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Abstract

We prove sufficiency of conditions on pairs of measures µ and ν, defined respectively on the
interior and the boundary of a bounded Lipschitz domain Ω in d-dimensional Euclidean space,
which ensure that, if u is the solution of the Dirichlet problem.

∆u = 0 in Ω,

u|∂Ω = f,

with f belonging to a reasonable test class, then„Z
Ω

|∇u|q dµ
«1/q

≤
„Z

∂Ω

|f |p dν
«1/p

,

where 1 < p ≤ q < ∞ and q ≥ 2. Our sufficiency conditions resemble those found by Wheeden
and Wilson for the Dirichlet problem on Rd+1

+ . As in that case we attack the problem by means of
Littlewood–Paley theory. However, the lack of translation invariance forces us to use a general
result of Wilson, which must then be translated into the setting of homogeneous spaces. We
also consider what can be proved when a strictly elliptic divergence form operator replaces the
Laplacian.
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Introduction

We are interested in the following general question: To what extent is the interior smooth-
ness of the solution of a PDE controlled by the size of its boundary values? To be more
specific, suppose (for now) that Ω ⊂ Rd+1 is a nice domain, µ is a positive measure sup-
ported in Ω, and v is a non-negative measurable function defined on ∂Ω. If f : ∂Ω → R
is reasonable (say, a continuous function with compact support), we let u : Ω → R be
the solution of the classical Dirichlet problem with boundary values equal to f . (We are
implicitly assuming that Ω is nice enough to have this make sense!) Let p and q be real
numbers lying strictly between 1 and infinity.

When is it the case that(∫
Ω

|∇u|q dµ
)1/q

≤
(∫

∂Ω

|f |p v ds
)1/p

holds for all such f? Here ds denotes surface measure on ∂Ω, but we could easily replace
it by some other measure—as indeed we will (see below).

For “classical” domains—half-spaces and disks—this problem has been studied exten-
sively. In the case where Ω = Rd+1

+ and v ≡ 1, complete characterizations of the right µ’s
have been given for all 0 < p, q <∞ (with f ’s Lp norm being replaced by a Hardy space
Hp norm when 0 < p ≤ 1). These results can be found in [Lu1], [Lu2], [Sh1], [Sh2], [Ve],
and [Vi].

In [WhWi], Wheeden and Wilson continued this line of research in their study of
weighted norm inequalities of the form(∫

Rd+1
+

|∇u|q dµ
)1/q

≤
(∫

Rd
|f |pv dx

)1/p

. (0.1)

Here u is the Poisson extension of f , which is assumed to belong to some natural test
class, v is a weight (i.e., a non-negative function in L1

loc(Rd)), and µ is a positive Borel
measure on Rd+1

+ . They proved sufficient conditions, depending on p and q, on µ and v

which ensured that (0.1) would hold for all “reasonable” f , for 1 < p ≤ q <∞ and q ≥ 2.
Their sufficient conditions, which we will give presently, were quantitative statements of
the fact that (0.1) should hold if µ does not put too much mass near places where v is
small, taking into account the interactions between p, q, and the rates of decay of the
convolutions kernels that “generate” the components of ∇u.

In this paper, we take the first steps in generalizing these results to the setting of
bounded Lipschitz domains. As part of this investigation we also demonstrate three dif-
ferent paths to almost-orthogonality. This is accomplished in Sections 2.2, 3.1, and 4. Our
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6 C. Sweezy and J. M. Wilson

fundamental Littlewood–Paley type inequalities, Theorems 1.1 and 2.1, depend on certain
functions having an “almost-orthogonality” property. Fortunately, almost-orthogonality
is not rare. We give three proofs of this property, for appropriate sets of functions, under
three significantly different sets of hypotheses. In particular the first, most abstract proof,
Theorem 2.2 below, treats functions defined on a general homogeneous space [CoWeis].
The proof of this property for a general doubling measure is one of the major new re-
sults of this paper. The proof is accomplished by means of the intrinsic square function.
This function, the ISF, was introduced by J. M. Wilson in [Wi2] & [Wi3]. The ISF plays
a role analogous to the Hardy–Littlewood maximal function. It dominates many classi-
cal ”square functions”, in the same way that the Hardy–Littlewood maximal function
dominates many convolution operators, but it is not essentially larger (or harder to esti-
mate) than any one of them. The other two proofs of almost-orthogonality are tailored
to functions defined on the boundary of a Lipschitz domain.

Our overall approach will parallel that of [WhWi], and our results will have a similar
form. It is appropriate that we review the main results from [WhWi], along with a little
of their development.

We need to recall some standard definitions. If Q ⊂ Rd is a cube with sides parallel
to the coordinate axes, and with side length `(Q), we set

T (Q) ≡ {(x, y) ∈ Rd+1
+ : x ∈ Q, `(Q/2) ≤ y < `(Q)},

which people commonly visualize as the “top half” of the so-called Carleson box Q̂ ≡
Q× (0, `(Q)). We let xQ denote the center of Q. If v is a weight and 1 < p <∞, we set
σ ≡ v1−p′ , where p′ is p’s dual exponent. It is important to note that σ gets big where v
gets small.

By looking at dyadic analogues of (0.1), one can easily come up with a plausible first
approximation to [WhWi]’s sufficient condition; namely, that

µ(T (Q))1/qσ(Q)1/p′

`(Q)d+1

should be bounded by a constant independent of Q. The trouble with this condition, of
course, is that it does not deal with the “tails” of the kernels; also, for technical reasons,
the weight σ is not quite what one wants.

Let η > p′/2 and let w be any weight such that∫
Q

σ(x) logη(e+ σ(x)/σQ) dx ≤
∫
Q

w(x) dx

for all Q. (Such weights usually exist: let w = cMkσ, where Mk denotes a k-fold applica-
tion of the Hardy–Littlewood maximal operator, with k ∼ η, and c is an appropriate pos-
itive constant.) In [WhWi] it is shown that there exist a positive constant c = c(p, q, d, η)
and an exponent M = M(p, q, d) such that, if

µ(T (Q))1/q

(∫
Rd

w(x)
(1 + |x− xQ|/`(Q))M

dx

)1/p′

≤ c`(Q)d+1 (0.2)

for all cubes Q, then (0.1) holds for all “reasonable” f (say, f ∈ L∞ with bounded
support).
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The analogue of (0.1) we consider in the present paper is(∫
Ω

|∇u|q dµ
)1/q

≤
(∫

∂Ω

|f |pv dω
)1/p

, (0.3)

where Ω is a bounded Lipschitz domain in Rd, u is the solution of the Dirichlet problem
with boundary data f , and ω is harmonic measure for some fixed point X0 ∈ Ω. We
assume that µ is a positive Borel measure defined on Ω and v ∈ L1(∂Ω, dω) is non-
negative.

For technical reasons, we will also be assuming that µ is supported near the boundary
of Ω, in the “band” Ωδ ≡ {x ∈ Ω : d(x, ∂Ω) ≤ δ}. Thus, we will actually be seeking
sufficient conditions on µ and v such that, for some δ > 0,(∫

Ωδ

|∇u|q dµ
)1/q

≤
(∫

∂Ω

|f |p v dω
)1/p

(0.4)

for all f in our test class. In this paper we define a Lipschitz domain as a bounded domain
in Rd+1 whose boundary can be described as a finite union of regions that are the rotation
and/or translation of a Lipschitz graph in Rd. The interior of the domain may not be
covered by the top halves of the Carleson boxes that appear in the measure condition
in Theorem 3.1; therefore we state the weighted inequality for the region Ωδ, although
it is valid over the entire domain Ω by a slight extension of the measure condition as
explained in Section 3.

We will prove sufficient conditions on v and µ (depending on p, q, Ω, and X0) which
ensure that, for some δ > 0, (0.4) holds for all f ∈ Lp(∂Ω, dω). As in [WhWi], our
sufficient conditions are valid for all p’s and q’s in the range 1 < p ≤ q <∞, with q ≥ 2.
Unfortunately, our conditions also come with an extra hypothesis on v: we require that
the measure v1−p′dω belong to the Muckenhoupt A∞ class relative to the measure dω
(in symbols, v1−p′dω ∈ A∞(ω)). The precise (and standard) definition of this relation is
given at the beginning of Section 2. For now it is probably enough for the reader to know
that we are requiring v1−p′dω to be absolutely continuous with respect to dω in a way
that is uniform under changes of scale.

What is the right translation of (0.2) to Lipschitz domains? We see that (0.2) seems
to have several “moving parts”. On one side we have a term involving µ(T (Q)) and one
that is an integral of a weight against a “bump function” centered around Q (both raised
to appropriate powers). On the other side we have the Lebesgue measure of Q, raised to
a certain power.

When we work on a Lipschitz domain, the cube Q will be replaced by the projection
of a certain “genuine” cube onto ∂Ω; we shall denote such boundary cubes by Qb. The
set T (Q) (actually T (Qb)) will be a subset of Ω for which d(T (Qb), Qb) is comparable to
`(Q). A fast and reasonably accurate way to visualize T (Qb) is to think of a ball inside
Ω whose radius is comparable to its distance to ∂Ω (indeed, for our purposes, such a
definition would work fine). This radius is essentially `(Q). For ease of reading, we will
denote this latter quantity by `(Qb). It will always be obvious from the context that `(Qb)
is comparable to the diameter of Qb, with comparability constants that only depend on
d and M .
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Corresponding to each boundary cube Qb will be its dilates λQb (roughly, the cube
concentric with Qb, but with side length λ times as big). Since Ω is assumed to be
bounded, these dilates will not keep getting bigger indefinitely as λ increases. Instead,
we will set λQb ≡ ∂Ω when λ`(Qb) exceeds some positive r0 that depends on Ω but is
otherwise unspecified. For j = 0, 1, 2, . . . , we will define R0(Qb) = Qb for j = 0 and
Rj(Qb) = 2jQb \ 2j−1Qb for j ≥ 1. So, R0(Qb) is just Qb and Rj(Qb) (j ≥ 1) is (approx-
imately) an annulus concentric with Qb and having inner and outer radii comparable to
2j`(Qb). For our purposes there is nothing wrong with thinking of Rj(Qb) (j ≥ 1) as those
x’s in ∂Ω whose distance to xQ (the approximate center of Qb) lies between two fixed
positive multiples of 2j`(Qb). Our convention on λQb has the happy consequence that
all the 2jQb’s are the same—and therefore all the Rj(Qb)’s are empty—for j sufficiently
large.

The Lipschitz analogue to the bump function (1 + |x− xQ|/`(Q))−M is[
ω(Qb)

∞∑
j=0

2−jε

ω(2jQb)
χRj(Qb)(x)

]p′/2
, (0.5)

where ε > 0 is a constant depending on the domain Ω. To see that this generalization
is the natural one, think of (0.5) as a function of x ∈ Rd and replace ω with Lebesgue
measure. Set Qb ≡ Q. Then (0.5) is bounded above and below by positive constants times

[`(Q)d(1 + |x− xQ|/`(Q))−ε(`(Q) + |x− xQ|)−d]p
′/2; (0.5M)

because, when x ∈ Rj(Q), (1 + |x− xQ|/`(Q)) ∼ 2j and (`(Q) + |x− xQ|)d ∼ |2jQ|. But
(0.5M) simplifies to

[(1 + |x− xQ|/`(Q))−(d+ε)]p
′/2 = (1 + |x− xQ|/`(Q))−(p′/2)(d+ε)

≡ (1 + |x− xQ|/`(Q))−M ,

where we have set M ≡ (p′/2)(d+ ε). It is important to note that, for any x, the sum in
(0.5) contains essentially only one term.

Finally there is the right-hand term `(Q)d+1. We will replace this with `(Qb)ω(Qb).
With the precise definitions still to follow, the rephrased version of (0.2) is

µ(T (Qb))1/q

(∫
∂Ω

[
ω(Qb)

∞∑
j=0

2−jε

ω(2jQb)
χRj(Qb)(x)

]p′/2
σ(x) dω(x)

)1/p′

≤ c`(Qb)ω(Qb),

and our main theorem (Theorem 3.1), which we prove in Section 3, is

Theorem 3.1. Let Ω ⊂ Rd+1 be a bounded Lipschitz domain, and let ω be harmonic
measure on ∂Ω for a fixed point X0 ∈ Ω. Suppose that υ ∈ L1(∂Ω, dω) is a non-negative
function and µ is a positive Borel measure on Ω. Define σ ≡ υ1−p′ , and suppose that
σdω ∈ A∞(ω) on ∂Ω. If 1 < p ≤ q < ∞ and q ≥ 2, there is an ε = ε(Ω) > 0, and there
is a positive constant C such that(∫

Ωδ

|∇u(t, y)|q dµ(t, y)
)1/q

≤
(∫

∂Ω

|f |pυ dω
)1/p

will hold for all f ∈ Lp(∂Ω, dω), for some positive δ, if, for all sufficiently small boundary
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cubes Qb ∈ G,

µ(T (Qb))1/q

(∫
∂Ω

[
ω(Qb)

∞∑
j=0

2−jε

ω(2jQb)
χRj(Qb)(s)

]p′/2
σ(s) dω(s)

)1/p′

≤ C`(Qb)ω(Qb),

where C depends only on p, q, Ω and the choice of the point X0.

We will prove Theorem 3.1 by means of a general Littlewood–Paley inequality, valid on
arbitrary doubling measure spaces. This inequality is a natural generalization of the main
result from [Wi1]. This method works also to prove a slightly weaker form of Theorem
3.1 in the case where u is not assumed to be f ’s harmonic extension, but to satisfy a
strictly elliptic equation in divergence form. In this case, as one might expect, ordinary
harmonic measure is replaced by the corresponding elliptic measure.

The chief problem arising in the elliptic case is that the solution u is only guaranteed
to be Hölder continuous, and ∇u may not be defined pointwise. There are several ways
around this obstacle: we can replace ∇u by a discretized version of the original gradient,
or by a local Hölder coefficient. These two methods are presented in Section 4. Ironically,
it is by the discretization method that we will prove the sufficient condition for harmonic
measure.

The paper is organized as follows. In Section 1 we introduce the setting and back-
ground by stating and sketching the proof of a theorem for harmonic u on Rd+1

+ . In
Section 2 we prove a Littlewood–Paley inequality for a general doubling measure which
is valid on homogeneous spaces; we also prove, for a family of functions having the prop-
erties of geometric decay and minimal smoothness, that, if each member of the family
has mean value zero with respect to the doubling measure, then the family satisfies an
almost-orthogonality estimate. In Section 3 we review some facts about Lipschitz do-
mains and particularly about harmonic measure on Lipschitz domains; we then state the
precise form of Theorem 3.1 and its proof. In Section 4, the last section of the paper,
we prove two results for elliptic functions on Lipschitz domains. One result relates very
closely to the theorem for harmonic functions in Section 3, the other theorem is tailored
to the setting that is natural for elliptic functions.

1. Euclidean space

We motivate our work in Lipschitz domains by first considering a model case, that of
harmonic functions u defined on the upper half-space Rd+1

+ = Rd×(0,∞). We suppose we
are given a positive Borel measure µ, defined on Rd+1

+ , and a non-negative v ∈ L1
loc(Rd).

If f ∈ L1
loc(Rd) is such that |f |(1 + |x|)−d−1 ∈ L1(Rd), and Z = (x, y) ∈ Rd+1

+ , we set
u(Z) =

∫
Rd K(Z, s)f(s) ds, where K(Z, ·) is the usual Poisson kernel for the point Z.

Given exponents p and q (1 < p, q <∞), we seek sufficient conditions on µ and v which
ensure that (∫

Rd+1
+

|∇u(t, y)|q dµ(t, y)
)1/q

≤
(∫

Rd
|f |pv dx

)1/p

(1.1)
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holds for all of these f , where ∇u is the full gradient in t and y. For technical reasons,
we are at present able to obtain these conditions only when p ≤ q and q ≥ 2. Henceforth
we will always assume these extra restrictions on p and q.

The expression on the left side of (1.1) equals∫
Rd+1

+

|g(t, y)| |∇u(t, y)| dµ(t, y) (1.2)

for some g : Rd+1
+ → R such that ∫

|g|q
′
dµ = 1,

where q′ is q’s dual exponent. We can conveniently break (1.2) into infinitely many pieces.
For every Q ∈ D, the dyadic cubes in Rd, we set T (Q) = Q × [`(Q)/2, `(Q)) = {(t, y) :
t ∈ Q, `(Q)/2 ≤ y < `(Q)}, sometimes called the top half of the Carleson box Q̂ =
Q× (0, `(Q)). Since the T (Q)’s tile Rd+1

+ , we can rewrite (1.2) as∑
Q∈D

∫
T (Q)

|g(t, y)| |∇u(t, y)| dµ(t, y). (1.3)

Each integral in (1.3) can be replaced by a “discretized” term. Define T̃ (Q) = (1.1Q)×
[.45`(Q), 1.1`(Q)), where 1.1Q is concentric with Q but has side length 1.1 times as big.
Elementary estimates on the Poisson kernels for balls in Rd+1 show that

sup
(t,y)∈T (Q)

|∇u(t, y)| ≤ Cd`(Q)−1 sup
Z,Z′∈T̃ (Q)

|u(Z)− u(Z ′)|.

