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To Veneta

Introduction

One of the most beautiful and important results in the classical complex analysis is the
Riemann Mapping Theorem stating that any nonempty simply connected open subset
of the complex number plane, other than the plane itself, is biholomorphic to the open
unit disk D ⊂ C. On the other hand, H. Poincaré (1907) proved that the groups of
(holomorphic) automorphisms of the open polydisc and of the open ball in C2 are not
isomorphic; hence these two topologically equivalent domains are not biholomorphically
equivalent. Therefore it is important that any domain D in Cn can be associated with
some biholomorphically equivalent object. Generalizing the Schwarz–Pick Lemma, C.
Carathéodory (1926) provided the first example of such an object, different from the au-
tomorphism group; this object was later called the Carathéodory pseudodistance. That
is the largest Poincaré distance between the images of two points from D under all holo-
morphic mappings from D into D. Somewhat later (1933) S. Bergman started to consider
the generating kernel of the Hilbert space of square-integrable holomorphic functions on
D with the natural Hermitian metric and distance (later his name was given to these
three invariants). In 1967 S. Kobayashi introduced a pseudodistance, dual in some sense
to Carathéodory’s. More precisely, it is the greatest pseudodistance not exceeding the
so called Lempert function, the infimum of the Poincaré distances between preimages of
pairs of points from D under an arbitrary holomorphic mapping from D to D.

In Chapter 1 we discuss the basic properties of various invariant functions and their
infinitesimal forms called (pseudo)metrics.

The estimates and the limit behavior of invariant (pseudo)distances (or more generally,
of functions) and (pseudo)metrics, as well as of the Bergman kernel, play an important
role in numerous problems of complex analysis like asymptotic estimates of holomorphic
functions (of various classes), continuation of holomorphic mappings, biholomorphic (non)-
equivalence of domains, description of domains with noncompact groups of automorphisms
etc. (see e.g. [58, 54, 67, 108]). We only mention that one of the basic points in the classifi-
cation theorem of bounded convex domains of finite type in Cn with noncompact groups
of automorphisms (see [8]) is an estimate for the Kobayashi and Carathéodory pseudodis-
tances (see also Proposition 3.2.1). In Chapter 3 we obtain estimates of these metrics, as
well as of the Bergman kernel and Bergman metric of so-called C-convex domains.

Let us note that the exact calculation of some of the invariants or finding estimates
thereof leads e.g. to criteria for solvability of corresponding interpolation problems or to
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6 N. Nikolov

restrictions on solvability. Chapter 2 is partially motivated by two examples of such types
of problems.

This work is the author’s D. Sc. dissertation originally written in Bulgarian and
defended in October, 2010.

The results have been published as follows:

Chapter 1: in [86, 87, 88, 89, 90, 103];
Chapter 2: in [82, 91, 94, 95, 96, 97, 100, 101, 102, 104];
Chapter 3: in [57, 80, 81, 83, 92, 84, 98].

Some of the results we mention come from [79, 85, 93, 99].

1. Lempert functions and Kobayashi metrics

1.1. Synopsis. The aim of this chapter is the introduction of basic invariant functions,
distances and metrics together with their basic properties.

The Lempert function lM and the Carathéodory function c∗M of a given complex
manifold M are the greatest and the least holomorphically contractible functions (i.e.
decreasing under holomorphic mappings), coinciding with the Möbius distance mD on
the unit disc D. The Kobayashi and the Carathéodory (pseudo)distances, kM and cM ,

are the greatest and the least holomorphically contractible (pseudo)distances, coinciding
on D with the Poincaré distance pD. Note that cM = tanh−1 c∗M , while kM � tanh−1 lM
in general. Define the Kobayashi function by the equality k∗M = tanh kM .

In Section 1.2 we note that the objects under consideration are upper semicontinuous
(see Proposition 1.2.1 and the comment preceding it). The main result in that section,
namely Theorem 1.2.2, states that if z ∈ M and the function κM is continuous and
positive in (z;X) for each nonzero vector X, then the “derivative” of k(m)

M at z in the di-
rection of X coincides with κ(m)

M (z;X). An essential step in the proof is Proposition 1.2.3
stating that the “upper derivative” of k(m)

M does not exceed κ(m)
M in the general case. The-

orem 1.2.2 generalizes some results of M.-Y. Pang [105] and M. Kobayashi [62] concerning
taut manifolds (domains). We provide examples to demonstrate that the assumptions in
the theorem are essential.

In Section 1.3 we find some relationships between the Minkowski functions of a bal-
anced domain or of its convex/holomorphic hull and some of the previously defined bi-
holomorphic invariants of that domain whenever one of their arguments is the origin.
Some of these relationships are used in the subsequent chapter.

In Section 1.4 we prove that the Kobayashi–Buseman metric κ̂M equals the Kobayashi
metric κ(2n−1)

M of order 2n− 1 and this number is the least possible in the general case.
A similar result for 2n instead of 2n− 1 can be found in the paper [63] of S. Kobayashi,
where κ̂M is introduced.

In Section 1.5 we prove a general statement, Theorem 1.5.4, on approximation and
interpolation over so-called Arakelian sets. To this end we use a well-known interpolation-
approximation result of P. M. Gauthier and W. Hengartner [43] and A. Nersesyan [78].
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This theorem is the base of the proof of Theorem 1.6.1 stating that the so-called
generalized Lempert function (of a given domain) does not decrease under addition of
poles. The last assertion is proven by Wikström [118] for convex domains; he left the
general case as an open question in [119].

In Section 1.7 we discuss the product property of the generalized Lempert function
in order to reject a hypothesis of D. Coman [22] on equality between this function and
the generalized pluricomplex Green function. In Proposition 1.7.2 we find a necessary
and sufficient condition for the Lempert function of the bidisc with (fixed argument and)
poles in the cartesian product of two two-point subsets of D∗ = D \ {0} to equal each of
the two corresponding functions of D.

1.2. Lempert functions and their “derivatives”. In this section we introduce the
Lempert functions of higher order and their infinitesimal forms, the Kobayashi metrics
of higher order, for an arbitrary complex manifold (see also [58, 64]).

Our main aim is to prove that if the Kobayashi metric of a complex manifold is contin-
uous and positive at a given point for each nonzero tangent vector, then the “derivatives”
of the Lempert functions exist and are equal to the corresponding Kobayashi metrics at
this point. This generalizes some results of M.-Y. Pang [105] and M. Kobayashi [62] for
taut domains/manifolds.

As usual D ⊂ C denotes the unit disc. Let M be an n-dimensional complex manifold.
Let us recall the definitions of the Lempert function lM and the Kobayashi–Royden (for
short, Kobayashi) (pseudo)metric κM of M :

lM (z, w) = inf{|α| : ∃f ∈ O(D,M) : f(0) = z, f(α) = w},
κM (z;X) = inf{|α| : ∃f ∈ O(D,M) : f(0) = z, αf∗,0(d/dζ) = X},

where X is a complex tangent vector to M at z. Such f always exist (see e.g. [120];
according to [34, p. 49] this was known even earlier to J. Globevnik).

Note that if F : M → N is a holomorphic mapping between two manifolds, then

lM (z, w) ≥ lN (F (z), F (w)).

In particular, if F is a biholomorphism, then we get equality, i.e. the Lempert function
is invariant under biholomorphisms. The above inequality also shows that this function
is the largest holomorphically contractible function that coincides on D with the Möbius
distance mD. On the other hand, the smallest such function is the Carathéodory function

c∗M (z, w) = sup{mD(f(z), f(w)) : f ∈ O(M,D)}.

If in this definition we replace mD by the Poincaré distance pD, we get the Carathéodory
(pseudo)distance

cM = tanh−1 c∗M .

As
κM (z;X) ≥ κN (F (z);F∗,z(X)),

the Kobayashi metric is the largest holomorphically contractible pseudometric such that
κD(0;X) = |X|. The smallest such pseudometric is the Carathéodory–Reiffen (briefly,
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Carathéodory) metric

γM (z;X) = sup{|f∗,z(X)| : f ∈ O(M,D)}

(we can assume f(z) = 0).
As in the case of domains, the Kobayashi distance kM can be defined as the largest

pseudodistance not exceeding the Lempert function of first order

k
(1)
M = tanh−1 lM

(for convenience we distinguish this function from the Lempert function lM ). By the
Kobayashi function we mean

k∗M = tanh kM .

Let us note that if k(m)
M denotes the Lempert function of order m (m ∈ N), i.e.

k
(m)
M (z, w) = inf

{ m∑
j=1

k
(1)
M (zj−1, zj) : z0, . . . , zm ∈M, z0 = z, zm = w

}
,

then
kM (z, w) = k

(∞)
M := inf

m
k

(m)
M (z, w).

Now let us recall that a manifold M is called taut if the family O(D,M) is normal. Every
taut domain in Cn is pseudoconvex. Conversely, every bounded domain with a C1-smooth
boundary is hyperconvex (i.e. has an exhausting negative plurisubharmonic function), so
it is a taut domain.

According to a result of M.-Y. Pang [105], the Kobayashi metric is the “derivative” of
the Lempert function if the domain is taut:

κD(z;X) = lim
t→0

lD(z, z + tX)

t

(in this limit, as well as in some similar ones below, we can replace lD by k(1)
D and, in

general, an invariant function with values in [0, 1) by tanh−1 of it, or vice versa).
In the general case the Kobayashi metric at a given point of a domain is not a

pseudonorm (vectorwise), i.e. its indicatriced are not convex domains. To avoid this defect,
S. Kobayashi [63] introduced a new invariant metric, later called the Kobayashi–Buseman
metric. As in the case of the Kobayashi distance, this metric κ̂M can be defined by letting
κ̂M (z; ·) be the largest pseudonorm not exceeding κM (z; ·). Clearly

κ̂M (z;X) = inf
{ m∑
j=1

κM (z;Xj) : m ∈ N,
m∑
j=1

Xj = X
}
.

Hence it is natural to consider the functions κ(m)
M , m ∈ N, defined as follows:

κ
(m)
M (z;X) = inf

{ m∑
j=1

κM (z;Xj) :

m∑
j=1

Xj = X
}
.

We call the function κ(m)
M the Kobayashi metric of order m. Clearly κ(m)

M ≥ κ(m+1)
M . Also

one can easily observe that if κ(m)
M (z; ·) = κ

(m+1)
M (z; ·) for some m, then κ

(m)
M (z; ·) =
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κ
(j)
M (z; ·) for each j > m. Furthermore, as we will see in the next section, κ(2n−1)

M =

κ
(∞)
M := κ̂M , with 2n− 1 being the least possible number in the general case.
Let us note that all objects introduced above are upper semicontinuous; for κM (and

hence for κ(m)
M and κ̂M ) see also [64]. To prove the upper semicontinuity of k(m)

M , it suffices
to check it for lM .

Proposition 1.2.1. For each complex manifold M , the function lM is upper semicon-
tinuous.

Proof. We use a standard procedure (see [112]). Let r ∈ (0, 1) and z, w ∈ M . Let f ∈
O(D,M) with f(0) = z and f(α) = w. Then f̃ = (f, id) : ∆ → M̃ = M × ∆ is
an immersion. Put f̃r(ζ) = f̃(rζ); now [112, Lemma 3] implies that there is a Stein
neighborhood S ⊂ M̃ of f̃r(D). As is well known, S can be immersed as a closed complex
manifold in C2n+1. Let ψ be the corresponding immersion. Then there is an (open)
neighborhood V ⊂ C2n+1N of ψ(S) and a holomorphic retraction θ : V → ψ(S). For z′

near z and w′ near w we can find (in a standard way) g ∈ O(D, V ) such that g(0) =

ψ(z′, 0) and g(α/r) = ψ(w′, α). Denote by π the natural projection of M̃ onto M. Then
h = π ◦ψ−1 ◦θ ◦g ∈ O(D,M), h(0) = z′ and h(α/r) = w′. Consequently, rlM (z′, w′) ≤ α.
This shows that lim supz′→z,w′→w lM (z′, w′) ≤ lM (z, w).

To extend the previously mentioned result of Pang, we define the “derivatives” of k(m)
M ,

m ∈ N∗ = N ∪ {∞}. Let (U,ϕ) be a holomorphic chart near z. We put

Dk(m)
M (z;X) = lim sup

t→0, w→z, Y→ϕ∗X

k
(m)
M (w,ϕ−1(ϕ(w) + tY ))

|t|
.

This definition does not depend on the chart; also,

Dk(m)
M (z;λX) = |λ|Dk(m)

M (z;X), λ ∈ C.

Replacing lim sup by lim inf, we can define Dk(m)
M .

A result of M. Kobayashi [62] shows that if M is a complex taut manifold, then
κ̂M (z;X) = DkM (z;X) = DkM (z;X),

i.e. the Kobayashi–Buseman metric is the “derivative” of the Kobayashi distance. The
proof of this result allows us to learn something more:

κ
(m)
M (z;X) = Dk(m)

M (z;X) = Dk(m)
M (z;X), m ∈ N.

Note that for the Carathéodory metric of an arbitrary complex manifold M one has
(see [58] for domains in Cn)

γM = DcM = DcM (1.2.1)
(the definitions of the last two invariants are obvious).

To formulate in full generality the main result of this section we need the following
notion. A complex manifold is called hyperbolic at the point z ∈ M if kM (z, w) > 0 for
each w 6= z. (Recall that M is hyperbolic if it is hyperbolic at each of its points, i.e. kM
is a distance.) Then the following assertions are equivalent:

(i) M is hyperbolic at z;
(ii) lim infz′→z, w∈M\U lM (z′, w) > 0 for each neighborhood U of z;
(iii) κM (z;X) := lim infz′→z,X′→X κM (z′;X ′) > 0 for each X 6= 0.
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The implications (i)⇒(ii)⇒(iii) are (almost) trivial, while (iii)⇒(i) follows from the
fact that kM is the integrated form of κM .

In particular, if M is hyperbolic at z, then it is hyperbolic at each point z′ near z.
If M is a taut manifold, then it is hyperbolic and κM is a continuous function. This

shows that the theorem below generalizes the previously mentioned result of M. Koba-
yashi.

Theorem 1.2.2. Let M be a complex manifold and z ∈M .

(i) If M is hyperbolic at z and κM is continuous at (z,X), then

κM (z;X) = DlM (z;X) = DlM (z;X).

(ii) If κM is continuous and positive at (z,X) for each X 6= 0, then

κ
(m)
M (z; ·) = Dk(m)

M (z; ·) = Dk(m)
M (z; ·), m ∈ N∗.

The first step of the proof of Theorem 1.2.2 is the following

Proposition 1.2.3. For each complex manifold M one has

κ
(m)
M ≥ Dk(m)

M , m ∈ N∗.

Note that if M is a domain, a weaker variant of Proposition 1.2.3 can be found in
[58], namely κ̂M ≥ DkM (the proof is based on the fact that DkM (z; ·) is a pseudonorm).

Proof of Proposition 1.2.3. Let us first consider the case m = 1. The main role will be
played by the following

Theorem 1.2.4 ([112] (1)). Let M be a complex manifold and the mapping f ∈ O(D,M)

be regular at 0. Let r ∈ (0, 1) and Dr = rD × Dn−1. Then there is a mapping F ∈
O(Dr,M) that is singular at 0 and F |rD×{0} = f .

Since κM (z; 0) = DlM (z; 0) = 0, one can assume that X 6= 0. Let α > 0 and f ∈
O(D,M) be such that f(0) = z and αf∗,0(d/dζ) = X. Let r ∈ (0, 1) and F be as in
Theorem 1.2.4. Since F is regular at 0, there are neighborhoods U = U(z) ⊂ M and
V = V (0) ⊂ Dr such that F |V : V → U is a biholomorphism. Therefore (U,ϕ), where
ϕ = (F |V )−1, is a chart near z. Note that ϕ∗,z(X) = αe1, where e1 = (1, 0, . . . , 0).

If w and Y are close enough to z and αe1, then g(ζ) = F (ϕ(w) + ζY/α) belongs to
O(r2D,M), g(0) = w and g(tα) = ϕ−1(ϕ(w) + tY ), t < r2/α. Consequently,

r2lM (w,ϕ−1(ϕ(w) + tY )) ≤ tα.

Thus r2 lM (z;X) ≤ α. For r → 1 and α→ κM (z;X) we get DlM (z;X) ≤ κM (z;X).

Now let m ∈ N. Recall that κ(m)
M (z; ·) is the largest function with the following prop-

erty:
For each X =

∑m
j=1Xj it follows that κ

(m)
M (z;X) ≤

∑m
j=1 κM (z;Xj).

To prove that κ(m)
M ≥ Dk(m)

M , it is sufficient to check that Dk(m)
M (z; ·) has this property.

Using the above notation and choosing Yj → ϕ∗,zXj so that
∑m
j=1 Yj = Y , we put w0 = w

(1) Instead of Theorem 1.2.4, one can use the approach from the proof of the semicontinuity
of lM .
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and wj = ϕ−1(ϕ(w) + t
∑j
k=1 Yj). Since

k
(m)
M (w,wq) ≤

m∑
j=1

k
(1)
M (wj−1, wj),

from the case m = 1 it follows that

Dk(m)
M (z;X) ≤

m∑
j=1

DkM (z;Xj) ≤
m∑
j=1

κM (z;Xj).

Finally, let m =∞ and n = dimM . Since κ̂M = κ
(2n−1)
M and kM ≤ k

(2n−1)
M , the case

m = 2n− 1 shows that DkM ≤ κ̂M .

Proof of Theorem 1.2.2. We can assume that X 6= 0. Bearing in mind Proposition 1.2.3,
we just have to prove that

κ
(m)
M (z;X) ≤ Dk(m)

M (z;X)

under the corresponding assumptions. For simplicity we assume that M is a domain in
Cn (the changes in the general case of a manifold are obvious).

(i) Fix a neighborhood U = U(z) b M. By hyperbolicity of M at z, there exist a
neighborhood V = V (z) ⊂ U and a number δ ∈ (0, 1) such that if h ∈ O(D,M) and
h(0) ∈ V , then h(δD) ⊂ U . By the Cauchy inequalities it follows that ‖h(k)(0)‖ ≤ c/δk,
k ∈ N (‖ · ‖ is the Euclidean norm).

Now choose sequences wj → z, tj → 0 and Yj → X such that

lM (wj , wj + tjYj)

|tj |
→ DlM (z;X).

Let the holomorphic discs gj ∈ O(D,M) and the numbers βj ∈ (0, 1) be such that gj(0) =

wj , gj(βj) = wj + tjYj and βj ≤ lM (wj , wj + tjYj)+ |tj |/j. Note that lM (wj , wj + tjYj) ≤
c1‖tjYj‖ ≤ c2|tj |. Let

wj + tjYj = gj(βj) = wj + g′j(0)βj + hj(βj).

Then

‖hj(βj)‖ ≤ c
∞∑
k=2

(βj/δ)
k ≤ c3|βj |2 ≤ c4|tj |2, j ≥ j0.

We put Ŷj = Yj−hj(βj)/tj . Then gj(0) = wj and βjg′j(0)/tj = Ŷj → X. Consequently,

κM (wj ; Ŷj) ≤
βj
|tj |
≤ lM (zj , wj + tjYj)

|tj |
+

1

j
.

For j →∞ we get κM (z;X) = κM (z;X) ≤ DlM (z;X).
(ii) The proof of the case m ∈ N is similar to the one below and we omit it. Now let

m =∞.
Our assumptions show that M is hyperbolic at z. Also it easily follows (say by con-

tradiction) that

∀ε > 0 ∃δ > 0 : ‖w − z‖ < δ, ‖Y −X‖ < δ‖X‖
⇒ |κM (w;Y )− κM (z;X)| < εκM (z;X). (1.2.2)
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Also, the proof of (i) shows that

k
(1)
M (a, b) ≥ κM (a; b− a+ o(a, b)), where lim

a,b→z

o(a, b)

‖a− b‖
= 0. (1.2.3)

Now choose sequences wj → z, tj → 0 and Yj → X such that

kM (wj , wj + tjYj)

|tj |
→ DkM (z;X).

Let wj,0 = wj , . . . , wj,mj = wj + tjXj be points from M such that
mj∑
k=1

k
(1)
M (wj,k−1, wj,k) ≤ kM (wj , wj + tjYj) + 1/j. (1.2.4)

Put wj,k = wj for k > mj . Since

kM (wj , wj,l) ≤
l∑

j=1

k
(1)
M (wj,k−1, wj,k) ≤ kM (wj , wj + tjYj) + 1/j ≤ c2|tj |+ 1/j,

kM (wj , wj,l) → 0 uniformly in l. The hyperbolicity of M at z implies that wj,l → z

uniformly in l. Indeed, assuming the contrary and choosing a subsequence, we can assume
that wj,lj 6∈ U for some U = U(z). Then

0 = lim
j→∞

kM (wj , wj,l) ≥ lim inf
z′→z,w∈M\U

lM (z′, w) > 0,

which is a contradiction.
Finally let us fix R > 1. Then (1.2.2) shows that

κM (z;wj,k − wj,k−1) ≤ RκM (wj,k;wj,k − wj,k−1 + o(wj,k, wj,k−1)), j ≥ j(R).

From this inequality, (1.2.3) and (1.2.4) it follows that
mj∑
k=1

κM (z;wj,k − wj,k−1) ≤ RkM (wj , wj + tjY j) +R/j.

Since κ̂M (z; tjYj) is bounded by the above sum, we get

κ̂M (z;Yj) ≤ R
kM (wj , wj + tjY j) + 1/j

|tj |
.

It remains to use that κ̂M (z; ·) is a continuous function. Then for j → ∞ and R → 1 it
follows that κ̂M (z;X) ≤ DkM (z;X).

Remark. From the above proofs, by a standard diagonal process, it follows that if M is
hyperbolic at z, then κM (z; ·) = Dl(z; ·).

The subsequent examples show that the assumptions of continuity in Theorem 1.2.2
are essential.

• Let A be a countable dense subset of C∗ (= C \ {0}). In [33] (see also [58]) there is
an example of a pseudoconvex domain D ⊂ C2 such that:

(i) (C× {0}) ∪ (A× C) ⊂ D;

(ii) if z0 = (0, t) ∈ D, t 6= 0, then κD(z0; ·) ≥ C‖ · ‖ for some C > 0. (It can even be
shown that DlD(z0; ·) ≥ C‖ · ‖.)
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Then it is easily deduced that κD(·; e2) = Dk(3)
D (·; e2) = k

(5)
D = 0 and κ̂D(z0; ·) ≥ c‖ · ‖,

where e2 = (0, 1) and c > 0. Therefore

κ̂D(z0;X) > 0 = κD(z0; e2) = Dk(3)
D (z0; e2) = Dk(5)

D (z0;X), X ∈ (C2)∗.

