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Abstract

In this work, we construct and study certain classes of infinite-dimensional Lie groups that
are modelled on weighted function spaces. In particular, we construct a Lie group DiffW(X)
of diffeomorphisms, for each Banach space X and each set W of weights on X containing the
constant weights. We also construct certain types of “weighted mapping groups”. These are Lie
groups modelled on weighted function spaces of the form CkW(U,L(G)), where G is a given (finite-
or infinite-dimensional) Lie group. Both the weighted diffeomorphism groups and the weighted
mapping groups are shown to be regular Lie groups in Milnor’s sense.

We also discuss semidirect products of such groups. Moreover, we study the integrability of
Lie algebras of vector fields of the form C∞W(X,X) o L(G), where X is a Banach space and G a
Lie group acting smoothly on X.
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1. Introduction

Diffeomorphism groups of compact manifolds, as well as groups Ck(K,G) of Lie group-

valued mappings on compact manifolds are among the most important and well-studied

examples of infinite-dimensional Lie groups (see for example [Les67], [Mil84], [Ham82],

[Omo97], [PS86] and [KM97]). While the diffeomorphism group Diff(K) of a compact

manifold is modelled on the Fréchet space C∞(K,TK) of smooth vector fields on K,

for a noncompact smooth manifold M , it is not possible to make Diff(M) a Lie group

modelled on the space of all smooth vector fields in a satisfactory way (see [Mil82]). We

mention that the LF-space C∞c (M,TM) of compactly supported smooth vector fields can

be used as the modelling space for a Lie group structure on Diff(M). But the topology on

this Lie group is too fine for many purposes; the group Diffc(M) of compactly supported

diffeomorphisms (which coincide with the identity map outside some compact set) is an

open subgroup (see [Mic80] and [Mil82]). Likewise, it is no problem to turn the groups

Ckc (M,G) of compactly supported Lie group-valued maps into Lie groups (cf. [Mil84],

[AHKM+93], [Glö02b]). However, only in special cases does there exist a Lie group struc-

ture on C∞(M,G), equipped with its natural group topology, the smooth compact-open

topology (see [NW08]).

In view of these limitations, it is natural to look for Lie groups of diffeomorphisms

which are larger than Diffc(M) and modelled on larger Lie algebras of vector fields than

C∞c (M,TM). In the same vein, one would like to find mapping groups modelled on larger

spaces than Ckc (M,L(G)).

In this work, we construct such groups in the important case where the noncompact

manifold M is a vector space (or an open subset thereof, in the case of mapping groups).

For most of the results, the vector space is even allowed to be a Banach space X. The

groups we consider are modelled on spaces of weighted functions on X. For example, we

are able to construct a Lie group structure on the group DiffS(Rn) of diffeomorphisms

differing from idRn by a rapidly decreasing Rn-valued map. Considered as a topological

group, this group has been used in quantum physics ([Gol04]). For n = 1, another Lie

group structure (in the setting of convenient differential calculus) has been given by

P. Michor ([Mic06, §6.4]), and applied to the Burgers equation. The general case was

treated in the author’s unpublished diploma thesis [Wal06].

To explain our results, let X and Y be Banach spaces, U ⊆ X open and nonempty,

k ∈ N := N ∪ {∞}, and W a set of functions f on U taking values in the extended

real line R := R ∪ {∞,−∞} called weights. As usual, we let CkW(U, Y ) be the set of all

k-times continuously Fréchet differentiable functions γ : U → Y such that f · ‖D(`)γ‖op

[6]



1. Introduction 7

is bounded for all integers ` ≤ k and all f ∈ W. Then CkW(U, Y ) is a locally convex

topological vector space in a natural way. We prove (see Theorems 4.2.17 and 4.3.11)

Theorem. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Then DiffW(X) :=

{φ ∈ Diff(X) : φ − idX , φ
−1 − idX ∈ C∞W(X,X)} is a regular Lie group modelled on

C∞W(X,X).

Replacing C∞W(X,X) by the subspace of functions γ such that f(x) ·‖D(`)γ(x)‖op → 0

as ‖x‖ → ∞, we obtain a subgroup DiffW(X)◦ of DiffW(X) which is also a Lie group

(see Proposition 4.2.19).

As for mapping groups, we first consider mappings into Banach Lie groups. In Sec-

tion 6.1 we show

Theorem. Let X be a normed space, U ⊆ X an open nonempty subset, W ⊆ RU with

1U ∈ W, k ∈ N and G a Banach Lie group. Then there exists a connected Lie group

CkW(U,G) ⊆ GU modelled on CkW(U,L(G)), and this Lie group is regular.

Using the natural action of diffeomorphisms on functions, we can form the semidirect

product C∞W(X,G) o DiffW(X) and make it a Lie group.

In the case of finite-dimensional domains, we can even discuss mappings into arbitrary

Lie groups modelled on locally convex spaces. To this end, given a locally convex space

Y and an open subset U in a finite-dimensional vector space X we define a certain space

CkW(U, Y )• of Ck-maps which decay together with their derivatives as we approach the

boundary of U (see Definition 3.4.8 for details). We obtain the following result:

Theorem. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset, W ⊆
RU with 1U ∈ W, k ∈ N and G a locally convex Lie group. Then there exists a connected

Lie group CkW(U,G)• ⊆ GU modelled on CkW(U,L(G))•.

We also discuss certain larger subgroups of GU admitting Lie group structures that

make CkW(U,G)• an open normal subgroup (see Section 6.2.2).

Finally, we consider Lie groups G acting smoothly on a Banach space X. We investi-

gate when the G-action leaves the identity component DiffW(X)0 of DiffW(X) invariant

and whether DiffW(X)0 o G can be made a Lie group in this case. In particular, we

show that DiffS(Rn)0 o GL(Rn) is a Lie group for each n (Example 5.2.4). By contrast,

GL(Rn) does not leave Diff{1Rn}(R
n) invariant (Example 5.2.5).

We mention that certain weighted mapping groups on finite-dimensional spaces (con-

sisting of smooth mappings) have already been discussed in [BCR81, §4.2] assuming

additional hypotheses on the range group (cf. Remark 6.2.29). Besides the added gen-

erality, we provide a more complete discussion of superposition operators on weighted

function spaces.

In the case where W = {1X}, our group DiffW(X) also has a counterpart in the

studies of Jürgen Eichhorn and collaborators ([Eic96], [ES96], [Eic07]), who investigated

certain diffeomorphism groups on noncompact manifolds with bounded geometry.

Semidirect products of diffeomorphism groups and function spaces on compact ma-

nifolds arise in ideal magnetohydrodynamics (see [KW09, II.3.4]). Further, the group
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S(Rn)oDiffS(Rn) and its continuous unitary representations are encountered in quantum

physics (see [Gol04]; cf. also [Ism96, §34] and the references therein).

2. Preliminaries and notation

We give some notation and basic definitions. More details are provided in the appendix,

as is a list of symbols used in this work.

2.1. Notation. We write R := R∪{−∞,∞}, N := N∪{∞} and N∗ := N \ {0}. Further

we denote norms by ‖ · ‖.
Definition 2.1.1. Let A,B be subsets of the normed space X. As usual, the distance of

A and B is defined as

dist(A,B) := inf{‖a− b‖ : a ∈ A, b ∈ B} ∈ [0,∞].

Thus dist(A,B) =∞ iff A = ∅ or B = ∅.
Further, for x ∈ X and r ∈ R we define

BX(x, r) := {y ∈ X : ‖y − x‖ < r}
Occasionally, we just write Br(x) instead of BX(x, r). For the closed ball, we write Br(x)

and the like.

Further, we define

D := BK(0, 1),

where K ∈ {R,C}. No confusion will arise from this abuse of notation.

2.2. Differential calculus of maps between locally convex spaces. We give basic

definitions for the differential calculus for maps between locally convex spaces that is

known as Keller’s Ckc -theory. More results can be found in Section A.1.

Definition 2.2.1 (Directional derivatives). Let X and Y be locally convex spaces, U ⊆
X an open nonempty set, u ∈ U , x ∈ X and f : U → Y a map. The derivative of f at u

in the direction x is defined as

lim
t→0
t∈K∗

f(u+ tx)− f(u)

t
=: (Dxf)(u) =: df(u;x),

whenever that limit exists.

Definition 2.2.2. Let X and Y be locally convex spaces, U ⊆ X an open nonempty set,

and f : U → Y be a map.

We call f a C1
K-map or just C1

K if f is continuous, the derivative df(u;x) exists for all

(u, x) ∈ U ×X and the map df : U ×X → Y is continuous.

Inductively, for a k ∈ N we call f a CkK-map or just CkK if f is a C1
K-map and d1f :=

df : U ×X → Y is a Ck−1
K -map. In this case, the kth iterated differential of f is defined

by

dkf := dk−1(df) : U ×X2k−1 → Y.

If f is a CkK-map for each k ∈ N, we call f a C∞K -map or just C∞K or smooth.
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Further, for each k ∈ N we define

CkK(U, Y ) := {f : U → Y : f is CkK}.

Often, we shall simply write Ck(U, Y ), Ck etc.

It is obvious from the definition of differentiability that iterated directional derivatives

exist and depend continuously on the directions. The converse of this assertion also holds.

Proposition 2.2.3. Let f : U → Y be a continuous map and r ∈ N. Then f ∈ Cr(U, Y )

iff for all u ∈ U , k ∈ N with k ≤ r and x1, . . . , xk ∈ X the iterated directional derivative

d(k)f(u;x1, . . . , xk) := (Dxk · · ·Dx1
f)(u)

exists and the map

U ×Xk → Y : (u, x1, . . . , xk) 7→ d(k)f(u;x1, . . . , xk)

is continuous. We call d(k)f the kth derivative of f .

2.3. Fréchet differentiability. We give basic definitions for Fréchet differentiability

for maps between normed spaces. More results can be found in Section A.2.

Definition 2.3.1 (Fréchet differentiability). Let X and Y be normed spaces and U an

open nonempty subset of X. We call a map γ : U → Y Fréchet differentiable or FC1 if it

is a C1-map and the map

Dγ : U → L(X,Y ) : x 7→ dγ(x; ·)

is continuous. Inductively, for k ∈ N∗ we call γ a FCk+1-map if it is Fréchet differentiable

and Dγ is an FCk-map. We denote the set of all k-times Fréchet differentiable maps from

U to Y with FCk(U, Y ). Additionally, we define the smooth maps by

FC∞(U, Y ) :=
⋂
k∈N∗

FCk(U, Y )

and FC0(U, Y ) := C0(U, Y ). The map

D : FCk+1(U, Y )→ FCk(U,L(X,Y )) : γ 7→ Dγ

is called the derivative operator.

Remark 2.3.2. Let X and Y be normed spaces, U an open nonempty subset of X,

k ∈ N∗ and γ ∈ FCk(U, Y ). Then for each ` ∈ N∗ with ` ≤ k there exists a continuous

map

D(`)γ : U → L`(X,Y ),

where L`(X,Y ) denotes the space of `-linear maps X` → Y , endowed with the operator

topology. The map D(`)γ can be described more explicitly. If γ ∈ FCk(U, Y ), then also

γ ∈ Ck(U, Y ), and for each x ∈ U we have the relation

D(k)γ(x) = d(k)γ(x; ·).
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3. Weighted function spaces

In this chapter we give the definition of some locally convex vector spaces consisting of

weighted functions. The Lie groups that are constructed in this work will be modelled on

these spaces. We first discuss maps between normed spaces. In Section 3.4, we will also

look at maps that take values in arbitrary locally convex spaces. The treatment of the

latter spaces requires some rather technical effort. Since these function spaces are only

needed in Section 6.2, the reader may possibly skip this section.

3.1. Definition and examples

Definition 3.1.1. Let X and Y be normed spaces and U ⊆ X an open nonempty set.

For k ∈ N and a map f : U → R we define the quasinorm

‖ · ‖f,k : FCk(U, Y )→ [0,∞] : φ 7→ sup{|f(x)| ‖D(k)φ(x)‖op : x ∈ U}.

Furthermore, for any nonempty set W of maps U → R and k ∈ N we define the vector

space

CkW(U, Y ) := {γ ∈ FCk(U, Y ) : (∀f ∈ W, ` ∈ N, ` ≤ k) ‖γ‖f,` <∞}

and notice that the seminorms ‖ · ‖f,` induce a locally convex vector space topology on

CkW(U, Y ).

We call the elements of W weights and CkW(U, Y ) a space of weighted maps or space

of weighted functions.

An important example is the space of bounded functions with bounded derivatives:

Example 3.1.2. Let k ∈ N. We define

BCk(U, Y ) := Ck{1U}(U, Y ).

Remark 3.1.3. Let U and V be nonempty open subsets of a normed space X and U ⊆ V .

For a set W ⊆ RV , we define

W|U := {f |U : f ∈ W}.

Further we write with an abuse of notation

CkW(U, Y ) := CkW|U (U, Y ).

Remark 3.1.4. As is clear, for any set T ⊆ 2W with W =
⋃
F∈T F we have

CkW(U, Y ) =
⋂
F∈T

`∈N, `≤k

C`F (U, Y ).

We define some subsets of CkW(U, Y ):

Definition 3.1.5. Let X and Y be normed spaces, U ⊆ X and V ⊆ Y open nonempty

sets and W ⊆ RU . For k ∈ N we set

CkW(U, V ) := {γ ∈ CkW(U, Y ) : γ(U) ⊆ V },

C∂,kW (U, V ) := {γ ∈ CkW(U, V ) : (∃r > 0) γ(U) +BY (0, r) ⊆ V }.
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Obviously C∂,kW (U, V ) ⊆ CkW(U, V ), and if 1U ∈ W, then C∂,kW (U, V ) is open in CkW(U, Y ).

The symbol BC∂,k(U, V ) is defined analogously.

If U ⊆ X is an open neighborhood of 0, we set

CkW(U, Y )0 := {γ ∈ CkW(U, Y ) : γ(0) = 0}.

Analogously, we define CkW(U, V )0, C∂,kW (U, V )0 and BC0(U, V )0 as the corresponding sets

of functions vanishing at 0.

Furthermore, we define the set of decreasing weighted maps as

CkW(U, Y )o := {γ ∈ CkW(U, Y ) : (∀f ∈ W, ` ∈ N, ` ≤ k, ε > 0)(∃r > 0) ‖γ|U\Br(0)‖f,` < ε}.

Note that we are primarily interested in the spaces CkW(X,Y )o, but for technical reasons

it is useful to have the spaces CkW(U, Y )o available for U ⊂ X.

Lemma 3.1.6. CkW(U, Y )o is a closed vector subspace of CkW(U, Y ).

Proof. It is obvious from the definition of CkW(U, Y )o that it is a vector subspace. It

remains to show that it is closed. To this end, let (γi)i∈I be a net in CkW(U, Y )o that

converges to γ ∈ CkW(U, Y ) in the topology of CkW(U, Y ). Let f ∈ W, ` ∈ N with ` ≤ k

and ε > 0. Then there exists an iε ∈ I such that

i ≥ iε ⇒ ‖γ − γi‖f,` < ε/2.

Further there exists an r > 0 such that

‖γiε |U\Br(0)‖f,` < ε/2.

Hence

‖γ|U\Br(0)‖f,` ≤ ‖γ|U\Br(0) − γiε |U\Br(0)‖f,` + ‖γiε |U\Br(0)‖f,` < ε.

Examples involving finite-dimensional spaces. Let K ∈ {R,C} and n ∈ N. In the follow-

ing, let U be an open nonempty subset of Kn. For a map f : U → R and a multiindex

α ∈ Nn with |α| ≤ k we define

‖ · ‖f,α : CkK(U, Y )→ [0,∞] : φ 7→ sup{|f(x)| ‖∂αφ(x)‖ : x ∈ U}.

We conclude from identity (A.3.6.1) in Proposition A.3.6 that for a setW of maps U → R
and k ∈ N

CkW(U, Y ) = {φ ∈ CkK(U, Y ) : (∀f ∈ W, α ∈ Nn0 , |α| ≤ k) ‖φ‖f,α <∞},

and the topology defined by the seminorms ‖ · ‖f,α coincides with the one defined above

using the seminorms ‖ · ‖f,`. This characterization of CkW(U, Y ) allows us to recover well-

known spaces as special cases:

• If W is the space C0(U,Rm) of all continuous functions, then

C∞W(U,Rm) = D(U,Rm) = C∞c (U,Rm)

where D(U,Rm) denotes the space of compactly supported smooth functions from U

to Rm; it should be noticed that C∞C0(U,Rm)(U,R
m) is not endowed with the ordinary

inductive limit topology lim−→K
DK(U,Rm), but instead the (coarser) topology making
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it the projective limit

lim←−
p∈N

(lim−→
K

DpK(U,Rm)) = lim←−
p∈N
Dp(U,Rm),

where DpK(U,Rm) denotes the Cp-maps with support in the compact set K, endowed

with the topology of uniform convergence of derivatives up to order p; and Dp(U,Rm)

the compactly supported Cp-maps endowed with the inductive limit topology of the

sets DpK(U,Rm).

• The vector-valued Schwartz space S(Rn,Rn). Here U = Y = Rn, k =∞ and W is the

set of polynomial functions on Rn.

• The space BCk(U,Km) of all bounded Ck-functions from U ⊆ Kn to Km whose partial

derivatives are bounded (for W = {1U}); see Example 3.1.2.

• If W = {1X ,∞· 1X\U}, then the space CkW(X,Y ) consists of BCk(X,Y ) functions that

are defined on X and vanish on the complement of U .

3.2. Topological and uniform structure. We analyze the topology of the weighted

function spaces defined above. In Proposition 3.2.3 we shall provide a method that greatly

simplifies the treatment of these spaces; it will be used throughout this work. We will

also describe the spaces CkW(U, Y ) as the projective limits of suitable larger spaces. In

particular, this will simplify the treatment of the spaces C∞W(U, Y ). Further we give a

sufficient criterion on the set W which ensures that CkW(U, Y ) is complete.

3.2.1. Reduction to lower order. For ` > 1, it is hard to estimate the seminorms

‖ · ‖f,` because in most cases the higher order derivatives D(`)· cannot be computed. We

develop a technique that allows us to avoid the computation.

First, we show that CkW(U, Y ) is endowed with the initial topology of the derivative

maps.

Lemma 3.2.1. Let X and Y be normed spaces, U ⊆ X an open nonempty set, k ∈ N,

W ⊆ RU and γ ∈ FCk(U, Y ). Then

γ ∈ CkW(U, Y )⇔ (∀` ∈ N, ` ≤ k) D(`)γ ∈ C0
W(U,L`(X,Y )),

and the map

CkW(U, Y )→
∏
`∈N
`≤k

C0
W(U,L`(X,Y )) : γ 7→ (D(`)γ)`∈N,`≤k

is a topological embedding.

Proof. Both assertions are clear from the definition of CkW(U, Y ) and C0
W(U,L`(X,Y )).

The next lemma states a relation between the higher order derivatives of γ and those

of Dγ.

Lemma 3.2.2. Let X and Y be normed spaces, U ⊆ X an open nonempty set, k ∈ N and

γ ∈ FCk+1(U, Y ). Then

‖D(`)Dγ(x)‖op = ‖D(`+1)γ(x)‖op (3.2.2.1)
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for each x ∈ U and ` < k. In particular, for each map f ∈ RU , ` < k and subset V ⊆ U ,

‖γ|V ‖f,`+1 = ‖(Dγ)|V ‖f,`. (3.2.2.2)

Proof. In Lemma A.2.14 the identity

D(`+1)γ = E`,1 ◦ (D(`)Dγ)

is proved, where E`,1 : L(X,L`(X,Y )) → L`+1(X,Y ) is an isometric isomorphism (see

Lemma A.2.5). The asserted identities follow immediately.

We can state the main tool for the treatment of weighted function spaces CkW(U, Y )

with k ≥ 1. It is useful because it allows induction arguments of the following kind:

Suppose we want to show that γ ∈ CkW(U, Y ). First, we have to show that γ ∈ C0
W(U, Y ).

Then, we suppose γ ∈ C`W(U, Y ) and show that Dγ in C`W(U,L(X,Y )) by expressing it

in terms of γ. This finishes the induction argument.

Proposition 3.2.3 (Reduction to lower order). Let X and Y be normed spaces, U ⊆ X
an open nonempty set, W ⊆ RU , k ∈ N and γ ∈ FC1(U, Y ). Then

γ ∈ Ck+1
W (U, Y )⇔ (Dγ, γ) ∈ CkW(U,L(X,Y ))× C0

W(U, Y ).

Moreover, the map

Ck+1
W (U, Y )→ CkW(U,L(X,Y ))× C0

W(U, Y ) : γ 7→ (Dγ, γ)

is a topological embedding. In particular, the map

D : Ck+1
W (U, Y )→ CkW(U,L(X,Y ))

is continuous.

Proof. The first relation follows immediately from the definition of FCk-maps and iden-

tity (3.2.2.2). This identity, together with Lemma 3.2.1, also implies that Ck+1
W (U, Y ) is

endowed with the initial topology with respect to

D : Ck+1
W (U, Y )→ CkW(U,L(X,Y ))

and the inclusion map

Ck+1
W (U, Y )→ C0

W(U, Y ).

This proves the second assertion.

The same argument can be made for the vanishing weighted functions.

Corollary 3.2.4. Let X and Y be normed spaces, U ⊆ X an open nonempty set,

W ⊆ RU , k ∈ N and γ ∈ FC1(U, Y ). Then

γ ∈ Ck+1
W (U, Y )o ⇔ (Dγ, γ) ∈ CkW(U,L(X,Y ))o × C0

W(U, Y )o.

Proof. This is also an immediate consequence of Proposition 3.2.3 and (3.2.2.2).

3.2.2. Projective limits and the topology of C∞W(U, Y ). Sometimes it is useful that

CkW(U, Y ) can be written as the projective limit of larger weighted functions spaces.

Proposition 3.2.5. Let X and Y be normed spaces, U ⊆ X an open nonempty set,

k ∈ N and W ⊆ RU a nonempty set. Further let (Fi)i∈I be a directed family of nonempty
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subsets of W such that
⋃
i∈I Fi =W. Consider I × {` ∈ N : ` ≤ k} as a directed set via

((i1, `1) ≤ (i2, `2)) ⇔ i1 ≤ i2 and `1 ≤ `2.

Then CkW(U, Y ) is the projective limit of

{C`Fi(U, Y ) : ` ∈ N, ` ≤ k, i ∈ I}

in the category of topological (vector) spaces, with the inclusion maps as morphisms.

Proof. Since

CkW(U, Y ) =
⋂
i∈I

`∈N, `≤k

C`Fi(U, Y ),

the set CkW(U, Y ) is the desired projective limit as a set, and hence also as a vector

space. Moreover, it is well known that the initial topology with respect to the limit

maps CkW(U, Y )→ C`Fi(U, Y ) makes CkW(U, Y ) the projective limit as a topological space,

and also as a topological vector space. But it is clear from the definition that the given

topology on CkW(U, Y ) coincides with this initial topology.

Corollary 3.2.6. Let X and Y be normed spaces, U ⊆ X an open nonempty set and

W ⊆ RU . The space C∞W(U, Y ) is endowed with the initial topology with respect to the

inclusion maps

C∞W(U, Y )→ CkW(U, Y ).

Moreover, C∞W(U, Y ) is the projective limit of the spaces CkW(U, Y ) with k ∈ N, together

with the inclusion maps.

Proof. This is an immediate consequence of Proposition 3.2.5.

3.2.3. A completeness criterion. We describe a condition on W that ensures that

CkW(U, Y ) is complete, provided that Y is a Banach space. The proof uses Proposi-

tion 3.2.3. We start with the following observation concerning the continuity of evaluation

maps.

Lemma 3.2.7. Let X and Y be normed spaces, U ⊆ X an open nonempty set, k ∈ N and

x ∈ U . Suppose that W ⊆ RU contains a weight fx ∈ W with fx(x) 6= 0. Then

evx : CkW(U, Y )→ Y : γ 7→ γ(x)

is a continuous linear map.

Proof. If there exists f ∈ W with f(x) ∈ {−∞,∞}, then for each γ ∈ CkW(U, Y ),

‖evx(γ)‖ = 0 ≤ ‖γ‖f,0.

Otherwise, for each f ∈ W with f(x) 6= 0 and γ ∈ CkW(U, Y ), we have

‖evx(γ)‖ = ‖γ(x)‖ ≤ 1

|f(x)|
‖γ‖f,0.

In both cases, these estimates ensure the continuity of evx.

We examine when the image of Ck+1
W (U, Y ) under the embedding described in Propo-

sition 3.2.3 is closed.
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Proposition 3.2.8. Let X and Y be normed spaces, U ⊆ X an open nonempty set and

k ∈ N. Further let W ⊆ R such that for each compact line segment S ⊆ U there exists

fS ∈ W with infx∈S |fS(x)| > 0. Then the image of Ck+1
W (U, Y ) under the embedding

described in Proposition 3.2.3 is closed.

Proof. Let (γi)i∈I be a net in Ck+1
W (U, Y ) such that (γi)i∈I converges to γ in C0

W(U, Y ) and

the net (Dγi)i∈I converges to Γ in CkW(U,L(X,Y )). We have to show that γ ∈ Ck+1
W (U, Y )

with Dγ = Γ.

To this end, consider x ∈ U , h ∈ X and t ∈ R∗ such that the line segment Sx,t,h :=

{x + sth : s ∈ [0, 1]} is contained in U . Since evaluation maps and weak integration are

continuous (see Lemmas 3.2.7 and A.1.7, respectively) and the hypothesis on W implies

that (Dγi)i∈I converges to Γ uniformly on Sx,t,h, we derive

γ(x+ th)− γ(x)

t
= lim

i∈I

γi(x+ th)− γi(x)

t

= lim
i∈I

∫ 1

0
Dγi(x+ sth) · (th) ds

t
=

∫ 1

0

Γ(x+ sth) · h ds.

Since Γ is continuous, we can apply Proposition A.1.8 and get

lim
t→0

γ(x+ th)− γ(x)

t
=

∫ 1

0

lim
t→0

(Γ(x+ sth) · h) ds = Γ(x) · h.

Because Γ and the evaluation of linear maps are continuous (Lemma A.2.3), γ is a C1-

map with dγ(x; ·) = Γ(x), and another application of the continuity of Γ shows that

γ ∈ FC1(U, Y ) with Dγ = Γ. Finally we conclude from Proposition 3.2.3 that γ ∈
Ck+1
W (U, Y ).

The last proposition allows us to deduce the completeness of CkW(U, Y ) from that of

C0
W(U, Y ).

Corollary 3.2.9. In the situation of Proposiion 3.2.8, assume that C0
W(U, Y ) is complete

for each Banach space Y . Then also CkW(U, Y ) is complete, for each k ∈ N.

Proof. The proof for k <∞ is by induction.

k = 0: This holds by our hypothesis.

k → k + 1: We conclude from Proposition 3.2.8 that Ck+1
W (U, Y ) is isomorphic to a

closed vector subspace of CkW(U,L(X,Y )) × C0
W(U, Y ), which is complete by induction

hypothesis.

k =∞: This follows from Corollary 3.2.6 and the fact that CkW(U, Y ) is complete for

all k ∈ N because projective limits of complete topological vector spaces are complete.

We give a sufficient condition for the completeness of C0
W(U, Y ).

Proposition 3.2.10. Let X be a normed space, U ⊆ X an open nonempty set and Y

a Banach space. Further let W ⊆ R such that for each compact set K ⊆ U there exists

fK ∈ W with infx∈K |fK(x)| > 0. Then C0
W(U, Y ) is complete.

Proof. Let (γi)i∈I be a Cauchy net in C0
W(U, Y ). The hypothesis on W implies that

the topology of C0
W(U, Y ) is finer than the topology of uniform convergence on compact

sets. Hence we deduce from the completeness of Y that there exists a map γ : U → Y
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to which (γi)i∈I converges uniformly on each compact subset of U ; and since each γi
is continuous, the restriction of γ to each compact subset is continuous. Hence γ is

sequentially continuous since the union of a convergent sequence with its limit is compact;

but U is first countable, so γ is continuous.

It remains to show that γ ∈ C0
W(U, Y ) and (γi)i∈I converges to γ in C0

W(U, Y ). To see

this, let f ∈ W and ε > 0. Then there exists an ` ∈ I such that

(∀i, j ≥ `) ‖γi − γj‖f,0 ≤ ε,

which is equivalent to

(∀x ∈ U, i, j ≥ `) |f(x)| ‖γi(x)− γj(x)‖ ≤ ε.

If we fix i in this estimate and let γj(x) pass to its limit, then we get

(∀x ∈ U, i ≥ `) |f(x)| ‖γi(x)− γ(x)‖ ≤ ε. (∗)

The triangle inequality now shows that

(∀x ∈ U) |f(x)| ‖γ(x)‖ ≤ ε+ |f(x)| ‖γ`(x)‖ ≤ ε+ ‖γ`‖f,0,

so γ ∈ C0
W(U, Y ). Finally we conclude from (∗) that ‖γi−γ‖f,0 ≤ ε for all i ≥ `, so (γi)i∈I

converges to γ in C0
W(U, Y ).

Finally, we state the derived criterion in a citable form.

Corollary 3.2.11. Let X be a normed space, U ⊆ X an open nonempty set, Y a Banach

space and k ∈ N. Further let W ⊆ R such that for each compact set K ⊆ U there exists

fK ∈ W with infx∈K |fK(x)| > 0. Then CkW(U, Y ) is complete.

Proof. This is an immediate consequence of Corollary 3.2.9 and Proposition 3.2.10.

Corollary 3.2.12. Let X be a normed space, U ⊆ X an open nonempty set, Y a

Banach space and k ∈ N. Further let W be a set of weights with 1U ∈ W. Then CkW(U, Y )

is complete; in particular, BCk(U, Y ) is complete.

3.2.3.1. An integrability criterion. The given completeness criterion entails a criterion

for the existence of the weak integral of a continuous curve to a space CkW(U, Y ) where

Y is not necessarily complete.

Lemma 3.2.13. Let X and Y be normed spaces, U ⊆ X a nonempty open set, k ∈ N,

W ⊆ RU , Γ : [a, b]→ CkW(U, Y ) a map and R ∈ CkW(U, Y ).

(a) Assume that Γ is weakly integrable and that for each x ∈ U there exists fx ∈ W with

fx(x) 6= 0. Then∫ b

a

Γ(s) ds = R ⇔ (∀x ∈ U) evx

(∫ b

a

Γ(s) ds

)
= R(x),

and for each x ∈ U we have

evx

(∫ b

a

Γ(s) ds

)
=

∫ b

a

evx(Γ(s)) ds. (∗)
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(b) Assume that for each compact set K ⊆ U , there exists a weight fK ∈ W with

infx∈K |fK(x)| > 0, that Γ is continuous and∫ b

a

evx(Γ(s)) ds = evx(R) (∗∗)

for all x ∈ U . Then Γ is weakly integrable with∫ b

a

Γ(s) ds = R.

Proof. (a) Since {evx : x ∈ U} separates the points of CkW(U, Y ), the stated equivalence

is obvious. Further, we proved in Lemma 3.2.7 that the condition on W implies that

{evx : x ∈ U} ⊆ L(CkW(U, Y ), Y ), so (∗) follows from Lemma A.1.4.

(b) Let Ỹ be the completion of Y . Then CkW(U, Y ) ⊆ CkW(U, Ỹ ), and we denote the

inclusion map by ι. It is obvious that ι is a topological embedding. In the following, we

denote the evaluation of CkW(U, Ỹ ) at x ∈ U with ẽvx.

Since we proved in Corollary 3.2.11 that the condition on W ensures that CkW(U, Ỹ )

is complete, ι◦Γ is weakly integrable. Since ẽvx ◦ ι = evx for x ∈ U , we conclude from (a)

(using (∗) and (∗∗)) that ∫ b

a

(ι ◦ Γ)(s) ds = ι(R).

This identity ensures the integrability of Γ: By the Hahn–Banach theorem, each λ ∈
CkW(U, Y )′ extends to a λ̃ ∈ CkW(U, Ỹ )′, that is λ̃ ◦ ι = λ. Hence∫ b

a

(λ ◦ Γ)(s) ds =

∫ b

a

(λ̃ ◦ ι ◦ Γ)(s) ds = λ̃(ι(R)) = λ(R).

3.3. Composition on weighted functions and superposition operators. In this

subsection we discuss the behaviour of weighted functions when they are composed with

certain functions. In particular, we show that a continuous multilinear or a suitable ana-

lytic map induce a superposition operator between weighted function spaces. Moreover,

we examine the composition between bounded functions and between bounded functions

mapping 0 to 0 and weighted functions.

3.3.1. Composition with a multilinear map. We prove that a continuous multilinear

map from a normed space Y1 × · · · × Ym to a normed space Z induces a continuous

multilinear map from CkW(U, Y1) × · · · × CkW(U, Ym) to CkW(U,Z). As a preparation, we

calculate the differential of a composition of a multilinear map and other differentiable

maps. The following definition is quite useful to do that.

Definition 3.3.1. Let Y1, . . . , Ym, X and Z be normed spaces and b : Y1×· · ·×Ym → Z

a continuous m-linear map. For each i ∈ {1, . . . ,m} we define the m-linear continuous

map

b(i) : Y1 × · · · × Yi−1 × L(X,Yi)× Yi+1 × · · · × Ym → L(X,Z),

(y1, . . . , yi−1, T, yi+1, . . . , ym) 7→ (h 7→ b(y1, . . . , yi−1, T · h, yi+1, . . . , ym)).

Lemma 3.3.2. Let Y1, . . . , Ym and Z be normed spaces, U be an open nonempty subset

of the normed space X and k ∈ N. Further let b : Y1 × · · · × Ym → Z be a continuous
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m-linear map and γ1 ∈ FCk(U, Y1), . . . , γm ∈ FCk(U, Ym). Then

b ◦ (γ1, . . . , γm) ∈ FCk(U,Z)

with

D(b ◦ (γ1, . . . , γm)) =

m∑
i=1

b(i) ◦ (γ1, . . . , γi−1, Dγi, γi+1, . . . , γm). (3.3.2.1)

Proof. To calculate the derivative of b ◦ (γ1, . . . , γm), we apply the chain rule to get

D(b ◦ (γ1, . . . , γm))(x) · h =

m∑
i=1

b(γ1(x), . . . , γi−1(x), Dγi(x) · h, γi+1(x), . . . , γm(x))

=

m∑
i=1

b(i)(γ1(x), . . . , γi−1(x), Dγi(x), γi+1(x), . . . , γm(x)) · h.

We are ready to prove the result about the superposition.

Proposition 3.3.3. Let U be an open nonempty subset of the normed space X. Let

Y1, . . . , Ym be normed spaces, k ∈ N and W,W1, . . . ,Wm ⊆ RU nonempty sets such that

(∀f ∈ W) (∃gf,1 ∈ W1, . . . , gf,m ∈ Wm) |f | ≤ |gf,1| · · · |gf,m|.

Further let Z be another normed space and b : Y1 × · · · × Ym → Z a continuous m-linear

map. Then

b ◦ (γ1, . . . , γm) ∈ CkW(U,Z)

for all γ1 ∈ CkW1
(U, Y1), . . . , γm ∈ CkWm

(U, Ym). The map

Mk(b) : CkW1
(U, Y1)× · · · × CkWm

(U, Ym)→ CkW(U,Z) : (γ1, . . . , γm) 7→ b ◦ (γ1, . . . , γm)

is m-linear and continuous.

Proof. For k <∞, we proceed by induction on k.

k = 0: For f ∈ W, x ∈ U and γ1 ∈ CkW1
(U, Y1), . . . , γm ∈ CkWm

(U, Ym) we compute

|f(x)| ‖b ◦ (γ1, . . . , γm)(x)‖ ≤ ‖b‖op

m∏
i=1

|gf,i|‖γi(x)‖ ≤ ‖b‖op

m∏
i=1

‖γi‖gf,i,0,

so b ◦ (γ1, . . . , γm) ∈ C0
W(U,Z). From this estimate we also conclude

‖M0(b)(γ1, . . . , γm)‖f,0 = ‖b ◦ (γ1, . . . , γm)‖f,0 ≤ ‖b‖op

m∏
i=1

‖γi‖gf,i,0,

so M0(b) is continuous at 0. Since the m-linearity of M0(b) is obvious, this implies the

continuity of M0(b) (see [Bou87, Chapter I, §1, no. 6]).

k → k + 1: From Proposition 3.2.3 (together with the induction base) we know that

for γ1 ∈ Ck+1
W1

(U, Y1), . . . , γm ∈ Ck+1
Wm

(U, Ym),

b ◦ (γ1, . . . , γm) ∈ Ck+1
W (U,Z) ⇔ D(b ◦ (γ1, . . . , γm)) ∈ CkW(U,L(X,Z))

and that Mk+1(b) is continuous if

D ◦Mk+1(b) : Ck+1
W1

(U, Y1)× · · · × Ck+1
Wm

(U, Ym)→ CkW(U,L(X,Z))
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is. We know from (3.3.2.1) in Lemma 3.3.2 that

D(b ◦ (γ1, . . . , γm)) =

m∑
i=1

b(i) ◦ (γ1, . . . , γi−1, Dγi, γi+1, . . . , γm).

By the inductive hypothesis,

b(i) ◦ (γ1, . . . , γi−1, Dγi, γi+1, . . . , γm) ∈ CkW(U,L(X,Z))

and hence

D(b ◦ (γ1, . . . , γm)) ∈ CkW(U,L(X,Z)).

Since

Mk(b(i)) : CkW1
(U, Y1)× · · · × CkWi

(U,L(X,Yi))× · · · × CkWm
(U, Ym)→ CkW(U,L(X,Z))

is continuous by the inductive hypothesis, it follows that D ◦Mk+1(b) is continuous as

(D ◦Mk+1(b))(γ1, . . . , γm) =

m∑
i=1

Mk(b(i))(γ1, . . . , γi−1, Dγi, γi+1, . . . , γm).

Furthermore, Mk+1(b) is obviously m-linear, so the induction step is finished.

k =∞: From the assertions already established, we derive the commutative diagram

C∞W1
(U, Y1)× · · · × C∞Wm

(U, Ym)
M∞(b)

//

��

��

C∞W(U,Z)
��

��

CnW1
(U, Y1)× · · · × CnWm

(U, Ym)
Mn(b)

// CnW(U,Z)

for each n ∈ N, where the vertical arrows represent inclusion maps. Using Corollary 3.2.6

we easily deduce the continuity of M∞(b) from that of Mn(b).

We prove an analogous result for decreasing functions.

Corollary 3.3.4. Let Y1, . . . , Ym be normed spaces, U an open nonempty subset of the

normed space X, k ∈ N and W,W1, . . . ,Wm ⊆ RU nonempty such that

(∀f ∈ W) (∃gf,1 ∈ W1, . . . , gf,m ∈ Wm) |f | ≤ |gf,1| · · · |gf,m|.

Further let Z be another normed space, b : Y1×· · ·×Ym → Z a continuous m-linear map

and j ∈ {1, . . . ,m}. Then

b ◦ (γ1, . . . , γj , . . . , γm) ∈ CkW(U,Z)o (†)

for all γi ∈ CkWi
(U, Yi) (i 6= j) and γj ∈ CkWj

(U, Yj)
o. Moreover, the map

Mk(b) : CkW1
(U, Y1)× · · · × CkWj

(U, Yj)
o × · · · × CkWm

(U, Ym)→ CkW(U,Z)o,

(γ1, . . . , γj , . . . , γm) 7→ b ◦ (γ1, . . . , γj , . . . , γm),

is m-linear and continuous.

Proof. Using Proposition 3.3.3 and Lemma 3.1.6, we only have to prove that (†) holds.

This is done by induction on k (which we may assume finite).
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k = 0: For f ∈ W, x ∈ U and γ1 ∈ C0
W1

(U, Y1), . . . , γj ∈ C0
Wj

(U, Yj)
o, . . . , γm ∈

C0
Wm

(U, Ym) we compute

|f(x)| ‖b ◦ (γ1, . . . , γj , . . . , γm)(x)‖

≤ ‖b‖op

m∏
i=1

|gf,i(x)|‖γi(x)‖ ≤
(
‖b‖op

∏
i 6=j

‖γi‖gf,i,0
)
|gf,j(x)| ‖γj(x)‖.

From this estimate we easily see that b ◦ (γ1, . . . , γj , . . . , γm) ∈ C0
Wj

(U,Z)o.

k → k+ 1: From Corollary 3.2.4 (together with the induction base) we know that for

γ1 ∈ Ck+1
W1

(U, Y1), . . . , γj ∈ Ck+1
Wj

(U, Yj)
o, . . . , γm ∈ Ck+1

Wm
(U, Ym)

b ◦ (γ1, . . . , γj , . . . , γm) ∈ Ck+1
W (U,Z)o ⇔ D(b ◦ (γ1, . . . , γj , . . . , γm)) ∈ CkW(U,L(X,Z))o.

We know from (3.3.2.1) in Lemma 3.3.2 that

D(b ◦ (γ1, . . . , γj , . . . , γm)) =

m∑
i=1
i 6=j

b(i) ◦ (γ1, . . . , γj , . . . , γi−1, Dγi, γi+1, . . . , γm)

+ b(j) ◦ (γ1, . . . , γj−1, Dγj , γj+1, . . . , γm).

Because γj ∈ CkWj
(U, Yj)

o and Dγj ∈ CkWj
(U,L(X,Yj))

o, we can apply the inductive

hypothesis to all b(i) and the Ck-maps γ1, . . . , γm and Dγ1, . . . , Dγm to see that this is

an element of CkW(U,L(X,Z))o.

We list some applications of Proposition 3.3.3. In the following corollaries, k ∈ N,

U is an open nonempty subset of the normed space X and W ⊆ RU always contains the

constant map 1U .

Corollary 3.3.5. Let A be a normed algebra with the continuous multiplication ∗. Then

CkW(U,A) is an algebra with the continuous multiplication

M(∗) : CkW(U,A)× CkW(U,A)→ CkW(U,A),

M(∗)(γ, η)(x) = γ(x) ∗ η(x).

We shall often write ∗ instead of M(∗).

Corollary 3.3.6. If E, F and G are normed spaces, then the composition

· : L(F,G)× L(E,F )→ L(E,G)

is bilinear and continuous and therefore induces the continuous bilinear maps

M(·) : CkW(U,L(F,G))× CkW(U,L(E,F ))→ CkW(U,L(E,G)),

M(·)(γ, η)(x) = γ(x) · η(x)

and

MBC(·) : CkW(U,L(F,G))× BCk(U,L(E,F ))→ CkW(U,L(E,G)),

MBC(·)(γ, η)(x) = γ(x) · η(x).

We shall often denote M(·) just by ·.
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Corollary 3.3.7. Let E and F be normed spaces. Then the evaluation of linear maps

· : L(E,F )× E → F : (T,w) 7→ T · w

is bilinear und continuous (see Lemma A.2.3) and hence induces the continuous bilinear

map

M(·) : CkW(U,L(E,F ))× CkW(U,E)→ CkW(U,F ),

M(·)(Γ, η)(x) = Γ(x) · η(x).

Instead of M(·) we will often write ·.

3.3.2. Composition of weighted functions with bounded functions. We explore

the composition between spaces of bounded functions and spaces of weighted functions.

A case of particular interest is the composition between certain subsets of the spaces

BCk(U, Y ).

3.3.2.1. Composition of bounded functions. We discuss under which conditions the com-

position is continuous or differentiable.

Lemma 3.3.8. Let X, Y and Z be normed spaces, U ⊆ X and V ⊆ Y open nonempty

subsets and k ∈ N. Then for γ ∈ BCk+1(V,Z) and η ∈ BC∂,k(U, V ),

γ ◦ η ∈ BCk(U,Z),

and the map

BCk+1(V,Z)× BC∂,k(U, V )→ BCk(U,Z) : (γ, η) 7→ γ ◦ η (∗)

is continuous.