Therefore, for every Q, we can find ZQ and Z ′Q in T̃ (Q) such that∫
T (Q)

|g(t, y)| |∇u(t, y)| dµ(t, y) ≤ C`(Q)−1|u(ZQ)− u(Z ′Q)|
∫
T (Q)

|g(t, y)| dµ(t, y).

Thus sufficient conditions for (1.1) will follow from sufficient conditions for∑
Q∈D

`(Q)−1|u(ZQ)− u(Z ′Q)|
∫
T (Q)

|g(t, y)| dµ(t, y) ≤ C
(∫

Rd
|f |p v dx

)1/p

(1.4)

for a fixed constant C, holding for all g as we have described, and for all choices of ZQ
and Z ′Q in T̃ (Q). Clearly, it is enough to solve this problem under the hypothesis that∫

Rd |f |
p v dx ≤ 1. With this assumption, inequality (1.4) reduces to∑

Q∈D
`(Q)−1|u(ZQ)− u(Z ′Q)|

∫
T (Q)

|g(t, y)| dµ(t, y) ≤ C (1.5)

for all such g, f , and appropriate choices of ZQ and Z ′Q. Now, inequality (1.5) will hold
for a fixed C if and only if∑

Q∈F
`(Q)−1|u(ZQ)− u(Z ′Q)|

∫
T (Q)

|g(t, y)| dµ(t, y) ≤ C (1.6)

holds for the same C, where F is an arbitrary finite subset of D. This restriction to
finite families F serves the same purpose as only considering compactly-supported (but
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otherwise arbitrary) g’s: it ensures that all of our integrals make sense, that we can freely
exchange the order of summation and integration, etc. Each u(ZQ) is expressible as∫

Rd
K(ZQ, s)f(s) ds,

where K(ZQ, ·) is the Poisson kernel we saw earlier (and likewise for u(Z ′Q)). Therefore
a bound for the left-hand side of (1.6) will follow from the same bound for∫

Rd
f(s)

( ∑
Q∈F

`(Q)−1(K(ZQ, s)−K(Z ′Q, s))
∫
T (Q)

g(t, y) dµ(t, y)
)
ds, (1.7)

valid for all f such that
∫

Rd |f |
p v ds ≤ 1 and all g satisfying

∫
Rd+1

+
|g|q′ dµ = 1. (Note

that we have removed the absolute-value bars from g inside the integrals in (1.7).) By
Hölder’s inequality, with our normalization on f , (1.7) will have absolute value ≤ C if∫

Rd

∣∣∣∣ ∑
Q∈F

`(Q)−1(K(ZQ, s)−K(Z ′Q, s))
∫
T (Q)

g(t, y) dµ(t, y)
∣∣∣∣p′ v1−p′ ds ≤ C ′′. (1.8)

For the rest of this section we will focus our attention on (1.8). Notice the “dual
weight” v1−p′ . The weight will show up in various forms throughout our discussions.

We will handle the sum inside the big absolute-value bars via Littlewood–Paley theory.
We can do this because each summand

`(Q)−1(K(ZQ, s)−K(Z ′Q, s))
∫
T (Q)

g(t, y) dµ(t, y) (1.9)

can be written as λQb(Q)(s), where the λQ’s are real numbers and the b(Q)’s are functions
satisfying certain smoothness and decay conditions and possessing an additional property
called “almost-orthogonality”. We will say what our conditions on b(Q) are first. By
“reverse engineering” it will then be easy to get the right bounds for λQ.

We ask that the functions b(Q)(s) satisfy three conditions:

1) (Decay) For some ε > 0 (independent of Q) and all s ∈ Rd,

|b(Q)(s)| ≤ |Q|−1/2

(
1 +
|s− sQ|
`(Q)

)−d−ε
,

where sQ is Q’s center.
2) (Smoothness) For the same ε > 0, some α > 0 (independent of Q), and all s and s′

in Rd,

|b(Q)(s)− b(Q)(s′)|

≤
(
|s− s′|
`(Q)

)α
|Q|−1/2

((
1 +
|s− sQ|
`(Q)

)−d−ε
+
(

1 +
|s′ − sQ|
`(Q)

)−d−ε)
.

3) (Almost-orthogonality) For all finite linear sums
∑
γQb(Q),∫

Rd

∣∣∣∑ γQb(Q)(s)
∣∣∣2 ds ≤∑ |γQ|2.
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It is well known (see [FrJaWeis]) that, if 1) and 2) hold, then 3) will follow (modulo a
multiplicative constant) if the b(Q)’s also satisfy

∫
b(Q) = 0. In Section 2 we extend this

fact to the case of a doubling measure replacing Lebesgue measure.
Our estimates follow from familiar facts about K(Z, s).

Facts about K(Z, s).

1k) If Z ∈ T̃ (Q) then

|K(Z, s)| ≤ Cd|Q|−1

(
1 +
|s− sQ|
`(Q)

)−d−1

for any s ∈ Rd.
2k) If Z ∈ T̃ (Q) and s and s′ are in Rd then

|K(Z, s)−K(Z, s′)|

≤
(
|s− s′|
`(Q)

)
Cd|Q|−1

((
1 +
|s− sQ|
`(Q)

)−d−1

+
(

1 +
|s′ − sQ|
`(Q)

)−d−1)
.

3k)
∫

Rd K(Z, s) ds = 1.

Remark. The decay exponent in 2k) is actually −d− 2, but −d− 1 works for us and it
is, for the illustrative purposes of this section, perfectly adequate.

Property 3k) implies
∫

Rd b(Q) ds = 0. For the others, we observe that∣∣∣∣`(Q)−1(K(ZQ, s)−K(Z ′Q, s))
∫
T (Q)

g(t, y) dµ(t, y)
∣∣∣∣

≤ Cd`(Q)−1|Q|−1

(
1 +
|s− sQ|
`(Q)

)−d−1 ∫
T (Q)

|g(t, y)| dµ(t, y)

and

|(K(ZQ, s)−K(ZQ, s′))− (K(Z ′Q, s)−K(Z ′Q, s
′))|

×
∣∣∣∣`(Q)−1

∫
T (Q)

g(t, y) dµ(t, y)
∣∣∣∣

≤ Cd`(Q)−1|Q|−1

(
|s− s′|
`(Q)

)((
1 +
|s− sQ|
`(Q)

)−d−1

+
(

1 +
|s′ − sQ|
`(Q)

)−d−1)
×
∫
T (Q)

|g(t, y)| dµ(t, y),

from which it follows that we can set

λQ = Cd`(Q)−1|Q|−1/2

∫
T (Q)

|g(t, y)| dµ(t, y)

≤ Cd`(Q)−1|Q|−1/2

(∫
T (Q)

|g(t, y)|q
′
dµ(t, y)

)1/q′

µ(T (Q))1/q (1.10)

We will actually be taking λQ to be the second (potentially larger) quantity (1.10).
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We can write ∑
Q∈F

`(Q)−1(K(ZQ, s)−K(Z ′Q, s))
∫
T (Q)

g(t, y) dµ(t, y)

as a finite linear sum
∑
Q∈F λQb(Q)(s), where the b(Q)’s satisfy the decay, smoothness,

and almost-orthogonality conditions given above.
The following theorem gives us a way to control such sums.

Theorem 1.1. Suppose that 0 < r <∞, σ ∈ L1
loc(Rd) is a Muckenhoupt A∞ weight,

and the family {b(Q)}Q∈D satisfies the decay, smoothness and almost-orthogonality con-
ditions given above. If ρ > d, there is a constant C = C(r, ρ, d, σ, ε, α) such that, for all
finite linear sums f(s) =

∑
Q∈F⊂D λQb(Q)(s), indexed over finite families F of dyadic

cubes,∫
Rd

∣∣∣ ∑
Q∈F⊂D

λQb(Q)(s)
∣∣∣rσ(s) ds =

∫
Rd
|f(s)|rσ(s) ds

≤ C
∫

Rd

( ∑
Q∈F

λ2
Q

|Q|

(
1 +
|s− sQ|
l(Q)

)−2d−2ε+ρ)r/2
σ(s) ds = C

∫
Rd

(g∗(f))rσ ds.

Remark. Theorem 1.1 is essentially proved in [Wi1]. In that paper the smoothness
condition 2) is replaced by the hypothesis that b(Q) is C1 and that

|∇b(Q)(s)| ≤ |Q|−1/2`(Q)−1

(
1 +
|s− sQ|
`(Q)

)−d−ε
,

which implies our smoothness condition (modulo a constant) for α = 1. In the following
section we will prove Theorem 1.1 along with a generalization of the main theorem from
[Wi1]. For now the reader should concentrate on the application of Theorem 1.1 to the
case at hand.

We will apply Theorem 1.1 to our sum
∑
Q∈F λQb(Q)(s) when r = p′ and σ = the

“dual weight” v1−p′ from (1.8). Therefore, for the rest of this section, we will assume that
v1−p′ belongs to A∞. To make our “model case” discussion specific (and easier to follow),
we will set ρ = d+ 1.

Theorem 1.1 says that (1.8) will hold if∫
Rd

( ∑
Q∈F

|λQ|2

|Q|

(
1 +
|s− sQ|
`(Q)

)−d−1)p′/2
σ(s) ds ≤ C, (1.11)

because, in our model case, ε = 1 and we have put ρ = d + 1. We will now show what
conditions on µ and σ (hence, indirectly, on v) imply this. It is here that our special
restrictions on p and q will come into play.

We first treat the case where p ≥ 2. This implies p′ ≤ 2, which makes the left-hand
side of (1.11) less than or equal to∑

Q∈F

|λQ|p
′

|Q|p′/2

∫
Rd

(
1 +
|s− sQ|
`(Q)

)−(p′/2)(d+1)

σ(s) ds,
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which is less than or equal to a constant times

∑
Q∈F

`(Q)−p
′
|Q|−p

′
(∫

T (Q)

|g(t, y)|q
′
dµ(t, y)

)p′/q′
µ(T (Q))p

′/q

×
∫

Rd

(
1 +
|s− sQ|
`(Q)

)−(p′/2)(d+1)

σ(s) ds. (1.12)

Having p ≤ q forces q′/p′ ≤ 1, which implies

∑
Q∈F

(∫
T (Q)

|g(t, y)|q
′
dµ(t, y)

)p′/q′
≤
( ∑
Q∈F

∫
T (Q)

|g(t, y)|q
′
dµ(t, y)

)p′/q′
= 1,

by our normalization of g. Therefore (1.12) will be less than or equal to an absolute
constant if

`(Q)−p
′
|Q|−p

′
µ(T (Q))p

′/q

∫
Rd

(
1 +
|s− sQ|
`(Q)

)−(p′/2)(d+1)

σ ds ≤ C

for all Q ∈ D; and that will hold if

µ(T (Q))1/q

(∫
Rd

(
1 +
|s− sQ|
`(Q)

)−(p′/2)(d+1)

σ ds

)1/p′

≤ C`(Q)|Q| (1.13)

for all Q ∈ D.

Now we suppose p < 2 (but, as always, q is ≥ 2). Then p′/2 > 1 and q′/2 ≤ 1. Let
τ > 1 be the dual exponent to p′/2 and let h be a non-negative function in Lτ (σ) such
that

∫
hτσ ds = 1 and

∫
Rd

( ∑
Q∈F

|λQ|2

|Q|

(
1 +
|s− sQ|
`(Q)

)−d−1)p′/2
σ(s) ds

=
(∫

Rd

( ∑
Q∈F

|λQ|2

|Q|

(
1 +
|s− sQ|
`(Q)

)−d−1)
h(s)σ(s) ds

)p′/2

=
( ∑
Q∈F

|λQ|2

|Q|

∫
Rd

(
1 +
|s− sQ|
`(Q)

)−d−1

h(s)σ(s) ds
)p′/2

. (1.14)

Because of our normalization on h,∫
Rd

(
1 +
|s− sQ|
`(Q)

)−d−1

h(s)σ(s) ds ≤
(∫

Rd

(
1 +
|s− sQ|
`(Q)

)−(p′/2)(d+1)

σ(s) ds
)2/p′

.

Therefore (1.14) will be less than or equal to an absolute constant if

∑
Q∈F

|λQ|2

|Q|

(∫
Rd

(
1 +
|s− sQ|
`(Q)

)−(p′/2)(d+1)

σ(s) ds
)2/p′

≤ C. (1.15)
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When we plug (1.10), our bound for λQ, into (1.15), we see that (1.15) will follow if

∑
Q∈F

`(Q)−2|Q|−2

(∫
T (Q)

|g(t, y)|q
′
dµ(t, y)

)2/q′

µ(T (Q))2/q

×
(∫

Rd

(
1 +
|s− sQ|
`(Q)

)−(p′/2)(d+1)

σ(s) ds
)2/p′

≤ C.

Since 2/q′ ≥ 1,∑
Q∈F

(∫
T (Q)

|g(t, y)|q
′
dµ(t, y)

)2/q′

≤
( ∑
Q∈F

∫
T (Q)

|g(t, y)|q
′
dµ(t, y)

)2/q′

= 1,

because of g’s normalization. Therefore the bound we seek will hold if

`(Q)−2|Q|−2µ(T (Q))2/q

(∫
Rd

(
1 +
|s− sQ|
`(Q)

)−(p′/2)(d+1)

σ ds

)2/p′

≤ C

for all Q ∈ D. As in the preceding case, this will hold if (1.13) holds for all Q.

2. Littlewood–Paley theory on homogeneous spaces

2.1. The Littlewood–Paley inequality. In this section we continue to work only
on Rd. We begin by defining a few basic terms. Most of these are standard.

If Q is a cube in Rd, with sides parallel to the coordinate axes, and A ≥ 1, then
AQ denotes the concentric A-fold dilate of Q. We will have occasion to refer to certain
“annuli” around cubes Q. We set R0(Q) ≡ Q, and, if j ≥ 1, then Rj(Q) ≡ 2jQ \ 2j−1Q.

A positive measure ω on Rd is called doubling if there is a constant C such that, for
all cubes Q,

ω(2Q) ≤ C ′ω(Q).

In this section, ω will denote a fixed but arbitrary, non-trivial doubling measure on Rd.
A cube Q ⊂ Rd is called dyadic if it has the form

Q =
[
j1
2k
,
j1 + 1

2k

)
× · · · ×

[
jd
2k
,
jd + 1

2k

)
,

where k and j1, . . . , jd are integers. Such a cube is said to have a side length of 2−k,
which we denote by `(Q). We recall that, given any two dyadic cubes Q and Q′, either
Q ∩ Q′ = ∅ or one of them is contained in the other. We denote the family of dyadic
cubes by D.

A measure υ on Rd is said to be A∞ relative to ω (written υ ∈ A∞(ω)) if there are
positive constants a and b such that, for all cubes Q and measurable subsets E ⊂ Q,

υ(E)
υ(Q)

≤ a
(
ω(E)
ω(Q)

)b
. (2a.1)

It is an easy exercise to show that, since ω is doubling and non-trivial, ω(Q) > 0 for all Q.
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If the reader is worried by the possibility that υ(Q) = 0, he is free to rewrite (2a.1) as

υ(E) ≤ a
(
ω(E)
ω(Q)

)b
υ(Q), (2a.2)

since that is the form we will be using anyway.
These definitions have been standard. Our next one is something special.
We shall say that a family of functions, b(Q) : Rd → R, indexed over D, is a standard

family if it satisfies the following size, smoothness, and (weak) cancellation conditions.
The [positive] numbers α and β depend only on the family {b(Q)}Q.

1) (Size) If x ∈ Rj(Q), then

|b(Q)(x)| ≤
√
ω(Q)

2−jα

ω(2jQ)
;

or, more succinctly:

|b(Q)(x)| ≤
√
ω(Q)

∞∑
j=0

2−jα

ω(2jQ)
χRj(Q)(x).

2) (Smoothness) For any x and y in Rd,

|b(Q)(x)− b(Q)(y)| ≤
(
|x− y|
`(Q)

)β√
ω(Q)

∞∑
j=0

2−jα

ω(2jQ)
(χRj(Q)(x) + χRj(Q)(y)).