This phenomenon clearly appears also in Cn, n > 2 (say for D × Dn−2). Thus the
inequalities in Proposition 1.2.3 are strict in the general case.

• There exists a bounded pseudoconvex domain D ⊂ C2 containing the origin such
that (see e.g. [127, Example 4.2.10])

κD(0; e1) = DkD(0; e1) = lim sup
t→0

lD(0, te1)

|t|
> lim inf

t→0

lD(0, te1)

|t|
≥ DkD(0; e1).

We conclude this section by the following

Question. Is κD 6= DlD in the general case? Is DkD a holomorphically contractible
invariant? (For this question see also [60].)

A partial positive answer will be given in Section 2.11 by showing that there is a
pseudoconvex domain D ⊂ C8 and a point (z,X) ∈ D × Cn such that

κD(z;X) > 0 = lim sup
t→0

lD(z, tX)

|t|
.

1.3. Balanced domains. The biholomorphic invariants can be explicitly calculated for
a few classes of domains, usually contained in the class of Reinhardt domains. Each
complete Reinhardt domain is balanced. In this section we determine some relationships
between the Minkowski functions of a balanced domain or of its convex/holomorphically
convex hull and some biholomorphic invariants of the domain when one of their arguments
is the origin.

Recall that a domain D ⊂ Cn is called balanced if λz ∈ D for each (λ, z) ∈ D×D (for
this definition and part of the facts below see e.g. [58]). We naturally associate to such a
domain its Minkowski function

hD(z) = inf{t > 0 : z/t ∈ D}, z ∈ Cn.
The function hD ≥ 0 is upper semicontinuous and

hD(λz) = |λ|hD(z), λ ∈ C, z ∈ Cn, D = {z ∈ Cn : hD(z) < 1}.
Let us note that D is pseudoconvex exactly when log h ∈ PSH(Cn), which in this case
is equivalent to h ∈ PSH(Cn). Also recall that D is a taut domain exactly when it is
bounded and hD is a continuous plurisubharmonic function. This shows that, for a bal-
anced domain, being hyperconvex or taut is the same. Let us note that the hyperbolicity
of D is equivalent to its boundedness. More general results concerning so-called Hartogs
domains can be found in the paper [85] of the author and P. Pflug.

Clearly, the convex hull D̂ of a balanced domain D is balanced. Let us recall the well-
known relationships between hD, ĥD = hD̂ and some invariant functions and metrics.

Proposition 1.3.1. Let D ⊂ Cn be a balanced domain and a ∈ D. Then:

(i) γD(0; ·) = κ̂D(0; ·) = ĥD.

(ii) ĥD ≤ c∗D(0, ·) ≤ k∗D(0, ·) ≤ lD(0, ·) ≤ hD and ĥD ≤ κ(0; ·) ≤ hD;

(iii) c∗D(0, a) = hD(a)⇔ k∗D(0, a) = hD(a)⇔ hD(a) = ĥD(a).
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If in addition D is pseudoconvex, then

(iv) lD(0, ·) = hD and κ(0; ·) = hD.

The Lempert theorem (mentioned in the introduction) implies that c∗D = k∗D = lD for
each convex domain D. Then by the above proposition we get

Corollary 1.3.2. For a pseudoconvex balanced domain D ⊂ Cn the following are equiv-
alent:

(i) D is convex (i.e. hD = ĥD);
(ii) c∗D = lD;

(iii) c∗D(0, ·) = lD(0, ·);
(iv) k∗D = lD;

(v) k∗D(0, ·) = lD(0, ·).

Put (k
(m)
D )∗ = tanh k

(m)
D . Proposition 1.3.1(iii) shows that at a ∈ D the value of

kD(0, ·) is maximal exactly when D is “convex” in the direction of a, i.e. hD(a) = ĥD(a).
The next result shows that more is true.

Proposition 1.3.3. Let D ⊂ Cn be a balanced domain and a ∈ D. The following are
equivalent:

(i) ĥD(a) = hD(a);

(ii) (k
(3)
D (0, a))∗ = hD(a);

(iii) κ(2)
D (0; a) = hD(a).

Since k(m)
D (0, a) ≤ k

(3)
D (0, a) ≤ hD for 3 ≤ m ≤ ∞ (kD = k

(∞)
D ) and κ

(l)
D (0; a) ≤

κ
(2)
D (0; a) for 2 ≤ l ≤ ∞ (κ̂D = κ

(∞)
D ), for these m and l it follows that ĥD(a) = hD(a)⇔

(k
(m)
D (0, a))∗ = hD(a)⇔ κ

(2)
D (0; a).

Remark. We do not know whether 3 can be replaced by 2 (it cannot be replaced by 1
according to Proposition 1.3.1(iv)).

Proof. The implication (i)⇒(ii) follows from Proposition 1.3.1.
Assume (iii) holds. If a1 + a2 = a, then by κ

(2)
D (0; a) ≤ κD(0; a1) + κD(0; a2) and

κD(0; ·) ≤ hD it follows that hD(a) ≤ hD(a1) + hD(a2), so (i) holds.
It remains to prove (ii)⇒(iii). We first prove that (ii) implies

(k
(2)
D (0, λa))∗ = |λ|hD(a), λ ∈ D. (1.3.1)

We can assume that hD(a) 6= 0. Considering the analytic disc ϕ(ζ) = aζ/hD(a) as a
competitor (2) for lD(λa, a), we get

lD(λa, a) ≤ m(hD(λa), hD(a)).

Hence by the inequality

p(0, hD(a)) = k
(3)
D (0, a) ≤ k(2)

D (0, λa) + k
(1)
D (λa, a)

(2) This means that ϕ belongs to the set over which we take the infimum in the definition
of lD.
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we get
p(0, |λ|hD(a)) = p(0, hD(a))− p(|λ|hD(a), hD(a)) ≤ k(2)

D (0, λa).

Thus
(k

(2)
D (0, λa))∗ ≥ |λ|hD(a).

It remains to note that the opposite inequality is always true.
Now (1.3.1) shows that

lim
λ→0

k
(2)
D (0, λa)

|λ|
= hD(a).

On the other hand, by Proposition 1.2.3 this limit does not exceed κ(2)
D (0; a) ≤ hD(a), so

(iii) is proved.

Having in mind Propositions 1.3.1 and 1.3.3, it is natural to ask whether the mini-
mality (rather than maximality) of some k(m)

D (0, a), i.e. lD(0, a) = hG(a) for a domain
G ⊃ D, implies some “convex” property. We have the following

Proposition 1.3.4. Let D ⊂ Cn be a bounded balanced domain and G ⊂ Cn be a
pseudoconvex balanced domain containing D. Suppose that hD is continuous at some
a ∈ D, hG(a) 6= 0 and G does not contain (nontrivial) analytic discs through a/hG(a).

Then the following are equivalent:

(i) hD(a) = hG(a);

(ii) lD(0, a) = hG(a);

(iii) κD(0; a) = hG(a).

Proof. It suffices to prove that

lD(0, a) = hG(a) ⇒ hD(a) ≤ hG(a), κD(0; a) = hG(a) ⇒ hD(a) ≤ hG(a).

Let (ϕj) ⊂ O(D, D) and αj → hG(a) so that ϕj(0) = 0 and ϕj(αj) = a (correspondingly,
αjϕ

′
j(0) = a). Expressing ϕj in the form ϕj(λ) = λψj(λ), by the maximum principle

hG ◦ ψj ≤ 1 so ψj ∈ O(D, G). As D is bounded, then by going to a subsequence we can
assume that ϕj → ϕ ∈ O(D, D), hence ψj → ψ ∈ O(D, G). In particular,

ψ(hG(a)) = lim
j→∞

ψj(αj) = lim
j→∞

a

αj
=

a

hG(a)
=: b (and ψ(0) = b),

respectively. On the other hand, as G does not contain analytic discs through b, we get
ψ(D) = b. The continuity of hD at b implies that

1 > hD(ϕj(λ))→ |λ|hD(b), λ ∈ D.

When λ→ 1 we get hD(b) ≤ 1, i.e. hD(a) ≤ hG(a).

Remarks. (a) Since the holomorphic hull E(D) of a balanced domain D is a balanced
domain (see e.g. [59, Remark 3.1.2(b)]), the above result can also be applied forG = E(D).
Of course, it can also be applied for G = D̂.

(b) If hG is continuous near a and ∂G does not contain analytic discs through a/hG(a),

then by the maximum principle it follows that G does not contain analytic discs through
a/hG(a) either.
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(c) In connection with Proposition 1.3.4 it is natural to ask whether if hD = lD(0, ·)
for a balanced domain D, then it has to be pseudoconvex. The answer to this question
is unknown to us.

The next example shows that in Proposition 1.3.4 the continuity of hD is essential.

Example 1.3.5. If D = D2 \ {(t, t) : |t| ≥ 1/2}, d = (t, t), |t| < 1/2, then

hD(d) = 2|t|, but l∗D(0, d) = |t| = hD2(d).

On the other hand, E(D) = D2 and D2 does not contain analytic discs through any point
from ∂D× ∂D.

Proof. We need to prove only that

lD(0, d) ≤ |t|.

For each r ∈ (|t|, 1) we can choose α ∈ D so that t = ϕ(t/r), where ϕ(λ) = λ λ−α
1−αλ .

Then the disc ψ(ζ) = (rζ, ϕ(ζ)) is a competitor for lD(0, d), whence it follows that
lD(0, d) ≤ |t|/r. It remains to leave r → 1.

Addendum. Note that even
lD(0, ·) = lD2(0, ·).

To see this, it suffices to prove that lD(0, a) ≤ |a1| for a = (a1, a2) ∈ D, a1 6= a2,

|a1| ≥ |a2|. We see this easily by considering ψ(λ) = (λ, λa2/a1) as a competitor for
lD(0, a).

On the other hand, if a1 = (0, b) and a2 = (b, 0), b ∈ D, then

lD(a1, a2) = lD2(a1, a2) ⇔ |b| ≤ 4/5.

Indeed, using the Möbius transformation ψb(λ) = λ−b
1−bλ , we get lD(a1, a2) = lDb(0, a),

where a = (b,−b) and Db = D2 \ {(ψb(λ), λ) : 1/2 ≤ |λ| < 1}.
For |b| < 4/5 we easily check that ϕ = (id,−id) ∈ O(D, Db). Then lDb(0, a) ≤ |b| so

lD(a1, a2) = lD2(a1, a2).

To get this for |b| = 4/5, it suffices to consider rϕ for r ∈ (0, 1) as a competitor for
lDb(0, a), and then let r → 1.

Now assume that lD(a1, a2) = lD2(a1, a2) for |b| > 4/5. Then we can find discs ϕj ∈
O(D, Db) such that ϕj(0) = 0 and ϕj(αj) = a, where αj → b. The Schwarz–Pick Lemma
implies that ϕj → ϕ. On the other hand, ϕ(D)∩{(ψb(λ), λ) : 1/2 < |λ| < 1} is a singleton,
contradicting the Hurwitz Theorem.

Remark. By [58, Theorem 3.4.2] (see also [108]) it follows that if Dn = Dn \ {(t, . . . , t) :

|t| ≥ 1/2}, n ≥ 3, then lDn = lDn .

The next example shows that in Proposition 1.3.4 the assumption on discs is essential.

Example 1.3.6. Let 0 < a < 1 and

D = {z ∈ D2 : |z2|2 − a2 < 2(1− a2)|z1|}.

Then D is a balanced Reinhardt domain, hD is continuous function and E(D) = D2 (see
e.g. [59]). On the other hand, if c = (0, d), |d| < a, then

hD(c) = |d|/a > lD(0, c) = |d| = hD2(c).
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Proof. We just have to show that lD(0, c) ≤ d for d ∈ (0, a). It suffices to show that
ϕ = (ψ, id) ∈ O(D, D), where ψ(λ) = λ λ−d

1−dλ . It is easily seen that |ψ(λ)| ≥ x x−d
1−xd for

x = |λ| and it suffices to check that

x2 − a2 < 2(1− a2)
x(x− d)

1− dx
, i.e.

dx3 + (1− 2a2)x2 − d(2− a2)x+ a2 > 0.

This is clear for x = 0. Since x ∈ (0, 1) and d ∈ (0, a), we need to prove that

ax3 + (1− 2a2)x2 − a(2− a2)x+ a2 ≥ 0,

which is equivalent to the obvious inequality (x− a)2(ax+ 1) ≥ 0.

Remark. Some propositions and examples in the spirit of the above for k(m) can be
found in the paper [90] of the author and P. Pflug.

1.4. Kobayashi–Buseman metric. The main aim of this section is to prove that the
Kobayashi–Buseman metric for an arbitrary domain equals the Kobayashi metric of order
2n− 1 and this number is the least possible. A similar result for 2n instead of 2n− 1 is
contained in the work [63] of S. Kobayashi, where this metric is introduced.

Theorem 1.4.1. For each domain D ⊂ Cn one has

κ
(2n−1)
D = κ̂D. (1.4.1)

On the other hand, if n ≥ 2 and

Dn =
{
z ∈ Cn :

n∑
j=2

(2|z3
1 − z3

j |+ |z3
1 + z3

j |) < 2(n− 1)
}
,

then
κ

(2n−2)
Dn

(0; ·) 6= κ̂Dn(0; ·). (1.4.2)

The proof below shows that the identity (1.4.1) remains true for an arbitrary n-
dimensional complex manifold.

Theorems 1.4.1 and 1.2.2 lead to the following

Corollary 1.4.2. For every taut domain D ⊂ Cn one has

lim
w→z

k
(2n−1)
D (z, w)

kD(z, w)
= 1

locally uniformly on z. The number 2n− 1 is the least possible in the general case.

Remarks. (a) Corollary 1.4.2 remains true for an arbitrary n-dimensional complex taut
manifold.

(b) Corollary 1.4.2 can be viewed as an affirmative answer to the infinitesimal version
of a question of S. Krantz [66]: For an arbitrary strictly pseudoconvex domain D ⊂ Cn, is
there some m = m(D) ∈ N such that kD = k

(m)
D ? Unlike the infinitesimal case, m cannot

depend only on n, as shown in [58, p. 109].

For z ∈ D ⊂ Cn, denote by ID,z the indicatrix of κD(z; ·), i.e. ID,z = {X ∈ Cn :

κD(z;X) < 1}. Note that ID,z is a balanced domain. In particular, it is starlike with
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respect to the origin. Then the identity κ(2n)
D = κ̂D is obtained from the following appli-

cation of a lemma of C. Carathéodory (see e.g. [62]):

ĥS = inf
{ m∑
j=1

hS(Xj) : m ≤ 2n,

m∑
j=1

Xj = X,

X1, . . . , Xm are R-linearly independent
}
, (1.4.3)

where hS and ĥS are the functions of Minkowski of an arbitrary domain S ⊂ Cn that is
starlike with respect to the origin (i.e. ta ∈ S for a ∈ S and t ∈ [0, 1]) and of its convex
hull Ŝ, respectively (it is easily seen that in this case the number 2n is the least possible).

In order to replace the number 2n by 2n−1, we will use the fact that ID,z is balanced
rather than starlike. For m ∈ N we put

h
(m)
S (X) = inf

{ m∑
j=1

hS(Xj) :

m∑
j=1

Xj = X
}
.

Proof of (1.4.1). This follows directly from

Proposition 1.4.3. If B ⊂ Cn is a balanced domain, then

ĥB = h
(2n−1)
B . (1.4.4)

To prove Proposition 1.4.3 we need

Lemma 1.4.4. Every balanced domain can be exhausted by bounded balanced domains with
continuous Minkowski functions.

Proof. Let B ⊂ Cn be a balanced domain. For z ∈ Cn and j ∈ N we put Fn,j,z =

Bn(z, ‖z‖2/j) (Bn(a, r) ⊂ Cn is the ball of center a and radius r). We can assume that
Bn(0, 1) b B. Let

Bj = {z ∈ Bn(0, j) : Fn,j,z ⊂ B}, j ∈ N.

Then (Bj) is an exhaustion of B by nonempty bounded open sets. We will show that Bj
is a balanced domain with continuous Minkowski function hBj .

To this end let us note that if z ∈ Bj and λ ∈ (D)∗, then Fn,j,λz ⊂ λFn,j,z ⊂ B. Now
it easily follows that Bj is a balanced domain.

As hBj is upper semicontinuous, it remains to prove that it is also lower semicontin-
uous. Assuming the contrary, we can find a sequence of points zk tending to some z, and
a number c > 0 such that hBj (zk) < 1/c < hBj (z) for each k. Note that Fn,j,czk ⊂ B, so
Bn(cz, c2‖z‖2/j) ⊂ B. On the other hand, let us choose t ∈ (0, 1) such that hBj (tcz) > 1.
Then Fn,j,tcz ⊂ Bn(cz, c2‖z‖2/j) ⊂ B, so h(tcz) < 1, a contradiction.

Proof of Proposition 1.4.3. We will first prove (1.4.4) in the case when B ⊂ Cn is a
bounded balanced domain with a continuous Minkowski function. Let us fix a vector
X ∈ (Cn)∗. Then ĥB(X) 6= 0 and we can assume that ĥB(X) = 1. As hB is continuous,
by (1.4.3) there exist R-linearly independent vectors X1, . . . , Xm (m ≤ 2n) such that∑m
j=1Xj = X and

∑m
j=1 hB(Xj) = 1. As ĥB is a norm and ĥB ≤ hB , by the triangle

inequality hB(Xj) = ĥB(Xj), j = 1, . . . ,m. To prove (1.4.4), it suffices to show that
m 6= 2n. Let H be a support hyperplane for B̂ at X ∈ ∂B̂. We can assume that H =
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{z ∈ Cn : Re〈z − X,X0〉 = 0}, where X0 ∈ Cn (〈·, ·〉 is the Hermitian scalar product).
Suppose that m = 2n. Then H = {

∑m
j=1 αjXj/hB(Xj) :

∑m
j=1 αj = 1, α1, . . . , αm ∈ R}.

In particular, ∂B̂ contains a set relatively open in H. As B̂ is a balanced domain, its
intersection with the complex line through X, directed at X0, is a disc containing a
line segment in its boundary. This contradiction proves (1.4.4) for a bounded balanced
domain with a continuous Minkowski function.

Now let B ⊂ Cn be an arbitrary balanced domain. If (Bj) is an exhaustion of B as in
Lemma 1.4.4, then hBj ↘ hB pointwise. Then (1.4.3) shows that ĥBj ↘ ĥB . Now (1.4.3)
follows from the inequalities ĥB ≤ h

(2n−1)
B ≤ h

(2n−1)
Bj

and the equality ĥBj = h
(2n−1)
Bj

from above.

Proof of (1.4.2). Observe that the domain Dn from Theorem 1.4.1 is pseudoconvex and
balanced. Then κDn(0; ·) = hDn (see Proposition 1.3.1 (iv)) so κ(m)

Dn
(0; ·) = h

(m)
Dn

. Thus
(1.4.2) is equivalent to

ĥDn 6= h
(2n−2)
Dn

. (1.4.5)

To prove this inequality, let Ln = {z ∈ Cn : z1 = 1}. By the triangle inequality
Dn ⊂ D× Cn−1 and

Fn := ∂Dn ∩ Ln = {z ∈ Cn : z1 = 1, z3
j = 1, 2 ≤ j ≤ n}.

Hence ∂D̂n ∩Ln = F̂n = {1} × ∆̂n−1, where ∆ is the triangle of vertices 1, e2πi/3, e4πi/3

together with its interior. Note that ∂D̂n ∩ Ln is a (2n− 2)-dimensional convex set. Put
F̃n = {Y ∈ F̂n : h

(2n−2)
Dn

(Y ) = 1}. If X ∈ F̃n, then there exist vectors X1, . . . , Xm ∈
(Cn)∗, m ≤ 2n − 2, such that

∑m
j=1Xj = X and

∑m
j=1 hDn(Xj) = 1 (as Dn is a taut

domain). ThenX1/hDn(X1), . . . , Xm/hDn(Xm) ∈ Fn and the convex hull of these vectors
contains X. As Fn is a finite set, it is contained F̃n in a finite union of not more than
(2n− 3)-dimensional convex sets. So F̂n 6= F̃n, which shows that ĥDn 6= h

(2n−2)
Dn

.

Thus Theorem 1.4.1 is proved.

1.5. Interpolation in the Arakelian theorem. The aim of this section is to prove a
general statement on approximation and interpolation over so-called Arakelian sets. This
statement will be used in the proof of Theorem 1.6.1 from the next section.

Let us first recall the well-known theorem of Mergelian that generalizes the theorems
of Weierstrass and Runge.

Theorem 1.5.1. The complement of a compact K ⊂ C is a connected set if and only if
each continuous function on K that is holomorphic in the interior of K can be uniformly
approximated on K by polynomials.

The most popular generalization of Theorem 1.5.1 belongs to N. Arakelian (3).
A relatively closed subset E of a domain D ⊂ C is called an Arakelian set if D∗ \ E

is connected and locally connected, where D∗ is the one-point compactification of D.
Denote by A(E) the set of continuous functions on E that are holomorphic in the

interior E0 of E.

(3) After the proof by N. Arakelian of Theorem 1.5.2, J.-P. Rosay and W. Rudin [111] showed
how this theorem follows from the Mergelian theorem itself.
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Theorem 1.5.2 ([6]). A relatively closed subset E of a domain D ⊂ C is an Arake-
lian set if and only if each function from A(E) can be uniformly approximated on E by
holomorphic functions from D.

The next result, proven independently by P. M. Gauthier and W. Hengartner and by
A. Nersesyan, provides an opportunity for interpolation in Theorem 1.5.2.

Theorem 1.5.3 ([43, 78]). Let D ⊂ C be a domain, let E ⊂ D be an Arakelian set, and
let Λ be a sequence of points in E \ E0 without an accumulation point in D. Suppose
for every λ ∈ Λ, a finite sequence (βνλ)

ν(λ)
ν=1 of complex numbers is given. Then for each

f ∈ A(E) and each ε > 0, there exists a g ∈ O(D) such that |g(z)− f(z)| < ε for z ∈ E,
g(λ) = f(λ) and g(ν)(λ) = βνλ for λ ∈ Λ and ν = 1, . . . , ν(λ).

