A

mδc =B(X) is strict, showing that in the last statement of Proposition 2.6.6
the point-separation property cannot be omitted.

However, the identity R∗µ = A(m) may hold even for certain non-point-separating
algebras A, e.g. if A consists of constant functions.

2.7. The set of all means. For an infinite discrete set X there is an abundance of means
on the algebra B(X) of bounded f : X → C. For a better understanding of the structure
of the set of all means, compactifications turn out very useful. We start by restricting
to very special means, namely multiplicative ones. (A mean m defined on an algebra A
of functions is called multiplicative if m(f1 · f2) = m(f1)m(f2) for all f1, f2 ∈ A.) As a
standard reference we mention [17].

Given a multiplicative mean m on B(X), let p = pm be the corresponding fapm,
defined on the whole power set A = P(X) of X. For every A ⊆ X multiplicativ-
ity of m yields pm(A) = m(1A) = m(1A · 1A) = m(1A)m(1A) = p2

m(A), hence
pm(A) ∈ {0, 1}.

Conversely, every fapm p defined for all A ⊆ X and taking only the values 0 and 1
induces a multiplicative mean on B(X): First, check that in all four possible cases for
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p(A1), p(A2) ∈ {0, 1} one gets p(A1 ∩ A2) = p(A1)p(A2). This implies mp(f1 · f2) =
mp(f1)mp(f2) whenever fi = 1Ai . By multiplicativity and distributivity this transfers to
fi ∈ SA. Finally, observe that B(X) is the uniform closure of SA to conclude by standard
approximation arguments that mp is indeed a multiplicative mean on B(X).

Thus multiplicative means are in a one-one correspondence with fapm’s on the power
set taking only the values 0 and 1. For an arbitrary such p the system Fp of all A ⊆ X with
p(A) = 1 is closed under finite intersections, supersets and contains X, i.e. Fp is a filter.
Since for each A either p(A) = 1 or p(X \A) = 1, Fp is an ultrafilter. Obviously also this
argument is reversible: Every ultrafilter F on X induces a fapm pF by pF (A) = 1F (A)
which takes only the values 0 and 1. Consider the Stone–Čech compactification βX

as the space of ultrafilters on X, according to Proposition 2.5.3. Then the means m on
B(X) transfer to positive linear functionals on C(βX) and thus, by Riesz’ Representation
Theorem, to Borel probability measures on βX. The functionals, taking only the values
0 and 1, are point evaluations F 7→ F (y), F ∈ C(βX), corresponding to Dirac measures
δy concentrated at the point y ∈ βX. As an ultrafilter, y contains exactly those A ⊆ X

with p(A) = 1. Note that, in the set of all sub-probability Borel measures, normalized
point measures are exactly the extreme ones, i.e. they can be represented as a convex
combination only in the trivial way. In the weak-∗-topology the set of all sub-probability
measures is compact. Thus, by the Krein–Milman Theorem (cf. for instance [40]), an
arbitrary Borel measure on βX is in the weak-∗-closure of the convex hull of certain
point measures. Going back to X and means on X we thus have:

Proposition 2.7.1. The set of all means on B(X), X discrete, is given by the convex
hull of all multiplicative means on X. The multiplicative means on X are in a natural
bijective correspondence with the points of the Stone–Čech compactification βX.

Indlekofer has systematically used the relation between means and fapm’s on N or Z
with probability measures on the Stone–Čech compactification in probabilistic number
theory (cf. for instance [24]).

In Section 2.4 we have seen that for f : X → C, X discrete, there is a smallest
continuous representation which we called the natural one and which is unique up to
equivalence. Looking for Riemann integrable representations, also a measure has to be
involved and thus the situation is more complicated. This has the consequence that
there is not one unique (up to equivalence) smallest Riemann integrable representation.
Nevertheless, at least for discrete X, one can easily find many minimal compactifica-
tions:

Example 2.7.2. Let X be discrete. For given bounded f : X → C equip K := f(X)
with a compact topology and let ι : x 7→ f(x). Then (ι,K) is a compactification and
F : K → C, k 7→ k, is the only representation of f in (ι,K). This representation is
clearly minimal, provided K carries an appropriate Borel probability measure µ. If K is
finite, the discrete topology is compact and does the job together with any probability
measure µ defined on P(K). In the infinite case we define a compact topology on K

by fixing any k0 ∈ K and taking as open sets all subsets of K not containing k0 and
all cofinite sets which contain k0. Note that all k ∈ K \ {k0} are isolated points, hence
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every function is continuous at such k. The only possible discontinuity point is k0. Thus,
provided µ({k0}) = 0, we have Rµ = B(K). In particular, F is µ-Riemann integrable.

For many reasons this construction is not very satisfactory. One of them is that there is
no canonical choice of µ. The most natural way to find canonical measures is by invariance
requirements. In the forthcoming chapters we will be concerned with invariance mainly
with respect to group or semigroup operations, to some extent also with respect to a
single transformation in the sense of topological and symbolic dynamics.

3. Invariance under transformations and operations

3.1. Invariant means for a single transformation. At the end of the previous chap-
ter we have seen that there are an abundance of means on an infinite discrete set X.
If X carries further structure one asks for means and measures with certain interesting
additional, namely invariance properties.

Definition 3.1.1. Let X be any nonempty set and T : X→X. Then UT : B(X)→B(X)
is defined by f 7→ f ◦ T . A set A ⊆ B(X) is called T -invariant if UT (A) ⊆ A. Assume
that A is a T -invariant vector space and m is a mean on A. Then m is called T -invariant
if U∗T (m) = m ◦ UT = m, i.e. if

m(f ◦ T ) = m(f)

for all f ∈ A. By M(A) we denote the set of all means on A, M(X) := M(B(X)), and by
M(A, T ) the set of all T -invariant m ∈M(A). For bijective T we call A resp. m two-sided
T -invariant if it is both T - and T−1-invariant.

Note that in the two-sided invariant case one has M(A, T ) = M(A, T−1). It is easy
to check that M(A) and M(A, T ) are weak-∗-closed subsets of the unit ball in B(X)∗,
the dual space of the Banach space B(X). Thus, since by the Banach–Alaoglu Theorem
the dual unit ball is compact in this topology, M(A) and M(A, T ) are compact as well.
More directly, compactness becomes clear from applying Tikhonov’s Theorem to

M(A) ⊆
∏
f∈A

{z ∈ C : |z| ≤ ‖f‖∞}.

As a consequence, any sequence mn ∈M(A) has at least one accumulation point (accu-
mulation measure) m ∈ M(A). In particular, the set MT,(mn) of accumulation means of
the sequence (mn) is nonempty:

mn :=
1
n

n−1∑
k=0

mn(f ◦ T k) =
1
n

n−1∑
k=0

mn(UkT (f)) =
1
n

n−1∑
k=0

U∗T
k(mn)(f).

Proposition 3.1.2. MT,(mn) ⊆ M(A, T ). In particular, there are T -invariant means.
We can take for instance the point evaluation mn := mδx : f 7→ f(x) for any x ∈ X.

Proof. Let m ∈ MT,(mn). As m is an accumulation mean, for every ε > 0 and bounded
f : X → C there is a sequence n1 < n2 < · · · such that both |m(f) −mnk(f)| ≤ ε and
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|m(f ◦T )−mnk(f ◦T )| ≤ ε for all k ∈ N. From the defining properties of mnk we obtain

|mnk(f ◦ T )−mnk(f)| = 1
nk

∣∣∣ nk−1∑
j=0

mnk(f ◦ T j+1 − f ◦ T j)
∣∣∣

=
1
nk
|mnk(f ◦ Tnk)−mnk(f)| ≤ 2

nk
‖f‖∞,

|m(f)−m(f ◦ T )| ≤ |m(f)−mnk(f)|+ |mnk(f)−mnk(f ◦ T )|
+ |mnk(f ◦ T )−m(f ◦ T )|

≤ 2ε+
2
nk
‖f‖∞.

As this is true for all k ∈ N and ε > 0 we obtain T -invariance of m.

We now study which values of m(f) are possible for m ∈M(T,A) and f ∈ A.

Proposition 3.1.3. Let T : X → X, A ⊆ B(X) a T -invariant vector space, and f ∈ AR.
Then the set {m(f) : m ∈M(A, T )} coincides with the interval [a, b] where

a = lim
n→∞

inf
x∈X

sn(x) and b = lim
n→∞

sup
x∈X

sn(x), sn = sn,T,f :=
1
n

n−1∑
k=0

f ◦ T k. (3.1)

In particular, this set does not depend on A.

Proof. Note first that m(sn) = m(f) for every m ∈M(A, T ). For the proof it suffices to
show that, for every α ∈ R, there is an m ∈ M(A, T ) with m(f) = α if and only if the
following condition is satisfied:

Condition (C): For all ε > 0 and n ∈ N there are x = x(ε, n), y = y(ε, n) ∈ X such
that sn(x) > α− ε and sn(y) < α+ ε.

Necessity of (C): Let m(f) = α with m ∈ M(A, T ) and suppose, by contradiction,
that (C) fails. Then there is an ε > 0 and an n ∈ N such that sn(x) ≤ α− ε for all x ∈ X
(the case sn(x) ≥ α+ ε can be treated similarly), hence m(f) = m(sn) ≤ ‖sn‖∞ ≤ α− ε,
a contradiction.

Sufficiency of (C): Assume that (C) holds and consider the point measures mn :=
δx(1/n,n). With the notation of Proposition 3.1.2 this means mn(f) > α − 1/n for all n.
Use Proposition 3.1.2 to find an m′ ∈ MT,(mn) ⊆ M(A, T ). Then m′(f) ≥ α. Similarly
one finds an m′′ ∈M(A, T ) with m′′(f) ≤ α. It follows that there is a λ ∈ [0, 1] such that

λm′(f) + (1− λ)m′′(f) = α.

Since M(A, T ) is convex, m := λm′ + (1− λ)m′′ has the required properties.

Of particular interest are the functions f with a unique mean value.

Definition 3.1.4. Let T : X → X and A ⊆ B(X) be a T -invariant linear space.
A function f ∈ A is called A-almost convergent if m(f) has the same value for all
m ∈ M(A, T ). The set of all A-almost convergent f ∈ A is denoted by AC(A, T ); for
A = B(X) we also write AC(B(X), T ) = AC(T ). We write mA for the restriction of
m ∈ M(A, T ) to AC(A, T ). If AC(A, T ) = A we call T uniquely ergodic (with respect
to A).
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By definition, mA does not depend on m. It is clear that AC(A, T ) is a T -invariant
uniformly closed linear space containing all constant functions. Furthermore, AC(A, T ) =
AC(T ) ∩ A. Finally, f ∈ AC(A, T ) with mA(f) = α if and only if f ∈ A and, for all
xn ∈ X,

lim
n→∞

sn,T,f (xn) =
1
n

n−1∑
k=0

f(T k(xn)) = α.

The obvious way to define T -invariance of a set algebra A on X or a finitely additive
measure p defined on A is to require that {1A : A ∈ A} ⊆ B(X) resp. mp as defined in
Section 2.2 is T -invariant. Since 1A◦T = 1T−1[A] this is the case if and only if T−1[A] ∈ A

resp. p(T−1[A]) = p(A) for all A ∈ A. From Proposition 3.1.3 we get:

Proposition 3.1.5. The possible values p(A) for T -invariant fapm p are given by the
interval [a, b] where

a = lim
n→∞

inf
x∈X

dn(x), b = lim
n→∞

sup
x∈X

dn(x), dn(x) =
1
n
|{k : T k(x) ∈ A, 0 ≤ k < n}|.

In particular, p(A) takes the same value for all T -invariant p if and only if a = b.

3.2. Applications

3.2.1. Finite X. Let X be finite, T : X → X and A = B(X) = CX . For every
x ∈ X there is a minimal m ≥ 0 and a minimal k > m such that T k(x) = Tm(x). We
call Cx := {Tm(x), Tm+1(x), . . . , T k−1(x)} the cycle (cyclic attractor) induced by x and
Bx = B(Cx) := {y ∈ X : Cy = Cx} the basin of Cx. It is clear that Cx ⊆ Bx, the Bx
forming a partition. Cx = Bx if and only if the restriction of T to this set is bijective.
Furthermore, the sn = sn,T,f defined by

sn(x) =
1
n

n−1∑
k=1

f(T k(x))

converge to a function f which, on each C = Cx, takes the constant value

mC(f) :=
1
|C|

∑
y∈C

f(y).

It is clear that mC ∈ M(B(X), T ) for each cycle C. The same holds for all convex
combinations. We claim that, conversely, every m ∈M(B(X), T ) is of this type, i.e. m =∑
C λCmC with 0 ≤ λC ≤ 1 for all C and

∑
C λC = 1. To see this, define λC := m(1B(C))

and observe that
f =

∑
C

mC(f)1B(C).

This implies

m(f) = m(sn) = m(f ) =
∑
C

mC(f)m(1B(C)) =
∑
C

λCmC(f).

The uniqueness of the λC follows since the mC are linearly independent. This gives an
obvious description of almost convergent functions: f ∈ AC(B(X), T ) if and only if
mC(f) takes the same value for all cycles C.
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In terms of measures this means that every T -invariant p is a convex combination of
the ergodic measures pC defined by pC(A) := |A ∩ C|/|C|. This is the finite version of
the ergodic decomposition given by Birkhoff’s Ergodic Theorem (cf. for instance [55]).
Infinite X would have to be treated in this context, but we do not go further into this
direction.

3.2.2. X = Z, T : x 7→ x + 1. First note that whenever A ⊆ B(Z) is two-sided T -
invariant then T -invariance of a mean m or a fam p implies invariance with respect to
all translations on the additive group Z. In Section 3.6 we will focus on this aspect. Here
we want to apply our analysis from Section 3.1. For this reason we have to consider the
quantities

sN,f (n) :=
1
N

n+N−1∑
k=n

f(k)

and, for real-valued f , the corresponding lower and upper limits

m∗(f) := lim
N→∞

inf
n∈Z

sN,f (n) and m∗(f) := lim
N→∞

sup
n∈Z

sN,f (n).

For f = 1A these values m∗(A) := m∗(1A) and m∗(A) := m∗(1A) are known as lower
Banach density resp. upper Banach density of A. The possible values of T -invariant
measures are given by

{m(f) : m ∈M(T,A)} = [m∗(f),m∗(f)],

hence
AC(A, T ) = {f ∈ A : m∗(f) = m∗(f)}.

The restriction of m∗ and m∗ to AC(Z) := AC(B(X), T ) is known as Banach density
and denoted by mB .

We have already mentioned that the set AC(Z) of almost convergent f on Z is a linear
space and, furthermore, uniformly closed. Having the results about compactifications and
complex-valued functions in mind, we ask whether AC(Z) is an algebra as well. But this
is not the case as the following example shows.

Example 3.2.1. Consider the sets A = 2Z of even numbers and B = (B1 ∪ B2) ∪
(−B1 ∪ −B2) with

B1 =
∞⋃
n=1

((2n− 1)!, (2n)!] ∩ 2Z, B2 =
∞⋃
n=1

((2n)!, (2n+ 1)!] ∩ (2Z + 1).

In B one has very long blocks of even numbers alternating with very long blocks of
odd numbers. It is clear that both A and B have Banach density 1/2 while B1 = A ∩B
has lower Banach density 0 not coinciding with its upper Banach density 1/2. It follows
that 1B1 = 1A · 1B /∈ AC(Z) although 1A,1B ∈ AC(Z). Thus AC(Z) is not an algebra.
In particular, there is no compactification (ι,K) of Z such that AC(Z) is the set of all f
having a continuous (or Riemann integrable) representation in (ι,K).

3.2.3. X compact, A = C(X), T continuous. Let X be a compact space, A = C(X)
the algebra of complex-valued continuous functions on X and T : X → X continuous.
Then C(X) is T -invariant since f ∈ C(X) implies T ∗f = f ◦T ∈ C(X). (If T is bijective
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then it is a homeomorphism, hence C(X) is even two-sided T -invariant.) This is the
framework of classical topological dynamics.

Proposition 3.1.2 guarantees that there are T -invariant means on C(X). By Riesz’
Representation Theorem 2.3.1 every m ∈ M(T,C(X)) induces a unique regular Borel
probability measure µm with

m(f) =
∫
X

f dµm for all f ∈ C(X).

Definition 3.2.2. Let µ be a measure defined on a σ-algebra A on X and T : X → X

measurable. Then µ is called T -invariant if µ(T−1[A]) = µ(A) for all A ∈ A.

In the context of compactX we are particularly interested in the case where A contains
all Borel sets and that µ is complete. In the case of regular Borel measures the invariance
of a mean m is equivalent to invariance of the corresponding µm:

Proposition 3.2.3. Let X be a compact space, T : X → X continuous, m a mean on
C(X) and µ a Borel measure, i.e. defined on a σ-algebra A containing all Borel sets,
such that m(f) =

∫
X
f dµ for all f ∈ C(X). Then:

(i) If µ is T -invariant then m is T -invariant.
(ii) Assume that µ is regular. If m is T -invariant then µ is T -invariant.
(iii) The implication in the second statement does not hold if one drops the regularity

assumption on µ.