Note that, given the size condition, the smoothness condition is only meaningful when
|x− y| ≤ `(Q).

3) (Cancellation) For every finite linear combination
∑
Q γQb(Q),∫

Rd

∣∣∣∣∑
Q

γQb(Q)

∣∣∣∣2 dω ≤∑
Q

|γQ|2.

All of our results depend on the next theorem which is a rephrasing of Theorem 1.1.

Theorem 2.1. Let {b(Q)}Q∈D be a standard family of functions, and let υ ∈ A∞(ω). If
0 < p < ∞ and 0 < τ < 2α, there is a constant C = C(υ, ω, α, β, τ, p, d) such that, for
all finite linear sums f =

∑
Q∈F λQb(Q),∫

Rd
|f |p dυ ≤ C

∫
Rd

(g∗(f))p dυ,

where

g∗(f)(s) ≡
( ∑
Q∈F
|λQ|2

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(s)

])1/2

.

Remark. The proof will show that C’s dependence on υ is really a dependence on a and
b (in the definition of “υ ∈ A∞(ω)”). The dependence on ω is really a dependence on d

and on ω’s doubling constant C ′.

Remark. This generalizes the main theorem proved in [Wi1], and the proof given here
closely follows the earlier proof. The reader might want to refer to [Wi1] now and then
to understand what is going on.
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The chief virtue of Theorem 2.1 for our purposes is that it does not ask too much of
the functions b(Q), while yielding a fairly good Littlewood–Paley estimate. In particular,
we do not require the functions to decay especially fast, either in size or in their moduli of
Hölder continuity, and our cancellation condition is simply “almost-orthogonality”. In our
present application, the mild decay and smoothness conditions—and nothing better—
follow from classical estimates on kernel functions for the Laplacian (or even general
elliptic operators), while the almost-orthogonality is a consequence of Green’s Theorem
(or the argument in the proof of Theorem 4.2).

The key to our argument lies in defining the right maximal function. Let us assume
that we have a fixed finite linear combination f =

∑
Q λQb(Q). If I ∈ D, we define

S(I) ≡ {Q ∈ D : Q 6⊂ I}. It is useful to think of S(I) as the family of dyadic cubes that
“surround” I. If x ∈ I, we define

F (I, x) ≡
∑

Q :Q∈S(I)

λQb(Q)(x),

and we do not define F (I, x) for x /∈ I. If xI is the center of I, then we set F (I) ≡ F (I, xI).
The right maximal function for the Littlewood–Paley function g∗(f) turns out to be

F ∗(x) ≡ sup
I : x∈I

|F (I)|.

Corresponding to F ∗(x) is a “maximal square function” adapted to g∗(f). For x ∈ I,
we define

G(I, x) ≡
( ∑
Q∈S(I)

|λQ|2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(x)

])1/2

,

and we do not define G(I, x) for x /∈ I. We similarly define G(I) ≡ G(I, xI) and

G∗(x) ≡ sup
I:x∈I

G(I).

In order to prove Theorem 2.1, we shall prove seven fairly elementary lemmas, followed
by a difficult lemma, which is really the heart of the proof of Theorem 2.1. These lemmas
are directly analogous to, respectively, Lemmas 1–7 and the Main Lemma in [Wi1]. Our
more general formulation of the b(Q)’s requires us to surmount some non-trivial technical
obstacles.

Lemma 2.2. For ω-a.e. x, |f(x)| ≤ F ∗(x).

Proof. The inequality is obviously true Lebesgue almost everywhere. However, the only
exceptional points lie on the faces of dyadic cubes, and these have ω-measure 0, because
ω is doubling.

Lemma 2.3. There is a constant C such that G∗(x) ≤ Cg∗(f)(x) ω-almost everywhere.

Proof. Let I ∈ D and x ∈ I. We need to show that G(I) ≤ Cg∗(f)(x), for which it is
clearly sufficient to show that

(G(I))2 ≤ C
∑

Q :Q∈S(I)

|λQ|2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(x)

]
,
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where (recall the definition above)

(G(I))2 =
∑

Q :Q∈S(I)

|λQ|2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(xI)

]
.

Comparing the sums termwise, we see that our inequality amounts to having
∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(xI) ≤ C

∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(x)

for any x ∈ I and any Q ∈ S(I). Let us now consider two cases: `(Q) ≥ `(I) and
`(Q) < `(I). In the former case, if xI ∈ Rj(Q), then x must belong to Rj′(Q) for some
j′ ≤ j + C(d), and the result follows because ω(2j

′
Q) ≤ C ′′ω(2jQ). In the latter case,

observe that, if we let xQ denote the center of Q, then |x− xQ| ≤ C(d)|xI − xQ| (which
also holds in the former case, but is easier to see for small Q), and the same inequality
holds, for the same reason.

Lemma 2.4. Let 0 < η < 0.1. There is a C > 0 such that, if x ∈ I and d(x, ∂I) ≥ ηl(I),
then C−1G(I, x) ≤ G(I) ≤ CG(I, x).

Proof. The result depends on two simple facts. First: If x ∈ I and d(x, ∂I) ≥ η`(I),
then, for any Q ∈ S(I), x will belong to Rj(Q) and xI will belong to Rj′(Q) for some j
and j′ such that |j − j′| ≤ C(η, d). Second: For such j and j′, the ratio of ω(2jQ) and
ω(2j

′
Q) is bounded above and below by positive constants depending only on η, d, and

the doubling constant of ω. The inequality now follows by termwise comparison of the
two sums defining (G(I, x))2 and (G(I))2.

Lemma 2.5. Let 0 < η < 0.1. There is a C > 0 such that, if x ∈ I and d(x, ∂I) ≥ ηl(I),
then |F (I)− F (I, x)| ≤ CG(I).

Proof. Write

|F (I)− F (I, x)| =
∣∣∣∣ ∑
Q :Q∈S(I)

λQ(b(Q)(xI)− b(Q)(x))
∣∣∣∣

≤
∣∣∣∣ ∑
Q :Q∈S(I)
`(Q)≤`(I)

λQ(b(Q)(xI)− b(Q)(x))
∣∣∣∣

+
∣∣∣∣ ∑
Q :Q∈S(I)
`(Q)>`(I)

λQ(b(Q)(xI)− b(Q)(x))
∣∣∣∣ ≡ (I) + (II).

We will control (I) by using only the size condition 1). The sum (II) will be controlled
via the smoothness condition 2).

Handling (I). It is enough to bound∑
Q :Q∈S(I)
`(Q)≤`(I)

|λQ| |b(Q)(x)|,

uniformly for x ∈ I, d(x, ∂I) ≥ η`(I), since (I) is less than or equal to a sum of two such
terms.
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By the Cauchy–Schwarz inequality and our size estimate 1),

(I) ≤
( ∑
Q :Q∈S(I)
`(Q)≤`(I)

|λQ|2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(x)

])1/2

×
( ∑
Q :Q∈S(I)
`(Q)≤`(I)

ω(Q)
[ ∞∑
j=0

2−jτ

ω(2jQ)
χRj(Q)(x)

])1/2

= G(I, x)
( ∑
Q :Q∈S(I)
`(Q)≤`(I)

ω(Q)
[ ∞∑
j=0

2−jτ

ω(2jQ)
χRj(Q)(x)

])1/2

≤ CG(I)
( ∑
Q :Q∈S(I)
`(Q)≤`(I)

ω(Q)
[ ∞∑
j=0

2−jτ

ω(2jQ)
χRj(Q)(x)

])1/2

,

where the last line follows from Lemma 2.4. We need to show that the second factor in
the last line is bounded by an absolute constant.

Write Rd \ I =
⋃
l Il, where the Il’s are congruent copies of I (thus, {I} ∪ {Il}l tiles

Rd). We set

H(l) ≡
∑

Q :Q⊂Il

ω(Q)
[ ∞∑
j=0

2−jτ

ω(2jQ)
χRj(Q)(x)

]
.

For k = 0, 1, 2, . . . , let Sk denote the set of Il’s such that Il ∩ Rk(I) 6= ∅. These cubes
are at a distance of approximately 2k`(I) from x ∈ I. Indeed, there is a constant C,
independent of x, such that x ∈ Rk′(Il) for some k with |k − k′| ≤ C.

Let us temporarily fix Il ∈ Sk and consider Q ⊂ Il with `(Q) = 2−m`(I). If x ∈ I and
d(x, ∂I) ≥ η`(I), then x ∈ Rj(Q) for some j which is approximately equal to m+ k; i.e.,
there is C such that x ∈ Rj(Q) for |m+ k− j| ≤ C. This is simply another way of saying
that d(x,Q) is approximately 2m+k`(Q) = 2k`(I). Therefore, for such Il,

H(l) ≤ C
∞∑
m=0

∑
Q :Q⊂Il

`(Q)=2−m`(I)

ω(Q)
2−(m+k)τ

ω(2m+kQ)
.

Notice that, because of ω’s doubling property, all of the numbers ω(2m+kQ) are compa-
rable to ω(2kI), with comparability constants which only depend on d and ω’s doubling
constant. Therefore,

H(l) ≤ Cω(2kI)−1
∞∑
m=0

∑
Q :Q⊂Il

`(Q)=2−m`(I)

2−(m+k)τω(Q)

= C2−kτω(2kI)−1
∞∑
m=0

2−mτω(Il) ≤ C2−kτω(Il)ω(2kI)−1.
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If we now sum over the Il’s in a fixed Sk, we get∑
l : Il∈Sk

H(l) ≤ C2−kτω(2kI)−1
∑

l : Il∈Sk

ω(Il) ≤ C2−kτω(2kI)−1ω(2kI) = C2−kτ ,

where the second inequality follows from ω’s doubling property. Summing over all k yields∑
H(l) ≤ C, and term (I) has been bounded.

Handling (II). This one is easier:

(II) =
∣∣∣∣ ∑
Q :Q∈S(I)
`(Q)>`(I)

λQ(b(Q)(xI)− b(Q)(x))
∣∣∣∣

≤
∑

Q :Q∈S(I)
`(Q)>`(I)

|λQ|
(
|xI − x|
`(Q)

)β√
ω(Q)

∞∑
j=0

2−jα

ω(2jQ)
(χRj(Q)(xI) + χRj(Q)(x)).

Since we are considering cubes Q that are larger than I, if xI ∈ Rj(Q) and x ∈ I, then
x ∈ Rj′(Q) for some j′ such that |j − j′| ≤ C. Therefore,

(II) ≤ C
∑

Q :Q∈S(I)
`(Q)>`(I)

|λQ|
(
|xI − x|
`(Q)

)β√
ω(Q)

∞∑
j=0

2−jα

ω(2jQ)
χRj(Q)(xI).

Continuing, this is bounded by

C
∑

Q :Q∈S(I)
`(Q)>`(I)

|λQ|
(
`(I)
`(Q)

)β√
ω(Q)

∞∑
j=0

2−jα

ω(2jQ)
χRj(Q)(xI)

= C

∞∑
k=1

∑
Q : `(Q)=2k`(I)

|λQ|2−kβ
√
ω(Q)

∞∑
j=0

2−jα

ω(2jQ)
χRj(Q)(xI)

≤ CG(I)
( ∞∑
k=1

∑
Q : `(Q)=2k`(I)

2−2kβω(Q)
∞∑
j=0

2−jτ

ω(2jQ)
χRj(Q)(xI)

)1/2

,

where the last line follows from the Cauchy–Schwarz inequality.
We now need to show that the second factor is bounded by a constant.
We temporarily fix k and consider∑

Q : `(Q)=2k`(I)

ω(Q)
∞∑
j=0

2−jτ

ω(2jQ)
χRj(Q)(xI). (2.3)

If χRj(Q)(xI) 6= 0 then Q ⊂ 2k+j′I for some j′ such that |j − j′| ≤ C. Also, for such Q,
ω(2jQ) will be comparable to ω(2k+j′I), because ω is doubling. Therefore, for each j,∑

Q : `(Q)=2k`(I)
χRj(Q)(xI) 6=0

ω(Q)
2−jτ

ω(2jQ)
≤ C2−jτ .

Summing on j, we see that (2.3) is bounded by a constant. If we now multiply this by
2−2kβ and sum on k, we get our result. Lemma 2.5 is proved.
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If I is a dyadic cube, we define N(I) ≡ {I∗ ∈ D : I∗ ⊂ I, `(I∗) = `(I)/2}, the “next
generation” of cubes “begotten” by I.

Lemma 2.6. If I∗ ∈ N(I), then G(I) ≤ CG(I∗).

Proof. By Lemma 2.4, G(I) = G(I, xI) ≤ CG(I, xI∗). But G(I∗) = G(I∗, xI∗) ≥
G(I, xI∗).

Lemma 2.7. There is a positive constant C such that, for all I∗ ∈ N(I) and all x ∈ I,
G∗(x) ≥ CG(I∗).

Proof. If x ∈ I∗, there is nothing to prove. So, let x ∈ I \ I∗, and let L ⊂ I \ I∗ be
a dyadic cube such that x ∈ L and L is smaller than any of the cubes Q in the sum∑
λQb(Q) defining f . Then

G(L)2 =
∑

J : J∈S(L)

|λJ |2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jJ)
χRj(J)(xL)

]

≥
∑

J : J∈S(I∗)

|λJ |2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jJ)
χRj(J)(xL)

]
,

because the second sum excludes the J ’s contained in I∗. (Technically, the first sum
excludes the J ’s contained in L, but, because L is so small, these contribute nothing to
the sum.)

The lemma will be proved once we show that, for J ∈ S(I∗),
∞∑
j=0

2−j(2α−τ)

ω(2jJ)
χRj(J)(xL) ≥ C

∞∑
j=0

2−j(2α−τ)

ω(2jJ)
χRj(J)(xI∗).

But this follows from what are (by now) “the usual reasons”. Simply note that, if
J ∈ S(I∗), then |xL − xJ | ≤ C(d)|xI∗ − xJ |. Thus, if 2−j(2α−τ)

ω(2jJ) χRj(J)(xI∗) 6= 0, then
2−j
′(2α−τ)

ω(2j′J)
χRj′ (J)(xL) will also be non-zero for some j′ such that 2j

′ ≤ C2j . The doubling

property of ω ensures that ω(2j
′
J) ≤ Cω(2jJ), which finishes the proof of Lemma 2.7.

Lemma 2.8. There is a positive constant C such that, if I∗ ∈ N(I), it follows that
|F (I)− F (I∗)| ≤ CG(I∗).

Proof. We have

|F (I)− F (I∗)| = |F (I, xI)− F (I∗, xI∗)|
≤ |F (I, xI)− F (I, xI∗)|+ |F (I, xI∗)− F (I∗, xI∗)|.

The first difference is ≤ CG(I) ≤ G(I∗), by Lemmas 2.5 and 2.6. The second is less than
or equal to ∑

Q :Q⊂I
Q6⊂I∗

|λQ| |b(Q)(xI∗)|;

which, by the Cauchy–Schwarz inequality (see the proof of Lemma 2.5) is less than or
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equal to

G(I∗)
( ∑
Q :Q⊂I
Q6⊂I∗

ω(Q)
[ ∞∑
j=0

2−jτ

ω(2jQ)
χRj(Q)(xI∗)

])1/2

.

But the first part of the proof of Lemma 2.5 shows that the second factor is bounded by
a constant.

We are now ready to prove Lemma 2.9, from which Theorem 2.1 will follow as a
corollary.

Lemma 2.9. Let Q0 ∈ D be the dyadic unit cube, and let {b(Q)}Q∈D be a family of
functions satisfying 1), 2), and 3). Let f =

∑
Q λQb(Q) be a finite linear combination

such that λQ = 0 for all Q not contained in Q0. Then for each δ > 0, there is a γ > 0
such that

ω({x ∈ Q0 : F ∗(x) > 1, G∗(x) ≤ γ}) ≤ δω(Q0). (2.4)

Remark. If υ ∈ A∞(ω), then Lemma 2.9 immediately implies the same conclusion for
υ; i.e., for all δ > 0 there is a γ > 0 such that

υ({x ∈ Q0 : F ∗(x) > 1, G∗(x) ≤ γ}) ≤ δυ(Q0).

The corollary is what we will use to obtain Theorem 2.1.

Proof of Lemma 2.9. Let A > 1 be a large number, to be chosen presently. Let {Ik}k
be the family of maximal dyadic subcubes of Q0 having the property that, for some
I∗ ∈ N(Ik),

G(I∗) > Aγ.

By Lemma 2.7, if A is chosen large enough, the set {x ∈ Q0 : G∗(x) > γ} will contain⋃
k Ik. We henceforth assume that A has been chosen “large enough”. On the other hand,

notice that, if x /∈
⋃
k Ik, then G∗(x) ≤ Aγ: this will be important.