Now let us formulate an extension of Theorem 1.5.3.

Theorem 1.5.4. Let D, E, Λ (possibly Λ = ∅), βνλ be as in Theorem 1.5.3 and let
b1, . . . , bk ∈ E0. Then for each f ∈ A(E), ε > 0 and m ∈ N∗ there exists a g ∈ O(D)

with the properties of Theorem 1.5.3 and such that g(ν)(bj) = f (ν)(bj) for j = 1, . . . , k

and ν = 0, . . . ,m.

Proof. We can clearly assume that E 6= D.
The proof will be divided into four steps.
Step 1. For each j = 1, . . . , k, there is a function sj ∈ O(D), bounded on E and such

that s′j(bj) 6= 0, sj(bj) = 0 and sj(bq) 6= 0 for an arbitrary q 6= j (4).
Indeed, choose a point c ∈ D \E. As E ∪ {c} ⊂ D is an Arakelian set, Theorem 1.5.2

implies the existence of an s̃ ∈ O(D) such that |s̃| < 1 on E and |s̃(c) − 2| < 1. Put
ŝj = s̃− s̃(bj). As ŝj(c) 6= 0, we get ŝj 6≡ 0. Now as |ŝj | < 2 on E, the function

sj(z) =
(z − bj)ŝj(z)∏k

q=1(z − bq)ordbq ŝj
, z ∈ D,

has the required properties.
Step 2. There exists a function p ∈ O(D), bounded on E and such that p(bj) 6= 0 for

j = 1, . . . , k and ordλ p ≥ ν(λ) + 1 for an arbitrary λ ∈ Λ.
Indeed, if q = 0 on E and q(c) = 1, where c ∈ D \ E, we can apply Theorem 1.5.3

for E ∪ {c}, q, ε = 1 and βνλ = 0, ν = 1, . . . , ν(λ) + 1, λ ∈ Λ. Thus we get a nonconstant
function p̃ ∈ O(D) such that |p̃| < 1 on E and ordλ p̃ ≥ ν(λ) + 1, λ ∈ Λ. It remains to
put

p(z) =
p̃(z)∏k

j=1(z − bj)ordbj p̃
, z ∈ D.

Step 3. Let sj be the function from Step 1, j = 1, . . . k, and let p be the function from
Step 2. For each ν ∈ N∗ we put

h̃νj =
p

sj

k∏
q=1

sν+1
q ,

(4) This is clear if D is biholomorphic to a bounded domain; in particular, if D 6= C.
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Then

hνj =
h̃νj

(h̃νj )(ν)(bj)

is well defined on D. The function

Mν = sup
E

k∑
j=1

|hνj |

will be also needed in the last step.
Step 4. We are ready to prove the theorem by induction on m.
Let m = 0 and g be the function from Theorem 1.5.3 for Λ, (βνλ)

ν(λ)
ν=1 and ε

M0+1 . It is
easily checked that the function

g0 = g +

k∑
j=1

(f(bj)− g(bj))h
0
j

has the required properties.
Put d = min1≤j≤k dist(bj ,C \ E0). Assume that the conclusion of Theorem 1.5.4 is

true for some m ≥ 0 and let gm be the corresponding function for ε(1 + Mm+1(m +

1)!d−m−1)−1. By the Cauchy inequality, the function

gm+1 = gm +

k∑
j=1

(f (m+1)(bj)− g(m+1)
m (bj))h

m+1
j

has the required properties for m+ 1.

This finishes the induction step.

1.6. Generalized Lempert function. In this section we define the generalized Lempert
function (introduced by D. Coman [22]) and prove that it decreases under adding poles.
This function is introduced as an easier and more flexible (in some sense) version of the
so-called generalized (pluricomplex) Green function (see e.g. [60]).

Let D ⊂ Cn be a domain and p  0 be a function on D. Put

|p| = {a ∈ D : p(a) > 0}.

For z ∈ D we define

lD(p, z) = inf
{∏

|λψ,a|p(a) : ∃ψ ∈ O(D, D), ψ(0) = z, ψ(λψ,a) = a for each a ∈ |p|
}

(for any a ∈ |p| we take one λψ,a).
From the proof of Theorem 1.6.1 below it follows that such a ψ exists if |p| is finite

or countable. If |p| is uncountable and such a ψ exists, then it is easily seen that

0 = lD(p, z) = inf{lD(pB , z) : B ⊂ |p|, 0 < #B <∞},

where pB = pχB .

If there is no such ψ, we can define

lD(p, z) = inf{lD(pB , z) : B ⊂ |p|, 0 < #B <∞}.

The function lD(p, ·) so introduced is called the Lempert function of D with respect
to p (a generalized Lempert function). If A is a nonempty subset of D and χA is its
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characteristic function, then we put lD(A, z) = lD(χA, z). This function is called the
Lempert function with poles in A. Let us note that lD({a}, z) is the usual Lempert function
lD(a, z).

Using the Lempert theorem, F. Wikström [118] showed that if A and B are subsets
of a convex domain D ⊂ Cn such that A ⊂ B, then lD(B, ·) ≤ lD(A, ·), i.e. the Lempert
function decreases under adding poles.

On the other hand, in [119] there is an example of a complex space not satisfying this
inequality (under the same definition of a Lempert function) and it is asked whether this
inequality is true for arbitrary domains in Cn.

The main aim of this section is to give an affirmative answer to this question. We will
use Theorem 1.5.4, that is, the possibility for interpolation in the Arakelian approximation
theorem.

Theorem 1.6.1. If D ⊂ Cn is a domain and p  0 is a function on D, then

lD(p, ·) = inf{lD(pB , ·) : B ⊂ |p|, 0 < #B <∞}.

In particular, lD(p, ·) = inf{lD(pB , ·) : ∅ 6= B ⊂ |p|}.

Corollary 1.6.2. If D ⊂ Cn is a domain and p, q are functions on D such that 0 �
p ≤ q, then lD(q, ·) ≤ lD(p, ·).

Proof. By the above remark, the theorem follows in the case when |p| is uncountable.
Now let |p| = (aj)

l
j=1 (l ∈ N∗) be a countable or finite nonempty set. Let z ∈ D.

We first prove the inequality

lD(p, z) ≤ inf{lD(pB , z) : B ⊂ |p|, 0 < #B <∞}. (1.6.1)

Let B 6= ∅ be a finite subset of |p|. We can assume that B = Am := (aj)
m
j=1 for some

m ≤ l.
Let us consider an arbitrary ϕ : D → D such that ϕ(λj) = aj , 0 ≤ j ≤ m, where

λ0 = 0 and a0 = z. Let t ∈ [max0≤j≤m |λj |, 1) and λj = 1 − (1 − t)/j, j ∈ A(m), where
A(m) = {m + 1, . . . , l} for l < ∞ and A(m) = {j ∈ N : j > m} for l = ∞. Consider a
continuous curve ϕ1 : [t, 1)→ D such that ϕ1(t) = ϕ(t) and ϕ1(λj) = aj , j ∈ A(m). Put

f =

{
ϕ|tD
ϕ1|[t,1)

on Ft = tD∪[t, 1) ⊂ D. Clearly Ft is an Arakelian set for D, f ∈ A(Ft, D) and Λ = (λj)
l
j=1

satisfies the conditions in Theorem 1.5.4. Let d(z) = dist(f(z), ∂D), z ∈ Ft, where the
distance is generated by the L∞-norm. Choose a continuous real-valued function η on Ft
such that

η ≤ log d on [t, 1), η = min
tD

log d on tD.

By Theorem 1.5.3, there exists a ζ ∈ O(D) such that |ζ−η| < 1 on Ft. By Theorem 1.5.4,
applied to the components of eζ−1f, one can find a qt ∈ O(D) such that qt(λ) = f(λ),

λ ∈ Λ and
‖qt − f‖ < |eζ(z)−1| < eη(z) ≤ d(z), z ∈ Ft.
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Thus qt(Ft) ⊂ D and so there exists a simply connected domain Et such that Ft ⊂ Et ⊂ D
and qt(Et) ⊂ D.

Let ρt : D → Et be the corresponding Riemann (conformal) mapping, satisfying
ρt(0) = 0, ρ′t(0) > 0 and ρt(λtj) = λj . Considering the analytic discs qt ◦ ρt : D → D we
get

lD(p, z) ≤
l∏

j=1

|λtj |p(aj) ≤
m∏
j=1

|λtj |p(aj).

Note that by the Carathéodory Kernel Theorem, ρt for t→ 1 tends locally uniformly on
D to id. Hence the latter product above tends to

∏m
j=1 |λj |p(aj). Since ϕ was an arbitrary

competitor for lD(p|Am , z), we get the inequality (1.6.1).
On the other hand, the existence of analytic discs containing z and |p| easily implies

lD(p, z) ≥ lim sup
m→∞

lD(p|Am , z),

which concludes the proof of the theorem.

Remark. The Lempert function does not decrease strictly under addition of poles; for
example [32, Theorem 2.1] shows that

lD2({a1, a2} × {a1}, 0) = |a1| = lD2({a1} × {a1}, 0).

The next example shows that our definition of a generalized Lempert function, in
the case of nonexistence of a corresponding disc, is more “sensitive” than that from [60]
(where in this case the function is set to be 1).

Example. Let A ⊂ D be an uncountable set. Then there is no analytic disc ϕ ∈ O(D,D2)

containing A× {0} and (0, w), w ∈ D∗.
Let B be an arbitrary finite subset of A. From [32, Theorem 2.1],

lD(B × {0}, (0, w)) = max{lD(B, 0), lD(0, w)} = max
{∏
b∈B

|b|, |w|
}
.

So lD(A× {0}, (0, w)) = |w|.

Finally let us note that the generalized Lempert function is clearly biholomorphically
invariant, but in general not contractible under holomorphic mappings even when they
are proper coverings.

Example. Let π(z) = z2. Clearly π : D∗ → D∗ is a proper covering (D∗ = D \ {0}). Let
a1 = −a2 ∈ D∗, c = a2

1 and z ∈ D∗, z 6= a1, a2. By [58, Theorem 3.3.7],

lD∗(c, z
2) = min{lD∗(a1, z), lD∗(a2, z)} > lD∗(a1, z)lD∗(a2, z).

On the other hand, by [32, Theorem 2.1] the last product equals lD∗({a1, a2}, z). Therefore

lD∗(p, π(z)) > lD∗(p ◦ π, z) for p = χ{c}.

We conclude this section with the following comment. The proof of Theorem 1.6.1 is
contained in the paper [86] by the author and P. Pflug. Later, based on the same idea, F.
Forstnerič and J. Winkelmann [38] proved that, for every connected complex manifold,
the holomorphic discs with dense images form a dense subset of the set of all discs. To
this end a nontrivial approximation statement is used and the result is the following.
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Let M be a connected complex manifold, d is a distance generated by a complete
Riemann metric, A is a countable subset of M , f ∈ O(D, X) and r ∈ (0, 1). Then there
exists a g ∈ O(D, X) such that A ⊂ g(D) and d(f(z), g(z)) < 1− r for each z ∈ rD.

A modification of the proof of this fact shows that if, apart from A, f, r, we are given
a finite subset Λ of D, then there exists a g as above, as well as a sequence (µλ)λ∈Λ ⊂ D
with r|µλ| < |λ| such that f(λ) = g(µλ), λ ∈ Λ. Letting r → 1 one can prove that
Theorem 1.6.1 remains true for complex manifolds.

1.7. Product property. Let lD(p, ·) and lG(q, ·) be generalized Lempert functions of
domains D ⊂ Cn and G ⊂ Cm. They generate a generalized Lempert function lD×G(r, ·)
of the product product G×D, where

r(ζ, η) = p(η)q(ζ), ζ ∈ D, η ∈ G.

In this section we discuss when the generalized Lempert function has the product
property, i.e.

lD×G(r, (z, w)) = max{lD(p, z), lG(q, w)}.

Let us note that the Lempert functions, the Kobayashi functions, and the Carathéo-
dory functions have this property; a similar property is true for their infinitesimal forms
(see e.g. [58, 60]).

We need the pluricomplex Green function gD defined as follows:

gD(z, w) = supu(w),

where the supremum is over all negative functions u ∈ PSH(D) such that u(·) ≤
log ‖ · −z‖+Ou(1). Then

c∗D ≤ g∗D := exp gD ≤ lD,

so for the infinitesimal form of gD, the so-called Azukawa (pseudo)metric,

AD(z;X) = lim sup
λ→0

g∗D(z, z + λX)

|λ|
,

we have
γD ≤ AD ≤ κD.

For example, the theorem of Lempert implies that if D is a convex domain, then in
both the chains of inequalities we have in fact equalities.

Recall that |p| = {a ∈ D : p(a) > 0}. The next proposition provides a necessary and
sufficient condition for the product property when the support of one of the functions is
a singleton.

Proposition 1.7.1. If (z, w) ∈ D ×G, |p| = {a} ⊂ D, then

lD×G(r, (z, w)) = max{lD(p, z), lG(q, w)}

for each function q  0 on G if and only if lD(a, z) = gD(a, z).

A special case of Proposition 1.7.1 was used in Section 1.6 with a quote of [32, The-
orem 2.1]. In fact, that theorem is Proposition 1.7.1 in the special case when q is the
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characteristic function of a finite set; in the general case the proof is similar and we omit
it. We only note that it is based on the inequality

lD×G(r, (z, w)) ≥ max{lD(p, ·), lG(q, ·)}, #|p| = 1.

The proof of this inequality, given in [32] for the above mentioned special case, contains
an essential flaw, corrected in the paper [103] of the author and W. Zwonek.

Similarly to the generalized Lempert function, one can define a generalized Green
function. This function does not exceed the corresponding generalized Lempert func-
tion. In addition, by a result of A. Edigarian, it possesses the product property (see e.g.
[35, 60]).

On the other hand, D. Coman [22] showed that the Lempert and Green functions of
a ball that have two poles coincide. He asked (see also [60]) whether, like the Lemert
theorem, this property remains true for every convex domain for every finite number of
poles.

To give a negative answer to this question is one of the reasons for our interest in the
product property of the generalized Lempert function (which shows that this function
does not have properties as typical as the generalized Green function). More precisely,
there are two-element subsets A,B of D and a point z ∈ D such that

lD2(A×B, (z, w)) > max{lD(A, z), lD(B, 0)}. (1.7.1)
As

lD(C, z) = gD(C, z) =
∏
c∈C

mD(c, z), (1.7.2)

we get

lD2(A×B, (z, 0)) > max{lD(A, z), lD(B, 0)} = max{gD(A, z), gD(B, 0)}
= gD2(A×B, (z, 0)).

The inequality (1.7.1) was first established by P. J. Thomas and N. V. Trao in [114]
and independently, but somewhat later, by the author and W. Zwonek in [103]. In the
latter work the proof is considerably shorter and includes a complete characterization of
the two-element subsets A and B of D for which we have the critical double equality

lD2(A×B, (z, w)) = lD(A, z) = lD(B,w).

(This characterization shows that the product property is not typical for the generalized
Lempert function.) By applying an automorphism of D2, it suffices to consider the case
z = w = 0.

Note that, as above,
lD2(r, (z, w)) ≥ gD2(r, (z, w)) = max{gD(p, z), lD(q, w)} = max{lD(p, z), lD(q, w)};

in particular, always

lD2(A×B, (z, w)) ≥ max{lD(A, z), lD(B, 0)}. (1.7.3)

Proposition 1.7.2. If A = {a1, a2} ⊂ D∗ and B = {b1, b2} ⊂ D∗, then

lD2(A×B, (0, 0)) = lD(A, 0) = lD(B, 0) (1.7.4)

if and only if there is a rotation that maps A to B.
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In addition, if B = eiθA, θ ∈ R, then the extremal discs (5) for lD2(A×B, (0, 0)) are
of the form ζ 7→ (eiϕζ, ei(ϕ+θ)ζ), ϕ ∈ R.

Remark. From the last statement it follows that the extremal discs for lD2(A×B, (0, 0))

pass through two points from the four-element set A×B, although the Lempert function
decreases under addition of poles, according to Corollary 1.6.2.

Proof. Let ψ = (ψ1, ψ2) be an extremal disc for lD2(A × B, (0, 0)). Then we can find a
set J ⊂ {1, 2} × {1, 2} and points zk,l ∈ D, (k, l) ∈ J , such that

ψ(zk,l) = (ak, bl) and
∏

(k,l)∈J

|zk,l| = lD2(A×B, (0, 0)).

First let (1.7.4) be true. If #J = 1, we can assume that J = {(1, 1)}. Then

|z1,1| = lD2(A×B, (0, 0)) = lD(A, 0) = |a1a2| < |a1| = |ψ1(z1,1)| ≤ |z1,1|

(according to the Schwarz–Pick lemma), a contradiction.
If #J = 3, we can assume that J = {(1, 1), (1, 2), (2, 2}. As above,

|z1,1z1,2z2,2| = |a1a2|.

On the other hand, as ϕ1 ∈ O(D,D), ϕ1(0) = 0, ϕ1(z1,1) = ϕ1(z1,2) = a1, ϕ1(z2,2) = a2,

we get
|z1,1z1,2| ≤ |a1|, |z2,2| ≤ |a2|,

with equalities attained when ϕ1 is a Blaschke product of order 2 and a rotation, respect-
ively—a contradiction.

Let #J = 4. We can assume that

ψ1(z) = zΦα(z), ψ2(z) = eitzΦβ

for some α, β ∈ D, t ∈ R. Then

z1,1Φα(z1,1) = z1,2Φα(z1,2), z2,1Φα(z2,1) = z2,2Φα(z2,2),

z1,1Φβ(z1,1) = z2,1Φβ(z2,1), z1,2Φβ(z1,2) = z2,2Φβ(z2,2).

Consequently,

z1,1 = Φα(z1,2) = Φβ(z2,1), z1,2 = Φβ(z2,2), z2,1 = Φα(z2,2).

Hence z1,1 = Φα ◦ Φβ(z2,2) = Φβ ◦ Φα(z2,2). After some calculations we get the equality

(2− αβ̄ − ᾱβ)(z2
2,2(ᾱ− β̄) + z2,2(αβ̄ − ᾱβ) + β − α) = 0.

It is easily seen that if α 6= β, then the two roots of the equation

z2(ᾱ− β̄) + z(αβ̄ − ᾱβ) = α− β

lie on the unit circle. Therefore α = β, z1,2 = z2,1, z1,1 = z2,2, a contradiction.
Let now #J = 2. We can assume that J = {(1, 1), (2, 2}. Then it easily follows that

ψ1(z) = eiθ1z, ψ2(z) = eiθ2z, θ1, θ2 ∈ R, and so B = eiθA, where θ = θ1 − θ2.

(5) As D2 is a taut domain, the infimum in the definition of lD2 is attained and the corre-
sponding discs are called extremal.



Invariant functions and metrics in complex analysis 27

Conversely, if B = eiθA, the mapping (id, eiθ id) ∈ O(D,D2) is a competitor for
lD2(A×B, (0, 0)) and so

lD(A, 0) = lD(B, 0) ≥ lD2(A×B, (0, 0)).

To get (1.7.4), it remains to use (1.7.3).

Corollary 1.7.3. If A and B are two-point subsets of D and z ∈ D \A, then the set of
points w ∈ D such that

lD(A, z) = lD(B,w) < lD2(A×B, (z, w))

has Hausdorff dimension 1.

Proof. It suffices to note that the set of points w ∈ D such that lD(A, z) = lD(B,w)

has Hausdorff dimension 1, and there are at most two points w for which there is an
automorphism of D that maps z to w and A to B.

We do not know whether Proposition 1.7.2 remains true for sets of equal cardinality,
greater than 2. Anyway, for a given point (z, w) ∈ D2 this proposition and (1.7.2) provide
a large class of counterexamples for the product property of lD2(A×B, (z, w)), where A
and B have an arbitrary number of elements, greater than 1.

Proposition 1.7.4. Let z, w ∈ D, A,B ⊂ D and q ∈ (0, 1) such that

max{lD(A, z), lD(B,w)} = qlD2(A×B, (z, w)) > 0.

Then

max{lD(A ∪A1, z), lG(B ∪B1, w)} < lD×G((A ∪A1)× (B ∪B1), (z, w)),

if A1, B1 ⊂ D, A ∩A1 = B ∩B1 = ∅ and lD(A1, z)lD(B1, w) > q.

Proof. We have

lD×G((A ∪A1)× (B ∪B1), (z, w))

≥ lD×G(A×B, (z, w))lD×G(A×B1, (z, w))lD×G(A1 × (B ∪B1), (z, w))

≥ lD×G(A×B, (z, w))lG(B1, w)lD(A1, z)

> max{lD(A, z), lG(B,w)} ≥ max{lD(A ∪A1, z), lG(B ∪B1, w)}

(the first inequality is checked immediately; for the second one see (1.7.3); for the fourth
one see Corollary 1.6.2).

2. The symmetrized polydisc and the spectral ball

2.1. Synopsis. This chapter is devoted to geometric and analytic properties of so-called
symmetrized polydics and the spectral ball, which have been intensively studied recently
by many authors.

To understand better the geometry of the symmetrized polydisc we need some notions
of complex convexity of domains and their interrelations; this is the aim of the first part
of Section 2.6. In [5, 50] one can find a detailed discussion of their role and applications.
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We only note that C-convexity is closely related to some important properties of the Fan-
tappiè transformation, and, as a deep conclusion, to the question of solvability of linear
PDEs in the class of holomorphic functions. A domain D ⊂ Cn is called C-convex if its
nonempty intersections with complex lines are connected and simply connected. Some
other notions for complex convexity of D are linear convexity (each point in the comple-
ment of D is contained in a complex hyperplane, disjoint from D), weak linear convexity
(the same, but for the points in ∂D) and weak locally linear convexity. C-convexity implies
weak convexity, and all the four notions coincide for bounded domains with C1-smooth
boundaries. In the general case their place is between convexity and pseudoconvexity.

Indeed, in Corollary 2.6.4 we give an affirmative answer to the question of D. Jacquet
[56, p. 58] whether each weakly locally linearly convex domain is pseudoconvex. On the
other hand, in Proposition 2.6.1 we show that each weakly linearly convex balanced do-
main is convex, which strengthens the same observation for complete Reinhardt domains
in [5, Example 2.2.4].

Theorem 2.6.5 implies that a C-convex domain is either a cartesian product of C and
another C-convex domain, or is biholomorphic to a bounded domain; in the latter case
it is c-finitely compact (i.e. balls with respect to the Carathéodory distance are relatively
compact). This generalizes the result of T. J. Barth in [7] for convex domains.