Sketch. (i) In order to show that m(f ◦ T ) = m(f) for all f ∈ C(X) one first considers
f = 1A with A ∈ A, then linear combinations of such f , and finally one uses the fact
that any f ∈ C(X) can be uniformly approximated by such linear combinations.

(ii) Let A ∈ A and ε > 0. By regularity of µ there are a closed set C and an open set
O such that C ⊆ A ⊆ O ⊆ X and µ(O \ C) < ε, and corresponding Urysohn functions,
i.e. continuous f, g : X → [0, 1] with 1C ≤ f ≤ 1A ≤ g ≤ 1O. By invariance of m we
obtain

µ(T−1[A]) ≤ m(g ◦ T ) = m(g) ≤ µ(O) ≤ µ(A) + ε

and similarly µ(T−1[A]) ≥ µ(A)− ε, hence µ(T−1[A]) = µ(A).
(iii) We use the example X = [0, ω1] from the end of Section 2.3 and the constant

mapping T : X → X, x 7→ ω1. Then the point evaluation mean m : f 7→ f(ω1) is
T -invariant (as also is the corresponding point measure δω1 concentrated at ω1). The
measure µ from the end of Section 2.3 satisfies m(f) =

∫
X
f(x) dµ for all f ∈ C(X).

Nevertheless, for A = {ω1} we have µ(A) = 0 6= 1 = µ(X) = µ(T−1[A]).

If M(C(X), T ) consists of only one measure, we say that T is uniquely ergodic.

Corollary 3.2.4. Let M(C(X), T ) = {m}. For every f ∈ C(X),

sn,T,f (x) :=
1
n

n−1∑
k=0

f(T k(x))→ m(f) uniformly in x ∈ X,

in particular, the uniform closure of the convex hull of the T -orbit contains the constant
function m(f) · 1X .
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Proof. By Proposition 3.1.3 we know that

lim
n→∞

(
inf
x∈X

sn,T,f (x)
)

= m(f) = lim
n→∞

(
sup
x∈X

sn,T,f (x)
)
,

i.e. for every ε > 0 and large enough n we have supx∈X |sn,T,f (x)−m(f)| < ε.

If T is uniquely ergodic, m(f)1X is the only constant function in the uniform closure
of the convex hull of the T -orbit. For an arbitrary constant λ ∈ C in this closure we have

λ = m(λ1X) = lim
k→∞

m(f ◦ Tnk) = m(f) whenever f ◦ Tnk → λ1X .

3.2.4. Shift spaces and symbolic dynamics. We now consider a special case of the
situation treated in Section 3.2.3. Let A be a finite set. In this context A is called an
alphabet and its members are called symbols. Furthermore, let X be a closed subset of
the compact space AZ which is shift invariant , i.e. σ(X) = X for the shift σ : (ak)k∈Z 7→
(ak+1)k∈Z. Such dynamical systems (X,σ) are also called subshifts and are the main
objects of symbolic dynamics.

The importance of these apparently simple objects is due to the abundance of σ-
invariant closed subsets X of AZ by means of which a quite big class of dynamical systems
can be represented in a reasonable way. Assume that Y is a compact space, T : Y → Y

a continuous transformation, Y = Y0 ∪ Y1 ∪ · · · ∪ Ys−1 (pairwise disjoint union), s ∈ N, a
finite partition of Y and F : Y → {0, 1, . . . , s− 1}, y 7→ i, if y ∈ Yi.

Note that F is in general (in particular for Y connected) not continuous, but if the
Yi are continuity sets with respect to an appropriate measure on Y , Riemann integrable.
Therefore we should not expect that the induced mapping y 7→ x(y) := (F (T ky))k∈Z is
continuous. But we may consider the closure X of its image which is shift invariant. In
many interesting cases with Y metrizable there is a continuous surjection ϕ : X → Y

such that y = ϕ(x) whenever x = x(y). One says that (Y, T ) is a factor of (X,σ) and we
have the commutative diagram

X
ϕ- Y

X

σ

?
ϕ- Y

T

?

Example 3.2.5 (Sturmian sequence). Let Y = R/Z, α ∈ Y and T be the homeomor-
phism y 7→ y+α (rotation). Consider the partition of Y into two segments Y0 = [0, α)+Z
and Y1 = [α, 1) + Z. Hence A = {0, 1}. For the T -orbit x(0) of y = 0, i.e. x(0) = (ak)k∈Z
with ak = 1 if kα ∈ Y1 and ak = 0 if kα ∈ Y0, it turns out that X is the closure of
the shift orbit {σk(x(0)) : k ∈ Z} of x(0) in {0, 1}Z. The two-sided sequence x(0) is an
example of a so called Sturmian sequence, a class providing some of the simplest but
typical examples of Hartman functions, the main topic of the forthcoming chapters.

In order to understand invariant means, or equivalently by Riesz’ Representation
Theorem 2.3.1 and Proposition 3.2.3, invariant measures on shift spaces X ⊆ AZ, note
that every invariant Borel probability measure on X is uniquely determined by its values
on cylinder sets S = [b0, . . . , bn−1] = {(ak)k∈Z : ak = bk, k = 0, . . . , n−1}. Thus it suffices
to consider functions f = 1S for such S and apply the arguments from Section 3.1. For
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instance, the numbers a, b in Proposition 3.1.3 can be described in terms of relative
frequencies of blocks (b0, . . . , bn−1) in symbolic sequences x ∈ X.

3.2.5. The free group F (x, y). Let X = F (x, y) denote the group with two free gen-
erators x and y. As usual we assume each member w ∈ F (x, y) to be a reduced word
built up from the four allowed symbols x, y, x−1, y−1, including the empty word w = ∅.
Denote by Wx all reduced words ending with the symbol x; Wx−1 ,Wy and Wy−1 are
defined analogously. Consider the transformation T1 : w 7→ wx−1. In particular, we have
T1(Wx) = Wx ∪Wy ∪Wy−1 ∪ {∅}. Assume m1 ∈M(T1, B(X)). Then, for the associated
fapm p1 = mp1 we compute

0 = p1(T1(Wx))− p1(Wx) = p1(Wy ∪Wy−1 ∪ {∅}). (3.2)

By symmetry, for T2 : w 7→ wy−1 we have T2(Wy) = Wy ∪Wx ∪Wx−1 ∪ {∅} and every
m2 ∈M(T2, B(X)) satisfies

0 = p2(T2(Wy))− p2(Wy) = p2(Wx ∪Wx−1 ∪ {∅}). (3.3)

In particular, we have T1(Wx) \Wx ∪ T2(Wy) \Wy = X. Assume m ∈ M(T1, B(X)) ∩
M(T2, B(X)). The associated fapm p = mp satisfies

1 = p(X) = p(T1(Wx) \Wx ∪ T2(Wy) \Wy) (3.4)

≤ p(T1(Wx))− p(Wx) + p(T2(Wy))− p(Wy) = 0, (3.5)

a contradiction. Thus there is no mean on B(X) which is both T1- and T2-invariant.
Since T1 and T2 are group translations this shows that X = F (x, y) is not an amenable

group (see also Section 3.6.4). Together with the fact that F (x, y) can be realized as a
group of orthogonal transformations of R3 this is the core of the celebrated Banach–Tarski
paradox (see [54]). We will focus on (semi-)group structures systematically in Section 3.6.

3.3. Compactifications for transformations and actions. We have seen the im-
portance of compactifications for means and measures already in Chapter 2. The rôle
of transformations for identifying interesting measures in terms of invariance properties
was pointed out in Section 3.1. We now combine both points of view by investigating the
following setting.

Definition 3.3.1. Let X be a topological space, T : X → X continuous and (ι,K) a
compactification of X. Then (ι,K) is called a compactification compatible with T and,
vice versa, T a transformation compatible with (ι,K) if there is a continuous TK : K → K

such that ι ◦ T = TK ◦ ι, i.e. making the diagram

X
ι- K

X

T

?
ι- K

TK
?

commutative. TK is called a continuous extension of T in (ι,K).

Continuous extensions are unique and compatible with composition:
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Proposition 3.3.2. Let TK and T ′K be continuous extensions of T : X → X in the
compactification (ι,K) of X. Then TK = T ′K . Furthermore, if SK is a continuous ex-
tension of S : X → X in (ι,K) then (S ◦ T )K = SK ◦ TK : K → K is a continuous
extension of S ◦ T : X → X.

Proof. The first statement follows since TK and T ′K are continuous and coincide on the
dense set ι(X) ⊆ K. For the second statement observe

(SK ◦ TK) ◦ ι = SK ◦ (TK ◦ ι) = SK ◦ (ι ◦ T ) = (SK ◦ ι) ◦ T = (ι ◦ S) ◦ T = ι ◦ (S ◦ T )

and use the uniqueness of continuous extensions to obtain SK ◦ TK = (S ◦ T )K .

Note that from a certain point of view, for continuous extensions of transformations
T : X → X the situation is more complicated than for representations of complex-valued
f : X → C in the sense of Section 3.5. This is due to the fact that there is no obvious
analogue of Proposition 2.4.9 which yields a natural compactification for f or even for a
unital C∗-algebra A which is minimal. Proposition 2.4.9 was based on Proposition 2.4.5
implying that for each compactification allowing a continuous representation every bigger
compactification has the same property. The following example shows that this is not true
for T : X → X.

Example 3.3.3. Let X = Z, T : k 7→ k+1, α ∈ R\Q, and consider the compactifications
(ιi,Ki), i = 1, 2, given by K1 := T = R/Z, ι1 : k 7→ kα + Z, and K2 := [0, 1], ι2 : k 7→
{kα} := kα − max{m ∈ Z : m ≤ kα}. Obviously (ι1,K1) ≤ (ι2,K2) via π : K2 =
[0, 1] → R/Z = K2, x 7→ x + Z. The compactification (ι1,K1) is compatible with T

since T1 : x 7→ x + α is a continuous extension of T in (ι1,K1). There is no continuous
extension T2 of T in (ι2,K2). Indeed, suppose that such a T2 : [0, 1]→ [0, 1] exists. Since
ι2(Z) is dense in [0, 1] we can find a sequence xn = {knα} = ι2(kn) such that xn → 1−α.
Furthermore, we can arrange 0 ≤ xn < 1− α for all n ∈ N. Using T2 ◦ ι2 = ι2 ◦ T we get

T2(1− α) = lim
n→∞

T2(xn) = lim
n→∞

T2 ◦ ι2(kn) = lim
n→∞

ι2 ◦ T (kn)

= lim
n→∞

ι2(kn + 1) = lim
n→∞

{knα+ α} = lim
n→∞

xn + α = 1.

We now pick another sequence yn = {lnα} = ι2(ln) such that yn → 1− α but now with
the requirement 1− α < yn ≤ 1 for all n ∈ N. Similarly, we get

T2(1− α) = lim
n→∞

T2(yn) = lim
n→∞

T2 ◦ ι2(ln) = lim
n→∞

ι2 ◦ T (ln)

= lim
n→∞

ι2(ln + 1) = lim
n→∞

{lnα+ α} = lim
n→∞

yn + α− 1 = 0,

a contradiction.

We see that taking bigger compactifications does not guarantee that we find con-
tinuous extensions. Nevertheless, for the Stone–Čech compactification (ιβ , βX) (cf. Sec-
tion 2.5), everything works. In particular, the first statement of Proposition 2.5.3 applies
to K = βX: For every continuous T : X → X the map ιβ ◦ T : X → βX is continuous.
Therefore there is a continuous Tβ : βX → βX such that Tβ ◦ ιβ = ιβ ◦ T .

Definition 3.3.4. Let X be a completely regular space and T : X → X be continuous.
Then Tβ : βX → βX denotes the (unique) continuous extension of T in the Stone–Čech
compactification (ιβ , βX) of X.
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There is no obstacle to considering families of transformations instead of a single T .
In order to proceed in this direction recall the notion of (semi)group actions.

Definition 3.3.5. Let S be a semigroup and X a set. A mapping α : S × X → X,
(s, x) 7→ α(s, x), is called a semigroup action of S on X if α(s1, s2(x)) = α(s1s2, x) for
all s1, s2 ∈ S and all x ∈ X.

This construction carries over to groups in the obvious way:

Definition 3.3.6. Let G be a group and X a set. A mapping α : G × X → X,
(g, x) 7→ α(g, x), is called a group action of G on X if it is a semigroup action of G
considered as a semigroup and α(eG, x) = x for the unit element eG ∈ G and all x ∈ X.

For a semigroup action the maps sα : x 7→ α(s, x) are self-maps of X. If we impose a
semigroup structure on XX , the set of all maps f : X → X, by using the composition
of maps as semigroup operation, a semigroup action of S on X is nothing other than
a homomorphism α : S → XX , s 7→ sα. Similarly we can impose a group structure on
Sym(X) = {f ∈ XX : f bijective}. In the group case we have

sα(s−1)α = (ss−1)α = IdX = (s−1)αsα,

thus a group action is a homomorphism G→ Sym(X). So far the set X on which α acts
carries no structure itself.

Definition 3.3.7. Let X be a topological space and α : S×X → X a semigroup action.
If sα is continuous for every s ∈ S we say that S acts by continuous maps on X.

Let α be a semigroup action of S on X by continuous maps. Suppose that all sα :
X → X have continuous extensions sαK : K → K in the compactification (ι,K) of X.
As a consequence of Proposition 2.5.3 we have (st)αK = sαK ◦ tαK for all s, t ∈ S, hence
αK : S ×K → K, (s, c) 7→ sαK(c), defines a semigroup action of S on K by continuous
maps.

Definition 3.3.8. The action αK defined as above is called the extension of the action
α in the compactification (ι,K) of X. For (ι,K) = (ιβ , βX) all sα have continuous
extensions and we write αβ for αK .

Definition 3.3.9. Assume now that S is equipped with a topology for which the semi-
group operation S × S → S, (s1, s2) 7→ s1s2, is jointly continuous on S × S. Then S is
called a topological semigroup (see also Section 3.5).

Definition 3.3.10. Let S be a topological semigroup which acts by continuous maps
on X. The semigroup action α : S × X → X is called a jointly continuous semigroup
action if α is jointly continuous on S ×X.

In the next section we will analyze when the extension αβ of a jointly continuous
semigroup action α is again a jointly continuous semigroup action.

3.4. Separate and joint continuity of operations. Let us now focus on the case
of a discrete semigroup S. Then the semigroup operation α : S × S → S, (s, t) 7→ st,
is an action of S on itself which has a continuous extension αβ : S × βS → βS to its
Stone–Čech compactification (ιβ , βS). All ra : S → βS, ra(s) := αβ(s, a), a ∈ βS, have
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continuous extensions ρa : βS → βS fulfilling ρa(ιβ(s)) = ra(s) = αβ(s, a). Consider now
the operation ∗ : βS × βS → βS, (a, b) 7→ a ∗ b := ρb(a). This operation is described in
the following statement.

Proposition 3.4.1. Let S be a discrete semigroup. Then there is a unique semigroup
operation ∗ : βS×βS → βS on the Stone–Čech compactification (ιβ , βS) of S such that:

(i) ∗ extends the semigroup operation on S, i.e. ιβ(s) ∗ ιβ(t) = ιβ(st) for all s, t ∈ S.
(ii) The right translations ρa : βS → βS, x 7→ x ∗ a, are continuous for all a ∈ βS.
(iii) The left translations λa : βS → βS, x 7→ a ∗ x, are continuous for all a ∈ ιβ(S).

Proof. It suffices to prove that the operation ∗ defined before the proposition is associa-
tive. For all s, t, u ∈ ιβ(S) we have

λs∗t(u) = (s ∗ t) ∗ u = s ∗ (t ∗ u) = λs ◦ λt(u).

Since λs∗t and λs ◦ λt are continuous and ιβ(S) is dense in S this equation extends to
λs∗t(z) = λs ◦ λt(z) for all z ∈ βS. Hence

ρz ◦ λs(t) = (s ∗ t) ∗ z = λs∗t(z) = λs ◦ λt(z) = s ∗ (t ∗ z) = λs ◦ ρz(t).

Since ρz ◦ λs and λs ◦ ρz are continuous this equation similarly extends to ρz ◦ λs(y) =
λs ◦ ρz(y) for all y ∈ βS. Hence

ρz ◦ ρy(s) = (s ∗ y) ∗ z = ρz ◦ λs(y) = λs ◦ ρz(y) = s ∗ (y ∗ z) = ρy∗z(s).

Once again, since ρz ◦ ρy and ρy∗z are continuous this equation extends to ρz ◦ ρy(x) =
ρy∗z(x) for all x ∈ βS, hence

(x ∗ y) ∗ z = ρz ◦ ρy(x) = ρy∗z(x) = x ∗ (y ∗ z)

for all x, y, z ∈ βS.

For much more information about the algebraic structure of βS we refer to [23]. There
one can also find information about related constructions as the enveloping semigroup
of a semigroup of continuous transformations etc. We are now going to show that ∗ is
jointly continuous only in very special cases (which are not particularly interesting). Not
for maximizing generality but in order to identify the natural context we use terminology
from General Algebra.