With {Ik}k now fixed, let {Jl}l be the maximal subcubes of Q0 such that, first, no Jl
is contained in any Ik, and second, |F (Jl)| > 1. Denote the union {Ik} ∪ {Jl} by P, and
let {Pi}i be the family of maximal cubes from P.

We claim that
{x ∈ Q0 : F ∗(x) > 1, G∗(x) ≤ γ} ⊂

⋃
i

Pi. (2.5)

To see this, suppose that x belongs to the left-hand side of (2.5). Since F ∗(x) > 1, x
must belong to some cube J such that |F (J)| > 1. If this cube J were contained in some
Ik, then we would have G∗(x) > γ, a contradiction. Therefore, x belongs to one of the
special cubes Jl. But

⋃
l Jl ⊂

⋃
i Pi.

Thus, our problem has now reduced to controlling the size of∑
i : |F (Pi)|>1

ω(Pi).

The reader may wonder why we throw the cubes Ik into P at all, since only the cubes
Jl are needed to cover {x ∈ Q0 : F ∗(x) > 1, G∗(x) ≤ γ}. The reason will soon become
apparent. But, essentially: we use the family {Ik}k to control the size of G∗(x) globally
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on Q0 (i.e., even at points where F ∗(x) ≤ 1). This is very much in the spirit of the proof
of the classical good-λ inequality for the dyadic square function.

Define F1 = {Q ⊂ Q0 : ∀i (Q 6⊂ Pi)} and F2 = {Q ⊂ Q0 : Q ⊂ Pi for some i}; and
set fi =

∑
Q∈Fi λQb(Q) for i = 1, 2. It is obvious that f = f1 + f2. Corresponding to f1

and f2, we define

Fi(I, x) =
∑

Q :Q∈S(I)
Q∈Fi

λQb(Q)(x), Fi(I) = Fi(I, xI), F ∗i (x) = sup
I : x∈I

|Fi(I)|,

Gi(I, x) =
( ∑
Q∈S(I)
Q∈Fi

|λQ|2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(x)

])1/2

,

Gi(I) = Gi(I, xI), G∗i (x) = sup
I : x∈I

Gi(I);

where, as before, we do not define Fi(I, x) or Gi(I, x) for x /∈ I.
Before going on, let us note—what is easy to see—that F (I, x) = F1(I, x) + F2(I, x)

and G(I, x) ≤ G1(I, x) +G2(I, x). It is also easy to see that each Gi(I, x) ≤ G(I, x).
For any cube Q, define C(Q) ≡ {x ∈ Q : |x − xQ| < .1`(Q)}. Because ω is doubling,

we have ω(Q) ≤ Cωω(C(Q)) for any Q, and so our problem reduces to bounding∑
i : |F (Pi)|>1

ω(C(Pi)).

Clearly,∑
i : |F (Pi)|>1

ω(C(Pi)) ≤
∑

i : |F1(Pi)|>1/2

ω(C(Pi)) +
∑

i : |F2(Pi)|>1/2

ω(C(Pi)) ≡ (I) + (II).

Let us consider (I) first. Each Pi satisfies G(Pi) ≤ Aγ. Therefore, if x ∈ C(Pi), we
have (by Lemma 2.5) |F (Pi) − F (Pi, x)| ≤ Cγ. If we take γ small enough, then this
difference will be less than 1/4, and having |F (Pi)| > 1/2 will force |F (Pi, x)| > 1/4 on
all of C(Pi). Let us assume that γ is so chosen. We get∑

i : |F1(Pi)|>1/2

ω(C(Pi)) ≤
∑
i

ω({x ∈ C(Pi) : |F (Pi, x)| > 1/4}).

It is this last sum which we will now control. Recall that to this point we have used the
decay and smoothness properties of the functions b(Q), but not their almost-orthogonality.
Now is the time to apply 3).

Our argument relies on a TRICK: If x ∈ Pi, then F1(Pi, x)= f1(x). This is true
because (see also page 41 in [Wi1])

F1(Pi, x) =
∑

Q :Q∈F1
Q6⊂Pi

λQb(Q)(x) =
∑

Q :Q∈F1

λQb(Q)(x) = f1(x),

where the second equality follows because having Q ∈ F1 automatically implies Q 6⊂ Pi.
Because of property 3), ∫

|f1|2 dω ≤
∑

Q :Q∈F1

|λQ|2.
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We rewrite and bound the second sum as∑
Q :Q∈F1

|λQ|2 =
∫ ( ∑

Q : x∈Q∈F1

|λQ|2

ω(Q)

)
dω.

We claim that ∑
Q : x∈Q∈F1

|λQ|2

ω(Q)
≤ Cγ2 ω-a.e.

Proof of claim. If x ∈ Pi, then∑
Q : x∈Q∈F1

|λQ|2

ω(Q)
=

∑
Q :Pi⊂Q∈F1

|λQ|2

ω(Q)
≤

∑
Q :Pi⊂Q∈F1

|λQ|2
∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(x)

≤ C(G(Pi))2 ≤ C(Aγ)2.

If x /∈
⋃
i Pi, then∑
Q : x∈Q∈F1

|λQ|2

ω(Q)
≤
∑
Q

|λQ|2
∞∑
j=0

2−j(2α−τ)

ω(2jQ)
χRj(Q)(x) ≤ (G∗(x))2 ≤ (Aγ)2,

as noted above.
Putting it all together, we get∫

|f1|2 dω ≤ Cγ2ω(Q0),

implying ω({x ∈ Q0 : |f1(x)| > 1/4}) ≤ Cγ2. Therefore,

(I) ≤ Cγ2ω(Q0) ≤ (δ/2)ω(Q0),

if γ is taken sufficiently small.
Now we look at (II). Reasoning precisely as we did for (I), we only need to control∑

i

ω({x ∈ C(Pi) : |F2(Pi, x)| > 1/4}).

We will handle this last sum via a pure brute-force argument, using only the size
condition 1). An estimate reminiscent of Carleson measures comes in at the end.

Let κ be a number greater than 1, and chosen so that, for any cube Q, ω(κQ \Q) <
(δ/4)ω(Q). Such a κ exists because ω is doubling. We define

D ≡
⋃
i

(κPi \ Pi).

We call this the “zone of death”. It consists of a union of thin bands (or shells) around
the cubes Pi, inside which we may encounter bad edge effects when estimating f2 and its
associated functionals.

By our choice of κ, ω(D) ≤ (δ/4)ω(Q0). Thus, it is sufficient to bound∑
i

ω({x ∈ C(Pi) \D : |F2(Pi, x)| > 1/4})

by Cδ, where C depends on ω’s doubling constant.
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Fix Pi. If x ∈ C(Pi) \D, then

|F2(Pi, x)| =
∣∣∣∣ ∑
j : j 6=i

∑
Q :Q⊂Pj

λQb(Q)(x)
∣∣∣∣

≤ G2(Pi, x)
( ∑
j : j 6=i

∑
Q :Q⊂Pj

ω(Q)
[ ∞∑
k=0

2−kτ

ω(2kQ)
χRk(Q)(x)

])1/2

≤ CG(Pi)
( ∑
j : j 6=i

∑
Q :Q⊂Pj

ω(Q)
[ ∞∑
k=0

2−kτ

ω(2kQ)
χRk(Q)(x)

])1/2

≤ Cγ
( ∑
j : j 6=i

∑
Q :Q⊂Pj

ω(Q)
[ ∞∑
k=0

2−kτ

ω(2kQ)
χRk(Q)(x)

])1/2

≡ CγHi(x).

We claim that

Hi(x) ≤ C
(∑

j

ω(Pj)
[ ∞∑
k=0

2−kτ

ω(2kPj)
χRk(Pj)(x)

])1/2

. (2.6)

Note that the right-hand side of (2.6) does not depend on i. Once we have (2.6), we will
obtain∑

i

∫
C(Pi)\D

|F2(Pi, x)|2 dω(x) ≤ Cγ2

∫ (∑
j

ω(Pj)
[ ∞∑
k=0

2−kτ

ω(2kPi)
χRk(Pi)(x)

])
dω(x)

≤ Cγ2
∑
j

ω(Pj)
∫ [ ∞∑

k=0

2−kτ

ω(2kPi)
χRk(Pi)(x)

]
dω(x)

≤ Cγ2
∑
j

ω(Pj) ≤ Cγ2ω(Q0),

and the bound for (II) will follow from Chebyshev’s inequality.
Let us now fix a j 6= i and consider the sum∑

Q :Q⊂Pj

ω(Q)
[ ∞∑
k=0

2−kτ

ω(2kQ)
χRk(Q)(x)

]
for x ∈ C(Pi) \D. We rewrite the sum as

∞∑
l=0

∑
Q :Q⊂Pj

`(Q)=2−l`(Pj)

ω(Q)
[ ∞∑
k=0

2−kτ

ω(2kQ)
χRk(Q)(x)

]
.

Now let us fix l. Let k′ be such that xPi ∈ Rk′(Pj). If Q ⊂ Pj , `(Q) = 2−l`(Pj), and
x ∈ C(Pi) \ D, then x ∈ Rk(Q) for some k such that |k′ + l − k| ≤ C, where C only
depends on the dimension d. Conversely, if x ∈ C(Pi) \ D and belongs to Rk(Q), then
x ∈ Rk̃(Pj) for some k̃ satisfying |k̃ + l − k| ≤ C ′. The reason for these inequalities is
that the distance between xQ and x is comparable to the distance between xPi and xPj ,
with comparability constants depending only on d and κ. For all such Q, the ω-measure
of 2kQ will be comparable to ω(2k−lPj), and thus comparable to ω(2k

′
Pj), because ω is
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doubling. Therefore, for each fixed l ≥ 0, and all x ∈ C(Pi) \D,

∑
Q :Q⊂Pj

`(Q)=2−l`(Pj)

ω(Q)
[ ∞∑
k=0

2−kτ

ω(2kQ)
χRk(Q)(x)

]

≤ C
∑

Q : `(Q)=2−l`(Pj)

ω(Q)
ω(2kQ)

k′+l+C∑
k′+l−C

2−kτχRk(Q)(x)

≤ C
[

2−k
′τ

ω(2k′Pj)

k′+C+C′∑
k̃=k′−C−C′

χRk̃(Pj)(x)
][

2−lτ
∑

Q :Q⊂Pj
`(Q)=2−l`(Pj)

ω(Q)
]

= C2−lτω(Pj)
[

2−k
′τ

ω(2k′Pj)

k′+C+C′∑
k̃=k′−C−C′

χRk̃(Pj)(x)
]

≤ C2−lτω(Pj)
∞∑
k̃=0

2−k
′τ

ω(2k′Pj)
χRk̃(Pj)(x).

This holds for every l ≥ 0. Summing over l we get∑
Q :Q⊂Pj

ω(Q)
[ ∞∑
k=0

2−kτ

ω(2kQ)
χRk(Q)(x)

]
≤ Cω(Pj)

∞∑
k̃=0

2−k
′τ

ω(2k′Pj)
χRk̃(Pj)(x).

When we sum this over j 6= i, we get (2.6). Lemma 2.9 is proved.

Proof of Theorem 2.1. Recall that f =
∑
λQb(Q) is a finite sum, from which it follows

that, for large x, |f(x)| ≤ Cg∗(f)(x). This is because, if we take a single term in the sum
defining f , we get

|λQb(Q)| ≤ |λQ|
√
ω(Q) 2−kα

ω(2kQ)

when x ∈ Rk(Q). However, for x ∈ Rk(Q),

g∗(f)(x) ≥ |λQ|
2−k(α−τ/2)√
ω(2kQ)

≥ |λQ|
2−kα√
ω(2kQ)

.

After some canceling on both sides, our desired inequality

|λQb(Q)| ≤ g∗(f)

reduces to
√
ω(Q) ≤ 2τk/2

√
ω(2kQ) which is true for all k ≥ 0. (We note that the C

in our inequality |f(x)| ≤ Cg∗(f)(x) depends strongly on f , and on the fact that f is a
finite sum.)

Therefore, without loss of generality, we may assume that g∗(f) belongs to Lp(dv),
and thus that G∗ does too (because G∗ ≤ cg∗(f)). This said, the Main Theorem will
follow from a good-λ inequality: For every ε > 0 there is a γ > 0 so that, for all λ > 0,

υ({x : F ∗(x) > 2λ, G∗(x) ≤ γλ}) ≤ ευ({x : F ∗(x) > λ}).

Let {Iλi } be the maximal dyadic cubes such that |F (Iλi )| > λ. It is enough to prove that,
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for all ε > 0, there is a γ so that, for all i and all λ,

υ({x ∈ Iλi : F ∗(x) > 2λ, G∗(x) ≤ γλ}) ≤ ευ(Iλi ). (2.7)

Since υ ∈ A∞(ω), it is enough to prove (2.7) with the measure υ replaced by ω; and that
is what we shall do.

From this point the proof is essentially identical to the (very short) proof of Theorem
A in [Wi1] (on page 45). Fix Iλi . We can take G(Iλi ) ≤ γλ, or there is nothing to prove. Let
I be the unique dyadic cube such that Iλi ∈ N(I). Because of Iλi ’s maximality, |F (I)| ≤ λ.
By Lemma 2.8, we may therefore take |F (Iλi )| ≤ 1.1λ, if we choose γ small enough—and
of course we do.

Now let η > 0 be so small that ω({x ∈ Iλi : d(x, ∂Iλi ) < η`(Iλi )}) ≤ (ε/2)ω(Iλi ).
The number η only depends on ε, d, and ω’s doubling constant. With η chosen, we
can now take γ so small that if x ∈ Iλi and d(x, ∂Iλi ) ≥ η`(Iλi ), then (Lemma 2.5)
|F (Iλi ) − F (Iλi , x)| ≤ .1λ. Therefore, we can neglect the contribution of F (Iλi , x) on the
part of Iλi that stays away from the boundary.

Define
h(x) ≡

∑
Q⊂Iλi

λQb(Q)(x).

Let the functions H(I, x), H(I), and H∗(x) be defined for h just as F (I, x), F (I), and
F ∗(x) were for f . Our problem reduces to showing that

ω({x ∈ Iλi : H∗(x) > .8λ, G∗(x) ≤ γλ}) ≤ (ε/2)ω(Iλi ).

But this is just a rescaled version of Lemma 2.9 (divide h by .8λ). Theorem 2.1 is proved.

2.2. Almost-orthogonality for a doubling measure. In this section we will prove
that certain families of functions {φ(Q)}Q∈D, indexed over the dyadic cubes Q ∈ D, are
“almost-orthogonal” in L2(Rd, ω), where ω is any doubling measure.

The functions φ(Q) will be asked to satisfy:

1. For all x ∈ Rd,

|φ(Q)(x)| ≤ ω(Q)1/2
∞∑
k=0

2−kε

ω(2kQ)
χRk(Q)(x),

where ε > 0 does not depend on Q.
2. For all x and x′ in Rd,

|φ(Q)(x)− φ(Q)(x′)| ≤
(
|x− x′|
`(Q)

)α[
ω(Q)1/2

∞∑
k=0

2−kε

ω(2kQ)
(χRk(Q)(x) + χRk(Q)(x′))

]
,

where α > 0 also does not depend on Q.
3.
∫

Rd φ(Q)(x) dω(x) = 0.

Our almost-orthogonality result is:

Theorem 2.2. For every ε > 0 and α > 0 there is a constant C = C(ω, α, ε) such that,
if the family {φ(Q)}Q∈D satisfies 1, 2, and 3, and

∑
γQφ(Q) is any finite linear sum from
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the family, then ∫
Rd

∣∣∣∑ γQφ(Q)

∣∣∣2dω ≤ C∑ |γQ|2.

This was proved in [FrJaWeis] for ω = Lebesgue measure. The proof is quite involved
and technical—enough to make a result like Theorem 2.2 seem intractable.

It becomes less formidable if we approach it indirectly. We will use an ω-adapted
version of a Littlewood–Paley type function called the intrinsic square function (ISF).
The ISF was first described in [Wi2], and further developed in [Wi3], but always in the
Euclidean (Lebesgue measure-adapted) setting.

If α > 0 and (t, y) ∈ Rd+1
+ , we define Cα(B(t; y)) to be the family of functions φ :

Rd → R such that:

(i) suppφ ⊂ B(t; y).
(ii) For all x and x′ in Rd,

|φ(x)− φ(x′)| ≤
(
|x− x′|

y

)α
ω(B(t; y))−1.

(iii)
∫
φdω = 0.