Proof. For k <∞ this is proved by induction.

k = 0: Obviously

BC1(V,Z) ◦ BC∂,0(U, V ) ⊆ BC0(U,Z),

so it remains to show that the composition is continuous. To this end, let γ, γ0 ∈
BC1(V,Z), η, η0 ∈ BC∂,0(U, V ) with ‖η − η0‖1U ,0 < dist(η0(U), ∂V ) and x ∈ U . Then

‖(γ ◦ η)(x)− (γ0 ◦ η0)(x)‖
= ‖γ(η(x))− γ(η0(x)) + γ(η0(x))− γ0(η0(x))‖

≤
∥∥∥∥∫ 1

0

Dγ(tη(x) + (1− t)η0(x)) · (η(x)− η0(x)) dt

∥∥∥∥+ ‖(γ − γ0)(η0(x))‖

≤ ‖Dγ‖1V ,0‖η(x)− η0(x)‖+ ‖(γ − γ0)(η0(x))‖;

in this estimate we used ‖η − η0‖1U ,0 < dist(η0(U), ∂V ) to ensure that the line segment

between η(x) und η0(x) is contained in V . The estimate yields

‖γ ◦ η − γ0 ◦ η0‖1U ,0 ≤ ‖γ‖1V ,1‖η − η0‖1U ,0 + ‖γ − γ0‖1U ,0,

whence the composition is continuous.
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k → k+ 1: In the following, we denote the composition map (∗) with gk,Z . We know

from Proposition 3.2.3 (and the induction base) that

gk+1,Z(BCk+2(V,Z)× BC∂,k+1(U, V )) ⊆ BCk+1(U,Z)

⇔ (D ◦ gk+1,Z)(BCk+2(V,Z)× BC∂,k+1(U, V )) ⊆ BCk(U,L(X,Z))

and gk+1,Z is continuous iff so is D◦gk+1,Z , as a map to BCk(U,L(X,Z)). An application

of the chain rule gives

(D ◦ gk+1,Z)(γ, η) = gk,L(Y,Z)(Dγ, η) ·Dη (∗∗)

for γ ∈ BCk+2(V,Z) and η ∈ BC∂,k+1(U, V ), where · denotes composition of linear maps

(see Corollary 3.3.6). Since Dγ ∈ BCk+1(V,L(Y, Z)), we deduce from the inductive hy-

pothesis that

gk,L(Y,Z)(Dγ, η) ∈ BCk(U,L(Y,Z)),

and using Corollary 3.3.6 we get

(D ◦ gk+1,Z)(γ, η) ∈ BCk(U,L(Y,Z)).

The continuity of D ◦ gk+1,Z follows with identity (∗∗) from the continuity of gk,L(Y,Z)

(by the inductive hypothesis), · (by Corollary 3.3.6) and D (by Proposition 3.2.3).

k =∞: From the assertions already established, we derive the commutative diagram

BC∞(V,Z)× BC∂,∞(U, V )
g∞,Z

//

��

��

BC∞(U,Z)
��

��

BCn+1(V,Z)× BC∂,n(U, V )
gn,Z

// BCn(U,Z)

for each n ∈ N, where the vertical arrows represent inclusion maps. Using Corollary 3.2.6

we easily deduce the continuity of g∞,Z from that of gn,Z .

As a preparation for discussing the differentiable properties of composition, we prove

a nice identity for its differential quotient.

Lemma 3.3.9. Let X, Y and Z be normed spaces and U ⊆ X, V ⊆ Y be open subsets.

Further, let γ ∈ FC1(V,Z), γ̃ ∈ C0(V,Z), η̃ ∈ BC0(U, Y ) and η ∈ C0(U, V ) such that

dist(η(U), ∂V ) > 0. Then, for all x ∈ U and t ∈ R∗ with

|t| ≤ dist(η(U), ∂V )

‖η̃‖1U ,0 + 1
,

we have the identity

evx

(
(γ + tγ̃) ◦ (η + tη̃)− γ ◦ η

t

)
= evx(γ̃ ◦ (η + tη̃)) +

∫ 1

0

evx((Dγ ◦ (η + stη̃)) · η̃) ds,

(3.3.9.1)

where evx denotes the evaluation at x.

Proof. For t as above,

(γ + tγ̃) ◦ (η + tη̃)− γ ◦ η = γ ◦ (η + tη̃) + tγ̃ ◦ (η + tη̃)− γ ◦ η,
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and an application of the mean value theorem gives

evx(γ ◦ (η + tη̃)− γ ◦ η) =

∫ 1

0

evx((Dγ ◦ (η + stη̃)) · tη̃) ds.

Division by t leads to the desired result.

So we are ready to discuss when the composition is differentiable.

Proposition 3.3.10. Let X, Y and Z be normed spaces, U ⊆ X and V ⊆ Y open subsets

and k ∈ N, ` ∈ N∗. Then the continuous map

gk+`+1
BC,Z : BCk+`+1(V,Z)× BC∂,k(U, V )→ BCk(U,Z) : (γ, η) 7→ γ ◦ η

(cf. Lemma 3.3.8) is a C`-map with

dgk+`+1
BC,Z (γ0, η0; γ, η) = gk+`+1

BC,Z (γ, η0) + gk+`
BC,L(Y,Z)(Dγ0, η0) · η. (3.3.10.1)

Proof. For k <∞, the proof is by induction on ` which we may assume finite because the

inclusion maps BC∞(V,Z)→ BCk+`+1(V,Z) are continuous linear (and hence smooth).

` = 1: Let γ0, γ ∈ BCk+`+1(V,Z), η0 ∈ BC∂,k(U, V ) and η ∈ BCk(U, Y ). From Lem-

mas 3.3.9 and 3.2.13 we conclude that for t ∈ K with |t| ≤ dist(η0(U),∂V )
‖η‖1U,0+1 , the integral∫ 1

0

(Dγ0 ◦ (η0 + stη)) · η ds

exists in BCk(U,Z). Using identity (3.3.9.1) we derive

gk+`+1
BC,Z (γ0 + tγ, η0 + tη)− gk+`+1

BC,Z (γ0, η0)

t
= gk+`+1
BC,Z (γ, η0 + tη)

+

∫ 1

0

gk+`
BC,L(Y,Z)(Dγ0, η0 + stη) · η ds.

We use Proposition A.1.8 and the continuity of gk+`+1
BC,Z , gk+`

BC,L(Y,Z) and · (cf. Lemma 3.3.8,

and Corollary 3.3.7) to see that the right hand side above converges to

gk+`+1
BC,Z (γ, η0) + gk+`

BC,L(Y,Z)(Dγ0, η0) · η

in BCk(U,Z) as t → 0. Hence gk+`+1
BC,Z is differentiable and its differential is given by

(3.3.10.1) and thus continuous.

` − 1 → `: The map gk+`+1
BC,Z is C` if dgk+`+1

BC,Z is C`−1. The latter follows easily from

(3.3.10.1), since the inductive hypothesis ensures that gk+`+1
BC,Z and gk+`

BC,L(Y,Z) are C`−1;

and · and D are smooth.

If k = ∞, then in view of Corollary 3.2.6 and Proposition A.1.12, g∞BC,Z is smooth

as a map to BC∞(U,Z) iff it is smooth as a map to BCj(U,Z) for each j ∈ N. This was

already proved in the case where k = j and ` =∞.

3.3.2.2. Composition of weighted functions with bounded functions. Generally, we cannot

expect that the composition of a weighted function with a bounded function is a weighted

function for the same weights. As an example, the composition of the constant 1 function

and a Schwartz function is not a Schwartz function. However, if we compose a bounded

function mapping 0 to 0 with a weighted function, we get good results.



24 3. Weighted function spaces

Lemma 3.3.11. Let X, Y and Z be normed spaces, U ⊆ X and V ⊆ Y open subsets

such that V is star-shaped with center 0, k ∈ N and W ⊆ RU with 1U ∈ W. Then for

γ ∈ BCk+1(V,Z)0 and η ∈ C∂,kW (U, V ),

γ ◦ η ∈ CkW(U,Z),

and the composition map

BCk+1(V,Z)0 × C∂,kW (U, V )→ CkW(U,Z) : (γ, η) 7→ γ ◦ η (∗)

is continuous.

Proof. We distinguish the cases k <∞ and k =∞:

k <∞: To prove that for γ ∈ BCk+1(V,Z)0 and η ∈ C∂,kW (U, V ) the composition γ ◦ η
is in CkW(U,Z), in view of Proposition 3.2.3 it suffices to show that

γ ◦ η ∈ C0
W(U,Z) and for k > 0 also D(γ ◦ η) ∈ Ck−1

W (U,L(X,Z)).

Similarly the continuity of the composition (∗), which is denoted by gk in the remainder

of this proof, is equivalent to the continuity of ι0 ◦ gk and for k > 0 also of D ◦ gk, where

ι0 : CkW(U,Z)→ C0
W(U,Z) denotes the inclusion map.

First we show γ ◦ η ∈ C0
W(U,Z). To this end, let f ∈ W and x ∈ U . Then

|f(x)| ‖γ(η(x))‖ = |f(x)| ‖γ(η(x))− γ(0)‖

= |f(x)|
∥∥∥∥∫ 1

0

Dγ(tη(x)) · η(x) dt

∥∥∥∥ ≤ ‖Dγ‖1V ,0‖η‖f,0;

here we used that the line segment from 0 to η(x) is contained in V . Hence

‖γ ◦ η‖f,0 ≤ ‖γ‖1V ,1‖η‖f,0 <∞.

To check the continuity of ι0 ◦ gk, let γ, γ0 ∈ BCk+1(V,Z)0 and η, η0 ∈ C∂,kW (U, V ) such

that ‖η − η0‖1U ,0 < dist(η0(U), ∂V ), f ∈ W and x ∈ U . Then

|f(x)| ‖(γ ◦ η)(x)− (γ0 ◦ η0)(x)‖
= |f(x)| ‖γ(η(x))− γ(η0(x)) + γ(η0(x))− γ0(η0(x))‖
≤ |f(x)| ‖γ(η(x))− γ(η0(x))‖+ |f(x)| ‖(γ − γ0)(η0(x))‖

= |f(x)|
∥∥∥∥∫ 1

0

Dγ(tη(x) + (1− t)η0(x)) · (η(x)− η0(x)) dt

∥∥∥∥
+ |f(x)| ‖(γ − γ0)(η0(x))− (γ − γ0)(0)‖

≤ |f(x)| ‖Dγ‖1V ,0‖η(x)− η0(x)‖+ |f(x)|
∥∥∥∥∫ 1

0

D(γ − γ0)(tη0(x)) · η0(x) dt

∥∥∥∥
≤ |f(x)| ‖Dγ‖1V ,0‖η(x)− η0(x)‖+ |f(x)| ‖D(γ − γ0)‖1V ,0‖η0(x)‖.

Therefore

‖γ ◦ η − γ0 ◦ η0‖f,0 ≤ ‖γ‖1V ,1‖η − η0‖f,0 + ‖γ − γ0‖1V ,1‖η0‖f,0,

from which the continuity of ι0 ◦ gk in (γ0, η0) is easily concluded.

For k > 0, γ ∈ BCk+1(V,Z)0 and η ∈ C∂,kW (U, V ) we apply the chain rule to get

(D ◦ gk)(γ, η) = D(γ ◦ η) = (Dγ ◦ η) ·Dη = gkBC,L(Y,Z)(Dγ, η) ·Dη; (∗∗)
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here we used that η ∈ BCk(U, V ) because 1U is in W. Since Dη ∈ Ck−1
W (U,L(X,Y ))

and gkBC,L(Y,Z)(Dγ, η) ∈ BCk−1(U,L(Y,Z)) (see Lemma 3.3.8), (D ◦ gk)(γ, η) is in

Ck−1
W (U,L(Y, Z)) (see Corollary 3.3.6). Using that D, · and gkBC,L(Y,Z) are continuous

(see Proposition 3.2.3, Corollary 3.3.6 and Lemma 3.3.8, respectively), we deduce the

continuity of D ◦ gk from (∗∗).
k =∞: From the assertions already established, we derive the commutative diagram

BC∞(V,Z)0 × C∂,∞W (U, V )
g∞ //

��

��

C∂,∞W (U,Z)
��

��

BCn+1(V,Z)0 × C∂,nW (U, V )
gn // C∂,nW (U,Z)

for each n ∈ N, where the vertical arrows represent inclusion maps. Using Corollary 3.2.6

we easily deduce the continuity of g∞ from that of gn.

Proposition 3.3.12. Let X, Y and Z be normed spaces, U ⊆ X and V ⊆ Y open subsets

such that V is star-shaped with center 0, k ∈ N, ` ∈ N∗ and W ⊆ RU with 1U ∈ W. Then

the map

gk+`+1
W,Z : BCk+`+1(V,Z)0 × C∂,kW (U, V )→ CkW(U,Z) : (γ, η) 7→ γ ◦ η

whose existence was stated in Lemma 3.3.11 is a C`-map with

dgk+`+1
W,Z (γ0, η0; γ, η) = gk+`+1

W,Z (γ, η0) + gk+`
BC,L(Y,Z)(Dγ0, η0) · η. (3.3.12.1)

Proof. For k <∞, the proof is by induction on ` which we may assume finite because the

inclusion maps BC∞(V,Z)0 → BCk+`+1(V,Z)0 are continuous linear (and hence smooth).

` = 1: Let γ0, γ ∈ BCk+`+1(V,Z)0, η0 ∈ C∂,kW (U, V ) and η ∈ CkW(U, Y ). From Lem-

mas 3.3.9 and 3.2.13 we conclude that for t ∈ K with |t| ≤ dist(η0(U),∂V )
‖η‖1U,0+1 , the integral∫ 1

0

(Dγ0 ◦ (η0 + stη)) · η ds

exists in CkW(U,Z). Using identity (3.3.9.1) we derive

gk+`+1
W,Z (γ0 + tγ, η0 + tη)− gk+`+1

W,Z (γ0, η0)

t
= gk+`+1
W,Z (γ, η0 + tη)

+

∫ 1

0

gk+`
BC,L(Y,Z)(Dγ0, η0 + stη) · η ds.

We use Proposition A.1.8 and the continuity of gk+`+1
W,Z , gk+`

BC,L(Y,Z) and · (cf. Lem-

mas 3.3.11 and 3.3.8, and Corollary 3.3.7) to see that the right hand side above converges

to

gk+`+1
W,Z (γ, η0) + gk+`

BC,L(Y,Z)(Dγ0, η0) · η

in CkW(U,Z) as t → 0. Hence gk+`+1
W,Z is differentiable and its differential is given by

(3.3.12.1) and thus continuous.

` − 1 → `: The map gk+`+1
W,Z is C` if dgk+`+1

W,Z is C`−1. The latter follows easily from

(3.3.12.1), since the inductive hypothesis and Proposition 3.3.10 ensure that gk+`+1
W,Z and

gk+`
BC,L(Y,Z) are C`−1; and · and D are smooth.



26 3. Weighted function spaces

If k =∞, then in view of Corollary 3.2.6 and Proposition A.1.12, g∞W,Z is smooth as a

map to C∞W(U,Z) iff it is smooth as a map to CjW(U,Z) for each j ∈ N. This was already

proved in the case where k = j and ` =∞.

3.3.3. Composition of weighted functions with an analytic map. We discuss

a sufficient criterion for an analytic map to operate on C∂,kW (U, V ) through (covariant)

composition. First, we state a result about superposition of weighted functions that is a

direct consequence of Proposition 3.3.12. Then we have to treat real and complex analytic

functions separately. While the complex case is straightforward, in the real case we have

to deal with complexifications.

Lemma 3.3.13. Let X, Y and Z be normed spaces, U ⊆ X and V ⊆ Y open subsets such

that V is star-shaped with center 0, k ∈ N, ` ∈ N∗ and W ⊆ RU with 1U ∈ W. Suppose

further that Φ : V → Z is a map that satisfies

W open in V , bounded and star-shaped with center 0, dist(W,∂V ) > 0

⇒ Φ|W ∈ BCk+`+1(W,Z)0.

Then Φ ◦ γ ∈ CkW(U,Z) for all γ ∈ C∂,kW (U, V ), and the map

C∂,kW (U, V )→ CkW(U,Z) : γ 7→ Φ ◦ γ

is C`.

Proof. For r > 0 we define

Mr := [0, 1] · ({y ∈ V : dist(y, ∂V ) > r} ∩B1/r(0)).

It is obvious that Mr is open, bounded and star-shaped with center 0. Further, using

that V is star-shaped with center 0 and Mr is bounded, we see that dist(Mr, ∂V ) > 0.

Hence we know from Proposition 3.3.12 that

C∂,kW (U,Mr)→ CkW(U,Z) : γ 7→ Φ ◦ γ

is defined and C` since Φ ∈ BCk+`+1(Mr, Z)0 by our assumption. But

C∂,kW (U, V ) =
⋃
r>0

C∂,kW (U,Mr),

and 1U ∈ W implies that each C∂,kW (U,Mr) is open in C∂,kW (U, V ), hence the assertion is

proved.

Lemma 3.3.14. Let Y and Z be complex normed spaces, V ⊆ Y an open nonempty subset

and Φ : V → Z a complex analytic map that satisfies the following condition:

W ⊆ V, W open in V , dist(W,∂V ) > 0 ⇒ Φ|W ∈ BC0(W,Z). (3.3.14.1)

Then Φ|W ∈ BC∞(W,Z) for all open subsets W ⊆ V with dist(W,∂V ) > 0.

Proof. Let W ⊆ V be an open subset of V such that there exists r > 0 with 2r <

dist(W,∂V ). Then for each x ∈W and h ∈ Y with ‖h‖ ≤ 1 we get an analytic map

Φx,h : BC(0, 2r)→ Z : z 7→ Φ(x+ zh),
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by restricting Φ (see Theorem A.1.23). By applying the Cauchy estimates (stated in

Corollary A.1.26) to this map, for each k ∈ N we get the estimate

‖Φ(k)
x,h(0)‖ ≤ k!

(3r/2)k
‖Φ|V+BY (0,r)‖∞.

From Lemma A.1.25 and the chain rule we know that Φ
(k)
x,h(0) = D(k)Φ(x)(h, . . . , h), so

we conclude with the Polarization Formula (Proposition A.1.20) that

‖D(k)Φ(x)‖op ≤
(2k)k

(3r/2)k
‖Φ|V+BY (0,r)‖∞,

and the assertion follows immediately since ‖Φ|V+BY (0,r)‖∞ <∞ by (3.3.14.1).

3.3.3.1. On real analytic maps and good complexifications. The previous two lemmas

would allow us to state the desired result concerning covariant composition, but only for

complex analytic maps. There are examples of real analytic maps for which the assertion

of Lemma 3.3.14 is false. We define a class of real analytic maps that is suited to our

needs. First, we state the following small result concerning complexifications.

Lemma 3.3.15. Let X and Y be real normed spaces, U ⊆ X an open nonempty set, k ∈ N
and W ⊆ RU . Further let ι : Y → YC denote the canonical inclusion into YC.

(a) CkW(U, YC) is the complexification of CkW(U, Y ), and the canonical inclusion map is

given by

CkW(U, Y )→ CkW(U, YC) : γ 7→ ι ◦ γ.

(b) Let V ⊆ Y be an open nonempty set and Ṽ ⊆ YC an open neighborhood of ι(V ) such

that

(∀M ⊆ V ) dist(M,Y \ V ) > 0⇒ dist(ι(M), YC \ Ṽ ) > 0. (3.3.15.1)

Then

ι ◦ C∂,kW (U, V ) ⊆ C∂,kW (U, Ṽ ).

Proof. (a) It is well known that YC ∼= Y × Y and ι(y) = (y, 0) for each y ∈ Y . Hence

CkW(U, YC) ∼= CkW(U, Y × Y ) ∼= CkW(U, Y )× CkW(U, Y )

by Lemma 3.4.16 (and Proposition 3.3.3), and

ι ◦ γ = (γ, 0) ∈ CkW(U, Y )× CkW(U, Y ) ∼= CkW(U, YC)

for γ ∈ CkW(U, Y ).

(b) This is an immediate consequence of (a) and condition (3.3.15.1).

Definition 3.3.16. Let Y and Z be real normed spaces, V ⊆ Y an open nonempty set,

and Φ : V → Z a real analytic map. We say that Φ has a good complexification if there

exists a complexification Φ̃ : Ṽ ⊆ YC → ZC of Φ which satisfies (3.3.14.1) and whose

domain satisfies (3.3.15.1). In this case, we call Φ̃ a good complexification.

The following lemma states that good complexifications always exist at least locally.

It is not needed in the further discussion.
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Lemma 3.3.17. Let Y and Z be real normed spaces, V ⊆ Y an open nonempty set and

Φ : V → Z a real analytic map. Then for each x ∈ V there exists an open neighborhood

Wx ⊆ Y of x such that Φ|Wx has a good complexification.

Proof. Let Φ̃ : Ṽ ⊆ YC → ZC be a complexification of Φ and ι : V → Ṽ the canonical

inclusion. Then there exists an r > 0 such that BYC(ι(x), r) ⊆ Ṽ and Φ̃ is bounded on

BYC(ι(x), r). Then it is obvious that Wx := ι−1(BYC(ι(x), r)) = BY (x, r) has the stated

property.

Power series. We present a class of analytic maps which have good complexifications:

absolutely convergent power series in Banach algebras.

Lemma 3.3.18. Let A be a Banach algebra and
∑∞
`=0 a`z

` a power series with a` ∈ K
and the radius of convergence R ∈ ]0,∞]. For x ∈ A define

Px : BA(x,R)→ A : y 7→
∞∑
`=0

a`(y − x)`.

(a) The map Px is analytic.

(b) If K = C then Px satisfies (3.3.14.1).

(c) If K = R then Px has a good complexification.

Proof. The map Px is defined since
∑∞
`=0 a`(y − x)` is absolutely convergent on BR(x)

and A is complete.

(a) This is a special case of [Bou67, §3.2.9].

(b) If V ⊆ BA(x,R) is open and dist(V, ∂BA(x,R)) > 0, there exists r ∈ R with

0 < r < R such that V ⊆ BA(x, r). So for y ∈ V ,∥∥∥ ∞∑
`=0

a`(y − x)`
∥∥∥ ≤ ∞∑

`=0

|a`| ‖y − x‖` ≤
∞∑
`=0

|a`|r` <∞.

(c) It is well known that the complexification of a Banach algebra is a Banach algebra

as well, and a complexification of Px is given by

P̃x : BAC(x,R)→ A : y 7→
∞∑
`=0

a`(y − x)`.

3.3.3.2. Main result. Finally, we state the desired result for complex analytic maps and

real analytic maps with good complexifications.

Proposition 3.3.19. Let X, Y and Z be normed spaces, U ⊆ X and V ⊆ Y open

nonempty sets such that V is star-shaped with center 0, k ∈ N and W ⊆ RU with

1U ∈ W. Further, let Φ : V → Z with Φ(0) = 0 be either a complex analytic map that

satisfies (3.3.14.1) or a real analytic map that has a good complexification. Then for each

γ ∈ C∂,kW (U, V ),

Φ ◦ γ ∈ CkW(U,Z),

and the map

Φ∗ : C∂,kW (U, V )→ CkW(U,Z) : γ 7→ Φ ◦ γ

is analytic.
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Proof. If Φ is complex analytic, this is an immediate consequence of Lemma 3.3.13 and

Lemma 3.3.14.

If Φ is real analytic, by our assumptions there exists a good complexification Φ̃ : Ṽ ⊆
YC → Z. We know from the first part that Φ̃ induces a complex analytic map

Φ̃∗ : C∂,kW (U, Ṽ )→ CkW(U,ZC) : γ 7→ Φ̃ ◦ γ.

Since C∂,kW (U, V ) ⊆ C∂,kW (U, Ṽ ) by Lemma 3.3.15 and Φ∗ coincides with the restriction of

Φ̃∗ to C∂,kW (U, V ), it follows that Φ∗ is real analytic.

3.3.3.3. Quasi-inversion algebras of weighted functions. As an application, we see that

for a set W of weights with 1U ∈ W and a Banach algebra A, the space CkW(U,A) can

be turned into a topological algebra with continuous quasi-inversion. Details on algebras

with quasi-inversion can be found in Chapter C.

Proposition 3.3.20. Let A be a Banach algebra, X a normed space, U ⊆ X an open

nonempty subset, k ∈ N and W ⊆ RU with 1U ∈ W. Then the locally convex space

CkW(U,A) endowed with the multiplication described in Corollary 3.3.5 becomes a complete

topological algebra with continuous quasi-inversion in the sense of Definition C.2.1. For

each γ ∈ CkW(U,A)q,

QICkW(U,A)(γ) = QIA ◦ γ,

and

C∂,kW (U,BA(0, 1)) = {γ ∈ CkW(U,A) : ‖γ‖1U ,0 < 1} ⊆ CkW(U,A)q.

Proof. The relation QICkW(U,A)(γ) = QIA◦γ is an immediate consequence of the definition

of the multiplication, so it only remains to show that CkW(U,A)q is open and QICkW(U,A)

is continuous. We proved in Lemma C.2.4 that it suffices to find a neighborhood of 0

that consists of quasi-invertible elements such that the restriction of QICkW(U,A) to it is

continuous. We show that C∂,kW (U,BA(0, 1)) is such a neighborhood. The map

G : B1(0)→ A : x 7→
∞∑
i=1

xi

is given by a power series and maps 0 to 0, hence we know from Lemma 3.3.18 and

Proposition 3.3.19 that the map

C∂,kW (U,BA(0, 1))→ CkW(U,A) : γ 7→ G ◦ γ

is defined and analytic. Since G◦γ =
∑∞
i=1 γ

i for each γ ∈ C∂,kW (U,BA(0, 1)), we conclude

from Lemma C.2.5 that γ is quasi-invertible with

QICkW(U,A)(γ) = −G ◦ γ

Example 3.3.21. Let Y be a Banach space, U ⊆ X an open nonempty subset, k ∈ N
and W ⊆ RU with 1U ∈ W. Then the locally convex space CkW(U,L(Y )) endowed with

the multiplication described in Corollary 3.3.6 becomes a complete topological algebra

with continuous quasi-inversion.
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3.4. Weighted maps into locally convex spaces. We define and examine weighted

functions with values in arbitrary locally convex spaces. In order to do this, we use tools

and definitions provided in A.1.2.2. The material of this section is only needed for later

discussions of weighted mapping groups with values in arbitrary locally convex Lie groups

in Section 6.2; readers primarily interested in diffeomorphism groups may want to skip

this section.

3.4.1. Definition and topological structure. The definition of weighted function

with values in locally convex spaces relies on the one with values in normed spaces.

Definition 3.4.1. Let X be a normed space, U ⊆ X an open nonempty set, Y a locally

convex space, k ∈ N and W ⊆ RU . We define

CkW(U, Y ) := {γ ∈ Ck(U, Y ) : (∀p ∈ N (Y )) πp ◦ γ ∈ CkW(U, Yp)},

using notation as in Definition A.1.28. For p ∈ N (Y ), f ∈ W and ` ∈ N with ` ≤ k,

‖ · ‖p,f,` : CkW(U, Y )→ R : γ 7→ ‖πp ◦ γ‖f,`

is a seminorm on CkW(U, Y ). We endow CkW(U, Y ) with the locally convex vector space

topology generated by these seminorms.

We show that the structure of CkW(U, Y ) is already determined by {‖ · ‖p,f,` : p ∈ P,
and f, ` are as usual}, where P is just a generator of N (Y ). This can be useful in some

cases.

Lemma 3.4.2. Let X be a normed space, U ⊆ X an open nonempty set, Y a locally

convex space, k ∈ N, W ⊆ RU and P ⊆ N (Y ) a set that generates N (Y ). Then for

γ ∈ Ck(U, Y ),

γ ∈ CkW(U, Y )⇔ (∀p ∈ P)πp ◦ γ ∈ CkW(U, Yp),

and the map

CkW(U, Y )→
∏
p∈P
CkW(U, Yp) : γ 7→ (πp ◦ γ)p∈P (†)

is a topological embedding.

Proof. Let q ∈ N (Y ). Then there exist p1, . . . , pn ∈ P and C > 0 such that

q ≤ C max
i=1,...,n

pi.

Further we know that for each ` ∈ N with ` ≤ k and x ∈ U , h1, . . . , h` ∈ X,

d(`)(πq ◦ γ)(x;h1, . . . , h`) = (πq ◦ d(`)γ)(x, h1, . . . , h`),

so for y ∈ U we get

‖d(`)(πq ◦ γ)(x;h1, . . . , h`)− d(`)(πq ◦ γ)(y;h1, . . . , h`)‖q
≤ ‖d(`)γ(x;h1, . . . , h`)− d(`)γ(y;h1, . . . , h`)‖q
≤ C max

i=1,...,n
‖d(`)γ(x;h1, . . . , h`)− d(`)γ(y;h1, . . . , h`)‖pi .
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Since we assumed that πpi ◦ γ ∈ FC
k(U, Ypi), from this estimate we conclude, applying

Proposition A.3.2, that πq ◦ γ ∈ FCk(U, Yq) with

‖D(`)(πq ◦ γ)(x)‖op ≤ C max
i=1,...,n

‖D(`)(πpi ◦ γ)(x)‖op

for all ` ∈ N with ` ≤ k and x ∈ U . This implies that

‖γ‖q,f,` ≤ C max
i=1,...,n

‖γ‖pi,f,`

for each f ∈ W and ` ∈ N with ` ≤ k. Hence

πq ◦ γ ∈ CkW(U, Yq),

and ‖ · ‖q,f,` is continuous with respect to the initial topology induced by (†). Since q was

arbitrary, the proof is complete.

An integrability criterion. We generalize the assertion of Lemma 3.2.13.

Lemma 3.4.3. Let X be a normed space, U ⊆ X a nonempty open set, Y a locally

convex space, k ∈ N, W ⊆ RU such that for each compact set K ⊆ U , there exists an

fK ∈ W with infx∈K |fK(x)| > 0. Further, let Γ : [a, b] → CkW(U, Y ) a continuous curve

and R ∈ CkW(U, Y ). Assume that∫ b

a

evx(Γ(s)) ds = evx(R) (∗)

for all x ∈ U . Then Γ is weakly integrable with∫ b

a

Γ(s) ds = R.

Proof. We derive from Lemma 3.4.2 that the dual space of CkW(U, Y ) coincides with the

set of functionals {λ ◦ πp∗ : p ∈ N (Y ), λ ∈ CkW(U, Yp)
′}. Hence Γ is weakly integrable

with the integral R iff ∫ b

a

λ(πp ◦ Γ)(s) ds = λ(πp ◦R)

for all p ∈ N (Y ) and λ ∈ CkW(U, Yp)
′; this is clearly equivalent to the weak integrability of

πp ◦Γ with integral πp ◦R for all p ∈ N (Y ). But we derive this assertion from identity (∗)
and Lemma 3.2.13.

3.4.1.1. Reduction to lower order. We prove a generalization of Proposition 3.2.3. To

this end, we need a locally convex topology on L(X,Y ), where X is a normed and Y

a locally convex space. We define such a topology and show that it arises as the initial

topology with respect to the embedding L(X,Y )→
∏
p∈N (Y ) L(X,Yp).

Topology on linear operators

Definition 3.4.4 (Topology on linear operators). Let X be a normed space and Y a

locally convex space. For each p ∈ N (Y ) and T ∈ L(X,Y ), we set

‖T‖op,p := sup
x 6=0

‖Tx‖p
‖x‖

= ‖πp ◦ T‖op.
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This obviously defines a seminorm on L(X,Y ), and henceforth we endow L(X,Y ) with

the locally convex topology that is generated by these seminorms. Further we define

L(X,Y )op,p := L(X,Y )‖·‖op,p .

Lemma 3.4.5. Let X be a normed space, Y a locally convex space and p ∈ N (Y ). Then

the map induced by

(πp)∗ : L(X,Y )→ L(X,Yp) : T 7→ πp ◦ T

that makes

(L(X,Y ), ‖ · ‖op,p)
(πp)∗

//

πop,p

(( ((QQQQQQQQQQQQQ
L(X,Yp)

L(X,Y )op,p

88p
p

p
p

p

a commutative diagram is an isometric isomorphism onto the image of (πp)∗. The map

L(X,Y )→
∏

p∈N (Y )

L(X,Yp) : T 7→ (πp ◦ T )p∈N (Y )

is a topological embedding.

Proof. Since ‖T‖op,p = ‖πp ◦T‖op for each T ∈ L(X,Y ), the induced map is an isometry.

By the definition of the topology of L(X,Y ),

L(X,Y )→
∏

p∈N (Y )

L(X,Y )op,p : T 7→ (πop,p ◦ T )p∈N (Y )

is an embedding, so by the transitivity of initial topologies, the proof is finished.

Weighted maps into spaces of linear operators and the main result. Before we can prove

the main result, we have to look at the structure of CkW(U,L(X,Y )).

Lemma 3.4.6. Let X be a normed space, Y a locally convex space, U ⊆ X an open

nonempty subset and k ∈ N. Then for Γ ∈ Ck(U,L(X,Y )), ` ∈ N with ` ≤ k and f ∈ RU ,

‖Γ‖‖·‖op,p,f,` = ‖(πp)∗ ◦ Γ‖f,`. (3.4.6.1)

Further for W ⊆ RU and k ∈ N,

Γ ∈ CkW(U,L(X,Y )) ⇔ (∀p ∈ N (Y )) (πp)∗ ◦ Γ ∈ CkW(U,L(X,Yp)),

and the map

CkW(U,L(X,Y ))→
∏

p∈N (Y )

CkW(U,L(X,Yp)) : Γ 7→ ((πp)∗ ◦ Γ)p∈P

is a topological embedding.

Proof. Note first that πop,p◦Γ is FCk iff (πp)∗◦Γ is FCk as a consequence of Lemma 3.4.5

and Proposition A.3.2. Using Lemma 3.4.5 it is easy to see that (3.4.6.1) is satisfied. This

implies that for each p ∈ N (Y ) the equivalence

(πp)∗ ◦ Γ ∈ CkW(U,L(X,Yp)) ⇔ πop,p ◦ Γ ∈ CkW(U,L(X,Y )op,p)
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holds and that the isometry whose existence was stated in Lemma 3.4.5 induces an

embedding

CkW(U,L(X,Y )op,p)→ CkW(U,L(X,Yp)).

Further we proved in Lemma 3.4.2 that

CkW(U,L(X,Y ))→
∏

p∈N (Y )

CkW(U,L(X,Y )op,p) : Γ 7→ ((πop,p)∗ ◦ Γ)p∈P

is an embedding, so we are done.

Proposition 3.4.7 (Reduction to lower order). Let X be a normed space, Y a locally

convex space, U ⊆ X an open nonempty set, W ⊆ RU and k ∈ N. Let γ ∈ C1(U, Y ).

Then

γ ∈ Ck+1
W (U, Y ) ⇔ (Dγ, γ) ∈ CkW(U,L(X,Y ))× C0

W(U, Y ).

Furthermore, the map

Ck+1
W (U, Y )→ CkW(U,L(X,Y ))× C0

W(U, Y ) : γ 7→ (Dγ, γ)

is a topological embedding.

Proof. The definition of Ck+1
W (U, Y ), Proposition 3.2.3 and Lemma 3.4.6 give the equiv-

alences

γ ∈ Ck+1
W (U, Y ) ⇔ (∀p ∈ N (Y )) πp ◦ γ ∈ Ck+1

W (U, Yp)

⇔ (∀p ∈ N (Y )) (D(πp ◦ γ), πp ◦ γ) ∈ CkW(U,L(X,Yp))× C0
W(U, Yp)

⇔ (Dγ, γ) ∈ CkW(U,L(X,Y ))× C0
W(U, Y ).

Furthermore, we have the commutative diagram

Ck+1
W (U, Y ) //

��

��

CkW(U,L(X,Y ))× C0
W(U, Y )

��

��∏
p∈N (Y ) C

k+1
W (U, Yp) // //

∏
p∈N (Y ) CkW(U,L(X,Yp))× C0

W(U, Yp)

and since the maps represented by the three lower arrows are embeddings, so is the map

at the top.

3.4.2. Weighted decreasing maps. We give another definition for weighted maps that

decay at infinity. Here, the domain of the maps is contained in a finite-dimensional vector

space.

Definition 3.4.8. Let Y be a normed space, U an open nonempty subset of the finite-

dimensional space X and W ⊆ RU . For k ∈ N we define

CkW(U, Y )• := {γ ∈ CkW(U, Y ) : (∀f ∈ W, ` ∈ N, ` ≤ k)

(∀ε > 0)(∃K ⊆ U compact) ‖γ|U\K‖f,` < ε}.

For a locally convex space Y we set

CkW(U, Y )• := {γ ∈ CkW(U, Y ) : (∀p ∈ N (Y )) πp ◦ γ ∈ CkW(U, Yp)
•}.
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For a subset V ⊆ Y , we define

CkW(U, V )• := {γ ∈ CkW(U, Y )• : γ(U) ⊆ V }.

As in Lemma 3.1.6, we can prove that CkW(U, Y )• is closed in CkW(U, Y ).

Lemma 3.4.9. Let Y be a locally convex space, U an open nonempty subset of the finite-

dimensional space X, W ⊆ RU and k ∈ N. Then CkW(U, Y )• is a closed vector subspace

of CkW(U, Y ).

Proof. It is obvious from the definition of CkW(U, Y )• that it is a vector subspace. It

remains to show that it is closed. To this end, let (γi)i∈I be a net in CkW(U, Y )• that

converges to γ ∈ CkW(U, Y ) in the topology of CkW(U, Y ). Let p ∈ N (Y ), f ∈ W, ` ∈ N
with ` ≤ k and ε > 0. Then there exists an iε ∈ I such that

i ≥ iε ⇒ ‖γ − γi‖p,f,` < ε/2.

Further there exists a compact set K such that

‖γiε |U\K‖p,f,` < ε/2.

Hence

‖γ|U\K‖p,f,` ≤ ‖γ|U\K − γiε |U\K‖p,f,` + ‖γiε |U\K‖p,f,` < ε,

so γ ∈ CkW(U, Y )•.

Further, we prove the following convexity criterion.

Lemma 3.4.10. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

Y a locally convex space, W ⊆ RU with 1U ∈ W, ` ∈ N and V ⊆ Y convex. Then the set

C`W(U, V )• is convex.

Proof. It is obvious that C`W(U, V )—whose definition is straightforward—is convex since

V is so. But then

C`W(U, V )• = C`W(U, V ) ∩ C`W(U, Y )•

is convex as intersection of convex sets.

As in Corollary 3.2.4, we prove a reduction to lower order for Ck+1
W (U, Y )•.

Proposition 3.4.11. Let X be a finite-dimensional space, Y a locally convex space,

U ⊆ X an open nonempty set, W ⊆ RU , k ∈ N and γ ∈ C1(U, Y ). Then

γ ∈ Ck+1
W (U, Y )• ⇔ (Dγ, γ) ∈ CkW(U,L(X,Y ))• × C0

W(U, Y )•,

and the map

Ck+1
W (U, Y )• → CkW(U,L(X,Y ))• × C0

W(U, Y )• : γ 7→ (Dγ, γ)

is a topological embedding.

Proof. It is a consequence of identity (3.2.2.2) in Lemma 3.2.2 that for each p ∈ N (Y ),

πp ◦ γ ∈ Ck+1
W (U, Yp)

• ⇔ (D(πp ◦ γ), πp ◦ γ) ∈ CkW(U,L(X,Yp))
• × C0

W(U, Yp)
•.

Further it is a consequence of identity (3.4.6.1) in Lemma 3.4.6 that

Dγ ∈ CkW(U,L(X,Y ))• ⇔ (∀p ∈ N (Y ))D(πp ◦ γ) ∈ CkW(U,L(X,Yp))
•,
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so the equivalence is proved. The assertion on the embedding is a consequence of Propo-

sition 3.4.7 and Lemma 3.4.9.

3.4.3. Composition and superposition. As in Section 3.3, we examine which kind of

maps induce superposition operators on CkW(U, Y ) or CkW(U, Y )•. We show that continuous

multilinear maps induce superposition operators on both function spaces. For CkW(U, Y )•,

we can prove a much stronger result: A smooth function mapping 0 on 0 induces a

superposition operator between these spaces.

3.4.3.1. Composition with a multilinear map. The following definition and lemma are

mostly the same as in Section 3.3.1, but here Z denotes a locally convex space.

Definition 3.4.12. Let X be a normed space, Y1, . . . , Ym and Z locally convex spaces

and b : Y1× · · · ×Ym → Z a continuous m-linear map. For each i ∈ {1, . . . ,m}, we define

the m-linear continuous map

b(i) : Y1 × · · · × Yi−1 × L(X,Yi)× Yi+1 × · · · × Ym → L(X,Z),

(y1, . . . , yi−1, T, yi+1, . . . , ym) 7→ (h 7→ b(y1, . . . , yi−1, T · h, yi+1, . . . , ym)).

Lemma 3.4.13. Let Y1, . . . , Ym and Z be locally convex spaces, U be an open nonempty

subset of the normed space X and k ∈ N. Further let b : Y1×· · ·×Ym → Z be a continuous

m-linear map and γ1 ∈ Ck(U, Y1), . . . , γm ∈ Ck(U, Ym). Then

b ◦ (γ1, . . . , γm) ∈ Ck(U,Z)

with

D(b ◦ (γ1, . . . , γm)) =

m∑
i=1

b(i) ◦ (γ1, . . . , γi−1, Dγi, γi+1, . . . , γm). (3.4.13.1)

Proof. To calculate the derivative of b ◦ (γ1, . . . , γm), we apply the chain rule to get

d(b ◦ (γ1, . . . , γm))(x;h) =

m∑
i=1

b(γ1(x), . . . , γi−1(x), dγi(x;h), γi+1(x), . . . , γm(x))

=

m∑
i=1

b(i)(γ1(x), . . . , γi−1(x), Dγi(x), γi+1(x), . . . , γm(x)) · h.

This implies (3.4.13.1).

Now we can prove the results about multilinear superposition.

Proposition 3.4.14. Let U be an open nonempty subset of the normed space X. Let

Y1, . . . , Ym be locally convex spaces, k ∈ N and W,W1, . . . ,Wm ⊆ RU sets such that

(∀f ∈ W)(∃gf,1 ∈ W1, . . . , gf,m ∈ Wm) |f | ≤ |gf,1| · · · |gf,m|.

Further let Z be another locally convex space and b : Y1 × · · · × Ym → Z a continuous

m-linear map. Then

b ◦ (γ1, . . . , γm) ∈ CkW(U,Z)

for all γ1 ∈ CkW1
(U, Y1), . . . , γm ∈ CkWm

(U, Ym). The map

b∗ : CkW1
(U, Y1)× · · · × CkWm

(U, Ym)→ CkW(U,Z) : (γ1, . . . , γm) 7→ b ◦ (γ1, . . . , γm)

is m-linear and continuous.
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Proof. Let p be a continuous seminorm on Z. Then there exist q1 ∈ N (Y1), . . . , qm ∈
N (Ym) such that, for all y1 ∈ Y1, . . . , ym ∈ Ym,

‖b(y1, . . . , ym)‖p ≤ ‖y1‖q1 · · · ‖ym‖qm .

Hence there exists an m-linear map b̃ that makes the diagram

Y1 × · · · × Ym
b //

πq1×···×πqm
����

Z

πp
����

Y1,q1 × · · · × Ym,qm
b̃ // Zp

commutative. For γ1 ∈ CkW1
(U, Y1), . . . , γm ∈ CkW1

(U, Ym) we know from Proposition 3.3.3

that

b̃ ◦ (πq1 ◦ γ1, . . . , πqm ◦ γm) ∈ CkW(U,Zp)

and the map b̃∗ is continuous. Since

b̃∗ ◦ ((πq1)∗ × · · · × (πqm)∗) = (πp)∗ ◦ b∗
and the left hand side is continuous, we conclude using Lemma 3.4.2 that b∗ is well-defined

and continuous since p was arbitrary.

Corollary 3.4.15. Let Y1, . . . , Ym be locally convex spaces, U be an open nonempty

subset of the finite-dimensional space X, k ∈ N and W,W1, . . . ,Wm ⊆ RU such that

(∀f ∈ W)(∃gf,1 ∈ W1, . . . , gf,m ∈ Wm) |f | ≤ |gf,1| · · · |gf,m|.