Let L denote the class of domains D such that the least and the largest invariant
functions of D (from complex-analytic viewpoint), namely the Carathéodory function c∗D
and the Lempert function lD, coincide (and in particular they coincide with the Kobayashi
function k∗D).

Recently D. Jacquet [55] proved that each bounded C-convex domain with C2-smooth
boundary can be exhausted by C-convex domains with (C∞-)smooth boundaries. Then
the fundamental Lempert theorem [69, 70] can be formulated like this:

Each bounded C-convex domain with C2-smooth boundary belongs to the class L.

This property carries over to convex domains, as they can be exhausted with smooth
(even strictly smooth) domains. It was an open question whether a bounded pseudoconvex
domain from L had to be biholomorphic to a convex domain [125, 60]. A recently found
counterexample is the so-called symmetrized bidisc G2 ⊂ C2, the image of the bidisc
D2 ⊂ C2 under the mapping with coordinate components the two elementary symmetric
functions of two complex variables. This domain appears in the spectral Nevanlinna–
Pick problem, related to questions from control theory and applications in engineering
mathematics (see e.g. [1, 3, 53] and the references therein). J. Agler and N. Young [2]
showed that G2 ∈ L by calculating lG2

. On the other hand, C. Costara [24] proved that G2

is not biholomorphic to a convex domain. In addition, let E denote the class of domains
that can be exhausted with domains biholomorphic to convex domains. The Lempert
theorem implies that E ⊂ L. A. Edigarian [36] showed that even G2 6∈ E (see Proposition
2.5.4). In connection with this and the above mentioned result of D. Jacquet let us note
the following

([125, Problem 2], a hypothesis of L. A. Aizenberg [4]) Can each C-convex domain be
exhausted by smooth C-convex domains?
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Theorem 2.6.6(i) states thatG2 is a C-convex domain. Moreover, P. Pflug andW. Zwo-
nek [106] have recently shown that G2 can be exhausted by C-convex domains with real-
analytic boundaries (see 2.6.6). This gives an alternative proof of the fact that G2 ∈ L.
We may also formulate the following weaker version of the above hypothesis,

([125, Problem 4′]) Does each bounded C-convex domain belong to L?

An affirmative answer would follow from an affirmative answer to

([125, Problem 4]) Is each bounded C-convex domain biholomorphic to a convex domain?

Theorem 2.6.6(i) together with the result of A. Edigarian gives a negative answer to
the last question.

In a similar way to G2 one can define the symmetrized polydisc Gn ⊂ Cn. It is natural
to ask whether Gn for n ≥ 3 has the same properties as G2. For example M. Jarnicki and
P. Pflug pose the following question:

([60, Problem 1.2]) Does Gn belong to L or even to E?

Clearly if Gn 6∈ L then Gn 6∈ E .
Chronologically, first the author proved that Gn 6∈ E for n ≥ 3 (Theorem 2.5.7). In its

proof the approach from [24, 36] is applied to so-called generalized balanced domains. In
Theorem 2.5.2 we prove that if such a domain in Cn belongs to E , then its intersection
with a special linear subspace of Cn is necessarily convex. This is in accordance with the
fact that a (usual) balanced domain is in the class E exactly when it is convex (Corollary
2.5.3). Theorem 2.5.7 follows from Theorem 2.5.2 by showing that the corresponding
intersections for Gn are not convex.

Let us note that Gn for n ≥ 3 is a linearly convex domain, but it is not C-convex by
Theorem 2.6.6(ii).

Theorem 2.5.7 is also a direct corollary from Gn 6∈ L, n ≥ 3. This question is discussed
in Section 2.7. To this end one uses the infinitesimal forms of cGn , lGn and kGn , namely
the Carathéodory, Kobayashi and Kobayashi–Buseman metrics: γGn , κGn and κ̂Gn . We
also introduce a naturally emerging distance mGn on Gn (an analogue to the Möbius
distance mD) and its infinitesimal form at the origin, ρn.

In [2] J. Agler and N. Young have shown that

lG2
= k∗G2

= c∗G2
= mG2

,

and mG2
is (almost) explicitly calculated. The proof is based on the method of complex

geodesics; their complete description for G2 can be found in the work of P. Pflug and
W. Zwonek [106].

In [25] this identity is also obtained for some special pairs of points from Gn, n ≥ 3.

However in this case it turns out that

lGn(0, ·)  k∗Gn(0, ·) ≥ c∗Gn(0, ·)  mGn(0, ·) (Corollary 2.7.4).

These inequalities are directly obtained from the corresponding inequalities between the
infinitesimal forms, which are basically considered on the coordinate directions (Theorem
2.7.3).
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In Proposition 2.8.2 we get an estimate for the difference between γG2n+1(0; ·) and
ρ2n+1 in the first direction where they do not coincide (Proposition 2.8.2). This esti-
mate is based on a “polynomial” description of γGn . Using this description and computer
calculations it is shown that

κ̂G3
(0; ·) 6= γG3

(0; ·) (Theorem 2.8.3)

so the Carathéodory and Kobayashi metrics do not coincide on G3. It can be expected
that the approach in the proof is applicable in higher dimensions too.

The fact that Gn for n ≥ 3 has quite different properties from G2 is confirmed by
Theorem 2.4.2, which gives an affirmative answer to the following question of M. Jarnicki
and P. Pflug.

([60, Problem 3.2]) Does the Bergman kernel of Gn (unlike G2) have zeroes?

The proof is based on an explicit formula obtained by A. Edigarian and W. Zwonek
in [37].

As we noted, the symmetrized polydisc appears in connection with the spectral
Nevanlinna–Pick problem, i.e. an interpolation problem for maps from the unit disc D
into the spectral ball Ωn, the set of complex n × n matrices of spectral radius less
than 1 (i.e. with eigenvalues in D). The infinitesimal form of this problem is the spectral
Carathéodory–Fejér problem. The easiest forms of these problems are reduced to finding
lΩn and κΩn , while the continuous dependence on the given data reduces to the continuity
of these two functions. In the case of cyclic matrices (i.e. ones with a cyclic vector) they
coincide with the corresponding functions on the taut domain Gn, so they are continuous.

In Section 2.3 we provide some equivalent conditions for a matrix to be cyclic (part
of these are used in the last sections of the chapter).

In Section 2.2 we gather the basic properties of the above problems and their reduction
to similar problems on the symmetrized polydisc in the case of cyclic matrices. (As this
is a taut domain, the problems there “depend” on the data in a continuous manner.)
This also determines the corresponding relationships with the Lempert function and the
Kobayashi metric on the symmetrized polydisc.

Section 2.9 is dedicated to the continuity of lΩn (in the general case). The main result
there (Theorem 2.9.2) states that lΩn(A; ·) is a continuous function exactly when A is
a scalar matrix or n = 2 and A has (two) equal eigenvalues. This result is based on
Proposition 2.9.1, which is obtained from the basic Proposition 2.7.1(iii).

In Section 2.10 we discuss the (dis)continuity of κΩn by studying its zeroes. In partic-
ular we have found all matrices A ∈ Ω3 such that κΩ3

(A;B) > 0 for B 6= 0 (a relatively
easy question for n = 2).

As an application, in the last section 2.11 we show that the Kobayashi metric of a
pseudoconvex domain is not equal to the weak “derivative” of the Lempert function in the
general case (this gives a partially affirmative answer to a question from Section 1.2). The
counterexample is Ω3 (or, of a lower dimension, the domain of zero-trace matrices in Ω3).

Finally, we point out that a detailed study of another biholomorphic invariant, the
pluricomplex Green function, on the spectral ball and the symmetrized polydisc can be
found in [116].
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2.2. Preliminaries. Most of the facts in this section can be found in [1, 2, 3, 11, 24,
25, 26, 37, 60, 106].

Let D ⊂ C be the unit disc. Put σ = (σ1, . . . , σn) : Cn → Cn, where
σk(z1, . . . , zn) =

∑
1≤j1<···<jk≤n

zj1 . . . zjk , 1 ≤ k ≤ n.

The open set Gn = σ(Dn) is called the symmetrized n-disc. Note that Gn is a proper
image of the n-disc Dn so it is a pseudoconvex domain. Moreover, by [25, Corollary 3.2] we
easily see that Gn is even a c-finite compact domain (in particular hyperconvex), so it is a
taut domain. Its Shilov boundary is σ(Tn), where T = ∂D is the unit circle. Furthermore,
the group of (holomorphic) automorphisms of Gn admits a simple description:

Aut(Gn) = {σ(h, . . . , h) : h ∈ Aut(D)}.
More generally, a characterization of the proper holomorphic mappings from Gn to itself
can be found in [37].

We also note that Gn is close to being a balanced domain (see Section 2.5). More
precisely,

πλ(z) = (λz1, λ
2z2, . . . , λ

nzn) ∈ Gn, λ ∈ D, z ∈ Gn.
In fact Gn is the set of points (a1, . . . , an) ∈ Cn such that the zeroes of the polynomial

f(ζ) = ζn +
∑n
j=1(−1)jajζ

n−j , a0 6= 0, lie in D. Clearly G1 = D. Furthermore, using the
above description and the Cohn rule (see Section 2.5), we find that

G2 = {(s, p) : |s− sp|+ |p|2 < 1}.

The symmetrized polydisc appears in connection with the so-called Nevanlinna–Pick
spectral problem.

Denote byMn the set of n×n matrices of complex coefficients. The spectral ball Ωn
is defined by

Ωn = {A ∈Mn : r(A) = max
λ∈sp(A)

|λ| < 1}

(r(A) and sp(A) are the spectral radius and the spectrum of A, respectively).
The spectral Nevanlinna–Pick problem, abbreviated as SNPP, is the following:
Given m different points λ1, . . . , λm ∈ D and m matrices A1, . . . , Am ∈ Ωn, determine

whether there exists a mapping F ∈ O(D,Ωn) that interpolates the data, i.e. F (λj) = Aj
for j = 1, . . . ,m.

A nonconstructive necessary and sufficient condition for solvability of SNPP is the
solvability of the classical Nevanlinna–Pick problem for matrices that are similar to the
given ones (see e.g. [10]). A more effective form of this result for 2 × 2 matrices can be
found in [9]. Now let us describe an approach that reduces this problem of n2m parameters
to a problem on Gn of nm parameters.

We say that a matrix A ∈Mn is cyclic if it has a cyclic vector (i.e. Cn = span(v,Av,

. . . , An−1v) for some v ∈ Cn). In the appendix at the end of this section we provide some
equivalent conditions for a matrix to be cyclic. The set of cyclic matrices in Ωn will be
denoted by Cn.

For A ∈ Mn, put for brevity σ(A) = σ(sp(A)). From the context it will be clear
whether we mean σ ∈ O(Mn,Cn) or σ ∈ O(Cn,Cn) (as defined at the beginning of this
section).
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The following basic theorem for lifting a mapping from O(D,Gn) to O(D,Ωn) holds:

Theorem 2.2.1 (see [1, 25]). Given m different points λ1, . . . , λm ∈ D and m matrices
A1, . . . , Am ∈ Cn. Let f ∈ O(D,Gn) be such that f(λj) = σ(Aj) for j = 1, . . . ,m. Then
there exists F ∈ O(D,Ωn) such that f = σ ◦ F and F (λj) = Aj for j = 1, . . . ,m.

For arbitrary matrices A1, . . . , Am ∈ Ωn for n ≤ 3 the possibility of lifting a mapping
is thoroughly discussed in [93].

As Cn is a dense subset of Ωn, this theorem states that in the generic case SNPP is
equivalent to an interpolation problem on Gn (clearly one cannot expect a similar result
in full generality, as the spectrum does not contain the full information on a given matrix
up to similarity, in contrast, for example, to its Jordan or Frobenius form). As we noted, a
basic advantage of the second problem compared with the first one is the smaller number
of parameters. Furthermore, Gn is a taut domain, while on Ωn one cannot apply the typi-
cal Montel arguments, since Ωn is not even Brody hyperbolic (it contains complex lines).
Probably the only advantage of Ωn is that it is a balanced domain; however this is com-
pensated by the previously mentioned fact that Gn is close to being a balanced domain.

The solution of SNPP is equivalent to finding the Lempert function of Ωn. For cyclic
matrices, Theorem 2.2.1 reduces this question to finding the Lempert function of Gn.
Indeed, the following simple proposition holds; we omit its proof.

Proposition 2.2.2. Let D ⊂ Cn be a domain, a1, a2 ∈ D, λ1, λ2 ∈ D.

(i) If there exists f ∈ O(D, D) such that f(λ1) = a1 and f(λ2) = a2, then lD(a1, a2) ≤
mD(λ1, λ2).

(ii) If lD(a1, a2) < mD(λ1, λ2), then there exists an f as in (i).

As usual, mD(λ1, λ2) =
∣∣ λ1−λ2

1−λ1λ2

∣∣ is the Möbius distance.
Note that if for example D is a taut domain, then there exist extremal discs for lD

and so the condition lD(a1, a2) ≤ mD(λ1, λ2) is equivalent to the existence of a corre-
sponding f. However, as mentioned, the spectral ball is not such a domain. On the other
hand, Gn is a taut domain. Then Theorem 2.2.1 implies that

lΩn(A1, A2) = lGn(σ(A1), σ(A2)), A1, A2 ∈ Cn (2.2.1)

(and there exists an extremal disc for lΩn(A1, A2)). Note that as σ ∈ O(Ωn,Gn), in the
general case (A1, A2 ∈ Ωn) we have the inequality ≥ .

As the cyclic matrices form a dense subset ofMn and the Kobayashi metric is con-
tinuous,

kΩn(A1, A2) = kGn(σ(A1), σ(A2)), A1, A2 ∈ Ωn. (2.2.2)

The above considerations and the (almost) explicit calculation (by the method of
geodesics) of lG2(= c∗G2

) (see the Introduction) permit a complete solution to SNPP for
n = 2 (see e.g. [26]). As noncyclic 2×2 matrices are scalar, for this purpose it remains just
to calculate lΩn(λIn, ·) for n = 2 (In ∈Mn is the unit matrix). As Ωn is a pseudoconvex
balanced domain whose Minkowski function is the spectral radius r, one has lΩn(0, ·) = r

(see Proposition 1.3.1(iv)). Then from

Φλ(A) = (A− λIn)(In − λA)−1 ∈ Aut(Ωn), (2.2.3)



Invariant functions and metrics in complex analysis 33

we deduce
lΩn(λIn, A) = r(Φλ(A)) = max

a∈sp(A)
mD(λ, a). (2.2.4)

Hence it also follows that Ω2 is an example of a nonhyperbolic pseudoconvex balanced
domain such that c∗Ω2

= k∗Ω2
� lΩ2 ; on the other hand, k∗Ω2

(A1, A2) = lΩ2(A1, A2) for
A1, A2 ∈ C2.

In connection with the use of Φλ let us note that in [110] there is a conjecture on
a complete description of Aut(Ωn). This conjecture has recently been disproved in [65].
Note that for the Euclidean ball Bn, each proper holomorphic mapping from Ωn into
itself is an automorphism (see [128]).

The approach of complex geodesics is applied in [25] for some special pairs of points
from Gn for n ≥ 3. In other words, the Lempert function for all these pairs of points
coincides with the Carathéodory function. However in Section 2.7 we will see that this
is not true for each pair of points by obtaining some inequalities for the Carathéodory
and Kobayashi metrics on Gn, taken at the beginning. These inequalities and the lower
estimates from Section 2.8 (for the Carathéodory metric, and hence for the Kobayashi
metric) carry some information on the so-called spectral Carathéodory–Fejér problem.
A reduction of this problem to a corresponding problem on Gn in the spirit of Theorem
2.2.1 can be found in [53, Theorem 2.1].

The easiest variant of this problem, abbreviated as SCFP, is the following:
For A ∈ Ωn and B ∈ Mn, determine whether there exists a mapping F ∈ O(D,Ωn)

such that F (0) = A and F ′(0) = B.

In [93] SCFP is completely reduced to a problem on Gn for n ≥ 3.

As SNPP, SCFP is also connected with finding κΩn . Similarly to (2.2.1), we have

κΩn(A;B) = κGn(σ(A), σ′A(B)), A ∈ Cn, B ∈Mn, (2.2.5)

where in this case σ′A = σ∗,A is the Fréchet derivative of σ at A. Furthermore,

κΩn(λIn;B) =
r(B)

1− |λ|2
, (2.2.6)

which together with [53, Theorem 1.1] permits a complete solution of SCFP for n = 2.

We conclude the section with the fact that the Carathéodory metric and Carathéodory
distance on Ωn can be calculated via those on Gn (cf. (2.2.2)).

Proposition 2.2.3. The following equalities hold:

cΩn(A1, A2) = cGn(σ(A1), σ(A2)), A1, A2 ∈ Ωn,

γΩn(A;B) = γGn(σ(A);σ′A(B)), A ∈ Ωn, B ∈Mn.

Proof. As σ ∈ O(Gn,D), we have the inequalities≥ . For the reverse inequalities it suffices
to show that if f ∈ O(Ωn,D), then there exists a g ∈ O(Gn,D) such that f = g ◦ σ. First
note that if A,B ∈ Ωn have identical spectra, then there exists an entire curve ϕ in
Ωn, passing through A and B (see Proposition 2.7.1(ii)). The Liouville Theorem (applied
to the function f ◦ ϕ) implies f(A) = f(B) and so g is a well defined function. It is
holomorphic, since for each layer σ−1(σ(C)) there is a matrix C̃ so that rankσ′

C̃
= n (see

Proposition 2.3.1).



34 N. Nikolov

2.3. Cyclic matrices. In this brief section we provide some equivalent conditions for a
matrix to be cyclic. Part of these will be used at the end of the chapter.

First let us recall some definitions.
For A ∈ Mn, adA : X 7→ [A,X] is the adjoint mapping of A and CA = ker adA is the

centralizer of A.
Let pA(x) = xn + an−1x

n−1 + · · · + a0 be the characteristic polynomial of A. The
matrix 

0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2

0 0 . . . 1 −an−1


is called adjoint to A (or to p).

Proposition 2.3.1. For a matrix A ∈Mn the following are equivalent:

(1) A has a cyclic vector.
(2) A is similar to its adjoint matrix (i.e. it is the Frobenius form of A).

(3) The characteristic polynomial and the minimal polynomial of A coincide.
(4) Different blocks in the Jordan form of A correspond to different eigenvalues (i.e. each

eigenspace is one-dimensional).
(5) C(A) = {M ∈Mn : M = p(A) for some p ∈ C[X]}.
(6) dim CA = n.
(7) rankσ′A = n.
(8) kerσ′A = Im adA .

A matrix with (one of) the above properties is called cyclic.

Proof. The equivalence of the properties (1) to (6) is well-known and can be found e.g.
in [51, 52]. We need to prove their equivalence with (7) and (8).

Observe that if M ∈M−1
n (i.e. M is an invertible matrix), then

σ′A(X) = σ′M−1AM (M−1XM).

So to prove that (2) implies (7), we can assume that A coincides with its adjoint matrix.
Let X = (xi,j) with xi,j = 0 for 1 ≤ j ≤ n− 1. Then

σ′A(X) = (−xn,n, xn−1,n, . . . , (−1)n−1x1,n),

and consequently Imσ′A = Cn, i.e. rankσ′A = n.
Let us now prove that (7) implies (4). Let λ ∈ C, and Mλ = M − λIn. As pM (x) =

pMλ
(x+λ), there exists Λ(λ) ∈M−1

n such that σ(M) = Λ(λ)σ(Mλ). Therefore rankσ′A =

rankσ′Aλ .
Suppose that (7) is true and (4) is false. There exists an eigenvalue λ of A such

that dim ker(A − λIn) ≥ 2. Let us complete a basis of ker(A − λIn) to a basis of Cn.
Then the matrix A − λIn is transformed to a matrix with at least two zero columns
and consequently σn,n(A− λIn +X) is a polynomial of degree two or more with respect
to xi,j . Hence (σn,n)∗,Aλ = 0 and so rankσ′A = rankσ′Aλ ≤ n− 1, a contradiction.

Finally, let us show that (6) + (7) ⇔ (8). It is easily seen that Im adA ⊂ kerσ′A.

Consequently, Im adA = kerσ′A if and only if these two linear spaces have the same
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dimension. By the rank theorem, this is equivalent to dim CA = rankσ′A. It remains to
use that dim CA ≥ n ≥ rankσ′A for each A ∈Mn.

2.4. Gn is not a Lu Qi-Keng domain for n ≥ 3. In 1966 Lu Qi-Keng [72] conjectured
that the Bergman kernel (see Section 3.4 for the definition) of a simply connected domain
in Cn has no zeroes.

A domain with this property is called a Lu Qi-Keng domain. This conjecture was
disproved in 1986 by H. P. Boas [13]. A review of the role of Lu Qi-Keng domains in
complex analysis, together with various counterexamples, can be found for example in
[14, 60].

Using Bell’s transformation formula (see e.g. [58]), in [37] the authors find an explicit
formula for the Bergman kernel of the symmetrized polydisc. This formula implies that
G2 is a Lu Qi-Keng domain.

The aim of this section is to provide an affirmative answer to

([60, Problem 3.2]) Does the Bergman kernel of Gn have zeroes for n ≥ 3?

Thus Gn is the first example of a proper image of the polydisc Dn, n ≥ 3, that is not
a Lu Qi-Keng domain, once again showing the difference in the structure of Gn for n = 2

and n ≥ 3.

Now let us state the formula for the Bergman kernel of Gn [37]:

KGn(σ(λ), σ(µ)) =
det[(1− λjµk)−2]1≤j,k≤n

πn
∏

1≤j<k≤n[(λj − λk)(µj − µk)]
, λ, µ ∈ Dn. (2.4.1)

Although formally the right-hand side of (2.4.1) is not defined on the whole Gn, it is
continued smoothly there. From this formula we get

Proposition 2.4.1 ([37, Proposition 11]). G2 is a Lu Qi-Keng domain.

Proof. From (2.4.1) it is easily deduced that

KG2(σ(λ), σ(µ)) =
2− (λ1 + λ2)(µ1 + µ2) + 2λ1λ2µ1µ2

π2
∏2
j,k=1(1− λjµk)2

.

Consider an automorphism of D that maps µ2 to 0. It clearly defines an automor-
phism of G2 (see the beginning of Section 2.2). Consequently, it suffices to show that
KG2

(σ(λ), σ(µ)) 6= 0 if µ2 = 0. This is trivial since |(λ1 + λ2)µ1| < 2.