Definition 3.4.2. For any set X, a function ω : Xn → X, n ∈ N, is called an n-ary
operation on X. If (ι,K) is a compactification of X, ωK : Kn → K is called an extension
of ω if ι ◦ ω = ωK ◦ ιn with ιn : Xn → Xn, (x1, . . . , xn) 7→ (ι(x1), . . . , ι(xn)). (ι,K) is
called compatible with ω and vice versa if a continuous extension ωK of ω exists.

Remark 3.4.3. If ω0 is an m-ary operation on X and ω1, . . . , ωm are n-ary operations on
X then ω(x1, . . . , xn) := ω0(ω1(x1, . . . , xn), . . . , ωm(x1, . . . , xn)) defines an n-ary opera-
tion ω on X, called the composition of ω0 and the ωi, i = 1, . . . ,m. If all the operations
involved are continuous then so is ω. Other (trivial) examples of continuous n-ary oper-
ations are the projections πni : (x1, . . . , xn) 7→ xi, 1 ≤ i ≤ n. A set Ω of operations on
X which contains all projections and is closed under composition is called a clone on X.
Thus, for every family of continuous ni-ary operations ωi on X, i ∈ I, all operations in
the clone generated by the ωi are continuous as well. A standard reference on the clone of
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continuous functions is [50]. From this point of view the traditional approach in General
Algebra, namely to define a universal algebra as an object of the type (X, (ωi)i∈I), is
intimately connected with the investigation of clones. In particular, for X infinite there is
indeed much current research on clones on X (cf. [16]). But here we proceed in a different
direction.

Recall that, by definition, a topological space is 0-dimensional if there exists a topo-
logical basis of clopen sets.

Lemma 3.4.4. Let X be a 0-dimensional compact Hausdorff space and R ⊆ Xn a clopen
subset. Then R =

⋃k
i=1Ri is a finite union of generalized rectangles Ri = Ai,1×· · ·×Ai,n

with clopen Ai,j ⊆ X, i = 1, . . . , k, j = 1, . . . , n. The Ri can be taken pairwise disjoint
and such that all the Ai,j are from a fixed finite partition P = {A1, . . . , Ak}.

Proof. Pick x = (x1, . . . , xn) ∈ R. Since R is open and X has a clopen basis there
are clopen neighborhoods Ax,i of xi such that Ax := Ax,1 × · · · × Ax,n ⊆ R. Hence
R =

⋃
x∈RAx. This covering is open. Since R, being a closed subset of X, is compact,

finitely many Ri := Axi , i = 1, . . . , k, form a covering as well. It is clear that by finite
refinements, the Ri can be taken pairwise disjoint and all the resulting Ai,j form one
finite partition.

This lemma yields a characterization of operations having a continuous extension in
the Stone–Čech compactification.

Theorem 1. Let X be discrete and ω : Xn → X an n-ary operation on X. Then ω

has a continuous extension in the Stone–Čech compactification (ιβ , βX) if and only if for
every S ⊆ X the preimage is a finite union of rectangles, i.e.

ω−1[S] =
k⋃
i=1

Ri with Ri = Ai,1 × · · · ×Ai,n.

Proof. Necessity: Assume that ωβ is the continuous extension of ω in (ιβ , βX). S∗ = ιβ(S)
(notation as in Proposition 2.5.3) is clopen, hence, by continuity of ωβ , ω−1

β [S∗] is clopen
as well. So Lemma 3.4.4 applies, showing that this set is a finite union of rectangles. This
immediately translates to the same property of ω−1[S].

Sufficiency: Assume that for ω : Xn → X all preimages ω−1[S], S ⊆ X, are finite
unions of rectangles. We have to construct a continuous extension ωβ of ω in (ιβ , βX).
We use the ultrafilter description from Proposition 2.5.3. So let p1, . . . , pn be ultrafilters
on X. We define an ultrafilter p := ωβ(p1, . . . , pn) on X by letting F ⊆ X be a member
of p if and only if ω(F1 × · · · × Fn) ⊆ F for some sets Fi ∈ pi. It is straightforward to
check that ∅ /∈ p, that F ∈ p and F ⊆ F ′ ⊆ X implies F ′ ∈ p, and that F, F ′ ∈ p implies
F ∩ F ′ ∈ p. But p is even maximal: For arbitrary F ⊆ X our assumption shows that
R := ω−1[F ] can be taken as stated in Lemma 3.4.4. Since for each j = 1, . . . , n, pj is
an ultrafilter on X, there is exactly one Akj ∈ p such that Akj ∈ pj . For the rectangle
R′ := Ak1 × · · · ×Akn we have either R′ ⊆ R or R′ ⊆ X \R. In the first case this implies
F ∈ p, in the second case X \ F ∈ p, showing that p is an ultrafilter.

Finally, we have to prove that ωβ is continuous on (βX)n. We use Proposition 2.5.3
several times. Take arbitrary ultrafilters p1, . . . , pn ∈ βX and any neighborhood U of
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p := ωβ(p1, . . . , pn). By the definition of the topology on βX there is a set F ⊆ X such
that F ∈ p1 and U contains all ultrafilters p with F ∈ p. By the definition of ωβ there
are Fi ∈ pi such that ω(F1 × · · · × Fn) ⊆ F . Each Fi defines a neighborhood Ui of pi
consisting of all ultrafilters which contain Fi. It is clear that ωβ(U1 × · · · × Un) ⊆ U ,
showing that ωβ is continuous.

Corollary 3.4.5. Let S be an infinite discrete group. Then there is no continuous
extension of the group operation on S to (ιβ , βS).

Proof. Preimages of singletons are infinite but contain only singleton rectangles, thus
cannot be finite unions of rectangles.

Similar arguments apply for many semigroups as N with addition or with multiplica-
tion, and for infinite totally ordered sets with min or max as semigroup operation.

Definition 3.4.6. An n-ary operation ω : Xn → X is called essentially unary (depend-
ing on the ith component) if there is an f : X → X such that ω(x1, . . . , xn) = f(xi) for all
x1, . . . , xn ∈ Xn. ω is called locally essentially unary if there is a finite partition of X into
sets Ai, i = 1, . . . , k, such that the restriction of f to each rectangle R = Ai1 × · · · ×Ain ,
ij ∈ {1, . . . , k} is essentially unary.

Proposition 3.4.7. Let ω : Xn → X be locally essentially unary. Then there is a
continuous extension ωβ of ω to (ιβ , βX).

Proof. As the reader checks easily, every locally unary operation ω satisfies the condition
of Theorem 1.

Continuing work of van Douwen [52], Farah was able to show in [10, 11] that the
converse of Proposition 3.4.7 also holds true.

Proposition 3.4.8 (Farah). Let X be an infinite discrete set and assume that ω :
Xn → X has a continuous extension to (ιβ , βX). Then ω is locally essentially unary.

3.5. Compactifications for operations. We have seen in the previous section that
many interesting binary operations cannot be continuously extended to the Stone–Čech
compactification. Nevertheless, some ideas presented in Section 2.4 can be adapted. In
order to be more flexible it is useful to consider the following setting.

Definition 3.5.1. Let I be an index set, ni ∈ N and γi ⊆ P({1, . . . , ni}) for all i ∈ I.
A semitopological (general) algebra of type τ = ((ni)i∈I , (γi)i∈I) is a topological space
X together with a family of ni-ary operations ωi : Xni → X for which (xj1 , . . . , xjs) 7→
ωi(x1, . . . , xni) is continuous for all {j1, . . . , js} ∈ γi and all fixed xi ∈ X, i /∈ {j1, . . . , js}.
This semitopological algebra is called a topological algebra if furthermore {1, . . . , ni} ∈ γi
for all i ∈ I. In this case one might omit the information contained in the γi and consider
τ to be given by the τ = (ni)i∈I .

Example 3.5.2 (Semitopological algebras).

• Topological groups are groups considered as topological algebras of type τ = (2, 1),
requiring joint continuity of the binary operation as well as continuity of the operation
x 7→ x−1.



3.6. Invariance on groups and semigroups 39

• Topological groups can also be seen as topological algebras of type τ = (2, 1, 0) if one
wishes to emphasize that the neutral element may be considered as a 0-ary operation.
• Topological semigroups are semigroups which are topological algebras of type τ = (2).
• Semitopological semigroups are semigroups considered as semitopological algebras of

type (2, {{1}, {2}}), i.e. the semigroup operation is continuous in each component but
not necessarily jointly continuous. Similarly the type of left and right topological semi-
groups is τ = (2, γ) with γ = {{i}} with i = 1 resp. i = 2.

The value of the rather technical concept of a semitopological algebra gets clear by
considering compactifications of general algebras.

Definition 3.5.3. Let X and K be (semi)topological algebras of type τ . If (ι,K) is a
compactification of the set X such that each operation on K extends the corresponding
operation on X, we call (ι,K) a τ -compactification of X. In the case of topological
groups, (semi)topological semigroups etc. these compactifications are also called group,
(semi)topological (semi)group etc. compactifications in the obvious way.

Later we will discuss the special cases of group, semigroup and semitopological semi-
group compactifications in more detail. In the general context the following observations
hold.

Proposition 3.5.4.

(i) The direct product of a family of (semi)topological algebras of type τ is again a
(semi)topological algebra of type τ .

(ii) Every (semi)topological algebra of type τ has a maximal τ -compactification.

Proof. (ii) is obvious. For (iii), the product compactification (cf. Definition 2.4.6) of all
(semi)topological compactifications of type τ has the required properties. To justify this
construction it suffices to show that there is a set S of compactifications of X such that
for every τ -compactification (ι,K) of X there is an equivalent compactification in S.
Since |K| ≤ |βX| one can take for S the set of all compactifications (ι,K) of X with
K ⊆ βX (as a set, not necessarily as a topological subspace or subalgebra).

Example 3.5.5.

(i) For a topological group G the maximal group compactification is called the almost
periodic or Bohr compactification and denoted by (ιb, bG).

(ii) For a semitopological semigroup S the maximal semitopological semigroup compact-
ification is called the weak almost periodic compactification and denoted by (ιw, wS)
(see also Section 4.2). For the realization of wS as a space of filters in the spirit of
Proposition 2.5.3 we refer to [4].

3.6. Invariance on groups and semigroups

3.6.1. The action of a semigroup by translations. With every (semi)group S comes
a natural action by right translations.
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Definition 3.6.1. Let S be a semitopological semigroup. Then S acts on B(S) by right
translations in the following way (notation as in Proposition 3.4.1):

R : S ×B(S)→ B(S), Rs(f)(t) := f(ρs(t)) = f(ts).

For every s ∈ S the map Rs is a bounded linear operator. Since for the left translations

L : S ×B(S)→ B(S), Ls(f)(t) := f(λs(t)) = f(st),

we have LsLt = Lts the map (s, f) 7→ Lf is not a semigroup action, but merely an “anti”-
action of S on B(S). However, in the group case we can define an action Λ : G×B(G)→
B(G) via Λs(f)(t) = f(λs−1t).

In the following we use compatibility with respect to these translations to single out
a unique measure or mean on certain algebras A ⊆ B(S). We will mainly focus on the
group case. In contrast to the previous sections this section will be less self-contained.
As standard references (which also extensively treat the semigroup case) we mention
[5, 6, 18, 34, 39, 40, 41].

3.6.2. Means

Definition 3.6.2. Let A ⊆ B(S) be a ∗-algebra which is invariant under translations.
A mean m ∈ M(A) is left (resp. right) invariant if m(f) = m(Lsf) (resp. m(f) =
m(Rsf)) for all s ∈ S and f ∈ A. A mean which is both left and right invariant is called
bi-invariant , or simply invariant .

It is a nontrivial task to find conditions on A which ensure the existence of an invariant
mean. It turns out that the closure of the convex hull of the orbits with respect to various
topologies plays an important rôle.

Proposition 3.6.3. Let S be a semitopological semigroup and A ⊆ B(S) a C∗-algebra
such that

(i) for each f ∈ A, co({Lsf : s ∈ S}) contains a constant,
(ii) for each f ∈ A, co({Rsf : s ∈ S}) contains a constant,

where co indicates the closure of the convex hull with respect to uniform convergence.
Then there exists a mean m ∈M(A) which is bi-invariant. Furthermore, m is unique.

The proof of this assertion can be found for example in [6]. It is a general principle
in the theory of function spaces on semigroups that constants in convex closures are
intimately linked to invariant means (see [5, Chapter 2]). Proposition 3.6.3 states that if
we can find constants in the uniform closures of the convex hull, there exists already a
corresponding bi-invariant mean which is unique.

Having Proposition 3.6.2 at hand, we can establish the existence and uniqueness of
an invariant mean for (weak) almost periodic functions. Recall the notion of almost
periodicity:

Definition 3.6.4. A bounded function f : S → C on a semitopological semigroup S is
called (weakly) almost periodic if the set {Lsf : s ∈ S} of left translations is relatively
compact in the norm (weak) topology. Let us denote the algebra of almost periodic
functions by AP (S) and the algebra of weakly almost periodic functions by W(S).
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Evidently AP (S) ⊆ W(S). Weakly almost periodic functions may be characterized
using the following double limit criterion.

Proposition 3.6.5 (Grothendieck). Let S be a semitopological semigroup. A bounded
function f : S → C is weakly almost periodic if and only if

lim
n→∞

lim
m→∞

f(tnsm) = lim
m→∞

lim
n→∞

f(tnsm)

whenever (tn)∞n=1, (sm)∞m=1 ⊆ S are sequences such that the limits involved exist.

Using weak compactness of the translation orbit it is easy to check that weakly almost
periodic functions satisfy the double limit condition. The complete proof can be found
for instance in [25].
Remark 3.6.6 (Weak almost periodicity).

• This definition of (weakly) almost periodicity does not depend on the given topology
on S since the norm (weak) topology on Cb(S) coincides with the relative topology
inherited from the norm (weak) topology on B(S) = Cb(Sdis). The statement is ob-
vious for the norm topology; for the weak topology it follows from the Hahn–Banach
Theorem.
• For any (weakly) almost periodic function the right orbit {Rsf : s ∈ S} is relatively

(weakly) compact as well. However, in the weak case left and right orbit closures will
not in general coincide, while for almost periodic functions they always do.
• One can show that the set of (weakly) almost periodic functions is a C∗-algebra. Its

structure space (see also Section 2.4) is a topological group (semitopological semi-
group). The structure space coincides with the Bohr compactification in the almost
periodic case and with the weakly almost periodic compactification in the weak case.

Before we go on, we quote the celebrated fixed point theorem of C. Ryll-Nardzewski
which is vital to the theory of almost periodicity.

Proposition 3.6.7 (Ryll-Nardzewski). Let X be a Banach space and K ⊆ X a weakly
compact convex set. Let S be a semigroup which acts on K by continuous affine mappings
Ts, i.e. Tst = TsTt for all s, t ∈ S and for each s ∈ S there exists a continuous linear
map As and a vector τs such that Tsx = Asx + τs. If furthermore the action of S is
distal, i.e. for all x 6= y we have inf{‖Tsx−Tsy‖ : s ∈ S} > 0, then there exists a common
fixed point of the action.

Proof. See the original paper [43] for a probabilistic or [18] for a geometric proof.

Proposition 3.6.8. Let S be a semitopological semigroup. There exists a unique invari-
ant mean on W(S) and hence also on AP (S).

We only give a sketch of the argument for the case where S = G is a group. We
will employ the Ryll-Nardzewski Theorem to show that W(S) meets the requirements
of Proposition 3.6.3. Observe that a function f : S → S satisfying Lsf = f for all
s ∈ S has to be constant. The weak closure of the convex hull of a weakly compact
set is again weakly compact (Krein–Shmul’yan Theorem). So for f ∈ W(S) the set
K := co(w)({Lsf : s ∈ S}) is again weakly compact. As K is convex, the norm closure and
the weak closure coincide (Hahn–Banach Theorem). The action of S by the translations
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Ls leaves the set K invariant, in fact S acts by linear isometries. Thus we can use the
Ryll-Nardzewski Theorem to conclude that there exists a common fixed point, i.e. a
constant.
Example 3.6.9.

• Let χ : S → C be a (semi)character, i.e. a continuous (semi)group homomorphism
which satisfies |χ(s)| = 1. Then χ is almost periodic. For the invariant mean on AP (S)
we have

m(χ) = m(Lsχ) = χ(a)m(χ).

Thus, if χ is not the constant character 1S , then m(χ) = 0.
• Let S be locally compact. Every f ∈ C0(S) is weakly almost periodic and m(f) = 0

for the unique mean m on W(S).
• Let S = G be a locally compact abelian (LCA) group. Then the Fourier transform
µ̂ : Ĝ→ C of a Borel measure µ on G,

µ̂(χ) :=
∫
G

χdµ,

is weakly almost periodic and m(µ̂) = µ({eG}) for the unique mean m on W(Ĝ) and
eG the neutral element of G. By Bochner’s Theorem every positive definite function is
weakly almost periodic. Recall that a function f : Ĝ → C is positive definite if for all
χ1, . . . , χn ∈ Ĝ the matrix (f(χiχj))ni,j=1 ∈ Cn×n is positive definite.