Further let Z be another locally convex space, b : Y1×· · ·×Ym → Z a continuous m-linear

map, and j ∈ {1, . . . ,m}. Then

b ◦ (γ1, . . . , γj , . . . , γm) ∈ CkW(U,Z)• (†)

for all γi ∈ CkWi
(U, Yi) (i 6= j) and γj ∈ CkWj

(U, Yj)
•. The map

CkW1
(U, Y1)× · · · × CkWj

(U, Yj)
• × · · · × CkWm

(U, Ym)→ CkW(U,Z)•,

(γ1, . . . , γj , . . . , γm) 7→ b ◦ (γ1, . . . , γj , . . . , γm)

is m-linear and continuous.

Proof. Using Proposition 3.4.14 and Lemma 3.4.9, we only have to prove that (†) holds.

This is done by induction on k.

k = 0: Let p ∈ N (Z). Then there exist q1 ∈ N (Y1), . . . , qm ∈ N (Ym) such that

‖b(y1, . . . , ym)‖p ≤ ‖y1‖q1 · · · ‖ym‖qm
for all y1 ∈ Y1, . . . , ym ∈ Ym. So for f ∈ W, x ∈ U and γ1 ∈ C0

W1
(U, Y1), . . . , γj ∈

C0
Wj

(U, Yj)
•, . . . , γm ∈ C0

Wm
(U, Ym) we compute

|f(x)| ‖b ◦ (γ1, . . . , γj , . . . , γm)(x)‖p

≤
m∏
i=1

|gf,i(x)| ‖γi(x)‖qi ≤
(∏
i 6=j

‖γi‖qi,gf,i,0
)
|gf,j(x)| ‖γj(x)‖qj .

From this estimate we easily deduce that b ◦ (γ1, . . . , γj , . . . , γm) ∈ C0
Wj

(U,Z)•.
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k → k+ 1: From Proposition 3.4.11 (together with the induction base) we know that

for γ1 ∈ Ck+1
W1

(U, Y1), . . . , γj ∈ Ck+1
Wj

(U, Yj)
•, . . . , γm ∈ Ck+1

Wm
(U, Ym)

b ◦ (γ1, . . . , γj , . . . , γm) ∈ Ck+1
W (U,Z)• ⇔ D(b ◦ (γ1, . . . , γj , . . . , γm)) ∈ CkW(U,L(X,Z))•.

We know from (3.4.13.1) in Lemma 3.4.13 that

D(b ◦ (γ1, . . . , γj , . . . , γm)) =

m∑
i=1
i6=j

b(i) ◦ (γ1, . . . , γj , . . . , γi−1, Dγi, γi+1, . . . , γm)

+ b(j) ◦ (γ1, . . . , γj−1, Dγj , γj+1, . . . , γm).

Noticing that γj ∈ CkWj
(U, Yj)

• and Dγj ∈ CkWj
(U,L(X,Yj))

•, we can apply the in-

ductive hypothesis to all b(i) and the Ck-maps γ1, . . . , γm and Dγ1, . . . , Dγm. Hence

D(b ◦ (γ1, . . . , γj , . . . , γm)) ∈ CkW(U,L(X,Z))•.

As an application, we prove that the space of weighted functions into a product is

canonically isomorphic to the product of the weighted function spaces.

Lemma 3.4.16. Let X be a normed space, U ⊆ X an open nonempty set, (Yi)i∈I a family

of locally convex spaces, k ∈ N and W ⊆ RU . Then for each γ ∈ CkW(U,
∏
i∈I Yi) and

j ∈ I,

πj ◦ γ ∈ CkW(U, Yj),

and the map

CkW
(
U,
∏
i∈I

Yi

)
→
∏
i∈I
CkW(U, Yi) : γ 7→ (πi ◦ γ)i∈I (†)

is an isomorphism of locally convex topological vector spaces.

The same statement holds for CkW(U,
∏
i∈I Yi)

•:

CkW
(
U,
∏
i∈I

Yi

)•
→
∏
i∈I
CkW(U, Yi)

• : γ 7→ (πi ◦ γ)i∈I (††)

is an isomorphism of locally convex topological vector spaces.

Proof. We proved in Proposition 3.4.14 that for γ ∈ CkW(U,
∏
i∈I Yi) and j ∈ I, πj ◦ γ ∈

CkW(U, Yj) and the map (†) is linear and continuous. Since a function to a product is

determined by its components, the map (†) is also injective. What remains to be shown

is the surjectivity, and the continuity of the inverse mapping. To this end, we notice that

for each j ∈ I and p ∈ N (Yj), the map

Pj,p :
∏
i∈I

Yi → R : (yi)i∈I 7→ ‖yj‖p

is a continuous seminorm, and the set {Pj,p : j ∈ I, p ∈ N (Yj)} generates N (
∏
i∈I Yi).

Now, for each i ∈ I let γi ∈ CkW(U, Yi). We define the map

γ : U →
∏
i∈I

Yi : x 7→ (γi(x))i∈I .

Then γ is a Ck-map, and Pj,p ◦γ = p◦γj . We see with Proposition A.3.2 that this implies

that πPj,p ◦ γ is an FCk-map, and for each f ∈ W and ` ∈ N with ` ≤ k we derive the
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identity

‖πPj,p ◦ γ‖Pj,p,f,` = ‖πp ◦ γj‖p,f,`.

We proved in Lemma 3.4.2 that this identity implies that γ ∈ CkW(U,
∏
i∈I Yi). Further it

also proves that the inverse map of (†) is continuous using that it is linear.

The assertions about (††) follow from Corollary 3.4.15 and the assertions about (†).

3.4.3.2. Superposition with differentiable functions on weighted decreasing maps. We

show that a smooth function mapping 0 to 0 induces a superposition operator on

CkW(U, Y )•, provided that 1U ∈ W. The proof uses that the image of decreasing maps is

(almost) compact, and so composition with a smooth map can be described in terms of

compositions with bounded maps taking values in normed spaces.

On the image of decreasing maps

Lemma 3.4.17. Let U be an open nonempty subset of the finite-dimensional space X, Y

a locally convex space, k ∈ N, W ⊆ RU with 1U ∈ W, and γ ∈ CkW(U, Y )•. Then

γ(U) ∪ {0}

is compact.

Proof. Since 1U ∈ W, γ ∈ C0
{1U}(U, Y )•. By the definition of this space, γ extends to a

continuous map γ̃ : U ∪ {∞} → Y defined on the Alexandroff compactification of U by

setting γ̃(∞) := 0. Hence γ̃(U ∪ {∞}) = γ(U) ∪ {0} is compact.

We give two easy consequences of the last lemma.

Lemma 3.4.18. Let U be an open nonempty subset of the finite-dimensional space X, V

an open nonempty zero neighborhood of the normed space Y , W ⊆ RU with 1U ∈ W, and

k ∈ N. Then CkW(U, V )• ⊆ C∂,kW (U, V ).

Proof. This is an immediate consequence of Lemma 3.4.17.

Lemma 3.4.19. Let U be an open nonempty subset of the finite-dimensional space X, Y

a normed space, V ⊆ Y an open zero neighborhood, k ∈ N and W ⊆ RU with 1U ∈ W.

Then CkW(U, V )• is open in CkW(U, Y )•.

Proof. We proved in Lemma 3.4.18 that CkW(U, V )• ⊆ C∂,kW (U, V ). Hence CkW(U, V )• =

C∂,kW (U, V ) ∩ CkW(U, Y )• is open in CkW(U, Y )•.

Superposition with a bounded map. As a preparation, we prove a version of Lemma 3.3.11

for decreasing functions. Further, we calculate the differentials of the superposition op-

erator.

Lemma 3.4.20. Let U be an open nonempty subset of the finite-dimensional space X, Y

and Z normed spaces, V ⊆ Y open and star-shaped with center 0, k, ` ∈ N and W ⊆ RU
with 1U ∈ W. Further let φ ∈ BCk+`+1(V,Z) with φ(0) = 0. Then

φ ◦ CkW(U, V )• ⊆ CkW(U,Z)•,

and

CkW(U, V )• → CkW(U,Z)• : γ 7→ φ ◦ γ

is a C`-map.
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Proof. We proved in Lemma 3.4.18 that CkW(U, V )• ⊆ C∂,kW (U, V ). Hence we can apply

Proposition 3.3.12 to see that

φ ◦ CkW(U, V )• ⊆ CkW(U,Z)

and the map

CkW(U, V )• → CkW(U,Z) : γ 7→ φ ◦ γ

is C`; here we used that CkW(U, V )• = C∂,kW (U, V )∩CkW(U, Y )•. Because CkW(U, Y )• is closed

in CkW(U, Y ) by Lemma 3.4.9, it only remains to show that for each γ ∈ CkW(U, V )•, we

have φ ◦ γ ∈ CkW(U,Z)•. This is done by induction on k:

k = 0: Let f ∈ W and x ∈ U . Then

|f(x)| ‖φ(γ(x))‖ = |f(x)| ‖φ(γ(x))− φ(0)‖

= |f(x)|
∥∥∥∥∫ 1

0

Dφ(tγ(x)) · γ(x) dt

∥∥∥∥ ≤ ‖Dφ‖op,∞|f(x)| ‖γ(x)‖;

here we used that the line segment from 0 to γ(x) is contained in V . From this estimate

we conclude that φ ◦ γ ∈ C0
W(U,Z)•.

k → k + 1: By the chain rule

D(φ ◦ γ) = (Dφ ◦ γ) ·Dγ.

Now Dφ ◦ γ ∈ BCk+1(U,L(Y,Z)) by Lemma 3.3.8, since γ ∈ BCk+1(U, V ). Further

Dγ ∈ CkW(U,L(X,Y ))•, so Corollary 3.4.15 yields (Dφ ◦ γ) · Dγ ∈ CkW(U,L(X,Z))•.

By Proposition 3.4.11, the case k + 1 follows from the inductive hypothesis.

Lemma 3.4.21. Let X, Y and Z be normed spaces, U ⊆ X and V ⊆ Y open subsets such

that V is star-shaped with center 0, k ∈ N, m ∈ N∗, φ ∈ BCk+m+1(V,Z)0 and W ⊆ RU
with 1U ∈ W. By Lemma 3.3.11,

φ∗ : C∂,kW (U, V )→ CkW(U,Z) : γ 7→ φ ◦ γ

is defined and Cm. For its `th differential, we have

d(`)φ∗(γ; γ1, . . . , γ`) = d(`)φ ◦ (γ, γ1, . . . , γ`) (` ≤ m).

Proof. Let x ∈ U . Using the identity evZx ◦φ∗ = φ ◦ evYx (with self-explanatory notation

for point evaluations), we calculate

(evZx ◦d(`)φ∗)(γ; γ1, . . . , γ`) = d(`)(evZx ◦φ∗)(γ; γ1, . . . , γ`) = d(`)(φ ◦ evYx )(γ; γ1, . . . , γ`)

= (d(`)φ ◦ (evYx )`+1)(γ, γ1, . . . , γ`) = evZx (d(`)φ ◦ (γ, γ1, . . . , γ`));

here we used Lemmas A.1.16 and A.1.17.

The main result. Before we can prove the main result, we need the following facts con-

cerning compact and star-shaped sets in topological vector spaces.

Lemma 3.4.22. Let Z be a locally convex space and K ⊆ Z a compact set.

(a) The set [0, 1] ·K is compact and star-shaped with center 0.

(b) Let K be star-shaped and V an open neighborhood of K. Then there exists an open

star-shaped set W such that K ⊆W ⊆ V .
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Proof. (a) [0, 1] ·K is compact since it is the image of a compact set under a continuous

map.

(b) The set K × {0} is compact, hence using the continuity of the addition and the

Wallace lemma, we find an open 0-neighborhood U such that K+U ⊆ V . We may assume

that U is absolutely convex. Then K + U is open, star-shaped and contained in V .

Proposition 3.4.23. Let U be an open nonempty subset of the finite-dimensional space

X, Y and Z locally convex spaces, V ⊆ Y open and star-shaped with center 0, k,m ∈ N
and W ⊆ RU with 1U ∈ W. Let φ ∈ Ck+m+2(V,Z) with φ(0) = 0. Then for γ ∈
CkW(U, V )•,

φ ◦ γ ∈ CkW(U,Z)•,

and the map

φ∗ : CkW(U, V )• → CkW(U,Z)• : γ 7→ φ ◦ γ

is Cm with

d(`)φ∗(γ; γ1, . . . , γ`) = d(`)φ ◦ (γ, γ1, . . . , γ`) for all ` ≤ m.

Proof. Let γ̃ ∈ CkW(U, V )•. By Lemmas 3.4.17 and 3.4.22, the set

K := [0, 1] · (γ̃(U) ∪ {0})

is compact and star-shaped with center 0. Hence by Lemma A.3.4, for each p ∈ N (Z)

there exists a q ∈ N (Y ) and an open set W ⊇ K with respect to q such that φ̃ ∈
BCk+m+1(Wq, Zp). In view of Lemma 3.4.22, we may assume that W (and hence Wq) is

star-shaped with center 0. We know from Lemma 3.4.19 that CkW(U,Wq)
• is a neighbor-

hood of πq ◦ γ̃ in CkW(U, Yq)
•. In Lemma 3.4.20 we stated that

φ̃∗ : CkW(U,Wq)
• → CkW(U,Zp)

• : γ 7→ φ̃ ◦ γ

is Cm. The diagram

CkW(U,W )•
πq∗

//

(πp◦φ)∗
NNNN

''NNNN

CkW(U,Wq)
•

φ̃∗
ooo

oo

wwooo
oo

CkW(U,Zp)
•

is commutative. This implies that (πp◦φ)∗ is Cm on CkW(U,W )• since it is the composition

of φ̃∗ and the smooth map πq∗ (see Corollary 3.4.15). By Lemmas A.1.17 and 3.4.21 we

can calculate its higher derivatives:

d(`)(πp ◦ φ)∗|CkW(U,W )•(γ; γ1, . . . , γ`) = d(`)(φ̃ ◦ πq)∗|CkW(U,W )•(γ; γ1, . . . , γ`)

= d(`)φ̃∗(πq ◦ γ;πq ◦ γ1, . . . , πq ◦ γ`) = d(`)φ̃ ◦ (πq ◦ γ, πq ◦ γ1, . . . , πq ◦ γ`)

= d(`)(φ̃ ◦ πq) ◦ (γ, γ1, . . . , γ`) = d(`)(πp ◦ φ) ◦ (γ, γ1, . . . , γ`)

= πp ◦ d(`)φ ◦ (γ, γ1, . . . , γ`)

for ` ∈ N with ` ≤ m.
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Since γ̃ and p were arbitrary, we conclude that the map

CkW(U, V )• →
∏

p∈N (Z)

CkW(U,Zp)
• : γ 7→ (πp ◦ φ ◦ γ)p∈N (Z)

is Cm. Since its image and all directional derivatives are contained in CkW(U,Z)• (in the

sense of Lemma 3.4.2), we conclude that it is Cm as a map to CkW(U,Z)•.

4. Lie groups of weighted diffeomorphisms

In this chapter, we prove that for each Banach space X appropriate subgroups of the

diffeomorphism group Diff(X) can be turned into Lie groups that are modelled on some

weighted function space described earlier. Further, we show that these Lie groups are

regular. Here

Diff(X) := {φ ∈ FC∞(X,X) : φ is bijective and φ−1 ∈ FC∞(X,X)};
the chain rule ensures that Diff(X) is actually a group with composition and inversion

as group operations.

4.1. Weighted diffeomorphisms and endomorphisms. In this section, we define

and examine sets of weighted endomorphisms EndW(X) and weighted diffeomorphisms

DiffW(X). We show that if 1X ∈ W, then EndW(X) is a smooth monoid and DiffW(X)

is its group of units that can be turned into a Lie group. Further, we discuss certain

subsets of these, the decreasing weighted diffeomorphisms respectively endomorphisms.

For nonempty W ⊆ RX , we define

DiffW(X) := {φ ∈ Diff(X) : φ− idX , φ
−1 − idX ∈ C∞W(X,X)},

EndW(X) := {γ + idX : γ ∈ C∞W(X,X)}.
The set EndW(X) can be turned into a smooth manifold using the differentiable structure

generated by the bijective map

κW : C∞W(X,X)→ EndW(X) : γ 7→ γ + idX . (4.1.0.1)

We clarify the relation between EndW(X) and DiffW(X). The following is obvious:

Lemma 4.1.1. Let W ⊆ RX and φ ∈ Diff(X). Then

φ ∈ DiffW(X) ⇔ φ, φ−1 ∈ EndW(X).

Furthermore, we have

Lemma 4.1.2. Let W ⊆ RX such that EndW(X) is a monoid with respect to the compo-

sition of maps. Then the group of units is given by

EndW(X)× = DiffW(X);

in particular DiffW(X) is a subgroup of Diff(X).

Proof. Obviously

φ ∈ EndW(X)× ⇔ φ is bijective and φ, φ−1 ∈ EndW(X).

Since EndW(X) consists of smooth maps, the assertion follows from Lemma 4.1.1.
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In the rest of this section, we prove that EndW(X) is a smooth monoid if 1X ∈ W; thus

DiffW(X) is a group by Lemma 4.1.2. Further, we define the set of weighted decreasing

endomorphisms and show that it is a closed submonoid of EndW(X). The main part is

to show that the monoid multiplication

◦ : EndW(X)× EndW(X)→ EndW(X)

is defined and smooth, so we elaborate on this.

4.1.1. Composition of weighted endomorphisms in charts. We study what com-

position looks like in the global chart κ−1
W (from (4.1.0.1)). For η, γ ∈ C∞W(X,X),

κW(γ) ◦ κW(η) = (γ + idX) ◦ (η + idX) = γ ◦ (η + idX) + η + idX . (4.1.2.1)

Obviously κW(γ) ◦ κW(η) ∈ EndW(X) if and only if γ ◦ (η + idX) ∈ C∞W(X,X); and the

smoothness of ◦ is equivalent to that of

C∞W(X,X)× C∞W(X,X)→ C∞W(X,X) : (γ, η) 7→ γ ◦ (η + idX).

4.1.1.1. Important maps. For technical reasons we look at more general maps

gY : C0(W,Y )× C0(U, V )→ C0(U, Y ) : (γ, η) 7→ γ ◦ (η + idX); (4.1.2.2)

here U, V,W ⊆ X are open nonempty subsets with V +U ⊆W and Y is a normed space.

These maps play an important role in further discussions.

Continuity properties. We discuss when the restriction of gY to weighted function spaces

has values in a weighted function space and is continuous. We start with the following

lemma whose assertion is used as the base case for Lemma 4.1.4.

Lemma 4.1.3. Let X and Y be normed spaces, U, V,W ⊆ X open nonempty subsets such

that V + U ⊆W and V is balanced, and W ⊆ RW .

(a) For γ ∈ C0
W(W,Y ) ∩ BC1(W,Y ), η ∈ C0

W(U, V ), f ∈ W and x ∈ U ,

|f(x)| ‖gY (γ, η)(x)‖ ≤ |f(x)| (‖γ‖1{x}+Dη(U),1 ‖η(x)‖+ ‖γ(x)‖). (4.1.3.1)

In particular

gY (γ, η) = γ ◦ (η + idX) ∈ C0
W(U, Y ).

(b) Let γ, γ0 ∈ C0
W(W,Y ) ∩ BC1(W,Y ) and η, η0 ∈ C0

W(U, V ) such that

{tη(x) + (1− t)η0(x) : t ∈ [0, 1], x ∈ U} ⊆ V.

Then for each f ∈ W,

‖gY (γ, η)− gY (γ0, η0)‖f,0 ≤ ‖γ‖1W ,1‖η − η0‖f,0
+ ‖γ − γ0‖1W ,1‖η0‖f,0 + ‖γ − γ0‖f,0. (4.1.3.2)

In particular, if 1W ∈ W then the map

gY,0 : C1
W(W,Y )× C∂,0W (U, V )→ C0

W(U, Y ) : (γ, η) 7→ gY (γ, η)

is continuous.
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Proof. (a) For x ∈ U , using the triangle inequality and the mean value theorem we derive

|f(x)| ‖gY (γ, η)(x)‖ = |f(x)| ‖γ(η(x) + x)‖
≤ |f(x)| ‖γ(η(x) + x)− γ(x)‖+ |f(x)| ‖γ(x)‖

= |f(x)|
∥∥∥∥∫ 1

0

Dγ(x+ tη(x)) · η(x) dt

∥∥∥∥+ |f(x)| ‖γ(x)‖

≤ |f(x)| ‖Dγ|{x}+Dη(U)‖op,∞‖η(x)‖+ |f(x)| ‖γ(x)‖

and from this we easily deduce the assertion. We could apply the mean value theorem

because the line segment {x+ tη(x) : t ∈ [0, 1]} is contained in U+V since V is balanced.

(b) For x ∈ U we have

|f(x)| ‖gY,0(γ, η)(x)− gY,0(γ0, η0)(x)‖ = |f(x)| ‖γ(η(x) + x)− γ0(η0(x) + x)‖.

We add 0 = γ(η0(x) + x)− γ(η0(x) + x) and apply the triangle inequality to see that

|f(x)| ‖γ(η(x) + x)− γ(η0(x) + x) + γ(η0(x) + x)− γ0(η0(x) + x)‖
≤ |f(x)| ‖γ(η(x) + x)− γ(η0(x) + x)‖+ |f(x)| ‖(γ − γ0)(η0(x) + x)‖.

We discuss the two summands separately. For the first summand, we can apply the

mean value theorem (Proposition A.2.11) because we assumed that the line segment

{tη(x) + (1− t)η0(x) : t ∈ [0, 1]} is contained in V , and get

|f(x)| ‖γ(η(x) + x)− γ(η0(x) + x)‖

= |f(x)|
∥∥∥∥ ∫ 1

0

Dγ(tη(x) + (1− t)η0(x) + x) · (η(x)− η0(x)) dt

∥∥∥∥
≤ |f(x)| ‖γ‖1W ,1‖η(x)− η0(x)‖.

By applying the mean value theorem, which is possible because V is balanced, the second

summand becomes

|f(x)| ‖(γ − γ0)(η0(x) + x)‖
= |f(x)| ‖(γ − γ0)(η0(x) + x)− (γ − γ0)(x) + (γ − γ0)(x)‖

≤ |f(x)|
(∥∥∥∥∫ 1

0

D(γ − γ0)(tη0(x) + x) · η0(x) dt

∥∥∥∥+ ‖(γ − γ0)(x)‖
)

≤ |f(x)|
(
‖γ − γ0‖1W ,1‖η0(x)‖+ ‖(γ − γ0)(x)‖

)
.

Combining these two estimates gives (4.1.3.2).

The continuity of gY,0 follows from this estimate: For each η ∈ C∂,0W (U, V ), there exists

an r > 0 such that

η(U) +Br(0) ⊆ V,

and since 1W ∈ W,

Fη := {η̃ ∈ C0
W(U,X) : ‖η − η̃‖1W ,0 < r}

is a neighborhood of η in C∂,0W (U, V ). The estimate (4.1.3.2) ensures that gY,0 is continuous

on C1
W(W,Y )× Fη.
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Lemma 4.1.4. Let X and Y be normed spaces, U, V,W ⊆ X open nonempty subsets such

that V + U ⊆W and V is balanced, k ∈ N and W ⊆ RW with 1W ∈ W. Then

gY (Ck+1
W (W,Y )× CkW(U, V )) ⊆ CkW(U, Y ),

and the map

gY,k : Ck+1
W (W,Y )× C∂,kW (U, V )→ CkW(U, Y ) : (γ, η) 7→ gY (γ, η)

which arises by restricting gY is continuous.

Proof. The proof is by induction. The case k = 0 was treated in Lemma 4.1.3.

k → k + 1: We use Proposition 3.2.3 (and Lemma 4.1.3) to see that

gY (Ck+2
W (W,Y )× Ck+1

W (U, V )) ⊆ Ck+1
W (U, Y )

is equivalent to

(D ◦ gY )(Ck+2
W (W,Y )× Ck+1

W (U, V )) ⊆ CkW(U,L(X,Y ));

and that the continuity of gY,k+1 is equivalent to that of D ◦ gY,k+1.

Applying the chain rule to gY shows that for γ ∈ Ck+2
W (W,Y ) and η ∈ Ck+1

W (U, V ),

(D ◦ gY )(γ, η) = gL(X,Y ),k(Dγ, η) · (Dη + id), (∗)

where · denotes the composition of linear maps (see Corollary 3.3.6) and id denotes the

constant map x 7→ idX . Since Dγ ∈ Ck+1
W (W,L(X,Y )), we derive from the induction

hypothesis that

gL(X,Y ),k(Dγ, η) ∈ CkW(U,L(X,Y )).

Hence we conclude from Corollary 3.3.6 and Dη + id ∈ BCk(U,L(X)) that

(D ◦ gY )(γ, η) ∈ CkW(U,L(X,Y )).

The continuity of D ◦ gY,k+1 follows easily from (∗): We use the inductive hypothesis to

conclude that gL(X,Y ),k is continuous. Since D and

· : CkW(U,L(X,Y ))× BCk(U,L(X))→ CkW(U,L(X,Y ))

are smooth (see Proposition 3.2.3 and Corollary 3.3.6) as well as the translation with id

in BCk(U,L(X)), the continuity of gY,k+1 is proved.

Restriction to decreasing functions. Finally, we study the restriction of gY,k to

decreasing functions.

Lemma 4.1.5. Let X and Y be normed spaces, U, V,W ⊆ X open nonempty subsets such

that V + U ⊆W and V is balanced, k ∈ N and W ⊆ RX with 1X ∈ W. Then

gY,k(Ck+1
W (W,Y )o × CkW(U, V )) ⊆ CkW(U, Y )o.

Proof. The proof is by induction on k:

k = 0: We use estimate (4.1.3.1) in Lemma 4.1.3. Let f ∈ W, γ ∈ C1
W(W,Y )o and

η ∈ C0
W(U, V ). Then for every ε > 0 there exists r > 0 such that

‖γ|W\Br(0)‖f,0 < ε/2
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and (as 1X ∈ W)

‖γ|W\Br(0)‖1W ,1 <
ε

2(‖η‖f,0 + 1)
.

Since 1X ∈ W, we have K := ‖η‖1U ,0 < ∞. Let R ∈ R such that R > r + K. Then for

each x ∈ U \BR(0)

x+ Dη(x) ⊆W \Br(0),

so we conclude from estimate (4.1.3.1) that

|f(x)| ‖gY,k(γ, η)(x)‖ ≤ ‖γ‖1{x}+Dη(U),1 ‖η‖f,0 + |f(x)| ‖γ(x)‖ < ε

2(‖η‖f,0 + 1)
‖η‖f,0 +

ε

2

for x ∈ U \BR(0). Thus gY,k(γ, η) ∈ C0
W(U, Y )o.

k → k + 1: We calculate using the chain rule that

(D ◦ gY,k+1)(γ, η) = gL(X,Y ),k(Dγ, η) · (Dη + id).

Since Dγ ∈ Ck+1
W (W,L(X,Y ))o (see Corollary 3.2.4),

gL(X,Y ),k(Dγ, η) ∈ CkW(U,L(X,Y ))o

by the inductive hypothesis. Further, Dη + id ∈ BCk(U,L(X)), so we conclude from

Corollary 3.3.4 that

(D ◦ gY,k+1)(γ, η) ∈ CkW(U,L(X,Y ))o.

From this (and the base case k = 0) we conclude by Corollary 3.2.4 that

gY,k+1(γ, η) ∈ Ck+1
W (U, Y )o.

Differentiability properties. We discuss whether restrictions of gY,k to certain weighted

function spaces are differentiable. First, we provide a nice identity for the differential

quotient of gY,k.

Lemma 4.1.6. Let X and Y be normed spaces, U, V,W ⊆ X open nonempty subsets

such that V + U ⊆ W and V is balanced, W ⊆ RW with 1W ∈ W, γ, γ1 ∈ C2
W(W,Y ),

η ∈ C0
W(U, V ), η1 ∈ C0

W(U,X) and t ∈ K∗. Further, suppose that

{η + stη1 : s ∈ [0, 1]} ⊆ C0
W(U, V ).

Then for each x ∈ U ,

evx

(
gY,1(γ + tγ1, η + tη1)− gY,1(γ, η)

t

)
=

∫ 1

0

evx
(
gL(X,Y ),1(D(γ + stγ1), η + stη1) · η1 + gY,1(γ1, η + stη1)

)
ds.

Proof. We first prove that the relevant weak integral exists. To this end, we take a closer

look at the integrand. Since {η + stη1 : s ∈ [0, 1]} ⊆ C0
W(U, V ), we have

evx
(
gL(X,Y ),1(D(γ + stγ1), η + stη1) · η1 + gY,1(γ1, η + stη1)

)
= Dγ(η(x)+stη1(x)+x)·η1(x)+stDγ1(η(x)+stη1(x)+x)·η1(x)+γ1(η(x)+stη1(x)+x).

The mean value theorem yields∫ 1

0

Dγ(η(x) + stη1(x) + x) · η1(x) ds =
γ(η(x) + tη1(x) + x)− γ(η(x) + x)

t
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and∫ 1

0

(
stDγ1(η(x) + stη1(x) + x) · η1(x) + γ1(η(x) + stη1(x) + x)

)
ds

= γ1(η(x) + tη1(x) + x);

the latter identity follows from the fact that

d

ds
sγ1(η(x) + stη1(x) + x) = stDγ1(η(x) + stη1(x) + x) · η1(x) + γ1(η(x) + stη1(x) + x).

So the integral exists and has the value

γ(η(x) + tη1(x) + x)− γ(η(x) + x)

t
+ γ1(η(x) + tη1(x) + x)

=
gY,1(γ + tγ1, η + tη1)(x)− gY,1(γ, η)(x)

t
.

Proposition 4.1.7. Let X and Y be normed spaces, U, V,W ⊆ X open nonempty subsets

such that V + U ⊆ W and V is balanced, W ⊆ RW with 1W ∈ W, k ∈ N and ` ∈ N∗.
Then

gY,k,` : Ck+`+1
W (W,Y )× C∂,kW (U, V )→ CkW(U, Y ) : (γ, η) 7→ γ ◦ (η + idX)

is a C`-map with the directional derivative

dgY,k,`(γ, η; γ1, η1) = gL(X,Y ),k,`−1(Dγ, η) · η1 + gY,k,`(γ1, η). (4.1.7.1)

Proof. This is proved by induction.

` = 1: From Lemmas 4.1.6 and 3.2.13 we conclude that for γ,γ1 ∈Ck+`+1
W (W,Y ),

η ∈ C∂,kW (U, V ), η1 ∈ CkW(U,X) and for all t ∈ R∗ in a suitable neighborhood of 0

we have the identity

gY,k,`(γ + tγ1, η + tη1)− gY,k,`(γ, η)

t
=

∫ 1

0

gL(X,Y ),k,`−1(D(γ + stγ1), η + stη1) · η1 ds

+

∫ 1

0

gY,k,`(γ1, η + stη1) ds.

The theorem about parameter dependent integrals (Proposition A.1.8) yields the asser-

tions if we let t→ 0 in the above expression.

` − 1 → `: This follows easily from (4.1.7.1). Since D and · are smooth (see Propo-

sition 3.2.3 and Corollary 3.3.7) and gL(X,Y ),k,`−1 resp. gY,k,` are C`−1 by the inductive

hypothesis, dgY,k,` is C`−1 and hence gY,k,` is C`.

Corollary 4.1.8. Let X and Y be normed spaces, U, V,W ⊆ X open nonempty subsets

such that V + U ⊆ W and V is balanced, W ⊆ RW with 1W ∈ W and k ∈ N. Then the

map

gY,k,∞ : C∞W(W,Y )× CkW(U, V )→ CkW(U, Y ) : (γ, η) 7→ γ ◦ (η + idX)

(which is definable due to Lemma 4.1.4) is smooth. In particular, gY,∞ := gY,∞,∞ is

smooth.

Proof. For k <∞, this follows from Proposition 4.1.7 since the inclusion maps

C∞W(W,Y )→ Ck+`+1
W (W,Y )
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are smooth. Now let k = ∞. From the assertions already established, we derive the

commutative diagram

C∞W(W,Y )× C∞W(U, V )
gY,∞

//

��

��

C∞W(U, Y )
��

��

C∞W(W,Y )× CnW(U, V )
gY,n,∞

// CnW(U, Y )

for each n ∈ N, where the vertical arrows represent the inclusion maps. Using Corol-

lary 3.2.6 we easily deduce the smoothness of gY,∞ from the one of gY,n,∞.

Restriction to decreasing functions. We examine the restriction of gY,k,∞ to de-

creasing functions. We show that it takes values in the decreasing functions and is also

smooth.

Corollary 4.1.9. Let X and Y be normed spaces, U, V,W ⊆ X open nonempty subsets

such that V + U ⊆W and V is balanced, W ⊆ RW with 1W ∈ W and k ∈ N. Then

gY,k,∞(C∞W(W,Y )o × CkW(U, V )o) ⊆ CkW(U, Y )o,

and the restriction gY,k,∞|
CkW(U,Y )o

C∞W(W,Y )o×CkW(U,V )o
is smooth.

Proof. We deduce this from Lemma 4.1.5, the smoothness of the unrestricted map (Corol-

lary 4.1.8) and Proposition A.1.12 that can be used because CkW(U, Y )o is closed by

Lemma 3.1.6.

4.1.2. Smooth monoids of weighted endomorphisms. We are able to prove that

EndW(X) and the set EndW(X)◦—which is defined below—are smooth monoids, pro-

vided that 1X ∈ W.

Corollary 4.1.10. For W ⊆ RX with 1X ∈ W, EndW(X) is a smooth monoid with the

group of units

EndW(X)× = DiffW(X).

Further, the set

EndW(X)◦ := {γ + idX : γ ∈ C∞W(X,X)o} (4.1.10.1)

is a closed submonoid of EndW(X) that is a smooth monoid.

Proof. We first show that EndW(X) is a monoid. Since idX ∈ EndW(X) is obviously

satisfied, it remains to show that it is closed under composition. Since every element of

EndW(X) can uniquely be written as φ+ idX with φ ∈ C∞W(X,X), we have to show that

for γ, η ∈ C∞W(X,X),

κW(γ) ◦ κW(η)− idX ∈ C∞W(X,X).

But we know from identity (4.1.2.1) that

κW(γ) ◦ κW(η)− idX = gX,∞(γ, η) + η,
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so we see with Corollary 4.1.8 that this assertion holds, hence EndW(X) is a monoid.

Further, from this identity we easily deduce the smoothness of the composition from that

of gX,∞, which was also proved in Proposition 4.1.7.

EndW(X)◦ is a closed subset of EndW(X) since κW is a homeomorphism and by

Lemma 3.1.6, C∞W(X,X)o is a closed vector subspace of C∞W(X,X). We know from Corol-

lary 4.1.9 and the fact that C∞W(X,X)o is a vector space that for γ, η ∈ C∞W(X,X)o,

κW(γ) ◦ κW(η)− idX = gX,∞(γ, η) + η ∈ C∞W(X,X)o,

and that this map is smooth, hence EndW(X)◦ is a smooth submonoid of EndW(X).

The relation EndW(X)× = DiffW(X) was proved in Lemma 4.1.2.

4.2. Lie group structures on weighted diffeomorphisms. In this section, we first

prove that DiffW(X)—which was already proved to be a group in Corollary 4.1.10—is

in fact a Lie group. Also we define and discuss the set of decreasing weighted diffeo-

morphisms, DiffW(X)◦. We show that it is a normal subgroup of DiffW(X) that can be

turned into a Lie group. Finally, we elaborate on when diffeomorphisms that are weighted

endomorphisms are weighted diffeomorphisms.

4.2.1. The Lie group structure of DiffW(X). We show that DiffW(X) is an open

subset of EndW(X) and the group inversion is smooth, whence DiffW(X) is a Lie group.

In order to do this, we have to examine the inversion map on Diff(X)∩EndW(X). First,

we give some basic definitions and state some easy results.

Definition 4.2.1. Let X be a normed space and W ⊆ RX . We set

HW := {φ ∈ C∞W(X,X) : φ+ idX ∈ Diff(X)}

and

I : HW → FC∞(X,X) : φ 7→ (φ+ idX)−1 − idX . (4.2.1.1)

Lemma 4.2.2. Let X be a normed space, W ⊆ RX and φ ∈ HW . Then

(I(φ) + idX) ◦ (φ+ idX) = (φ+ idX) ◦ (I(φ) + idX) = idX , (4.2.2.1)

I(φ) ◦ (φ+ idX) = −φ, (4.2.2.2)

φ ◦ (I(φ) + idX) = −I(φ). (4.2.2.3)

Proof. This is obvious.

In the following, it will be useful to define BR(0) = ∅ if R < 0. This will allow us to

avoid distinction of cases.

Lemma 4.2.3. Let X be a normed space and R, r ∈ R with r > 0. Then

(X \BR(0)) +Br(0) ⊆ X \BR−r(0).

Proof. Let x ∈ X \BR(0) and y ∈ Br(0). We apply the triangle inequality:

‖x+ y‖ ≥ ‖x‖ − ‖y‖ > R− r.
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4.2.1.1. On the range of the inversion map. We discuss whether the range of I consists of

weighted functions. More precisely, for suitable functions φ ∈ HW we provide an estimate

for ‖I(φ)‖f,0 and an identity for DI(φ). Further, for a decreasing map φ ∈ HW , we want

to consider I(φ)|X\BR(0) for R > 0. To avoid case distinctions, in the following R mostly

denotes an arbitrary real number.

Lemma 4.2.4. Let X be a normed space, W ⊆ RX with 1X ∈ W and φ ∈ HW . Then

I(φ) ∈ BC0(X,X).

Proof. This is an immediate consequence of identity (4.2.2.3).

Lemma 4.2.5. Let X be a Banach space, W ⊆ RX with 1X ∈ W, φ ∈ HW and r a real

number such that ‖φ‖1X\Br(0),1 = supx∈X\Br(0) ‖Dφ(x)‖op < 1. Let R ∈ R be such that

R > r + ‖I(φ)‖1X ,0 (note that ‖I(φ)‖1X ,0 < ∞ by Lemma 4.2.4). Then for all f ∈ W
and x ∈ X \BR(0),

|f(x)| ‖I(φ)(x)‖ ≤ |f(x)| ‖φ(x)‖
1− ‖φ‖1X\Br(0),1

. (4.2.5.1)

Proof. We set ψ := I(φ). Then for f ∈ W and x ∈ X \BR(0), by (4.2.2.3),

|f(x)| ‖ψ(x)‖ = |f(x)| ‖φ(ψ(x) + x)− φ(x) + φ(x)‖

≤ |f(x)|
(∫ 1

0

‖Dφ(x+ sψ(x)) · ψ(x)‖ ds+ ‖φ(x)‖
)

≤ ‖Dφ|X\Br(0)‖1X\Br(0),0|f(x)| ‖ψ(x)‖+ |f(x)| ‖φ(x)‖;

here we used that {x+sψ(x) : s ∈ [0, 1]} is contained in X \Br(0) by the choice of R and

Lemma 4.2.3. From this we can derive the desired estimate since ‖Dφ‖1X\Br(0),0 < 1.

We now state a formula for DI(φ).

Lemma 4.2.6. Let X be a Banach space, W ⊆ RX with 1X ∈ W, φ ∈ HW and x ∈ X. If

‖Dφ(x)‖op < 1, then

D(I(φ))((φ+ idX)(x)) = Dφ(x) ·QIL(X)(−Dφ(x))−Dφ(x), (4.2.6.1)

where QIL(X) denotes the quasi-inversion (discussed in Chapter C).

Proof. We set ψ := I(φ). From identity (4.2.2.2) and the chain rule, one gets

Dψ((φ+ idX)(x)) · (Dφ(x) + idX) = −Dφ(x). (∗)

Since ‖Dφ(x)‖op < 1, the linear map Dφ(x) + idX is bijective with

(Dφ(x) + idX)−1 =

∞∑
k=0

(−Dφ(x))k =

∞∑
k=1

(−Dφ(x))k + idX = −QIL(X)(−Dφ(x)) + idX ;

(cf. Lemma C.2.6). Using this identity we can easily derive (4.2.6.1) from (∗).

We show that for suitable maps φ ∈ HW , at least the restriction of I(φ) to the

complement of a ball is a smooth weighted function.
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Proposition 4.2.7. Let X be a Banach space,W ⊆ RX with 1X ∈W, φ∈HW and r ∈R
such that supx∈X\Br(0) ‖Dφ(x)‖op < 1. Then for each R ∈ R with R > r + ‖I(φ)‖1X ,0
(by Lemma 4.2.4, ‖I(φ)‖1X ,0 <∞),

I(φ)|X\BR(0) ∈ C
∞
W(X \BR(0), X).

Proof. We prove by induction that I(φ)|X\BR(0) ∈ CkW(X \ BR(0), X) for all k ∈ N. In

this proof, we will identify maps with their restrictions; no confusion will arise.

k = 0: This case was treated in Lemma 4.2.5.

k → k + 1: Using Proposition 3.2.3 (and the induction base), we see that

I(φ) ∈ Ck+1
W (X \BR(0), X) ⇔ D I(φ) ∈ CkW(X \BR(0),L(X));

the second condition will be verified now. Since ‖φ‖1X\Br(0),1 < 1, the map −Dφ is

quasi-invertible in C∞W(X \Br(0),L(X)) with

QI(−Dφ) = QIL(X) ◦ (−Dφ),

by Proposition 3.3.20, here QI := QIC∞W(X\Br(0),L(X)). From this, identity (4.2.6.1) and

the fact that φ + idX is a diffeomorphism with (φ + idX)−1 = I(φ) + idX (see iden-

tity (4.2.2.1)), we deduce that

D I(φ) = (Dφ ·QI(−Dφ)−Dφ) ◦ (I(φ) + idX) (∗)

on X \BR(0). We use Proposition 3.3.20 and Corollary 3.3.6 to see that

Dφ ·QI(−Dφ) ∈ C∞W(X \Br(0),L(X)).

Choose s > ‖I(φ)‖1X ,0 such that R > r + s. Then (X \BR(0)) +Bs(0) ⊆ X \Br(0), by

Lemma 4.2.3. Since we know from the induction hypothesis that I(φ)∈CkW(X\BR(0), X),

we derive from identity (∗) and Corollary 4.1.8 (applied with U = X \BR(0), V = Bs(0)

and W = X \Br(0)) that

D I(φ) = gL(X),∞,k(Dφ ·QI(−Dφ)−Dφ, I(φ)).

Hence D I(φ) ∈ CkW(X \BR(0),L(X)).

Finally, we examine I on decreasing maps.

Corollary 4.2.8. Let X be a Banach space, W ⊆ RX with 1X ∈ W and φ ∈ HW ∩
C∞W(X,X)o. Then there exists an R ∈ R such that

I(φ)|X\BR(0) ∈ C
∞
W(X \BR(0), X)o.

Proof. Since φ ∈ C∞W(X,X)o, there exists an r ∈R such that supx∈X\Br(0) ‖Dφ(x)‖op < 1.

By Proposition 4.2.7, there exists R ∈ R such that I(φ)|X\BR(0) ∈ C∞W(X \ BR(0), X).

Further, by (4.2.2.3),

I(φ)|X\BR(0) = −φ ◦ (I(φ)|X\BR(0) + idX\BR(0)) = gX,∞(−φ, I(φ)|X\BR(0)),

hence an application of Lemma 4.1.5 finishes the proof.

4.2.1.2. An open set of weighted diffeomorphisms. We describe an open neighborhood

of 0 in C∞W(X,X) whose image under κW consists of diffeomorphisms.
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Definition 4.2.9. Let X be a normed space and W ⊆ RX with 1X ∈ W. We set

UW := {φ ∈ C∞W(X,X) : ‖φ‖1X ,1 < 1}.

Since 1X ∈ W, UW is open.

The following fact shows that κW(UW) ⊆ Diff(X).

Proposition 4.2.10. Let E and F be Banach spaces and φ ∈ FC1(E,F ) such that for

all x ∈ E the linear map Dφ(x) ∈ L(E,F ) is invertible and there exists some K ∈ R with

‖Dφ(x)−1‖op ≤ K for all x ∈ E. Then φ is a surjective homeomorphism.