In contrast to Proposition 2.4.1, we have

Theorem 2.4.2. Gn is not a Lu Qi-Keng domain for n ≥ 3.

Proof. We prove by induction on n ≥ 3 that:

(∗) there exist points λ, µ ∈ Dn with pairwise different coordinates such that

∆n(λ, µ) := det[(1− λjµk)−2]1≤j,k≤n = 0

and fn = ∆n(·, λ2, . . . , λn, µ1, . . . , µn) 6≡ 0.

Base of induction: n = 3. We use the following formula (see Appendix A):

KG3(σ(λ1, λ2, λ3), σ(µ1, µ2, 0)) =
a(ν)z2 − b(ν)z + 2c(ν)

π3
∏

1≤j≤3,1≤k≤2(1− λjµk)2
, (2.4.2)
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where z = µ2/µ1 (µ1 6= 0), νj = λjµ1, j = 1, 2, 3, and

a(ν) = σ2(ν)(2− σ1(ν)) + σ3(ν)(2σ1(ν)− 3),

b(ν) = (σ1(ν)− 2)(σ2(ν)− 2σ1(ν) + 3) + 3(σ3(ν)− σ1(ν) + 2),

c(ν) = σ2(ν)− 2σ1(ν) + 3.

For the fixed point ν0 = (eiσ/6, eiσ/3, e−iσ/6) the number

z0 = e−iσ/4
6− 3

√
3−

√
40
√

3− 69√
2(3
√

3− 5)

is a root of the equation a(ν0)z2
0 − b(ν0)z0 + 2c(ν0) = 0 (see Appendix B). As z0 ∈ D for

ν ∈ D3 close to ν0, there exists z ∈ D close to z0 such that a(ν)z2−b(ν)z+2c(ν) = 0. Now
choosing µ1 ∈ D such that |µ1| > |ν1|, |ν2|, |ν3|, we get points λ, µ ∈ D3 with pairwise
different coordinates such that ∆3(λ, µ) = 0.

It remains to check that f3 6≡ 0. If this fails, then f3(0) = f ′3(0) = f ′′3 (0) = 0, i.e.

det

 µj1 µj2 µj3
(1− λ2µ1)−2 (1− λ2µ2)−2 (1− λ2µ2)−2

(1− λ3µ1)−2 (1− λ3µ2)−2 (1− λ3µ3)−2

 = 0

for j = 0, 1, 2. As µ1, µ2, µ3 are pairwise different, the vectors (1, 1, 1), (µ1, µ2, µ3)

and (µ2
1, µ

2
2, µ

2
3) are C-linearly independent. Consequently, the vectors in the second

and third rows of the above determinant are C-linearly dependent. In particular,
KG2

(σ(λ2, λ3), σ(µ2, µ3)) = 0, a contradiction.
Induction step. Suppose that (∗) holds for some n ≥ 3. Choose λ̃1 and λ̃n+1 in D,

close to λ1 and 1, respectively (this guarantees that the coordinates of the new points in
Dn+1 are pairwise different), so that

gn+1(λ̃1, λ̃n+1) := ∆n+1(λ̃1, λ2, . . . , λn, λ̃n+1, µ1, . . . , µn, λ̃n+1) = 0

and gn+1(·, λn+1) 6≡ 0. Note that

gn+1(λ̃1, λ̃n+1) =
fn(λ̃1)

(1− |λ̃n+1|2)2
+ hn(λ̃1, λ̃n+1),

where hn is a continuous function on D × D. As fn 6≡ 0 is a holomorphic function, for
each small r > 0 the number λ1 is the only zero of fn in the closed disc D ⊂ D of
center λ1 and radius r. Then m = min∂D |fn|/max∂D×D |hn| > 0. Consequently, |fn| >
(1−|λ̃n+1|2)2|hn(·, λ̃n+1)| on ∂D, provided 1−|λ̃n+1|2 <

√
m. Fix one such λ̃n+1 so that

λ̃n+1 6= λj , µj , 1 ≤ j ≤ n. As hn(·, λ̃n+1) is a holomorphic function on D, by Rouché’s
theorem the number of zeroes of gn+1(·, λ̃n+1) in D equals the multiplicity of λ1 as a zero
of fn; in particular, gn+1(·, λ̃n+1) 6≡ 0. It remains to choose r so that λj , µj , λ̃n+1 6∈ D,
1 ≤ j ≤ n, and a zero λ̃1 of gn+1(·, λ̃n+1) in D.

Remark. The above proof shows that if n ≥ 4, then there exist points (λ, ν), close to
the diagonal of Dn × Dn in the sense that λj = µj > 0 for j = 4, . . . , n and such that
KGn(σ(λ), σ(µ)) = 0. On the other hand, one can prove that KG3(σ(λ), σ(µ)) 6= 0 if
λ3 = µ3.
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Appendix A. (2.4.1) implies that

π3(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)µ1µ2(µ1 − µ2)KG3
(σ(λ1, λ1, λ3), σ(µ1, µ2, 0))

= det

(1− ν1)−2 (1− zν1)−2 1

(1− ν2)−2 (1− zν2)−2 1

(1− ν3)−2 (1− zν3)−2 1


= det

[
(1− ν1)−2 − (1− ν3)−2 (1− zν1)−2 − (1− zν3)−2

(1− ν2)−2 − (1− ν3)−2 (1− zν2)−2 − (1− zν3)−2

]
=

(ν1 − ν3)(ν2 − ν3)z

(1− ν3)2(1− zν3)2
det

[
ν1+ν3−2
(1−ν1)2

zν1+zν3−2
(1−zν1)2

ν2+ν3−2
(1−ν2)2

zν2+zν3−2
(1−zν2)2

]
(2.4.3)

=
(ν1 − ν3)(ν2 − ν3)z∏

1≤j≤3,1≤k≤2(1− λjµk)2

(
(ν1 + ν3 − 2)(zν2 + zν3 − 2)(1− zν1)2(1− ν2)2

− (ν2 + ν3 − 2)(zν1 + zν3 − 2)(1− ν1)2(1− zν2)2
)

(2.4.4)

=
(ν1 − ν3)(ν2 − ν3)z(z − 1)(A(ν)z2 −B(ν)z + 2C(ν))∏

1≤j≤3,1≤k≤2(1− λjµk)2
. (2.4.5)

To find A(ν), B(ν) and C(ν), we use that the coefficients of z3, z0 and z in the large
parentheses of (2.4.4) are equal to

A(ν) = (ν1 + ν3 − 2)(ν2 + ν3)ν2
1(1− ν2)2 − (ν2 + ν3 − 2)(ν1 + ν3)ν2

2(1− ν1)2,

−2C(ν) = 2(ν2 + ν3 − 2)(1− ν1)2 − 2(ν1 + ν3 − 2)(1− ν2)2,

B(ν) + 2C(ν) = (ν1 + ν3 − 2)(ν2 + ν3 + 4ν1)(1− ν2)2

− (ν2 + ν3 − 2)(ν1 + ν3 + 4ν2)(1− ν1)2,

respectively. Trivial calculations show that

A(ν) = (ν2 − ν1)(σ3,2(ν)(2− σ3,1(ν)) + σ3,3(ν)(2σ1(ν)− 3)),

C(ν) = (ν2 − ν1)(σ2(ν)− 2σ1(ν) + 3),

B(ν) = (ν2 − ν1)((σ1(ν)− 2)(σ2(ν)− 2σ1(ν) + 3) + 3(σ3(ν)− σ1(ν) + 2)).

To infer (2.4.2), it remains to substitute these formulas in (2.4.5) and then to compare
(2.4.5) and (2.4.3).

Appendix B. As

σ1(ν0) =
1 + 2

√
3 + i

√
3

2
, σ2(ν0) =

2 +
√

3 + i3

2
, σ3(ν0) = eiσ/3,

the formulas for a(ν), b(ν) and c(ν) lead to

a(ν0) = (3
√

3− 5)eiσ/3, b(ν0) = (6
√

2− 3
√

6)eiσ/12, c(ν0) = (2
√

3− 3)e−iσ/6.

Then for z = e−iσ/4x we have

eiσ/6(a(ν0)z2 − b(ν0)z + 2c(ν0)) = (3
√

3− 5)x2 + (3
√

6− 6
√

2)x+ 4
√

3− 6 =: p(x).

It remains to note that the zeroes of the polynomial p are equal to 6−3
√

3±
√

40
√

3−69√
2(3
√

3−5)
and

the smaller one lies in (0, 1).
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2.5. Generalized balanced domains. To show that Gn 6∈ E for n ≥ 2 (see the Intro-
duction), we will define the so-called generalized balanced domains. For such domains we
will find a necessary condition for belonging to E and then we will show that Gn, n ≥ 3,

does not satisfy this condition; for G2 the proof is somewhat different.
Let k1 ≤ · · · ≤ kn be natural numbers and

πλ(z1, . . . , zn) = (λk1z1, . . . , λ
knzn), λ ∈ C, z ∈ Cn.

A domainD in Cn will be called (k1, . . . , kn)-balanced or generalized balanced if πλ(z) ∈ D
for each λ ∈ D, z ∈ D. Put

hD(z) = inf{t > 0 : π1/t(z) ∈ D}, z ∈ Cn

(generalized Minkowski function). The function hD is nonnegative and upper semicon-
tinuous,

hD(πλ(z)) = |λ|hD(z), λ ∈ C, z ∈ Cn,

D = {z ∈ Cn : hD(z) < 1}.

Example. hGn(σ(ξ1, . . . , ξn)) = max1≤j≤n |ξj |.

Clearly the (1, . . . , 1)-balanced domains are exactly the usual balanced domains. Part
of their properties remain true for the generalized balanced domains.

Proposition 2.5.1. Let D be a generalized balanced domain. Then D is pseudoconvex
exactly when log hD ∈ PSH(Cn). Furthermore, the following are equivalent:

(i) log hD ∈ PSH(Cn) ∩ C(Cn) and h−1
D (0) = {0} (i.e. D is a bounded domain);

(ii) D is a hyperconvex domain;
(iii) D is a taut domain.

Proof. Clearly if log hD ∈ PSH(Cn), then D is pseudoconvex.
To prove the converse, let D be (k1, . . . , kn)-balanced. Put Φ : Cn 3 (z1, . . . , zn) →

(zk11 , . . . , zknn ) ∈ Cn, D̃ = Φ−1(D) and h̃D = hD ◦Φ. Then D̃ = {z ∈ Cn : h̃D(z) < 1} and
h̃D(λz) = |λ|h(z), λ ∈ C, z ∈ Cn. Consequently, D̃ is a pseudoconvex balanced domain
with Minkowski functional h̃D. So log h̃D ∈ PSH(Cn). On the other hand, hD(z) =

h̃D( k1
√
z1, . . . , kn

√
zn), z ∈ (Cn)∗, where the roots are arbitrarily chosen. Consequently,

log hD ∈ PSH((Cn)∗). By the Removable Singularities Theorem (see e.g. [58]) we conclude
that log hD ∈ PSH(Cn).

Now observe that the implication (ii)⇒(iii) is true for an arbitrary domain, while
(i)⇒(ii) is trivial, since log h is a negative exhausting plurisubharmonic function for D.
To prove (iii)⇒(i), we first note that D is a pseudoconvex domain and so log hD ∈
PSH(Cn) according to the first part of the proposition. Furthermore, if h−1

D (0) 6= {0},
then hD(z) = 0 for some z. Then D contains the entire curve C 3 λ 7→ πλ(z) ∈ Cn
and so D is not even Brody hyperbolic, a contradiction. Now suppose that hD is not
continuous. As hD is upper semicontinuous, one can find ε > 0 and a sequence of points
zj tending to some z so that hD(zj) < hD(z)− ε. By homogeneity of hD, we can assume
that hD(zj) < 1 < hD(z) for each j. Then the holomorphic discs D 3 λ 7→ πλ(zj) ∈ D
converge (locally uniformly) to the disc D 3 λ 7→ πλ(z) ∈ Cn that does not lie completely
within D, a contradiction. This proves (iii)⇒(i).
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Remarks. (a) The above proof shows that a generalized balanced domain is hyperbolic
exactly when it is bounded.

(b) In the case of a balanced domain, the implication (iii)⇒(i) can also be proven
like this. As D is a taut domain, γD is a continuous function. It remains to observe that
a taut domain is hyperbolic and pseudoconvex, so γ−1

D (z; ·) = {0} for each z ∈ D and
γD = hD.

The next theorem provides a necessary condition for a generalized balanced domain in
Cn to belong to the class E in terms of convexity of its intersection with a linear subspace
of Cn.

Theorem 2.5.2. Let D ∈ E be a (k1, . . . , kn)-balanced domain in Cn. If 2km+1 > kn for
some m, 0 ≤ m ≤ n−1, then the intersection Dm = D∩{z1 = · · · = zm = 0} is a convex
set (we put Dm = D if m = 0).

Proof. The proof is similar to that of [36, Theorem 1].
Fix a, b ∈ Dm. Then we can find a domain D′ ⊂ D that is biholomorphic to a

convex domain G, and such that λa, λb ∈ D′ for λ ∈ D. Let Ψ : D′ → G be the
corresponding biholomorphic mapping. After a linear coordinate substitution we can
assume that Ψ(0) = 0 and Ψ′(0) = id . Put

gab(λ) =
Ψ(πλ(a)) + Ψ(πλ(b))

2
.

Then Ψ−1◦gab(λ) is a holomorphic mapping from a neighborhood of D in D. Let fab(λ) =

π1/λ ◦Ψ−1 ◦ gab(λ). We will show that

lim
λ→0

fab(λ) =
a+ b

2
. (2.5.1)

Then fab(λ) extends analytically to λ = 0. Consequently, h ◦ fab ∈ PSH(D) according to
Proposition 2.5.1 and the maximum principle shows that

h(fab(0)) ≤ max
|λ|=1

h(fab(λ)) < 1.

Hence a+b
2 ∈ Dm for a, b ∈ Dm, i.e. Dm is a convex set.

To prove (2.5.1), note that the equalities Ψ−1(0) = 0 and (Ψ−1)′(0) = id imply

Ψ−1
j ◦ gab(λ) = gabj(λ) +O(|gab(λ)|2), j = 1, . . . , n.

As Ψ(0) = 0, Ψ′(0) = id and a, b ∈ Dm, we get

gabj(λ) =
aj + bj

2
λkj +O(|λ|2km+1).

The inequalities 2km+1 > kn show that

Ψ−1
j ◦ gab(λ)

λkj
=
aj + bj

2
+O(|λ|).

Then (2.5.1) is obtained by letting λ→ 0.

When m = 0, Theorem 2.5.2 implies

Corollary 2.5.3. A balanced domain is in the class E exactly when it is convex.
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This also follows from Corollary 1.3.2 that uses the Lempert theorem.
The condition 2km+1 > kn is essential as seen from the following

Example. The (1, 2)-balanced domain

D = {z ∈ C2 : |z1|2 + 3|z2 + z2
1 | < 1}

is not convex (for example, (1, 0), (2i, 4) ∈ ∂D, while (1/2 + i, 2) 6∈ D)), but it is bi-
holomorphic to the (1, 2)-balanced domain G = {z ∈ C2 : |z1|2 + 3|z2| < 4} (under the
mapping (z1, z2) 7→ (z1, z2 + z2

1)).

Clearly the symmetrized polydisc Gn is a (1, . . . , n)-balanced domain. However The-
orem 2.5.2 cannot be directly applied to show that G2 6∈ E (since 2k1 = k2). Anyway its
proof permits us to get

Proposition 2.5.4 ([36, Theorem 1]). G2 6∈ E .

Proof. Assume the contrary. Choose ε ∈ (0, 1) and put Gε = {z ∈ C2 : hG2
≤ ε}.

Then we can find a domain Dε that is biholomorphic to a convex domain and so that
Gε ⊂ Dε ⊂ G2. A closer inspection of the proof of Theorem 2.5.2 easily shows that there
exists a constant cε ∈ C such that(

a1 + b1
2

,
a2 + b2

2
+ cε(a1 − b1)2

)
∈ G2 for each a, b ∈ Dε.

If θ = arg(cε), then for a = σ(ε, iεe−iθ/2), b = σ(ε,−iεe−iθ/2) we get c(ε) = (ε,−4|cε|ε2)

∈ G2. The example at the beginning of this section implies that

ε
1 +

√
1 + 16|cε|
2

= hG2
(c(ε)) ≤ 1

and so limε→0 cε = 0. Thus a+b
2 ∈ G2 for each a, b ∈ G2, i.e. G2 is a convex domain. We

reached a contradiction, as (2, 1), (2i,−1) ∈ ∂G2, while (1 + i, 0) 6∈ G2.

The above proof can be easily modified to get

Proposition 2.5.5. If D is a balanced domain, then G2 ×D 6∈ E .

Recall that G2 ∈ L.When we choose a D ∈ L (for example convex), Proposition 2.5.5
gives the first examples of domains in Cn, n ≥ 3, that are in L but not in E .

We will now prove that Gn 6∈ E for n ≥ 3. To this end we need the following Cohn
rule that permits one to learn in finitely many steps whether the zeroes of a polynomial
lie in D.

Proposition 2.5.6 (see e.g. [109]). The zeroes of the polynomial f(ζ) =
∑n
j=0 ajζ

n−j

(n ≥ 2, a0 6= 0) lie in D if and only if |a0| > |an| and the zeroes of the polynomial

f?(ζ) = a0f(ζ)−anζnf(1/ζ)
ζ lie in D.

Proposition 2.5.7. Gn 6∈ E for n ≥ 3.

Proof. As Gn is a (1, . . . , n)-balanced domain, by Theorem 2.5.2 it suffices to prove that
if m = [n/2], then the set Gn of points (am+1, . . . , an) ∈ Cn−m for which the zeroes of
the polynomial fn(ζ) = ζn +

∑n
j=m+1 ajζ

n−j lie in D is convex.
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First we will consider the cases n = 3 and n = 4, and then we will reduce the case
n ≥ 5 to them.

Case n = 3. For f3(ζ) = ζ3 + pζ + q we have

f?3 (ζ) =
f3(ζ)− qζ3f3(1/ζ)

ζ
= (1− |q|2)ζ2 − pqζ + p

and

f??3 (ζ) =
(1− |q|2)f?3 (ζ)− pζ2f?3 (1/ζ)

ζ
= ((1− |q|2)2 − |p|2)ζ − pq(1− |q|2) + p2q.

By Proposition 2.5.6 after some calculations we get

G3 = {(p, q) ∈ C2 : |q| < 1, r(p, q) < 0},

where
r(p, q) = |pq(1− |q|2)− p2q|+ |p|2 − (1− |q|2)2.

It is easily seen that if q′ ∈ (−1, 1) and p′ = 1 − q′2, then (p1, q1) = (p′e2πi/3, q′) and
(p2, q2) = (p′eπi/3, q′eπi/2) are boundary points for D (as r(p′, q′) = 0 and r(p, q′) < 0 for
p ∈ (|q′| − 1, p′)). Then for

(p0, q0) =

(
p1 + p2

2
,
q1 + q2

2

)
=

(
p′ cos

π

6
eπi/2, q′ cos

π

4
eπi/4

)
we have

|p0q0(1− |q0|2)− p2
0q0| = |p0q0|(1− |q0|2 + |p0|).

Consequently,

r(p0, q0) = (1− |q0|2 + |p0|)(1 + |q0|)(|p0|+ |q0| − 1).

So r(p0, q0) > 0 exactly when |p0|+ |q0| > 1. For q′ = 1/2 we get

|p0|+ |q0| =
3
√

3 + 2
√

2

8
> 1.

So (p0, q0) 6∈ G3, showing that G3 is not a convex set.

Case n = 4. Similarly to the previous case we get

G4 = {(p, q) ∈ C2 : |p|+ |q|2 < 1, s(p, q) < 0},

where

s(p, q) = (1− |q|2)|pq((1− |q|2)2 − |p|2)− p3q2|+ |p|4|q|2 − ((1− |q|2)2 − |p|2)2.

It is easily seen that if q′ ∈ [0, 1) and p′ = (1−q′)
√

1 + q′, then (p1, q1) = (p′eπi/2, q′) ∈ ∂D
and (p2, q2) = (p′eπi/4, q′eπi/3) ∈ ∂D (as s(p′, q′) = 0 and s(p′, q) < 0, if p ∈ (−p′, p′)).
Then for

(p0, q0) =

(
p1 + q1

2
,
p2 + q2

2

)
=

(
p′ cos

π

8
e3πi/8, q′ cos

π

6
eπi/6

)
we have

|p0q0((1− |q0|2)2 − |p0|2)− p3
0q0

2| = |p0q0|((1− |q0|2)2 − |p0|2 + |p0|2|q0|).
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So

s(p0, q0) = (1− |q0|2)((1− |q0|2)(1 + |q0|)− |p0|2)(1 + |p0| − |q0|2)(|p0|+ |q0| − 1).

Thus s(p0, q0) > 0 only when |p0|+ |q0| > 1. For q′ = 2/5 we have

|p0|+ |q0| =
1

10

(
3

√
7(2 +

√
2)

5
+ 2
√

3

)
> 1.

Consequently, (p0, q0) 6∈ G4 and so G4 is not a convex set.

Case n ≥ 5. Let j ∈ {0, 1, 2}. Note that the nonconvex set G3 coincides with the set
of points (p, q) ∈ C2 such that the zeroes of the polynomial zjf3(zk), k ≥ 1, lie in D.
Consequently, for n = 3k + 2 and k ≥ 3, n = 3k + 1 and k ≥ 2, or n = 3k and k ≥ 1, we
can view G3 as the intersection of Gn with a complex plane. So Gn is not a convex set.

In the remaining cases n = 5 and n = 8 it suffices to observe that the nonconvex set
G4 coincides with the set of points (p, q) ∈ C2 such that the zeroes of the polynomials
ζ4f4(ζ), respectively f4(ζ2), lie in D, and then conclude the proof as above.

2.6. Notions of complex convexity. The main definitions and facts from this section
can be found in [5, 50] (see also [56]).

Recall that a domain is called C-convex if all its intersections with complex lines are
connected and simply connected.

We will define two other notions of complex convexity. A domain in Cn is called
linearly convex if each point in its complement belongs to a complex hyperplane, disjoint
from the domain. If the latter is true for each boundary point, then the domain is called
weakly linearly convex. The following implications hold:

convexity⇒C-convexity⇒ linear convexity⇒weak linear convexity⇒pseudoconvexity.