If f is locally integrable with respect to ω, we define

Aα(f)(t, y) = sup
{∣∣∣∣ ∫ f φ dω

∣∣∣∣ : φ ∈ Cα(B(t; y))
}
.

For x ∈ Rd, the intrinsic square function of order α of the function f at the point x is
defined to be

Gα(f)(x) ≡
(∫

Γ(x)

(Aα(f)(t, y))2 dω(t) dy
ω(B(t; y))y

)1/2

;

here and in the future, Γ(x) ≡ {(t, y) ∈ Rd+1
+ : |x − t| < y}, the “standard cone” with

vertex at x.
The functional Aα(f)(t, y) is defined by inner products with compactly-supported

functions φ. It has a companion that is defined by inner products with non-compactly-
supported functions.

If α > 0 and ε > 0, and (t, y) ∈ Rd+1
+ , we define C(α,ε)(B(t; y)) to be the family of

functions φ : Rd → R such that:

(i′) For all x ∈ Rd,

|φ(x)| ≤
∞∑
k=0

2−kε

ω(B(t; 2ky))
χRk(B(t;y))(x),

where R0(B(t; y)) = B(t; y) and, for k ≥ 1, Rk(B(t; y)) = B(t; 2ky) \B(t; 2k−1y).
(ii′) For all x and x′ in Rd,

|φ(x)− φ(x′)| ≤
(
|x− x′|

y

)α ∞∑
k=0

2−kε

ω(B(t; 2ky))
(χRk(B(t;y))(x) + χRk(B(t;y))(x′)).

(iii′)
∫

Rd φ(x) dω = 0.
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If

|f(x)|
∞∑
k=0

2−kε

ω(B(t; 2ky))
χRk(B(t;y))(x) ∈ L1(ω), (A)

we define

Ã(α,ε)(f)(t, y) = sup
{∣∣∣∣ ∫ f φ dω

∣∣∣∣ : φ ∈ C(α,ε)(B(t; y))
}
.

For x ∈ Rd, the intrinsic square function of order (α, ε) of the function f at the point x
is defined to be

G̃(α,ε)(f)(x) ≡
(∫

Γ(x)

(A(α,ε)(f)(t, y))2 dω(t) dy
ω(B(t; y))y

)1/2

.

We will show that ‖G̃(α,ε)(f)‖L2(ω) ≤ C‖f‖L2(ω), from which Theorem 2.2 will follow
easily.

The definitions of these two intrinsic square functions give them a certain flexibility,
which makes them easy to manipulate. Define

σα(f)(x) ≡
( ∞∑
k=−∞

(Aα(f)(x, 2k))2
)1/2

, σ̃(α,ε)(f)(x) ≡
( ∞∑
k=−∞

(Ã(α,ε)(f)(x, 2k))2
)1/2

.

The functionals σα(f) and σ̃(α,ε)(f) are “discretized” analogues of (respectively) Gα(f)
and G̃(α,ε)(f). The useful fact to observe is that σα(f) and Gα(f) are pointwise compara-
ble (written σα(f) ∼ Gα(f)), with comparability constants only depending on α and ω;
and similarly σ̃(α,ε)(f) ∼ G̃(α,ε)(f), with comparability constants only depending on α,
ε, and ω. We will show comparability for σα(f) and Gα(f); the proof for the other pair
is even easier.

Comparability of σα(f) and Gα(f) follows from

(Aα(f)(x, 2k))2 ≤ C1

∫
(t,y)∈Γ(x) : 2k+2≤y≤2k+3

(Aα(f)(t, y))2 dω(t) dy
ω(B(t; y))y

(2b.1)

and ∫
(t,y)∈Γ(x) : 2k≤y≤2k+1

(Aα(f)(t, y))2 dω(t) dy
ω(B(t; y))y

≤ C2(Aα(f)(x, 2k+3))2, (2b.2)

for some positive constants C1 and C2 that only depend on α and ω (and not on k),
because summing both sides of (2b.1) over all k will yield

(σα(f)(x))2 ≤ C1(Gα(f)(x))2,

and summing both sides of (2b.2) over all k will yield

(Gα(f)(x))2 ≤ C2(σα(f)(x))2.

Inequalities (2b.1) and (2b.2) follow from two easy geometric facts: 1) There is an
absolute constant C = C(α, ω) such that if φ ∈ Cα(B(x; 2k)), then Cφ ∈ Cα(B(t; y)) for
all (t, y) such that |t − x| < 2k and 2k+2 ≤ y ≤ 2k+3. 2) There is an absolute constant
C ′ = C ′(α, ω) such that if φ ∈ Cα(B(t; y)) for some (t, y) ∈ Γ(x) such that 2k ≤ y ≤ 2k+1,
then C ′φ ∈ Cα(B(x; 2k+3)). We will sketch the proof of 2) and leave the proof of 1) to
the reader. Let φ ∈ Cα(B(t; y)), with |x − t| < y and 2k ≤ y ≤ 2k+1. Then φ’s support
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is contained in B(t; y) ⊂ B(x; 2k+3), and
∫
φdω = 0. The only thing left to check is φ’s

Hölder modulus. We have

|φ(s)− φ(s′)| ≤
(
|s− s′|
y

)α
ω(B(t; y))−1

for any s and s′. But (
|s− s′|
y

)α
≤ C

(
|s− s′|
2k+3

)α
,

because y ≥ 2k; and ω(B(t; y)) ≥ cω(B(x; 2k+3)), because y ≥ 2k, |x − t| < y ≤ 2k+1,
and ω is doubling.

With these facts in hand, the proofs of (2b.1) and (2b.2) are easy. We will only prove
(2b.1); the proof of (2b.2) is similar. Because of fact 1), for any (t, y) such that |t − x|
< 2k and 2k+2 ≤ y ≤ 2k+3, Aα(f)(x, 2k) ≤ CAα(f)(t, y). Therefore

(Aα(f)(x, 2k))2 ≤ C
(∫

(t,y) : |t−x|<2k, 2k+2≤y≤2k+3
(Aα(f)(t, y))2 dω(t) dy

ω(B(t; y))y

)
×
(∫

(t,y) : |t−x|<2k, 2k+2≤y≤2k+3

dω(t) dy
ω(B(t; y))y

)−1

.

But ω’s doubling property ensures that∫
(t,y) : |t−x|<2k, 2k+2≤y≤2k+3

dω(t) dy
ω(B(t; y))y

∼ 1,

with comparability constants that only depend on ω. Therefore

(Aα(f)(x, 2k))2 ≤ C
∫

(t,y) : |t−x|<2k, 2k+2≤y≤2k+3
(Aα(f)(t, y))2 dω(t) dy

ω(B(t; y))y

≤ C
∫

(t,y)∈Γ(x) : 2k+2≤y≤2k+3
(Aα(f)(t, y))2 dω(t) dy

ω(B(t; y))y
,

which is (2b.1). An analogous argument, using fact 2), yields (2b.2).

We continue with a familiar definition and an easy lemma.

Definition 2.1. Let α > 0. If S ⊂ Rd is a bounded convex set (which will always be a
ball or a cube), we say that φ : S → R is adapted to S if: a) the support of φ is contained
in S; b) for all x and x′ in Rd,

|φ(x)− φ(x′)| ≤
(
|x− x′|
diam(S)

)α
ω(S)−1/2,

where diam(S) is S’s diameter; c)
∫
φdω = 0.

The reader should notice that, because ω is doubling, if φ is adapted to a ball B,
then cφ is adapted (for the same α) to some cube Q having the same center as B, where
c is an absolute positive constant and diam(B) ∼ diam(Q); and vice versa. Similarly,
if φ is adapted (for α) to B(t; y), then ω(B(t; y))−1/2φ ∈ Cα(B(t; y)), and the reverse
implication holds modulo a constant factor.

Lemma 2.10. Let F ⊂ D be a finite set of dyadic cubes. If {φ(Q)}Q∈F is a family of
functions such that, for some fixed α, each φ(Q) is adapted to Q̃, where Q̃ denotes the
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concentric triple of Q, then there is a constant C = C(α, ω) such that, for all linear
combinations

∑
γQφ(Q), ∫

Rd

∣∣∣∑ γQφ(Q)

∣∣∣2 dω ≤ C∑ |γQ|2. (2.8)

Proof. By a lemma in [Wi4], the family of triples of dyadic cubes in Rd can be split
into 3d disjoint families Gk possessing the same exclusion/inclusion properties as the
dyadic cubes: a) if Q̃ and Q̃′ belong to Gk, either one cube is contained in the other or
they are disjoint; b) if Q̃ and Q̃′ belong to Gk, and Q is properly contained in Q′, then
`(Q) = 2−j`(Q′) for some positive integer j.

Without loss of generality, we can assume that all of the Q̃’s for which Q ∈ F belong
to the same Gk.

If Q̃ ⊂ Q̃′, then∫
φ(Q)(x)φ(Q′)(x) dω =

∫
Q̃

φ(Q)(x)(φ(Q′)(x)− φ(Q′)(xQ̃)) dω, (2.9)

where xQ̃ is the center of Q̃. Our assumptions on the φ’s imply that the right-hand side
of (2.9) has absolute value no bigger than a constant times(

ω(Q̃)
ω(Q̃′)

)1/2

·
(
`(Q)
`(Q′)

)α
.

This implies that the left-hand side of (2.8) is no bigger than a constant times

∑
Q′

|γQ′ |
∑

Q : Q̃⊂Q̃′
|γQ|

(
ω(Q̃)
ω(Q̃′)

)1/2

·
(
`(Q)
`(Q′)

)α
. (2.10)

For each fixed Q′,

∑
Q : Q̃⊂Q̃′

|γQ|
(
ω(Q̃)
ω(Q̃′)

)1/2

·
(
`(Q)
`(Q′)

)α

≤
( ∑
Q : Q̃⊂Q̃′

|γQ|2
(
`(Q)
`(Q′)

)α)1/2( ∑
Q : Q̃⊂Q̃′

(
ω(Q̃)
ω(Q̃′)

)
·
(
`(Q)
`(Q′)

)α)1/2

.

But ∑
Q : Q̃⊂Q̃′

(
ω(Q̃)
ω(Q̃′)

)
·
(
`(Q)
`(Q′)

)α
= ω(Q̃′)−1

∞∑
k=0

2−kα
∑

Q : Q̃⊂Q̃′
`(Q)=2−k`(Q′)

ω(Q̃) ≤ Cα.

Therefore the quantity in (2.10) is less than or equal to a constant times

∑
Q′

|γQ′ |
( ∑
Q : Q̃⊂Q̃′

|γQ|2
(
`(Q)
`(Q′)

)α)1/2

,
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which, by the Cauchy–Schwarz inequality, is less than or equal to(∑
Q′

|γQ′ |2
)1/2

(∑
Q′

∑
Q : Q̃⊂Q̃′

|γQ|2
(
`(Q)
`(Q′)

)α)1/2

=
(∑
Q′

|γQ′ |2
)1/2

(∑
Q

|γQ|2
∑

Q′:Q̃⊂Q̃′

(
`(Q)
`(Q′)

)α)1/2

. (2.11)

But, for each Q, ∑
Q′ : Q̃⊂Q̃′

(
`(Q)
`(Q′)

)α
≤ Cα,

because, if Q̃ ⊂ Q̃′, `(Q)/`(Q′) = 2−k for some k ≥ 0; and, for each k ≥ 0, Q̃ is contained
in at most one such Q̃′. Therefore (2.11) is less than or equal to a constant times(∑

Q′

|γQ′ |2
)1/2(∑

Q

|γQ|2
)1/2

=
∑
Q

|γQ|2,

which was to be proved.

The next lemma asserts that the “compact support” ISF is bounded on L2(ω).

Lemma 2.11. Let ω be a doubling measure on Rd and α > 0. There is a constant C =
C(α, ω) such that, for all f ∈ L2(ω),∫

Rd
(Gα(f)(x))2 dω(x) ≤ C

∫
|f(x)|2 dω(x).

Proof. We normalize f so that ‖f‖L2(ω) = 1. By Fubini–Tonelli,∫
Rd

(Gα(f)(x))2 dω(x) =
∫

Rd+1
+

(Aα(f)(t, y))2 dω(t) dy
y

.

Let g : Rd+1
+ → R be non-negative, bounded, measurable, have compact support, and

satisfy ∫
Rd+1

+

(g(t, y))2 dω(t) dy
y

≤ 1.

It suffices to show that ∫
Rd+1

+

g(t, y)Aα(f)(t, y)
dω(t) dy

y
≤ C, (2.12)

where C is an absolute constant. We can pick in a measurable fashion functions φ(t,y) ∈
Cα(B(t; y)) such that, for each (t, y) ∈ Rd+1

+ ,∫
f(x)φ(t,y)(x) dω(x) ≥ 1

2
Aα(f)(t, y).

Therefore, (2.12) will follow if we can show that∫
Rd+1

+

g(t, y)
(∫

f(x)φ(t,y)(x) dω(x)
)
dω(t) dy

y
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is less than or equal to an absolute constant. Because g is such a nice function, we can
rewrite the preceding integral as∫

Rd
f(x)

(∫
Rd+1

+

g(t, y)φ(t,y)(x)
dω(t) dy

y

)
dω(x).

Let us now define

H(x) ≡
∫

Rd+1
+

g(t, y)φ(t,y)(x)
dω(t) dy

y
. (2.13)

The lemma has been reduced to showing that ‖H‖L2(ω) ≤ C.
For every dyadic cube Q ⊂ Rd, we set T (Q) ≡ Q× [`(Q)/2, `(Q)), and we define

b(Q)(x) ≡
∫
T (Q)

g(t, y)φ(t,y)(x)
dω(t) dy

y
.

Then
H(x) =

∑
Q∈D

b(Q)(x),

and the sum makes sense because it is finite (remember that g has compact support).
Each b(Q) can be written as γQa(Q)(x), where each γQ equals a fixed constant times(∫

T (Q)

(g(t, y))2 dω(t) dy
y

)1/2

.

We claim that if this “fixed constant” is chosen large enough (in a way only depending
on α and ω), then each a(Q) will be adapted to its Q̃. Lemma 2.10 will then imply that∫

Rd
|H(x)|2 dω(x) ≤ C

∑
Q

|γQ|2 ≤ C
∫

Rd+1
+

(g(t, y))2 dω(t) dy
y

≤ C,

as desired.
It is easy to see that each a(Q) inherits cancellation from the φ(t,y)’s. If (t, y) ∈ T (Q)

then B(t; y) ⊂ Q̃; therefore a(Q)’s support condition is also no problem. All we need to
show is a(Q)’s Hölder continuity. The doubling property of ω will be crucial here, and in
particular the following fact: if (t, y) ∈ T (Q) then ω(B(t; y)) ∼ ω(Q̃), with comparability
constants only depending on ω.

If x and x′ belong to Rd then

|b(Q)(x)− b(Q)(x′)| =
∣∣∣∣ ∫
T (Q)

g(t, y)(φ(t,y)(x)− φ(t,y)(x′))
dω(t) dy

y

∣∣∣∣,
which is less than or equal to(∫

T (Q)

(g(t, y))2 dω(t) dy
y

)1/2(∫
T (Q)

|φ(t,y)(x)− φ(t,y)(x′)|2 dω(t) dy
y

)1/2

.

We focus on the second factor. For each (t, y) ∈ T (Q),

|φ(t,y)(x)− φ(t,y)(x′)| ≤ C
(
|x− x′|
`(Q̃)

)α
ω(Q̃)−1.
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Therefore the second factor is less than or equal to a constant times(
|x− x′|
`(Q̃)

)α
ω(Q̃)−1

(∫
T (Q)

dω(t) dy
y

)1/2

≤ C
(
|x− x′|
`(Q̃)

)α
ω(Q̃)−1/2,

which is what we wanted. Lemma 2.11 is proved.

Our next lemma will show that functions in C(α,ε)(B(t; y)) have a “self-improving”
property which allows them to be decomposed in a convenient way. But first we will say
what it means for a function in C(α,ε)(B(t; y)) to be “improved”.

Definition 2.2. If α and ε are positive numbers, and ω is a doubling weight, a function
φ : Rd → R is said to belong to the Uchiyama class U(α,ε)(B(t, y)) if:

(a) for all x ∈ Rd,

|φ(x)| ≤
∞∑
k=0

2−kε

ω(B(t; 2ky))
χRk(B(t;y))(x);

(b) for all x and x′ in Rd,

|φ(x)− φ(x′)| ≤
(
|x− x′|

y

)α ∞∑
k=0

2−k(ε+α)

ω(B(t; 2ky))
(χRk(B(t;y))(x) + χRk(B(t;y))(x′));

(c)
∫

Rd φ(x) dω = 0.