Proof. A proof can be found in [CH82, Chapter 2.3, Theorem 3.9].

Corollary 4.2.11. Let X be a Banach space and W ⊆ RX with 1X ∈ W.

(a) κW(UW) ⊆ Diff(X).

(b) I(UW) ⊆ C∞W(X,X).

(c) κW(UW) ⊆ DiffW(X).

Proof. Let φ ∈ UW .

(a) The map Dφ(x) + idX is invertible for all x ∈ X with

(Dφ(x) + idX)−1 =

∞∑
`=0

(−Dφ(x))`,

and from this we get the estimate

‖(D(φ+ idX)(x))−1‖op ≤
1

1− ‖Dφ‖op,∞
.

We conclude from Proposition 4.2.10 that φ + idX is a bijection of X, and the clas-

sical inverse function theorem shows that (φ + idX)−1 is smooth. Hence φ + idX is a

diffeomorphism.

(b) From (a) we conclude that φ ∈ HW , so we can apply Proposition 4.2.7 with R < 0

and a sufficiently small negative real number r to see that I(φ) ∈ C∞W(X,X).

(c) From the previous assertions we conclude that

φ+ idX , (φ+ idX)−1 ∈ EndW(X) ∩Diff(X).

By Lemma 4.1.1 this is equivalent to κW(φ) = φ+ idX ∈ DiffW(X).

Continuity of the inversion map. We show that the inversion is continuous on κW(UW).

Since this is an identity neighborhood, we deduce that DiffW(X) is a topological group.

Proposition 4.2.12. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Then the

map

UW → C∞W(X,X) : φ 7→ I(φ) = (φ+ idX)−1 − idX

(defined by Corollary 4.2.11) is continuous.

Proof. By Corollary 3.2.6, the above map is continuous iff so are the maps

I` : UW → C`W(X,X)

for each ` ∈ N. We shall verify this condition by induction on `.
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` = 0: For φ, φ1 ∈ UW we set ψ := I(φ) and ψ1 := I(φ1). For x ∈ X, using iden-

tity (4.2.2.3), the mean value theorem and by adding 0 = φ1(ψ(x) + x) − φ1(ψ(x) + x)

we compute

ψ1(x)− ψ(x) = φ1(ψ(x) + x)− φ1(ψ1(x) + x) + φ(ψ(x) + x)− φ1(ψ(x) + x)

=

∫ 1

0

Dφ1(tψ(x) + (1− t)ψ1(x) + x) · (ψ(x)− ψ1(x)) dt+ gX,∞(φ− φ1, ψ)(x).

Let f ∈ W. For the integral above, we have

|f(x)|
∥∥∥∥∫ 1

0

Dφ1(tψ(x) + (1− t)ψ1(x) + x) · (ψ(x)− ψ1(x)) dt

∥∥∥∥ ≤ ‖φ1‖1X ,1‖ψ − ψ1‖f,0,

whence

‖ψ1 − ψ‖f,0 ≤ ‖φ1‖1X ,1‖ψ − ψ1‖f,0 + ‖gX,∞(φ− φ1, ψ)‖f,0. (∗)

We have to estimate the last summand in (∗). Fix φ ∈ UW and choose ξ ∈ R such that

‖φ‖1X ,1 < ξ < 1. Since gX,∞ is continuous (Corollary 4.1.8) and gX,∞(0, ψ) = 0, for each

ε > 0 there exists a neighborhood V of φ in UW such that for all φ1 ∈ V ,

‖gW,0,X(φ− φ1, ψ)‖f,0 < ε.

Shrinking V , we may assume that each φ1 ∈ V satisfies ‖φ1‖1X ,1 ≤ ξ. We conclude from

(∗) that

‖ψ1 − ψ‖f,0 ≤
ε

1− ‖φ1‖1X ,1
≤ ε

1− ξ
for φ1 ∈ V , from which we infer that I0 is continuous in φ.

` → ` + 1: Because of Proposition 3.2.3 (and the induction base) I`+1 is continuous

iff so is D ◦ I`+1 : UW → C`W(X,L(X)). Using identity (4.2.6.1), we see that for φ ∈ UW ,

(D ◦ I`+1)(φ) = gL(X),`,∞(Dφ ·QI(−Dφ)−Dφ, I`(φ)),

where QI := QIC∞W(X,L(X)). Since gL(X),`,∞, D, ·, QI and I` are continuous (see Corol-

lary 4.1.8, Proposition 3.2.3, Corollary 3.3.6, Proposition 3.3.20 and the inductive hy-

pothesis, respectively), we conclude that D ◦ I`+1 is continuous.

Corollary 4.2.13. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Then

DiffW(X) is an open submanifold of EndW(X). Further, the inversion map of DiffW(X)

is continuous.

Proof. We established in Corollary 4.1.10 that EndW(X) is a topological monoid with

the unit group DiffW(X). To show that DiffW(X) is open we just need to find an open

neighborhood of idX in EndW(X) that is contained in DiffW(X), and the inversion

is continuous if it is so on this neighborhood (see Lemma C.2.3). But we proved in

Corollary 4.2.11 that κW(UW) ⊆ DiffW(X), and in Proposition 4.2.12 that the inversion

map is continuous on κW(UW); see the commutative diagram

κW(UW)
−1

// DiffW(X)

UW
I //

OO

κW

OOOO

κ−1
W (DiffW(X))

OO

κW

OOOO
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Smoothness of inversion. Because of Corollary 4.2.13, we can give

Definition 4.2.14. Let X be a normed space and W ⊆ RX with 1X ∈ W. We define

IW : κ−1
W (DiffW(X))→ κ−1

W (DiffW(X)) : φ 7→ κ−1
W (κW(φ)−1) = (φ+ idX)−1 − idX .

It remains to show that this map is smooth. To this end, we calculate a nice identity

for the differential quotient of IW .

Lemma 4.2.15. Let X be a Banach space, W ⊆ RX with 1X ∈ W, φ ∈ κ−1
W (DiffW(X)),

ψ ∈ C∞W(X,X) and t ∈ K∗ such that φ+ tψ ∈ κ−1
W (DiffW(X)). Then

IW(φ+ tψ)− IW(φ)

t
= −

∫ 1

0

gX,∞(ψ + gL(X),∞(D(IW(φ+ tψ)), φ+ stψ) · ψ, IW(φ)) ds.

Proof. The existence of the integral follows from Lemma A.1.6 since gX,∞, gL(X),∞, D, ·
and IW are continuous and C∞W(X,X) is complete (see Corollary 4.1.8, Proposition 3.2.3,

Corollary 3.3.7, Corollary 4.2.13 and Corollary 3.2.12, respectively). To prove the stated

identity, we use evaluation maps (see Lemma 3.2.13). Since φ+ idX is a diffeomorphism,

all points of X can be represented as φ(x) + x, where x ∈ X. For any point of this form

we compute

evφ(x)+x

(
−
∫ 1

0

gX,∞(ψ + gL(X),∞(D(IW(φ+ tψ)), φ+ stψ) · ψ, IW(φ)) ds

)
= −

∫ 1

0

gX,∞(ψ + gL(X),∞(D(IW(φ+ tψ)), φ+ stψ) · ψ, IW(φ))(φ(x) + x) ds,

where we used Lemma A.1.4. In view of the definition of gX,∞ and replacing IW(φ) with

(φ+ idX)−1 − idX , the preceding integral equals

−
∫ 1

0

ψ(x) + gL(X),∞(D(IW(φ+ tψ)), φ+ stψ)(x) · ψ(x) ds.

We factor out ψ(x), put in the definition of gL(X),∞ and multiply with 1 = t
t to obtain

= −
∫ 1

0

(gL(X),∞(D(IW(φ+ tψ)), φ+ stψ)(x) + idX) · ψ(x) ds

= −1

t

∫ 1

0

D(IW(φ+ tψ) + idX)(φ(x) + stψ(x) + x) · (tψ(x)) ds

using that D idX(y) = idX for all y ∈ X. The mean value theorem gives

=
(IW(φ+ tψ) + idX)(φ(x) + x)− (IW(φ+ tψ) + idX)(φ(x) + tψ(x) + x)

t
.

We plug in the definition of IW and obtain

=
(φ+ tψ + idX)−1(φ(x) + x)− (φ+ tψ + idX)−1(φ(x) + tψ(x) + x)

t

=
(φ+ tψ + idX)−1(φ(x) + x)− (φ+ idX)−1(φ(x) + x)

t
.
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This can be rewritten as

=
IW(φ+ tψ)(φ(x) + x)− IW(φ)(φ(x) + x)

t
,

so finally we get

= evφ(x)+x

(
IW(φ+ tψ)− IW(φ)

t

)
.

Having proved this identity, we easily show that the inversion is smooth and conclude

that DiffW(X) is a Lie group.

Proposition 4.2.16. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Then IW is

a smooth map with

dIW(φ;φ1) = −gX,∞(φ1 + gL(X),∞(D(IW(φ)), φ) · φ1, IW(φ)) (4.2.16.1)

using the notation of Corollary 4.1.8.

Proof. We prove by induction that IW is a Ck-map for all k ∈ N.

k = 1: We just have to use Lemma 4.2.15 and Proposition A.1.8 to obtain the differ-

entiability of IW with the derivative (4.2.16.1).

k → k+1: If IW is Ck, we conclude from (4.2.16.1) and the fact that D, ·, gL(X),∞ and

gX,∞ are smooth (see Proposition 3.2.3, Corollary 3.3.7 (together with Example A.1.15)

and Proposition 4.1.7, respectively) that dIW is Ck, so IW is Ck+1 by definition.

Theorem 4.2.17. Let X be a Banach space and W ⊆ RX such that 1X ∈ W. Then

DiffW(X) is a Lie group.

Proof. In Corollary 4.1.10 we showed that DiffW(X) is a group and that the composi-

tion of EndW(X) is smooth. Since DiffW(X) is an open subset of EndW(X) by Corol-

lary 4.2.13, the composition of DiffW(X) is also smooth. Further, the group inversion of

DiffW(X) is smooth by Proposition 4.2.16 since for φ ∈ DiffW(X),

φ−1 = (κW ◦ IW ◦ κ−1
W )(φ).

4.2.2. On decreasing weighted diffeomorphisms and dense subgroups. We de-

fine the set DiffW(X)◦ of decreasing weighted diffeomorphisms and show that it is a

closed normal subgroup of DiffW(X) which can be turned into a Lie group. Further, we

give sufficient conditions onW ensuring that the group Diffc(X) of compactly supported

diffeomorphisms is dense in DiffW(X)◦.

Lemma 4.2.18. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Further, let

φ ∈ EndW(X)◦ and ψ ∈ DiffW(X). Then ψ − ψ ◦ φ ∈ C∞W(X,X)o.

Proof. By Lemma 3.2.13 and the mean value theorem,

ψ − ψ ◦ φ =

∫ 1

0

Dψ(idX +t(φ− idX)) · (φ− idX) dt.

Since Dψ ∈ BC∞(X,L(X)), Corollary 4.1.8 implies that Dψ(idX +t(φ − idX)) ∈
BC∞(X,L(X)). Since φ − idX ∈ C∞W(X,X)o, the assertion follows from Corollary 3.3.4

and the fact that C∞W(X,X)o is closed in C∞W(X,X).
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Proposition 4.2.19. Let X be a Banach space and W ⊆ RX with 1X ∈ W. The set

DiffW(X)◦ := DiffW(X) ∩ EndW(X)◦ = {φ ∈ DiffW(X) : φ− idX ∈ C∞W(X,X)o}

is a closed normal Lie subgroup of DiffW(X).

Proof. By Corollary 4.1.10, EndW(X)◦ is a smooth submonoid of EndW(X) that is

closed. Since DiffW(X) is open in EndW(X), we conclude that DiffW(X)◦ is a smooth

submonoid of DiffW(X) that is closed. Further, it is a direct consequence of Corollary 4.2.8

that the inverse of an element of DiffW(X)◦ is in DiffW(X)◦, whence using Lemma B.1.6

we see that the latter is a closed Lie subgroup of DiffW(X).

It remains to show that DiffW(X)◦ is normal. To this end, let φ ∈ DiffW(X)◦ and

ψ ∈ DiffW(X). Then

ψ ◦ φ ◦ ψ−1 − idX = ψ ◦ φ ◦ ψ−1 − ψ ◦ φ−1 ◦ φ ◦ ψ−1 = (ψ − ψ ◦ φ−1) ◦ φ ◦ ψ−1,

so we derive the assertion from Lemmas 4.2.18 and 4.1.5.

Lemma 4.2.20. Let X and Y be finite-dimensional normed spaces and U ⊆ X an open

nonempty set. Further, let W ⊆ RU be a set of weights such that

•W ⊆ C∞(U, [0,∞[),

• (∀x ∈ U)(∃f ∈ W) f(x) > 0

• (∀f1, . . . , fn ∈ W)(∀k1, . . . , kn ∈ N)(∃f ∈ W, C > 0)

(∀x ∈ U) ‖D(k1)f1(x)‖op · · · ‖D(kn)fn(x)‖op ≤ Cf(x).

(4.2.20.1)

Then C∞c (U, Y ) is dense in CrW(U, Y )o.

Proof. The proof can be found in [GDS73, §V, 19 b)].

Lemma 4.2.21. Let X be a finite-dimensional normed space, W ⊆ RX such that 1X ∈ W
and (4.2.20.1) is satisfied (where U = X). Then the set Diffc(X) of compactly supported

diffeomorphisms is dense in DiffW(X)◦.

Proof. The set M◦W := κ−1
W (DiffW(X)) ∩ C∞W(X,X)o = κ−1

W (DiffW(X)◦) is open in

C∞W(X,X)o, and hence Mc := C∞c (X,X) ∩M◦W is dense in M◦W by Lemma 4.2.20. But

Mc = κ−1
W (Diffc(X)), from which the assertion follows.

4.2.3. On diffeomorphisms that are weighted endomorphisms. It is obvious that

DiffW(X) ⊆ EndW(X) ∩Diff(X).

We give a sufficient criterion onW that ensures that these two sets are identical, provided

that X is finite-dimensional. Further we show Diff{1R}(R) 6= End{1R}(R) ∩Diff(X).

Proposition 4.2.22. Let X be a finite-dimensional Banach space and W ⊆ RX with

1X ∈ W. If there exists f̂ ∈ W such that

(∀R > 0)(∃r > 0) ‖x‖ ≥ r ⇒ |f̂(x)| ≥ R (4.2.22.1)

and if each function in W is bounded on bounded sets, then

DiffW(X) = EndW(X) ∩Diff(X).
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Proof. It remains to show that

EndW(X) ∩Diff(X) ⊆ DiffW(X).

So let ψ be in EndW(X) ∩Diff(X) and set φ := ψ − idX ∈ HW . Then

ψ ∈ DiffW(X) ⇔ ψ−1 ∈ EndW(X) ⇔ ψ−1 − idX ∈ C∞W(X,X) ⇔ I(φ) ∈ C∞W(X,X)

(see Lemma 4.1.1 and the definition of I in (4.2.1.1)). The last statement clearly holds iff

(∃R ∈ R, r > 0) I(φ) ∈ C∞W(X \BR(0), X) and I(φ) ∈ C∞W(BR+r(0), X),

and this will be proved now. Obviously I(φ) ∈ C∞W(BR(0), X) for each R ∈ R, because

each f ∈ W is bounded on bounded sets, all the maps D(`)I(φ) are continuous and each

closed bounded subset B of X is compact (as X is finite-dimensional); hence

sup
x∈B
|f(x)| ‖(D(`)I(φ))(x)‖op <∞.

It remains to show that there exists an R ∈ R such that I(φ) ∈ C∞W(X \ BR(0), X). We

set Kφ := ‖φ‖f̂ ,1 <∞ and conclude from (4.2.22.1) that there exists an rφ with

‖x‖ ≥ rφ ⇒ |f̂(x)| ≥ Kφ + 1.

Since |f̂(x)| ‖Dφ(x)‖op ≤ Kφ for each x ∈ X, we conclude that

‖φ|X\Brφ (0)‖1X ,1 ≤
Kφ

Kφ + 1
< 1.

But we stated in Proposition 4.2.7 that this implies the existence of an R ∈ R such that

I(φ) ∈ C∞W(X \BR(0), X).

We give a positive example.

Example 4.2.23. The space DiffS(Rn) satisfies condition (4.2.22.1). We just have to set

f̂(x1, . . . , xn) = x2
1 + · · ·+ x2

n which is clearly a polynomial function on Rn.

As announced, we give a counterexample. As a preparation, we prove

Lemma 4.2.24. Let γ ∈ C∞(R,R) be a bounded map that satisfies

(∀x ∈ R) γ′(x) > −1. (∗)
Then γ + idR ∈ Diff(R).

Proof. We conclude from (∗) that (γ(x) + idR)′(x) > 0 for all x ∈ R, so γ+ idR is strictly

monotone and hence injective. Since γ is bounded, γ+idR is unbounded above and below

and hence surjective (by the mean value theorem).

Example 4.2.25. We give an example of a map γ ∈ BC∞(R,R) with γ + idR ∈ Diff(R),

but (γ+idR)−1− idR 6∈ BC∞(R,R). To this end, let φ be an antiderivative of the function

x 7→ 2
π arctan(x) with φ(0) = 0. Then sin ◦φ and cos ◦φ are in BC∞(R,R) by a simple

induction since cos, sin, arctan ∈ BC∞(R,R),

(sin ◦φ)′(x) =
2

π
arctan(x)(cos ◦φ)(x), (∗)
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and an analogous formula holds for (cos ◦φ)′. We set γ := sin ◦φ. By (∗), we have

γ′(x) > −1 for all x ∈ R, so γ + idR ∈ Diff(R) (see Lemma 4.2.24). But since

((γ + idR)−1 − idR)′(x) =
1

γ′(y) + 1
− 1

with y := (γ + idR)−1(x) and there exists a sequence (yn)n∈N in R with

lim
n→∞

2

π
arctan(yn)(cos ◦φ)(yn) = −1,

((γ + idR)−1 − idR)′ is clearly unbounded.

4.3. Regularity. We prove that the Lie groups DiffW(X) and DiffW(X)◦ are regular.

For the definition of regularity, see Section B.2.2.

4.3.1. The tangent group and the regularity differential equation of DiffW(X).

We examine the general (right) regularity differential equation (stated in the initial value

problem (B.2.11.1)) and turn it into a differential equation on C∞W(X,X). To this end,

we first describe the group multiplication of the tangent group T DiffW(X) and the right

action of DiffW(X) on T DiffW(X) with respect to the chart Tκ−1
W .

Lemma 4.3.1. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Denote the multi-

plication on DiffW(X) with respect to the chart κ−1
W by mW . Note that the tangent group

T DiffW(X) is canonically isomorphic to C∞W(X,X) o DiffW(X).

(a) The group multiplication TmW on T DiffW(X) (with respect to Tκ−1
W ) is given by

TmW
(
(γ, γ1), (η, η1)

)
=
(
mW(γ, η), Dγ ◦ (η + idX) · η1 + γ1 ◦ (η + idX) + η1

)
.

(b) Let φ ∈ DiffW(X). Then the right action Tρφ of φ on T DiffW(X) with respect to

Tκ−1
W is given by

T(κ−1
W ◦ ρφ ◦ κW)(γ, γ1) =

(
mW(γ, κ−1

W (φ)), γ1 ◦ φ
)
.

Proof. (a) We have

mW(γ, η) = γ ◦ (η + idX) + η

and the commutative diagram

DiffW(X)×DiffW(X)
◦ // DiffW(X)

κ−1
W (DiffW(X))× κ−1

W (DiffW(X))
mW //

OO

κW×κW

OOOO

κ−1
W (DiffW(X))

OO

κW

OOOO

The group multiplication on the tangent group is given by applying the tangent functor

T to the group multiplication on DiffW(X), and therefore we obtain the group multipli-

cation on T DiffW(X) in charts by applying T to mW (up to a permutation). Since

TmW(γ, η; γ1, η1) =
(
mW(γ, η), Dγ ◦ (η + idX) · η1 + γ1 ◦ (η + idX) + η1

)
by (4.1.7.1), the asserted identity holds.

(b) Obviously (κ−1
W ◦ ρφ ◦ κW)(·) = mW(·, κ−1

W (φ)), so we derive the assertion if we

apply the identity proved in (a) with η = κ−1
W (φ) and η1 = 0.
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We aim to turn (B.2.11.1) into an ODE on a vector space. Before we can do this, a

definition is useful:

Definition 4.3.2. Let X be a normed space, W ⊆ RX with 1X ∈ W, k ∈ N and F be

a subset of W with 1X ∈ F . By Corollary 4.1.8, the map

FF,k : [0, 1]× CkF (X,X)× C∞([0, 1], C∞W(X,X))→ CkF (X,X),

(t, γ, p) 7→ p(t) ◦ (γ + idX),

is well-defined and smooth (since the evaluation of curves is smooth by Lemma A.1.9).

For each parameter curve p ∈ C∞([0, 1], C∞W(X,X)), we consider the initial value problem

Γ′(t) = FF,k(t,Γ(t), p), Γ(0) = 0, (4.3.2.1)

where t ∈ [0, 1].

Lemma 4.3.3. Let X be a Banach space and W ⊆ RX with 1X ∈ W.

(a) For γ ∈ C∞([0, 1],TidX DiffW(X)), the initial value problem

η′(t) = γ(t) · η(t), η(0) = idX

has a smooth solution

EvolρDiffW(X)(γ) : [0, 1]→ DiffW(X)

iff the initial value problem (4.3.2.1) (in Definition 4.3.2) with F = W, k = ∞ and

p = dκ−1
W ◦ γ has a smooth solution

Γp : [0, 1]→ κ−1
W (DiffW(X)).

In this case,

EvolρDiffW(X)(γ) = κW ◦ Γp.

(b) Let Ω ⊆ C∞([0, 1],TidX DiffW(X)) be an open set such that for each γ ∈ Ω there

exists a right evolution EvolρDiffW(X)(γ). Then evolρDiffW(X)|Ω is smooth iff so is the

map

(dκ−1
W ◦ Ω)→ C∞W(X,X) : p 7→ Γp(1).

As above, Γp denotes a solution to (4.3.2.1) with respect to p.

Proof. This is an easy computation involving the previous results.

4.3.1.1. Solving the differential equation. We show that the regularity differential equa-

tion for DiffW(X) is solvable. In order to do this, we use that C∞W(X,X) is a projective

limit of Banach spaces (see Proposition 3.2.5). We solve the differential equation on each

step of the projective limit, see that these solutions are compatible with the bonding

morphisms of the projective limit, and thus obtain a solution on the limit. Before we do

this, we state the following obvious lemma.

Lemma 4.3.4. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Further, let F ⊆ W
with 1X ∈ F and k ∈ N, p ∈ C∞([0, 1], C∞W(X,X)) and Γ : I → CkF (X,X) a solution to

(4.3.2.1) corresponding to p. Then Γ solves (4.3.2.1) also for all subsets G ⊆ F containing

1X and ` ∈ N with ` ≤ k.
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Proof. This is an easy calculation since the inclusion map CkF (X,X) → C`G(X,X) is

continuous linear.

Solving the differential equation on the steps. First, we solve (4.3.2.1) on function spaces

that are Banach spaces. To this end, we need tools from the theory of ordinary differential

equations on Banach spaces. The required facts are described in Section A.4. The hard

part will be to show that the solutions are defined on the whole interval [0, 1].

The solution on C0
F (X,X). We start with the function space C0

F (X,X), where F ⊆
W is finite and contains 1X . Then the initial value problem (4.3.2.1) satisfies a global

Lipschitz condition and hence is globally solvable.

Lemma 4.3.5. Let X be a normed space, W ⊆ RX with 1X ∈ W, F ⊆ W with 1X ∈ F
and p ∈ C∞([0, 1], C∞W(X,X)). Then there exists K > 0 such that for each f ∈ F , all

t ∈ [0, 1] and γ, γ0 ∈ C0
F (X,X),

‖FF,0(t, γ, p)− FF,0(t, γ0, p)‖f,0 ≤ K‖γ − γ0‖f,0.

Proof. We have

FF,0(t, γ, p)− FF,0(t, γ0, p) = gX(p(t), γ)− gX(p(t), γ0),

and deduce from estimate (4.1.3.2) in Lemma 4.1.3 that

‖FF,0(t, γ, p)− FF,0(t, γ0, p)‖f,0 ≤ ‖p(t)‖1X ,1‖γ − γ0‖f,0.

Since p([0, 1]) is a compact (and therefore bounded) subset of C∞W(X,X),

K := sup
t∈[0,1]

‖p(t)‖1X ,1 <∞.

Lemma 4.3.6. Let X be a Banach space, F ,W ⊆ RX with 1X ∈ F ⊆ W and |F| < ∞,

p ∈ C∞([0, 1], C∞W(X,X)) and k = 0. Then the initial value problem (4.3.2.1) correspond-

ing to p has a unique solution which is defined on the whole interval [0, 1].

Proof. We deduce from Lemma 4.3.5 that we can find a norm on C0
F (X,X) such that

FF,0(·, ·, p) satisfies a global Lipschitz condition with respect to the second argument.

Since C0
F (X,X) is a Banach space, there exists a unique solution Γ : [0, 1]→ C0

F (X,X) of

(4.3.2.1) which is defined on the whole interval [0, 1]; see [Die60, §10.6.1] or Theorem A.4.7

and Lemma A.4.5.

Solutions in spaces of differentiable functions. On the spaces CkF (X,X) with k ≥ 1,

it is harder to show that the maximal solution is defined on the whole of [0, 1]. To show

this, we first verify that the differential curve D ◦ γ of a solution γ : I → CkF (X,X) to

(4.3.2.1) is itself a solution to a linear ODE. We start with the following definition.

Definition 4.3.7. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Further, let

F be a subset of W with 1X ∈ F , k ∈ N and Γ : [0, 1] → CkF (X,X) and P : [0, 1] →
C∞W(X,L(X)) be continuous curves. We define the continuous map

GΓ,P
F,k : [0, 1]× CkF (X,L(X))→ CkF (X,L(X)),

(t, γ) 7→
(
P (t) ◦ (Γ(t) + idX)

)
· (γ + id),
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and consider the initial value problem

Φ′(t) = GΓ,P
F,k(t,Φ(t)), Φ(0) = 0. (4.3.7.1)

Lemma 4.3.8. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Further, let F be a

finite subset of W with 1X ∈ F , k ∈ N and p ∈ C∞([0, 1], C∞W(X,X)). If

Γk : [0, 1]→ CkF (X,X) and Γk+1 : I ⊆ [0, 1]→ Ck+1
F (X,X)

are solutions to (4.3.2.1) corresponding to p, then the curve D ◦Γk+1 : I → CkF (X,L(X))

is a solution to the problem (4.3.7.1) with Γ = Γk and P = D ◦ p.

Proof. We have (D ◦ Γk+1)′ = D ◦ Γ′k+1 and therefore for t ∈ I,

(D ◦ Γk+1)′(t) = DFF,k+1(t,Γk+1(t), p)

=
(
Dp(t) ◦ (Γk+1(t) + idX)

)
· (DΓk+1(t) + id).

=
(
(D ◦ p)(t) ◦ (Γk+1(t) + idX)

)
·
(
(D ◦ Γk+1)(t) + id

)
= GΓk,D◦p

F,k (t, (D ◦ Γk+1)(t)),

where we used that Γk|I = Γk+1 by Lemma 4.3.4 since CkF (X,X) is a Banach space.

Obviously (D ◦ Γk+1)(0) = 0, so the assertion is proved.

Now we use the embedding from Proposition 3.2.3 to show that the maximal solution

to (4.3.2.1) is defined on [0, 1].

Lemma 4.3.9. Let X be a Banach space, W ⊆ RX with 1X ∈ W, F ⊆ W finite with

1X ∈ F , p ∈ C∞([0, 1], C∞W(X,X)) and k ∈ N. Then the initial value problem (4.3.2.1)

corresponding to p has a unique solution which is defined on the whole interval [0, 1].

Proof. This is proved by induction on k. The case k = 0 was treated in Lemma 4.3.6.

k → k + 1: We denote the solutions for k and 0 with Γk and Γ0, respectively. Since

the function FF,k+1 is smooth and Ck+1
F (X,X) is a Banach space, there exists a unique

maximal solution Γk+1 : I → Ck+1
F (X,X) to (4.3.2.1) (see Proposition A.4.2). Using

Lemma 4.3.8, we conclude that D ◦ Γk+1 is a solution to (4.3.7.1), where Γ = Γk and

P = D ◦ p; here we used that by the induction hypothesis, Γk is defined on [0, 1]. Since

the latter ODE is linear, there exists a unique solution

S : [0, 1]→ CkF (X,L(X))

that is defined on the whole interval [0, 1] (see [Die60, §10.6.3] or Theorem A.4.7). Let

ι : Ck+1
F (X,X)→ C0

F (X,X)× CkF (X,L(X))

be the embedding from Proposition 3.2.3. By Lemma 4.3.4, Γk+1 is a solution to (4.3.2.1)

for the right hand side FF,0, so Γk+1 = Γ0|I since solutions to initial value problems in

Banach spaces are unique. Hence

Γk+1(I) ⊆ ι−1
(
Γ0([0, 1])× S([0, 1])

)
.

Further, Γ0([0, 1])×S([0, 1]) is compact and the image of ι is a closed subset of C0
F (X,X)×

CkF (X,L(X)) (by Proposition 3.2.8). Hence, because ι−1 is a homeomorphism, the image

of Γk+1 is contained in a compact set. Since Γk+1 is maximal, this implies that Γk+1 must

be defined on the whole of [0, 1] (see Theorem A.4.7).
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Smooth dependence on the parameter and taking the solution to the limit. We use the

constructed solutions on CkF (X,X) and show that there exists a solution to (4.3.2.1) on

C∞W(X,X), depending smoothly on the parameter curve.

Proposition 4.3.10. Let X be a Banach space and W ⊆ RX with 1X ∈ W. For each

p ∈ C∞([0, 1], C∞W(X,X)) there exists a solution Γp to (4.3.2.1) defined on [0, 1] which

corresponds to p, W and ∞. The map

[0, 1]× C∞([0, 1], C∞W(X,X))→ C∞W(X,X) : (t, p) 7→ Γp(t) (†)

is smooth.

Proof. For p ∈ C∞([0, 1], C∞W(X,X)), we denote by Γp the solution [0, 1]→ C0
{1X}(X,X)

to (4.3.2.1) corresponding to p, 0 and {1X}—which exists by Lemma 4.3.9. By Lem-

ma 4.3.4, a solution Γ : [0, 1] → CkF (X,X) to (4.3.2.1) corresponding to p, a finite set

F ⊆ W containing 1X and k ∈ N—which exists by Lemma 4.3.9—also solves (4.3.2.1) for

p, 0 and {1X}. Hence, by the uniqueness of solutions to initial value problems for Banach

spaces, Γp = Γ. Since F and k were arbitrary, the image of Γp is contained in C∞W(X,X),

and we easily calculate that Γp is a solution to (4.3.2.1) corresponding to p, W and ∞.

It remains to show that (†) is smooth. Since C∞W(X,X) is the projective limit of

{CkF (X,X) : k ∈ N, F ⊆ W, |F| <∞, 1X ∈ F}

by Proposition 3.2.5, using the universal property of the projective limit (see Proposi-

tion A.1.12), we just have to show the map

[0, 1]× C∞([0, 1], C∞W(X,X))→ CkF (X,X) : (t, p) 7→ Γp(t)

with a finite set F ⊆ W containing 1X and k ∈ N is smooth. We deduce this from

Corollary A.4.14 since the map C∞([0, 1], C∞W(X,X)) → CkF (X,X) : p 7→ 0 is smooth.

Here, we used implicitly that the inclusion map C∞W(X,X)→ CkF (X,X) is smooth.

4.3.2. Conclusion and calculation of one-parameter groups. We are ready to

prove the regularity of the Lie groups. As a regular Lie group, DiffW(X) has an expo-

nential function. We show that the corresponding one-parameter groups induce flows on

certain vector fields.

Theorem 4.3.11. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Then the Lie

group DiffW(X) is regular.

Proof. We proved in Proposition 4.3.10 that for each smooth curve p : [0, 1]→ C∞W(X,X)

the initial value problem (4.3.2.1) has a solution Γp : [0, 1]→ C∞W(X,X) and the map

Γ : [0, 1]× C∞([0, 1], C∞W(X,X))→ C∞W(X,X) : (t, p) 7→ Γp(t)

is smooth. Obviously, Γ maps [0, 1] × {0} to 0. Since κ−1
W (DiffW(X)) is an open neigh-

borhood of 0 in C∞W(X,X) (see Corollary 4.2.13) and Γ is continuous, a compactness

argument gives a neighborhood U of 0 such that

Γ([0, 1]× U) ⊆ κ−1
W (DiffW(X)).

We recorded in Lemma 4.3.3 that this is equivalent to the existence of an open neighbor-

hood V of 0 ∈ C∞([0, 1], C∞W(X,X)) such that for each γ ∈ V , there exists a right evolution
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EvolρDiffW(X)(γ) and that evolρDiffW(X)|V is smooth. But we know from Lemma B.2.10 that

this entails the regularity of DiffW(X).

Corollary 4.3.12. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Then

DiffW(X)◦ is a regular Lie group.

Proof. Let γ ∈ C∞([0, 1],TidX DiffW(X)◦). Since TidX DiffW(X)◦ ⊆ TidX DiffW(X) and

DiffW(X) is regular by Theorem 4.3.11, there exists a right evolution Evolρ(γ) : [0, 1]→
DiffW(X). By Lemma 4.3.3, the curve Γ := κW ◦Evolρ(γ) is a solution to the initial value

problem (4.3.2.1), where F =W, k =∞ and p = dκ−1
W ◦ γ. So for t ∈ [0, 1],

Γ(t) =

∫ t

0

Γ′(s) ds =

∫ t

0

p(s) ◦ (Γ(s) + idX) ds.

Hence Lemma 4.1.5 and the fact that C∞W(X,X)o is closed in C∞W(X,X) by Lemma 3.1.6

show that Evolρ(γ) takes its values in DiffW(X) ∩ EndW(X)◦ = DiffW(X)◦. From this

and the smoothness of evolρDiffW(X) we easily conclude that evolρDiffW(X)◦ is smooth.

On one-parameter subgroups. We calculate the one-parameter subgroups of DiffW(X)

(and hence for DiffW(X)◦). These arise as flows of vector fields.

Lemma 4.3.13. Let X be a Banach space and W ⊆ RX with 1X ∈ W. Then for γ ∈
C∞W(X,X), the associated flow of the one-parameter subgroup of DiffW(X) with the right

logarithmic derivative T0κW(γ) is the flow of γ (as a vector field).

Proof. We proved in Theorem 4.3.11 that DiffW(X) is regular, hence the one-parameter

subgroup P of DiffW(X) with δρ(P)(t) = T0κW(γ) for all t ∈ R exists. We have to show

that for any x ∈ X, the curve R→ X : t 7→ P(t)(x) is the solution to the ODE

f ′(t) = γ(f(t)), f(0) = x.

Obviously, P(0)(x) = idX(x) = x. Further, P(t)(x) = (evx ◦κW ◦ κ−1
W ◦ P)(t). It is an

easy computation to see that evx ◦κW is C1 with

d(evx ◦κW)(γ; γ1) = evx(γ1).

By our assumptions, for t ∈ R,

P ′(t) = T0κW(γ) · P(t) = TρP(t)(T0κW(γ)) = T(ρP(t) ◦ κW)(0, γ).

So by using this results and Lemma 4.3.1, we get

(evx ◦P)′(t) = (d(evx ◦κW) ◦Tκ−1
W )(P ′(t))

= d(evx ◦κW)(κ−1
W (P(t)); γ ◦ P(t)) = γ(P(t)(x)).

This proves that R→ X : t 7→ P(t)(x) is the integral curve of γ for the initial value x.

5. Integration of certain Lie algebras of vector fields

The aim of this chapter is the integration of Lie algebras that arise as the semidirect

product of a weighted function space C∞W(X,X) and L(G), where G is a subgroup of

Diff(X) which is a Lie group with respect to composition and inversion of functions.
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The canonical candidate for this purpose is the semidirect product of DiffW(X)

and G—if it can be constructed. Hence we need criteria for

G×DiffW(X)→ Diff(X) : (T, φ) 7→ T ◦ φ ◦ T−1

to have image in DiffW(X) and be smooth.

5.1. On the smoothness of the conjugation action on DiffW(X)0. We slightly

generalize our approach by allowing arbitrary Lie groups to act on DiffW(X). We need

the following notation.

Definition 5.1.1. Let G be a group and ω : G×M →M an action of G on the set M .

(a) For g ∈ G, we denote the partial map ω(g, ·) : M →M by ωg.

(b) Assume that G is a locally convex Lie group with the identity element e, M is a

smooth manifold and ω is smooth. We define the linear map

ω̇ : L(G)→ X(M) by ω̇(x)(m) = −Teω(·,m)(x).

Note that ω̇ takes its values in the smooth vector fields because ω is smooth.

Now we can state a first criterion for smoothness of the conjugation action—however

only on the identity component DiffW(X)0 of DiffW(X).

Lemma 5.1.2. Let X be a Banach space, W ⊆ RX with 1X ∈ W, G a Lie group and

ω : G×X → X a smooth action. We define the map

α : G×DiffW(X)→ Diff(X) : (T, φ) 7→ ωT ◦ φ ◦ ωT−1 .

Assume that there exists an open set Ω ∈ UG(1) such that the maps

C∞W(X,X)× Ω→ C∞W(X,X) : (γ, T ) 7→ γ ◦ ωT (5.1.2.1)

and

C∞W(X,X)× Ω→ C∞W(X,X) : (γ, T ) 7→ DωT · γ (5.1.2.2)

are well-defined and smooth.

(a) For each open neighborhood UW ⊆ DiffW(X) of the identity such that [φ, idX ] :=

{tφ+ (1− t) idX : t ∈ [0, 1]} ⊆ DiffW(X) for each φ ∈ UW , the map

(Ω ∩ Ω−1)× UW → EndW(X) : (T, φ) 7→ α(T, φ) (†)

is well-defined and smooth.

(b) Suppose that Ω = G. Then the map

G×DiffW(X)0 → DiffW(X)0 : (T, φ) 7→ α(T, φ) (††)

is well-defined and smooth.

Proof. (a) Using Corollary 4.1.8, Theorem 4.2.17 and the smoothness of (5.1.2.1) and

(5.1.2.2), for each t ∈ [0, 1], T ∈ Ω ∩ Ω−1 and φ ∈ UW we see that

ψt,T,φ := (DωT · ((φ− idX) ◦ (tφ+ (1− t) idX)−1)) ◦ (tφ+ (1− t) idX) ◦ω−1
T ∈ C∞W(X,X),
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and ψt,T,φ is a smooth map. Further, using that tφ+ (1− t) idX is a diffeomorphism for

each t ∈ [0, 1], we calculate

(ωT ◦ φ ◦ ωT−1)(x)− x
= (ωT ◦ φ ◦ ω−1

T )(x)− (ωT ◦ ω−1
T )(x)

=

∫ 1

0

DωT ◦ (tφ+ (1− t) idX)(ω−1
T (x)) · (φ− idX)(ω−1

T (x)) dt

=

∫ 1

0

(
DωT · ((φ− idX) ◦ (tφ+ (1− t) idX)−1)

)
◦ (tφ+ (1− t) idX)(ω−1

T (x)) dt.

Hence ωT ◦ φ ◦ ωT−1 − idX =
∫ 1

0
ψt,T,φ dt ∈ C∞W(X,X) by Proposition A.1.8, using that

we proved in Corollary 3.2.12 that C∞W(X,X) is complete.

Since ψt,T,φ is smooth as a function of t, T and φ, we can use Proposition A.1.18 to

see that (†) is defined and smooth.

(b) Since DiffW(X) is locally convex, we find a symmetric open UW ∈ U(idX) such

that [UW , idX ] ⊆ DiffW(X). Using the symmetry of UW and (a) we see that α(G×UW) ⊆
DiffW(X)0. Since UW generates DiffW(X)0, we can apply Lemma B.2.13 to conclude that

α(G×DiffW(X)0) ⊆ DiffW(X)0. Further (††) is smooth by (a) and Lemma B.2.14.

So all we need are criteria for the smoothness of the maps (5.1.2.1) and (5.1.2.2).

However, we will only elaborate on (5.1.2.1) and prove the smoothness of (5.1.2.2) under

relatively strong assumptions on the group G. A more detailed examination of (5.1.2.2)

can be found in [Wal10, §5.2].

Definition 5.1.3. Let X be a normed space, U ⊆ X an open nonempty subset, and

W ⊆ RU a nonempty set of weights. We define W̃ ⊆ RU as the set of functions f for

which ‖·‖f,0 is a continuous seminorm on C0
W(U, Y ), for each normed space Y . Obviously

W ⊆ W̃ and by Lemma 3.2.2, ‖ · ‖f,` is a continuous seminorm on CkW(U, Y ), provided

that f ∈ W̃ and ` ≤ k.

5.1.1. Contravariant composition on weighted functions. Here we prove sufficient

conditions for (5.1.2.1) to be smooth. Since the second factor of the domain of this map

in general is not contained in a vector space, we have to wrestle with certain techni-

cal difficulties, leading to the definition of a notion of logarithmically bounded identity

neighborhoods in Lie groups.

Lemma 5.1.4. Let G be a Lie group and ω : G ×M → M a smooth action of G on the

smooth manifold M .

(a) For any g ∈ G,

Tω = Tωg ◦Tω ◦ (Tλg−1 × idTM ),

where λg−1 : G→ G denotes the left multiplication with g−1.

In the following, let S, T ∈ G and W : [0, 1]→ G be a smooth curve with W (0) = S and

W (1) = T .
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(b) Let N be another smooth manifold and γ : M → N a C1-map. Then for t ∈ [0, 1] and

x ∈M ,

T(γ ◦ ω ◦ (W × idM ))(t, 1, 0x) = Tγ ◦TωW (t)(−ω̇(δ`(W )(t))(x)). (†)

(c) Let X and Y be normed spaces. Assume that M is an open nonempty subset of X.

Then for γ, η ∈ C1(M,Y ) and x ∈M ,

(γ ◦ ωT )(x)− (η ◦ ωS)(x)

= ((γ−η) ◦ ωT )(x)−
∫ 1

0

Dη(ωW (t)(x)) ·DωW (t)(x) · ω̇(δ`(W )(t))(x) dt. (5.1.4.1)

Proof. (a) For h ∈ G and m ∈M ,

ω(h,m) = ω(gg−1h,m) = ω(g, ω(g−1h,m)) = ωg(ω(λg−1(h),m)).

Applying the tangent functor gives the assertion.

(b) We calculate

T(γ ◦ ω ◦ (W × idM ))(t, 1, 0x) = Tγ ◦Tω(W ′(t), 0x)

= Tγ ◦TωW (t) ◦Tω(W (t)−1 ·W ′(t), 0x) = Tγ ◦TωW (t)(−ω̇(W (t)−1W ′(t))(x)).

Here we used (a)

(c) By adding 0 = η ◦ ωT − η ◦ ωT , we get

(γ ◦ ωT )(x)− (η ◦ ωS)(x) = ((γ − η) ◦ ωT )(x) + (η ◦ ωT )(x)− (η ◦ ωS)(x)

We elaborate on the second summand (using (†)):

(η ◦ ωT )(x)− (η ◦ ωS)(x) = η(ω(W (1), x))− η(ω(W (0), x))

=

∫ 1

0

D(η ◦ ω ◦ (W × idU ))(t, x) · (1, 0) dt

= −
∫ 1

0

Dη(ωW (t)(x)) ·DωW (t)(x) · ω̇(δ`(W )(t))(x) dt.

Definition 5.1.5. Let G be a Lie group and U ⊆ G, V ⊆ L(G). We call a path

W ∈ C1([0, 1], G) V -logarithmically bounded if δ`(W )([0, 1]) ⊆ V . The set U is called

V -logarithmically bounded if for all g, h ∈ U there exists a V -logarithmically bounded

W ∈ C∞([0, 1], V ) with W (0) = g and W (1) = h.