On the other hand, in [5, Example 2.2.4] it is shown that a complete Reinhardt
domain which is weakly linearly convex is convex. (A domain D in Cn is called a complete
Reinhardt domain if for each z ∈ D the closed polydisc of center 0 and radius z lies in D.)
We will see that this result remains true for balanced domains (but not for generalized
balanced domains, as shown by Theorem 2.6.6).

Proposition 2.6.1. A weakly linearly convex balanced domain D ⊂ Cn is convex.

For the proof we will use a characterization of (weakly) linearly convex domains. For
a set D in Cn containing the origin, put

D∗ = {z ∈ Cn : 〈z, w〉 6= 1 for each w ∈ D}

(〈·, ·〉 is the Hermitian scalar product). Clearly ifD is open (compact), thenD∗ is compact
(open). Furthermore, D ⊂ D∗∗.

Proposition 2.6.2 (see e.g. [5, 50]). A domain D in Cn containing the origin is weakly
linearly convex (resp. linearly convex) if and only if D is a component of D∗∗ (resp.
D = D∗∗).



Invariant functions and metrics in complex analysis 43

Proof of Proposition 2.6.1. As D is a balanced domain, it is easily seen that D∗ is a
compact balanced set. Consequently, D∗∗ is an open balanced set and in particular a
domain.

We will prove that this domain is convex. Assume the contrary. Then there exist
z1, z2 ∈ D∗∗, w ∈ D∗ and t ∈ (0, 1) so that 〈tz1 + (1− t)z2, w〉 = 1. Consequently, we can
suppose that |〈z1, w〉| ≥ 1. As D∗ is a balanced set, w̃ = w/〈w, z1〉 ∈ D∗ and 〈z1, w̃〉 = 1,
a contradiction.

So D∗∗ is a convex domain. Since D is a weakly linearly convex domain, D is a
component of D∗∗ and consequently, D = D∗∗.

Let us note that the three notions of complex convexity are different, but for bounded
domains with C1-smooth boundaries they coincide (in the more general case of bounded
domains this is not true). We also mention that each C-convex domain in Cn is hom-
eomorphic to Cn, and each domain in C is linearly convex. Also, a Cartesian product
of (weakly) linearly convex domains is (weakly) linearly convex. On the other hand, we
have the following

Remark. A Cartesian product of domains that do not coincide with the corresponding
spaces is C-convex only if both domains are convex. In particular, a Cartesian product
of n simply connected nonconvex domains from C is a linearly convex domain that is
biholomorphic to Dn, yet not C-convex.

Recall that a domain D with a C2-smooth boundary is convex (resp. pseudoconvex) if
the restriction of the Hessian (resp. Levi form) of its defining function to the real (resp.
complex) tangent space at each boundary point of D is a positive semidefinite quadratic
form. The following fact confirms the intermediate character of complex convexity: a
domain D with a C2-smooth boundary is C-convex exactly when the restriction of the
Hessian of its defining function to the complex tangent space at each boundary point of
D is a positive semidefinite quadratic form. This last turns out to be equivalent to the
function −2 log dD(z) near ∂D being C-convex (see e.g. [5]; the number 2 is important);
here dD(z) = dist(z, ∂D), z ∈ D. The pseudoconvex analogue of this proposition without
a smoothness condition is well-known. Of course we also have a convex analogue, which
is given in [46, Proposition 7.1] for bounded domains with C2-smooth boundaries. To see
this for an arbitrary domain D, one can note that convexity of −dD (or, what is the
same, of D) trivially implies convexity of − log dD. The converse is also true; it suffices to
assume the contrary and then find a segment that, except for its midpoint, lies within D
(see e.g. [50, Theorem 2.1.27] for a more general fact).

For bounded domains with C1-smooth boundaries the three notions of complex convex-
ity also coincide with the so-called weak local linear convexity (see e.g. [50, Proposition
4.6.4]). A domain D ⊂ Cn is called weakly locally linearly convex if for each a ∈ ∂D

there exists a complex hyperplane Ha through a and a neighborhood Ua of a so that
Ha ∩ D ∩ Ua = ∅. Note that there are bounded domains that are not locally linearly
convex (see e.g. [56]). In [56, p. 58] it is asked whether a weakly locally linearly convex
domain has to be pseudoconvex.

The next proposition gives more than an affirmative answer to this question.
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Proposition 2.6.3. Let D ⊂ Cn be a bounded domain with the following property: for
each a ∈ ∂D there exists a neighborhood Ua of a and a function fa ∈ O(D ∩ Ua) so that
limz→a |fa(z)| =∞. Then D is a taut domain (in particular, pseudoconvex).

Proof. It suffices to prove that if O(D, D) 3 ψj → ψ and ψ(ζ) ∈ ∂D for some ζ ∈ D, then
ψ(D) ⊂ ∂D. Assume the contrary. Then we can easily find points ηk → η ∈ D so that
ψ(ηk) ∈ D, but a = ψ(η) ∈ ∂D. We can assume that η = 0 and ga = 1/fa is a bounded
function on D ∩ Ua. Let r ∈ (0, 1) be such that ψ(rD) b Ua. Then ψj(rD) ⊂ Ua for each
j ≥ j0. Consequently, |ga ◦ψj | < 1 and (by passing to subsequences) we can suppose that
ga ◦ ψj → ha ∈ O(rD,C). As ha(η) = 0, by Hurwitz’s theorem ha = 0. This contradicts
the fact that ha(ηk) = ga ◦ ψ(ηk) 6= 0 for |ηk| < r.

Corollary 2.6.4. A weakly locally linearly convex domain is pseudoconvex.

For the proof it is sufficient to exhaust the domain with bounded domains and for each
boundary point to consider the reciprocal of the defining function of the corresponding
separating hyperplane.

Further, note that a linearly convex domain D ⊂ Cn containing a complex line is
linearly equivalent to C × D′, where D′ ⊂ Cn−1 [50, Proposition 4.6.11]. Indeed, we
can assume that D contains the z1-line. As the complement cD is a union of complex
hyperplanes not intersecting this line, cD = C×G and consequently D = C× cG.

The next theorem provides some properties of C-convex domains not containing com-
plex lines. It generalizes a result of T. J. Barth from [7] for convex domains.

Theorem 2.6.5. Let D be a C-convex domain in Cn not containing a complex line. Then
D is biholomorphic to a bounded domain and is c-finite compact, hence also c-complete
(c is the Carathéodory distance). In particular, D is hyperconvex, so it is a taut domain.

Based on this theorem, the paper [99] by the author and A. Saracco includes various
equivalent conditions for a C-convex domain not to contain a complex line (the convex
case is treated in [17]).

Proof of Theorem 2.6.5. For each z ∈ cD denote by Lz some complex hyperplane through
z disjoint from D. Let lz be the line through the origin that is orthogonal to Lz. Denote
by πz the orthogonal projection of Cn onto lz and put az = πz(a) (clearly πz and πt
from Section 2.5 refer to different objects). The set Dz = πz(D) is biholomorphic to D,
since it is connected, simply connected (see e.g. [5, Theorem 2.3.6]) and πz(z) 6∈ πz(D).

As D is a linearly convex domain not containing complex lines, it is easily seen that
there exist n C-independent l′z (otherwise cD, and so D, would contain a complex line
that is orthogonal to each lz). We can assume that those lz form the set C of coordinate
lines. Then D ⊂ G =

∏
lz∈C πz(D) and G is biholomorphic to the polydisc Dn (as the

components of G are simply connected planar domains 6= C, they are biholomorphic to
D according to the Riemann theorem). Consequently, D is biholomorphic to a bounded
domain, so it is c-hyperbolic.

Further we can assume that 0 ∈ D. To see that D is c-finite compact, it suffices to
show that lima→z cD(0; a) =∞ for each z ∈ ∂D (recall that∞ ∈ ∂D if D is unbounded).
The last statement follows from the fact that G ⊃ D is a c-finite compact domain (being
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biholomorphic to Dn). On the other hand, if a → z ∈ ∂D, then az → πz(z) ∈ ∂Dz and
consequently cD(0; a) ≥ cDz (0; az)→∞.

The main aim of this section is to show that G2 is a C-convex domain, which to-
gether with the fact that G2 6∈ E (see Proposition 2.5.4) gives a negative answer to [125,
Problem 4] (see the Introduction).

Theorem 2.6.6.

(i) G2 is a C-convex domain.
(ii) Gn, n ≥ 3, is a linearly convex domain, yet not C-convex.

Remarks. (a) Proposition 2.5.5 implies that G2 × Cn is a C-convex domain that is in
the class L, but not in E according to Proposition 2.5.5. However we do not have a similar
example of a bounded domain in Cn, n ≥ 3. (The most natural candidate is the Cartesian
product, but according to a remark above this is impossible, as the factors have to be
convex).

(b) It is easily seen that bounded generalized balanced domains with continuous
Minkowski functional are homeomorphic to Cn. So, Theorem 2.6.6(ii) provides the first
example of a linearly convex domain, namely Gn, that is homeomorphic to Cn, n ≥ 3,

but is not C-convex, not in the class L and not a Cartesian product.
(c) Theorem 2.6.6(ii) shows that Proposition 2.6.1 does not remain true for generalized

balanced domains.
(d) Although Gn for n ≥ 3 is not a C-convex domain, the conclusion of Theorem 2.6.5

is true, i.e. Gn is a c-finite compact domain. This fact follows directly from [25, Corollary
3.2] (see (2.7.2)).

Let us introduce the following notation. Let D be a domain in Cn containing the
origin, and 0 6= a ∈ ∂D. Let ΓD(a) be the set of points z ∈ Cn such that the hyperplane
{w ∈ Cn : 〈z, w〉 = 1} passing through a does not meet D.

For the proof of Theorem 2.6.6 we will use the following characterization of bounded
C-convex domains.

Proposition 2.6.7 ([5, Theorem 2.5.2]). A bounded domain D in Cn (n > 1) containing
the origin is C-convex if and only if for each a ∈ ∂D the set ΓD(a) ⊂ CPn is nonempty
and connected.

Remark. Proposition 2.6.7 directly implies the above mentioned fact that a C1-smooth
bounded domain D in Cn, n > 1, is C-convex if and only if it is linearly convex.

Proof of Theorem 2.6.6. (i) According to Proposition 2.6.7 we need to check that the set
Γ(a) is nonempty and connected for each a ∈ ∂D.

First take a smooth boundary point a ∈ ∂G2; without loss of generality it is of the
form σ(µ), where |µ1| = 1, |µ2| < 1. Then the tangent plane to ∂G2 at a has the form
{σ(µ1, λ) : λ ∈ C} and clearly it does not meet G2. So in this case Γ(a) is a singleton.

Let now a ∈ ∂G2 be a nonsmooth boundary point, i.e. a = σ(µ), where |µ1| = |µ2| = 1.

After a rotation we can assume that µ1µ2 = 1, i.e. µ2 = µ1. Then µ1+µ2 = 2 Reµ1 =: 2x,
where x ∈ [−1, 1].
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The complex lines through a that meet G2 have the form a + C(a − σ(λ)), where
λ ∈ D2. Consequently, the complement of Γ(a) can be seen as the set

A =

{
λ1 + λ2 − 2x

λ1λ2 − 1
: λ1, λ2 ∈ D

}
.

Connectedness of Γ(a) means simply connectedness of A. Note that if |β| > 1, then
z−α
z−β maps the unit disc D to the disc D

(
1−αβ
1−|β|2 ,

|α−β|
|β|2−1

)
. So the set

{
λ+λ1−2x
λλ1−1 : λ ∈ D

}
coincides with

Aλ1 = D
(

2x− 2 Reλ1

1− |λ1|2
,
|2xλ1 − λ2

1 − 1|
1− |λ1|2

)
.

As A =
⋃
λ1∈DAλ1

⊂ C, A is a simply connected set.

(ii) To prove the linear convexity of Gn, consider a point z = σ(λ) ∈ Cn \Gn. We can
assume that |λ1| ≥ 1. Then the set

B = {σ(λ1, µ1, . . . , µn−1) : µ1, . . . , µn−1 ∈ C}

is disjoint from Gn. On the other hand, it is easily seen that

B = {(λ1 + z1, λ1z1 + z2, . . . , λ1zn−2 + zn−1, λ1zn−1) : z1, . . . , zn−1 ∈ C};

so B is a complex hyperplane. Consequently, Gn is a linearly convex domain.
To prove that Gn is not a C-convex domain for n ≥ 3, we consider the points

at = σ(t, t, t, 0, . . . , 0) = (3t, 3t2, t3, 0, . . . , 0),

bt = σ(−t,−t,−t, 0, . . . , 0) = (−3t, 3t2,−t3, 0, . . . , 0), t ∈ (0, 1).

Clearly at, bt ∈ Gn. Denote by Lt the complex line through at and bt, i.e.

Lt = {ct,λ := (3t(1− 2λ), 3t2, t3(1− 2λ), 0, . . . , 0) : λ ∈ C}.

Suppose that Gn ∩ Lt is a connected set. As at = ct, 0 and bt = ct, 1, ct,λ ∈ Gn for some
λ = 1/2 + iτ, τ ∈ R. Then

ct,λ = (−6iτ t, 3t2,−2iτ t3, 0, . . . , 0).

Let cτ = σ(µ), µ ∈ Dn. We can assume that µj = 0, j = 4, . . . , n, and −36τ2t2 =

(µ1 + µ2 + µ3)2 = µ2
1 + µ2

2 + µ2
3 + 6t2. Then

t2 =
|µ2

1 + µ2
2 + µ2

3|
36τ2 + 6

<
3

36τ2 + 6
≤ 1

2
.

Consequently, Gn∩Lt is not a connected set for t ∈ [1/
√

2, 1) and so Gn is not a C-convex
domain.

The fact that G2 is a C-convex domain is also a consequence of a recent result by
P. Pflug and W. Zwonek [107] which also confirms the Aizenberg hypothesis. Let us first
recall that a C2-smooth domain D in Cn is said to be strongly linearly convex if the
restriction of the Hessian of its defining function to the complex tangent space at each
boundary point of D is a positive definite quadratic form.

Considering functions of the form

rε(s, p) = |s− sp| − (1− |p|2)2 + ε,

one can show the following
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Theorem 2.6.8 (see [107]). The domain

Gε2 = {(s, p) :
√
|s− sp|+ ε+ |p|2 < 1}, ε ∈ (0, 1),

is strongly linearly convex. Consequently, G2 = G0
2 can be exhausted by strongly linearly

convex domains and hence G2 is a C-convex domain.

Since G2 6∈ E , we get immediately

Corollary 2.6.9. Gε2 6∈ E for ε > 0 small enough.

2.7. Gn 6∈ L for n ≥ 3. As mentioned in the Introduction, G2 ∈ L, i.e. the Carathéodory
and Lempert functions of the symmetrized polydisc coincide. The main aim of this section
is to show that this no longer holds in higher dimensions, i.e. Gn 6∈ L for n ≥ 3, which
solves [60, Problem 1.4].

Let n ≥ 2, z ∈ Cn and λ ∈ D. Put

fλ(z) =

∑n
j=1 jzjλ

j−1

n+
∑n−1
j=1 (n− j)zjλj

.

By [25, Theorem 3.1], z ∈ Gn if and only if supλ∈D |fλ(z)| < 1. So for the Carathéodory
function we have

c∗Gn(z, w) ≥ mGn(z, w) := max
λ∈T
|mD(fλ(z), fλ(w))|. (2.7.1)

Note that mGn is a distance on Gn. Furthermore, by [25, Corollary 3.2],

lim
w→∂Gn

mGn(z, w) = 1

and consequently
lim

w→∂Gn
cGn(z, w) =∞, (2.7.2)

i.e. Gn is a c-finite compact domain.
The next basic proposition is used in the proof of Propositions 2.9.1 and 2.2.3. It

contains information on the zeroes of lΩn and c∗Ωn .

Proposition 2.7.1. Let A,B ∈ Ωn and

s(A,B) = min
λ∈sp(A)

max
µ∈sp(B)

mD(λ, µ).

Then:

(i) lGn(σ(A), σ(B))) ≤ lΩn(A,B) ≤ s(A,B).

(ii) lΩn(A,B) = 0⇔ c∗Ωn(A,B) = 0⇔ sp(A) = sp(B)

⇔ ∃ϕ ∈ O(C,Ωn) : ϕ(0) = A,ϕ(1) = B.

(iii) If the eigenvalues of A are equal, then the eigenvalues of B are equal
⇔ c∗Gn(σ(A), σ(B)) = s(A,B)⇔ lGn(σ(A), σ(B)) = s(A,B).

Proof. (i) The left inequality is noted in the Introduction (it follows from the holomorphic
contractibility of the Lempert function).

To prove the right inequality, let JA and JB be the Jordan normal forms of A and B,
respectively. As a nonsingular square matrix X can be expressed in the form X = eY ,

we get A = eYAJAe
−YA and B = eYBJBe

−Yb , where YA, YB ∈ M(Cn). We have Ja =
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(ajk)nj,k=1, where sp(A) = {a11, . . . , ann}, aj,j+1 = 0, 1 and ajk = 0 if j < k or j >
k + 1. A similar representation is valid for Jb = (bjk)nj,k=1. Let λ ∈ sp(A) and λ̃ =

maxµ∈sp(B) pD(λ, µ). Then one can easily find ϕjj ∈ O(D,D) so that ϕjj(0) = ajj and
ϕjj(λ̃) = bjj . Clearly we can choose ϕj,j+1 ∈ O(D,D) and ψ ∈ O(D,Mn) so that
ϕj,j+1(0) = aj,j+1, ϕjj(λ̃) = bjj and ψ(0) = YA, ψ(λ̃) = B. Put ϕjk = 0 if j < k or
j > k+1, and ϕ = (ϕjk)nj,k=1. Then e

ψϕe−ψ ∈ O(D,Ωn) and ϕ(0) = A, ϕ(λ̃) = B, which
completes the proof. Consequently, lΩn(A,B) ≤ |λ̃| and as λ ∈ sp(A) was arbitrary, we
get the right inequality.

(ii) Clearly

lΩn(A,B) = 0 ⇒ c∗Ωn(A,B) = 0 = 0 ⇒ sp(A) = sp(B),

since c∗Ωn(A,B) = c∗Gn(σ(A), σ(B)) according to Proposition 2.2.3. If sp(A) = sp(B), then
as in the proof of the right inequality of (i), we can find ϕ ∈ O(C,Ωn) so that ϕ(0) = A

and ϕ(1) = B, leading to the implication sp(A) = sp(B)⇒ lΩn(A,B) = 0.
(iii) Since c∗Gn ≤ lGn ≤ s (see (i) for the latter) we get the implication c∗Gn(σ(A), σ(B))

= s(A,B)⇒ lGn(σ(A), σ(B)) = s(A,B).

Further, using Φλ (see (2.2.3)) we can assume that the eigenvalues of A are equal to 0.

To prove that if the eigenvalues of B are equal e.g. to µ, then c∗Gn(0, σ(B)) = s(0, B)

(= |µ|), it suffices to construct a function f ∈ O(Gn,D) so that f(0) = 0 and f(σ(B)) = µ.

An example of such a function is f(z1, . . . , zn) = (z1 + · · ·+ zn)/n.

It remains to prove that if lGn(0, σ(B)) = s(0, B), then the eigenvalues of B are
equal. Let sp(B) = (ν1, . . . , νn). Let n

√
1 = {1, ε, . . . , εn−1}. For each Blaschke product B

of order ≤ n such that B(0) = 0, consider the mapping

λ 7→ fB(λ) = σ(B(
n
√
λ),B(ε

n
√
λ), . . . ,B(εn−1 n

√
λ))

(where n
√
λ is arbitrarily chosen). It is easily seen that fB ∈ O(D,Gn). We need the

following

Lemma 2.7.2. Let δ1, . . . , δn ∈ T be pairwise different. Then for any ν1, . . . , νn ∈ D there
exists β ∈ D and a Blaschke product B of order ≤ n such that

B(0) = 0, B(δ1β) = ν1, . . . , B(δnβ) = νn.

Proof. Let S be the set of all β ∈ D such that the classical Nevanlinna–Pick problem
with data (0, 0), (δ1β, ν1), . . . , (δnβ, νn) has a solution, i.e. there exists f ∈ O(D,D) so
that f(δjβ) = νj , 1 ≤ j ≤ n. Recall that this condition is equivalent to the positive
semidefiniteness of A(β) = [aj,k(β)]nj,k=1, where aj,k(β) =

1−νjνk
1−δjδk|β|2

(see e.g. [40]). Note
that the function aj,k, j 6= k, is bounded on D. On the other hand, limβ→T aj,j(β) = +∞.
Consequently, the matrix A(β) is positive semidefinite when β is close to T. We can
assume that 0 6∈ S (otherwise put B = id) and then S is a proper nonempty closed subset
of D (consisting of circles). So it has a boundary point β0 ∈ D. Consequently, the number
m = rank A(β0) is not maximal, i.e. m < n+1. Thus the corresponding Nevanlinna–Pick
problem has a unique solution, which is a Blaschke product of order m (see e.g. [40]).

The lemma for δj = εj , 1 ≤ j ≤ n, implies that

lGn(0, σ(B)) ≤ |β|n.
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It remains to prove that if |β|n ≥ |νj | for each 1 ≤ j ≤ n, then ν1 = · · · = νn. After a
rotation we can assume that

B(z) = z
a0z

k + a1z
k−1 + · · ·+ ak

akzk + ak−1zk−1 + · · ·+ a0
,

where a0 = 1 and k ≤ n− 1. As |νj | ≥ |B(εjβ)|, we get |β|n ≥ |B(εjβ)|, i.e.

|β|n−1|ak(εjβ)k + ak−1(εjβ)k−1 + · · ·+ a0| ≥ |a0(εjβ)k + a1(εjβ)k−1 + · · ·+ ak|.

By squaring we get

|β|2n−2
( k∑
s=0

|as|2|β|2s + 2 Re
∑

0≤p<s≤k

apasβ
sβ
p
εj(s−p)

)

≥
k∑
s=0

|as|2|β|2(k−s) + 2 Re
∑

0≤p<s≤k

apasβ
k−pβ

k−s
εj(s−p).

Adding these inequalities for j = 1, . . . , n yields

|β|2n−2
k∑
s=0

|as|2|β|2s ≥
k∑
s=0

|as|2|β|2(k−s),

i.e.,
k∑
s=0

|as|2(|β|2(n+s−1) − |β|2(k−s)|) ≥ 0.