The only difference between C(α,ε)(B(t; y)) and U(α,ε)(B(t; y)) is that functions in the
second space have extra decay in their Hölder moduli (compare property (b) and (ii′)).
This is a real, though illusory, difference.

Lemma 2.12. If 0 < α′ ≤ α, α < ε, and we define ε′ ≡ ε− α′, then

C(α,ε)(B(t; y)) ⊂ U(α′,ε′)(B(t; y)).

Remark. We call this the Free Lunch Lemma.

Proof of Lemma 2.12. Let φ ∈ C(α,ε)(B(t; y)). It is trivial that

|φ(x)| ≤
∞∑
k=0

2−kε
′

ω(B(t; 2ky))
χRk(B(t;y))(x),

because ε′ ≤ ε. The function φ already has cancelation. We only need to check φ’s Hölder
smoothness. If |x− x′|/y ≤ 1 then

|φ(x)− φ(x′)| ≤
(
|x− x′|

y

)α ∞∑
k=0

2−kε

ω(B(t; 2ky))
(χRk(B(t;y))(x) + χRk(B(t;y))(x′))

≤
(
|x− x′|

y

)α′ ∞∑
k=0

2−kε

ω(B(t; 2ky))
(χRk(B(t;y))(x) + χRk(B(t;y))(x′)) (2.14)

=
(
|x− x′|

y

)α′ ∞∑
k=0

2−k(ε′+α′)

ω(B(t; 2ky))
(χRk(B(t;y))(x) + χRk(B(t;y))(x′)); (2.15)
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because α′ ≤ α (in (2.14)) and ε = ε′+α′ (in (2.15)). On the other hand, if |x− x′|/y > 1
then

|φ(x)− φ(x′)| ≤ |φ(x)|+ |φ(x′)| ≤
∞∑
k=0

2−kε

ω(B(t; 2ky))
(χRk(B(t;y))(x) + χRk(B(t;y))(x′))

≤
(
|x− x′|

y

)α′ ∞∑
k=0

2−k(ε′+α′)

ω(B(t; 2ky))
(χRk(B(t;y))(x) + χRk(B(t;y))(x′)),

where the last line is true because |x− x′|/y > 1 and ε = ε′+α′. Lemma 2.12 is proved.

Functions in U(α,ε)(B(t; y)) can be decomposed in a very nice way.

Lemma 2.13. Suppose that α and ε are positive numbers and ω is a doubling weight.
There is a constant C = C(α, ε, ω) such that, if (t, y) ∈ Rd+1

+ and φ ∈ U(α,ε)(B(t; y)),
then

φ(x) = C

∞∑
k=0

2−kεφk(x),

where each φk is in Cα(B(t, 2ky)).

Proof. Let (t, y) ∈ Rd+1
+ . There are non-negative, radial functions—call them h0 and

h1—in C∞0 (Rd) such that supph0 ⊂ B(t; y), supph1 ⊂ B(t; 2y), h0 ≡ 1 on B(t; y/2), and

h0(x) +
∞∑
k=0

h1(2−kx) ≡ 1

on Rd. These functions can be chosen so that |∇h0|+|∇h1| ≤ C/y, where C only depends
on d. We use h0 and h1 to define a sequence of functions {ρk}∞k=0, via

ρk(x) =

{
h0(x) if k = 0,

h1(2−k+1x) if k > 0.

Then
∑∞
k=0 ρk ≡ 1, each ρk has support contained in B(t; 2ky), and, if k > 0, ρk’s

support is contained in the annulus B(t; 2ky) \B(t; 2k−2y). The functions ρk also satisfy
∇ρk ≤ C2−k/y, where C is an absolute constant.

We first decompose φ in a preliminary fashion:

φ(x) =
∞∑
k=0

φ(x)ρk(x) ≡
∞∑
k=0

ψk(x).

Each ψk has support contained in B(t; 2ky) and satisfies

|ψk(x)− ψk(x′)| ≤ C2−kε
(
|x− x′|

2ky

)α
ω(B(t; 2ky))−1 (2.16)

for some absolute constant C. Inequality (2.16) follows from the fact that

ψk(x)− ψk(x′) = (φ(x)− φ(x′))ρk(x) + φ(x′)(ρk(x)− ρk(x′)).

The first term is controlled by the smoothness of φ and the uniform boundedness of ρk.
The second term is controlled by the size of φ and the smoothness of ρk (where, when k≥1,
it is useful to note that ψk has support contained in the annulus B(t; 2ky) \B(t; 2k−2y)).
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Thus ψk would belong to Cα(B(t; 2ky)) if
∫
ψk dω were equal to 0, but there is no reason

to expect that to be true.
For k ≥ 0 define

ck ≡
∫ (∑k

j=0 ρj(t)
)
φ(t) dω(t)∫

ρk(t) dω(t)
. (2.17)

Because ω is doubling, the denominator of (2.17) is bigger than or equal to a constant
times ω(B(t; 2ky)), which goes to infinity as k →∞. Because of φ’s cancelation property,
the numerator in (2.17) equals

−
∫ (∑

j>k

ρj(t)
)
φ(t) dω(t),

which, because of our estimate on φ’s size, has magnitude less than or equal to a constant
times

∑
j>k 2−jε ≤ C2−kε. Therefore ck → 0 as k →∞. Define gk(x) ≡ ckρk(x). Then

0 = g0(x) +
∞∑
k=1

(gk(x)− gk−1(x)), (2.18)

and the series converges uniformly. Define

ηk(x) =

{
g0(x) if k = 0,

gk(x)− gk−1(x) if k > 0.

Then each ηk satisfies (modulo an absolute constant) the same size and smoothness
bounds as the corresponding ψk. But also, for each k,∫

ψk(x) dω(x) =
∫
ηk(x) dω(x).

Therefore we get our desired decomposition by putting

φ =
∞∑
k=0

ψk =
∞∑
k=0

(ψk − ηk),

where the last equation is true because of (2.18). That proves Lemma 2.13.

The next lemma shows that, although G̃(α,ε)(f) looks like a more complicated object,
it is no harder to control than Gα′(f), as long as we choose α′ small enough.

Lemma 2.14. Let 0 ≤ α′ ≤ α and α′ < ε. There is a constant C = C(α, ε, α′, ω)
so that, for all f such that G̃(α,ε)(f) makes sense (i.e. those f for which (A) holds),
G̃(α,ε)(f) ≤ CG̃α′(f) pointwise.

Proof. Since σα′(f) ∼ Gα′(f) and σ̃(α,ε)(f) ∼ G̃(α,ε)(f), it suffices to show

σ̃(α,ε)(f) ≤ Cσα′(f).

We shall do so at x = 0. Let φ ∈ C(α,ε)(B(0; 1)); then, because of Lemmas 2.12 and 2.13,
we can write

φ(x) = C

∞∑
k=0

2−kε
′
φk(x),

where each φk ∈ Cα′(B(0; 2k)), where ε′ = ε− α′ > 0. Therefore

Ã(α,ε)(f)(0, 1) ≤ C
∞∑
k=0

2−kε
′
Aα′(f)(0, 2k) ≤

(
C ′
∞∑
k=0

2−kε
′
(Aα′(f)(0, 2k))2

)1/2

.
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Similarly, for any integer j,

Ã(α,ε)(f)(0, 2j) ≤
(
C ′
∞∑
k=0

2−kε
′
(Aα′(f)(0, 2k+j))2

)1/2

.

When we square both sides and sum on j we get

(σ̃(α,ε)(f)(0))2 =
∞∑

j=−∞
(Ã(α,ε)(f)(0, 2j))2 ≤ C ′

∞∑
j=−∞

∞∑
k=0

2−kε
′
(Aα′(f)(0, 2k+j))2

= C ′
∞∑

l=−∞

(Aα′(f)(0, 2l))2
l∑

j=−∞
2−(l−j)ε′ ≤ C ′′

∞∑
l=−∞

(Aα′(f)(0, 2l))2

= C ′′(σα′(f)(0))2,

which proves Lemma 2.14.

Proof of Theorem 2.2. Lemmas 2.14 and 2.11 taken together imply that ‖G̃(α,ε)(f)‖L2(ω)

≤ C‖f‖L2(ω). (The only thing we need to check is that f ∈ L2(ω) implies that (A) holds,
but that is trivial.) Suppose that the family {φ(Q)}Q∈D satisfies 1, 2, and 3, and

∑
γQφ(Q)

is a finite linear sum from that family. Let f ∈ L2(ω) satisfy ‖f‖L2(ω) ≤ 1. Then∣∣∣∣ ∫ (∑ γQφ(Q)(x)
)
f(x) dω(x)

∣∣∣∣ ≤ (∑
Q

|γQ|2
)1/2

(∑
Q

∣∣∣∣ ∫ f(x)φ(Q)(x) dω(x)
∣∣∣∣2)1/2

,

so it will be enough to show that∑
Q

∣∣∣∣ ∫ f(x)φ(Q)(x) dω(x)
∣∣∣∣2 ≤ C, (2.19)

where C only depends on α, α′, ε, and ω. However, for any (t, y) ∈ T (Q),∣∣∣∣ ∫ f(x)φ(Q)(x) dω(x)
∣∣∣∣ ≤ Cω(Q)1/2Ã(α,ε)(f)(t, y),

and therefore ∣∣∣∣ ∫ f(x)φ(Q)(x) dω(x)
∣∣∣∣2 ≤ C ∫

T (Q)

(Ã(α,ε)(f)(t, y))2 dω(t) dy
y

,

since ω’s doubling property implies

ω(Q) ∼
∫
T (Q)

dω(t) dy
y

.

Therefore the left-hand side of (2.19) is less than or equal to a constant times∑
Q

∫
T (Q)

(Ã(α,ε)(f)(t, y))2 dω(t) dy
y

≤
∫

Rd+1
+

(Ã(α,ε)(f)(t, y))2 dω(t) dy
y

≤ C
∫

Rd
(G̃(α,ε)(f)(x))2 dω(x) ≤ C

∫
Rd
|f(x)|2 dω(x),

and that finishes the proof of Theorem 2.2.
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3. Harmonic functions on bounded Lipschitz domains

We are going to apply Theorem 2.1 to a family of functions {b(Q)}Q defined on a part of
the boundary of a bounded Lipschitz domain Ω ⊂ Rd+1. That is, ∂Ω is a finite union of
translations and rotations of graphs Γi of functions ψi : Rd → R, and there is a fixed M

such that each ψi satisfies |ψi(x)− ψi(y)| ≤M |x− y| for all x and y.
As we said in the introduction, our attention will be directed at points near ∂Ω, where

we can pretend that we are working in a domain lying above a graph Γi. But first we
wish to say a few words about the points in Ω that are (relatively) far away from the
boundary.

Recall our definition of Ωδ ≡ {x ∈ Ω : d(x, ∂Ω) ≤ δ}. Given a measure µ defined on Ω,
write µ = µ1 + µ2 where µ1(E) = µ(E \ Ωδ) and µ2(E) = µ(E ∩ Ωδ).

We claim that an inequality of the form(∫
Ω

|∇u|q dµ1

)1/q

≤ C
(∫

∂Ω

|f |p v dω
)1/p

(3.1)

comes almost (but not quite) for free.
We have, for any x /∈ Ωδ,

|∇u(x)| ≤ C
∫
∂Ω

|f | dω,

where C depends on Ω, δ, and our choice of X0 (which, without loss of generality, we
may assume lies in Ω \ Ωδ). This inequality comes from the fact that

sup
x/∈Ωδ

|∇u(x)| ≤ Cδ−1 sup
x/∈Ωδ/2

|u(x)|

linked to the inequality:
sup

x/∈Ωδ/2

|u(x)| ≤ CΩ,δ

∫
∂Ω

|f | dω.

By Hölder’s inequality,∫
∂Ω

|f | dω ≤
(∫

∂Ω

|f |p v dω
)1/p(∫

∂Ω

σ dω

)1/p′

.

Thus, to get (3.1), it is sufficient to have

µ(Ω \ Ωδ)1/q

(∫
∂Ω

σ dω

)1/p′

≤ c′,

where c′ is small positive constant depending on Ω, δ, and X0.
A moment’s thought shows that this is just a “global” version of the sufficient con-

dition from Theorem 3.1, with ∂Ω (a bounded set, recall) playing the role of a cube Qb,
and Ω\Ωδ pretending to be T (Qb). The bump function being integrated against σ is just
χ∂Ω. It has no “tail” because there is no room for one: the “cube” Qb fills up all of ∂Ω.

To fit the pattern of Theorem 3.1, the constant c′ should really be

cdiam(Ω)ω(∂Ω) = cdiam(Ω).

But, of course, it is—assuming we choose c properly!
That is (almost) all we will say about the parts of Ω lying far from the boundary.
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3.1. Lipschitz domains. Our problem now consists in finding an appropriate condition
on the measure µ2 which ensures that(∫

Ω

|∇u|q dµ2

)1/q

≤
(∫

∂Ω

|f |p v dω
)1/p

holds for all f ∈ Lp, where we remember that µ2 is supported in Ωδ.
By cutting the integral up, taking δ small enough, rescaling, and doing a rotation, we

can assume that the support of µ2—which we will henceforth call µ—lies in a set of the
form

R ≡ {(x, y) : ψ(x) < y < ψ(x) + δ, |x| ≤ 1},

where ψ : Rd → R is a Lipschitz function, with Lipschitz constant M . We can assume
that R is scaled so small that the set Γ ≡ {(x, ψ(x)) : |x| ≤ 2} is a subset of ∂Ω.

Let D be the family of dyadic cubes Q ⊂ Rd such that Q ⊂ {x ∈ Rd : |x| ≤ 3/2}. For
each cube Q ∈ D, we define Qb = {(x, ψ(x)) : x ∈ Q}, the boundary cube corresponding
to Q, and we define

Q̂b = {(x, y) : x ∈ Q, ψ(x) < y ≤ ψ(x) + `(Q)}
T (Qb) = {(x, y) : x ∈ Q, ψ(x) + `(Q)/2 < y ≤ ψ(x) + `(Q)},

corresponding to the usual Carleson box and “top-half” of a Carleson box, familiar from
Euclidean harmonic analysis.

Note that, if we take δ small enough, the support of our “reduced” µ is contained
completely inside

⋃
Q∈D T (Qb).

Because ψ is Lipschitz, there is a constant η = η(M,d) such that

d(T (Qb), ∂Ω) > η`(Q).

Let us define T̃ (Qb) ≡ {X ∈ Ω : d(X,T (Qb)) ≤ (η/4)`(Q)} and T̃ (Q̃b) ≡ {X ∈ Ω :
d(X,T (Qb)) ≤ (η/2)`(Q)}. The sets T (Qb) are pairwise disjoint. It is only a little harder
to see that the sets T̃ (Qb) (respectively, T̃ (Q̃b)) have the bounded overlap property, i.e.,
there is a C = C(M,d, η) such that no X ∈ Ω belongs to more than C of the sets T̃ (Qb)
(respectively, T̃ (Q̃b)).

For each Q ∈ D, we set

ZQ = (xQ, ψ(xQ) + `(Q)),

the “top midpoint” of Q̂b.
We will have occasion to speak of dilates of boundary cubes Qb, e.g., 2jQb. What this

notation means is (2jQ)b, i.e., the projection onto ∂Ω of the usual dilate 2jQ. However,
we will assume that these dilates do not extend too far. That is, we will sometimes
use expressions like

∑∞
j=0Ej(2

jQb), where Ej(2jQb) is some expression depending on
2jQb. In such expressions, we will want to have Ej = 0 when 2j`(Q) is bigger than some
constant r0. Fortunately, there is an easy way to do this. The expressions Ej which interest
us will actually depend on the annuli 2j+1Qb \ 2jQb; indeed, they will be multiplied by
the characteristic function of this set. We will define 2jQb to be all of ∂Ω when 2j`(Q) is
bigger than our fixed (but unspecified) constant r0. This automatically makes the annulus
2j+1Qb \ 2jQb empty.
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Let ω be harmonic measure on ∂Ω for the point X0. In other words, if f ∈ C(∂Ω), and
u is the solution to Laplace’s equation in Ω with boundary data f , then u(X0) =

∫
∂Ω
f dω.

For any X ∈ Ω, the value of u(X) is given by

u(X) =
∫
∂Ω

K(X, s)f(s) dω(s),

where K is the so-called “kernel function” for ω.
Our functions b(Q)(s) will have the following form. For any XQ

1 and XQ
2 , two arbitrary

points in T̃ (Qb), Q ∈ D, we let

b(Q)(s) =
√
ω(Qb)(K(XQ

1 , s)−K(XQ
2 , s)).