Proposition 5.1.6. Let X and Y be normed spaces, U ⊆X an open nonempty set, k ∈N,

W ⊆ RU a nonempty set of weights, G a locally convex Lie group and ω : G× U → U a

smooth action. Assume that there exists an open neighborhood Ω of 1 in G such that

(∀f ∈ W, T ∈ Ω)(∃g ∈ W̃)(∀ε > 0)

(∃V ∈ UL(G)(0), Ω̃ ∈ UΩ(T ) V -logarithmically bounded)

(∀S ∈ Ω̃, v ∈ V ) |f | ‖DωS · ω̇(v)‖ < ε|g ◦ ωS |. (5.1.6.1)

Further assume that W ◦ ω−1
Ω ⊆ W̃, and that for all m ∈ N with m < k and normed

spaces Z, the map

CmW(U,L(X,Z))× Ω→ CmW(U,L(X,Z)) : (Γ, T ) 7→ Γ ·DωT (5.1.6.2)
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is defined and continuous.

(a) The map

Ck+1
W (U, Y )× Ω→ CkW(U, Y ) : (γ, T ) 7→ γ ◦ ωT

is well-defined and continuous.

(b) Let ` ∈ N∗. Additionally assume that the maps

CkW(U,L(X,Y ))× Ω→ CkW(U,L(X,Y )) : (Γ, T ) 7→ Γ ·DωT (5.1.6.3)

and

CkW(U,L(X,Y ))× L(G)→ CkW(U, Y ) : (Γ, v) 7→ Γ · ω̇(v) (5.1.6.4)

are well-defined and C`−1. Then the map

c : Ck+`+1
W (U, Y )× Ω→ CkW(U, Y ) : (γ, T ) 7→ γ ◦ ωT

is C` with the derivative

dc((γ, S); (γ1, S1)) = −(Dγ ◦ ωS) ·DωS · ω̇(S−1 · S1) + γ1 ◦ ωS . (†)

Proof. (a) For k <∞, this is proved by induction on k.

k = 0: Let γ, η ∈ C1
W(U, Y ), T ∈ Ω and f ∈ W. Let g ∈ W̃ be as in (5.1.6.1). Given

ε > 0, we find a neighborhood Ω̃ of T and V ∈ UL(G)(0) such that (5.1.6.1) is satisfied.

Using identity (5.1.4.1), for S ∈ Ω̃, a V -logarithmically bounded path W : [0, 1]→ Ω̃

connecting S and T , and x ∈ U we calculate

|f(x)| ‖(γ ◦ ωT )(x)− (η ◦ ωS)(x)‖

≤ |f(x)|
(
‖((γ − η) ◦ ωT )(x)‖+

∥∥∥∥∫ 1

0

Dη(ωW (t)(x)) ·DωW (t)(x) · ω̇(δ`(W )(t))(x) dt

∥∥∥∥)
≤ ‖γ − η‖f◦ω−1

T ,0 +

∫ 1

0

|f(x)| ‖Dη(ωW (t)(x))‖op · ‖DωW (t)(x) · ω̇(δ`(W )(t))(x)‖ dt

≤ ‖γ − η‖f◦ω−1
T ,0 + ε

∫ 1

0

|(g ◦ ωW (t))(x)| ‖Dη(ωW (t)(x))‖op dt

≤ ‖γ − η‖f◦ω−1
T ,0 + ε‖η‖g,1.

The continuity at (γ, η) follows from this estimate.

k → k + 1: By Proposition 3.2.3 and the inductive hypothesis, we just need to check

that the map

Ck+2
W (U, Y )× Ω→ CkW(U,L(X,Y )) : (γ, T ) 7→ D(γ ◦ ωT )

is well-defined and continuous. For γ ∈ Ck+2
W (U, Y ) and T ∈ Ω, we have

D(γ ◦ ωT ) = (Dγ ◦ ωT ) ·DωT .

Hence by the inductive hypothesis and the continuity of (5.1.6.2), the induction is finished.

k =∞: This is an easy consequence of the case k <∞ and Corollary 3.2.6.
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(b) We prove this by induction on `.

` = 1: Let γ, γ1 ∈ Ck+`+1
W (U, Y ), S ∈ Ω and S1 ∈ TSΩ. Further, let Γ : ]−δ, δ[ → Ω

be a smooth curve with Γ(0) = S and Γ′(0) = S1. Then for sufficiently small t 6= 0,

1

t
((γ + tγ1) ◦ ωΓ(t) − γ ◦ ωS) =

1

t
(γ ◦ wΓ(t) − γ ◦ ωS) + γ1 ◦ ωΓ(t).

Using identity (5.1.4.1) we elaborate on the first summand:

1

t
(γ ◦ wΓ(t) − γ ◦ ωS)(x) = −1

t

∫ 1

0

Dγ(ωΓ(st)(x)) ·DωΓ(st)(x) · ω̇(tδ`(Γ)(st))(x) ds.

Hence

1

t
(γ ◦ wΓ(t) − γ ◦ ωS) = −

∫ 1

0

(Dγ ◦ ωΓ(st)) ·DωΓ(st) · ω̇(δ`(Γ)(st)) ds;

note that the integral on the right hand side exists by Lemma 3.2.13 since the curve

[0, 1]→ CkW(U, Y ) : s 7→ (Dγ ◦ ωΓ(st)) ·DωΓ(st) · ω̇(δ`(Γ)(st))

is well-defined and continuous by (a) and the continuity of (5.1.6.3) and (5.1.6.4). Hence

by Proposition A.1.8,

lim
t→0

1

t
((γ + tγ1) ◦ ωΓ(t) − γ ◦ ωS) = −(Dγ ◦ ωS) ·DωS · ω̇(S−1 · S1) + γ1 ◦ ωS ,

so the directional derivatives of c exist, are of the form (†) and depend continuously on

the directions by (a) and the continuity of (5.1.6.3) and (5.1.6.4).

` → ` + 1: Since (5.1.6.3) and (5.1.6.4) are C` by assumption, we conclude from (†)
and the inductive hypothesis that dc is C`, whence c is C`+1.

5.2. Conclusion and examples. Finally, we prove a sufficient criterion for the smooth-

ness of the conjugation action of a Lie group G acting on X and DiffW(X)0.

Theorem 5.2.1. Let X be a Banach space, G a Lie group, ω : G × X → X a smooth

action and W ⊆ RX with 1X ∈ W. Assume that {f ◦ ωT : f ∈ W, T ∈ G} ⊆ W̃ (see

Definition 5.1.3), {DωT : T ∈ G} ⊆ BC∞(X,L(X)), the maps

D : G→ BC∞(X,L(X)) : T 7→ DωT (†)

and (5.1.6.4) are well-defined and smooth and (5.1.6.1) is satisfied. Then the map

G×DiffW(X)0 → DiffW(X)0 : (T, φ) 7→ ωT ◦ φ ◦ ω−1
T

is well-defined and smooth.

Proof. Since (†) is well-defined and smooth, we can apply Corollary 3.3.7 to see that

(5.1.2.2) is also well-defined and smooth. Similarly, using Corollary 3.3.6, we see that

(5.1.6.2) and (5.1.6.3) are well-defined and smooth. Hence Proposition 5.1.6 shows that

(5.1.2.1) is smooth. The assertion follows from Lemma 5.1.2.

Finally, we give a positive and a negative example. The first example shows that we

can form the semidirect product DiffS(X)0 o GL(X) with respect to conjugation.

Lemma 5.2.2. Let X, Y and Z be normed spaces, U ⊆ X an open nonempty set,W ⊆ RU
nonempty such that for each f ∈ W, f‖ · ‖ ∈ W̃. Further, let k ∈ N and b : Y ×X → Z
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be a continuous bilinear map. Then

CkW(U, Y )× L(X)→ CkW(U,Z) : (γ, T ) 7→ b ◦ (γ, T ) (†)

is well-defined and smooth.

Proof. The assertion holds for k = ∞ if it holds for all k ∈ N. For k 6= ∞, the proof is

by induction on k.

k = 0: Since (†) is bilinear, it is smooth iff it is continuous at 0. So we only prove

that. Let f ∈ W, γ ∈ CkW(U, Y ), T ∈ L(X) and x ∈ U . Then

|f(x)| ‖b(γ(x), T (x))‖ ≤ ‖b‖op|f(x)| ‖x‖ ‖γ(x)‖ ‖T‖op ≤ ‖b‖op‖γ‖f‖·‖,0‖T‖op.

We conclude that b ◦ (γ, T ) ∈ C0
W(U,Z) and that (†) is continuous at 0.

k → k + 1: By Lemma 3.3.2, for γ ∈ CkW(U, Y ) and T ∈ L(X) we have

D(b ◦ (γ, T )) = b(1) ◦ (Dγ, T ) + b(2) ◦ (γ,DT ).

Since DT ∈ BC∞(X,L(X)), by Proposition 3.3.3 b(2) ◦ (γ,DT ) ∈ Ck+1
W (U,L(X,Z)) and

the map (γ, T ) 7→ b(2)◦(γ,DT ) is smooth (here we use that L(X)→ BC∞(X,L(X)) : T 7→
DT is smooth). By the induction hypothesis, the same holds for (γ, T ) 7→ b(1) ◦ (Dγ, T ).

So using Proposition 3.2.3, the proof is finished.

Lemma 5.2.3. Let X be a Banach space and G := GL(X). Define the action

ω : G×X → X : (g, x) 7→ g(x)

and set W := {x 7→ ‖x‖n : n ∈ N}.

(a) The map (5.1.6.4) is smooth.

(b) The condition (5.1.6.1) is satisfied.

Proof. We easily see that ω̇ = − idL(X) (since L(G) = L(X)), and for each S ∈ G and

x ∈ X, ωS = S and DS(x) = S.

(a) Let Y be another normed space. Since for Γ ∈ CkW(X,L(X,Y )) and S ∈ L(G),

Γ·ω̇(S) = evL(X,Y ) ◦(Γ,−S) and evL(X,Y ) is bilinear and continuous, this is a consequence

of Lemma 5.2.2.

(b) Let f = ‖ · ‖n ∈ W, T ∈ G and ε > 0. There exists an open convex U ∈ UG(T )

such that for all S ∈ U ,

• ‖S − T‖op < ε,

• ‖S−1‖op < 2‖T−1‖op,

• ‖S‖op < 2‖T‖op,

Then the path W : [0, 1] → G : t 7→ tT + (1 − t)S has the left logarithmic derivative

δ`(W )(t) = W (t)−1(T − S), hence U is BL(X)(0, 2‖T‖opε)-logarithmically bounded. We

calculate for x ∈ X, S ∈ U and A ∈ BL(X)(0, 2‖T‖opε) that

|f(x)| ‖DωS(x) · ω̇(A)(x)‖ = ‖x‖n‖(S ◦A)(x)‖ ≤ ‖S‖op‖A‖op‖x‖n+1

≤ 4‖T‖2opε‖S−1Sx‖n+1 ≤ ε2n+3‖T‖2op‖T−1‖n+1
op ‖Sx‖n+1.

Since x 7→ 2n+3‖T‖2op‖T−1‖n+1
op ‖x‖n+1 ∈ W̃, we see that condition (5.1.6.1) is satisfied.
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Example 5.2.4. Let X, G, ω and W be as in Lemma 5.2.3. For each S ∈ G and x ∈ X,

DS(x) = S. Hence the map

D : G→ BC∞(X,L(X)) : S 7→ DS

is smooth. By Lemma 5.2.3, the assumptions of Theorem 5.2.1 hold (since W ◦ G ⊆ W̃
is obviously true), hence the map

GL(X)×DiffW(X)0 → DiffW(X)0 : (T, φ) 7→ T ◦ φ ◦ T−1

is smooth. So using Lemma B.2.15, we can form the semidirect product

DiffW(X)0 o GL(X)

with respect to the inner automorphisms on DiffW(X)0 that are induced by GL(X).

Finally, we show that the conjugation of GL(R) on Diff{1R}(X)0, if defined, may not

be continuous.

Example 5.2.5. For each n ∈ N, sin((1 + 1
2n )nπ) = ±1, but sin(nπ) = 0. Hence

‖ sin(tn·)− sin ‖1R,0 ≥ 1

for each n ∈ N, where tn := 1 + 1
2n . By Corollary 4.2.11, 1

2 sin ∈ κ−1
{1R}(Diff{1R}(R)), and

obviously κ{1R}(
1
2 sin) ∈ Diff{1R}(X)0. If the conjugation of GL(R) on Diff{1R}(X)0 was

defined and continuous, then the map

R \ {0} × BC∞(R,R)→ BC∞(R,R) : (t, γ) 7→ t−1γ(t·)

would be continuous in (1, 1
2 sin). But it is not since for t > 0 and x ∈ R,

‖t−1 sin(tx)− sin(x)‖ ≥ t−1‖ sin(tx)− sin(x)‖ − ‖(t−1 − 1) sin(x)‖
≥ t−1‖ sin(tx)− sin(x)‖ − |t−1 − 1|.

Hence we can calculate that for sufficiently large n,∥∥∥∥1

2
t−1
n sin(tn·)−

1

2
sin

∥∥∥∥
1R,0

≥ 1

4
.

6. Lie group structures on weighted mapping groups

In this chapter we will use the weighted function spaces discussed in Chapter 3 for the

construction of locally convex Lie groups, the weighted mapping groups. These groups

arise as subgroups of GU , where G is a suitable Lie group and U is an open nonempty

subset of a normed space. First, we give some definitions.

Definition 6.0.1. Let U be a nonempty set and G be a group with the multiplication

map mG and the inversion map IG. Then GU can be endowed with a group structure:

Multiplication is given by

((gu)u∈U , (hu)u∈U ) 7→ (mG(gu, hu))u∈U = mG ◦ ((gu)u∈U , (hu)u∈U )

and inversion by

(gu)u∈U 7→ (IG(gu))u∈U = IG ◦ (gu)u∈U .
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Further we call a set A ⊆ G symmetric if

A = IG(A).

Inductively, for n ∈ N with n ≥ 1 we define

An+1 := mG(An ×A), where A1 := A.

Definition 6.0.2. Let G be a Lie group and φ : V → L(G) a chart. We call the pair

(φ, V ) centered around 1 or just centered if V ⊆ G is an open identity neighborhood and

φ(1) = 0.

6.1. Weighted maps into Banach Lie groups. In this section, we discuss certain

subgroups of GU , where G is a Banach Lie group and U an open subset of a normed

space X. We construct a subgroup CkW(U,G) consisting of weighted mappings that can

be turned into a (connected) Lie group. Its modelling space is CkW(U,L(G)), where k ∈ N
and W is a set of weights on U containing 1U . Later we prove that these groups are

regular Lie groups. Finally, we discuss the case when U = X. Then DiffW(X) acts on

C∞W(X,G), and thus we can turn the semidirect product of these groups into a Lie group.

6.1.1. Construction of the Lie group. We construct the Lie group from local data

using Lemma B.2.5. For a chart (φ, V ) of G, we can endow the set φ−1 ◦ C∂,kW (U, φ(V )) ⊆
GU with the manifold structure that turns the superposition operator φ∗ into a chart. We

need to check whether the local multiplication and inversion on this set are smooth with

respect to this manifold structure. The group operations on GU arise as the composition

of the corresponding operations on G with the mappings (see Definition 6.0.1). Since the

group operations of Banach Lie groups are analytic, we will use the results of Section 3.3.3

as our main tools. This allows us to construct CkW(U,G) when G is an analytic Lie group

modelled on an arbitrary normed space.

Remark 6.1.1. We call a Lie group G normed if L(G) is a normable space. A normed

analytic Lie group is a normed Lie group which is an analytic Lie group.

Local multiplication. The treatment of group multiplication is a simple application of

Proposition 3.3.19.

Lemma 6.1.2. Let X be a normed space, U ⊆ X an open nonempty subset, W ⊆ RU with

1U ∈ W, ` ∈ N, G a normed analytic Lie group with the group multiplication mG and

(φ, V ) a centered chart of G. Then there exists an open identity neighborhood W ⊆ V

such that the map

C∂,`W (U, φ(W ))×C∂,`W (U, φ(W ))→ C∂,`W (U, φ(V )) : (γ, η) 7→ φ◦mG ◦ (φ−1◦γ, φ−1◦η) (†)

is defined and analytic.

Proof. By Lemma 3.4.16, the map (†) is defined and analytic iff there exists an open

identity neighborhood W ⊆ G such that

(φ ◦mG ◦ (φ−1 × φ−1))∗ : C∂,`W (U, φ(W )× φ(W ))→ C∂,`W (U, φ(V ))

is defined and analytic. There exists an open bounded zero neighborhood W̃L ⊆ L(G)

such that W̃L + W̃L ⊆ φ(V ). By the continuity of the multiplication mG there exists an
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open 1-neighborhood W with mG(W ×W ) ⊆ φ−1(W̃L). We may assume that φ(W ) is

star-shaped with center 0. Then

(φ ◦mG ◦ (φ−1 × φ−1))(φ(W )× φ(W )) ⊆ W̃L.

Further the restriction of φ ◦mG ◦ (φ−1 × φ−1) to φ(W )× φ(W ) is analytic, takes (0, 0)

to 0 and has bounded image, since φ is centered and W̃L is bounded. In the real case,

using Lemma 3.3.17 we can choose φ(W ) sufficiently small such that the restriction

of φ ◦ mG ◦ (φ−1 × φ−1) to φ(W ) has a good complexification. Hence we can apply

Proposition 3.3.19 to see that

(φ ◦mG ◦ (φ−1 × φ−1)) ◦ C∂,`W (U, φ(W )× φ(W )) ∈ C`W(U, W̃L)

and that the map (φ ◦mG ◦ (φ−1 × φ−1))∗ is analytic. But

C`W(U, W̃L) ⊆ C∂,`W (U, φ(V ))

by the definition of W̃L, and this gives the assertion.

Local inversion. The discussion of inversion is more delicate. For a short explanation,

let (φ, Ṽ ) be a chart for G, V ⊆ Ṽ a symmetric open identity neighborhood and IG the

inversion of G. Then the superposition φ ◦ IG ◦ φ−1 described in Proposition 3.3.19 does

not necessarily map C∂,`W (U, φ(V )) into itself; hence we have to construct symmetrical

open subsets.

Lemma 6.1.3. Let G be a group, U ⊆ G a topological space and V ⊆ U a symmetric

subset with 1 ∈ V ◦ such that the inversion IG : V → V is continuous. Then

V ◦ ∩ IG(V ◦)

is a symmetric set that is open in U and contains 1.

Proof. Let W := V ◦ ∩ IG(V ◦). Then 1 ∈W , and since

W−1 = IG(W ) = IG(V ◦ ∩ IG(V ◦)) = IG(V ◦) ∩ IG(IG(V ◦)) = IG(V ◦) ∩ V ◦ = W,

it is a symmetric set. Since IG is a homeomorphism, IG(V ◦) is an open subset of V .

Hence W = IG(V ◦) ∩ V ◦ is an open subset of V ◦ and hence of U .

Lemma 6.1.4. Let X be a normed space, U ⊆ X an open nonempty subset, W ⊆ RU
with 1U ∈ W, ` ∈ N, G a normed analytic Lie group with the group inversion IG, and

(φ, V ) a centered chart of G such that φ(V ) is bounded and V is symmetric.

(a) The map

IL := φ ◦ IG ◦ φ−1 : φ(V )→ φ(V )

is an analytic bijective involution. Hence for any open and star-shaped set W ⊆ φ(V )

with center 0, the map

C∂,`W (U,W )→ C`W(U, φ(V )) : γ 7→ IL ◦ γ

is analytic, assuming in the real case that IL|W has a good complexification.

(b) Let Ω ⊆ C∂,`W (U, φ(V )). Then φ−1 ◦ (Ω ∩ IL ◦ Ω) is a symmetric subset of GU .
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(c) For any open zero neighborhood W̃ ⊆ φ(V ) there exists an open convex zero neigh-

borhood W ⊆ W̃ such that

C∂,`W (U,W ) ⊆ C∂,`W (U, W̃ ) ∩ IL ◦ C∂,`W (U, W̃ ).

(d) There exists an open convex zero neighborhood W ⊆ φ(V ) and a zero neighborhood

C`W ⊆ C
∂,`
W (U, φ(V )) such that

C∂,`W (U,W ) ⊆ (C`W)◦ ∩ IL ◦ (C`W)◦,

φ−1 ◦ C`W is symmetric in GU , the map

C`W → C`W : γ 7→ IL ◦ γ

is continuous and its restriction to (C`W)◦ is analytic. The set W can be chosen

independently of ` and W.

Proof. (a) The assertions concerning IL follow from the fact that V is symmetric and G

is an analytic Lie group. The assertion on the superposition map of IL is a consequence

of Proposition 3.3.19 since W is star-shaped with center 0 and φ(V ) is bounded.

(b) This is an easy computation.

(c) By the continuity of addition, we find an open zero neighborhood H with H +H

⊆ W̃ . Since IL is continuous at 0 there exists an open convex zero neighborhood W with

IL(W ) ⊆ H and W ⊆ W̃ . Then

C∂,`W (U,W ) ⊆ C∂,`W (U, W̃ )

and by (a),

IL ◦ C∂,`W (U,W ) ⊆ C`W(U,H) ⊆ C∂,`W (U, W̃ ).

The fact that IL ◦ IL = idφ(V ) completes the argument.

(d) Let W3 ⊆ φ(V ) be an open convex zero neighborhood. Then by (c) we find open

convex zero neighborhoods W1,W2 ⊆ φ(V ) such that

C∂,`W (U,Wi) ⊆ C∂,`W (U,Wi+1) ∩ IL ◦ C∂,`W (U,Wi+1)

for i = 1, 2. So

C`W := C∂,`W (U,W3) ∩ IL ◦ C∂,`W (U,W3)

is a zero neighborhood, and by (b), φ−1 ◦C`W is symmetric. Hence the superposition of IL
maps C`W into itself and is continuous on C`W and analytic on (C`W)◦ (see (a)). Further

(C`W)◦ ∩ IL ◦ (C`W)◦ ⊇ C∂,`W (U,W2) ∩ IL ◦ C∂,`W (U,W2) ⊇ C∂,`W (U,W1),

whence (d) is established with W := W1.

Construction of the Lie group structure. After discussing the group operations locally,

we turn a subgroup of GU into a Lie group for each centered chart of G. We will also

show that the identity component of this group does not depend on the chosen chart.

Lemma 6.1.5. Let X and Y be normed spaces, U ⊆ X an open nonempty subset,W ⊆ RU
with 1U ∈ W, ` ∈ N and V ⊆ Y convex. Then the set C∂,`W (U, V ) is convex.

Proof. It is obvious that C`W(U, V ) is convex since V is. The set C∂,`W (U, V ) is the interior

of C`W(U, V ) with respect to the norm ‖ · ‖1U ,0, hence it is convex.
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Proposition 6.1.6. Let X be a normed space, U ⊆X an open nonempty subset,W⊆RU
with 1U ∈ W, ` ∈ N, G a normed analytic Lie group and (φ, V ) a centered chart. There

exist a subgroup (G,φ)UW,` of GU that can be turned into an analytic Lie group which is

modelled on C`W(U,L(G)), and an open 1-neighborhood W ⊆ V which is independent of

W and ` such that

C∂,`W (U, φ(W ))→ (G,φ)UW,` : γ 7→ φ−1 ◦ γ

is an analytic embedding onto an open set. Moreover, for any convex open zero neighbor-

hood W̃ ⊆ φ(W ), the set φ−1 ◦ C∂,`W (U, W̃ ) generates the identity component of (G,φ)UW,`
as a group.

Proof. Using Lemma 6.1.2 we find an open 1-neighborhood W̃ ⊆ V such that

C∂,`W (U, φ(W̃ ))× C∂,`W (U, φ(W̃ ))→ C∂,`W (U, φ(V )) : (γ, η) 7→ φ ◦mG ◦ (φ−1 ◦ γ, φ−1 ◦ η)

is analytic. We may assume that W̃ is symmetric. Using Lemmas 6.1.4(d) and 6.1.3, we

find an open zero neighborhood H ⊆ C∂,`W (U, φ(W̃ )) such that φ−1 ◦H is symmetric, the

map
H → H : γ 7→ IL ◦ γ

is analytic and C∂,`W (U, φ(W )) ⊆ H for some open 1-neighborhood W ⊆ V , which is

independent of W and `. We endow φ−1 ◦H with the differential structure which turns

the bijection

φ−1 ◦H → H : γ 7→ φ ◦ γ

into an analytic diffeomorphism. Then we can apply Lemma B.2.5 to construct an analytic

Lie group structure on the subgroup (G,φ)UW,` of GU which is generated by φ−1 ◦H such

that φ−1 ◦H becomes an open subset of (G,φ)UW,`.

Since we may assume that φ(W ) is convex, C∂,`W (U, φ(W )) is open and convex (see

Lemma 6.1.5), hence the set

φ−1 ◦ C∂,`W (U, φ(W ))

is connected and open by the construction of the differential structure of (G,φ)UW,`.

Furthermore it obviously contains the unit element, whence it generates the identity

component.

Lemma 6.1.7. Let X be a normed space, U ⊆ X an open nonempty subset, W ⊆ RU with

1U ∈ W, ` ∈ N and G be a normed analytic Lie group. Then for centered charts (φ1, V1),

(φ2, V2), the identity component of (G,φ1)UW,` coincides with the one of (G,φ2)UW,`, and

the identity map between them is an analytic diffeomorphism.

Proof. We may assume that φ1(V1) and φ2(V2) are bounded. Using Proposition 6.1.6,

we find open 1-neighborhoods W1 ⊆ V1, W2 ⊆ V2 such that the identity component of

(G,φi)
U
W,` is generated by φ−1

i ◦ C
∂,`
W (U, φi(Wi)) for i ∈ {1, 2}. Since φ1 ◦ φ−1

2 is analytic,

we find open zero neighborhoods W̃L
1 ⊆ φ1(W1) and W̃L

2 ⊆ φ2(W2) such that

(φ1 ◦ φ−1
2 )(W̃L

2 ) ⊆ W̃L
1 and W̃L

1 + W̃L
1 ⊆ φ1(W1),

and W̃L
2 is convex. Then by Proposition 6.1.6, the identity component of (G,φ2)UW,` is

generated by
φ−1

2 ◦ C
∂,`
W (U, W̃L

2 ),
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and in the real case we may assume that φ1 ◦ φ−1
2 |W̃L

2
has a good complexification. By

Proposition 3.3.19 the map

C∂,`W (U, W̃L
2 )→ C∂,`W (U, φ1(W1)) : γ 7→ φ1 ◦ φ−1

2 ◦ γ
is defined and analytic, and this implies that

φ−1
2 ◦ C

∂,`
W (U, W̃L

2 ) ⊆ φ−1
1 ◦ C

∂,`
W (U, φ1(W1)).

Hence the identity component of (G,φ2)UW,` is contained in the one of (G,φ1)UW,`, and

the inclusion map of the former into the latter is analytic.

Exchanging the roles of φ1 and φ2 in the preceding argument, we get the assertion.

Definition 6.1.8. Let X be a normed space, U ⊆ X an open nonempty subset,W ⊆ RU
with 1U ∈ W, ` ∈ N and G be a normed analytic Lie group. We write C`W(U,G) for the

connected Lie group constructed in Proposition 6.1.6. There and in Lemma 6.1.7 it was

proved that for any centered chart (φ, V ) of G and W ⊆ V such that φ(W ) is convex,

the inverse of
C∂,`W (U, φ(W ))→ C`W(U,G) : γ 7→ φ−1 ◦ γ

is a chart.

6.1.2. Regularity. We show that for a Banach Lie group G, the Lie group C`W(U,G) is

regular.

Lemma 6.1.9. Let G,H be Lie groups and φ : G→ H a Lie group morphism.

(a) For each g ∈ G and v ∈ TgG, we have Tgφ(v) = φ(g) · L(φ)(g−1 · v).

(b) Let γ ∈ C1([0, 1], G). Then δ`(φ ◦ γ) = L(φ) ◦ δ`(γ).

Proof. The proof of (a) being straightforward, we turn to (b). We calculate the derivative

of φ ◦ γ using (a) and the fact that φ is a Lie group morphism:

(φ ◦ γ)′(t) = T(φ ◦ γ)(t, 1) = Tγ(t)φ(γ′(t)) = φ(γ(t)) · L(φ)(γ(t)−1 · γ′(t)).
From this we derive

δ`(φ ◦ γ)(t) = (φ ◦ γ)(t)−1 · (φ ◦ γ)′(t) = L(φ)(γ(t)−1 · γ′(t)) = L(φ)(δ`(γ)(t)).

The following is well known from the theory of Banach Lie groups.

Lemma 6.1.10. Let G be a Banach Lie group and V ∈ U(1). Then there exists a balanced

open W ∈ UL(G)(0) such that

γ ∈ C0([0, 1],W ) ⇒ Evol`G(γ) ∈ C0([0, 1], V ). (6.1.10.1)

Furthermore, the map evol`G : C0([0, 1],W )→ G is continuous.

We define some terminology needed for the proof.

Definition 6.1.11. Let X be a normed space, U ⊆ X an open nonempty set, W ⊆ RU
with 1U ∈ W, k ∈ N and G be a Banach Lie group. Further, let F1,F2 ⊆ W be such that

1U ∈ F1 ⊆ F2 and `1, `2 ∈ N such that `1 ≤ `2 ≤ k. We denote the inclusion

C`2F2
(U,L(G))→ C`1F1

(U,L(G)).

by ιL(F2,`2),(F1,`1) and the inclusion

C`2F2
(U,G)→ C`1F1

(U,G)
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by ιG(F2,`2),(F1,`1). Further, we define ιLF1,`1
:= ιL(W,k),(F1,`1) and ιGF1,`1

:= ιG(W,k),(F1,`1).

Then for a suitable centered chart (φ, V ) of G, the diagram

C∂,`2F2
(U, φ(V ))

φ−1
∗ //

ιL(F2,`2),(F1,`1)

��

C`2F2
(U,G)

ιG(F2,`2),(F1,`1)

��

C∂,`1F1
(U, φ(V ))

φ−1
∗ // C`1F1

(U,G)

commutes. Hence we derive the identity

L(ιG(F2,`2),(F1,`1)) = T0φ
−1
∗ ◦T0ι

L
(F2,`2),(F1,`1) ◦T1φ∗.

Let x ∈ U . Consider the maps

evGx : C∂,`1F1
(U,G)→ G : γ 7→ γ(x), evLx : C∂,`1F1

(U,L(G))→ L(G) : γ 7→ γ(x).

Obviously, the diagram

C∂,`1F1
(U, φ(V ))

φ−1
∗ //

evLx
��

C`1F1
(U,G)

evGx

��

φ(V )
φ−1

// G

commutes, so we derive the identity

L(evGx ) = T0φ
−1 ◦T0 evLx ◦T1φ∗.

Remark 6.1.12. In the following, if E is a locally convex vector space, we shall frequently

identify T0E = {0} ×E with E in the obvious way. Then for a Banach Lie group G and

a centered chart (φ, V ) of G such that dφ|L(G) = idL(G), we can identify CkW(U,L(G))

with L(CkW(U,G)) via T0φ
−1
∗ and T1φ∗, respectively.

Lemma 6.1.13. Let X be a normed space, U ⊆ X an open nonempty set, W ⊆ RU with

1U ∈ W, k ∈ N, G a Banach Lie group and (φ, V ) a centered chart for G such that

dφ|L(G) = idL(G). Further, let x ∈ U and Γ : [0, 1] → CkW(U,L(G)) be a smooth curve

whose left evolution exists. Then evGx ◦Evol`(T0φ
−1
∗ ◦ Γ) is the left evolution of evLx ◦Γ.

Proof. We set η := Evol`(T0φ
−1
∗ ◦ Γ) and calculate using Lemma 6.1.9 and Defini-

tion 6.1.11 that

δ`(evGx ◦η) = L(evGx ) ◦ δ`(η) = T0φ
−1 ◦T0 evLx ◦T1φ∗ ◦T0φ

−1
∗ ◦ Γ = evLx ◦Γ.

Proposition 6.1.14. Let X be a normed space, U ⊆ X an open nonempty set, W ⊆ RU
with 1U ∈ W, k ∈ N and G a Banach Lie group.

(a) CkW(U,G), endowed with the Lie group structure described in Definition 6.1.8, is reg-

ular.

(b) The exponential function of CkW(U,G) is given by

CkW(U,L(G))→ CkW(U,G) : γ 7→ expG ◦γ,

where we identify CkW(U,L(G)) with L(CkW(U,G)).
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Proof. (a) Let (φ, Ṽ ) be a centered chart of G such that dφ|L(G) = idL(G). We set

F := {F ⊆ W : 1U ∈ F , |F| <∞}.

After shrinking Ṽ , we may assume that the inverse map of

C∂,`F (U, Ṽ )→ C`F (U,G) : Γ 7→ φ−1 ◦ Γ

is a chart around the identity for F ∈ F and ` ∈ N with ` ≤ k (see Definition 6.1.8).

Let V ⊆ Ṽ be an open 1-neighborhood such that φ(V ) + φ(V ) ⊆ φ(Ṽ ). We choose

an open zero neighborhood W ⊆ φ(Ṽ ) such that the implication (6.1.10.1) holds. Let

Γ : [0, 1] → C∂,kW (U,W ) be a smooth curve. Then ΓF,` := ιLF,` ◦ Γ is smooth, and since

C`F (U,G) is a Banach Lie group, the curve T0φ
−1
∗ ◦ ΓF,` has a smooth left evolution

ηF,` : [0, 1]→ C`F (U,G). Then, for each x ∈ U , evGx ◦ηF,` is the left evolution of evLx ◦ΓF,`
by Lemma 6.1.13. Since we assumed that (6.1.10.1) holds, we conclude that for each

t ∈ [0, 1], the image of ηF,`(t) is contained in V .

Further, for F1,F2 ∈ F such that F1 ⊆ F2 and `1, `2 ∈ N such that `1 ≤ `2 ≤ k,

δ`(ι
G
(F2,`2),(F1,`1) ◦ ηF2,`2) = L(ιG(F2,`2),(F1,`1)) ◦ δ`(ηF2,`2)

= T0φ
−1
∗ ◦T0ι

L
(F2,`2),(F1,`1) ◦T1φ∗ ◦ δ`(ηF2,`2) = T0φ

−1
∗ ◦ ΓF1,`1 = δ`(ηF1,`1).

Hence ηF1,`1 = ιG(F2,`2),(F1,`1) ◦ ηF2,`2 . So the family (φ∗ ◦ ηF,`)F∈F,`≤k is compatible with

the inclusion maps, hence using Proposition 3.2.5 and Proposition A.1.12, we derive a

smooth curve η̃ : [0, 1]→ C∂,kW (U, φ(Ṽ )) such that for all F ∈ F and ` ∈ N with ` ≤ k, we

have ιLF,` ◦ η̃ = φ∗ ◦ ηF,`. We set η := φ−1
∗ ◦ η̃. Then

T0φ
−1
∗ ◦T0ι

L
F,`◦T1φ∗◦δ`(η) = L(ιGF,`)◦δ`(η) = δ`(ηF,`) = T0φ

−1
∗ ◦ΓF,` = T0φ

−1
∗ ◦ιLF,`◦Γ,

and since F and ` were arbitrary, we conclude (using Proposition 3.2.5) that T1φ∗ ◦
δ`(η) = Γ and thus

δ`(η) = T0φ
−1
∗ ◦ Γ.

It remains to show that the left evolution is smooth. To this end, we denote the left

evolution of C`F (U,G) with evolF,` and the one of CkW(U,G) with evol. From our results

above and Definition 6.1.11, we derive the commutative diagram

C∞([0, 1], C∂,kW (U,W ))
evol◦T0φ

−1
∗ //

ιLF,`
��

φ−1
∗ ◦ C

∂,k
W (U, φ(Ṽ ))

ιGF,`
��

C∞([0, 1], C∂,`F (U,W ))
evolF,`◦T0φ

−1
∗ // φ−1

∗ ◦ C
∂,`
F (U, φ(Ṽ ))

Since the three lower arrows represent smooth maps, the map

φ∗ ◦ ιGF,` ◦ evol ◦T0φ
−1
∗ = ιLF,` ◦ φ∗ ◦ evol ◦T0φ

−1
∗

is smooth on C∞([0, 1], C∂,kW (U,W )). Using Proposition A.1.12 and Section 3.2.2, we con-

clude that φ∗ ◦ evol ◦ T0φ
−1
∗ is smooth, and since φ∗ and T0φ

−1
∗ are diffeomorphisms,

using Lemma B.2.10 we deduce that evol is smooth.

(b) Let (φ, V ) be a centered chart of G such that dφ|L(G) = idL(G). We denote the

exponential function of CkW(U,G) by expW . Let x ∈ U and γ ∈ CkW(U,L(G)). We denote
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the constant, γ-valued curve from [0, 1] to CkW(U,L(G)) by Γ. We proved in Lemma 6.1.13

that evGx ◦Evol`(φ−1
∗ ◦ Γ) is the left evolution of evLx ◦Γ. On the other hand, since Γ

is constant, the left evolution of evLx ◦Γ is the restriction of the one-parameter group

R→ G : t 7→ expG(t evLx (γ)). Hence

expG(evLx (γ)) = (evGx ◦Evol`(φ−1
∗ ◦ Γ))(1) = evGx ◦ evol`(φ−1

∗ ◦ Γ) = evGx ◦ expW(φ−1
∗ (γ)).

Thus expW(φ−1
∗ (γ))(x) = expG(γ(x)), from which we deduce the assertion since x ∈ U

was arbitrary.

6.1.3. Semidirect products with weighted diffeomorphisms. In this subsection

we discuss an action of the diffeomorphism group DiffW(X) on the Lie group C∞W(X,G),

where G is a Banach Lie group. This action can be used to construct the semidirect

product C∞W(X,G) o DiffW(X) and turn it into a Lie group. For technical reasons, we

first discuss the following action of DiffW(X) on GX .

Definition 6.1.15. Let X be a Banach space, G a Banach Lie group and W ⊆ RX with

1X ∈ W. We define the map

ω̃ : DiffW(X)×GX → GX : (φ, γ) 7→ γ ◦ φ−1.

It is easy to see that ω̃ is in fact a group action, and moreover that it is a group

morphism in its second argument:

Lemma 6.1.16.

(a) ω̃ is a group action of DiffW(X) on GX .

(b) For each φ ∈ DiffW(X) the partial map ω̃(φ, ·) is a group homomorphism.

Proof. These are easy computations.

We show that this action leaves C∞W(X,G) invariant. Since we proved in Lemma 6.1.16

that ω̃ is a group morphism in its second argument, it suffices to show that it maps a

generating set of C∞W(X,G) into this space.

Lemma 6.1.17. Let X be a Banach space, G a Banach Lie group,W ⊆ RX with 1X ∈ W,

(φ, Ṽ ) a centered chart of G and V an open identity neighborhood such that φ(V ) is

convex. Then

ω̃(DiffW(X)× (φ−1 ◦ C∂,∞W (X,φ(V )))) ⊆ φ−1 ◦ C∂,∞W (X,φ(V )),

and the map

DiffW(X)× C∂,∞W (X,φ(V ))→ C∂,∞W (X,φ(V )) : (ψ, γ) 7→ φ ◦ ω̃(ψ, φ−1 ◦ γ)

is smooth. Moreover,

ω̃(DiffW(X)× C∞W(X,G)) ⊆ C∞W(X,G).

Proof. Let ψ ∈ DiffW(X) and γ ∈ C∂,∞W (X,φ(V )). Then

ω̃(ψ, φ−1 ◦ γ) = φ−1 ◦ (γ ◦ ψ−1),

and using Corollary 4.1.8 this proves the first and—together with Proposition 4.2.16—the

second assertion.
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The final assertion follows immediately from the first assertion since we proved in

Lemma 6.1.16 that ω̃ is a group morphism in its second argument, and according to

Definition 6.1.8, C∞W(X,G) is generated by φ−1 ◦ C∂,kW (X,φ(V )).

So by restricting ω̃ to DiffW(X)× C∞W(X,G), we get a group action of DiffW(X) on

C∞W(X,G).

Definition 6.1.18. We define

ω := ω̃|DiffW(X)×C∞W(X,G) : DiffW(X)× C∞W(X,G)→ C∞W(X,G) : (φ, γ) 7→ γ ◦ φ−1.

Finally, we are able to turn the semidirect product C∞W(X,G)oω DiffW(X) into a Lie

group.

Theorem 6.1.19. Let X be a Banach space, G a Banach Lie group and W ⊆ RX with

1X ∈ W. Then C∞W(X,G) oω DiffW(X) can be turned into a Lie group modelled on

C∞W(X,L(G))× C∞W(X,X).

Proof. We proved in Lemma 6.1.17 that ω is smooth on a neighborhood of (idX ,1), and

since this neighborhood is the product of generators of DiffW(X) resp. C∞W(X,G), we can

use Lemma B.2.14 to see that ω is smooth. Hence we can apply Lemma B.2.15 and are

done.

6.2. Weighted maps into locally convex Lie groups. In this section, we discuss cer-

tain subgroups of GU , where G is a Lie group and U an open subset of a finite-dimensional

space X. We construct a subgroup CkW(U,G)• consisting of weighted decreasing mappings

that can be turned into a (connected) Lie group. Next, we extend this group to a Lie

group CkW(U,G)•ex which contains CkW(U,G)• as an open normal subgroup, and discuss

its relation to “rapidly decreasing mappings”.

The modelling space of these groups is CkW(U,L(G))•, where k ∈ N and W is a set of

weights on U containing 1U . These spaces were introduced in Section 3.4.

6.2.1. Construction of the Lie group. We construct the Lie group from local data

using Lemma B.2.5. For a chart (φ, V ) of G, we can endow the set φ−1 ◦ CkW(U, φ(V ))• ⊆
GU with the manifold structure that turns the superposition operator φ∗ into a chart.

We then need to check whether multiplication and inversion on GU are smooth with

respect to this manifold structure. The group operations on GU arise as the composition

of the corresponding group operations on G with mappings in GU (see Definition 6.0.1).

The main tool used in this subsection is the superposition with smooth maps that we

discussed in Proposition 3.4.23.

Local group operations. We first discuss local multiplication.

Lemma 6.2.1. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

W ⊆ RU with 1U ∈ W, ` ∈ N, G a locally convex Lie group with the group multiplication

mG and (φ, V ) a centered chart of G. Then there exists an open identity neighborhood

W ⊆ V such that the map

C`W(U, φ(W ))•×C`W(U, φ(W ))• → C`W(U, φ(V ))• : (γ, η) 7→ φ◦mG◦(φ−1◦γ, φ−1◦η) (†)

is defined and smooth.
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Proof. By Lemma 3.4.16, the map (†) is defined and smooth iff there exists an open

neighborhood W ⊆ G such that

(φ ◦mG ◦ (φ−1 × φ−1))∗ : C`W(U, φ(W )× φ(W ))• → C`W(U, φ(V ))•

is defined and smooth. By the continuity of mG there exists an open subset W ⊆ V such

that mG(W ×W ) ⊆ V . We may assume that φ(W ) is star-shaped with center 0. Since

φ ◦mG ◦ (φ−1 × φ−1) is smooth and maps (0, 0) to 0, we can apply Proposition 3.4.23 to

see that

(φ ◦mG ◦ (φ−1 × φ−1)) ◦ C`W(U, φ(W )× φ(W ))• ⊆ C`W(U, φ(V ))•

and that the map (φ ◦mG ◦ (φ−1 × φ−1))∗ is smooth.

Now, we turn to local inversion.

Lemma 6.2.2. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

W ⊆ RU with 1U ∈ W, ` ∈ N, G a locally convex Lie group with the group inversion IG
and (φ, V ) a centered chart such that V is symmetric. Further let W ⊆ V be a symmetric

open 1-neighborhood such that there exists an open star-shaped set WL with center 0 and

φ(W ) ⊆WL ⊆ φ(V ). Then for each γ ∈ C`W(U, φ(W ))•,

(φ ◦ IG ◦ φ−1) ◦ γ ∈ C`W(U,W )•,

and the map

C`W(U, φ(W ))• → C`W(U, φ(W ))• : γ 7→ (φ ◦ IG ◦ φ−1) ◦ γ

is smooth.