As k ≤ n − 1, we have k − s < n + s − 1 if s > 0 and so as = 0. On the other hand,
a0 = 1 6= 0 and consequently k = n−1.We thus get B(z) = zn and hence ν1 = · · · = νn.

Let e1, . . . , en be the standard basis in Cn and X =
∑n
j=1Xjej . Put

f̃λ(X) =

∑n
j=1 jXjλ

j−1

n
and ρn(X) = max

λ∈T
|f̃λ(X)|.

By (2.7.1) we get the following estimate for the Carathéodory metric of Gn:

γGn(0;X) ≥ lim
C∗3t→0

pGn(0, tX)

|t|
= ρn(X).

Let Lk,l = span(ek, el). Clearly if X ∈ Lk,l, k 6= l, then

ρn(X) =
k|Xk|+ l|Xl|

n
.

As noted, one of the basic results that motivate the discussion of the symmetrized
bidisc is that G2 ∈ L. More precisely (see [2]),

lG2
= k∗G2

= c∗G2
= mG2

;

in particular κG2
= γG2

.

The next proposition shows that Gn does not have similar properties for n ≥ 3.

Theorem 2.7.3.

(i) If k divides n, then κGn(0; ek) = ρn(ek). Consequently, if l also divides n, then
κ̂Gn(0;X) = γGn(0;X) = ρn(X) for X ∈ Lk,l.
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(ii) If n ≥ 3 and X ∈ L1,n \ (L1,1 ∪ Ln,n), then κGn(0;X) > ρn(X).

(iii) If k does not divide n, then γGn(0; ek) > ρn(ek).

As Gn is a taut domain, Theorem 1.2.2 and (1.2.1) imply

Corollary 2.7.4. If n ≥ 3, then

lGn(0, ·)  k∗Gn(0, ·) ≥ c∗Gn(0, ·)  mGn(0, ·).

Remark. Clearly G2 is a domain that is biholomorphic to G2n ∩Ln,2n. Then, unlike in
Theorem 2.7.3, for z, w ∈ Ln,2n we have

mG2n
(z, w) ≤ mG2n

(z, w) ≤ lG2
(z, w) = mG2

(z, w) ≤ mG2n
(z, w)

and so lG2n
(z, w) = mG2n

(z, w).

Corollary 2.7.5. The convex hull of the spectral unit ball Ωn is

Ω̂n = {A ∈Mn(C) : hΩ̂n
(A) = |trA|/n < 1}.

Proof. By (2.2.2) we get

hΩ̂n
(A) = DkΩn(0;A) = lim

t→0

kΩn(0; tA)

|t|
= lim
t→0

kGn(0, σ(tA))

|t|
.

As
σ(tA) = (t trA+ o(t), o(t), . . . , o(t))

and Gn is a taut domain, Theorem 2.7.3(i) implies that the last limit equals

κ̂Gn(0; (trA)e1) = |trA|/n.

Remark. Corollary 2.7.5 can also be proven algebraically.

Proof of Theorem 2.7.3. (i) For 1 ≤ j ≤ n and ζ ∈ D put ϕj(ζ) = 0 if k does not divide j,
and ϕj(ζ) =

(
n/k
j/k

)
ζj/k if k divides j. As the zeroes of the polynomial (1 + ζk)n/k lie in D,

we get ϕ = (ϕ1, . . . , ϕn) ∈ O(D,Gn). Furthermore, ϕ′(0) = nek/k and so

κGn(0; ek) ≤ n/k = ρn(ek).

The opposite inequality is straightforward.
(ii) First note that if λ ∈ T, then πλ ∈ Aut(Gn). Furthermore, κGn(0;λX) =

κGn(0;X). These two facts imply that we can assume that X1, Xn > 0.

As

κGn(0;X) ≥ κGn−1
(pn,1(0); p′n,1(0)(X)) = κGn−1

(
0;
n− 1

n
X1e1 +Xnen−1

)
,

by induction on n we get κGn(0;X) ≥ κG3
(0;Y ), where

Y = 3X1e1/n+Xne3 = Y1e1 + Y3e3.

Suppose that κGn(0;X) = ρn(X). Then

ρn(X) ≥ κG3
(0;Y ) ≥ ρ3(Y ) = ρn(X)

and consequently κG3(0;Y ) = ρ3(Y ). As G3 is a taut domain, there exists an extremal
disc for κG3

(0;Y ) of the form

ϕ(ζ) = (ζϕ1(ζ), ζϕ2(ζ), ζϕ3(ζ)),



Invariant functions and metrics in complex analysis 51

where ϕ′(0) = Y/ρ3(Y ),

ϕ1(0) =
Y1

3(Y1 + 3Y3)
, ϕ2(0) = 0, ϕ3(0) =

Y1

3(Y1 + 3Y3)
. (2.7.3)

Note that fλ ◦ ϕ ∈ O(D,D) and fλ ◦ ϕ(0) = 0 for each λ ∈ D. For λ ∈ D and ζ ∈ D put

gλ(ζ) =
fλ(ϕ(ζ))

ζ
=

∑3
j=1 jϕj(ζ)λj−1

3 + 2ζϕ1(ζ)λ+ ζϕ2(ζ)λ2
.

We have gλ ∈ O(D,D) according to the Schwarz–Pick lemma. By (2.7.3) we get g±1(0) = 1

and so g±1 ≡ 1 by the maximum principle, i.e.

ϕ1(ζ)± 2ϕ2(ζ) + 3ϕ3(ζ) = 3± 2ζϕ1(ζ) + ζϕ2(ζ).

These two equalities imply that

ϕ2(ζ) ≡ ζϕ1(ζ) and ϕ3(ζ) ≡ 1 +
ζ2 − 1

3
ϕ1(ζ).

Let ψ(ζ) = ϕ1(ζ)/3. Now by gλ ∈ O(D,D) for λ ∈ T we get∣∣∣∣ψ(ζ) + 2λζψ(ζ) + λ2(1 + (ζ2 − 1)ψ(ζ))

1 + 2λζψ(ζ) + λ2ζ2ψ(ζ)

∣∣∣∣ ≤ 1

⇔
∣∣∣∣ψ(ζ)(1 + λζ)2 + λ2(1− ψ(ζ))

ψ(ζ)(1 + λζ)2 + 1− ψ(ζ)

∣∣∣∣ ≤ 1 ⇔ Re(ψ(ζ)(1−ψ(ζ))((λ+ζ)2−(1+λζ)2)) ≤ 0.

If λ = x+ iy, ζ = ir, r ∈ R, a = Re(ψ(ζ))− |ψ(ζ)|2, b = Im(ψ(ζ)), then

y(a(2r − y(r2 + 1)) + bx(1− r2)) ≤ 0, ∀ x2 + y2 = 1.

Then for x = 0 we get a ≥ 0. On the other hand, letting y → 0+ yields −2ar ≥ (1−r2)|b|.
Consequently, a = b = 0 if r > 0. Then by the uniqueness principle we get ψ ≡ 0 or
ψ ≡ 1. So X1 = 0 or Xn = 0, a contradiction.

(iii) Let k
√

1 = {ξ1, . . . , ξk}. For z ∈ Gn and λ ∈ D such that the denominator of the
first formula below is nonzero, put

gz(λ) = λfλ(z) =

∑n
j=1 jzjλ

j

n+
∑n−1
j=1 (n− j)zjλj

, gz,k(λ) =

∑k
j=1 gz(ξjλ)

kλk
.

The equalities
∑k
j=1 ξ

m
j = 0, m = 1, . . . , k − 1, and the Taylor formula show that gz,k

extends analytically to 0. More precisely, gz,k(0) = Pk(z), where Pk is polynomial such
that ∂Pk

∂zk
(0) = k/n and

Pk(tw1, t
2w2, . . . , t

nwn) = tkP (w), t, w1, w2, . . . , wn ∈ C.

The maximum principle implies that gz,k ∈ O(D,D). In particular, |Pk(z)| ≤ 1. To prove
the desired inequality γGn(0; ek) > ρn(ek), it suffices to show that |Pk(z)| < 1 for z ∈ Gn.
Assume the contrary. Then Pk(z) = eiθ for some θ ∈ R and z ∈ Gn. The maximum
principle implies that gz(ξjλ) = eiθλk, λ ∈ T, 1 ≤ j ≤ k. For ξj = 1 we get

n∑
j=1

jzjλ
j = eiθ

(
nλk +

n−1∑
j=1

(n− j)zjλk+j
)
.
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Equating the coefficients of the corresponding powers of λ, we get zk = eiθn/k, zn+1−k =

· · · = zn−1 = 0 and

(k + j)zk+j = eiθ(n− j)zj , 1 ≤ j ≤ n− k.

These equalities imply that zkl = eiθ
(
n/k
l

)
, 1 ≤ l ≤ [n/k]. On the other hand, as k does

not divide n, n− k < k[n/k] < n and so zk[n/k] = 0, a contradiction.

2.8. Estimates for γG2n+1
(0; e2). One of the aims of this section is to evaluate the

quantities in the inequality of Theorem 2.7.3(iii) in the simplest case. More precisely,
we will find γG2n+1(0; e2) with an error of o(n−3). To this end we use that γGn(0; ej)

solves an extremal problem for a class of polynomials. This observation, combined with
computer checks, allows us to show that the Carathéodory and Kobayashi metrics do
not coincide on G3, thereby sharpening Theorem 2.7.3. Probably our approach can be
applied to obtain the same result for Gn, n ≥ 4.

Let n, k ∈ N, k ≤ n. Note that

κGn(0; ek) ≤ κGk[n/k](0; ek) = 1/[n/k].

Consequently,
k/n ≤ γGn(0; ek) ≤ κGn(0; ek) ≤ 1/[n/k].

in particular,
lim
n→∞

nγGn(0; ek) = lim
n→∞

nκGn(0; ek) = k.

Let now n ≥ 3 be odd. Then 2/n < γGn(0; e2) by Theorem 2.7.3(iii). On the other
hand,

γGn(0; e2) ≤ κGn(0; e2) ≤ 2

n− 1
.

We will later improve both estimates. For the upper estimate we need the following.
Let D ⊂ Cn be a (k1, . . . , kn)-balanced domain. Denote by Pj the set of polynomials P
such that supD |P | ≤ 1 and P ◦πλ = λkjP, λ ∈ C. Put Lj = span(ej , . . . , el), where l ≥ j
is the greatest index such that kl = kj . The proof of Theorem 2.7.3(iii) easily implies
that

Proposition 2.8.1. If D ⊂ Cn is a (k1, . . . , kn)-balanced domain and X ∈ Lj , 1 ≤ j ≤ n,
then γD(0;X) = sup{|P ′(0)X| : P ∈ Pj}.

Remarks. (a) This proposition directly implies that if D is balanced domain, then

γD(0;X) = sup
{
|L′(0)X| : sup

D
|L| ≤ 1, L a linear function

}
and so γD(0; ·) = γD̂(0; ·) (for the last one see also Proposition 1.3.1(i)).

(b) Another corollary is the formula

γ−1
Gn (0; e2) = inf

c∈C
max
z∈∂Gn

|z2 + cz2
1 |. (2.8.1)

In spite of this formula, γG2n+1
(0; e2) is hard to calculate (see Lemma 2.8.4 for n = 1).

(c) If n is even, the extremal polynomials for γGn(0; e2) = 2/n can differ not only
by a constant of absolute value 1. For example, after some easy calculations, from the
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proof of Theorem 2.7.3 we get the polynomial 2z2/n− (n− 1)z2
1/n

2, but the polynomial
(2z2 − z2

1)/n is also extremal.

Proposition 2.8.2. If n ≥ 3 is odd, then
2

n

(
1 +

2

(n− 1)(n+ 2)

)
< γGn(0; e2) <

2

n

(
1 +

2

(n− 1)(n+ 1)

)
.

Proof. Lower estimate. Let us first see that the polynomial

Pn(z) =
n− 1

2(n+ 1)
z2

1 − z2

satisfies
max
∂Gn
|Pn| = Mn :=

(n− 1)(n+ 2)

2(n+ 1)
.

So if

gn(t) =
1

2

n∑
j=1

t2j −
1

n+ 1

( n∑
j=1

tj

)2

, t ∈ Cn,

then maxTn |gn| = Mn. To prove the latter, let M∗n = maxTn |gn|. As gn(eiθt) = e2iθgn(t)

for each θ ∈ R, t ∈ Cn, there exists u ∈ Tn such that gn(u) = M∗n. Putting uj = xj + iyj ,

xj , yj ∈ R, 1 ≤ j ≤ n, we get

M∗n = Re(gn(u)) =
1

2

n∑
j=1

(x2
j − y2

j ) +
1

n+ 1

(( n∑
j=1

yj

)2

−
( n∑
j=1

xj

)2)
≤ 1

2

n∑
j=1

(x2
j − y2

j ) +
1

n+ 1

(
n

n∑
j=1

y2
j −

( n∑
j=1

xj

)2)
=

(n− 1)n

2(n+ 1)
+

1

n+ 1

( n∑
j=1

x2
j −

( n∑
j=1

xj

)2)
by the Cauchy–Schwarz inequality and the equalities y2

1 = 1− x2
1, . . . , y

2
n = 1− x2

n. The
last expression is a linear function for each xj . Consequently, it is maximal for 1 and/or
−1. As n is odd,

M∗n =
(n− 1)n

2(n+ 1)
+
n− 1

n+ 1
= Mn,

with maximum attained only if [n/2] or [n/2] + 1 among the numbers tj are equal to
some t0 ∈ T, and the rest to −t0.

Using this fact one can easily prove that if ε > 0 is sufficiently small and

gn,ε(t) = gn(t) + ε

n∑
j=1

t2j − ε(n+ 1)
( n∑
j=1

tj

)2

, t ∈ Cn,

then maxTn |gn,ε| < Mn. Consequently, for

Pn,ε =
n− 1− 2n(n+ 1)ε

2(n+ 1)
z1 − (1 + 2ε)z2

one has max∂Gn |Pn,ε| < Mn, showing that

γGn(0; e2) >
1

Mn
=

2

n

(
1 +

2

(n− 1)(n+ 2)

)
.
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Upper estimate. By (2.8.1) we need to prove that if c ∈ C, then

mn,c := max
z∈∂Gn

|z2 + cz2
1 | >

n(n2 − 1)

2(n2 + 1)
.

The coefficients of the polynomials (t − 1)n and (t − 1)(t2 − 1)(n−1)/2 give two points
z ∈ ∂Gn such that z1 = n, z2 = n(n− 1)/2 and z1 = 1, z2 = (1− n)/2, respectively.
Then

2mn,c ≥ max{|n− 1− 2c|, |n(n− 1) + 2cn2|}

and consequently

2(n2 + 1)mn,c ≥ |n2(n− 1)− 2cn2|+ |n(n− 1) + 2cn2|
≥ n2(n− 1) + n(n− 1) = n(n2 − 1).

This means that mn,c ≥ n(n2−1)
2(n2+1) . Suppose that we have equality. Then c = − (n−1)2

2(n2+1) . On
the other hand, the coefficients of the polynomial (t− i)(t− 1)n−1 give a point z ∈ ∂Gn
such that z1 = n− 1 + i, z2 = (n− 1)(n− 2)/2 + (n− 1)i and

∣∣z2− (n−1)2

2(n2+1)z
2
1

∣∣ > n(n2−1)
2(n2+1) ,

a contradiction.

Let now D be a domain in Cn, z ∈ D and k ∈ N. Denote by γ̂(k)
D (z;X) the largest

pseudonorm not exceeding the kth Carathéodory pseudometric

γ
(k)
D (z;X) = sup{|f (k)

z (X)| : f ∈ O(D,D), ordz f ≥ k},

where
f (k)
z (X) =

∑
|α|=k

Dαf(z)Xα

α!
.

(One can define similarly the kth Kobayashi pseudometric, which is essentially different
from the Kobayashi pseudometric κ(k)

D of order k, defined in Section 1.2).
As γD(z; ·) is a pseudonorm,

γD ≤ γ̂(k)
D ≤ κ̂D.

Also note that, since the family O(G3,D) is normal, the argument in the proof of Theorem
1.4.1 shows the existence of m ≤ 2n−1 R-linearly independent vectors X1, . . . , Xm ∈ Cn
of sum X, so that

γ̂
(k)
D (z;X) =

m∑
j=1

γ
(k)
D (z;Xj).

Theorem 2.8.3. γ̂(2)
G3

(0; e2) > γG3(0; e2). In particular, κ̂G3(0; e2) > γG3(0; e2) and con-
sequently kG3

(0, ·) 6= cG3
(0, ·).

This theorem follows from the two lemmas below.

Lemma 2.8.4. γG3
(0; e2) ≤ C0 :=

√
8

13
√

13−35
= 0.8208 . . . .

Lemma 2.8.5. γ̂(2)
G3

(0; e2) ≥ C1 =
√

0.675 = 0.8215 . . . .

Proof of Lemma 2.8.4. By (2.8.1) we need to show that if c ∈ C, then

max
z∈∂G3

|z2 − cz2
1 |2 ≥ C−2

0 .
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It suffices to show this for c ∈ R. Indeed, for each z ∈ ∂G3 we have z ∈ ∂G3 and so

2 max
z∈∂G3

|z2 − cz2
1 | ≥ max

z∈∂G3

(|z2 − cz2
1 |+ |z2 − cz2

1|)

≥ max
z∈∂G3

|2z2 − (c+ c)z2
1 | = 2 max

z∈∂G3

|z2 − Re(c)z2
1 |.

Let now c ∈ R. Then

max
z∈∂G3

|z2 − cz2
1 |2 ≥ max

ϕ∈[0,2π)
|1 + 2eiϕ − c(2 + eiϕ)2|2

= max
ϕ∈[0,2π)

(4c(4c− 1) cos2 ϕ+ 4(10c2 − 7c+ 1) cosϕ+ 25c2 − 22c+ 5).

Put

fc(x) = 4c(4c− 1)x2 + 4(2c− 1)(5c− 1)x+ 25c2 − 22c+ 5, x ∈ [−1, 1].

If c 6∈ ∆ = (1/6, 5−
√

17/4), then

max
x∈[−1,1]

fc(x) = max{fc(−1), fc(1)} ≥
(

9−
√

17

4

)2

>
1

C2
0

.

Otherwise

max
x∈[−1,1]

fc(x) = fc

(
10c2 − 7c+ 1

2c(1− 4c)

)
=

(3c− 1)3

c(4c− 1)
=: g(c)

and it remains to see that minc∈∆ g(c) = g(
√

13− 1/12) = 1/C2
0 .

Remark. Let c0 = (
√

13− 1)/12 and M = maxz∈∂G3
|z2 − c0z

2
1 |. As in the proof of

Proposition 2.8.2, we have

M = max
z∈∂G3

Re(z2 − c0z2
1) = max

α,β,γ∈R
h(α, β, γ),

where

h(α, β, γ) = (1− 2c0)(cos(α+ β) + cos(β + γ) + cos(γ + α))

− c0(cos 2α+ cos 2β + cos 2γ).

Computer calculations show that the critical points of h (up to a permutation of variables)
are of the form (kπ, lπ,mπ) or (±α0 + jπ/2 + 2kπ,±α0 + jπ/2 + 2lπ,±γ0 + jπ/2 + 2mπ),

k, l,m ∈ Z, j = 0, 1, 2, 3. Then the proof of Lemma 2.8.4 implies that M = C−1
0 , i.e.

γG3
(0; e2) = C0.

Proof of Lemma 2.8.5. Let

f(z) = 0.675z2
2 − 0.291z2z

2
1 + 0.033z4

1 .

We first check that maxz∈∂G3
|f(z)| < 1 by reducing the check to finitely many points,

and then using a computer program. Put θ = (θ1, θ2), θ1, θ2 ∈ [0, 2π),

g1(θ) = 1 + eiθ1 + eiθ2 , g2(θ) = ei(θ1+θ2) + eiθ1 + eiθ2 ,

g(θ) = 0.675g2
2(θ)− 0.291g2(θ)g2

1(θ) + 0.033g4
1(θ).

We have to prove that max |g(θ)| < 1. Let

d(θ, θ̃) = max{|θ1 − θ̃1|, |θ2 − θ̃2|}.
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As |eiθj − eiθ̃j | ≤ |θj − θ̃j |, j = 1, 2, we get

|g1(θ)− g1(θ̃)| ≤ 2d(θ, θ̃), |g2(θ)− g2(θ̃)| ≤ 4d(θ, θ̃).

Then the inequalities |g1| ≤ 3, |g2| ≤ 3 imply

|g(θ)− g(θ̃)| ≤ (0.675 · 24 + 0.291 · 72 + 0.033 · 216)d(θ, θ̃) = 44.28d(θ, θ̃).

Let now θ1, θ2 vary in the interval [0, 6.2832] ⊃ [0, 2π] with a step of 4·10−5. The results
of the corresponding computer program (see Appendix C) show that |g(θ)| ≤ 0, 999 for the
variable θ = (θ1, θ2). (In fact these results lead to the hypothesis that max |g(θ)| = 0.999,

with a maximum attained at the points (0, π), (π, 0) and (π, π).) Then by the inequalities
|g(θ)− g(θ̃)| ≤ 44.28d(θ, θ̃) and 2

44.28 · 10−3 > 4 · 10−5 we easily get max |g(θ)| < 1.

From the above it follows that if X ∈ span(e1, e3), then

γ
(2)
G3

(0; e2 +X) ≥ |f (2)
0 (e2 +X)|/2 = |f (2)

0 (e2)|/2 = C1.

On the other hand, recall that there exist five vectors X1, . . . , X5 ∈ C3 (some of
them can be zero) of sum e2 such that γ̂(2)

G3
(0; e2) =

∑5
j=1 γ

(2)
G3

(0;Xj). As γ
(2)
G3

(0;Xj) ≥
C1|〈Xj , e2〉|, we get γ̂(2)

G3
(0; e2) ≥ C1.

Remark. An important moment in the above proof is finding a polynomial of the form
f(z) = az2

2 + bz2z
2
1 + cz4

1 such that max∂G3
|f | ≤ 1 and

√
a > C0. Computer experiments

show that the maximal value of a is 0.676 . . . , i.e. very close to 0.675/0.999.

Finally let us note that γ(2)
Gn (0; ·) is not a norm.

Proposition 2.8.6. If X1, Xn ∈ C, then

γ
(2)
Gn (0;X1e1 +Xnen) ≥

√
n+ 1

2
γGn(0; e2)|X1Xn|.