3.6.3. Measures. Proposition 3.6.8 takes a particularly nice form if S = G is a compact
topological group.

Proposition 3.6.10 (Haar measure). Let G be a compact topological group. Then there
exists a regular Borel probability measure µ on G which is invariant under left and right
translations, i.e. µ(A) = µ(gA) = µ(Ag) for every Borel set A ⊆ G and g ∈ G. This
measure is unique and called the Haar measure.

Proof. For G compact and f : G→ C continuous the map Lf : G→ B(G), g 7→ Lgf , is
continuous in the norm (weak) topology on G. Thus the norm (weak) closure of co({Lgf :
g ∈ G}) is compact, i.e. f is (weakly) almost periodic; AP (G) = W(G) = Cb(G).
Proposition 3.6.8 together with Riesz’ Representation Theorem 2.3.1 yields the existence
of a unique left invariant measure µm. Note that µm(G) = m(1G) = 1, so µ is a probability
measure.

Inversion g 7→ g−1 turns any left invariant measure (or mean) on G into a right invari-
ant measure (mean). Since the unique mean on AP (G) is bi-invariant the left invariant
Haar measure on a compact group is also right invariant.

Remark 3.6.11. If G is only locally compact we can still construct a left invariant mea-
sure. In this setting, however, uniqueness holds only up to a multiplicative constant and
left invariance does not in general imply right invariance. For a rigorous treatment of the
Haar measure we refer to [22, 48].

We can use the Haar measure to give an alternative approach to the unique invariant
mean on the (weakly) almost periodic functions. As the Bohr compactification (ιb, bG) of
a topological group G is compact, there exists the Haar measure µb on bG. As bG is the
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structure space of the C∗-algebra AP (G), there is an isomorphism C(bG) ∼= AP (G) given
by F 7→ F ◦ ι (see Section 2.4). Consequently, m(F ◦ ι) :=

∫
bG
F dµb defines an invariant

mean on AP (G), which, by uniqueness of the Haar measure, is the unique invariant mean
on AP (G).

Corollary 3.6.12. Let G be a topological group and f ∈ AP (G). If m(|f |) = 0 for the
unique invariant mean m on AP (G), then f = 0.

Proof. As the Haar measure gives positive measure to open sets in bG, the equality

0 = m(|F ◦ ι|) =
∫
bG

|F | dµb

with F ∈ C(bG) can only hold if F = 0.

Corollary 3.6.13. Let G be a topological group and let (C1, ι1), (C2, ι2) be group com-
pactifications of G. If (C1, ι1) ≤ (C2, ι2) via π : C2 → C1 then µ1 = π ◦ µ2, where µ1

resp. µ2 is the Haar measure on C1 resp. C2. In particular, Proposition 2.6.5 applies.

Proof. Using continuity of π and density of ιi(C) ∈ Ci it is straightforward to check that
π ◦ µ2 is an invariant Borel measure on C1, hence it must be the Haar measure.

3.6.4. Amenability. Finally, we will drop any uniqueness assumptions and focus on
(semi)groups such that there exists at least one invariant mean.

Definition 3.6.14. A discrete (semi)group S is called amenable if there exists a bi-
invariant mean on B(S).

In the group case one can use the inversion g 7→ g−1 to show that existence of a
one-sided invariant mean is equivalent to the existence of a bi-invariant mean. Indeed,
let ml,mr : B(X)→ C be left resp. right invariant. For bounded f : G→ G the function
Mlf(g) := ml(Rgf) is again bounded. Then m(f) := mr(Mlf) defines a bi-invariant
mean. Furthermore, if G carries a locally compact topology then the existence of an
invariant mean on UCB(G), the algebra of uniformly continuous functions, implies the
existence of an invariant mean on B(G) and vice versa. For details we refer to [18, 34].

As we have seen in the previous section, every group which admits a compact group
topology is amenable, as the Haar measure defines an invariant mean on Cb(G). Among
many other more or less remarkable properties, amenable groups have interesting dynam-
ical behavior.

Proposition 3.6.15 (Markov–Kakutani). Let S be amenable. If S acts on a compact
convex subset K of a topological vector space X by affine mappings, then there exists a
common fixed point.

The proof of this statement can be found in [18]. Note that the classical Markov–
Kakutani fixed-point theorem is stated for the case S = Z, or, slightly more generally,
for abelian S.

The class Am of amenable groups is closed under elementary group-theoretical con-
structions, i.e. if G is amenable, then so is every subgroup and homomorphic image of G.
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Similarly, if G1 and G2 are amenable, then G1 ×G2 is amenable, and also the extension
of an amenable group by an amenable group is amenable. Finally, directed unions of
amenable groups are amenable.

It is trivial that every finite group is amenable and it is well-known that every abelian
group is amenable. The class ElAm of elementary amenable groups is defined as follows:
all finite groups and all abelian groups belong to ElAm, and ElAm is closed under taking
subgroups, homomorphic images, finite direct products, extensions and direct unions, and
is minimal with this property. One might ask whether ElAm = Am. The answer to this
question is negative. For details see [34].

In Section 3.2.5 we have seen that the free group F2 := F (x, y) is not amenable.
Consequently, no group containing F2 as a subgroup (such as SO(n) for n ≥ 3) can be
amenable. Define the class NFree of groups which do not contain F2 as a subgroup. The
so called von Neumann conjecture is that AM = NFree. However, this long standing
conjecture was disproved by Ol’shanskii; for details see again [34].

We conclude this detour to amenable groups with the notion of extreme amenability.
A group is called extremely amenable if there exists a multiplicative invariant mean.
Extremely amenable groups arise as transformation groups of infinite-dimensional Hilbert
spaces. They are intimately linked to concentration of measure phenomena; compact
groups which are extremely amenable must be trivial (uniqueness of the Haar measure),
but also locally compact groups can never be extremely amenable (see [13, 51]).

4. Hartman measurability

4.1. Definition of Hartman functions. The following definition fixes the main objects
for the rest of the paper.

Definition 4.1.1. Let G be a topological group. We call a bounded function f : G→ C
Hartman measurable or a Hartman function if f can be extended to a Riemann inte-
grable function on some group compactification. According to Proposition 2.6.5 such a
compactification can always be taken to be the maximal one, i.e. the Bohr compactifica-
tion (ιb, bG). The Haar measure on bG is denoted by µb. Let Cµb(bG) denote the system
of all µb-continuity sets on the Bohr compactification (see Definition 2.3.2). We denote
by H(G) the set of all Hartman measurable functions and by H(G) the system of all
Hartman sets {ι∗b

−1[A] : A ∈ Cµb(bG)}. It is easy to verify that H(G) is a set algebra
on G. We define a fapm p on H(G) via p(ι∗−1

b [A]) := µb(A). The definition is correct by
Proposition 2.6.2.

Proposition 4.1.2. The following assertions are equivalent:

(i) f ∈ H(G), i.e. by definition f = F ◦ ι with F ∈ RµK (K), RµK (K) denoting the set
of all F : K → C which are Riemann integrable with respect to the Haar measure
µK on K, for some group compactification (ι,K) of G.

(ii) f = F ◦ ιb with F ∈ Rµb(bG).
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(iii) f ∈ B(H(G)).

Furthermore, if ιb : G→ bG is one-one, (i), (ii) and (iii) are equivalent to

(iv) f ∈ AP (G)
(m)

, the m-completion of the almost periodic functions with respect to the
unique invariant mean m.

Proof. (i)⇔(ii): Apply Proposition 2.6.5.
(ii)⇔(iii): Consider the map ι∗b : F 7→ F ◦ιb which sends a function defined on the Bohr

compactification bG to a function defined on the group G. Then ι∗b maps Rµb(bG), the
set of Riemann integrable functions on bG (Definition 2.3.4), onto H(G). Thus H(G) =
ι∗bRµb(bG). The map ι∗b : Rµb(bG) → B(G) is a bounded homomorphism of ∗-algebras
as the reader may quickly verify. Consequently, its image, H(G), is a C∗-algebra (see
[8, Theorem I.5.5]). In particular, H(G) is closed.

Recall that Cµb(bG) denotes the set algebra of µb-continuity sets on the Bohr com-
pactification (cf. Definition 2.3.2). We then have the inclusions SH ⊆ H(G) ⊆ B(H(G)).
The first inclusion is valid since due to linearity of ι∗b every f ∈ SH is of the form F ◦ ιb
for some Cµb -simple function F . The second inclusion is true by the following argument:
f ∈ H(G) if there are Cµb -simple functions Fn such that limn→∞ ‖Fn ◦ ι∗b − f‖∞ = 0.
Every function Fn ◦ ι∗b is H-simple, thus f is in the uniform closure B(H(G)). Since H(G)
is closed we have H(G) = SH = B(H(G)) in the notation of Section 2.1.

(iii)⇔(iv): Apply Proposition 2.6.6.

In [19] Hartman has used the m-closure of almost periodic functions to define a class
of functions called “R-fastperiodisch” (“R-almost periodic”). According to [19] this term
was suggested by C. Ryll-Nardzewski. In our terminology the R-almost periodic functions
coincide with H(R), the Hartman functions on the reals.

The equivalence of (i) and (iv) in Proposition 4.1.2 for G = Zn,Rn has independently
been obtained by J.-L. Mauclaire (oral communication). In [28, 29] J.-L. Mauclaire used
extensions of arithmetic functions to (semi)group compactifications to prove number-
theoretic results.

While the inclusion H(G) ⊆ AP (G)
(m)

is always valid, the converse does not hold
true. The crucial property is injectivity of the map ιb : G → bG. Topological groups
where ιb is one-one are called maximally almost periodic.

Example 4.1.3. Let G1 be a topological group such that bG1 = {e} is trivial (such
groups exist in abundance (cf. [15, 35, 37]; they are called minimally almost periodic)
and G2 = T, the torus. Denote by µ the Haar measure on T. Consider G := G1 × G2.
Then ιb : G → bG is the projection onto the second factor ιb : (x, y) 7→ y. Consider
A = AP (G) and m the unique invariant mean on AP (G). A function f : G1 × G2 → C
belongs to H(G) if and only if f(x, y) = F (y) for a function F ∈ H(T). Let F : T → R
be Riemann integrable such that

F[ := sup
F1≤F
F1∈C(T)

F1 6= inf
F2≥F
F2∈C(T)

F2 =: F ].

We can take for instance F = 1A, where A is the Cantor middle-third set (in this case
F[ = 0 and F ] = F ). Pick any y0 ∈ T such that α := F[(y0) < F ](y0) =: β and pick any
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nonconstant function F0 : G1 → [α, β]. Define

f(x, y) =

{
F (y) for y 6= y0,

F0(x) for y = y0.

Then F ∈ AP (G)
m

(since F[(y) ≤ f(x, y) ≤ F ](y)), but F /∈ H(G).

Proposition 4.1.4. H(G) is a translation invariant C∗-subalgebra of B(G) and there
exists a unique invariant mean on H(G).

Proof. Translation invariance is a consequence of the fact that ιb is a group homomor-
phism. In Proposition 4.1.2 we have already seen that H(G) is a C∗-algebra.

Every mean m on H(G) lifts to a mean mb on Rµb(bG) via the definition mb(F ) :=
m(F ◦ι∗b) for F ∈ Rµb(bG). For m invariant one has mb(F ) =

∫
bG
F dµb for all continuous

F : bG→ bG (Riesz’ Representation Theorem 2.3.1 and uniqueness of the Haar measure).
Since Rµb(bG) is the µb-closure of C(bG), mb is not only unique on C(bG) but also on
Rµb(bG). This settles the uniqueness of m. On the other hand,

m(F ◦ ιb) :=
∫
bG

F dµb, F ∈ Rµb(bG),

defines such an invariant mean on H(G).

In light of Proposition 4.1.2 the fapm p on H(G) resp. the mean m on H(G) has a
nice completeness property.

Corollary 4.1.5. Let G be a topological group such that ιb : G→ bG is one-one.

(i) Let A ∈ H(G) be a null-set, i.e. p(A) = 0. If B ⊆ A then B ∈ H(G).
(ii) Let f ∈ H(G) be a function with zero absolute mean value, i.e. m(|f |) = 0. If

f : G→ C is such that |g| ≤ |f | then g ∈ H(G).

4.2. Definition of weak Hartman functions. We need some results concerning the
weakly almost periodic compactification (ιw, wS) of a semitopological semigroup S. Re-
call from Section 3.5 that a semitopological semigroup S is a semigroup where all left
translations λs : S → S and all right translations ρs : S → S are continuous.

Definition 4.2.1. Let S be a semitopological semigroup. By Proposition 3.5.4 there
exists a maximal compactification (ιw, wS) which is a semitopological semigroup. (ιw, wS)
is called the weakly almost periodic compactification of S.

Corollary 4.2.2. Let S be an abelian semitopological semigroup. Then wS, the weakly
almost periodic compactification of S, is also abelian.

Proof. For every s ∈ S the continuous maps λιw(s), ριw(s) : wS → wS coincide on the
dense set ιw(S). Therefore λιw(s) = ριw(s). For arbitrary x ∈ wS and s ∈ S we have

λx(ιw(s)) = ριw(s)(x) != λιw(s)(x) = ρx(ιw(s)),

thus also λx and ρx coincide on a dense set and therefore are equal.
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Definition 4.2.3. Let S be a semigroup. A subset I ⊆ S is called a (two-sided) ideal if
λs(I) ⊆ I and ρs(I) ⊆ I for every s ∈ S. We denote by K(S) the kernel of S, i.e. the
intersection of all ideals in S.

From now on we will stick to the special case where S = G is algebraically an abelian
group. Here the kernel K(G) has particularly nice properties.

Proposition 4.2.4. Let G be a semitopological abelian group. Then the kernel K(G) is
a compact topological group.

The proof of this assertion can be found in [5, 41].
Let e ∈ G denote the neutral element of the group K(wG). Then K(wG) = e + wG

and the mapping ρ : wG→ K(wG) defined via x 7→ e+ x is a continuous retraction, i.e.
ρ(x) = x for all x ∈ K(wG).

Proposition 4.2.5. Let G be an abelian topological group and (ιw, wG) the weakly almost
periodic compactification of G. Then the compactification (ρ ◦ ιw,K(wG)) is equivalent
to the Bohr compactification of G.

Proof. Note that (ρ ◦ ιw,K(wG)) is a group compactification. We show that it has the
universal property of the Bohr compactification. Each almost periodic function f on G

may be extended to a continuous function F on wG. Consider the function F − F ◦ ρ.
Since F ◦ ρ may be regarded as a continuous function on the group compactification
(ρ ◦ ιw,K(wG)) the function |F − F ◦ ρ| induces a nonnegative almost periodic function
on G. Since this function vanishes on K(wG), the induced almost periodic function has
zero mean value (note that the mean value is given by integration over K(wG) with
respect to µb). By Corollary 4.1.5 and continuity this implies F = F ◦ ρ. Thus we have
f = F ◦ ιw = (F ◦ ρ) ◦ ιw. So F ◦ ρ is a continuous extension of f on (ρ ◦ ιw,K(wG)).

Similarly one proves that for an arbitrary semitopological semigroup compactification
(ι, C) of G the kernel K(C) is a compact topological group and coincides with ρ(C) =
e+ C, where e is the neutral element of K(C) and ρ the retraction defined as above. In
this setting, (ρ ◦ ι,K(C)) constitutes a group compactification of G.

Proposition 4.2.6. Let G be an abelian topological group and (ι, C) a semitopologi-
cal semigroup compactification. Then there exists a unique translation invariant Borel
measure on C.

Proof. Suppose µ is an invariant measure on C. Then µ(C) = µ(e + C) = µ(K(C))
implies that µ is supported on the compact group K(C). Consequently, µ|K(C) coincides
with the Haar measure on K(C). Thus

µ(A) = µb(A ∩K(C)), (4.1)

where µb denotes the Haar measure on K(C). This settles the uniqueness of µ. Since (4.1)
indeed defines a translation invariant Borel measure, also the existence is guaranteed.

Let us use the framework of semigroup compactifications to define weak Hartman
functions:
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Definition 4.2.7. Let G be an abelian topological group and f : G → C a bounded
function. Then f is called weak Hartman measurable or a weak Hartman function if there
exists a semitopological semigroup compactification (ι, C) of G and an F ∈ RµC (C) such
that f = F ◦ ι for the unique translation invariant measure µC on C. The set of all weak
Hartman functions on G is denoted by Hw(G).

It is almost, but not quite, entirely analogous to the strong case to check that Hw(G)
is a translation invariant C∗-subalgebra of B(G) on which a unique invariant mean ex-
ists. Furthermore, the universal property of the weakly almost periodic compactification
(ιw, wG) implies that a bounded function f is weak Hartman if there exists a µw-Riemann
integrable function F ∈ R(wG) = Rµw(wG), µw denoting the unique translation invari-
ant measure on wG, such that f = F ◦ ι. From Definition 4.2.7 it is also obvious that
Hw(G) ⊇ H(G) ∪W(G).

Definition 4.2.8. Let G be an abelian topological group. We denote by Hw0 (G) the set
of all weak Hartman functions f such that |f | has zero mean value.

Hw0 (G) is a closed ideal of H(G). We will now identify the corresponding quotient
space. Given any µw-Riemann integrable function F : wG→ C we can write

F = (F − F ◦ ρ︸ ︷︷ ︸
=:F0

) + F ◦ ρ︸ ︷︷ ︸
=:Fh

.