Proof. Since IL := φ ◦ IG ◦ φ−1 : φ(V ) → φ(V ) is smooth and IL(0) = 0, we conclude

from Proposition 3.4.23 that

C`W(U,WL)• → C`W(U, φ(V ))• : γ 7→ IL ◦ γ

is smooth. Since we proved in Lemma 3.4.19 that C`W(U, φ(W ))• is an open subset of

C`W(U,WL)•, the restriction of this map is also smooth, and since W is symmetric, it

takes values in this set.

Conclusion. We put everything together to obtain a Lie group for each centered chart

of G. We show that the identity component does not depend on the chart used.

Lemma 6.2.3. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

W ⊆ RU with 1U ∈ W, ` ∈ N, G a locally convex Lie group and (φ, V ) a centered chart.

Then there exists a subgroup (G,φ)UW,` of GU that can be turned into a Lie group. It is

modelled on C`W(U,L(G))• in such a way that there exists an open 1-neighborhood W ⊆ V
such that

C`W(U, φ(W ))• → (G,φ)UW,` : γ 7→ φ−1 ◦ γ

becomes a smooth embedding and its image is open. Further, for any subset W̃ ⊆W such

that φ(W̃ ) is an open convex zero neighborhood,

φ−1 ◦ C`W(U, φ(W̃ ))•

generates the identity component of (G,φ)UW,`.
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Proof. Using Lemma 6.2.1 we find an open 1-neighborhood W ⊆ V such that

C`W(U, φ(W ))• × C`W(U, φ(W ))• → C`W(U, φ(V ))• : (γ, η) 7→ φ ◦mG ◦ (φ−1 ◦ γ, φ−1 ◦ η)

is smooth. We may assume that W is symmetric and that there exists an open convex

set H such that φ(W ) ⊆ H ⊆ φ(V ). We know from Lemma 6.2.2 that the set

φ−1 ◦ C`W(U, φ(W ))• ⊆ GU

is symmetric and

C`W(U, φ(W ))• → C`W(U, φ(W ))• : γ 7→ φ ◦ IG ◦ φ−1 ◦ γ

is smooth. We endow φ−1 ◦ C`W(U, φ(W ))• with the differential structure which turns the

bijection

φ−1 ◦ C`W(U, φ(W ))• → C`W(U, φ(W ))• : γ 7→ φ ◦ γ

into a smooth diffeomorphism. Then we can apply Lemma B.2.5 to construct a Lie group

structure on the subgroup (G,φ)UW,` of GU which is generated by φ−1 ◦ C`W(U, φ(W ))•,

such that φ−1 ◦ C`W(U, φ(W ))• becomes an open subset.

Moreover, for each open 1-neighborhood W̃ ⊆ W such that φ(W̃ ) is convex, the set

C`W(U, φ(W̃ ))• is convex (Lemma 3.4.10). Hence φ−1 ◦C`W(U, φ(W̃ ))• is connected, and it

is open by the construction of the differential structure of (G,φ)UW,`. Further it obviously

contains the unit element, hence it generates the identity component.

Lemma 6.2.4. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

W ⊆ RU with 1U ∈ W, ` ∈ N and G a locally convex Lie group. Then for centered

charts (φ1, V1) and (φ2, V2), the identity component of (G,φ1)UW,` coincides with the one

of (G,φ2)UW,`, and the identity map between them is a smooth diffeomorphism.

Proof. Using Lemma 6.2.3, we find open 1-neighborhoods W1 ⊆ V1, W2 ⊆ V2 such that

the identity component of (G,φi)
U
W,` is generated by φ−1

i ◦ C`W(U, φi(Wi))
• for i ∈ {1, 2}.

Since φ1 ◦φ−1
2 is smooth, we find an open convex zero neighborhood W̃L

2 ⊆ φ2(W1∩W2).

By Proposition 3.4.23, the map

C`W(U, W̃L
2 )• → C`W(U, φ1(W1))• : γ 7→ φ1 ◦ φ−1

2 ◦ γ

is defined and smooth. This implies that

φ−1
2 ◦ C`W(U, W̃L

2 )• ⊆ φ−1
1 ◦ C`W(U, φ1(W1))•.

Hence the identity component of (G,φ2)UW,` is contained in the one of (G,φ1)UW,`, and

the inclusion map of the former into the latter is smooth.

Exchanging the roles of φ1 and φ2 in the preceding argument, we get the assertion.

Definition 6.2.5. Let X be a finite-dimensional space, U ⊆ X an open nonempty

subset, W ⊆ RU with 1U ∈ W, ` ∈ N and G a locally convex Lie group. Henceforth, we

write C`W(U,G)• for the connected Lie group constructed in Lemma 6.2.3. There and in

Lemma 6.2.4 it was proved that for any centered chart (φ, V ) of G there exists an open

1-neighborhood W such that the inverse of

C`W(U, φ(W ))• → C`W(U,G) : γ 7→ φ−1 ◦ γ
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is a chart, and that for any convex zero neighborhood W̃ ⊆ φ(W ), the set

φ−1 ◦ C`W(U, W̃ )•

generates C`W(U,G)•.

6.2.2. A larger Lie group of weighted mappings. We extend the Lie group described

in Definition 6.2.5. Generally, it is possible using Lemma B.2.5 to extend a Lie group G

that is a subgroup of a larger group H by looking at its “smooth normalizer”, that is,

all h ∈ H that normalize G and for which the inner automorphism, restricted to suitable

1-neighborhoods, is smooth. This approach has the disadvantage that we do not really

know which maps are contained in the smooth normalizer. So in the following, we will

define a subset of GU and show that it is a group contained in the smooth normalizer of

C`W(U,G)•.

Further, we show that this bigger group contains certain groups of rapidly decreasing

mappings constructed in [BCR81] as open subgroups.

6.2.2.1. A group of mappings. We define a set of mappings.

Definition 6.2.6. Let G be a locally convex Lie group, X a finite-dimensional vector

space, U ⊆ X a nonempty open subset, W ⊆ RU nonempty and k ∈ N. Then for any

centered chart (φ, Vφ) of G, compact set K ⊆ U and h ∈ C∞c (U,R) with h ≡ 1U on a

neighborhood of K we define M((φ, Vφ),K, h) as the set

{γ ∈ Ck(U,G) : γ(U \K) ⊆ Vφ and (1U − h) · (φ ◦ γ)|U\K ∈ CkW(U \K,L(G))•}.

Further we define

CkW(U,G)•ex :=
⋃

(φ,Vφ),K,h

M((φ, Vφ),K, h).

In the following, we show that CkW(U,G)•ex is a subgroup of GU . In order to do this,

we provide some technical tools. First, we show that we can use a cutoff technique to

shrink the domain of a decreasing function.

Lemma 6.2.7. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset, Y

a locally convex space and W ⊆ RU nonempty. Let k ∈ N and γ ∈ Ck(U, Y ).

(a) Suppose that γ ∈ CkW(U, Y )•. Let A ⊆ U be a closed nonempty set such that γ|U\A ≡ 0

and V ⊆ U an open neighborhood of A. Then γ|V ∈ CkW(V, Y )•.

(b) Let K1 ⊆ K2 ⊆ U be closed sets such that γ|U\K1
∈ CkW(U \ K1, Y )• and h ∈

BC∞(U,R) such that h ≡ 1 on a neighborhood of K2. Then

(1U − h) · γ|U\K2
∈ CkW(U \K2, Y )•.

Proof. (a) It is obvious that γ|V ∈ CkW(V, Y ). Let f ∈ W and ` ∈ N with ` ≤ k. For

ε > 0 and p ∈ N (Y ) there exists a compact set K ⊆ U such that ‖γ|U\K‖p,f,` < ε.

The set K̃ := K ∩ A is compact and contained in V . Further ‖γ|V \K̃‖p,f,` < ε since

D(`)γ|U\A = 0.

(b) Let V ⊇ K be open in U such that h|V ≡ 1. Then by Corollary 3.4.15,

(1U − h) · γ|U\K1
∈ CkW(U \K1, Y )•.
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Further (1U − h) · γ|U\(U\V ) ≡ 0. Since U \ K2 is an open neighborhood of U \ V , an

application of (a) finishes the proof.

Now we examine CkW(U,G)•ex. We show that for a mapping in this set, we can change

the chart of G, shrink the 1-neighborhood and enlarge the compact set.

Lemma 6.2.8. Let X be a finite-dimensional vector space, U ⊆ X an open nonempty

subset, G a locally convex Lie group, W ⊆ RU with 1U ∈ W and k ∈ N. Further, let

γ ∈M((φ, Vφ),K, h).

(a) For each 1-neighborhood V ⊆ Vφ, there exists a compact set KV ⊆ U such that

for each map hV ∈ C∞c (U,R) with hV ≡ 1 on a neighborhood of KV , we have γ ∈
M((φ|V , V ),KV , hV ).

(b) Let (ψ, Vψ) be a centered chart. Then there exists a compact set Kψ ⊆ U such that

γ ∈ M((ψ, Vψ),Kψ, hψ) for each hψ ∈ C∞c (U,R) with hψ ≡ 1 on a neighborhood

of Kψ.

(c) Let η ∈ M((φ, Vφ), K̃, h̃). There exists a compact set L such that for each g ∈
C∞c (U,R) with g ≡ 1 on a neighborhood of L, we have γ, η ∈M((φ, Vφ), L, g).

Proof. (a) Since (1U − h) · (φ ◦ γ)|U\K ∈ CkW(U \K,L(G))• and 1U ∈ W, there exists a

compact set K̃ ⊆ U such that

(1U − h) · (φ ◦ γ)((U \K) \ K̃) ⊆ φ(V ).

We define the compact set KV := K̃ ∪ supp(h) and choose hV ∈ C∞c (U,R) with hV ≡ 1

on a neighborhood of KV . By Lemma 6.2.7 and the fact that h ≡ 0 on U \KV , we see

that

(1U − hV ) · (φ ◦ γ)|U\KV = (1U − hV )(1U − h) · (φ ◦ γ)|U\KV ∈ C
k
W(U \KV ,L(G))•.

Further we calculate using again that h ≡ 0 on U \KV :

(φ ◦ γ)(U \KV ) = (1U − h) · (φ ◦ γ)((U \K) \KV ) ⊆ φ(V ).

(b) There exists an open 1-neighborhood V ⊆ Vφ ∩ Vψ such that φ(V ) is star-shaped

with center 0. We know from (a) that there exist a compact set K̃ ⊆ U and a map

h̃ ∈ C∞c (U, [0, 1]) with h̃ ≡ 1 on a neighborhood of K̃ such that

γ ∈M((φ|V , V ), K̃, h̃).

We conclude from Proposition 3.4.23 that

(ψ ◦ φ−1) ◦ ((1U − h̃) · (φ ◦ γ)|U\K̃ ∈ C
k
W(U \ K̃,L(G))•.

Let hψ ∈ C∞c (U,R) be such that hψ ≡ 1 on a neighborhood of Kψ, where Kψ :=

K̃ ∪ supp(h̃). We conclude from Lemma 6.2.7 that

(1U − hψ) · (ψ ◦ φ−1) ◦ ((1U − h̃) · (φ ◦ γ)|U\Kψ ∈ C
k
W(U \Kψ,L(G))•.

Since 1U − h̃ ≡ 1U on U \Kψ, the proof is finished.

(c) We set L := supp(h) ∪ supp(h̃). Then

γ(U \ L) ⊆ γ(U \K) ⊆ Vφ,
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and for g ∈ C∞c (U,R) with g ≡ 1 on a neighborhood of L, Lemma 6.2.7 implies that

(1U − g) · (φ ◦ γ)|U\L = (1U − g) · (1U − h) · (φ ◦ γ)|U\L ∈ CkW(U \ L,L(G))•.

Since the argument for η is the same, we are done.

Now we are ready to show that CkW(U,G)•ex is a group.

Lemma 6.2.9. Let X be a finite-dimensional vector space, U ⊆ X an open nonempty

subset, G a locally convex Lie group, W ⊆ RU with 1U ∈ W and k ∈ N. Then the set

CkW(U,G)•ex is a subgroup of GU .

Proof. Let (φ, Vφ) be a centered chart for G and V ⊆ Vφ an open neighborhood of 1 such

that mG(V × IG(V )) ⊆ Vφ and φ(V ) is star-shaped. We define the map

HG : V × V → Vφ : (x, y) 7→ mG(x, IG(y)).

Let γ, η ∈ CkW(U,G)•ex. Using Lemma 6.2.8 we find a compact set K ⊆ U and a map

h ∈ C∞c (U, [0, 1]) with h ≡ 1U on K such that

γ, η ∈M((φ|V , V ),K, h).

We define Hφ := φ◦HG ◦ (φ−1×φ−1)|V×V and want to show that there exists a compact

set K̃ and h̃ ∈ C∞c (U,R) with h̃ ≡ 1 on a neighborhood of K̃ such that HG ◦ (γ, η) ∈
M((φ, Vφ), K̃, h̃). It is obvious that

(HG ◦ (γ, η))(U \K) ⊆ mG(V × IG(V )) ⊆ Vφ.

Since we know from Lemma 3.4.16 that

(1U −h) · (φ ◦ γ, φ ◦ η) = ((1U −h) · (φ ◦ γ), (1U −h) · (φ ◦ η)) ∈ CkW(U \K,L(G)×L(G))•,

we conclude using Proposition 3.4.23 that

Hφ ◦ ((1U − h) · (φ ◦ γ, φ ◦ η)) ∈ CkW(U \K,L(G))•.

Further, K̃ := K ∪ supp(h) is a compact set, so by Lemma 6.2.7,

(1U − h̃) ·Hφ ◦ ((1U − h) · (φ ◦ γ, φ ◦ η)) ∈ CkW(U \ K̃,L(G))•

for any h̃ ∈ C∞c (U,R) with h̃ ≡ 1 on a neighborhood of K̃. Since (1U − h) ≡ 0 on U \ K̃,

(1U − h̃) · (φ ◦HG ◦ (γ, η))|U\K̃ ∈ C
k
W(U \ K̃,L(G))• and hence

HG ◦ (γ, η) ∈M((φ, Vφ), K̃, h̃).

6.2.2.2. Inclusion in the smooth normalizer. We show that CkW(U,G)•ex is contained in

the smooth normalizer of CkW(U,G)•. To this end, we show that each γ ∈ CkW(U,G)•ex

can be written as a product of a compactly supported Ck-map and a Ck-map that takes

values in a chosen chart domain. Next, we show that these two classes of mappings are

contained in the smooth normalizer of CkW(U,G)•.

We start with the following technical lemma about extending decreasing functions.

Lemma 6.2.10. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

A ⊆ U a closed subset, Y a locally convex space, W ⊆ RU with 1U ∈ W, k ∈ N and
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γ ∈ CkW(U \A, Y )•. Then the map

γ̃ : U → Y : x 7→

{
γ(x) if x ∈ U \A,

0 otherwise

is in CkW(U, Y )•.

Proof. Obviously, the assertion holds on U \A and A◦, since γ̃ and its derivatives vanish

on A◦. We show that γ̃ is Ck on ∂A and γ̃ and its derivatives also vanish there. Since

this is true iff for each p ∈ N (Y ), the map πp ◦ γ̃ is Ck on ∂A and it and its derivatives

vanish there, and the identity πp ◦ γ̃ = π̃p ◦ γ holds, we may assume that Y is normable.

Since 1U ∈ W, for each ` ∈ N with ` ≤ k, the map D̃(`)γ is continuous and hence

D̃(`)γ ∈ C0
W(U,L`(X,Y ))•.

Using Lemma 3.2.1, it remains to show that γ̃ is Ck with D(`)γ̃ = D̃(`)γ for all ` ∈ N
with ` ≤ k. We show this by induction on `.

` = 1: Let x ∈ ∂A and h ∈ X. If there exists δ > 0 such that x + ]−δ, 0]h ⊆ A or

x+ [0, δ]h ⊆ A, then Dhγ̃(x) = 0 = D̃γ(x)h.

Otherwise, there exists a null sequence (tn)n∈N in ]−∞, 0[ or ]0,∞[ such that for each

n ∈ N, x + tnh ∈ U \ A. Replacing h by −h if necessary, we may assume that all tn are

positive. Since 1U ∈ W, D̃γ is continuous and D̃γ(x) = 0, given ε > 0 we find δ > 0 such

that for all s ∈ ]−δ, δ],
‖D̃γ(x+ sh)‖op < ε.

We find an n ∈ N such that tn ∈ ]−δ, δ[. Then we define

t := inf{τ > 0 : ]τ, tn] ⊆ U \A} > 0.

We calculate for τ ∈ ]t, tn[:∥∥∥∥ γ̃(x+ tnh)− γ̃(x+ τh)

tn

∥∥∥∥ < ∥∥∥∥ γ̃(x+ tnh)− γ̃(x+ τh)

tn − τ

∥∥∥∥
=

1

tn − τ

∥∥∥∥ ∫ 1

0

Dγ(x+ (stn + (1− s)τ)h) · (tn − τ)h ds

∥∥∥∥ < ε‖h‖.

But γ̃(x+ τh)→ 0 as τ → t, and hence∥∥∥∥ γ̃(x+ tnh)− γ̃(x)

tn

∥∥∥∥ =

∥∥∥∥ γ̃(x+ tnh)

tn

∥∥∥∥ ≤ ε‖h‖.
Since ε was arbitrary, we conclude that Dhγ̃(x) = 0 = D̃γ(x)h.

`→ `+1: Using the inductive hypothesis, we conclude that D̃γ is FC`, and D(`)D̃γ =

D̃(`)Dγ. Hence γ̃ is FC`+1, so by Lemma A.2.14, D(`+1)γ̃ = D̃(`+1)γ.

Proposition 6.2.11. Let X be a finite-dimensional space, U ⊆ X an open nonempty

subset, G a locally convex Lie group, W ⊆ RU with 1U ∈ W, k ∈ N, (φ, Vφ) a centered

chart of G and γ ∈ CkW(U,G)•ex. Then there exist maps η ∈ M((φ, Vφ), ∅, 0U ) and χ ∈
Ckc (U,G) such that

γ = η · χ.
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Proof. Using Lemma 6.2.8 we find a compact set K and h ∈ C∞c (U, [0, 1]) such that

γ ∈M((φ, Vφ),K, h). Using Lemma 6.2.10 we see that

η := φ−1 ◦ ˜(1U − h) · (φ ◦ γ)|U\K ∈M((φ, Vφ), ∅, 0U ),

and it is obvious that η|U\supp(h) = γ|U\supp(h). Hence

χ := η−1 · γ ∈ Ckc (U,G),

and obviously γ = η · χ.

We now show that the weighted maps that take values in a suitable chart domain are

contained in the smooth normalizer.

Lemma 6.2.12. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

G a locally convex Lie group, W ⊆ RU with 1U ∈ W, k ∈ N and (φ, Vφ) a centered chart

of G. Further let Wφ ⊆ Vφ be an open 1-neighborhood such that

Wφ ·Wφ ·W−1
φ ⊆ Vφ

and φ(Wφ) is star-shaped with center 0. Then for each η ∈M((φ,Wφ), ∅, 0U ), the map

CkW(U, φ(Wφ))• → CkW(U, φ(Vφ))• : γ 7→ φ ◦ (η · (φ−1 ◦ γ) · η−1)

is smooth.

Proof. As a consequence of Proposition 3.4.23 and Lemma 3.4.16, the map

CkW(U, φ(Wφ))• × CkW(U, φ(Wφ))• × CkW(U, φ(Wφ))• → CkW(U, φ(Vφ))•,

(γ1, γ2, γ3) 7→ φ ◦ ((φ−1 ◦ γ1) · (φ−1 ◦ γ2) · (φ−1 ◦ γ3)−1),

is smooth. Hence we easily deduce the desired assertion.

Normalization with compactly supported mappings. While the treatment of Ck-maps with

values in a suitable chart domain was straightforward, we need to develop other tools to

deal with compactly supported mappings. The main problem is that a compactly sup-

ported map may not take values in any chart domain. To get around this problem, we need

more technical machinery. As a motivation for the following, let χ ∈ Ckc (U,G) and (φ, Vφ)

be a centered chart of G. Using that χ(U) is compact, we can find a symmetrical neigh-

borhood O of χ(U) and an open 1-neighborhood Wφ ⊆ Vφ such that O ·Wφ ·O−1 ⊆ Vφ.

Then we can define the “normalization map in charts”

N : O × φ(Wφ)→ φ(Vφ) : (g, y) 7→ φ(g · φ−1(y) · g−1).

We can calculate that for γ ∈ φ(Wφ)U , we have the identity

φ ◦ (χ · γ · χ−1) = N ◦ (χ× idφ(Wφ)) ◦ (idU , γ).

In the following two lemmas, we will examine the properties of maps of the form N ◦
(χ × idφ(Wφ)) and whether they induce a kind of superposition operator for decreasing

weighted functions.

Lemma 6.2.13. Let X, Y and Z be locally convex spaces, U ⊆ X, V ⊆ Y and W ⊆ Z

open nonempty subsets, M a locally convex manifold and k ∈ N. Let Γ ∈ C∞(M × V,W )

and η ∈ Ck(U,M). Then the map

Ξ := Γ ◦ (η × idV ) : U × V →W
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has the following properties:

(a) The second partial derivative of Ξ is

d2Ξ = (π2 ◦T2Γ) ◦ (η × idV×Y )

and if k ≥ 1, the first partial derivative of Ξ is

d1Ξ = (π2 ◦T1Γ) ◦ (Tη × idV ) ◦ S,

where π2 denotes the projection W × Z → Z on the second component, and S :

U × V ×X → U ×X × V : (x, y, h) 7→ (x, h, y) denotes the swap map.

(b) For all x ∈ U , the partial map Ξ(x, ·) : V →W is smooth, and for all ` ∈ N the map

d
(`)
2 Ξ : U × V × Y ` →W is Ck.

(c) Assume that X has finite dimension. Then for

A1 : U × V → L(X,Z) : (x, y) 7→ (h 7→ d1Ξ(x, y;h))

(which is only defined if k ≥ 1) and

A2 : U × V × L(X,Y )→ L(X,Z) : (x, y, T ) 7→ (h 7→ d2Ξ(x, y;T · h)),

all partial maps A1(x, ·) and A2(x, ·) are smooth and all partial derivatives d
(`)
2 A1

and d
(`)
2 A2 are Ck−1, respectively Ck.

Proof. (a) We calculate for x ∈ U , y ∈ V and h ∈ Y that

d2Ξ((x, y);h) = lim
t→0

Ξ(x, y + th)− Ξ(x, y)

t
= lim
t→0

Γ(η(x), y + th)− Γ(η(x), y)

t

= (π2 ◦T2Γ)(η(x), y, h).

This shows the desired identity for d2Ξ. If k > 0, we find using the chain rule that

dΞ ◦ P = π2 ◦TΞ ◦ P = π2 ◦TΓ ◦ (Tη × id TV ),

where P : U × X × V × Y → U × V × X × Y permutes the middle arguments. Since

d1Ξ((x, y);hx) = dΞ((x, y); (hx, 0)), we get the assertion for d1Ξ.

(b) It is obvious that the partial maps are smooth. We prove the second assertion by

induction on `.

` = 0: This is obvious.

` → ` + 1: In (a) we proved that d2Ξ is of the same form as Ξ. By the inductive

hypothesis,
d

(`)
2 (d2Ξ) : U × V × Y × (Y × Y )` →W

is a Ck-map. But

d
(`+1)
2 Ξ(x, y;h1, h2, . . . , h`+1) = d

(`)
2 (d2Ξ)(x, y, h1; (h2, 0), . . . , (h`+1, 0)),

so d
(`+1)
2 Ξ is Ck.

(c) The partial maps A1(x, ·) and A2(x, ·) are smooth and the maps d
(`)
2 A1 and d

(`)
2 A2

are Ck−1 respective Ck iff for each h ∈ X, the maps A1(x, ·) · h and A2(x, ·) · h have the

corresponding properties. By (a),

A1(x, y) · h = d1Ξ(x, y;h) = (π2 ◦T1Γ) ◦ (Tη × idV ) ◦ S(x, y, h)
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and

A2(x, y, T ) · h = d2Ξ(x, y;T · h) = (π2 ◦T2Γ) ◦ (η × idV×Y )(x, y, T · h)

= (π2 ◦T2Γ ◦ S1) ◦ (η × evh × idV ) ◦ S2(x, y, T ).

Here S1 and S2 denote the swap maps

M × Y × V →M × V × Y, U × V × L(X,Y )→ U × L(X,Y )× V

respectively. Since S, S1 and S2 are restrictions of continuous linear maps, (b) applies to

both A1(x, ·) · h and A2(x, ·) · h.

Lemma 6.2.14. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

Y and Z locally convex spaces, M a locally convex manifold, V ⊆ Y an open zero neigh-

borhood that is star-shaped with center 0, W ⊆ RU with 1U ∈ W and k ∈ N. Further, let

Γ ∈ C∞(M × V,Z), and θ ∈ Ck(U,M) such that the map

Ξ := Γ ◦ (θ × idV ) : U × V → Z

satisfies

• Ξ(U × {0}) = {0}.
• There exists a compact set K ⊆ U such that Ξ((U \K)× V ) = {0}.

Then for any γ ∈ CkW(U, V )•,

Ξ ◦ (idU , γ) ∈ CkW(U,Z)•, (†)
and the map

Ξ∗ : CkW(U, V )• → CkW(U,Z)• : γ 7→ Ξ ◦ (idU , γ)

is smooth.

Proof. We first prove the continuity of Ξ∗ by induction on k:

k = 0: Let γ, η ∈ CkW(U, V )• such that the line segment {tγ + (1 − t)η : t ∈ [0, 1]}
⊆ CkW(U, V )•. We easily prove using Lemma 3.4.17 that the set

K̃ := {tγ(x) + (1− t)η(x) : t ∈ [0, 1], x ∈ U}

is relatively compact in V . Since d2Ξ is continuous by Lemma 6.2.13(b) and satisfies

d2Ξ(U ×V ×{0}) = {0}, we conclude using the Wallace Lemma that for each p ∈ N (Z),

there exists q ∈ N (Y ) such that

d2Ξ(K × K̃ ×Bq(0, 1)) ⊆ Bp(0, 1).

This relation implies that

(∀x ∈ K, y ∈ K̃, h ∈ Y ) ‖d2Ξ(x, y;h)‖p ≤ ‖h‖q.
For each x ∈ U , we calculate

Ξ(x, γ(x))− Ξ(x, η(x)) =

∫ 1

0

d2Ξ(x, tγ(x) + (1− t)η(x); γ(x)− η(x)) dt.

Hence for each f ∈ W, we have

|f(x)| ‖Ξ(x, γ(x))− Ξ(x, η(x))‖p ≤ |f(x)| ‖γ(x)− η(x)‖q.

Taking η = 0, this estimate implies (†). Further, since we proved in Lemma 3.4.18 that

CkW(U, V )• is open, γ has a convex neighborhood in CkW(U, V )•; hence the estimate also

implies the continuity of Ξ∗ in γ.
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k → k + 1: For each x ∈ U , h ∈ X and γ ∈ Ck+1
W (U, V )•, we calculate

d(Ξ ◦ (idU , γ))(x;h) = dΞ(x, γ(x);h,Dγ(x) · h)

= d1Ξ(x, γ(x);h) + d2Ξ(x, γ(x);Dγ(x) · h).

Recall the maps A1 and A2 defined in Lemma 6.2.13(6.2.13). We get the identity

D(Ξ ◦ (idU , γ))(x) = (A1 ◦ (idU , γ))(x) + (A2 ◦ (idU , γ,Dγ))(x).

We prove that A1 and A2 satisfy the same properties as Ξ does: For x ∈ U , y ∈ V , h ∈ X,

A1(x, 0) · h = d1Ξ(x, 0;h) = lim
t→0

Ξ(x+ th, 0)− Ξ(x, 0)

t
= 0,

whence A1(x, 0) = 0. Let x ∈ U \K. Then

A1(x, y) · h = d1Ξ(x, y;h) = lim
t→0

Ξ(x+ th, y)− Ξ(x, y)

t
= 0

since U \K is open, hence A1(x, y) = 0.

As to A2, for x ∈ U , y ∈ V and h ∈ X we calculate

A2(x, y, 0) · h = d2Ξ(x, y; 0 · h) = 0,

whence A2(x, y, 0) = 0. Let x ∈ U \K and T ∈ L(X,Y ). Then

A2(x, y, T ) · h = d2Ξ(x, y;T · h) = lim
t→0

Ξ(x, y + tT · h)− Ξ(x, y)

t
= 0,

hence A2(x, y, T ) = 0.

So we can apply the inductive hypothesis to A1 and A2 and conclude that

A1 ◦ (idX , γ), A2 ◦ (idX , γ,Dγ) ∈ CkW(U,L(X,Z))•

and the maps Ck+1
W (U, V )• → CkW(U,L(X,Z))•,

γ 7→ A1 ◦ (idX , γ) and γ 7→ A2 ◦ (idX , γ,Dγ),

are continuous. In view of Proposition 3.4.11, the continuity of Ξ∗ is established.

We pass on to prove the smoothness of Ξ∗. To do this, we have to examine d2Ξ. By

Lemma 6.2.13(a), d2Ξ = π2 ◦T2Γ ◦ (θ × idV×Y ), and we easily see that

d2Ξ(U × {0} × {0}) = d2Ξ((U \K)× V × Y ) = {0}.

Hence by the results already established, the map

(d2Ξ)∗ : CkW(U, V × Y )• → CkW(U,Z)• : (γ) 7→ d2Ξ ◦ (idU , γ)

is defined and continuous. Now let γ ∈ CkW(U, V )• and γ1 ∈ CkW(U, Y )•. Since CkW(U, V )•

is open, there exists an r > 0 such that {γ + sγ1 : s ∈ BK(0, r)} ⊆ CkW(U, V )•. We

calculate for x ∈ U and t ∈ BK(0, r) \ {0} (using Lemma 3.4.16 implicitly) that

Ξ∗(γ + tγ1)(x)− Ξ∗(γ)(x)

t
=

Ξ(x, γ(x) + tγ1(x))− Ξ(x, γ(x))

t

=

∫ 1

0

d2Ξ((x, γ(x) + stγ1(x)); γ1(x)) ds =

∫ 1

0

(d2Ξ)∗(γ + stγ1, γ1)(x) ds.
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Hence by Lemma 3.4.3 and Proposition A.1.8, Ξ∗ is C1 with dΞ∗(γ; γ1) = (d2Ξ)∗(γ, γ1).

Using an easy induction argument we conclude from this identity that Ξ∗ is C` for each

` ∈ N and hence smooth.

Now we are ready to deal with the inner automorphism induced by a compactly

supported map.

Lemma 6.2.15. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

G a locally convex Lie group, W ⊆ RU with 1U ∈ W, k ∈ N and (φ, Vφ) a centered chart

for G. Let χ ∈ Ckc (U,G). Then there exists an open 1-neighborhood Wφ ⊆ Vφ such that

the map

CkW(U, φ(Wφ))• → CkW(U,L(G))• : γ 7→ φ ◦ (χ · (φ−1 ◦ γ) · χ−1) (†)

is defined and smooth.

Proof. Since χ(U) is compact, we can find an open 1-neighborhood Wφ ⊆ Vφ and an

open symmetrical neighborhood O of χ(U) such that

O ·Wφ ·O−1 ⊆ Vφ;

we may assume that φ(Wφ) is star-shaped with center 0. We define the smooth map

N : O × φ(Wφ)→ L(G) : (g, y) 7→ φ(g · φ−1(y) · g−1)− y.

Then it is easy to see that

N ◦ (χ× idφ(Wφ)) : U × φ(Wφ)→ L(G)

satisfies the assumptions of Lemma 6.2.14, and that for γ ∈ CkW(U, φ(Wφ))•,

(N ◦ (χ× idφ(Wφ))) ◦ (idU , γ) = φ ◦ (χ · (φ−1 ◦ γ) · χ−1)− γ.

Hence the map

CkW(U, φ(Wφ))• → CkW(U,L(G))• : γ 7→ φ ◦ (χ · (φ−1 ◦ γ) · χ−1)− γ

is smooth. Since the vector space addition is smooth, (†) is defined and smooth.

Conclusion and the Lie group structure. Finally, we put everything together and show

that CkW(U,G)•ex is contained in the smooth normalizer of CkW(U,G)•. As mentioned above,

this allows the construction of a Lie group structure on CkW(U,G)•ex.

Lemma 6.2.16. Let X be a finite-dimensional space, U ⊆ X an open nonempty subset,

G a locally convex Lie group, W ⊆ RU with 1U ∈ W, k ∈ N and (φ, Vφ) a centered chart

for G. Let θ ∈ CkW(U,G)•ex. Then there exists an open 1-neighborhood Wφ ⊆ Vφ such that

the map

CkW(U, φ(Wφ))• → CkW(U, φ(Vφ))• : γ 7→ φ ◦ (θ · (φ−1 ◦ γ) · θ−1) (†)

is defined and smooth.

Proof. Let Ṽφ ⊆ Vφ be an open 1-neighborhood such that

Ṽφ · Ṽφ · Ṽφ
−1
⊆ Vφ

and φ(Ṽφ) is star-shaped with center 0. According to Proposition 6.2.11 there exist η ∈
M((φ, Ṽφ), ∅, 0U ) and χ ∈ Ckc (U,G) such that θ = η ·χ. By Lemma 6.2.15, there exists an
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open 1-neighborhood Wφ ⊆ Vφ such that

CkW(U, φ(Wφ))• → CkW(U, φ(Ṽφ))• : γ 7→ φ ◦ (χ · (φ−1 ◦ γ) · χ−1)

is smooth, and by Lemma 6.2.12 the map

CkW(U, φ(Ṽφ))• → CkW(U, φ(Vφ))• : γ 7→ φ ◦ (η · (φ−1 ◦ γ) · η−1)

is also smooth. Composing these two maps, we obtain the assertion.

Theorem 6.2.17. Let X be a finite-dimensional space, U ⊆ X an open nonempty

subset, G a locally convex Lie group, W ⊆ RU with 1U ∈ W and k ∈ N. Then

CkW(U,G)•ex can be made into a Lie group that contains CkW(U,G)• as an open normal

subgroup.

Proof. We showed in Definition 6.2.5 that CkW(U,G)• can be turned into a Lie group such

that there exists a centered chart (φ, Vφ) for which

CkW(U, φ(Vφ))• → CkW(U,G)• : γ 7→ φ−1 ◦ γ

is an embedding and its image generates CkW(U,G)•. Further, we proved in Lem-

mas 6.2.9 and 6.2.16 that CkW(U,G)•ex is a subgroup of GU and for each θ ∈ CkW(U,G)•ex

there exists an open 1-neighborhood Wφ ⊆ Vφ such that the conjugation operation

CkW(U, φ(Wφ))• → CkW(U, φ(Vφ))• : γ 7→ φ ◦ (θ · (φ−1 ◦ γ) · θ−1)

is smooth. Hence Lemma B.2.5 gives the assertion.

6.2.2.3. Comparison with groups of rapidly decreasing mappings. In the book [BCR81,

Section 4.2.1, pages 111–117], for weights that satisfy conditions described below in Def-

inition 6.2.18, certain Γ-rapidly decreasing functions with values in locally convex spaces

are defined and used to construct Γ-rapidly decreasing mappings that take values in Lie

groups. We compare these function spaces with our weighted decreasing functions and

will see that they coincide. Further, we will show that the Γ-rapidly decreasing mappings

are open subgroups of a certain CkW(U,G)•ex.

W-rapidly decreasing functions

Definition 6.2.18 (BCR-weights). Let X be a finite-dimensional vector space andW ⊆
[1,∞]X such that

(W1) for all f, g ∈ W, the sets f−1(∞) and g−1(∞) =: M∞ coincide,

(W2) W is upwards directed and contains a smallest element fmin defined by

fmin(x) =

{
1, x 6∈M∞,
∞, else,

(W3) for each f1 ∈ W there exists f2 ∈ W such that

(∀ε > 0)(∃n ∈ N) ‖x‖ ≥ n or f1(x) ≥ n⇒ f1(x) ≤ εf2(x).

Furthermore each f ∈ W has to be continuous on the complement of M∞.

Definition 6.2.19 (W-rapidly decreasing functions). Let W be a set of weights as in

Definition 6.2.18, U ⊆ Rm open and nonempty and Y a locally convex space. A smooth
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function γ : U → Y is called W-rapidly decreasing if for each f ∈ W and β ∈ Nm we

have ∂βγ|U∩M∞ ≡ 0, and the function

f · ∂βγ : U → Y

is continuous and bounded, where ∞ · 0 = 0. The set

S(U, Y ;W) := {γ ∈ C∞(U, Y ) : γ is W-rapidly decreasing}

endowed with the seminorms

‖γ‖kq,f := sup{q(f · ∂βγ(x)) : x ∈ U, |β| ≤ k}

(where q ∈ N (Y ), k ∈ N and f ∈ W) becomes a locally convex space.

Comparison of S(U, Y ;W) and C∞W(U, Y ). We now show that these function spaces co-

incide as topological vector spaces. To this end, we need the following technical lemma.

Lemma 6.2.20. Let W be a set of weights as in Definition 6.2.18, U ⊆ Rm open and

nonempty, F a locally convex space, γ : U → F a smooth function and β ∈ Nm. Suppose

that ∂βγ|U∩M∞ ≡ 0 and that for each f ∈ W the function

f · ∂βγ : U → F

is bounded. Then for each f ∈ W, the function f · ∂βγ is continuous.

Proof. Let f ∈ W and x ∈ U . If x 6∈ M∞ ∩ U , f · ∂βγ is continuous on a suitable

neighborhood of x since f is so.

Otherwise, ∂βγ(x) = 0 because ∂βγ is continuous. If there exists V ∈ U(x) such that

f is bounded on V \M∞, the map f · ∂βγ is continuous on V because for y ∈ V \M∞
and q ∈ N (F ),

‖f(y)∂βγ(y)− f(x)∂βγ(x)‖q = ‖f(y)∂βγ(y)‖q ≤ ‖f |V \M∞‖∞‖∂
βγ(y)‖q,

and this estimate is valid for y ∈M∞.

Otherwise, we choose g ∈ W such that (W3) holds. Let ε > 0. There exists an n ∈ N
such that

(∀y ∈ U) f(y) ≥ n⇒ f(y) ≤ ε

‖γ‖|β|q,g + 1
g(y).

For q ∈ N (F ) there exists V ∈ U(x) such that for y ∈ V ,

‖∂βγ(y)‖q < ε/n.

Let y ∈ V . If f(y) ≥ n, we calculate

‖f(y)∂βγ(y)‖q = f(y)‖∂βγ(y)‖q ≤
ε

‖γ‖|β|q,g + 1
g(y)‖∂βγ(y)‖q < ε.

Otherwise

‖f(y)∂βγ(y)‖q ≤ n‖∂βγ(y)‖q < ε.

So the assertion holds in all cases.

Lemma 6.2.21. Let W be a set of weights as in Definition 6.2.18, U ⊆ Rm open and

nonempty and F a locally convex space. Then C∞W(U, Y ) = S(U, Y ;W) as a topological

vector space.
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Proof. We first prove that C∞W(U, Y ) = S(U, Y ;W) as sets. To this end, let γ ∈ C∞W(U, Y ),

f ∈ W and β ∈ Nm. We set k := |β|. We know that for p ∈ N (Y ), the map D(k)(πp ◦ γ)

vanishes on M∞, and

f ·D(k)(πp ◦ γ) : U → Lk(Rm, Yp)

is bounded. Since the evaluation Lk(Rm, Yp) → Yp at a fixed point is continuous linear,

the map f ·∂β(πp ◦γ) = πp ◦(f ·∂βγ) : U → Yp is also bounded. Hence f ·∂βγ is bounded,

so an application of Lemma 6.2.20 gives γ ∈ S(U, Y ;W).

On the other hand, let γ ∈ S(U, Y ;W) and k ∈ N. For each p ∈ N (Y ), we get, by

identity (A.3.6.1),

D(k)(πp ◦ γ) =
∑
α∈Nm
|α|=k

Sα · ∂α(πp ◦ γ) =
∑
α∈Nm
|α|=k

Sα · (πp ◦ ∂αγ).

Hence for f ∈ W,

‖γ‖p,f,k ≤ ‖γ‖kp,f
∑
α∈Nn
|α|=k

‖Sα‖op <∞. (†)

So γ ∈ C∞W(U, Y ).

We see from (†) that for each p ∈ N (Y ), f ∈ W and k ∈ N the seminorm ‖ · ‖p,f,k
is continuous on S(U, Y ;W). Since the seminorms ‖ · ‖kp,f are obviously continuous on

C∞W(U, Y ), the spaces coincide as topological vector spaces.

Remark 6.2.22. Let W be a set of weights as in Definition 6.2.18. Then 1U ∈ W ⇔
M∞ = ∅. But obviously CkW(U, Y ) = CkW∪{1U}(U, Y ) and CkW(U, Y )• = CkW∪{1U}(U, Y )•

as topological vector spaces.

Rapidly decreasing mappings. In [BCR81, Section 4.2.1, p. 117–118], the set of Γ-rapidly

decreasing mappings is defined. We will show that these mappings form an open subgroup

of C∞W(Rm, G)•ex.

Definition 6.2.23 (W-rapidly decreasing mappings). Let m ∈ N, G a locally convex Lie

group and W a set of weights as in Definition 6.2.18. We define S(Rm, G;W) as the set

of smooth functions γ : Rm → G such that

• γ(x) = 1 for each x ∈M∞, and γ(x)→ 1 if ‖x‖ → ∞.

• For any centered chart (φ, Ṽ ) of G and each open 1-neighborhood V with V ⊆ Ṽ ,

φ ◦ γ|γ−1(V ) ∈ S(γ−1(V ),L(G);W).

In the next lemmas, we provide some tools needed for the further discussion. First,

we show that for weights as in Definition 6.2.18, the product of a weighted function with

a suitable cutoff function is a weighted decreasing function. We use this result to prove a

superposition lemma for the spaces CkW(U, Y ).

Lemma 6.2.24. Let K be a compact subset of the finite-dimensional vector space X, Y

a locally convex space, k ∈ N, W a set of weights as in Definition 6.2.18, γ ∈ CkW(U, Y )

(where U := X \K) and h ∈ C∞c (X,R) such that h ≡ 1 on a neighborhood V of K. Then

(1− h)|U · γ ∈ CkW(U, Y )•.
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Proof. We prove this by induction on k.

k = 0: Let f ∈ W, p ∈ N (Y ) and ε > 0. We use (W3) to see that there exists n ∈ N
such that

‖γ|U\Bn(0)‖p,f,0 <
ε

1 + ‖1− h‖∞
.

Further, the set

A :=

{
x ∈ X : |(1− h)(x)| ≥ ε

‖γ‖p,f,0 + 1

}
∩Bn(0)

is compact and contained in U since (1 − h) ≡ 0 on V . Using these two estimates, we

easily calculate that ‖(1− h) · γ|U\A‖p,f,0 < ε.

k → k + 1: We have

D((1− h)|U · γ) = (1− h)|U ·Dγ −Dh|U · γ.

By the inductive hypothesis, (1 − h)|U · Dγ ∈ CkW(U,L(X,Y ))•, and since Dh|U ∈
C∞c (U,L(X,R)), we use Corollary 3.4.15 and Proposition 3.4.11 to finish the proof.

Lemma 6.2.25. Let m ∈ N, k ∈ N, W a set of weights as in Definition 6.2.18, Y and Z

locally convex spaces, Ω ⊆ Y open and balanced, φ : Ω→ Z a smooth map with φ(0) = 0

and U ⊆ Rm open and nonempty such that Rm \ U is compact and M∞ ⊆ U . Further,

let γ ∈ CkW(U, Y ) be such that γ(U) ⊆ Ω. Then there exists an open set V ⊆ U such that

Rm \ V is compact, M∞ ⊆ V and φ ◦ γ|V ∈ CkW(V,Z).