The size and smoothness conditions 1) and 2) in the definition of a standard family
follow for these b(Q)(s) from classical estimates for the kernel function; to wit,

|K(XQ
i , s)| ≤ C

∞∑
j=0

2−jα

ω(2jQb)
χRj(Qb)(x),

where, of course, Rj(Qb) = 2jQb \2j−1Qb when j > 0 and equals Qb for j = 0 (see [JeK],
[K]). And

|K(XQ
i , s)−K(XQ

i , s
′)| ≤ C

(
|s− s′|
`(Q)

)β ∞∑
j=0

2−jα

ω(2jQb)
χRj(Qb)(x)

(see [K]).
All we need now is condition 3), the almost-orthogonality.
Let G(X) be the Green’s function for Ω, with a pole at X0. By classical estimates

for the Green’s function and harmonic measure, if Q is one of our cubes, then ω(Qb) is
bounded above and below by positive constants times G(ZQ)`(Q)d−1. We shall refer to
this fact as ‘inequality (3a.2).’ In symbols

c1ω(Qb) ≤ G(ZQ)`(Q)d−1 ≤ c2ω(Qb). (3a.2)

(Note: the exponent on `(Q) is d− 1 and not the usual d− 2, because we are working in
a subset of Rd+1.)

Let {λQ}Q be an arbitrary finite collection of real numbers indexed over F , and set

g(s) =
∑

λQb(Q)(s).

We wish to show that ∫
|g|2 dω(s) ≤ C

∑
|λQ|2.

To this purpose, let f ∈ L2(∂Ω, ω) be continuous and satisfy
∫
∂Ω
f dω = 0. We consider

the integral ∫
∂Ω

gf dω. (3a.3)

Our job now is to show that this integral is less than or equal to a constant times(∑
Q

|λQ|2
)1/2

(∫
∂Ω

|f |2 dω
)1/2

.
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The integral (3a.3) equals ∑
λQ
√
ω(Qb)(u(XQ

1 )− u(XQ
2 )).

By Cauchy–Schwarz, this has magnitude less than or equal to(∑
|λQ|2

)1/2(∑
ω(Qb)|u(XQ

1 )− u(XQ
2 )|2

)1/2

,

and so our problem reduces to showing∑
ω(Qb)|u(XQ

1 )− u(XQ
2 )|2 ≤ C

∫
|f |2 dω. (3a.4)

By the ordinary, differential mean value theorem, and the sub-mean-value property for
harmonic functions,

|u(XQ
1 )− u(XQ

2 )|2 ≤ C`(Q)−d−1

∫
eT ( eQb)(`(Q)|∇u(X)|)2 dX

= C`(Q)−d+1

∫
eT ( eQb) |∇u(X)|2 dX, (3a.5)

where the constant C depends on the “usual” parameters.
By successively applying the estimate from the last inequality, inequality (3a.2), the

Harnack property for G(X), and the bounded overlap property of the sets T̃ (Q̃b), we
obtain∑

ω(Qb)|u(XQ
1 )− u(XQ

2 )|2 ≤ C
∑
Q

G(ZQ)
∫

eT ( eQb) |∇u(X)|2 dX

≤ C
∑
Q

∫
eT ( eQb)G(X)|∇u(X)|2 dX ≤ C

∫
Ω

G(X)|∇u(X)|2 dX.

But by Green’s Theorem and our normalization on f—i.e., u(X0) =
∫
∂Ω
f dω = 0—the

last quantity is less than or equal to C
∫
∂Ω
|f |2 dω. Therefore, modulo multiplication by

a small positive constant, our family {b(Q)} satisfies 1), 2), and 3) on the homogeneous
space ∂Ω, with the Euclidean metric and measure ω.

3.2. The weighted-norm theorem. Let us briefly recap our situation. We have a
bounded Lipschitz domain Ω, whose boundary can be written as an overlapping union
of (pieces of) graphs of Lipschitz functions ψi (appropriately rotated, scaled, and trans-
lated). On each of these pieces we have a collection of dyadic boundary cubes that are
near the origin. We can assume that we have enough pieces so that the union of these
cubes covers all of ∂Ω. Let us throw all of these cubes into a big family, which we will
call G. For each one of these cubes Qb we can talk about Q̂b, `(Qb), and T (Qb). It is pos-
sible that a given Qb will have more than one definition of T (Qb) (or `(Qb)). This is okay.
For a given Qb, all of its possible values of `(Qb) will be comparable (with comparability
constants depending on our domain’s Lipschitz constant). There can be no more than C
different T (Qb)’s, where C is the number of pieces into which we have divided ∂Ω. Since
we are mainly interested in the size of µ(T (Qb)), in our statement of Theorem 3.1 below,
we can take µ(T (Qb)) to be the largest of these numbers.
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We can now state the precise form of Theorem 3.1, as it was originally stated in the
introduction:

Theorem 3.1. Let Ω ⊂ Rd+1 be a bounded Lipschitz domain, and let ω be harmonic
measure on ∂Ω, for some fixed point X0 ∈ Ω. Suppose that υ ∈ L1(∂Ω, dω) is a non-
negative function and µ is a positive Borel measure on Ω. Define σ ≡ υ1−p′ and suppose
that σdω ∈ A∞(ω) on ∂Ω. If 1 < p ≤ q <∞ and q ≥ 2, then there exists an ε = ε(Ω) > 0
and a positive constant c such that(∫

Ωδ

|∇u(x)|q dµ(x)
)1/q

≤
(∫

∂Ω

|f(s)|pυ(s) dω(s)
)1/p

will hold for all f ∈ Lp(∂Ω, dω), for some positive δ, if, for all sufficiently small boundary
cubes Qb ∈ G,

µ(T (Qb))1/q

(∫
∂Ω

[
ω(Qb)

∞∑
j=0

2−jε

ω(2jQb)
χRj(Qb)(s)

]p′/2
σ(s) dω(s)

)1/p′

≤ c`(Qb)ω(Qb),

where c depends only on p, q, Ω, and the choice of the point X0.

Proof. We begin with the observation that there is an absolute constant C such that, for
every Qb ∈ G,

sup
Z∈T (Qb)

|∇u(Z)| ≤ C`(Qb)−1 sup
X
Qb
i ∈T̃ (Qb)

|u(XQb
1 )− u(XQb

2 )|. (3b.1)

For each Qb ∈ G, let XQb
1 and XQb

2 in T̃ (Qb) be chosen so that
1
2

sup
Z∈T (Qb)

|∇u(Z)| ≤ C`(Qb)−1|u(XQb
1 )− u(XQb

2 )|.

We will apply Theorem 2.1 to the family of functions defined by

φ(Qb)(s) ≡
√
ω(Qb)(K(XQb

1 , s)−K(XQb
2 , s)).

Now, let µ be a positive Borel measure defined on R. We wish to control∫
R
|∇u(Z)|q dµ(Z).

By our choice of the points XQb
i , this is less than or equal to a constant times∑

Qb∈G
`(Qb)−q|u(XQb

1 )− u(XQb
2 )|qµ(T (Qb)).

Let g : G → R be a finite sequence (indexed over F), and satisfying∑
Qb∈G

|g(Qb)|q
′
µ(T (Qb)) ≤ 1,

and chosen so that∣∣∣ ∑
Qb∈G

g(Qb)`(Qb)−1(u(XQb
1 )− u(XQb

2 ))µ(T (Qb))
∣∣∣

≥ 1
2

( ∑
Qb∈G

`(Qb)−q|u(XQb
1 )− u(XQb

2 )|qµ(T (Qb)
)1/q

. (3b.2)
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We need to show that, for every such g, the left-hand side of (3b.2) is not too big;
i.e., that it is less than or equal to a constant times(∫

∂Ω

|f(s)|p v dω(s)
)1/p

.

We define

T (g)(s) ≡
∑
Qb∈G

g(Qb)µ(T (Qb))`(Qb)−1(K(XQb
1 )−K(XQb

2 , s)),

and notice that∑
Qb∈G

g(Qb)`(Qb)−1(u(XQb
1 )− u(XQb

2 ))µ(T (Qb)) =
∫
∂Ω

f(s)T (g)(s) dω(s).

Recall that σ = v1−p′ . The left-hand side of (3b.2) will be

≤ C
(∫

∂Ω

|f(s)|p v dω(s)
)1/p

for all g as we have defined, if(∫
∂Ω

|T (g)(s)|p
′
σ dω

)1/p′

≤ C
( ∑
Qb∈G

|g(Qb)|q
′
µ(T (Qb))

)1/q′

(3b.3)

for all such g. It is this last inequality that we shall prove.
Write

T (g)(s) =
∑
Qb∈G

λQbφ(Qb),

where
φ(Qb)(s) ≡

√
ω(Qb)(K(XQb

1 , s)−K(XQb
2 , s)),

and

|λQb | ≤ C
|g(Qb)|µ(T (Qb))
`(Qb)

√
ω(Qb)

.

The integral we need to estimate naturally breaks into two pieces. Let us recall the
region we denoted by R in Section 3.1:

R ≡ {(x, y) : ψ(x) < y < ψ(x) + δ, |x| ≤ 1},

where ψ is a Lipschitz function, and our measure µ is supported entirely inside R. We will
handle the part near R with Theorem 2.1 from above. The “far” part can be bounded
by a naive brute-force observation. Let κ > 0 and define ℵ ≡ {x ∈ ∂Ω : d(x,R) > κ}. By
our estimates on the φ(Q)’s,

|Tg(x)| ≤ Cκ,Ω
∑
Qb∈G

|λQb |
√
ω(Qb)

∞∑
j=0

2−jα

ω(2jQb)
χRj(Qb)(x).

There is a C, independent of x ∈ ℵ, such that 2−jα

ω(2jQb)
χRj(Qb)(x) can be non-zero for

at most C many j’s. For each of these j’s, 2−j is essentially equal to `(Qb), with the
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comparability constants depending on κ and Ω. Also, for such j, ω(2jQb) is comparable
to ω(∂Ω), which equals 1. Therefore, for x ∈ ℵ,

|Tg(x)| ≤ Cκ,Ω
∑
Qb∈G

|λQb |
√
ω(Qb) `(Qb)α ≤ C

∑
Qb∈G

|g(Qb)|µ(T (Qb))`(Qb)−1`(Qb)α;

which looks funny—but we have a good reason for not combining the exponents in the
`(Qb)’s.

We assume that

µ(T (Qb))1/q

(∫
∂Ω

[
ω(Qb)

∞∑
j=0

2−jε

ω(2jQb)
χRj(Qb)(x)

]p′/2
σ(x) dω(x)

)1/p′

≤ c`(Qb)ω(Qb)

for every Qb ∈ G. We may replace the integral on the left-hand side of this inequality by
an integral over the smaller region ℵ. Doing so, we may rewrite the inequality (after a
change in c) as

µ(T (Qb))1/q ≤ c`(Qb)−ε/2
(
`(Qb)

√
ω(Qb)

(
∫
ℵ σ dω)1/p′

)
,

where ε > 0 is small. Thus, for x ∈ ℵ,

|Tg(x)| ≤ c
∑
Qb∈G

|g(Qb)|µ(T (Qb))`(Qb)−1`(Qb)α

= c
∑
Qb∈G

|g(Qb)|µ(T (Qb))1/q′µ(T (Qb))1/q`(Qb)−1`(Qb)α

≤ c
[ ∑
Qb∈G

|g(Qb)|µ(T (Qb))1/q′`(Qb)α−ε/2
√
ω(Qb)

](∫
ℵ
σ dω

)−1/p′

.

The expression in the brackets is bounded by( ∑
Qb∈G

|g(Qb)|q
′
µ(T (Qb))

)1/q′( ∑
Qb∈G

`(Qb)ε
′
ω(Qb)q/2

)1/q

,

where ε′ > 0. By hypothesis, the first factor is ≤ 1. Since q ≥ 2, the second factor is no
bigger than ( ∑

Qb∈G
`(Qb)2ε′/qω(Qb)

)1/2

,

which, since ε′ > 0, is bounded by a constant.
This means that, when x ∈ ℵ, |Tg(x)| is no bigger than a constant times(∫

ℵ
σ dω

)−1/p′

,

which trivially implies that ∫
ℵ
|Tg(x)|p

′
σ dω ≤ C.

So, now we look at the x’s close to R.
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To keep ideas clear, let us first consider the simple case p = q = 2. Having thrown
out the points that are far from R, inequality (3b.3) reduces to∫

∂Ω\ℵ
|T (g)(s)|2σ dω ≤ C

∑
Qb∈G

|g(Qb)|2µ(T (Qb)), (3b.4)

where all the cubes Qb are small and touch R. By Theorem 2.1, the left-hand side of
(3b.4) is less than or equal to a constant times∫

∂Ω

( ∑
Qb∈G

|λQ|2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

])
σ dω

≤ C
∑
Qb∈G

∣∣∣∣g(Qb)µ(T (Qb))
`(Qb)

√
ω(Qb)

∣∣∣∣2 ∫
∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

]
σ dω

= C
∑
Qb∈G

|g(Qb)|2µ(T (Qb))2

`(Qb)2ω(Qb)

∫
∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

]
σ dω.

We want this last quantity to be less than or equal to

C
∑
Qb∈G

|g(Qb)|2µ(T (Qb)).

Comparing the sums term-by-term, we see that this will happen if, for every Q ∈ F ,

µ(T (Qb))
∫
∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

]
σ dω ≤ C`(Qb)2ω(Qb);

or, taking square roots,

µ(T (Qb))1/2

(∫
∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

]
σ dω

)1/2

≤ C`(Qb)ω(Qb)1/2. (3b.5)

Thus, the appropriate sufficient condition, when p = q = 2, is the one given by Theorem
3.1.

The proofs for more general p and q follow this same pattern. The main difficulty
encountered is that we can no longer freely exchange the order of integration and sum-
mation. Fortunately, this can be circumvented by some standard trickery.

We shall consider the more difficult case first: 1 < p ≤ 2 ≤ q <∞. In this case, p′ ≥ 2.
Before continuing, we recall our assumption that σ dω is an A∞(ω) measure.

We can apply Theorem 2.1 to obtain∫
∂Ω

|T (g)|p
′
σ dω ≤ C

∫
∂Ω

(g∗(T (g)))p
′
σ dω.

Let h ≥ 0, h ∈ Lr(σdω), r = (p′/2)′, be such that (
∫
∂Ω
h(s)rσ(s) dω(s))1/r = 1, and(∫

∂Ω

(g∗(T (g))p
′
σ dω

)1/p′

=
(∫

∂Ω

(g∗(T (g))2hσ dω

)1/2

,
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by duality. The integral on the right hand side of the last equation is equal to(∫
∂Ω

( ∑
Qb∈G

λ2
Qb

∞∑
j=0

2−εj

ω(2jQb)
χRj(Qb)(s)

)
h(s)σ(s) dω(s)

)1/2

=
( ∑
Qb∈G

λ2
Qb

∫
∂Ω

( ∞∑
j=0

2−εj

ω(2jQb)
χRj(Qb)(s)

)
h(s)σ(s) dω(s)

)1/2

≤
{ ∑
Qb∈G

λ2
Qb

(∫
∂Ω

( ∞∑
j=0

2−εj

ω(2jQb)
χRj(Qb)(s)

)p′/2
σ(s) dω(s)

)2/p′

×
(∫

∂Ω

h(s)rσ(s) dω(s)
)1/r}1/2

=
( ∑
Qb∈G

λ2
Qb

(∫
∂Ω

( ∞∑
j=0

2−εj

ω(2jQb)
χRj(Qb)(s)

)p′/2
σ(s) dω(s)

)2/p′)1/2

.

We want to show that this sum is bounded by C(
∑
Qb∈G g(Qb)q

′
µ(T (Qb)))1/q′ , or that

( ∑
Qb∈G

λ2
Qb

(∫
∂Ω

( ∞∑
j=0

2−εj

ω(2jQb)
χRj(Qb)(s)

)p′/2
σ(s) dω(s)

)2/p′)q′/2
≤ C

∑
Qb∈G

g(Qb)q
′
µ(T (Qb)).

Since q′/2 < 1 this will be true if

∑
Qb∈G

λq
′

Qb

(∫
∂Ω

( ∞∑
j=0

2−εj

ω(2jQb)
χRj(Qb)(s)

)p′/2
σ(s) dω(s)

)q′/p′
≤ C

∑
Qb∈G

g(Qb)q
′
µ(T (Qb)).