Note that the retraction ρ : wG→ wG is measure preserving:

ρ ◦ µw(A) = µw(ρ−1[A]) = µw({x ∈ wG : e+ x ∈ A})
= µb({x ∈ wG : x = e+ x and e+ x ∈ A)

= µb(A ∩K(wG)) = µw(A).

Thus both F0 and Fh are µw-Riemann integrable. The induced weak Hartman function
f := F ◦ ιw can be written as the sum f = f0 +fh where f0 := F0 ◦ ιw is a weak Hartman
function with zero mean value and fh := Fh ◦ ιw is an ordinary Hartman function. This
decomposition is unique. So we have proved:

Theorem 2. Let G be an abelian topological group and denote by Hw(G) and Hw0 (G)
the space of weak Hartman functions resp. the space of weak Hartman functions with zero
mean value. Then Hw(G) = Hw0 (G)⊕H(G).

4.3. Compactifications of LCA groups. In the following sections we will deal with
locally compact abelian (LCA) groups. If H is a subgroup of the topological group G,
we will denote this by H ≤ G. By Gd we mean the group G equipped with the discrete
topology. We will use standard notation such as Ĝ for the Pontryagin dual, χ for char-
acters, H⊥ for the annihilator of a subgroup and ϕ∗ for the adjoint of a homomorphism
without further mention, and refer the reader instead to standard textbooks on this topic
such as [1, 22, 48].

Similarly to Proposition 2.4.9 where we used a function algebra A to construct a
compactification we will now use a group of characters. Let H ≤ Ĝd be an (algebraic)
subgroup of the dual of G. Then H induces a group compactification (ιH ,KH) of G in
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the following way:

ιH : g 7→ (χ(g))χ∈H , KH := ιH(G) ≤ TH ,

and for every such H ≤ Ĝd the kernel of ιH coincides with the annihilator H⊥ ≤ G.
Remarkably, also the converse is true.

Proposition 4.3.1. Let G be an LCA group and let (ι, C) be a group compactification
of G. Then there exists a unique subgroup H ≤ Ĝd such that (ι, C) and (ιH ,KH) are
equivalent, namely H = ι∗(Ĉ).

Proof. As ι : G→ C has dense image, the adjoint homomorphism ι∗ : Ĉ → Ĝ is one-one.
Let H := ι∗(Ĉ) ≤ Ĝ and consider the group compactification (ιH ,KH). Note that for
g ∈ G we have, due to injectivity of ι∗,

(χ(ι(g)))χ∈Ĉ = (ι∗(χ)(g))χ∈Ĉ = (η(g))η∈H = ιH(g).

Define π : C → TĈ via c 7→ (χ(c))χ∈Ĉ . Then π is a continuous homomorphism and maps
the dense subgroup ι(G) ≤ C onto the dense subgroup ιH(G) ≤ KH . As C is compact,
π(C) is closed and thus contains KH . On the other hand, π−1[KH ] is closed since π is
continuous and so contains C. Thus π maps C onto KH . Since ιH = π ◦ ι this implies
(ι, C) ≥ (ιH ,KH). If π(c) = 0 then χ(c) = 0 for all χ ∈ Ĉ. Thus c = 0 and π is one-one.
So (ι, C) ∼= (ιH ,KH) via π (cf. Definition 2.4.3).

4.4. Realizability on LCA groups. Let us now turn to the realizability of Hartman
functions by Riemann integrable functions (cf. Definition 2.4.1). It follows from Theo-
rem 4 in [56] that every f ∈ H(Z) which is a characteristic function can be realized in
a metrizable compactification. We are going to generalize this result. As a corollary we
prove that metric realizability of every f ∈ H(G) is possible precisely for LCA groups
with separable dual. First we have to introduce some useful concepts.

4.4.1. Preparation

Definition 4.4.1. Let G be an LCA-group. The topological weight κ(G) is defined as
the cardinal number

κ(G) = min{|I| : (Oi)i∈I is an open basis of G}.

Note that this minimum exists (and is not merely an infimum) since cardinal numbers
are well-ordered. The topological weight behaves well with respect to products, i.e. for
infinite G we have κ(G×H) = max{κ(G), κ(H)} and κ(GI) = κ(G) · |I|. For H ⊆ G we
clearly have κ(H) ≤ κ(G).

From the theory of LCA-groups it is known that κ(G) = κ(Ĝ) (see [22, §24.14]). The
topological weight of the group compactification KH can thus be computed very easily
via κ(KH) = κ(K̂H) = κ(Hd) = |H|.

Definition 4.4.2. Let G be an LCA-group. The co-weight c(G) is defined as min{|H| :
H ≤ Ĝ and H = Ĝ}.

We collect some facts concerning the co-weight:

(i) c(G) ≤ ℵ0 ⇔ G has separable dual.
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(ii) c(G) <∞ ⇔ G is finite.
(iii) If H is a closed subgroup of G, then c(H) ≤ c(G).

The statements (i) and (ii) are obvious. For the sake of completeness we give the argument
for (iii): By duality Ĥ and Ĝ/H⊥ are isomorphic LCA groups. Let G0 ≤ Ĝ be a subgroup
of Ĝ with |G0| = c(G). Then H0 := G0 + H⊥ is a subgroup of Ĝ/H⊥ and |H0| ≤ |G0|.
As the canonical projection πH⊥ : Ĝ → Ĝ/H⊥ is continuous and onto, dense sets are
mapped onto dense sets. So pick G0 ≤ Ĝ which is dense with |G0| = c(G) to conclude
c(H) ≤ |πH⊥(G0)| ≤ |G0| = c(G).

Definition 4.4.3. Let G be an LCA-group and f ∈ H(G) a Hartman function. The
weight of f , κ(f), is defined by

κ(f) := min{κ(K) : f can be realized on (ι,K)}.

By virtue of Proposition 4.3.1 we can compute κ(f) as the minimum of all |H| such
that f can be realized on (ιH ,KH). We want to prove the following:

Theorem 3. Let G be an LCA group. Then

max{κ(f) : f ∈ H(G)} = c(G),

i.e. every Hartman measurable function on G can be realized on a compactification whose
topological weight is at most c(G), and this is best possible.

Corollary 4.4.4. Let G be an LCA group. Then the following are equivalent:

(i) Ĝ is separable,
(ii) Every f ∈ H(G) can be realized on a metrizable compactification.

Proof. Separability of Ĝ is equivalent to c(G) ≤ ℵ0.

The rest of this section is devoted to the proof of Theorem 3.

4.4.2. Estimate from above

Lemma 4.4.5. Let G be an LCA group. Then there exists an injective group compact-
ification of G, i.e. a group compactification (ι, C) such that ι : G → C is one-one.
Furthermore,

min{κ(C) : (ι, C) is injective} = c(G).

Proof. The result follows from the fact that any group compactification is equivalent to
some (ιH ,KH) with H ≤ Ĝ and that ker ιH = H⊥. Thus ιH is injective if H⊥ = {0} and
this is equivalent to H being dense in Ĝ. Thus c(G) ≥ |H| = κ(KH) = κ(C) and equality
is obtained if |H| = c(G) and (ι, C) = (ιH ,KH).

In the following let us call a group compactification (ι, C) of an LCA group a finite-
dimensional compactification if C ≤ Ts for some s ∈ N.

Lemma 4.4.6. Let G be an LCA group and T ⊆ G a Hartman set. For every ε > 0 there
are Hartman sets Tε and T ε, realized on a finite-dimensional compactification (ι, C) such
that Tε ⊆ T ⊆ T ε and m(T ε \ Tε) < ε.
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Proof. We proceed similarly to [56, Theorem 2]. Let M ⊆ bG be a µb-continuity set
realizing T , i.e. T = ι−1

b [M ]. Use the inner regularity of the Haar measure on bG to find
a compact inner approximation K ⊂M◦ with µb(M \K) = µb(M◦ \K) < ε/2.

Recall that one can construct the Bohr compactification as (ιĜd ,KĜd
) (see Proposi-

tion 4.3.1). As bG = KĜd
⊆
∏
χ∈Ĝ χ(G) one can obtain a basis (Bi)i∈I of open sets in

bG by restricting the standard basis of the product space to the subspace bG. The sets
Bi can be chosen to be finite intersections of sets of the form

Dχ0;a,b := {(αχ)χ∈Ĝ ∈ bG : αχ0 ∈ (a, b)}

where (a, b) denotes an open segment in T and such that the basis (Bi)i∈I consists of
µb-continuity sets.

We can cover K by finitely many sets of the form Oj = Bij ∩Mo, j = 1, . . . n, with
ij ∈ I. Each Oj is a µb-continuity set and induces a Hartman set Tj = ι−1

b [Oj ] on G that
may be realized on a finite-dimensional group compactification (ιj , Cj), i.e. Cj ≤ Tsj .
Let (ι0, C0) denote the supremum of all (ιj , Cj), j = 1, . . . , n. It is easy to check that
C0 ≤ Ts0 with s0 =

∑n
j=1 sj and that Tε = ι−1

b (
⋃n
j=1Oj) is a Hartman set which can be

realized in (ι0, C0) (see Definition 2.4.6).
In a similar way one finds an outer approximation T ε which can be realized in some

compactification (ι0, C0) with C0 ≤ T s
0
. Then we can take the supremum (ι, C) of

(ι0, C0) and (ι0, C0) and s = s0 + s0.

Lemma 4.4.7. Every Hartman set T on an infinite LCA group G can be realized on a
group compactification with topological weight c(G).

Proof. We follow the lines of [56, Theorem 4]. Let T be a Hartman set and (T1/n)∞n=1,

(T 1/n)∞n=1 sequences of Hartman sets as in Lemma 4.4.6, approximating T from inside
resp. outside. Let (ι, C) be the supremum of all at most countably many finite-dimensional
compactifications involved. As κ(Ts) = ℵ0 for every s ∈ N, the topological weight of C
cannot exceed ℵ0 · ℵ0 = ℵ0. By Lemma 4.4.5 we can find an injective group compactifica-
tion, covering (ι, C) and having topological weight max{c(G),ℵ0} = c(G). For notational
convenience we call this compactification again (ι, C).

Denote by Mn resp. Mn the µC-continuity sets in C that realize the Hartman sets T1/n

resp. T 1/n. Thus M∞ :=
⋃∞
n=1M

◦
n is open, M∞ :=

⋂∞
n=1M

n is closed and ι−1[M∞] ⊆
T ⊆ ι−1[M∞]. Let M := M∞ ∪ ι(T ). Since ι is one-one the preimage of M under ι
coincides with the given Hartman set T . Furthermore,

µC(∂M) ≤ µ(M∞ \M∞) = lim
n→∞

µ(Mn \Mn) = 0

shows that M is a µC-continuity set.

Corollary 4.4.8. Let G be an infinite LCA group and f ∈ H(G) with f(G) finite.
Then f can be realized in a group compactification (ι, C) with topological weight c(G) by
a simple µC-continuity function.

Proof. By assumption f =
∑n
i=1 αi1Ti . It is clear that the Ti can be taken to be Hartman

sets. By Lemma 4.4.7, Ti, i = 1, . . . , n, can be realized on a compactification (ιi, Ci) with
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κ(Ci) = c(G). The supremum (ι, C) of the (ιi, Ci) has again topological weight c(G) and,
as a consequence of Proposition 2.4.5, each Ti and hence f can be realized in (ι, C).

Now we can prove the first part of Theorem 3, namely κ(f) ≤ c(G) for every f ∈ H(G):

Proof. First consider the finite (compact) case: If G is compact then every f ∈ H(G) can
be realized on (idG, G). Hence κ(f) ≤ κ(G) = κ(Ĝ) = |Ĝ| = c(G).

Now we show that on an infinite LCA group G every f ∈ H(G) can be realized on a
group compactification with topological weight not exceeding c(G). We may assume that
f is real-valued. By Proposition 4.1.2, f can be realized in the maximal compactification
(ιb, bG) by some F b ∈ Rµb(bG), i.e. f = F b ◦ ιb. By Lemma 2.3.3 there is a sequence
of simple µb-continuity functions F bn on bG converging to F b uniformly. Consider the
Hartman functions fn = F bn ◦ ιb and note that each fn takes only finitely many values.
Corollary 4.4.8 guarantees that each fn can be realized on a group compactification
(ιn, Cn) with κ(Cn) = c(G) by simple µCn -continuity functions F 0

n , i.e. fn = F 0
n ◦ ιn.

The supremum of countably many group compactifications of topological weight c(G)
has a topological weight not exceeding ℵ0 · c(G) = c(G). By technical convenience we use
Lemma 4.4.5 to get an injective group compactification (ι, C) with κ(C) = c(G) covering
all (ιn, Cn). For each n let πn : C → Cn denote the canonical projection, i.e. ιn = πn ◦ ι.
Consider the functions Fn = F 0

n ◦ πn which are in RµC (C) by Proposition 2.4.5 and in
fact simple µC-continuity functions.

C

G
ιn-

ι
-

Cn

πn
?

F 0
n- C

F
n

-

In order to realize f in (ι, C) by F ∈ RµC (C) we have to define F (x) = f(g) whenever
x = ι(g) for some g ∈ G. Since ι is one-one, F is well-defined on ι(G). For x ∈ C \ ι(G)
we define

F (x) = lim sup
ι(g)→x

F (ι(g)).

It remains to show that F is µC-Riemann integrable. For each n∈N let Fn =
∑kn
i=1 αi1An,i

be a representation of Fn with pairwise disjoint continuity sets An,i, i = 1, . . . , kn. The
open sets Un =

⋃kn
i=1A

◦
n,i have full µC-measure. Thus the dense Gδ-set U =

⋂
n∈N Un

has full µC-measure as well. If we can prove the following claim, we are done.

Claim. Each x ∈ U is a point of continuity for F .

Fix x ∈ U and ε > 0. We are looking for an open neighborhood V ∈ U(x) (U(x)
denoting the filter of neighborhoods of x) such that ι(g1), ι(g2) ∈ V implies |f(g1) −
f(g2)| < ε. This suffices to guarantee |F (x1)−F (x2)| ≤ ε for all x1, x2 ∈ V , in particular
|F (x1) − F (x)| ≤ ε, yielding continuity of F in x. To find such a V note that, by
construction, the Fn converge uniformly to F on the dense set ι(G). Choose n ∈ N in
such a way that |Fn(ι(g))−F (ι(g))| < ε/2 for all g ∈ G. There is a unique i ∈ {1, . . . , kn}
such that x ∈ A◦n,i. The set V := A◦n,i has the desired property: For ι(g1), ι(g2) ∈ V we
have Fn(ι(g1)) = Fn(ι(g2)) and

|f(g1)− f(g2)| = |F (ι(g1))− Fn(ι(g1))|+ |Fn(ι(g2))− F (ι(g2))| < ε.
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4.4.3. Estimate from below. In this section we are concerned with the construction
of a Hartman function with κ(f) = c(G) for a given infinite group G.

Lemma 4.4.9. Let G be an uncountable LCA-group. Then there exists a subset A ⊆ G

such that 1A can be realized only in injective group compactifications of G.

Proof. Let α 7→ gα be a bijection between the set of all ordinals α < |G| and G \ {0}. By
choosing for each α elements of the co-sets of the subgroup 〈gα〉 generated by gα we find
(for each α) x(i)

α ∈ G with |I| ≤ |G| such that

G =
⋃
i∈I

(〈gα〉+ x(i)
α ), α < |G|,

is a disjoint union. As G is uncountable and 〈gα〉 is at most countable we must have
|I| = |G|. We start with the construction of A: Assume, by transfinite induction, that
for given α0 < |G| we have already constructed elements xα, yα, α < α0, such that
yα ∈ 〈gα〉+ xα with xα = x

(i)
α for some i = i(α) ∈ I and all the xα, yα with α < α0 are

pairwise distinct. To find yα0 we first observe that

N1 := {yα, xα : α < α0} ⊆
⋃
α<α0

(〈gα〉+ xα),

hence we have |N1| ≤ |α0| · ℵ0 < |G|. Therefore, by the cardinality of

G =
⋃
i∈I

(〈gα0〉+ x(i)
α0

),

there are |G| indices i ∈ I with 〈gα0〉+ x
(i)
α0 disjoint from {yα, xα : α < α0}. Pick such an

i = i(α0) and xα0 = x
(i)
α0 , yα0 = y

(i)
α0 ∈ 〈gα0〉+x

(i)
α0 with xα0 6= yα0 . Let A = {xα : α < |G|}.

Note that by its very definition, yα /∈ A for all α < |G|. Suppose A can be realized in
some noninjective group compactification (ι, C), i.e. there exists a set M ⊆ C such that
ι−1[M ] = A. As ι is not injective, there exists some gα ∈ ker ι, gα 6= 0. Then 〈gα〉 ⊆ ker ι.
As yα ∈ 〈gα〉+ xα we have ι(yα) = ι(xα) ∈M , i.e. yα ∈ ι−1[M ] = A, a contradiction.

Remark 4.4.10. For countable G we could use a similar and even simpler construction.
However, we will use a different approach for this case.