Proof. By our assumptions, there exists h ∈ C∞c (Rm, [0, 1]) with h ≡ 1 on a neigh-

borhood of Rm \ U and h ≡ 0 on a neighborhood of M∞. Using Lemma 6.2.24 and

Proposition 3.4.23 we see that

φ ◦ ((1− h) · γ) ∈ CkW(U,Z)•,

so φ ◦ γ|V ∈ CkW(V,Z), where V := Rm \ supp(h). Further, Rm \ V is compact and

M∞ ⊆ V , so the proof is finished.

To complete our preparations, we prove a kind of extension lemma for weighted func-

tions.

Lemma 6.2.26. Let m ∈ N, k ∈ N, W a set of weights as in Definition 6.2.18, Y a locally

convex space, V ⊆ U open and nonempty subsets of Rm such that Rm \V is compact and

M∞ ⊆ V . Further, let γ ∈ Ck(U, Y ) be such that γ|V ∈ CkW(V, Y ). Then for any open set

W with W ⊆ U , the map γ|W is in CkW(W,Y ).

Proof. Obviously W \ V ⊆ W ∩ (Rm \ V ), hence W \ V is compact and does not meet

M∞. So for each f ∈ W and ` ∈ N with ` ≤ k, the map f ·D(`)γ is bounded on W \ V
since f is continuous on this set. But f ·D(`)γ is bounded on V by our assumption. Hence

f ·D(`)γ is bounded on all of W and the proof is finished.

Now we are able to prove the main results.

Proposition 6.2.27. Let m ∈ N, G a locally convex Lie group and W a set of weights

as in Definition 6.2.18.
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(a) S(Rm, G;W) is a group.

(b) C∞W(Rm, G)• ⊆ S(Rm, G;W).

(c) S(Rm, G;W) ⊆ C∞W(Rm, G)•ex.

Proof. (a) Let γ1, γ2 ∈ S(Rm, G;W). We set γ := γ1 · γ−1
2 . Then for x ∈ M∞, we have

γ(x) = γ1(x) · γ−1
2 (x) = 1, and it is easy to see that γ(x)→ 1 if ‖x‖ → ∞.

Let (φ, Ṽ ) be a centered chart of G and V ⊆ Ṽ an open 1-neighborhood with V ⊆ Ṽ .

There exist centered charts (φ1, V1) and (φ2, V2) such that φi ◦γi ∈ S(γ−1
i (Vi),L(G);W),

where i ∈ {1, 2}; we may assume that V1 · V −1
2 ⊆ V , V2 ⊆ V and φ1(V1) and φ2(V2) are

balanced. We define W :=
⋂
i∈{1,2} γ

−1
i (Vi). Then by Lemmas 3.4.16 and 6.2.21,

(φ1 ◦ γ1|W , φ2 ◦ γ2|W ) ∈ C∞W(W,φ1(V1)× φ2(V2)).

Further Rm \ W is compact, and since there exist closed Ai ∈ UG(1) with Ai ⊆ Vi
(i ∈ {1, 2}), we have M∞ ⊆

⋂
i∈{1,2} γ

−1
i (Ai) ⊆ W . We now apply Lemma 6.2.25 to

(φ1 ◦ γ1|W , φ2 ◦ γ2|W ) and the map

φ ◦ m̃G ◦ (φ−1
1 × φ

−1
2 ) : φ1(V1)× φ2(V2)→ L(G)

(where m̃G denotes the map G×G→ G : (g, h) 7→ g ·h−1) and find an open set W ′ ⊆W
such that M∞ ⊆ W ′, Rm \ W ′ is compact and φ ◦ γ|W ′ ∈ C∞W(W ′,L(G)). Applying

Lemma 6.2.26 with the open sets W ′ ⊆ γ−1(Ṽ ) and γ−1(V ) ⊆ γ−1(Ṽ ), we obtain

φ ◦ γ|γ−1(V ) ∈ C∞W(γ−1(V ),L(G)) = S(γ−1(V ),L(G);W).

(b) Since we proved that S(Rm, G;W) is a group, we just have to show that it contains

a generating set of C∞W(Rm, G)•. We know from Definition 6.2.5 that C∞W(Rm, G)• is

generated by φ−1 ◦ C∞W(Rm,W )•, where (φ, W̃ ) is a centered chart of G and W ⊆ φ(W̃ )

is an open convex zero neighborhood. Let γ ∈ C∞W(Rm,W )•. Then γ|M∞ ≡ 0, hence

φ−1◦γ|M∞ ≡ 1. Further, since 1Rm ∈ W, γ(x)→ 0 if ‖x‖ → ∞, and thus (φ−1◦γ)(x)→ 1

if ‖x‖ → ∞. Now let (ψ, Ṽ ) be a centered chart of G and V ⊆ Ṽ an open 1-neighborhood

with V ⊆ Ṽ . There exists an open balanced set Ω ⊆ W such that φ−1(Ω) ⊆ V . We set

U := γ−1(Ω). Then γ|U ∈ C∞W(U,L(G)), Rm \ U is compact, and M∞ ⊆ γ−1({0}) ⊆ U .

Hence we can apply Lemma 6.2.25 to γ|U and ψ ◦ φ−1|Ω to see that ψ ◦ φ−1 ◦ γ|U ∈
C∞W(U,L(G)) Applying Lemma 6.2.26 with the open sets U ⊆ (ψ ◦ φ−1 ◦ γ)−1(Ṽ ) and

(ψ ◦ φ−1 ◦ γ)−1(V ) ⊆ (ψ ◦ φ−1 ◦ γ)−1(Ṽ ), we obtain

ψ◦φ−1◦γ|(ψ◦φ−1◦γ)−1(V ) ∈ C∞W((ψ◦φ−1◦γ)−1(V ),L(G)) = S((ψ◦φ−1◦γ)−1(V ),L(G);W).

(c) Let γ ∈ S(Rm, G;W), (φ, Ṽ ) be a centered chart of G and V an open 1-neighbor-

hood with V ⊆ Ṽ . Then K := Rm \ γ−1(V ) is closed and bounded, hence compact,

and

φ ◦ γ|Rm\K ∈ S(Rm \K,L(G);W) = C∞W(Rm \K,L(G));

the last identity is by Lemma 6.2.21. Let h ∈ C∞c (Rm,R) such that h ≡ 1 on a neighbor-

hood of K. Then by Lemma 6.2.24,

(1Rm − h) · φ ◦ γ|Rm\K ∈ C∞W(Rm \K,L(G))•.

Hence γ ∈ C∞W(Rm, G)•ex.
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We characterize when C∞W(Rm, G)•ex consists entirely of W-rapidly decreasing map-

pings.

Lemma 6.2.28. Let m ∈ N, G a locally convex Lie group and W a set of weights as in

Definition 6.2.18. Then

C∞W(Rm, G)•ex = S(Rm, G;W) ⇔ M∞ = ∅.

Proof. Suppose that M∞ = ∅. Let γ ∈ C∞W(Rm, G)•ex, (ψ, Ṽ ) a centered chart of G and

V a 1-neighborhood with V ⊆ Ṽ . By Lemma 6.2.8, there exist a compact set K ⊆ Rm
and h ∈ C∞c (Rm,R) with h ≡ 1 on a neighborhood of K such that γ(Rm \ K) ⊆ Ṽ

and (1 − h) · (ψ ◦ γ)|Rm\K ∈ C∞W(Rm \ K,L(G))•. Since 1Rm ∈ W and K and supp(h)

are compact, (ψ ◦ γ)(x) → 0 if ‖x‖ → ∞, hence γ(x) → 1 if ‖x‖ → ∞. Further ψ ◦
γ|Rm\supp(h) ∈ C∞W(Rm \ supp(h),L(G)), so we apply Lemma 6.2.26 with the open sets

Rm \supp(h) ⊆ γ−1(Ṽ ) and γ−1(V ) ⊆ γ−1(Ṽ ) and get ψ◦γ|γ−1(V ) ∈ C∞W(γ−1(V ),L(G)).

Hence γ ∈ S(Rm, G;W), so in view of Proposition 6.2.27, the implication holds.

Now let M∞ 6= ∅. By definition, C∞c (Rm, G) ⊆ C∞W(Rm, G)•ex, so there exists a γ ∈
C∞W(Rm, G)•ex such that γ 6≡ 1 on M∞. Then γ 6∈ S(Rm, G;W).

Remark 6.2.29. In the book [BCR81], the groups S(Rm, G;W) are only defined if G is

a so-called LE-Lie group. Since we do not need this concept, we do not discuss it further.

In Proposition 6.2.27 we proved that S(Rm, G;W) is an open subgroup of C∞W(Rm, G)•ex

and hence a Lie group. Further, for a set W of weights as in Definition 6.2.18 obviously

C∞W(Rm,L(G))• = C∞W(Rm,L(G)), whence the results derived by [BCR81] concerning the

Lie group structure of S(Rm, G;W) are special cases of our more general construction.

It should be noted that the proof of [BCR81, Lemma 4.2.1.9] (whose assertion resem-

bles Proposition 3.4.23) is not really complete: The boundedness of γ · ∂β(g ◦ f), where

|β| > 0, is hardly discussed. In the finite-dimensional case, compactness arguments sim-

ilar to the one in Lemma 3.4.17 and the Faà di Bruno formula should save the day, but

the infinite-dimensional case requires more work.

A. Differential calculus

In this chapter, we present the tools of Michal-Bastiani and Fréchet differential calculus

used in this work. For proofs, we refer the reader to [Mil84], [Ham82], or [Mic80]. Further,

we state some facts about ordinary differential equations.

In the following, X, Y and Z denote locally convex topological vector spaces over the

same field K ∈ {R,C}.

A.1. Differential calculus of maps between locally convex spaces

A.1.1. Curves and integrals

Definition A.1.1 (Curves). A continuous map γ : I → X that is defined on a proper

interval I ⊆ R is called a C0-curve. A C0-curve γ : I → X is called a C1-curve if the
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limit

γ(1)(s) := lim
t→0

γ(s+ t)− γ(s)

t

exists for all s ∈ I and the map γ(1) : I → X is a C0-curve.

Inductively, for k ∈ N a map γ : I → X is called a Ck-curve if it is a C1-curve and the

map γ(1) is a Ck−1-curve. We then define γ(k) := (γ(1))(k−1).

If γ is a Ck-curve for each k ∈ N, we call γ a C∞- or smooth curve.

Definition A.1.2 (Weak integral). Let γ : [a, b] → X be a map. If there exists x ∈ X
such that

λ(x) =

∫ b

a

(λ ◦ γ)(t) dt for all λ ∈ X ′,

we call γ weakly integrable with the weak integral x and write∫ b

a

γ(t) dt := x.

Definition A.1.3 (Line integral). Let γ : [a, b]→ X be a C1-curve and f : γ([a, b])→ Y

a continuous map. We define the line integral of f on γ by∫
γ

f(ζ) dζ :=

∫ b

a

f(γ(t)) · γ(1)(t) dt

if the weak integral on the right hand side exists.

We record some properties of weak integrals.

Lemma A.1.4. Let γ : [a, b] → X be a weakly integrable curve and A : X → Y a

continuous linear map. Then the map A ◦ γ is weakly integrable with the integral∫ b

a

(A ◦ γ)(t) dt = A

(∫ b

a

γ(t) dt

)
.

Proposition A.1.5 (Fundamental theorem of calculus). Let γ : [a, b]→ X be a C1-curve.

Then γ(1) is weakly integrable with the integral∫ b

a

γ(1)(t) dt = γ(b)− γ(a).

Lemma A.1.6. If X is sequentially complete, each continuous curve in X is weakly inte-

grable.

Lemma A.1.7. Endow the set of weakly integrable continuous curves from [a, b] to X with

the topology of uniform convergence. The weak integral defines a continuous linear map

from this space to X. In particular, for each continuous seminorm p : X → R and each

weakly integrable continuous curve γ : [a, b]→ X,∥∥∥∥∫ b

a

γ(t) dt

∥∥∥∥
p

≤
∫ b

a

‖γ(t)‖p dt,

where we define ‖ · ‖p := p(·).
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Proposition A.1.8 (Continuity of parameter-dependent integrals). Let P be a topologi-

cal space, I ⊆ R a proper interval and a, b ∈ I. Further, let f : P×I → X be a continuous

map such that the weak integral ∫ b

a

f(p, t) dt =: g(p)

exists for all p ∈ P . Then the map g : P → X is continuous.

Evaluation of curves. We prove that the (simultaneous) evaluation of smooth curves is

smooth.

Lemma A.1.9. Let Y be a locally convex topological vector space and m ∈ N. Then the

evaluation function

ev : Cm([0, 1], Y )× [0, 1]→ Y : (Γ, t) 7→ Γ(t)

is a Cm-map. For m ≥ 1, we have

d ev((Γ, t); (Γ1, s)) = s · ev(Γ′, t) + ev(Γ1, t) (†)

(using the same symbol, ev, for the evaluation of Cm−1-curves).

Proof. The proof is by induction.

m = 0: Let Γ ∈ C0([0, 1], Y ) and t ∈ [0, 1]. For a continuous seminorm ‖ · ‖ on Y and

ε > 0 let U be a neighborhood of Γ in C0([0, 1], Y ) such that for all Φ ∈ U ,

‖Φ− Γ‖∞ < ε/2,

where ‖ · ‖∞ is defined by

C0([0, 1], Y )→ R : Φ 7→ sup
t∈[0,1]

‖Φ(t)‖.

By the continuity of Γ, there exists δ > 0 such that for all s ∈ [0, 1] with |s − t| < δ we

have

‖Γ(s)− Γ(t)‖ < ε/2.

Then

‖ev(Γ, t)− ev(Φ, s)‖ ≤ ‖Γ(t)− Γ(s)‖+ ‖Γ(s)− Φ(s)‖ < ε,

whence ev is continuous in (Γ, t).

m= 1: Let Γ,Γ1 ∈C1([0, 1], Y ), t∈ ]0, 1[, h∈R∗ and s∈R be such that t+hs∈ [0, 1].

Then
ev((Γ, t) + h(Γ1, s))− ev(Γ, t)

h
=

Γ(t+ hs)− Γ(t)

h
+ ev(Γ1, t+ hs),

and because Γ is differentiable and ev is continuous, this term converges to

s · ev(Γ′, t) + ev(Γ1, t)

for h→ 0. Since this term has an obvious continuous extension to C1([0, 1], Y )× [0, 1]×
C1([0, 1], Y )×R, ev is differentiable with the directional derivative (†), which is continuous.

m→ m+ 1: The map

Cm+1([0, 1], Y )→ Cm([0, 1], Y ) : Γ 7→ Γ′
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is continuous linear and thus smooth. Using the inductive hypothesis, we therefore deduce

from (†) that d ev is Cm. Hence ev is Cm+1.

A.1.2. Differentiable maps. We give a short introduction to differential calculus for

maps between locally convex spaces. It was first developed by A. Bastiani [Bas64] and is

also known as Keller’s Ckc -theory.

Recall the definitions given in Section 2.2. In the following, let X and Y be locally

convex spaces and U ⊆ X an open nonempty set.

Proposition A.1.10 (Mean value theorem). Let f ∈ C1(U, Y ) and v, u ∈ U be such that

the line segment {tu+ (1− t)v : t ∈ [0, 1]} is contained in U . Then

f(v)− f(u) =

∫ 1

0

df(u+ t(v − u); v − u) dt.

Proposition A.1.11 (Chain rule). Let k ∈ N, f ∈ Ck(U, Y ) and g ∈ Ck(V,Z) be such

that f(U) ⊆ V . Then the composition g ◦ f : U → Z is a Ck-map with

d(g ◦ f)(u;x) = dg(f(u); df(u;x)) for all (u, x) ∈ U ×X.

Proposition A.1.12. Let X and Y be locally convex spaces, U ⊆ X be open and

nonempty and k ∈ N.

(a) A map

f = (fi)i∈I : U →
∏
i∈I

Yi

to a direct product of locally convex spaces is Ck iff each component fi is Ck.

(b) A map f : U → Y with values in a closed vector subspace Z is Ck iff f |Z : U → Z

is Ck.

(c) If Y is the projective limit of locally convex spaces {Yi : i ∈ I} with limit maps

πi : Y → Yi, then a map f : U → Y is Ck iff πi ◦ f : U → Yi is Ck for all i ∈ I.

Characterization of differentiability of higher order. In Proposition 2.2.3, we stated that

a map is Ck iff all iterated directional derivatives up to order k exist and depend con-

tinuously on the directions. Here, we present some facts about the iterated directional

derivatives.

Remark A.1.13. We give a more explicit formula for the kth derivative. Obviously,

d(1)f(u;x1) = df(u;x1) and

d(k)f(u;x1, . . . , xk) = lim
t→0

d(k−1)f(u+ txk;x1, . . . , xk−1)− d(k−1)f(u;x1, . . . , xk−1))

t
.

The Schwarz theorem extends to the present situation:

Proposition A.1.14 (Schwarz’ theorem). Let r ∈ N, f ∈ CrK(U, Y ), k ∈ N with k ≤ r

and u ∈ U . The map

d(k)f(u; ·) : Xk → Y : (x1, . . . , xk) 7→ d(k)f(u;x1, . . . , xk)

is continuous, symmetric and k-linear (over the field K).
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Examples. We give some examples of Ck-maps and calculate the higher-order differentials

of some maps.

Example A.1.15.

(a) A map γ : I → X is a Ck-curve iff it is a CkR-map, and dγ(x;h) = h · γ(1)(x).

(b) A continuous linear map A : X → Y is smooth with dA(x;h) = A · h.

(c) More generally, a k-linear continuous map b : X1 × · · · ×Xk → Y is smooth with

db(x1, . . . , xk;h1, . . . , hk) =

k∑
i=1

b(x1, . . . , xi−1, hi, xi+1, . . . , xk).

Lemma A.1.16. Let X, Y and Z be locally convex topological vector spaces, U ⊆ X

an open nonempty set, k ∈ N and A : Y → Z a continuous linear map. Then for

γ ∈ Ck(U, Y ),

A ◦ γ ∈ Ck(U,Z).

Moreover, for each ` ∈ N with ` ≤ k,

d(`)(A ◦ γ) = A ◦ d(`)γ. (†)

Proof. This is proved by induction on `. The chain rule (Proposition A.1.11) ensures

A ◦ γ ∈ Ck(U,Z) and

d(A ◦ γ)(x;h) = dA(γ(x); dγ(x;h)) = A(dγ(x;h))

for x ∈ U and h ∈ X, hence (†) is satisfied for ` = 1.

If we assume that (†) holds for an `∈N, we conclude for x∈U and h1, . . . , h`, h`+1 ∈X,

d(`+1)(A ◦ γ)(x;h1, . . . , h`, h`+1)

= lim
t→0

d(`)(A ◦ γ)(x+ th`+1;h1, . . . , h`)− d(`)(A ◦ γ)(x;h1, . . . , h`)

t

= lim
t→0

A(d(`)γ(x+ th`+1;h1, . . . , h`))−A(d(`)γ(x;h1, . . . , h`))

t

= A

(
lim
t→0

d(`)γ(x+ th`+1;h1, . . . , h`)− d(`)γ(x;h1, . . . , h`)

t

)
= (A ◦ d(`+1)γ)(x;h1, . . . , h`, h`+1),

so (†) holds for `+ 1 as well.

Lemma A.1.17. Let X, Y and Z be locally convex topological vector spaces, k ∈ N and

A : X → Y a continuous linear map. Then for γ ∈ Ck(Y,Z),

γ ◦A ∈ Ck(X,Z).

Moreover, for each ` ∈ N with ` ≤ k,

d(`)(γ ◦A) = d(`)γ ◦
`+1∏
j=1

A. (†)
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Proof. This is proved by induction on `. The chain rule (Proposition A.1.11) ensures

γ ◦A ∈ Ck(U,Z) and

d(γ ◦A)(x;h) = dγ(A(x); dA(x;h)) = dγ(A(x);A(h))

for x ∈ X and h ∈ X, hence (†) is satisfied for ` = 1.

If we assume that (†) holds for an arbitrary ` ∈ N, we conclude that for x ∈ X and

h1, . . . , h`, h`+1 ∈ X,

d(`+1)(γ ◦A)(x;h1, . . . , h`, h`+1)

= lim
t→0

d(`)(γ ◦A)(x+ th`+1;h1, . . . , h`)− d(`)(γ ◦A)(x;h1, . . . , h`)

t

= lim
t→0

d(`)γ(A(x+ th`+1);A · h1, . . . , A · h`)− d(`)γ(A(x);A · h1, . . . , A · h`)
t

= lim
t→0

1

t

∫ 1

0

d(`+1)γ(A(x) + stA(h`+1);A · h1, . . . , A · h`, tA · h`+1) ds

= d(`+1)γ(A(x);A · h1, . . . , A · h`, A · h`+1)

so (†) holds for `+ 1 as well.

We give a specialization of Proposition A.1.8.

Proposition A.1.18 (Differentiability of parameter-dependent integrals). Let P be an

open subset of a locally convex space, I ⊆ R a proper interval, a, b ∈ I and k ∈ N. Further,

let f : P × I → X be a Ck-map such that the weak integral∫ b

a

f(p, t) dt =: g(p)

exists for all p ∈ P . Then the map g : P → X is Ck.

A.1.2.1. Analytic maps. Complex analytic maps will be defined as maps which can be

locally approximated by polynomials. Real analytic maps are maps that have a complex-

ification.

Polynomials and symmetric multilinear maps. For the definition of complex analytic

maps we need to define polynomials.

Definition A.1.19. Let k ∈ N. A homogeneous polynomial of degree k from X to Y is a

map for which there exists a k-linear map β : Xk → Y such that

p(x) = β(x, . . . , x︸ ︷︷ ︸
k

)

for all x ∈ X. In particular, a homogeneous polynomial of degree 0 is a constant map.

A polynomial of degree ≤ k is a sum of homogeneous polynomials of degree ≤ k.

There is a bijection between the set of homogeneous polynomials and that of symmet-

ric multilinear maps. In this article, we just need that one can reconstruct a symmetric

multilinear map from its homogeneous polynomial.
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Proposition A.1.20 (Polarization formula). Let β : Xk → Y be a symmetric k-linear

map, p : X → Y : x 7→ β(x, . . . , x) its homogeneous polynomial and x0 ∈ X. Then

β(x1, . . . , xk) =
1

k!

1∑
ε1,...,εk=0

(−1)k−(ε1+···+εk)p(x0 + ε1x1 + · · ·+ εkxk)

for all x1, . . . , xk ∈ X.

Complex analytic maps. Now we can define complex analytic maps.

Definition A.1.21 (Complex analytic maps). Let X, Y be complex locally convex topo-

logical vector spaces and U ⊆ X an open nonempty set. A map f : U → Y is called

complex analytic if it is continuous and, for each x ∈ U there exists a sequence (pk)k∈N
of continuous homogeneous polynomials pk : X → Y of degree k such that

f(x+ v) =

∞∑
k=0

pk(v)

for all v in some zero neighborhood V such that x+ V ⊆ U .

Definition A.1.22. Let X, Y be complex locally convex topological vector spaces and

U ⊆ X an open nonempty set. A map f : U → Y is called Gateaux analytic if its

restriction to each affine line is complex analytic; that is, for each x ∈ U and v ∈ X the

map

Z → Y : z 7→ f(x+ zv)

which is defined on the open set Z := {z ∈ C : x+ zv ∈ U} is complex analytic.

Theorem A.1.23. Let X, Y be complex locally convex topological vector spaces and U ⊆
X an open nonempty set. Then for a map f : U → Y the following assertions are

equivalent:

(a) f is C∞C .

(b) f is complex analytic.

(c) f is continuous and Gateaux analytic.

We state a few results concerning analytic curves. These share many properties with

holomorphic functions. Using Theorem A.1.23, we see that some of these properties carry

over to general analytic functions.

Definition A.1.24. Let Y be a complex locally convex topological vector space and

U ⊆ C an open nonempty set. A continuous map f : U → Y is called a C0
C-curve.

A C0
C-curve f : U → Y is called a C1

C-curve if for all z ∈ U the limit

f (1)(z) := lim
w→0

f(z + w)− f(z)

w

exists and the curve f (1) : U → X is a C0
C-curve.

Inductively, for k ∈ N a curve f is called a CkC-curve if it is a C1
C-curve and f (1) is a

Ck−1
C -curve. In this case, we define f (k) := (f (1))(k−1).

If f is a CkC-curve for all k ∈ N, f is called a C∞C -curve.
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Lemma A.1.25 (Cauchy integral formula). Let Y be a complex locally convex topological

vector space, U ⊆ C an open nonempty set and f : U → Y a map. Then

f is a CkC-curve ⇔ f ∈ CkC(U, Y )

and furthermore

d(k)f(x;h1, . . . , hk) = h1 · · · · · hk · f (k)(x).

A C∞C -curve is complex analytic, and for each x ∈ U , k ∈ N0 and r > 0 with Br(x) ⊆ U

the Cauchy integral formula

f (k)(z) =
k!

2πi

∫
|ζ−x|=r

f(ζ)

(ζ − z)k+1
dζ

holds, where z ∈ Br(x).

The Cauchy integral formula implies the Cauchy estimates.

Corollary A.1.26. Let Y be a complex locally convex topological vector space, U ⊆ C
an open nonempty set, f : U → Y a complex analytic map, x ∈ U , r > 0 such that

Br(x) ⊆ U and p a continuous seminorm on Y . Then for each z ∈ Br/2(x) and k ∈ N,

‖f (k)(z)‖p ≤
k!

(3r/2)k
sup
|ζ−x|=r

‖f(ζ)‖p.

Real analytic maps

Definition A.1.27 (Real analytic maps). Let X, Y be real locally convex topological

vector spaces and U ⊆ X an open nonempty set. Let XC resp. YC denote the complexi-

fications of X resp. Y . A map f : U → Y is called real analytic if there is an extension

f̃ : V → YC of f to an open neighborhood V of U in XC that is complex analytic. Such

a map f̃ will be referred to as a complexification of f .

A.1.2.2. Lipschitz continuous maps. We discuss Lipschitz continuous maps between lo-

cally convex spaces.

Definition A.1.28. Let X be a locally convex space and p : X → R a continuous

seminorm. We denote the Hausdorff space X/p−1(0) by Xp and the quotient map by

πp : X → Xp. More generally, for any subset A ⊆ X we set Ap := πp(A).

Further, we let N (X) denote the set of continuous seminorms on X.

Let p ∈ N (X). We call U ⊆ X open with respect to p if for each x ∈ U there exists

r > 0 such that {y ∈ X : ‖y − x‖p < r} ⊆ U .

Remark A.1.29. For any locally convex space X and each p ∈ N (X), the norm induced

by p on Xp will also be denoted by p. Note that this leads to the identity p = πp ◦ p, in

particular p is a norm and generates the topology on Xp. No confusion will arise.

Lemma A.1.30. Let X, Y and Z be locally convex spaces, V ⊆ Y an open nonempty set,

k ∈ N, γ : V → Z a map and A ∈ L(X,Y ) surjective such that

γ ◦A ∈ Ck(U,Z),
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where U := A−1(V ). Then all directional derivatives of γ up to order k exist and satisfy

d(`)γ ◦
`+1∏
i=1

A = d(`)(γ ◦A) for all ` ∈ N with ` ≤ k.

Proof. This is proved by induction on `.

` = 0: This is obvious.

` → ` + 1: Let y ∈ V and h1, . . . , h`, h`+1 ∈ Y . By the surjectivity of A there exist

x ∈ U and v1, . . . , v`, v`+1 ∈ X with A · x = y and A · vi = hi for i = 1, . . . , `, `+ 1. Then

for all suitable t 6= 0,

lim
t→0

d(`)γ(y + th`+1;h1, . . . , h`)− d(`)γ(y;h1, . . . , h`)

t

= lim
t→0

d(`)γ(A(x+ tv`+1);A · v1, . . . , A · v`)− d(`)γ(A · x;A · v1, . . . , A · v`)
t

= lim
t→0

(d(`)γ ◦
∏`+1
i=1 A)(x+ tv`+1, v1, . . . , v`)− (d(`)γ ◦

∏`+1
i=1 A)(x, v1, . . . , v`)

t

= d(`+1)(γ ◦A)(x; v1, . . . , v`, v`+1),

and this completes the proof.

Lemma A.1.31. Let X,Y be locally convex spaces, U ⊆ X an open nonempty set, k ∈ N,

γ ∈ Ck+1(U, Y ) and ` ∈ N with ` ≤ k. Then for each p ∈ N (Y ) and x0 ∈ U there exist

a seminorm q ∈ N (X) and a convex neighborhood Ux0
⊆ U of x with respect to q such

that for all x, y ∈ Ux0
and h1, . . . , h` ∈ X,

‖d(`)γ(y;h1, . . . , h`)− d(`)γ(x;h1, . . . , h`)‖p ≤ ‖y − x‖q
∏̀
i=1

‖hi‖q (A.1.31.1)

and

‖d(`)γ(x;h1, . . . , h`)‖p ≤
∏̀
i=1

‖hi‖q. (A.1.31.2)

Proof. Since d(`)γ and d(`+1)γ are continuous at (x0, 0, . . . , 0) and multilinear in their

last ` resp. ` + 1 arguments, for each p ∈ N (Y ) there exist a seminorm q ∈ N (X) and

an open ball Ux0
:= Bq(x0, r) ⊆ U such that

1 ≥ sup{‖d(`+1)γ(y;h1, . . . , h`+1)‖p : y ∈ Bq(x0, r), ‖h1‖q, . . . , ‖h`+1‖q ≤ 1}

and

1 ≥ sup{‖d(`)γ(y;h1, . . . , h`)‖p : y ∈ Bq(x0, r), ‖h1‖q, . . . , ‖h`‖q ≤ 1}.

This implies that for each y ∈ Bq(x0, r) and h1, . . . , hn ∈ X,

‖d(n)γ(y;h1, . . . , hn)‖p ≤ 1 ·
n∏
i=1

‖hi‖q, (†)

where n ∈ {`, `+ 1}; this proves (A.1.31.2).

To prove (A.1.31.1), we see that for x, y ∈ Bq(x0, r) and h1, . . . , h`+1 ∈ X,

d(`)γ(y;h1, . . . , h`)− d(`)γ(x;h1, . . . , h`) =

∫ 1

0

d(`+1)γ(ty + (1− t)x;h1, . . . , h`, y − x) dt.
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We apply Lemma A.1.7 to the right hand side and get, using (†) with n = `+ 1,

‖d(`)γ(y;h1, . . . , h`)− d(`)γ(x;h1, . . . , h`)‖p ≤ ‖h1‖q · · · ‖h`‖q · ‖y − x‖q.

Definition A.1.32. Let X and Y be locally convex spaces, U ⊆ X an open nonempty

set, k ∈ N, p ∈ N (Y ) and q ∈ N (X). We call γ : U → Y Lipschitz up to order k with

respect to p and q if γ ∈ Ck(U, Y ) and estimates (A.1.31.1) and (A.1.31.2) are satisfied

for all ` ∈ N with ` ≤ k, x, y ∈ U and h1, . . . , h` ∈ X. We write LCkq,p(U, Y ) for the set of

maps that are Lipschitz up to order k with respect to p and q.

Lemma A.1.33. Let X and Y be locally convex spaces, U ⊆ X an open nonempty

set, k ∈ N, p ∈ N (Y ), q ∈ N (X) and γ ∈ LCkq,p(U, Y ). Then there exists a map

γ̃ ∈ LCkq,p(Uq, Yp) that makes the diagram

U
γ

//

πq

��

Y

πp

��

Uq
γ̃

// Yp

commutative (using the notation of Definition A.1.28).

Proof. Let ` ∈ N with ` ≤ k. Since γ ∈ LCkq,p(U, Y ), the map

πp ◦ d(`)γ : (U, q)× (X, q)` → Yp

is continuous. Hence by the universal property of the separation there exists a continuous

map γ̃` such that the diagram

U ×X`
d(`)γ

//

`+1∏
i=1

πq

��

''OOOOOOOOOOO Y

πp

��

(U, q)× (X, q)`

%%KKKKKKKKKKK

wwwwooooooooooo

Uq ×X`
q

γ̃` // Yp

commutes, where we denote πq|U by πq. The diagram for ` = 0 implies that γ̃ ◦ πq =

πp ◦ γ ∈ Ck(U, Yp), where γ̃ := γ̃0. We proved in Lemma A.1.30 that the `th directional

derivative of γ̃ exists and satisfies the identity

d(`)γ̃ ◦
`+1∏
i=1

πq = d(`)(γ̃ ◦ πq) = d(`)(πp ◦ γ) = πp ◦ d(`)γ = γ̃` ◦
`+1∏
i=1

πq.

Since
∏`+1
i=1 πq is surjective, this implies that d(`)γ̃ = γ̃`, so the former is continuous. From

this we conclude that γ̃ ∈ Ck(Uq, Yp) and that the estimates (A.1.31.1) and (A.1.31.2)

are satisfied by γ̃.

A.2. Fréchet differentiability. For maps between normed spaces, there is the classical

notion of Fréchet differentiability. This concept relies on the existence of a well-behaved

topology on the space of (k-)linear maps between normed spaces.
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Spaces of multilinear maps between normed spaces. We provide the details about the

norm topology of multilinear operators.

Definition A.2.1. Let X, Y be normed spaces. For each k ∈ N∗ we define

Lk(X,Y ) := {Ξ : Xk → Y : Ξ is k-linear and continuous}.

For k = 1 we define

L(X,Y ) := L1(X,Y ) and L(X) := L1(X,X),

and furthermore L0(X,Y ) := Y .

The set of multilinear continuous maps can be turned into a normed vector space:

Proposition A.2.2. Let X, Y be normed spaces and k ∈ N∗. A k-linear map Ξ : Xk → Y

is continuous iff

‖Ξ‖op := sup{‖Ξ(v1, . . . , vk)‖ : ‖v1‖, . . . , ‖vk‖ ≤ 1} <∞.

‖Ξ‖op is called the operator norm of Ξ. ‖·‖op is a norm on Lk(X,Y ). The space Lk(X,Y ),

endowed with this norm, is complete if Y is.

Proof. The (elementary) proof can be found in [Die60, Chapter V, §7].

Lemma A.2.3. Let X, Y be normed spaces and k ∈ N∗. Then the evaluation map

Lk(X,Y )×Xk : (Ξ, v1, . . . , vk) 7→ Ξ(v1, . . . , vk)

is (k + 1)-linear and continuous.

Proof. This is trivial.

Lemma A.2.4. Let X and Y be normed spaces, k ∈ N∗, Ξ ∈ Lk(X,Y ) and h1, . . . , hk,

v1, . . . , vk ∈ X. Then

‖Ξ(h1, . . . , hn)− Ξ(v1, . . . , vk)‖ ≤
k∑
i=1

‖Ξ(v1, . . . , vi−1, hi − vi, hi+1, . . . , hk)‖.

Proof. This estimate is derived by an iterated application of the triangle inequality.

The following lemma helps to deal with higher derivatives of Fréchet differentiable

maps.

Lemma A.2.5. Let X, Y be normed spaces and n, k ∈ N∗. Then the map

Ek,n : Lk(X,Ln(X,Y ))→ Lk+n(X,Y ),

Ek,n(Ξ)(h1, . . . , hn, v1, . . . , vk) := Ξ(v1, . . . , vk)(h1, . . . , hn),

is an isometric isomorphism. In some cases, we will denote Ek,n by EYk,n.

Proof. Obviously Ek,n is linear and injective. Furthermore

‖Ek,n(Ξ)(h1, . . . , hn, v1, . . . , vk)‖ = ‖Ξ(v1, . . . , vk)(h1, . . . , hn)‖

≤ ‖Ξ(v1, . . . , vk)‖op

n∏
i=1

‖hi‖ ≤ ‖Ξ‖op

k∏
i=1

‖vi‖
n∏
i=1

‖hi‖,

and hence

‖Ek,n(Ξ)‖op ≤ ‖Ξ‖op.
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On the other hand, for ‖v1‖, . . . , ‖vk‖, ‖h1‖, . . . , ‖hn‖ ≤ 1 we have

‖Ξ(v1, . . . , vk)(h1, . . . , hn)‖ ≤ ‖Ek,n(Ξ)‖op.

Hence

‖Ξ(v1, . . . , vk)‖op ≤ ‖Ek,n(Ξ)‖op,

which leads to

‖Ξ‖op ≤ ‖Ek,n(Ξ)‖op,

so Ek,n is an isometry. It remains to show that Ek,n is surjective. To this end, for a

M ∈ Lk+n(X,Y ) we define the map M ∈ Lk(X,Ln(X,Y )) by

M(v1, . . . , vk)(h1, . . . , hn) := M(h1, . . . , hn, v1, . . . , vk).

Clearly, Ek,n(M) = M . Since M was arbitrary, Ek,n is surjective.

Lemma A.2.6. Let X, Y and Z be normed spaces and k ∈ N. Then the map

Lk(X,Y × Z)→ Lk(X,Y )× Lk(X,Z) : Ξ 7→ (πY ◦ Ξ, πZ ◦ Ξ), (A.2.6.1)

where πY and πZ denote the canonical projections from Y ×Z to Y respectively Z, is an

isomorphism of topological vector spaces.

Proof. The map in (A.2.6.1) is linear since its component Ξ 7→ πY ◦ Ξ and Ξ 7→ πZ ◦ Ξ

are. The injectivity of (A.2.6.1) is clear, and the surjectivity can also be shown by an

easy computation.

To see that (A.2.6.1) is an isomorphism we denote it by i and compute, for x1, . . . , xk
∈ X,(
(πLk(X,Y ) ◦ i)(Ξ)(x1, . . . , xk), (πLk(X,Z) ◦ i)(Ξ)(x1, . . . , xk)

)
=
(
(πY ◦ Ξ)(x1, . . . , xk), (πZ ◦ Ξ)(x1, . . . , xk)

)
= Ξ(x1, . . . , xk).

From this one can easily derive that i and its inverse are continuous since depending on

the norm we chose on the products, i is an isometry.

The calculus. In the following, let X, Y and Z denote normed spaces and U be an

open nonempty subset of X. Recall the definition of Fréchet differentiability given in

Definition 2.3.1.

We give some examples of Fréchet differentiable maps.

Example A.2.7.

(a) A continuous linear map A : X → Y is smooth with DA(x) = A.

(b) More generally, a continuous k-linear map b : X1 × · · · ×Xk → Y is smooth with,

Db(x1, . . . , xk)(h1, . . . , hk) =

k∑
i=1

b(x1, . . . , xi−1, hi, xi+1, . . . , xk).

We prove the chain rule and the mean value theorem for Fréchet differentiable maps.

Beforehand, we need the following

Lemma A.2.8. Let X, Y and Z be normed spaces, U ⊆ X an open nonempty set, k ∈ N
and A : Y → Z a continuous linear map. Then for γ ∈ FCk(U, Y ),

A ◦ γ ∈ FCk(U,Z).
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Proof. We prove this by induction over k. The assertion is obviously true for k = 0. If

k = 1, then A ◦ γ is C1 by Proposition A.1.11 with

d(A ◦ γ)(x; ·) = dA(γ(x); ·) · dγ(x; ·) = A ◦ dγ(x; ·).
Since the composition of linear maps is continuous, we conclude that A ◦ γ is FC1 with

D(A ◦ γ) = A ◦Dγ.

k → k + 1: The map Dγ is FCk, hence by the induction hypothesis, so is A ◦Dγ =

D(A ◦ γ). Hence A ◦ γ is FCk+1.

Lemma A.2.9. Let k ∈ N, η ∈ FCk(U, Y ) and γ ∈ FCk(U,Z). Then the map

(γ, η) : U → Y × Z : x 7→ (γ(x), η(x))

is contained in FCk(U, Y × Z).

Proof. For k = 0 the assertion is obviously true. If k = 1, we easily calculate that (γ, η)

is C1 with

d(γ, η)(x;h) = (dγ(x;h), dη(x;h)).

Hence

d(γ, η)(x; ·) = i−1(dγ(x; ·), dη(x; ·)),
where i denotes the isomorphism (A.2.6.1) from Lemma A.2.6. We conclude that (γ, η)

is FC1.

For k > 1, the assertion is proved by an easy induction using Lemma A.2.8.

Proposition A.2.10 (Chain Rule). Let k ∈ N, η ∈ FCk(U, Y ) and γ ∈ FCk(V,Z) such

that η(U) ⊆ V . Then γ ◦ η ∈ FCk(U,Z) and

D(γ ◦ η)(u) = (Dγ ◦ η)(u) ·Dη(u) (∗)
for all u ∈ U .

Proof. The proof is by induction on k.

k = 1: We apply the chain rule for C1-maps (Proposition A.1.11) to see that γ ◦ η
is C1, and for (u, x) ∈ U ×X we have

d(γ ◦ η)(u;x) = dγ(η(u); dη(u;x)).

From this identity we conclude that (∗) holds. Finally we obtain the continuity of D(γ◦η)

from that of ·, Dγ, Dη and η.

k → k + 1: By the inductive hypothesis, the maps Dγ and Dη are FCk. We already

proved in the case k = 1 that (∗) holds. By the inductive hypothesis, Dγ ◦ η ∈ FCk.

Since · is smooth (see Example A.2.7), we conclude using Lemma A.2.9 and the inductive

hypothesis that D(γ ◦ η) is FCk. Hence γ ◦ η is FCk+1.

Proposition A.2.11 (Mean Value Theorem). Let f ∈ FC1(U, Y ). Then

f(v)− f(u) =

∫ 1

0

Df(u+ t(v − u)) · (v − u) dt

for all v, u ∈ U such that the line segment {tu + (1 − t)v : t ∈ [0, 1]} is contained in U .

In particular

‖f(v)− f(u)‖ ≤ sup
t∈[0,1]

‖Df(u+ t(v − u))‖op‖v − u‖.
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Proof. The identity is a reformulation of Proposition A.1.10, hence the estimate is a

direct consequence of Lemma A.1.7.

The isomorphisms provided by Lemma A.2.5 can be used to characterize Fréchet

differentiability of higher order.

Remark A.2.12. We define inductively

L0
X,Y := Y and Lk+1

X,Y := L(X,LkX,Y ).

Definition A.2.13 (Higher derivatives). Let n ∈ N. For each k ∈ N with k ≤ n we

define a linear map

D(k) : FCn(U, Y )→ FCn−k(U,Lk(X,Y ))

by D(0) := idFCn(U,Y ) for k = 0, D(1) := D for k = 1 and for 1 < k ≤ n by

D(k)γ := EYk−1,1 ◦ · · · ◦ E
Lk−3
X,Y

2,1 ◦ EL
k−2
X,Y

1,1 ◦ (D ◦ · · · ◦D︸ ︷︷ ︸
k times

)(γ).

Here we used the notation introduced in Remark A.2.12. Note that the image of D(k) is

contained in FCn−k(U,Lk(X,Y )) because EYk−1,1, . . . , EL
k−3
X,Y

2,1 , EL
k−2
X,Y

1,1 are continuous linear

maps and hence smooth (see Example A.2.7); so the chain rule (Proposition A.2.10) gives

the result.

We call D(k) the kth derivative operator.

The (k + 1)st derivative of a map γ is closely related to the kth derivative of Dγ:

Lemma A.2.14. Let n ∈ N∗, γ ∈ FCn(U, Y ) and k ∈ N with k < n. Then

D(k+1)γ = EYk,1 ◦ (D(k)(Dγ)).

Proof. This follows directly from the definition of D(k+1)γ.

A.3. Relation between the differential calculi. We show that the two calculi pre-

sented are closely related. First we prove that each FCk-map is a Ck-map and that the

higher differentials are closely related.

Lemma A.3.1. Let k ∈ N∗ and γ ∈ FCk(U, Y ). Then γ is a Ck-map (in the sense of

Section A.1), and for each x ∈ U we have

D(k)γ(x) = d(k)γ(x; ·).