Comparing term-by-term and recalling that λQb ≤ C g(Qb)µ(T (Qb))

`(Qb)
√
ω(Qb)

, we can see that the

above is valid if

µ(T (Qb))q
′−1

`(Qb)q
′(
√
ω(Qb))q

′ ×
(∫

∂Ω

( ∞∑
j=0

2−εj

ω(2jQb)
χRj(Qb)(s)

)p′/2
σ(s) dω(s)

)q′/p′
≤ C,

or

µ(T (Qb))1/q

(∫
∂Ω

( ∞∑
j=0

2−εj

ω(2jQb)
χRj (s)

)p′/2
σ(s) dω(s)

)1/p′

≤ C`(Qb)
√
ω(Qb).

But this is exactly our condition.
Let us now consider the easier case, 2 < p ≤ q < ∞. We have p′ < 2 and p′/2 < 1.

Defining T (g) as before, we apply Theorem 2.1 to get∫
∂Ω

|T (g)|p
′
σ dω ≤ C

∫
∂Ω

( ∑
Qb∈G

|λQb |2
[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

])p′/2
σ dω.
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Since p′/2 < 1, the right-hand quantity is less than or equal to

C

∫
∂Ω

( ∑
Qb∈G

|λQb |p
′
[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

]p′/2)
σ dω

= C
∑
Qb∈G

|λQb |p
′
(∫

∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

])p′/2
σ dω.

Using our bound on λQb , the last quantity is less than or equal to

C
∑
Qb∈G

(
|g(Qb)|µ(T (Qb))
`(Qb)

√
ω(Qb)

)p′(∫
∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

]p′/2
σ dω

)
;

which, since p′ ≥ q′, is bounded by a constant times[ ∑
Qb∈G

[
|g(Qb)|µ(T (Qb))
`(Qb)

√
ω(Qb)

]q′[ ∫
∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

]p′/2
σ dω

]q′/p′]p′/q′
.

In order for our dual inequality to hold, the last quantity must be less than or equal to

C
( ∑
Qb∈G

|g(Qb)|q
′
µ(T (Qb))

)p′/q′
,

which will be true for all g’s if(
µ(T (Qb))

`(Qb)
√
ω(Qb)

)q′(∫
∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Q)(x)

]p′/2
σ dω

)q′/p′
≤ Cµ(T (Qb))

for all Qb ∈ G; i.e., after some transposition,

µ(T (Qb))1/q

(∫
∂Ω

[ ∞∑
j=0

2−j(2α−τ)

ω(2jQb)
χRj(Qb)(x)

]p′/2
σ dω

)1/p′

≤ C`(Qb)
√
ω(Qb),

which is our condition from Theorem 3.1.

4. Elliptic functions

The Dirichlet problem on a bounded Lipschitz domain is solvable for elliptic L whenever
the problem is solvable for ∆, by a classical result of [LiStWein]. The solution can be
written as the integral of the boundary data against the elliptic measure dωxL. Unfor-
tunately, this measure is not necessarily A∞ with respect to surface measure; however,
elliptic measure does satisfy a doubling condition. There is also a Green function, GL,
which, along with ωL, satisfies estimates similar to those for harmonic G and ω. For
u(x), the solution to a strictly elliptic divergence form equation on a bounded Lipschitz
domain, Ω, although ∇u(x) exists a.e. as a weak function, the gradient may not exist
pointwise. Consequently, we no longer have the pointwise estimates on ∇u that are valid
for harmonic u. Since we cannot use the kind of estimate on the gradient of an ellip-
tic function that was used in the proof of Theorem 3.1, we need to find another way
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to proceed. One way to overcome this obstacle is to start with the difference quotient
|u(xQb)− u(yQb)|/`(Qb) as we do in Theorem 4.1.

Specifically, suppose that Lu(x) = 0 for x ∈ Ω, u(s) = f(s), for f in an appropriate
class of functions, s ∈ ∂Ω. L =

∑d
i,j=1

∂
∂xi

(ai,j(x) ∂
∂xj

), ai,j(x) = aj,i(x), and there is a

number λ > 0 such that λ−1|ξ|2 ≤
∑d
i,j=1 ξiai,j(x)ξj ≤ λ|ξ|2 for all x ∈ Ω ⊂ Rd. For

Theorem 4.1, let us assume that G is the family of boundary cubes used in the proof of
Theorem 3.1. We also take {xT (Qb)} and {yT (Qb)} to be any two sequences of points in
T (Qb), indexed over G. We call such a double sequence hyperbolically close. In proving
Theorem 3.1 we used the fact that, for every Qb ∈ G, supx∈T (Qb)

|∇u|(x) was “morally
equivalent” to

sup
X,Y ∈T (Qb)

`(Qb)−1 |u(X)− u(Y )|

when u is harmonic. In Theorem 4.1 we will replace the absolute value of the gradient of
u by this quantity. So Theorem 4.1 follows as a corollary to Theorem 3.1.

Another way to overcome the obstacle is to replace |∇u|(x) by a local Hölder coefficient
in the weighted inequality, as we do in Theorem 4.2. In both approaches we are relying
on the fact that u(x) has a representation as an integral of a kernel function against the
boundary data with respect to elliptic measure ([CaFaMSa], [K]).

Using the first approach we have

Theorem 4.1. Let Ω be a bounded Lipschitz domain in Rd, and let ωx0
L = ωL be the

elliptic measure generated by L on Ω, L as described above. Let f ∈ Lp(∂Ω, dωL) and
take G to be the collection of boundary cubes as defined above. Suppose υ ≥ 0, and υ ∈
L1

loc(∂Ω, dωL); µ is a non-negative Borel measure defined on Ω. Define σ(s) = υ(s)1−p′

and assume that σdωL is an A∞ measure with respect to ωL. If, for every cube Qb ∈ G,
µ and υ satisfy

µ(T (Qb))1/q

(∫
∂Ω

(
ω(Qb)

∞∑
j=0

2−jε

ω(2jQb)
χRj(Qb)(s)

)p′/2
σ(s) dωL(s)

)1/p′

≤ c`(Qb)ωL(Qb),

then there is a constant C > 0 so that, for any pair of points xT (Qb) and yT (Qb) in T (Qb),( ∑
Qb∈G

`(Qb)−q|u(xT (Qb))− u(yT (Qb))|
qµ(T̃ (Qb))

)1/q

≤ C
(∫

∂Ω

|f(s)|pυ(s) dωL(s)
)1/p

for 1 < p ≤ q <∞, q ≥ 2. Here C = C(d,Ω, λ, p, q, ε, α, c) is independent of Qb, µ, υ, u,
and f .

Proof sketch. Here we take bQ(s) =
√
ωL(Qb)(KL(xT (Qb), s) − KL(yT (Qb), s)) with

KL(x, s) the elliptic kernel function generated by the operator L on Ω ([CaFaMSa]).
Decay and smoothness for these functions follow from classical estimates ([K]), and the
proof of almost-orthogonality follows using duality as above. We note that the estimate
|u(xT (Qb)) − u(yT (Qb)|2 . `(Qb)−d+2

∫eT (Qb)
|∇u(x)|2 dx, used in the proof of almost-

orthogonality for harmonic u(x), is also valid here ([DJeK]).
The second approach was originally suggested to the authors by R. L. Wheeden.

We prove the weighted inequality for a local Hölder coefficient, ‖u‖Hα(x), instead of for
|∇u(x)|. Since strictly elliptic functions such as u(x) always have a Hölder continuous
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representative in their domain of definition, it is much easier to work with the Hölder
coefficient than with the gradient. (The weighted norm inequality for elliptic u(x), using
|∇u(x)|, can be proved, see [Sw1], but extra conditions must be placed on both the
measure µ and the range of exponents p and q.) The definition of the Hölder coefficient
is

‖u‖Hα(x) = sup
y∈Bδ/50, y 6=x

|u(x)− u(y)|
|x− y|α

with Bδ(x)/50(x) = Bδ/50 a small disk of radius δ(x)/50, center x; δ(x) = d(x, ∂Ω).
With the same assumptions as stated in Theorem 4.1 we have (in particular, we still

have σdωL ∈ A∞(ωL) on ∂Ω):

Theorem 4.2. If, for all boundary cubes Qb ∈ G with `(Qb) ≤ C(R,Ω) a fixed constant,
µ and υ satisfy

µ(T (Qb))1/q

(∫
∂Ω

(
ω(Qb)

∞∑
j=0

2−jε

ω(2jQb)
χRj(Qb)(y

′)
)p′/2

σ(y′) dωL(y′)
)1/p′

≤ c`(Qb)(1+α)/2ωL(Qb),

then there is a constant C = C(d,Ω, λ, p, q, ε, α, η, c) so that, for all 1 < p ≤ q < ∞ and
q ≥ 2, we have(∫

Ω

‖u‖qHα(x) dµ(x)
)1/q

≤ C
(∫

∂Ω

|f(s)|pυ(s) dωL(s)
)1/p

.

Proof sketch. As in the harmonic case we start by using duality to estimate
(
∫

Ω
‖u‖qHα(x) dµ(x))1/q. For g(x) such that ‖g‖Lq′ (Ω,dµ) ≤ 1, the following equation will

hold:

sup
g : ‖g‖

Lq
′ (Ω,dµ)

≤1

∫
Ω

‖u‖Hα(x)g(x) dµ(x) =
(∫

Ω

‖u‖qHα(x) dµ(x)
)1/q

.

Consequently, we want to bound all such integrals by (
∫
∂Ω
|f(s)|pυ(s) dωL(s))1/p.

We have∫
Ω

‖u‖Hα(x)g(x) dµ(x) =
∫

Ω

sup
y∈Bδ/50(x), y 6=x

|u(x)− u(y)|
|x− y|α

g(x) dµ(x)

≤
∫

Ω

sup
y∈Bδ/50(x), y 6=x

1
|x− y|α

∫
∂Ω

|KL(x, s)−KL(y, s)| |f(s)| dωL(s) g(x) dµ(x)

≤
∑

Qb∈G∩supp g

∫
T (Qb)

g(x)
∫
∂Ω

`(Qb)−αK(xT (Qb), s)|f(s)| dωL(s) dµ(x).

We have assumed g ≥ 0, and that supp g is compact in Ω (1). The last inequality follows
from writing the integral over Ω as a sum over the regions T (Qb) and using the Hölder
continuity, and Harnack’s inequality, for the kernel function KL(x, s) in the first variable.
Now from Fubini’s theorem and interchanging sum and integral, the last expression is

(1) This method is equivalent to the assumptions on g in the proof of Theorem 1.1, Section 1.
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less than or equal to∫
∂Ω

∑
Qb∈G∩supp g

∫
T (Qb)

g(x)`(Qb)−αKL(xT (Qb), s) dµ(x)|f(s)| dωL(s)

≤
∫
∂Ω

{ ∑
Qb∈G∩supp g

`(Qb)−αKL(xT (Qb), s)
(∫

T (Qb)

g(x)q
′
dµ(x)

)1/q′

µ(TQb)
1/q

}
× |f(s)| dωL(s).

This last integral can be written as∫
∂Ω

T (s)|f(s)| dωL(s)

where
T (s) =

∑
Qb∈G∩supp g

λQbb(Qb)(s),

with b(Qb)(s) = `(Qb)(1−α)/2
√
ω(Qb)KL(xT (Qb), s).

From this point on the argument is very similar to the proof presented in previous
sections of this paper and to the proof in [Sw1]. The Lipschitz domain is dealt with by
dividing Ω into finitely many Lipschitz cylinders, Vj , j = 1, . . . ,m, in which the graph of
∂Ω∩∂Vj can be described as the graph of a Lipschitz function. The Vj overlap with each
other, but only up to a fixed number of times, so the estimates on each Vj can be summed
at the end. We use the Littlewood–Paley type inequality which says the following: Suppose
σ(s) dωL(s) ∈ A∞(dωL, ∂Ω), and T (s) =

∑
Qb∈F λQbc(Qb)(s), where F is a finite family

of cubes from G, with the c(Qb) satisfying the following three conditions:

(i) |c(Qb)(s)| .
√
ωL(Qb)2−εj/ω(2jQb) for all s ∈ Rj(Qb).

(ii) For all s, t ∈ ∂Ω such that |s− t| . `(Qb),

|c(Qb)(s)−c(Qb)(t)| .
(
|s− t|
`(Qb)

)α√
ωL(Qb)

( ∞∑
j=0

2−εj

ω(2jQb)
(χRj(Qb)(s)+χRj(Qb)(t))

)
.

(iii) For any finite linear combination
∑
Qb∈F λQbc(Qb)(s) = k(s),∫

∂Ω

|k(s)|2dωL(s) .
∑
Qb∈F

λ2
Qb
.

Then for any 0 < r < ∞, there is a constant C = C(r, d,Ω, L,m, ε, α, η, the A∞

constants of σdωL, constants appearing in the three conditions satisfied by the functions
c(Qb)) so that(∫

∂Ω

T (s)rσ(s) dωL(s)
)1/r

≤ C
(∫

∂Ω

( ∑
Qb∈F

λ2
Qb

∞∑
j=0

2−(2ε−η)j

ω(2jQb)
χRj(Qb)(s)

)r/2
σ(s) dωL(s)

)1/r

.
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This inequality is proved by the method of Theorem 2.1 adapted to Lipschitz domains.
The proof of almost-orthogonality for the functions

b(Qb)(s) = c(Qb)(s) = `(Qb)(1−α)/2
√
ωL(Qb)KL(xT (Qb), s)

differs from the proof in Section 3; here is an updated version of the proof from [Sw1]:
Let h(s) =

∑
Qb∈F λQbb(Qb)(s) be a finite sum with the λQb real numbers and the

b(Qb)(s) = `(Qb)(1−α)/2
√
ωL(Qb)KL(xT (Qb), s) as above.

Then, assuming that λQb ≥ 0 and h(s) ≥ 0,∫
∂Ω

h(s)2 dωL(s) =
∫
∂Ω

h(s)
( ∑
Qb∈F

λQbb(Qb)(s)
)
dωL(s)

=
∑
Qb∈F

λQb`(Qb)
(1−α)/2

√
ωL(Qb)

∫
∂Ω

h(s)KL(xT (Qb), s) dωL(s)

=
∑
Qb∈F

λQb`(Qb)
(1−α)/2

√
ωL(Qb) · v(xT (Qb))

where v(x) is the solution to Lv = 0 in Ω, and v(s) = h(s) on ∂Ω. Letting N(u)(s)
stand for the nontangential maximal function of u on ∂Ω, it is clear that v(xT (Qb)) ≤
infs∈Qb N(v)(s), so the last expression is

≤
∑
Qb∈F

λQb`(Qb)
(1−α)/2

√
ωL(Qb) inf

s∈Qb
N(v)(s)

≤
∑
Qb∈F

λQb`(Qb)
(1−α)/2

√
ωL(Qb)

(
1

ωL(Qb)

∫
Qb

N(v)2(s) dωL(s)
)1/2

=
∞∑

k=−N0

∑
`(Qb)=2−k

Qb∈F

λQb`(Qb)
(1−α)/2

(∫
Qb

N(v)2(s) dωL(s)
)1/2

with N0 being a fixed finite index, dependent on the size and Lipschitz characterization
of the boundary of the domain Ω. Now by the Cauchy–Schwarz inequality applied first
to the inside sum and then to the outer sum, this expression is

≤
∞∑

k=−N0

2−k((1−α)/2)

( ∑
`(Qb)=2−k

Qb∈F

λ2
Qb

)1/2( ∑
`(Qb)=2−k

Qb∈F

∫
Qb

N(v)2(s) dωL(s)
)1/2

≤
(∫

∂Ω

N(v)2(s) dωL(s)
)1/2( ∑

Qb∈F
λ2
Qb

)1/2( ∞∑
k=−N0

2−k(1−α)
)1/2

.

The fact that N(u)(s) is bounded above by the Hardy–Littlewood maximal function,
taken with respect to the elliptic measure ωL, [FeKP], means that(∫

∂Ω

N(v)2(s) dωL(s)
)1/2

≤ C
(∫

∂Ω

h(s)2 dωL(s)
)1/2

.
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Since 0 < α < 1, (
∑∞
k=−N0

2−k(1−α))1/2 = C(α,N0) and we have(∫
∂Ω

h(s)2 dωL(s)
)
≤ C(α,Ω)

( ∑
Qb∈F

λ2
Qb

)1/2
(∫

∂Ω

h(s)2 dωL(s)
)1/2

.

Dividing by (
∫
∂Ω
h(s)2 dωL(s))1/2 gives the almost-orthogonality.

There have been extensions of these results to solutions of the heat equation on a
half-space, [WhWi], [SwWi1], to solutions of strictly parabolic second order operators
on bounded domains with rough boundaries, [SwWi2], [Sw3], and to solutions of the
inhomogeneous elliptic equation, Lu(x) = ∇ · ~f (x) for x ∈ Ω, u(s) = 0 for s ∈ ∂Ω, [Sw2].
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