Lemma 4.4.11. Let G be an infinite LCA group. Then there exists a closed subgroup
G0 ≤ G such that c(G0) = c(G) and G0 is a Hartman null-set.

Proof. First we distinguish two cases and employ in each of them the existence of a
nontrivial closed subgroup with zero Hartman measure.

(i) There exists a χ ∈ Ĝ such that χ(G) is infinite. The annihilator G0 := {χ}⊥ is a
Hartman null-set. To see this consider the preimage of the singleton {0} in the group
compactification (χ,T).

(ii) All characters are torsion elements, i.e. χ(G) is finite for every χ ∈ Ĝ. Pick a sequence
of pairwise (algebraically) independent characters χn and consider G0 :=

⋂∞
i=1{χi}⊥

and the group compactification (ι, C) :=
∨∞
i=1(χi,Zmi) with mi = |χi(G)|. As C

is infinite, every singleton in C has zero µC-measure. Therefore G0 = ι−1[{0}] is a
Hartman null-set.
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As G0 ≤ G is a closed subgroup, c(G0) ≤ c(G). Let H be a dense subgroup of Ĝ0

with |H| = c(G0). Any η ∈ H can be extended from a character on G0 to a character η̃
on the whole of G. Let us denote the set of those extended characters by H̃. Note that
as H is infinite the subgroup

H0 :=

{
H̃ for G as in case (i),

〈H̃ ∪ {χi : i ∈ N}〉 for G as in case (ii),

has the same cardinality as H. We show that H0 is dense in Ĝ by computing its anni-
hilator. Pick any g ∈ G such that g ∈ H⊥0 . If g ∈ G0 we have in particular χ|G0(g) = 0
for every χ ∈ H̃ and thus η(g) = 0 for every η ∈ H. As H is dense in Ĝ0 we have g = 0.
Thus H⊥0 ∩G0 = {0}. On the other hand, by its very definition, H⊥0 ≤ G0. So H⊥0 = {0}
and thus H0 = G. This gives the reverse inequality c(G) ≤ |H0| = |H| = c(G0).

By proving the next statement we conclude the remaining part of Theorem 3.

Proposition 4.4.12. Let G be an LCA group. Then there exists a Hartman function
f ∈ H(G) such that κ(f) = c(G).

Proof.

• G finite: Let Ĝ = {χ1, . . . χn} and take f = χ1 + . . .+ χn. Then κ(f) = n = c(G).
• G countable: |G| = ℵ0 implies c(G) = ℵ0. Note that every countable LCA group

is discrete. Thus Ĝ is isomorphic to a closed subgroup of Tℵ0 . In particular, Ĝ is
uncountable. Consider any sequence (χi)∞i=1 of pairwise (algebraically) independent
characters on G and define the almost periodic function

f =
∞∑
i=1

χi
2n

on G. Denoting by mG the unique invariant mean on AP (G), we see that

Γ(f) := 〈{χ ∈ Ĝ : mG(f · χ) 6= 0}〉 = 〈{χi : i ∈ N}〉.

Then, by [27, Corollary 13], we have Γ(f) ⊆ H for any compactification (ιH ,KH) on
which f can be realized. As f can only be realized on compactifications (ιH ,KH) with
H infinite we conclude κ(f) ≥ |H| = ℵ0 = c(G).
• G uncountable: Take G0 ≤ G as in Lemma 4.4.11 and let f := 1A for the set A ⊆ G0

from Lemma 4.4.9. As G0 has zero Hartman measure Corollary 4.1.5 implies f ∈ H(G).
By construction for every compactification (ι, C) where f can be realized ι must be
injective on G0, hence κ(f) ≥ c(G0) = c(G).

5. Classes of Hartman functions

5.1. Generalized jump discontinuities. The concept of generalized jump discontinu-
ities is useful for comparing Hartman functions and weakly almost periodic functions. In
the present section we do not need the group setting.
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Definition 5.1.1. Let X,Y be topological spaces. A function f : X → Y has a general-
ized jump discontinuity (g.j.d.) at x ∈ X if there are (disjoint) open sets O1 and O2 such
that x ∈ O1 ∩O2 but f(O1) ∩ f(O2) = ∅.

Example 5.1.2.

• The function f1(x) = 1[0,1/2)(x) on X = [0, 1] has a g.j.d. at x = 1/2. The function
f2(x) = 1{1/2}(x) has no g.j.d.
• The function f : [0, 1]→ R,

f(x) =

{
sin(1/x), x 6= 0,

0, x = 0,

has a g.j.d. at 0. To see this, consider the open set O1 := f−1[(1/2, 1]] and the open
set O2 := f−1[[−1,−1/2)].
• Generalizing the first example, let X be compact, µ be a finite complete regular Borel

measure on X and A a µ-continuity set. Then the characteristic function 1A has g.j.d.s
on ∂(A◦) ∩ ∂(A◦c), the common boundary of A◦ and its complement.
• Let X be compact and µ a finite complete regular Borel measure with supp(µ) = X.

If f : X → R is constant µ-a.e. then f has no g.j.d.

Proposition 5.1.3. Let X be a topological space. Denote by J(X) the set of all bounded
functions f : X → R having a g.j.d. Then J(X) ⊆ B(X) is open in the topology of
uniform convergence.

Proof. Let f ∈ J(X). Then there exist disjoint open sets O1 and O2 with ∂O1 ∩∂O2 6= ∅
but f(O1)∩f(O2) = ∅. Let ε := d(f(O1), f(O2)) > 0 and suppose ‖f − g‖∞ < ε/8. Then
d(f(Y ), g(Y )) < ε/4 for any set Y ⊆ X, hence

|d(g(O1), g(O2))− d(f(O1), f(O2))| < ε/2.

In particular, d(g(O1), g(O2)) > 0, i.e. g has a g.j.d.

Lemma 5.1.4. Let X be compact and µ a finite complete regular Borel measure with
supp(µ) = X. Let f, g ∈ Rµ(X) be Riemann integrable functions.

(i) If f and g coincide on a dense set, then they coincide on a co-meager set of full
µ-measure.

(ii) If f and g coincide on a dense set and f has a g.j.d. at x ∈ X, then also g has a
g.j.d. at x ∈ X.

Proof. (i) By Proposition 2.3.6 it suffices to show [f = g] := {x ∈ X : f(x) = g(x)} ⊇
X \ (disc(f) ∪ disc(g)). Let x ∈ X be a point of continuity for both f and g, and U ⊆ X
a neighborhood of x such that y ∈ U implies |f(y)− f(x)| < ε/2 and |g(y)− g(x)| < ε/2.
As [f = g] is dense in X we can pick yε ∈ U ∩ [f = g]. Thus

|f(x)− g(x)| ≤ |f(x)− f(yε)|+ |g(yε)− g(x)| < ε.

Since ε > 0 was arbitrary this implies f(x) = g(x).
(ii) Choose O1 and O2 according to the definition of a g.j.d. of f at x. By (i), f

and g coincide on a dense set of common continuity points. Thus for every x ∈ X and
U ∈ U(x) we can pick xUi ∈ U ∩ Oi, i = 1, 2, which are both points of continuity for f
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and g and such that f(xUi ) = g(xUi ), i = 1, 2. Pick open neighborhoods OUi of xUi such
that OUi ⊆ U ∩Oi and

diam(g(OUi )) < 1
3 dist(f(O1), f(O2)), i = 1, 2.

Consider the open sets Ui :=
⋃
U∈U(x)O

U
i , i = 1, 2. Then g(U1) is separated from g(U2)

and xUi ∈Ui for all U ∈U(x). This implies x∈Ui, i= 1, 2, proving that x is a g.j.d. for g.

Corollary 5.1.5. Let X be compact and µ a finite complete regular Borel measure on
X with supp(µ) = X. Let f, g be simple Cµ-functions (see Definition 2.3.2). If f and g

coincide on a dense set, then they coincide on an open set of full µ-measure.

Proof. Lemma 5.1.4 implies that [f = g] has full µ-measure. Since f and g are simple
Cµ-functions, [f = g] is a µ-continuity set. Thus [f = g]◦ and [f = g] have the same
µ-measure µ(X).

Proposition 5.1.6. Let X be compact and µ a finite complete regular Borel measure
with supp(µ) = X. Let f ∈ Rµ(X) \ J(X), i.e. f is Riemann integrable without a g.j.d.
Then there exists a unique continuous function fr ∈ C(X), the regularization of f , such
that f and fr coincide on X \ disc(f).

Proof. For f Riemann integrable f the set X \disc(f) is dense in X by Proposition 2.3.6.
Hence there is at most one continuous fr with fr(x) = f(x) for x /∈ disc(f).

Let x ∈ disc(f). For each U ∈ U(x) (the neighborhood system of x), y ∈ U \ disc(f)
and ε > 0 pick an open neighborhood O = O(U, ε, y) ∈ U(y) such that O ⊆ U and
diam(f(O)) < ε. Let

O(U, ε) :=
⋃

y∈U\disc(f)

O(U, ε, y).

Claim. The set Λ(x) consists of exactly one point λx, where

Λ(x) :=
⋂
ε>0

⋂
U∈U(x)

f(O(U, ε)).

Λ(x) 6= ∅ by the finite-intersection property of the compact sets f(O(U, ε)), U ∈ U(x),
ε > 0. Suppose by contradiction that λ1, λ2 ∈ Λ(x) and λ1 6= λ2. Consider the open
sets Oi :=

⋃
O(U, ε, y), i = 1, 2, where the union is taken over all triples (U, ε, y) with

U ∈ U(x), ε < |λ1 − λ2|/4 and y ∈ U \ disc(f) such that |f(y)− λi| < ε. By construction
we have x ∈ O1 ∩O2 and f(O2) ∩ f(O2) = ∅. Hence x is a g.j.d. of f , contradiction.

Claim. fr : X → R,

fr(x) =

{
f(x) for x /∈ disc(f),

λx for x ∈ disc(f),
is continuous.

It is immediate to check that disc(fr) ⊆ disc(f). Suppose for contradiction that there
exists x ∈ disc(fr) ⊆ disc(f). Then an inspection of the argument above shows that x
would be a g.j.d. for f .

Note that for f : X → R meeting the requirements of Proposition 5.1.6 we have

‖fr‖∞ = sup
x∈X
|fr(x)| = sup

x∈X\disc

|fr(x)| = sup
x∈X\disc(f)

|f(x)| ≤ sup
x∈X
|f(x)| = ‖f‖∞.
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Thus the mapping f 7→ fr is continuous with respect to the topology of uniform conver-
gence on its domain of definition, i.e. on Rµ(X) \ J(X) ⊆ B(X).

Corollary 5.1.7. Let X be compact and µ a finite complete regular Borel measure with
supp(µ) = X. For f ∈ Rµ(X) the following assertions are equivalent:

(i) There exists g ∈ C(X) such that f and g coincide on a co-meager set of full µ-
measure.

(ii) f has no g.j.d.

Proof. (i)⇒(ii): Suppose f has a g.j.d. at x ∈ X. Pick open sets O1 and O2 according
to the definition of a g.j.d. at x. Next, pick nets {x(i)

ν }ν∈Ni , where (Ni,≤) are directed
sets, such that

x(i)
ν ∈ Oi ∩ [f = g], lim

ν∈Ni
= x, i = 1, 2.

This gives the desired contradiction

f(O1) 3 lim
ν∈N1

f(x(1)
ν ) = lim

ν∈N1
g(x(1)

ν ) = lim
ν∈N2

g(x(2)
ν ) = lim

ν∈N2
f(x(2)

ν ) ∈ f(O2).

(ii)⇒(i): The statement follows from Proposition 5.1.6 and Lemma 5.1.4.

5.2. Hartman functions that are weakly almost periodic. Recall the notion of
weak almost periodicity from Sections 2.7 and 4.2.

Theorem 4. Let G be a topological group and f ∈ H(G)∩W(G) a weakly almost periodic
Hartman function. Let (ι, C) be a group compactification on which f can be realized by
F ∈ RµC (C). Then F : C → C has no g.j.d.

Proof. Assume, for contradiction, that f ∈ H(G) ∩W(G) can be realized on the group
compactification (ι, C) by F ∈ RµC (C), where F has a g.j.d. at x0 ∈ C. Pick O1, O2 ⊆ C
as in the definition of a g.j.d. at x0.

Pick a net (gν)ν∈N in G, where (N ,≤) is a directed set, in such a way that ι(gν) ∈ O1

and limν∈N ι(gν) = x0. We can take (gν)ν∈N to be a universal net, i.e. for every A ⊆ G,
(gν)ν∈N stays eventually in A or G \A. Furthermore, we define

ϕN : f̃ 7→ lim
ν∈N

f̃(gν) (= lim
ν∈N

δgν (f̃)),

where δgν denotes the evaluation functional at the point gν . By universality of (gν)ν∈N ,
ϕN is well-defined and a bounded linear functional on B(G). Since x0 ∈ O2, for every
neighborhood V ⊆ C of e, the neutral element of the group C, we can find a neighborhood
U ⊆ C of x0 ∈ C and a g = gU,V ∈ G such that ι(gU,V ) ∈ V and ι(gU,V ) · U ⊆ O2. All
such pairs (U, V ) form a directed setM′ equipped with the order (U1, V1) ≤ (U2, V2) :⇔
U1 ⊇ U2 and V1 ⊇ V2. The net (gµ′)µ′∈M′ has the property that for every µ′ ∈ M′ the
net (ι(gνgµ′))ν∈N stays eventually in O2.

Pick a directed set (M,�) such that (gµ)µ∈M is a universal refinement of the net
(gµ′)µ′∈M′ . Then limµ∈M ι(gµ) = e ∈ C. As f is weakly almost periodic, the closure of
the left-translation orbit

OL(f) = (Lgf : g ∈ G)
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is weakly compact in B(G). This implies that there exists f0 ∈ B(G) in the weak closure
of OL(f) such that weak-limµ∈M Lgµf = f0. Consider the evaluation functionals δgν ∈
B(G)∗:

δgν (f0) = f0(gν) = lim
µ∈M

Lgµf(gν) = lim
µ∈M

f(gµgν) = lim
µ∈M

F (ι(gµgν)).

As limµ∈M ι(gµ) = e ∈ C for fixed ν ∈ N the net (ι(gµgν))µ∈M stays in O1 eventually.
Hence δgν (f0) ∈ F (O1) and thus ϕN (f0) = limν∈N f0(gν) ∈ F (O1). Let us now compute
the value of the functional ϕN at f0 directly:

ϕN (f0) = lim
µ∈M

ϕN (Lgµf) = lim
µ∈M

lim
ν∈N

Lgµf(gν) = lim
µ∈M

lim
ν∈N

f(gµgν) = lim
µ∈M

lim
ν∈N

F (ι(gµgν)).

Since ι(gµgν) = ι(gµ)ι(gν) ∈ O2 eventually, this yields ϕN (f0) ∈ F (O1) ∩ F (O1), a
contradiction.

Remark 5.2.1. The proof of Theorem 4 employs the same argument (but regarding nets
instead of sequences) that may be used to establish the easy direction of Grothendieck’s
Double Limit Theorem 3.6.5.

Corollary 5.2.2. Let G be an infinite LCA group. Then there exists a Hartman function
which is not weakly almost periodic. In particular, H(G) 6=W(G).

Proof. Let (ι, C) be any infinite metrizable compactification of G. (This can be obtained
by taking pairwise distinct characters χn, n ∈ N, and ι : g 7→ (χn(g))n∈N, C := ι(G)
≤ TN.) It suffices to find two disjoint open µC-continuity sets O1 and O2 in C with
a common boundary point x ∈ ∂O1 ∩ ∂O2. Then x is a g.j.d. for F = 1O1 and, by
Theorem 4, f = F ◦ ι ∈ H(G) \W(G).

Let d : C × C → [0, 1) be a bounded metric which generates the topology of C. We
use the fact that for every x ∈ C there are open balls B(r, x) := {y ∈ C : d(x, y) < r}
with center x and arbitrarily small radius r > 0 which are µC-continuity sets (see
[26, Example 1.3], or an argument similar to the proof of our Proposition 4.4.6).

Construction of O1, O2: Pick any x ∈ C. We define two sequences of disjoint open µC-
continuity sets (O(1)

j )∞j=0 and (O(2)
j )∞j=0. Let O(1)

0 and O(2)
0 be any two disjoint open balls

which are µC-continuity sets, separated from x and have µC-measure smaller than 1/2. We
proceed by induction: Suppose we have already defined O(1)

0 , . . . , O
(1)
n and O(2)

0 , . . . , O
(2)
n

such that

µ
( n⋃
j=0

O
(i)
j

)
<

1
2

(
1− 1

2n

)
and 0 < dist

( n⋃
j=0

O
(i)
j , x

)
<

1
2n
, i = 1, 2.

Let
r < min{dist(O(i)

j , x) : j = 0, . . . , n and i = 1, 2}

and pick distinct x1, x2 ∈ B(r, x) and ρ < min{r/2, 1/2n+1} such that O(i)
n+1 := B(ρ, xi),

i = 1, 2, are µC-continuity sets of µC-measure less than 1/2n+1. Choosing Oi :=⋃∞
j=0O

(i)
j , i = 1, 2, we obtain two disjoint open sets O1, O2 ⊆ C with the required

properties.