Proof. We prove this by induction.

k = 1: It follows directly from Definition 2.3.1 that γ is a C1 map and

D(1)γ(x) = Dγ(x) = dγ(x; ·) = d(1)γ(x; ·).

k → k + 1: Let x ∈ U and h1, . . . , hk+1 ∈ X. We know from Lemma A.2.14 that

(D(k+1)γ)(x)(h1, . . . , hk+1) = (Ek,1 ◦ (D(k)Dγ))(x)(h1, . . . , hk+1)

= (D(k)Dγ(x)(h2, . . . , hk+1)) · h1.
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The inductive hypothesis shows this equals

(d(k)Dγ(x;h2, . . . , hk+1)) · h1

=

(
lim
t→0

d(k−1)(Dγ)(x+ thk+1;h2, . . . , hk)− d(k−1)(Dγ)(x;h2, . . . , hk)

t

)
· h1.

Another application of the inductive hypothesis, together with the continuity of the

evaluation of linear maps (Lemma A.2.3) and Lemma A.2.14, gives

= lim
t→0

D(k−1)(Dγ)(x+ thk+1)(h2, . . . , hk) · h1 −D(k−1)(Dγ)(x)(h2, . . . , hk) · h1

t

= lim
t→0

(Ek−1,1◦D(k−1)(Dγ))(x+ thk+1)(h1, . . . , hk)− (Ek−1,1◦D(k−1)(Dγ))(x)(h1, . . . , hk)

t

= lim
t→0

D(k)γ(x+ thk+1)(h1, . . . , hk)−D(k)γ(x)(h1, . . . , hk)

t
.

Another application of the inductive hypothesis finally gives

= lim
t→0

d(k)γ(x+ thk+1;h1, . . . , hk)− d(k)γ(x;h1, . . . , hk)

t
.

Hence d(k+1)γ exists and satisfies the identity

d(k+1)γ(x;h1, . . . , hk+1) = D(k+1)γ(x)(h1, . . . , hk+1).

Since D(k+1)γ and the evalution of multilinear maps are continuous (see Lemma A.2.3),

so is d(k+1)γ. Proposition 2.2.3 shows that this (and the inductive hypothesis) ensures

that γ is a Ck+1-map.

The preceding can be used to give a characterization of Fréchet differentiable maps.

Proposition A.3.2. Let γ : U → Y be a continuous map. Then γ ∈ FCk(U, Y ) iff γ is

a Ck-map and the map

U → L`(X,Y ) : x 7→ d(`)γ(x; ·) (∗k)

is continuous for each ` ∈ N with ` ≤ k.

Proof. For γ ∈ FCk(U, Y ) we stated in Lemma A.3.1 that γ ∈ Ck(U, Y ) and

d(`)γ(x; ·) = D(`)γ(x)

for each x ∈ U and ` ∈ N with ` ≤ k. Since D(`)γ is continuous by its definition (A.2.13),

(∗k) is satisfied.

We have to prove the other direction. This is done by induction on k.

k = 1: This follows directly from the definition of FC1(U, Y ).

k → k+1: We have to show that γ ∈ FCk+1(U, Y ), and this is clearly the case if Dγ ∈
FCk(U,L(X,Y )). By the inductive hypothesis this is the case if Dγ ∈ Ck(U,L(X,Y ))

and it satisfies (∗k). Since γ ∈ FCk(U, Y ) by the inductive hypothesis and hence Dγ ∈
FCk−1(U,L(X,Y )), we just have to show that Dγ is Ck and

U → Lk(X,L(X,Y )) : x 7→ d(k)(Dγ)(x; ·)
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is continuous. To this end, let x ∈ U , h, v1, . . . , vk−1, vk ∈ X and t ∈ K be such that

{x + stvk : s ∈ [0, 1]} ⊆ U . We calculate using Lemma A.2.14, the mean value theorem

and Lemma A.3.1:(
d(k−1)(Dγ)(x+ tvk; v1, . . . , vk−1)− d(k−1)(Dγ)(x; v1, . . . , vk−1)

t

)
· h

=
d(k)γ(x+ tvk;h, v1, . . . , vk−1)− d(k)γ(x;h, v1, . . . , vk−1)

t

=

∫ 1

0

d(k+1)γ(x+ stvk;h, v1, . . . , vk−1, vk) ds.

Since x 7→ d(k+1)γ(x; ·) is continuous by hypothesis, the left hand side converges as t→ 0

in the topology of uniform convergence on bounded sets to the linear map

h 7→ d(k+1)γ(x;h, v1, . . . , vk−1, vk).

Hence Dγ is Ck with

d(k)(Dγ)(x; v1, . . . , vk−1, vk) = E−1
k,1(d(k+1)γ(x; ·))(v1, . . . , vk−1, vk),

and since x 7→ d(k+1)γ(x; ·) and E−1
k,1 are continuous (by hypothesis resp. Lemma A.2.5),

so is x 7→ d(k)(Dγ)(x; ·).

Lemma A.3.3. Let f : U → Y be a Ck+1 map. Then f ∈ FCk(U, Y ).

Proof. We stated in Proposition A.3.2 that f is in FCk(U, Y ) iff for each ` ∈ N with

` ≤ k the map

U → L`(X,Y ) : x 7→ d(`)f(x; ·)

is continuous; but this is a direct consequence of Lemma A.1.31.

Lemma A.3.4. Let X and Y be locally convex spaces, U ⊆ X an open nonempty set,

k ∈ N, γ ∈ Ck+1(U, Y ), p ∈ N (Y ) and K a compact subset of U . Then there exists a

seminorm q ∈ N (X) and an open set V with respect to q such that K ⊆ V ⊆ U and

γ̃ ∈ BCk(Vq, Yp). (For the definition of γ̃ see Lemma A.1.33.)

Proof. Using Lemma A.1.31 and standard compactness arguments, we find q ∈ N (X)

and a neighborhood Ṽ with respect to q of K in U such that estimates (A.1.31.1) and

(A.1.31.2) hold for γ on Ṽ and all ` ∈ N with ` ≤ k. We proved in Lemma A.1.33

that this implies that γ̃ ∈ LCkq,p(Ṽq, Yp), and using Proposition A.3.2 we can conclude

that γ̃ ∈ FCk(Ṽq, Yp). Further, since D(`)γ̃(Kq) is compact for all ` ≤ k, there exists a

neighborhood Vq of Kq such that γ̃ and all its derivatives up to degree k are bounded

on Vq.

Differential calculus on finite-dimensional spaces. We show that the three definitions of

differentiability for maps that are defined on a finite-dimensional space (Fréchet differen-

tiability, Keller’s Ckc theory and continuous partial differentiability) are equivalent.

Definition A.3.5. Let n, k ∈ N∗ and α ∈ Nn0 a multiindex with |α| = k. We set

Iα := {(i1, . . . , ik) ∈ {1, . . . , n}k : (∀` ∈ {1, . . . , n}) α` = |{j : ij = `}|}
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and use this set to define the continuous k-linear map

Sα : (Kn)k → K : (h1, . . . , hk) 7→
∑

(i1,...,ik)∈Iα

h1,i1 · · ·hk,ik ,

where hj = (hj,1, . . . , hj,n) for j = 1, . . . , k.

Proposition A.3.6. Let U ⊆ Kn be open and nonempty and γ : U → Y a map. Then

the following conditions are equivalent:

(a) γ ∈ FCk(U, Y ).

(b) γ ∈ Ck(U, Y ).

(c) γ is k-times continuously partially differentiable.

If one of these conditions is satisfied, then

D(k)γ(x)(h1, . . . , hk) =
∑
α∈Nn0
|α|=k

Sα(h1, . . . , hk) · ∂αγ(x) (A.3.6.1)

for all x ∈ U and h1, . . . , hk ∈ Kn.

Proof. The assertion (a)⇒(b) is a consequence of Lemma A.3.1; and since

∂kγ

∂xi1 · · · ∂xik
(x) = d(k)γ(x; eik , . . . , ei1)

and d(k)γ is continuous (Proposition 2.2.3), the implication (b)⇒(c) also holds.

It remains to show that (c)⇒(a). It is well known from calculus that Dhγ =∑n
i=1 hi

∂γ
∂xi

. Hence d(`)γ(x;h1, . . . , h`) exists and is given by

d(`)γ(x;h1, . . . , h`) =

n∑
i1=1,...,i`=1

h1,i1 · · ·h`,i` ·
∂kγ

∂xi1 · · · ∂xi`

=
∑
α∈Nn0
|α|=`

( ∑
(i1,...,i`)∈Iα

h1,i1 · · ·h`,i`
)
· ∂αγ(x) =

∑
α∈Nn0
|α|=`

Sα(h1, . . . , h`) · ∂αγ(x).

From this identity we derive the continuity of x 7→ d(`)γ(x; ·), and we can conclude using

Proposition A.3.2 that γ ∈ FCk(U, Y ) and (A.3.6.1) is satisfied.

A.4. Some facts concerning ordinary differential equations. We state some facts

about the global solvability of initial value problems and the dependence of solution on

parameters.

A.4.1. Maximal solutions of ODEs. In the following, we let J ⊆ R be a nondegen-

erate interval and U an open subset of a Banach space X. For a continuous function

f : J × U → X, x0 ∈ U and t0 ∈ J we consider the initial value problem

γ′(t) = f(t, γ(t)), γ(t0) = x0. (A.4.0.2)

We state the famous theorem of Picard and Lindelöf:

Theorem A.4.1. Let f satisfy a local Lipschitz condition with respect to the second

argument, that is, for each (t0, x0) ∈ J × U there exist a neighborhood W of (t0, x0) in
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J × U and a K ∈ R such that for all (t, x), (t, x̃) ∈W ,

‖f(t, x)− f(t, x̃)‖ ≤ K‖x− x̃‖.
Then for each (t0, x0) ∈ J × U there exists a neighborhood I of t0 in J such that the

initial value problem (A.4.0.2) corresponding to t0 and x0 has a unique solution that is

defined on I.

It is well-known that the local theorem of Picard and Lindelöf can be used to ensure

that there exists a maximal solution.

Proposition A.4.2. Let f satisfy a local Lipschitz condition with respect to the second

argument and let (t0, x0) ∈ J × U . Then there exists an interval I ⊆ J and a function

φ : I → U that is a maximal solution to (A.4.0.2); that is, if γ : D(γ)→ U is a solution

to (A.4.0.2) defined on a connected set, then D(γ) ⊆ I and γ = φ|D(γ).

A.4.1.1. A criterion of global solvability

Linearly bounded vector fields. One class of ODEs that can be globally solved is that

of linear vector fields. This solvability property can be generalized to linearly bounded

vector fields.

Definition A.4.3. We call f linearly bounded if there exist continuous functions a, b :

J → R such that

‖f(t, x)‖ ≤ a(t)‖x‖+ b(t) for all (t, x) ∈ J × U .

To prove that this condition on f ensures globally defined solutions, we need some

lemmas.

Lemma A.4.4. Let f be a linearly bounded map that satisfies a local Lipschitz condition

with respect to the second argument. Let φ : I → U be an integral curve of f .

(a) If φ is bounded, I ⊆ J and I is compact, then f is bounded on the graph of φ.

(b) If β := sup I 6= sup J , then φ is bounded on [t0, β[ for each t0 ∈ J . The analogous

result for inf I also holds.

Proof. (a) Let t ∈ I. Then

‖f(t, φ(t))‖ ≤ a(t)‖φ(t)‖+ b(t)

since f is linearly bounded. Because a and b are continuous and defined on I, they are

clearly bounded on I.

(b) For each t ∈ [t0, β[ we have

φ(t) = φ(t0) +

∫ t

t0

f(s, φ(s)) ds,

and from this we deduce, using that f is linearly bounded,

‖φ(t)‖ ≤ ‖φ(t0)‖+

∥∥∥∥∫ t

t0

f(s, φ(s)) ds

∥∥∥∥ ≤ ‖φ(t0)‖+

∣∣∣∣ ∫ t

t0

a(s)‖φ(s)‖+ b(s) ds

∣∣∣∣
≤ ‖a|[t0,β]‖∞

∣∣∣∣ ∫ t

t0

‖φ(s)‖ ds
∣∣∣∣+ ‖φ(t0)‖+ ‖b‖∞,[t0,β]|β − t0|.

The assertion is proved by an application of Gronwall’s lemma.
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Lemma A.4.5. Assume that f satisfies a global Lipschitz condition with respect to the

second argument. Then f is linearly bounded.

Proof. Let (t, x) ∈ J × U and x0 ∈ U . Then

‖f(t, x)‖ ≤ ‖f(t, x)− f(t, x0)‖+ ‖f(t, x0)‖
≤ L‖x− x0‖+ ‖f(t, x0)‖ ≤ L‖x‖+ L‖x0‖+ ‖f(t, x0)‖.

Defining a(t) := L and b(t) := L‖x0‖+ ‖f(t, x0)‖ gives the assertion.

The criterion. We give a sufficient condition for an integral curve to be uniformly con-

tinuous. This can be used to extend solutions to larger domains of definition.

Lemma A.4.6. Let f satisfy a local Lipschitz condition with respect to the second argu-

ment and let φ : I → U be an integral curve of f such that f is bounded on the graph

of φ. Then φ is Lipschitz continuous and hence uniformly continuous.

Proof. Let t1, t2 ∈ I. Then

‖φ(t2)− φ(t1)‖ =

∥∥∥∥∫ t2

t1

φ′(s) ds

∥∥∥∥ =

∥∥∥∥∫ t2

t1

f(s, φ(s)) ds

∥∥∥∥ ≤ K|t2 − t1|,
where K := sups∈I ‖f(s, φ(s))‖ <∞.

Theorem A.4.7. Assume that f satisfies a local Lipschitz condition with respect to the

second argument. Let φ : I → U be a maximal integral curve of f . Assume further that

(a) the image of φ is contained in a compact subset of U or

(b) f is linearly bounded.

Then φ is a global solution, that is, I = J .

Proof. Assume for contradiction that e.g. β := sup I 6= sup J . We choose t0 ∈ I. In both

cases, f is bounded on the graph of φ|[t0,β[: If the image of φ is contained in a compact

set, we easily see that the graph of φ|[t0,β[ is contained in a compact subset. If f is linearly

bounded, we use Lemma A.4.4.

We apply Lemma A.4.6 to see that φ|[t0,β[ is uniformly continuous, and thus has a

continuous extension φ̃ to [t0, β]. We easily calculate that φ̃ is a solution to (A.4.0.2)

using the integral represention of an ODE. Since φ̃ extends φ, we get a contradiction to

the maximality of φ.

A.4.2. Flows and dependence on parameters and initial values. For the sake of

full generality, we need a definition.

Definition A.4.8. Let X be a locally convex space. We call P ⊆ X a locally convex

subset with dense interior if for each x ∈ P , there exists a convex neighborhood U ⊆ P

of x and if P ⊆ P ◦.

In the following, we let J ⊆ R be a nondegenerate interval, U an open subset of a

Banach space X, P a locally convex subset with dense interior of a locally convex space

and k ∈ N with k ≥ 1. Further, let f be in Ck(J × U × P,X). We consider the initial
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value problem

γ′(t) = f(t, γ(t), p), γ(t0) = x0, (A.4.8.1)

for t0 ∈ J , x0 ∈ U and p ∈ P .

Definition A.4.9. Let Ω ⊆ J × J ×U × P . We call a map φ : Ω→ U a flow for f if for

all t0 ∈ J , x0 ∈ U and p ∈ P the set

Ωt0,x0,p := {t ∈ J : (t0, t, x0, p) ∈ Ω}

is connected and the partial map

φ(t0, ·, x0, p) : Ωt0,x0,p → U

is a solution to (A.4.8.1) corresponding to the initial values t0, x0 and p.

A flow is called maximal if any other flow is a restriction of it.

Remark A.4.10. In [Glö06, Theorem 10.3] it was shown that for each t0 ∈ J , x0 ∈ U
and p0 ∈ P there exist neighborhoods J0 of t0, U0 of x0 and P0 of p0 such that for every

s ∈ J0, x ∈ U0 and p ∈ P0 the corresponding initial value problem (A.4.8.1) has a unique

solution Γs,x,p : J0 → U and the map

Γ : J0 × J0 × U0 × P0 → U : (s, t, x, p) 7→ Γs,x,p(t)

is Ck. Therefore Ck-flows exist.

The following lemma shows that two related flows can be glued together:

Lemma A.4.11. Let I ⊆ J be a connected set with nonempty interior and γ : I → U a

solution to (A.4.8.1) corresponding to tγ ∈ J , xγ ∈ U and pγ ∈ P . Further let

φ0 : J0 × I0 × U0 × P0 → U and φ1 : I1 × I1 × U1 × P1 → U

be Ck-flows for f such that U1 is open in X and

I = I0 ∪ I1, I0 ∩ I1 6= ∅, pγ ∈ P0 ∩ P1, (tγ , xγ) ∈ J0 × U0 and γ(I1) ⊆ U1.

Then there exist neighborhoods Jγ of tγ , Uγ of xγ , Pγ of pγ and a Ck-flow

φ : Jγ × I × Uγ × Pγ → U

for f .

Proof. We choose t1 ∈ I0 ∩ I1. Since φ0 is continuous in (tγ , t1, xγ , pγ) and

φ0(tγ , t1, xγ , pγ) = γ(t1) ∈ U1,

there exist neighborhoods Jγ of tγ in J0, Uγ of xγ in U0 and Pγ ⊆ P0∩P1 of pγ such that

φ0(Jγ × {t1} × Uγ × Pγ) ⊆ U1.

Then the map

φ : Jγ × I × Uγ × Pγ → U : (t0, x0, p, t) 7→

{
φ0(t0, t, x0, p) if t ∈ I0,
φ1(t1, t, φ0(t0, t1, x0, p), p) if t ∈ I1,

is well defined since the curves φ0(t0, ·, x0, p) and φ1(t1, ·, φ0(t0, t1, x0, p), p) are both so-

lutions to the ODE (A.4.8.1) that coincide in t1 and hence on I0 ∩ I1. Since both φ0 and

φ1 are Ck-flows for f , so is φ.
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Lemma A.4.12. Let I ⊆ J be a connected set with nonempty interior, t1 ∈ I and γ : I →
U a solution to (A.4.8.1) corresponding to tγ ∈ J , xγ ∈ U and pγ ∈ P . Then there exist

neighborhoods Jγ of tγ , Uγ of xγ , Pγ of pγ , an interval Ĩ ⊆ I with tγ , t1 ∈ Ĩ such that Ĩ

is a neighborhood of t1 in I, and a Ck-flow

φ : Jγ × Ĩ × Uγ × Pγ → U

for f .

Proof. We use [Glö06, Theorem 10.3] to see that for each s ∈ I there exist neighborhoods

Js of s in J , Us of γ(s) in U , Ps of p0 in P and a Ck-flow

φs : Js × Js × Us × Ps → U

for f ; we may assume that γ(Js) ⊆ Us since γ is continuous and that Js is open in I.

Since I is connected and {Js}s∈I is an open cover of I, there exist finitely many sets

Js1 , . . . , Jsn such that tγ ∈ Js1 , t1 ∈ Jsn and Jsm ∩ Js` 6= ∅ ⇔ |m − `| ≤ 1. Applying

Lemma A.4.11 to φs1 and φs2 we find neighborhoods I1 of tγ , V1 of xγ , P1 of pγ and a

Ck-flow

φ1 : I1 × (Js1 ∪ Js2)× V1 × P1 → U

for f . Likewise, φ1 and φs3 lead to φ2, and iterating the argument, we find a Ck-flow

φn−1 : In−1 ×
n⋃
k=1

Jsk × Vn−1 × Pn−1 → U

for f .

Concerning maximal flows, we can state the following

Theorem A.4.13. For each ODE (A.4.8.1) there exists a maximal flow

φ : J × J × U × P ⊇ Ω→ U.

Ω is an open subset of J × J × U × P and φ is a Ck-map.

Proof. The existence of a maximal flow is a direct consequence of the existence of maximal

solutions to ODEs without parameters (see Proposition A.4.2). Now let (t0, t, x0, p) ∈ Ω

and γ : I ⊆ J → U the maximal solution corresponding to t0, x0 and p. Then t0, t ∈ I,

and according to Lemma A.4.12, there exists a Ck-flow

Γ : Jγ × Ĩ × Uγ × Pγ → U

for f that is defined on a neighborhood of (t0, t, x0, p). Since φ is maximal,

Jγ × Ĩ × Uγ × Pγ ⊆ Ω and φ|Jγ×Ĩ×Uγ×Pγ = Γ.

This gives the assertion.

We examine the situation where the initial time is fixed and the initial values depend

on the parameters.

Corollary A.4.14. Let α : P → U be a Ck-map. Further, let I ⊆ J be a nonempty

interval and t0 ∈ I such that for every p ∈ P there exists a solution γp : I → U to the
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initial value problem (A.4.8.1) corresponding to p, t0 and the initial value α(p). Then the

map

Γ : I × P → U : (t, p) 7→ γp(t)

is Ck.

Proof. We consider a maximal flow φ : Ω→ U for f . Since φ is maximal,

{t0} × I × {(α(p), p) : p ∈ P} ⊆ Ω,

and for each p ∈ P ,

φ(t0, ·, α(p), p) = γp.

Hence Γ is the composition of φ and the Ck-map

I × P → J × I × U × P : (t, p) 7→ (t0, t, α(p), p),

and this gives the assertion.

B. Locally convex Lie groups

The goal of this appendix is mainly to fix our conventions and notation concerning man-

ifolds and Lie groups modelled on locally convex spaces. For further information see

[Mil84], [Nee06] and [BGN04].

B.1. Locally convex manifolds. Locally convex manifolds are essentially like finite-

dimensional ones, replacing the finite-dimensional modelling space by a locally convex

space.

Definition B.1.1 (Locally convex manifolds). Let M be a Hausdorff topological space,

k ∈ N and X a locally convex space. A Ck-atlas for M is a set A of homeomorphisms

φ : U → V from an open subset U ⊆M onto an open set V ⊆ X whose domains cover M

and which are Ck-compatible in the sense that φ ◦ψ−1 is Ck for all φ, ψ ∈ A. A maximal

Ck-atlas A on M is called a differentiable structure of class Ck. In this case, the pair

(M,A) is called a (locally convex ) Ck-manifold modelled on X.

Direct products of locally convex Ck-manifolds are defined as expected.

Definition B.1.2 (Tangent space and tangent bundle). Let (M,A) be a Ck-manifold

modelled on X, where k ≥ 1. Given x ∈ M , let Ax be the set of all charts around x

(i.e. whose domain contains x). A tangent vector of M at x is a family y = (yφ)φ∈Ax of

vectors yφ ∈ X such that yψ = d(ψ ◦ φ−1)(φ(x); yφ) for all φ, ψ ∈ Ax.

The tangent space of M at x is the set TxM of all tangent vectors of M at x. It

has a unique structure of locally convex space such that the map dψ|TxM : TxM → X :

(yφ)φ∈Ax 7→ yψ is an isomorphism of topological vector spaces for any ψ ∈ Ax.

The tangent bundle TM of M is the union of the (disjoint) tangent spaces TxM for

all x ∈M . It admits a unique structure of a Ck−1-manifold modelled on X×X such that

Tφ := (φ, dφ) is chart for each φ ∈ A. We let πM : TM →M be the map taking tangent

vectors at x to x for any x ∈M .
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Definition B.1.3. A continuous map f : M → N between Ck-manifolds is called Ck if

the map ψ ◦ f ◦ φ−1 is Ck for all charts ψ of N and φ of M .

If k ≥ 1, then we define the tangent map of f as the Ck−1-map Tf : TM → TN

determined by dψ ◦Tf ◦ (Tφ)−1 = d(ψ ◦ f ◦ φ−1) for all charts ψ of N and φ of M .

Given x ∈M , we define Txf := Tf |TxM : TxM → Tf(x)N .

Definition B.1.4. Let k > 0, M , N and P be Ck-manifolds, and f : M × N → P a

Ck-map. We define

T1f : TM ×N → TP : (v, n) 7→ TΓ(v, 0n)

and

T2f : M ×TN → TP : (m, v) 7→ TΓ(0m, v).

Definition B.1.5 (Submanifolds). Let M be a Ck-manifold modelled on the locally

convex space X and Y ⊆ X be a sequentially closed vector subspace. A submanifold of

M modelled on Y is a subset N ⊆ M such that for each x ∈ N , there exists a chart

φ : U → V around x such that φ(U ∩N) = V ∩ Y . It is easy to see that a submanifold is

also a Ck-manifold.

The following lemma states that submanifolds are initial:

Lemma B.1.6. Let M be a Ck-manifold and N a submanifold of M . Then the inclusion

ι : N → M is Ck. Moreover, a map f : P → N from a Ck-manifold is Ck iff the map

ι ◦ f : P →M is Ck.

Definition B.1.7 (Vector fields). A vector field on a smooth manifold M is a smooth

map ξ : M → TM such that πM ◦ ξ = idM . We denote the set of vector fields on M

by X(M).

A vector field ξ is determined by its local representations ξφ := dφ ◦ ξ ◦ φ−1 : V → X

for each chart φ : U → V of M . Given vector fields ξ and η on M , there is a unique

vector field [ξ, η] on M such that [ξ, η]φ = dηφ ◦ (idV , ξφ) − dξφ ◦ (idV , ηφ) for all charts

φ : U → V of M .

Remark B.1.8 (Analytic manifolds). The definition of analytic manifolds and analytic

maps between them is literally the same as above, except that “Ck” has to be replaced

by “analytic”.

B.2. Lie groups

Definition B.2.1 (Lie groups). A (locally convex) Lie group is a group G equipped with

a smooth manifold structure turning the group operations into smooth maps.

An analytic Lie group is a group G equipped with an analytic manifold structure

turning the group operations into analytic maps.

Lemma B.2.2 (Tangent group, action of G group on TG). Let G be a Lie group with

the group multiplication m and the inversion i. Then TG is a Lie group with the group

multiplication

Tm : T(G×G) ∼= TG×TG→ TG
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and the inversion Ti. Identifying G with the zero section of TG, we obtain a smooth right

action

TG×G→ TG : (v, g) 7→ v.g := Tm(v, 0g)

and a smooth left action

G×TG→ TG : (g, v) 7→ g.v := Tm(0g, v).

Definition B.2.3 (Left invariant vector fields). A vector field V on a Lie group G is

called left invariant if g.V (h) = V (gh) for all g, h ∈ G. The set X(G)` of left invariant

vector fields is a Lie algebra under the bracket of vector fields defined above.

Definition B.2.4 (Lie algebra functor). Let G and H be Lie groups. Using the iso-

morphism X(G)` → T1G : V 7→ V (1) we transport the Lie algebra structure on

X(G)` to L(G) := T1G. If φ : G → H is a smooth homomorphism, then the map

L(φ) : L(G)→ L(H) defined as Tφ|L(G) is a Lie algebra homomorphism.

B.2.1. Generation of Lie groups. We need the following result concerning the con-

struction of Lie groups from local data (compare [Bou89, Chapter III, §1.9, Proposition

18] for the case of Banach Lie groups; the general proof follows the same pattern).

Lemma B.2.5 (Local description of Lie groups). Let G be a group, U ⊆ G a subset which

is equipped with a smooth manifold structure, and V ⊆ U an open symmetric subset such

that 1 ∈ V and V · V ⊆ U . Consider the conditions:

(a) The group inversion restricts to a smooth self-map of V .

(b) The group multiplication restricts to a smooth map V × V → U .

(c) For each g ∈ G, there exists an open 1-neighborhood W ⊆ U such that g ·W ·g−1 ⊆ U ,

and the map

W → U : w 7→ g · w · g−1

is smooth.

If (a)–(c) hold, then there exists a unique smooth manifold structure on G which makes

G a Lie group such that V is an open submanifold of G. If (a) and (b) hold, then there

exists a unique smooth manifold structure on 〈V 〉 which makes 〈V 〉 a Lie group such that

V is an open submanifold of 〈V 〉.

B.2.2. Regularity. We recall the notion of regularity (see [Mil84] for further informa-

tion). To this end, we define left evolutions of smooth curves. As a tool, we use the group

multiplication on the tangent bundle TG of a Lie group G.

Definition B.2.6 (Left logarithmic derivative). Let G be a Lie group, k ∈ N and η :

[0, 1]→ G a Ck+1-curve. We define the left logarithmic derivative of η as

δ`(η) : [0, 1]→ L(G) : t 7→ η(t)−1 · η′(t).

The curve δ`(η) is obviously Ck.

Definition B.2.7 (Left evolutions). Let G be a Lie group and γ : [0, 1] → L(G) a

smooth curve. A smooth curve η : [0, 1] → G is called a left evolution of γ and denoted

by Evol`G(γ) if δ`(η) = γ and η(0) = 1. One can show that if a left evolution exists, it is

uniquely determined.
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The existence of a left evolution is equivalent to the existence of a solution to a certain

initial value problem:

Lemma B.2.8. Let G be a Lie group and γ : [0, 1] → L(G) a smooth curve. Then there

exists a left evolution Evol`(G)γ : [0, 1]→ G iff the initial value problem

η′(t) = η(t) · γ(t), η(0) = 1, (B.2.8.1)

has a solution η. In this case, η = Evol`G(γ).

Now we give the definition of regularity:

Definition B.2.9 (Regularity). A Lie group G is called regular if for each smooth curve

γ : [0, 1]→ L(G) there exists a left evolution and the map

evol`G : C∞([0, 1],L(G))→ G : γ 7→ Evol`G(γ)(1)

is smooth.

Lemma B.2.10. Let G be a Lie group. Suppose there exists a zero neighborhood Ω ⊆
C∞([0, 1],L(G)) such that for each γ ∈ Ω the left evolution Evol`G(γ) exists and the map

Ω→ G : γ 7→ Evol`G(γ)(1)

is smooth. Then G is regular.

Remark B.2.11. We can define right logarithmic derivatives and right evolutions in the

analogous way. We denote the right logarithmic derivative by δρ, the right evolution map

by Evolρ and the endpoint of the right evolution by evolρ. One can show that a Lie

group is left-regular iff it is right-regular. Also the equivalent of Lemma B.2.10 holds. In

particular, the initial value problem (B.2.8.1) becomes

η′(t) = γ(t) · η(t), η(0) = 1. (B.2.11.1)

Definition B.2.12. Let G be a Lie group. A smooth map expG : L(G)→ G is called an

exponential map for G if T0 expG = idL(G) and expG((s+ t)v) = expG(sv) · expG(tv) for

all s, t ∈ R and v ∈ L(G).

B.2.3. Group actions

Lemma B.2.13. Let G and H be groups and α : G × H → H a group action that is a

group morphism in its second argument. Further, let H̃ be a subgroup of H generated

by U . Then

α(G× H̃) ⊆ H̃ ⇔ α(G× U) ⊆ H̃.

Proof. By our assumption, H̃ =
⋃
n∈N(U ∪ U−1)n. So we calculate

α(G× H̃) = α(G×
⋃
n∈N

(U ∪ U−1)n) =
⋃
n∈N

α(G× (U ∪ U−1)n)

=
⋃
n∈N

α(G× (U ∪ U−1))n =
⋃
n∈N

(α(G× U) ∪ α(G× U)−1)n ⊆ H̃.

Lemma B.2.14. Let G and H be Lie groups and α : G ×H → H a group action that is

a group morphism in its second argument. Then α is smooth iff the following assertions

hold:
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(a) It is smooth on U×V , where U and V are open neighborhoods of the respective units.

(b) For each h ∈ H, there exists an open unit neighborhood W such that the map

α(·, h) : W → H is smooth.

(c) For each g ∈ G the map α(g, ·) : H → H is smooth.

If U generates G, (b) follows from (a). If V generates H, (c) follows from (a).

Proof. We first show that by our assumptions, α is smooth. To this end, let (g, h) ∈ G×H.

Choose W as in (b). Then U ′ := U ∩W ∈ UG(1). We show that α|gU ′×V h is smooth.

Since the map U ′ × V → gU ′ × V h : (u, v) 7→ (gu, vh) is a smooth diffeomorphism, we

only need to show that the map

U ′ × V → H : (u, v) 7→ α(gu, hv)

is smooth. But

α(gu, hv) = αg(α(u, vh)) = αg(α(u, v)α(u, h)) = αg(α(u, v)αh(u)),

where we denote α(·, h) by αh and α(g, ·) by αg. Since the right hand side is obviously

smooth, we are done.

Now we prove the other two assertions. We suppose that (a) holds. We let S ⊆ H be

the set of all h ∈ H such that (b) holds. Then V ⊆ S; and since αh
−1

(g) = αh(g)−1 and

αhh
′
(g) = αh(g)αh

′
(g) for all g ∈ G and h, h′ ∈ H, we easily see that S is a subgroup

of H. Since V is a generator, S = H.

Since U generates G, for each g ∈ G we find g1, . . . , gn ∈ U ∪ U−1 such that

αg = αgn ◦ · · · ◦ αg1 .

Further, for g′ ∈ G and h ∈ H, αg′−1(h) = αg′(h)−1, so each αgk is smooth by our

assumption. Hence αg is smooth.

Lemma B.2.15. Let G and H be Lie groups and ω : G×H → H a smooth group action

that is a group morphism in its second argument. Then the semidirect product H oω G
can be turned into a Lie group that is modelled on L(H)× L(G).

Proof. The semidirect product H oω G is endowed with the multiplication

(H ×G)× (H ×G)→ H ×G : ((h1, g1), (h2, g2)) 7→ (h1 · ω(g1, h2), g1 · g2)

and the inversion

H ×G→ H ×G : (h, g) 7→ (ω(g−1, h−1), g−1),

so the smoothness of the group operations follows from that of ω.

C. Quasi-inversion in algebras

We give a short introduction to the concept of quasi-inversion. It is a useful tool for the

treatment of algebras without a unit, where it serves as a replacement for the ordinary

inversion. Many of the algebras we treat are without a unit. Unless the contrary is stated,

all algebras are assumed associative.
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C.1. Definition

Definition C.1.1 (Quasi-inversion). Let A denote a K-algebra with the multiplication ∗.
An x ∈ A is called quasi-invertible if there exists a y ∈ A such that

x+ y − x ∗ y = y + x− y ∗ x = 0.

In this case, we call QIA(x) := y the quasi-inverse of x. The set of all quasi-invertible

elements of A is denoted by Aq. The map Aq → Aq : x 7→ QIA(x) is called the quasi-

inversion of A. Often we will denote QIA just by QI.

An interesting characterization of quasi-inversion is

Lemma C.1.2. Let A be a K-algebra with multiplication ∗. Then A, endowed with the

operation

A×A→ A : (x, y) 7→ x � y := x+ y − x ∗ y,

is a monoid with the unit 0 and the unit group Aq. The inversion map is given by QIA.

Proof. This is shown by an easy computation.

In unital algebras there is a close relationship between inversion and quasi-inversion.

Lemma C.1.3. Let A be an algebra with multiplication ∗ and unit e. Then x ∈ A is

quasi-invertible iff x− e is invertible. In this case

QIA(x) = (x− e)−1 + e.

Proof. One easily computes that

(A, �)→ (A, ∗) : x 7→ e− x

is an isomorphism of monoids (� was introduced in Lemma C.1.2), and from this we easily

deduce the assertion.

C.2. Topological monoids and algebras with continuous quasi-inversion. In this

section, we examine algebras that are endowed with a topology. For technical reasons we

also examine monoids.

Definition C.2.1. An algebra A is called a topological algebra if it is a topological vector

space and the multiplication is continuous.

A topological algebra A is called an algebra with continuous quasi-inversion if the set

Aq is open and the quasi-inversion QI is continuous.

A monoid, endowed with a topology, is called a topological monoid if the monoid

multiplication is continuous.

A monoid, endowed with a differential structure, is called a smooth monoid if the

monoid multiplication is smooth.

Remark C.2.2. If A is an algebra with continuous quasi-inversion, then QI is not only

continuous, but automatically analytic (see [Glö02a]).

In topological monoids the unit group is open and the inversion continuous if they

are so near the unit element:
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Lemma C.2.3. Let M be a topological monoid with unit e and multiplication ∗. Then

the unit group M× is open iff there exists a neighborhood of e that consists of invertible

elements. The inversion map

I : M× →M× : x 7→ x−1

is continuous iff it is so at e.

Proof. Let U be a neighborhood of e that consists of invertible elements and m ∈ M×.

Since the map

`m : M →M : x 7→ m ∗ x

is a homeomorphism, `m(U) is open; and it is clear that `m(U) ⊆ M×. Hence M× =⋃
m∈M× `m(U) is open.

Let I be continuous at e. We show it is so at x ∈M×. For m ∈M×, we have

I(m) = m−1 = m−1 ∗ x ∗ x−1 = (x−1 ∗m)−1 ∗ x−1 = (ρx−1 ◦ I ◦ `x−1)(m), (†)

where ρx−1 denotes right multiplication by x−1. Since I is continuous in e and `x−1(x) = e,

we can derive the continuity of I at x from (†).

For algebras with continuous multiplication we can deduce

Lemma C.2.4. Let A be an algebra with continuous multiplication ∗. Then Aq is open if

there exists a neighborhood of 0 that consists of invertible elements. The quasi-inversion

QIA is continuous if it is so at 0.

Proof. Since the map

A×A→ A : (x, y) 7→ x+ y − x ∗ y

is continuous, we derive the assertions from Lemmas C.1.2 and C.2.3.

A criterion for quasi-invertibility. We give a criterion that ensures that an element of an

algebra is quasi-invertible. It turns out to be quite useful in Banach algebras.

Lemma C.2.5. Let A be a topological algebra and x ∈ A. If
∑∞
i=1 x

i exists, then x is

quasi-invertible with

QIA(x) = −
∞∑
i=1

xi.

Proof. We just compute that x is quasi-invertible:

x+
(
−
∞∑
i=1

xi
)
− x ∗

(
−
∞∑
i=1

xi
)

= −
∞∑
i=2

xi +

∞∑
i=2

xi = 0.

The identity (−
∑∞
i=1 x

i) + x− (−
∑∞
i=1 x

i) ∗ x = 0 is computed in the same way. So the

quasi-invertibility of x follows directly from the definition.

Quasi-inversion in Banach algebras

Lemma C.2.6. Let A be a Banach algebra. Then B1(0) ⊆ Aq. Moreover, for x ∈ B1(0),

QIA(x) = −
∞∑
i=1

xi.
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Proof. For x ∈ B1(0) the series
∑∞
i=1 x

i exists since it is absolutely convergent and A is

complete. So the assertion follows from Lemma C.2.5.

Lemma C.2.7. Let A be a Banach algebra. Then Aq is open in A and the quasi-inversion

QIA is continuous.

Proof. This is an immediate consequence of Lemmas C.2.6 and C.2.4 since

x 7→
∞∑
i=1

xi

is analytic (see [Bou67, §3.2.9]) and hence continuous.
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[Glö02b] —, Lie group structures on quotient groups and universal complexifications for

infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347–409.
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Notation

The following list contains the symbols that are used on several occasions, together with a short
explanation of their meaning and the page number where the respective symbol is defined. For
better overview, the entries are arranged into several categories.

Basic notation

BX(x, r), Br(x) Open ball with radius r around x in X 8
Br(x) Closed ball with radius r around x 8
Ck(U, Y ) The set of all k times differentiable functions from U to Y 9
FCk(U, Y ) The set of all k times Fréchet differentiable functions from U to Y 9
d(k)f(u;x1, . . . , xk) kth iterated derivative of f at u in the directions x1, . . . , xk 9
D(k)γ kth Fréchet derivative of γ 9
D The closed unit disk in R or C 8
dist(A,B) Distance between A and B 8
K R or C 8
N N ∪ {∞} = {∞, 0, 1, . . . } 8
N∗ N \ {0} 8
R R ∪ {−∞,∞} 8

Spaces of weighted functions

BCk(U, Y ) k-times differentiable functions from U to Y with bounded deriva-
tives 10

BC∂,k(U, V ) functions γ ∈ BCk(U, V ) such that dist(γ(U), ∂V ) > 0 11
BCk(U, Y )0 functions in BCk(U, Y ) mapping 0 to 0 11
D(U, V ), C∞c (U, V ) compactly supported smooth functions from U to V 11
CkW(U, Y ) k-times differentiable functions from U to Y with W-bounded

derivatives 10, 30
CkW(U, V ) functions in CkW(U, Y ) with image in V 11
C∂,kW (U, V ) functions γ ∈ CkW(U, V ) such that dist(γ(U), ∂V ) > 0 11
CkW(U, Y )o functions in CkW(U, Y ) whose seminorms decay outside of bounded

sets 11
CkW(U, V )• Functions in CkW(U, Y )• with values in V 34
CkW(U, Y )• Functions in CkW(U, Y ) whose seminorms decay outside of compact

sets 33

Lie groups and manifolds

Evol`G Left evolution 118
evol`G Endpoint of the left evolution 119
EvolρG Right evolution 119
evolρG Endpoint of the right evolution 119
expG Exponential function of the Lie group G 119
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ω̇ For a group action ω, a “derivation” at the unital element 63
L(·) Lie algebra functor 118
δ`(·) Left logarithmic derivative 118
δρ(·) Right logarithmic derivative 119
TM Tangent bundle of M 116
Tf Tangent map 117
Txf Restriction of Tf to TxM and Tf(x)N 117
T1f , T2f Partial tangent maps 117
TxM Tangent space at x ∈M 116
X(M) The set of vector fields of the manifold M 117

Groups and monoids of functions

κW Inverse of the canonical chart for EndW(X) and DiffW(X) 41
C`W(U,G) Lie group of weighted mappings with values in a Banach Lie group 74
C`W(U,G)• Lie group of decaying weighted mappings with values in a Lie group 80
CkW(U,G)•ex Lie group normalizing CkW(U,G)• 81
Diff(X) Diffeomorphisms of the Banach space X 41
Diffc(M) Diffeomorphisms of M that are the identity outside some compact

set 6
DiffS(Rn) Diffeomorphisms of Rn differing from idRn by a rapidly decreasing

Rn-valued map 6
DiffW(X) Weighted diffeomorphisms of the Banach space X for weights W 41
DiffW(X)◦ DiffW(X) ∩ EndW(X)◦ 55
DiffW(X)0 Identity component of DiffW(X) 63
EndW(X) Weighted endomorphisms of the Banach space X for weights W 41
EndW(X)◦ Functions φ ∈ EndW(X) with φ− idX ∈ C∞W(X,X)o 47

Further notation

Lk(X,Y ) k-linear maps between normed spaces, endowed with the operator
topology 105

N (X) Continuous seminorms on X 102
Xp X/p−1(0) for X and p ∈ N (X), 102
πp Quotient map X → Xp 102
‖ · ‖f,k Supremum of the operator norm of the kth Fréchet derivative mul-

tiplied with f 10
‖γ‖p,f,k ‖πp ◦ γ‖f,k 30
‖ · ‖op Operator norm 105
‖T‖op,p Operator norm with respect to p ∈ N (Y ) 32
QIA Quasi-inversion map of the algebra A 121
Aq Quasi-invertible elements of the algebra A 121



Index

analytic maps, 100

superposition, see superposition with an

analytic map

bounded maps, 10

composition of, 23

centered chart, 70

compactly supported diffeomorphisms, 6

density in DiffW(X)◦, 55

complexification

good, 27

of maps, 102

of power series, 28

composition

of bounded maps, see bounded maps,

composition of

of bounded maps and weighted maps, 25

of weighted maps und certain subsets of

Lie groups, 66

diffeomorphisms, 41

compactly supported, see compactly

supported diffeomorphisms

groups of, 6, 54, 55

semidirect product with, see semidi-

rect product

weighted, see weighted diffeomorphisms

good complexification, see complexification,

good

mapping groups

with values in a Banach Lie group, 74

with values in a locally convex Lie

group, 80, 90, 94

quasi-inversion, 120

regularity, 119

of CkW(U,G), 75

of DiffW(X), 61

of DiffW(X)◦, 62

semidirect product, 120

of C∞W(X,G) and DiffW(X), 78

of DiffW(X)0 and a Lie group acting on

X, 63, 67

smooth monoid, 121

smooth normalizer, 81

superposition

with a bounded map, 23, 25

with a differentiable map, 40

with a multilinear map, 18, 19, 35

with an analytic map, 28

weighted diffeomorphisms, 41

decreasing, 55

easier description, 55

weighted maps

decreasing, 11, 33

into Banach Lie groups, 74

into locally convex Lie groups, 80, 81, 90

into locally convex spaces, 30

into normed spaces, 10

weights, 10

condition for completeness, 15
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