The converse problem, namely to find weakly almost periodic functions that are not
Hartman measurable appears to be harder. We content ourselves with the special case
G = Z. The key ingredient for our example are ergodic sequences. These sequences
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were extensively studied by Rosenblatt and Wierdl [36]. Also in the context of Hartman
measurability ergodic sequences were already mentioned in [45].

Example 5.2.3 (Ergodic sequences). A sequence nk of nonnegative integers is called
ergodic if for every measure preserving system (X,T, µ) with ergodic transformation
T : X → X and every µ-integrable f ,

lim
N→∞

1
N

N−1∑
k=0

f ◦ Tnk(x) =
∫
X

f dµ

for µ-almost every x ∈ X. Birkhoff’s ergodic theorem (cf. [55]) states that nk = k is an
ergodic sequence. It is known ([45, Theorem 11] and the examples therein) that there
are other ergodic sequences, such as (k log k)k∈N, which cannot be Hartman measurable.
On the other hand, 0-1 sequences with the property that the length between consecutive
1s tends to infinity while the length of consecutive 0s stays bounded are weakly almost
periodic [5, Theorem 4.2]. Thus E ⊆ W(Z) \ H(Z), where E is the set of all ergodic
sequences on Z.

Problem 5.2.4. Construct f ∈ W(G) \ H(G) on more general LCA, or even arbitrary
topological groups.

5.3. Hartman functions without generalized jumps. Theorem 4 motivates us to
further investigate Hartman functions having no g.j.d. First we show that the property
of having a g.j.d. does not depend on the particular compactification.

Proposition 5.3.1. Let G be a topological group and f ∈ H(G) a Hartman function.
Let F1 ∈ Rµ1(C1) and F2 ∈ Rµ2(C2) be realizations of f on the group compactifications
(ι1, C1) resp. (ι2, C2). If F1 has a g.j.d., then F2 also has a g.j.d.

Proof. Let x ∈ G be a g.j.d. for F1. Suppose (ι1, C1) ≥ (ι2, C2), i.e. that there is a
continuous surjection π : C1 → C2 with ι2 = π ◦ ι1 and f = F1 ◦ ι1 = F2 ◦ ι2. Thus F1

and F2 ◦ π coincide on ι1(G). (Note that the right triangle in the diagram

C1

G
ι2-

ι1
-

C2

π

?
F2- C

F
1

-

does not necessarily commute on the whole set C1.) Hence Lemma 5.1.4(i) implies that
F1 = F2 ◦ π µ1-a.e., and Lemma 5.1.4(ii) implies that F2 ◦ π has a g.j.d. at x ∈ C1

whenever F1 has a g.j.d. at x ∈ C1. Pick disjoint open sets O1, O2 ⊆ C1 according to the
definition of a g.j.d. for F2 ◦π at x ∈ C2, i.e. x ∈ O1∩O2 but F2 ◦ π(O1)∩F2 ◦ π(O2) = ∅.
Thus π(O1) and π(O2) are disjoint. Since π is an open mapping, π(O1) and π(O2) are
open sets with π(x) ∈ π(O1) ∩ π(O2). Thus π(x) is a g.j.d. for F2.

In the general case let π be the canonical projection bG→ C1 and define F b := F1 ◦π.
It is easy to check that if F1 has a g.j.d. at x ∈ C1, then F b has a g.j.d. at every point
of π−1[{x}]. Moreover, F b, F1 and F2 induce the same Hartman function f on G. Now
apply the first part of this proof to the two functions F b and F2.



60 5. Classes of Hartman functions

This result shows that being realized by a function with a g.j.d. is an intrinsic property
of a Hartman function and does not depend on the particular realization. In virtue of
this result we can consider the set of all Hartman functions such that one (and hence all)
realizations lack a g.j.d.

Definition 5.3.2. Let G be a topological group. Let

Hc(G) := {f ∈ H(G) : ∀(ι, C) f = F ◦ ι with F ∈ RµC (C)

implies that F has no g.j.d.}
= {f ∈ H(G) : ∃(ι, C) f = F ◦ ι with some F ∈ RµC (C)

without any g.j.d.}.

In the next section we will see that Hc(G) enjoys nice algebraic and topological
properties.

5.4. Hartman functions with small support. Similar to the situation of g.j.d.s,
for different realizations of a Hartman function also the property of vanishing outside a
meager null set does not depend on the special choice of the realization.

Proposition 5.4.1. Let G be a topological group and f ∈ H(G) a Hartman function.
Let F1 ∈ Rµ1(C1) and F2 ∈ Rµ2(C2) be realizations of f on the group compactifications
(ι1, C1) resp. (ι2, C2). If [F1 6= 0] is a meager µ1-null set, then [F2 6= 0] is a meager
µ2-null set.

Proof.

(i) First consider the case where (ι1, C1) ≤ (ι2, C2) via π : C2 → C1. By assumption
[F1 6= 0] is a meager µ1-null set. Use Lemma 5.1.4(i) to see that [F2 = F1 ◦ π] is a
co-meager set of full µ2-measure. Thus π−1[[F1 6= 0]]4 [F2 6= 0] is a meager µ2-null
set. This implies

µ2([F2 6= 0]) = µ2(π−1[[F1 6= 0]]) = µ1([F1 6= 0]) = 0.

Next we show that [F2 6= 0] is meager. Indeed, π : C2 → C1 is open, closed, continuous
and surjective. Thus one easily verifies that preimages of meager sets are meager, in
particular if [F1 6= 0] is meager in C1, then π−1[[F1 6= 0]] is meager in C2. Since
π−1[[F1 6= 0]] and [F2 6= 0] differ at most on a meager µ2-null set, [F2 6= 0] is meager,
proving the claim.

(ii) Suppose (ι1, C1) ≥ (ι2, C2). We use again the fact that π : C1 → C2 is an open and
continuous surjection of compact spaces to conclude that π[[F1 6= 0]] is meager in C2

whenever [F1 6= 0] is meager in C1. The rest of the proof is analogous to the first
case.

In the general case the property of vanishing outside a meager null-set transfers first
by (i) from (ι1, C1) to (ιb, bG) and then by (ii) from (ιb, bC) to (ι2, C2).

We will consider the set of those Hartman functions all realizations of which vanish
outside a meager null set.
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Definition 5.4.2. Let G be a topological group. Let

H0(G) := {f ∈ H(G) : ∀(ι, C) f = F ◦ ι with F ∈ RµC (C)

implies that [F 6= 0] is a meager µC-null set}
= {f ∈ H(G) : ∃(ι, C) f = F ◦ ι with some F ∈ RµC (C)

such that [F 6= 0] is a meager µC-null set}.

Proposition 5.4.3. Let G be a topological group. Then H0(G) and Hc(G) are translation
invariant C∗-subalgebras of B(G). Furthermore, Hc(G) contains all constant functions.

Proof. By their definition it is clear that H0(G) and Hc(G) are subalgebras of B(G),
invariant under translations, and that Hc(G) contains all constants. It remains to prove
that H0(G) and Hc(G) are closed in the topology of uniform convergence.

Let R0(bG) := {f ∈ Rµb(bG) : [f 6= 0] is a meager µb-null set}. Note that R0(bG) is
a closed subalgebra of Rµ(bG) (as a countable union of meager null sets is again a meager
null set). Since ι∗b : Rµb(bG)→ B(G) is a continuous homomorphism of C∗-algebras and
ι∗b(R0(bG)) = H0(G) (Definition 5.4.2), H0(G) is closed ([8, Theorem I.5.5]).

Now, J(bG), the set of all bounded functions on bG having a g.j.d., is open in the
topology of uniform convergence (Proposition 5.1.3). Thus C(bG)⊕R0(bG), the set of all
bounded functions on bG without a g.j.d. (Corollary 5.1.7), is closed (Proposition 5.1.3).
SinceHc(G) = ι∗b(C(bG)⊕R0(bG)) by [8, Theorem I.5.5], it follows thatHc(G) is closed.

The last part of this section is devoted to the relations of the algebras H0, Hc and AP .
Note that AP (G) ∩ H0(G) = {0}. This is due to the fact that f ∈ H0(G) implies
m(|f |) = 0, which is impossible for a nonzero almost periodic function.

Lemma 5.4.4. Let G be a topological group. Then H0(G) ⊆ Hc(G).

Proof. It suffices to show that for every F ∈ RµC (C) on a group compactification (ι, C)
such that F ◦ ι ∈ H0(G) there are no two distinct open sets O1, O2 ⊆ C with F (O1) ∩
F (O2) = ∅. As [F 6= 0] is a µC-null set (Proposition 5.4.1) the set [F = 0] is dense in C,
i.e. 0 ∈ F (O1) ∩ F (O2).

Proposition 5.4.5. Let G be a topological group. For every f ∈ Hc(G) there exists a
unique almost periodic function fa ∈ AP (G) and a unique function f0 ∈ H0(G) such that
f := fa + f0. Furthermore, if f ≥ 0, then fa ≥ 0.

Proof. Let F be a realization of f on a group compactification (ι, C). Using Proposi-
tion 5.1.6 we can decompose F = F r + (F − F r), the first summand being continuous
and the second one having support on a meager µC-null set.

Existence: Let fa := F ◦ ι ∈ AP (G) and f0 := (F −F r) ◦ ι ∈ H0(G). By construction
f = fa + f0.

Uniqueness: Suppose f = f
(1)
a + f

(1)
0 = f

(2)
a + f

(2)
0 with f

(1)
a , f

(2)
a ∈ AP (G) and

f
(1)
0 , f

(2)
0 ∈ H0(G). This implies f (1)

a − f (2)
a = f

(1)
0 − f (2)

0 ∈ AP (G) ∩ H0(G) = {0}, i.e.
f

(1)
a = f

(2)
a and f

(1)
0 = f

(2)
0 .

Positivity: Let f ≥ 0. We claim that F ≥ 0 outside disc(F ). To see this, let x ∈ C be
a point of continuity for F and suppose for contradiction that F (x) < 0. Pick an open
neighborhood V of x such that F (y) < 0 for any y ∈ V . As ι(G) is dense in C there
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exists an element ι(g) ∈ V with F (ι(g)) = f(g) ≥ 0, a contradiction. F and F r coincide
on the dense set C \ disc(F ). By continuity of F r we have F r ≥ 0, implying fa ≥ 0.

An immediate consequence is:

Theorem 5. Let G be a topological group. Then Hc(G) = AP (G)⊕H0(G). Furthermore,
the mapping P : Hc → AP (G) defined via f 7→ fa, where f = fa+f0 is the decomposition
from Proposition 5.4.5, is a bounded positive projection with ‖P‖ = 1 and m(Pf) = m(f)
for the unique invariant mean m on H(G).

Recall from Example 4.1.3 that a topological group G is called minimally almost
periodic (map) if AP (G) consists only of the constant functions. G is called maximally
almost periodic (MAP) if AP (G) separates the points of G (cf. Proposition 4.1.2). Every
LCA group is maximally almost periodic.

Corollary 5.4.6. Let G be a topological group. The following assertions are equivalent:

(i) Hc(G) = H0(G),
(ii) G is minimally almost periodic.

Proof. Both (i) and (ii) are equivalent to bG = {0}.

Problem 5.4.7. For which topological groups is the inclusion Hc(G) ⊇ H(G) ∩ W(G)
strict? Construct f ∈ Hc(G) \ (H(G) ∩W(G)).

Lemma 5.4.8. Let G be a noncompact topological group and let (ιb, bG) be the Bohr
compactification of G.

(i) If G is MAP then µb(ιb(K)) = 0 for every σ-compact K ⊆ G.
(ii) If G is an LCA group and ιb(G) is µC-measurable then µb(ιb(G)) = 0.

Proof. (i) First suppose that K is compact. We inductively construct a sequence (gi)∞i=1 ⊆
G such that giK ∩ gjK = ∅ for i 6= j: Suppose that (giK)ni=1 is a family of pairwise
disjoint sets; we prove that there exists gn+1 ∈ G such that (giK)n+1

i=1 is also a family of
pairwise disjoint sets. Suppose by contradiction that for every g ∈ G there is a j such
that gjK ∩ gK 6= ∅. Then g ∈ gjKK

−1. So G =
⋃n
j=1 gjKK

−1 would be compact, a
contradiction.

Since G is MAP, ιb is one-one. The sets (ιb(giK))∞i=1 form an infinite sequence of
pairwise disjoint translates of the compact (and thus measurable) set ιb(K) ⊆ bG. If
µb(ιb(K)) > 0 then

1 = µb(bG) ≥
∞∑
i=1

µb(ιb(giK)) =
∞∑
i=1

µb(ιb(K)) =∞,

a contradiction. Consequently, µb(ιb(K)) = 0. If K is σ-compact the assertion follows
from the σ-additivity of µb.

(ii) Follows from the fact that ιb(G) has zero outer µb-measure (see [14, 53]).

If we replace in Lemma 5.4.8 the Bohr compactification by an arbitrary compactifi-
cation (ι, C) the measurability condition on the set ι(G) becomes crucial.
Example 5.4.9. Consider the compact group T = R/Z and any fixed irrational α ∈ T.
By Zorn’s Lemma there is a maximal subgroup G of T with α /∈ G. The subgroup G
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equipped with the discrete topology is an LCA group. Let ι : G → T be the inclusion
mapping and C = T. Then (ι, C) is a group compactification of G, distinct from the Bohr
compactification. Let µC be the Haar measure on C. Assume, for contradiction, that G
is a µC-measurable null set in T. Consider the measure preserving mappings ϕk : T→ T,
x 7→ kx, k ∈ Z. Then all sets ϕ−1

k [α + G] are measurable µC-null sets. Pick any x ∈ T.
If x /∈ G then, by the maximality property of G, α = kx + g for some k ∈ Z \ {0} and
g ∈ G. This implies ϕk(x) ∈ α+G, i.e. x ∈ ϕ−1

k [α+G]. We conclude that

T = G ∪
⋃

k∈Z\{0}

ϕ−1
k [α+G]

is a countable union of µC-null sets, hence 1 = µC(C) = 0, a contradiction.

Let us denote by F0(G) the set of all bounded (not necessarily continuous or even
measurable) complex-valued functions f : G → C vanishing at infinity, i.e. f ∈ F0(G) if
for every ε > 0 there is a compact set K ⊆ G with |f(x)| < ε for all x ∈ G \K. As usual,
C0(G) denotes the set of all continuous f ∈ F0(G).

Theorem 6. Let G be a MAP group. Then C0(G) ⊆ H(G). If G is not compact then
even F0(G) ⊆ H0(G).

Proof. In the first step we show F0(G) ⊆ H(G). If G is compact there is nothing to prove.
Suppose G is not compact. Let f ∈ F0(G) and define F : bG→ C by

F (x) :=

{
f(g) if x = ιb(g), g ∈ G,
0 else.

Then f = F ◦ ιb. It suffices to consider f such that 0 ≤ f ≤ 1. For every ε > 0 there
exists a compact set Kε ⊆ G such that f(x) < ε for x ∈ G \ Kε. By Lemma 5.4.8, we
have µb(A) = 0, where A = ιb(Kε). Regularity of the Haar measure implies that we can
find an open set O ⊃ A such that µb(O) < ε. Let h be an Urysohn function for A and
bG \O, i.e. h : bG→ [0, 1] is continuous with h = 1 on A and h = 0 on bG \O. Consider
the continuous function gε := h+ ε1bG. Since 0 ≤ F ≤ gε and∫

bG

gε dµb ≤ µb([h > 0]) + ε ≤ 2ε,

Proposition 2.3.3 implies F ∈ Rµ(bG). Hence f is a Hartman function. It remains to
show that [F 6= 0] is a meager µb-null set. For each n ∈ N the set [f ≥ 1/n] is compact.
Hence ιb([f ≥ 1/n]) = [F ≥ 1/n] is a compact µb-null set and therefore nowhere dense.
Thus [F 6= 0] =

⋃∞
n=1[|F | ≥ 1/n] is a meager µb-null set and f ∈ H0(G).

Corollary 5.4.10. Hartman functions f ∈ H(G) need not be measurable with respect
to the Haar measure on G.

Proof. As a counterexample take G = R with the Lebesgue measure and any set A ⊂ [0, 1]
which is not Lebesgue measurable. Then f = 1A is a Hartman function by Theorem 6
but not Lebesgue measurable.

As a further consequence of Theorem 6 we get the following supplement to Corol-
lary 5.2.2.
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Corollary 5.4.11. Let G be a nondiscrete MAP group. Then H0(G) \ W(G) 6= ∅. In
particular, the inclusion C0(G) ⊂ H0(G) is strict.

Proof. Let f := 1{0}. Then f ∈ H0(G) (trivially for compact G, otherwise by Theorem 6).
Since f is not continuous f /∈ W(G). (Recall that every weakly almost periodic f has a
representation f = F ◦ ιw with F : wG → C continuous on the weakly almost periodic
compactification (ιw, wG) and thus is continuous.)

The following example shows that also for the integers the space C0(Z) of functions
vanishing at infinity is a proper subspace of H0(Z).

Example 5.4.12. Let T = {tn : n ∈ N} be a lacunary set of positive integers, i.e.
t1 < t2 < · · · with lim supn→∞ tn/tn+1 = ε < 1. Then 1T ∈ H0(Z) \ C0(Z).

Proof. By [45, Theorem 9] for each n ∈ N there exists an n-dimensional compactification
(ιn, Cn) and a compact µCn -continuity set Kn ⊆ Cn with µn(Kn) ≤ 4nεn such that
ι−1
n [Kn] ⊇ T . Furthermore, we can arrange (ιn, Cn) ≤ (ιn+1, Cn+1) and π−1

n+1,n[Kn]
⊇ Kn+1, where πn+1,n : Cn+1 → Cn is the canonical projection, i.e. ιn = πn+1,n ◦ ιn+1.
Let (ι, C) :=

∨∞
n=1(ιn, Cn) and let πn : C → Cn be the canonical projection onto Cn.

Thus K :=
⋂∞
n=1 π

−1
n [Kn] is a compact µC-null set (hence a µC-continuity set) with

ι−1[K] ⊇ T . This shows 1T ∈ H0(Z). Since T ⊆ Z is infinite, we have 1T /∈ C0(Z).

5.5. Hartman functions on Z. For locally compact groups G it is very easy to see that
C0(G) ⊆ W(G). A much harder problem is to find functions inW(G)\ (AP (G)⊕C0(G))
(see for instance [42]).

Topological groups with W(G) = AP (G) ⊕ C0(G) are called minimally w.a.p. A
famous example, due to M. Megrelishvili, is H+[0, 1], the group of all orientation preserv-
ing self-homeomorphisms of the closed unit interval [0, 1] endowed with the compact-open
topology (see [30]). For minimally w.a.p. groups our Theorem 6 implies W(G) ⊆ H(G).
However, it is known that noncompact LCA groups are never minimally w.a.p. (see [7]).

Problem 5.5.1. Find a nontrivial topological group G (necessarily not minimally w.a.p.)
such that W(G) ⊆ H(G).

Throughout the rest of this section all results are stated for the case G = Z. A quick
way to obtain f ∈ (W ∩H0) \ (AP ⊕ C0) is through the following result.

Proposition 5.5.2. Let (tn)∞n=1 ⊆ Z be a lacunary sequence of positive integers, i.e.

lim sup
n→∞

tn
tn+1

= ε < 1.

Let T := {tn : n ∈ N} ⊆ Z. Then 1T ∈ (W ∩H0) \ (AP ⊕ C0).

Proof. According to our Example 5.4.12, f = 1T is a member ofH0. Since T is a lacunary
set, [5, Theorem 4.2] implies f ∈ W. Furthermore, lim infk→±∞ = 1 implies f /∈ C0 and
f /∈ AP . Suppose for contradiction that f = fa + f0 where fa ∈ AP and f0 ∈ C0. Then

0 = dens(T ) = m(f) = m(fa) +m(f0)

implies m(fa) = 0. As fa(k) ≥ 0 for all but finitely many k, this implies fa = 0,
a contradiction.
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The main objective of this section is to illustrate a further method to construct func-
tions f ∈ (W ∩H0) \ (AP ⊕ C0).

5.5.1. Fourier–Stieltjes transformation. Let us recall some facts about the Fourier
transformation of measures on LCA groups. Let G be an LCA group. We denote byM(G)
the set of all finite complex Borel measures on G. Recall that M(G) can be regarded as
the dual C0(G)∗ of the Banach space C0(G). The canonical pairing C0(G)×C0(G)∗ → C
is given by

〈f, µ〉 :=
∫
G

f(x) dµ(x).

Also recall that we convolute two measures µ, ν ∈M(G) according to the formula

〈f, µ ∗ ν〉 =
∫
G×G

f(x+ y) d(µ⊗ ν)(x, y).

The Fourier–Stieltjes transform µ 7→ µ̂ assigns to a measure µ ∈M(G) the uniformly
continuous function

µ̂(χ) :=
∫
G

χ(x) dµ(x)

defined on the dual group Ĝ. The map µ 7→ µ̂ is a continuous homomorphism of the
convolution algebra (M(G), ∗) into the function algebra (UCB(Ĝ), ·) of uniformly con-
tinuous functions on Ĝ. The set {µ̂ : µ ∈ M(G)} of all Fourier–Stieltjes transforms is
called the Fourier–Stieltjes algebra and denoted by B(Ĝ). It is well known (see [5, 39])
that for noncompact LCA groups G the inclusions

AP (G) ⊂ B(G) ⊂ W(G)

hold and are strict.

Proposition 5.5.3. Let G be a locally compact group. The following assertions hold:

(i) If µ is discrete, then µ̂ is almost periodic.
(ii) If µ is absolutely continuous with respect to the Haar measure on G, then µ̂ ∈

C0(Ĝ) ⊆ W0(Ĝ) (for G = T this is the Riemann–Lebesgue Lemma).
(iii) mĜ(µ̂) = µ({0G}) for the unique invariant mean mĜ on Ĝ. In particular, µ̂ has zero

mean value whenever µ is atomless.

Proof. See [39, Section 1.3].

Recall that an LCA group, by Pontryagin’s duality theorem, is algebraically and
topologically isomorphic to its bi-dual.

Lemma 5.5.4. Let G be a discrete LCA group and (νn)∞n=1 ⊆M(Ĝ) a bounded sequence
of discrete measures. Then the following assertions are equivalent:

(i) The sequence (ν̂n)∞n=1⊆AP (G) converges pointwise to a bounded function f : G→C.
(ii) The sequence (νn)∞n=1 of discrete measures converges weak-∗ to a measure µ ∈M(Ĝ).

In this case f = µ̂, the Fourier–Stieltjes transform of the measure µ.
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Proof. (i)⇒(ii): Let fn := ν̂n. By weak-∗-compactness of the unit ball in C0(Ĝ)∗ =M(Ĝ)
we can find a weak-∗-limit point µ of the set {νn : n ≥ 0}. Due to compactness of Ĝ,
for every x ∈ G the map µ 7→

∫
Ĝ
χ(x) dµ(χ) is a weak-∗-continuous functional defined

on M(Ĝ). Thus for every x ∈ G and ε > 0 there exist infinitely many nk, k ∈ N,
(depending of course on x) such that

|µ̂(x)− fnk(x)| =
∣∣∣∣ ∫
Ĝ

χ(x) dµ(χ)−
∫
Ĝ

χ(x) dνnk(χ)
∣∣∣∣ < ε.

Since fn(x)→ f(x) pointwise, we obtain

|µ̂(x)− f(x)| ≤ |µ̂(x)− fnk(x)|+ |fnk(x)− f(x)| < 2ε.

Thus limn→∞ fn(x) = µ̂(x). Let µ̃ be another weak-∗-limit point of the set {νn : n ∈ N}.
On a compact space, weak-∗-convergence of measures implies pointwise convergence of
their Fourier–Stieltjes transforms. Thus ˆ̃µ and µ̂ coincide. Hence µ = weak-∗- limn→∞ νn
= µ̃.

(ii)⇒(i): By compactness of Ĝ, for every x∈G the mapping µ 7→ µ̂(x) =
∫
Ĝ
χ(x) dµ(χ)

is a weak-∗-continuous functional. Thus fn := ν̂n converges pointwise.

5.5.2. Example. In the following we will investigate the function

f(k) =
∞∏
j=1

cos2
(

2π
k

3j

)
defined on the group G = Z of integers, and we will prove Theorem 7 below. For its
formulation we use the singular measure µ3 concentrated on the ternary Cantor (middle-
third) set in the natural way. To be more precise: Let λ be the Lebesgue measure on [0, 1).
Consider the λ-almost everywhere uniquely defined mapping ϕ : [0, 1)→ [0, 1) with

ϕ :
∞∑
i=1

ai
2i
7→

∞∑
i=1

2ai
3i
,

ai ∈ {0, 1}, and the canonical inclusion ι : [0, 1) → T = R/Z, x 7→ x + Z. Then µ3 =
(ι ◦ ϕ) ◦ λ (notation as in Proposition 2.4.5).

Theorem 7. Let f : Z→ [0, 1] be given by

f(k) =
∞∏
j=1

cos2
(

2π
k

3j

)
.

Then the following statements hold:

(i) f ∈ (H0 ∩W) \ (AP ⊕ C0).
(ii) mZ(f) = 0 for mZ the unique invariant mean on H(Z).
(iii) f can be realized by a Riemann integrable function on the 3-adic compactifica-

tion Z(3)
.

(iv) f is the Fourier–Stieltjes transform of the singular measure µ3 corresponding to the
ternary Cantor set canonically embedded into T.
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Proof. Everything will follow from Lemmas 5.5.5, 5.5.7 and 5.5.8.

We have to fix some notation and then prove the auxiliary statements. We will
construct a function on Z using discrete measures on Ẑ = T. Note that T is alge-
braically and topologically isomorphic to the interval [0, 1) equipped with addition mod-
ulo 1.

For α ∈ [0, 1) let us denote by δχα ∈ M(Ẑ) the probability measure concentrated on
the character χα : k 7→ exp (2πikα). We define recursively discrete probability measures
νn ∈M(Z) by ν0 := δχ1/2 and

νn := νn−1 ∗ 1
2 (δχ−1/3n + δχ1/3n ).

Note that νn → µ3 in the weak-∗-topology of M(Z). Using the fact that (νn ∗ νn−1)̂ =
ν̂nν̂n−1 and δ̂χα(k) = χα(k) = exp (2πikα) one easily computes ν̂n(k) =

∏n
j=1 cos

(
2π k

3j

)
.

Lemma 5.5.5. Let

f̃n := ν̂n(k) =
n∏
j=1

cos
(

2π
k

3j

)
.

Then f̃n converges pointwise to µ̂3, the Fourier–Stieltjes transform of the singular measure
µ3 concentrated on the ternary Cantor set. In particular, limn→∞ f̃n is weakly almost
periodic and has zero mean value.

Proof. Each f̃n is a product of finitely many periodic factors with rational periods,
so f̃n is periodic. We show that the functions f̃n converge pointwise. Observe that
limj→∞ cos(2πk/3j) = 1 for fixed k ∈ N. All terms of this sequence are nonnegative
provided j ≥ log3(2k) =: j(k). Thus (f̃j(k)+n(k)/f̃j(k)(k))∞n=1 is a decreasing sequence of
nonnegative real numbers, hence its limit exists. By Lemma 5.5.4 we know that

f̃(k) := lim
n→∞

f̃n(k) =
∞∏
j=1

cos
(

2π
k

3j

)
is the Fourier–Stieltjes transform of the measure µ = µ3 ∈M(Z). Since µ3 has no atoms,
Proposition 5.5.3 implies that f̃ = µ̂3 ∈ W(Z) and that mZ(f̃) = 0 for the unique
invariant mean mZ on W(Z).

The same considerations apply to the discrete measures νn ∗ νn, the nonnegative
periodic functions

fn(k) := f̃2
n(k) =

n∏
j=1

cos2
(

2π
k

3j

)
and the limit f = f̃2 = (µ3∗µ3)̂ , which is weakly almost periodic with zero mean value.

Lemma 5.5.6. The periodic functions fn : Z→ [0, 1] defined via

fn(k) := f̃2
n(k) =

n∏
j=1

cos2
(

2π
k

3j

)



68 5. Classes of Hartman functions

have the mean value mZ(fn) = 1/2n, where mZ is the unique invariant mean on
AP (Z).

Proof. By Proposition 5.5.3 it suffices to compute (νn∗νn)({0}). We leave the elementary
calculation to the reader.

Lemma 5.5.7. Let f = limn→∞ fn be as above. Then f /∈ AP ⊕ C0.

Proof. f̃ satisfies the functional equation f̃(3k) = f̃(k), k ∈ Z. This implies

f̃(3k) = f̃(0) = 1.

Thus both f̃ , f /∈ C0. As f ≥ 0 but mZ(f) = 0 we have f /∈ AP by Corollary 3.6.12.
Suppose there exists a representation f = fa + f0 ≥ 0 with nontrivial fa ∈ AP and

f0 ∈ C0. Furthermore, let

fa = max{fa, 0}︸ ︷︷ ︸
:=f+

a ≥0

+ min{fa, 0}︸ ︷︷ ︸
:=f−a ≤0

.

Note that f+
a , f

−
a ∈ AP as AP is a lattice. mZ(fa) = mZ(f) = 0 implies mZ(f+

a ) =
−mZ(f−a ). As f−a is a nonpositive almost periodic function, mZ(f−a ) < 0. Thus there
exists ε > 0 such that for all N ∈ N,

inf
|k|≥N

fa(k) = inf
|k|≥N

f−a (k) ≤ −ε < 0.

Note that f−a (k0) 6= 0 implies f+
a (k0) = 0. Let N0 be such that |f0(k)| < ε/2 for |k| ≥ N0.

Thus there exists k0 ≥ N0 such that

f(k0) = fa(k0) + f0(k0) = f−a (k0) + f0(k0) ≤ −ε+ ε/2 = −ε/2 < 0.

This contradicts f ≥ 0.

Consider the compact group of 3-adic integers Z(3)
realized as projective limit of the

projective system of cyclic groups Cn := Z/3nZ and mappings πn (reducing k mod 3n+1

to k mod 3n):

Z(3)

{0} �
π0

Z/3Z �
π1

�

κn−1

. . . �
πn−1

Z/3nZ �
πn

� κn

............

The projective limit Z(3)
:= lim← Cn of this system can be identified with a certain closed

subgroup of the compact group
∏∞
n=1 Cn. Regarding Cn as the set {0, 1/3n, . . . , 1−1/3n}

with addition modulo 1, one easily checks that for each integer k ∈ Z the sequence
ι(k) := (k/3n)∞n=1 defines an element of the projective limit Z(3)

. The mapping ι : Z →
Z(3)

is a (continuous) homomorphism. Hence (ι,Z(3)
) is a group compactification of Z,

the so-called 3-adic compactification. Note that each (Cn, ιn) is a group compactification
of Z, where ιn is reduction modulo 3n. Furthermore, (Cn, ιn) ≤ (Cn+1, ιn+1) via πn and
(Cn, ιn) ≤ (ι,Z(3)

) via κn for each n ∈ N. By construction every 3n-periodic function
f : Z→ C can be realized by a continuous function F : Cn → C.
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Lemma 5.5.8. Let f = limn→∞ fn be as above. Then f ∈ H0 and f can be realized in
the 3-adic integers.

Proof. Since every 3n-periodic function can be realized by a continuous function on Cn,
we can in particular realize fn :=

∏n
j=1 cos2(2πk/3j). Consequently, there exists a unique

continuous function Fn on the 3-adic integers Z(3)
such that fn = Fn ◦ ι.

Since for x∈ ι(Z) the sequence of (Fn(x))∞n=1 is decreasing (note that 0≤ cos2(2πk/3j)
≤ 1), (Fn(x))∞n=1 is decreasing for every x ∈ Z(3)

by continuity of Fn. In particular, the
limit F (x) := limn→∞ Fn(x) exists and F ◦ ι = f . We show that F is Riemann integrable
on Z(3)

: For each n ∈ N we have 0 ≤ F ≤ Fn. Lemma 5.5.6 and uniqueness of the
invariant mean mZ on AP yield∫

Z(3)
Fn dλ = mZ(fn) =

1
2n

for the normalized Haar measure λ on Z(3)
. Thus Proposition 2.3.3 implies that F is

Riemann integrable on Z(3)
.

Finally, suppose F has a g.j.d. Then Theorem 4 implies f /∈ W, contradicting Lem-
ma 5.5.5. Thus f ∈ Hc. By Proposition 5.1.6 we can find unique functions fa ∈ AP and
f0 ∈ H0 such that f = fa + f0. As f ≥ 0 we have fa ≥ 0. mZ(fa) = mZ(f) = 0 implies
fa = 0. So, indeed f = f0 ∈ H0.

Problem 5.5.9. Construct functions f1 ∈ B \ H and f2 ∈ H \ B.

Problem 5.5.10. How are B and W ∩ H related? Is there a reasonable condition on
functions in B that implies Hartman measurability?

6. Summary

The following diagram summarizes some of our results concerning the space H = H(G)
of Hartman functions on a topological group G. Recall the following function spaces:

AC — almost convergent functions (Definition 3.1.4)
AP — almost periodic functions (Definition 3.6.4)
W — weakly almost periodic functions (Definition 3.6.4)
B — Fourier–Stieltjes algebra (Section 5.5.1)
H — Hartman functions (Definition 4.1.1)
Hw — weak Hartman functions (Definition 4.2.7)
Hc — Hartman functions realized without g.j.d. (Definition 5.3.2)
H0 — Hartman functions realized by functions supported

on a meager null set (Definition 5.4.2)
C0 — continuous functions vanishing at infinity (p. 63)

Inclusions indicated by | are proper (at least for certain groups G, e.g. for G = Z).
For spaces connected by : we did not prove strict inclusions.
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AC •

Hw •

W +H•

.......

W • • H

W∩H •

B • •

................
Hc = AP ⊕H0

H0 • • AP ⊕ (B ∩H0)

B ∩H0•

.........................................
• AP ⊕ C0

C0 • • AP

{0} •

Fig. 1. Spaces of Hartman measurable functions
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