In particular, as γG3
(0; e2) > 2/3 and γGn(0; en) ≥ 2/n, it follows that

γ
(2)
Gn (0;ne1 + en) > 2 = κ̂Gn(0;ne1 + en) = γ

(2)
Gn (0;ne1) + γ

(2)
Gn (0; en), n ≥ 3.

Proof. Let t1, . . . , tn ∈ D. Consider
∑n
k=1 t

n+1
k /n as a function f of σ(t). Then f ∈

O(Gn,D), ord0f = 2, and the Waring formula (see e.g. [117])) implies that the coefficient
of z1zn equals (−1)n−1 n+1

n . So

γ
(2)
Gn (0;X1e1 +Xnen) ≥ |f (2)

0 (X)/2| =
√
n+ 1

n
γGn(0; e2)|X1Xn|,

where X = X1e1 + Xnen. As γGn(0; e2) = 2/n for n even, we get the proposition for
such n.

On the other hand, Proposition 2.8.1 implies that if 2Cn := γGn(0; e2), then there
exists a cn such that P (z) = 2Cnz2− cnz2

1 is an extremal function for γGn(0; e2). For odd
n = 2k − 1 we replace t1, . . . , tn by tk1 , . . . , tkn. Thus we get the function

(Cn − cn)
( n∑
j=1

tkj

)2

− Cn
n∑
j=1

t2kj .
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Consider this function as a function g of σ(t). Then g ∈ O(Gn,D), ord0 g = 2, and the
coefficient of z1zn equals −(n+ 1)Cn. Consequently,

γ
(2)
Gn (0;X) ≥

∣∣∣∣g(2)
0 (X)

2

∣∣∣∣ =

√
n+ 1

2
γGn(0; e2)|X1Xn|.

Appendix C (6).

language: FORTRAN 77; compiler: gnu-fortran (g77)
options for compiler: g77 -02 -o niki.exe niki.for -wall
command for execute: niki.exe

Program niki
implicit real*8 (a-h,o-z)
implicit integer*4 (i-n)
complex*16 g0,g1,g2

data c1,c2,c3 /0.675D0, -0.291D0, 0.033D0/
data e,o,t1d,t2d,t1u,t2u/1.0D0,3*0.0D0,2*6.2832D0/
write(*,102)

200 continue
read(*,*,ERR=201,END=201) s
N1=(t1u-t1d)/s
N2=(t2u-t2d)/s
gu=-1D30
do i1=0,N1

t1=t1d+FLOAT(i1)*s
do i2=0,N2

t2=t2d+FLOAT(i2)*s
g0=DCMPLX(DCOS(t1)+DCOS(t2),DSIN(t1)+DSIN(t2))
g1=g0+DCMPLX(e,o)
g2=g0+DCMPLX(DCOS(t1+t2),DSIN(t1+t2))
g = CDABS(c1*g2**2+c2*g2*g1**2+c3*g1**4)
if (g.GT.gu) then

gu=g
t1g=t1
t2g=t2

endif
enddo

enddo
write(*,100) s,gu,t1g,t2g
goto 200

201 continue
write(*,101)
stop

100 format(1x,2f20.15,2f15.10)
101 format(8x,’ step ’,15x,’ g-max’,9x,’tita-1’,9x,’tita-2’)
102 format(8x,’ step ’ )

end

(6) The program was written by Pencho Marinov.
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----------------- Results ------------------------------------------
step g-max tita-1 tita-2

0.001000000000000 0.998999998608272 3.1420000000 3.1420000000
0.000400000000000 0.998999999688699 3.1414000000 3.1414000000
0.000100000000000 0.998999999999547 3.1416000000 3.1416000000
0.000040000000000 0.998999999999547 3.1416000000 3.1416000000
0.000010000000000 0.998999999999941 3.1415900000 3.1415900000
0.000004000000000 0.998999999999985 3.1415940000 3.1415940000
0.000001000000000 0.998999999999999 3.1415930000 3.1415930000
0.000000400000000 0.999000000000000 3.1415928000 3.1415928000
0.000000100000000 0.999000000000000 3.1415927000 3.1415927000
0.000000040000000 0.999000000000000 3.1415925600 3.1415925600

2.9. Continuity of lΩn(A, ·). As mentioned in the Introduction, the continuous depen-
dence of SNPP on the data (a necessary condition for reduction to an analogous problem
on Gn) is linked with the continuity of the function lΩn . The aim of this section is to
describe all matrices A ∈ Ωn such that lΩn(A, ·) is a continuous function.

First recall that
lΩn(A,B) ≥ lGn(σ(A), σ(B)).

Furthermore, if A,B ∈ Cn (i.e. they are cyclic matrices in Ωn), then we have equality
(see 2.2.1)) and so lΩn is a continuous function on the open set Cn × Cn. In general, we
have equality if and only if lΩn is a continuous function in (A,B). To see this, it suffices
to use that lGn is a continuous function and the set Cn × Cn (where we have equality) is
dense in Ωn × Ωn.

In [115] the authors consider matrices B ∈ Ωn such that lΩn(A, .) is a continuous
function at B for each A ∈ Ωn. They hypothesize that this is true for each B ∈ Cn
and confirm this for n ≤ 3 [115, Proposition 1.4]. Using the results from Section 2.10
for the continuity of κΩn(A; .), the converse proposition is proven for each n (see [115,
Theorem 1.3]).

We first prove the following

Proposition 2.9.1. If λ ∈ D and A ∈ Cn, then the following are equivalent:

(i) the eigenvalues of A are all equal;
(ii) lΩn is continuous at (A, λIn);

(iii) lΩn(A, ·) is continuous at λIn.

Proof. The implication (ii)⇒(iii) is trivial. For the rest of the proof we may assume that
λ = 0, applying Φλ (see (2.2.3)).

We will now show that (i)⇒(ii). Let the eigenvalues of A be equal to a. If Aj → A

and Bj → 0, then

lΩn(Aj , Bj) ≥ c∗Gn(σ(Aj), σ(Bj))→ c∗Gn(σ(A), 0) = |a| = lΩn(A, 0)

(the last two equalities follow from Propositions 2.7.1(iii) and 2.2.4, respectively). So the
function lΩn is lower semicontinuous at (0, B). As it is (always) upper semicontinuous, it
is continuous at this point.
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It remains to prove that (iii)⇒(i). As Cn is a dense subset of Ωn, we can find a sequence
Cn 3 Bj → 0. By (2.2.4) and (2.2.1) we get

r(A) = lΩn(A, 0)← lΩn(A,Bj) = lGn(sp(A), sp(Bj))→ lGn(sp(A), 0).

Proposition 2.7.1(iii) implies that the eigenvalues of A are all equal.

Unlike the above proposition, (2.2.4) implies that lΩn(A, ·) is a continuous function
for each scalar matrix A ∈ Ωn.

As we noted, if A ∈ Ωn (n ≥ 2), then the following are equivalent:

(i) lΩn is continuous at (A,B) for each B ∈ Ωn;

(ii) lΩn(A, ·) = lGn(σ(A), σ(·)).

Also consider the condition

(iii) A ∈ C2 has (two) equal eigenvalues.

By [26, Theorem 8], (iii) implies (ii). Theorem 2.9.2 says that the scalar matrices and
those satisfying (iii) are the only ones for which lΩn(A, ·) is a continuous function. Then
Proposition 2.9.1 implies that (iii) follows from (i). So assertions (i), (ii) and (iii) are
equivalent.

Theorem 2.9.2. If A ∈ Ωn, then lΩn(A, ·) is a continuous function if and only if A is a
scalar matrix or A ∈ C2 has two equal eigenvalues.

Proof. Applying Φλ and

ΨP (X) = P−1XP, P ∈M−1
n , X ∈Mn, (2.9.1)

we can assume that 0 is an eigenvalue of A with a maximal number of Jordan blocks and
the matrix is in Jordan form.

It suffices to prove that lΩn(A, ·) is not a continuous function if A has a nonzero
eigenvalue or A ∈ Ωn is a nonzero nilpotent matrix and n ≥ 3.

In the first case let d1 ≥ · · · ≥ dk be the number of Jordan blocks that correspond
to the different eigenvalues λ1 = 0, λ2, . . . , λk. We will prove that lΩn(A, ·) is not contin-
uous at 0. It is easily seen that A can be expressed as blocks A1, . . . , Al (of dimensions
n1, . . . , nl) so that the eigenvalues of A1 are equal to 0 and the remaining blocks are
cyclic with at least two different eigenvalues (A1 is missing if d1 = d2). By Proposition
2.7.1(iii), there exists a sequence of matrices Ai,j → 0 as j → ∞, 1 ≤ i ≤ l, such that
supi,j lΩni (Ai, Ai,j) =: m < r(A). Forming Aj from the blocks A1,j , . . . , Al,j , it follows
that lΩn(A,Aj) ≤ maxi lΩni l(Ai, Ai,j) ≤ m < lΩn(A, 0), meaning that lΩn(A, ·) is not
continuous at 0.

Let now A 6= 0 be a nilpotent matrix. Then A = (aij)1≤i,j≤n, where aij = 0 for
j 6= i+ 1. Let r = rank(A) ≥ 1. Following the proof of [115, Proposition 4.1], let

F0 = {1} ∪ {j ∈ {2, . . . , n} : aj−1,j = 0} := {1 = b1 < · · · < bn−r},

and bn−r+1 = n+1. Put di = 1+#(F0∩n−i+2, . . . , n). As A 6= 0 is a nilpotent matrix, it
has a Jordan form such that an−1,n = 1 and 1 = d1 = d2 ≤ d3 ≤ · · · ≤ dn = #F0 = n−r,
dj+1 ≤ dj + 1.
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In [115, Proposition 4.1, Corollary 4.3] there is a necessary and sufficient condition for
lifting of discs from O(D,Gn) to ones in O(D,Ωn), passing through a cyclic and nilpotent
matrix. They easily imply that for each C ∈ Cn,

lΩn(A,C) = hGn(0, σ(C)) := inf{|α| : ∃ψ ∈ H(D,Gn) : ψ(α) = σ(C)},

where
H(D,Gn) = {ψ ∈ O(D,Gn) : ord0ψj ≥ dj , 1 ≤ j ≤ n}.

Note that dj ≤ j − 1 for j ≥ 2. Let m = minj≥2 dj/(j − 1) and choose k such that
dk/(k − 1) = m. If m = 1, then dj = j − 1 for each j ≥ 2 and so in this case for n ≥ 3

one can take k = 3.
Let λ be a sufficiently small positive number, b = kλk−1 and c = (k − 1)λk. Then λ

is a double zero of the polynomial Λ(z) = zn−k(zk − bz + c) with zeroes in D. Let B be
a diagonal matrix with characteristic polynomial PB(z) = Λ(z).

Suppose that the function lΩn(A, ·) is continuous at B. Then

lΩn(A,B) = hGn(0, σ(B)) =: α.

Lemma 2.9.3. If lΩn(A,B) = α, then there exists ψ ∈ H(D,Gn) so that ψ(α) = σ(B)

and
n∑
j=1

ψ′j(α)(−λ)n−j = 0.

Proof. Similarly to the proof of [115, Proposition 4.1], let ϕ ∈ O(D,Ωn) and α̃ ∈ D so
that ϕ(0) = A and ϕ(α̃) = B. By [115, Corollary 4.3] we have ψ̃ = σ ◦ ϕ ∈ H(D,Gn).

Now let us examine σn(ϕ(ζ)) − σn(B) = σn(ϕ(ζ)) near ζ = α̃. We can assume that
the first two diagonal elements of B are equal to λ. If ϕλ(ζ) = ϕ(ζ)− λIn, then the first
two columns of ϕλ(α) are zero. Consequently, σn◦ϕλ = detϕλ has a zero of order at least
2 at α. On the other hand, Gn is a taut domain, which easily provides the required ψ.

Lemma 2.9.4. We have αm . λ (7). Furthermore, if m = 1 and n ≥ 3, then α2/3 . λ.
In particular, always α� λ.

Proof. Note that there exists ε > 0 so that for λ < ε the mapping ζ 7→ (0, . . . , 0, k(εζ)dk ,

(k− 1)λ(εζ)dk , 0, . . . , 0) is a competitor for hΩn(A,B). Consequently, (εα)dk ≤ λk−1, i.e.
αm . λ.

If m = 1 and n ≥ k = 3, by considering the mapping ζ 7→ (0, 3λ1/2εζ, 2(εζ)2, 0 . . . , 0)

we get (εα)2 ≤ λ3.

To finish the proof of the theorem, put ψj(ζ) = ζdjθ(ζ); the condition in Lemma 2.9.3
becomes

a
(−λ)n

α
+ S = 0, (2.9.2)

where a = (k − 1)dk − kdk−1 and S =
∑n
j=1 α

djθ′j(α)(−λ)n−j . Note that a 6= 0. Indeed,
if m < 1, then dk = dk−1 and consequently a = −dk, while if m = 1, then a = (k−1)(k−
1)−k(k−2) = 1. As Gn is a bounded domain, the Cauchy inequalities imply |θ′j(α)| . 1.

(7) This means that αm ≤ Cλ for some constant C > 0 independent of λ.
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By Lemma 2.9.4 and by the choice of k it follows that for each j,

αdj . λ(k−1)dj/dk ≤ λj−1 ≤ λn−1.

So S . λn−1. Once again by Lemma 2.9.4, α� λ, contradicting (2.9.2).

2.10. Zeroes of κΩn . Recall that the spectral Carathéodory–Fejér problem of order 1
(SCFP) reduces to the calculation of the Kobayashi metric κΩn of Ωn. Furthermore, if
A ∈ Cn (i.e. A is a cyclic matrix), then (see (2.2.2))

κΩn(A;B) = κGn(A;σ′A(B)).

In particular, κΩn(A;B) = 0⇔ σ′A(B) = 0.

On the other hand, by Proposition 2.3.1, σ′A(B) = 0 exactly when there exists Y ∈Mn

so that B = [Y,A]. Consequently, if A ∈ Cn and σ′A(B) = 0, considering ζ 7→ eζYAe−ζY ,

we find even an entire curve ϕ : C→ Ωn so that ϕ(0) = A and ϕ′(0) = B. In general, if
κΩn(A;B) = 0 (we do not assume A ∈ Cn), then SCFP has a solution for an arbitrary
disc instead of the unit one. Therefore it is important to know the zeroes of κΩn . This
also bears information on the discontinuity of this function (hence also of SCFP).

Recall that for the Carathéodory metric of Ωn, things are much simpler (see Propo-
sition 2.2.3):

γΩn(A;B) = γGn(σ(A);σ′A(B))

and so γΩn(A;B) = 0⇔ σ′A(B) = 0.

To formulate the results in this section we need to introduce some notions.
For A ∈ Ωn denote by CA the tangent cone (see [20, p. 79]) to the isospectral (analytic)

set
LA = {C ∈ Ωn : sp(C) = sp(A)},

i.e.
CA = {B ∈Mn : ∃0 < cj → 0, Cj ∈ LA so that cj(Cj −A)→ B}.

Note that LA is smooth at D if D ∈ Cn. Then CA = kerσ′D and as dim kerσ′D = n2−n
(see Proposition 2.3.1), CA is an analytic set and dimCA = dimLA = n2 − n by [20,
Corollary, p. 83]. If A 6∈ Cn, then dim kerσ′A > n2 − n (see Proposition 2.3.1) and so
CA ( kerσ′A. Thus

CA = kerσ′A ⇔ A ∈ Cn.

The next theorem characterizes CA as the set of “generalized” tangent vectors at A
to an entire curve in Ωn passing through A (in particular, this curve is contained in LA).

Theorem 2.10.1. Let A ∈ Ωn and B ∈ Mn. Then there exists m ∈ N (m ≤ n!) and
ϕ ∈ O(C,Ωn) so that ϕ(0) = A, ϕ′(0) = · · · = ϕ(m−1)(0) = 0, ϕ(m)(0) = B only if
B ∈ CA.

We are not including the proof of this theorem, due to its length and the use of results
about analytic sets that are beyond the scope of the dissertation. It can be found in the
paper [100] by the author and P. J. Thomas.
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Theorem 2.10.1 shows that CA is contained in the set of zeroes of the singular
Kobayashi metric κsΩn(A; ·). Recall that (see [123])

κsΩn(A;B) = inf{|α| : ∃m ∈ N, ϕ ∈ O(D,Ωn) : ord0(ϕ−A) ≥ m, αϕ(m)(0) = m!B}.

Now we define another cone C ′A ⊂Mn, A ∈ Ωn.

For a function g holomorphic near A, and for X in a neighborhood of A, put g(X)−
g(A) = g∗A(X − A) + · · · , where g∗A is the homogeneous polynomial of lowest nonzero
degree in the expansion of g near A. Put

C ′A = {B ∈Mn : f∗A(B) = 0 for each f ∈ O(Ωn,D)}.

Note that
CA ⊂ C ′A ⊂ kerσ′A;

the first inclusion is proven e.g. in [20, p. 86]), and the second one follows from the facts
that each f ∈ O(Ωn,D) is constant on LA (by the Liouville theorem) and that

kerσ′A = {(σj)∗A = 0 for all j such that deg(σj)
∗
A = 1}.

Also, each of these three sets is invariant under automorphisms of Ωn.

The cone C ′A coincides with CA for n = 2 and n = 3 (for the last fact see Proposition
2.10.6 below and the remarks preceding it). We do not know whether this is true for
each n.

In the most trivial case of a noncyclic matrix, namely a scalar one, C ′A = CA is the
set of zero-spectrum matrices, while kerσ′A is the set of zero-trace matrices.

Note that κsΩn ≥ γ
s
Ωn
, where γsΩn = supm∈N γ

(m)
Ωn

is the singular Carathéodory metric
of Ωn (see Section 2.8 for the definition of γ(m)).

Theorem 2.10.1 implies that

B ∈ CA ⇒ κsΩn(A;B) = 0 ⇒ γsΩn(A;B) = 0 ⇔ B ∈ C ′A
(the last equivalence is trivial). In particular,

κΩn(A;B) = 0 ⇒ B ∈ C ′A.

Proposition 2.10.2. If A ∈ Ωn \ Cn, then C ′A 6= kerσ′A.

Proof. As A ∈ Ωn \ Cn, at least two of the eigenvalues of A are equal, for example to λ.
Applying Φλ (see (2.2.3)) and ΨP (see (2.9.1)) we can assume that λ = 0 and that A is
in Jordan form. In particular,

A =

(
A0 0

0 A1

)
,

where A0 ∈Mm, 2 ≤ m ≤ n, sp(A0) = {0}, A1 ∈Mn−m, 0 /∈ sp(A1).
Further, there exists a set J ( {2, . . . ,m}, possibly empty, such that aj−1,j = 1 for

j ∈ J , and all other elements aij are equal to 0 for 1 ≤ i, j ≤ m. Put 0 ≤ r = #J =

rankA0 ≤ m− 2. Let

B =

(
B0 0

0 0

)
∈Mn,

where B0 = (bij)1≤i,j≤m so that bj−1,j = −1 for j ∈ {2, . . . ,m} \ J , bm1 = 1, and bij = 0

otherwise.
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As σm/
(
n
m

)
∈ O(Ωn,D), it suffices to prove the following

Lemma 2.10.3. (σm)∗A(B) = 1, but σ′A(B) = 0.

Proof. First let us calculate σj(A0 + hB0), 1 ≤ j ≤ m, h ∈ C. By developing along the
first column, we get

det(tI − (A0 + hB0)) = tm + (−1)m−1hm−r.

Equating the coefficients on both sides leads to

σj(A0 + hB0) =

{
0, 1 ≤ j ≤ m− 1,

hm−r, j = m.
(2.10.1)

Now we need a general formula for σj . For a given matrix M = (mij)1≤i,j≤n and a
set E ⊂ {1, . . . , n} denote by δE(M) the determinant of the matrix (mij)i,j∈E ∈ M#E .
For convenience put δ∅(M) = σ0(M) := 1. Then

σj(M) =
∑

E⊂{1,...,n},#E=j

δE(M). (2.10.2)

The block structure of our matrices implies that

δE(A+ hB) = δE∩{1,...,m}(A0 + hB0)δE∩{m+1,...,n}(A1).

So

σj(A+ hB) =
∑

max(0,j−n+m)≤k≤min(m,j)

( ∑
E′⊂{1,...,m},#E′=k

δE′(A0 + hB0)
)

×
( ∑
E′′⊂{m+1,...,n},#E′′=j−k

δE′′(A1)
)

=
∑

max(0,j−n+m)≤k≤min(m,j)

σk(A0 + hB0)σj−k(A1).

By (2.10.1) we get σj(A+ hB) = S1 + S2, where

S1 =

{
σj(A1), j ≤ n−m,
0, otherwise,

S2 =

{
hm−rσj−m(A1), j ≥ m,
0, otherwise.

In particular,

σj(A) =

{
σj(A1), j ≤ n−m,
0, otherwise.

Then

σj(A+ hB)− σj(A) =

{
hm−rσj−m(A1), j ≥ m,
0, otherwise.

As m− r ≥ 2, we get σ′A(B) = 0, but (σm)∗A(B) = 1.

The main corollary from Proposition 2.10.2 and the implication preceding it is that
SCFP does not depend continuously on the data (so it cannot be reduced to a similar
problem on the symmetrized polydisc).

Corollary 2.10.4. If A ∈ Ωn \ Cn and B ∈ kerσ′A \ C ′A, then

κΩn(A;B) > 0 = lim
Cn3A′→A

κΩn(A′;B).



64 N. Nikolov

When A is a scalar matrix, we know more (cf. Proposition 2.9.1):

Proposition 2.10.5. For B ∈Mn and t ∈ D the following are equivalent:

(i) the eigenvalues of B are all equal;
(ii) κΩn is continuous at (tIn;B);

(iii) κΩn(·;B) is continuous at tIn.

Proof. The implication (ii)⇒(iii) is trivial. For the rest of the proof we can assume that
t = 0 (applying Φt).

We will now prove that (i)⇒(ii). Let the eigenvalues of B be equal to 0. If Aj → 0

and Bj → B, then

κΩn(Aj ;Bj) ≥ κGn(σ(Aj);σ
′
Aj (Bj))→ κGn(0;σ′0(B))

= κGn(0; (trB)e1) = |b| = κΩn(0;B)

(the last two equalities follow from Theorem 2.7.3(i) and (2.2.6), respectively).
Thus the function κΩn is lower semicontinuous at (0;B). As it is (always) upper

semicontinuous, it is continuous at this point.
It remains to prove that (iii)⇒(i). As Cn is a dense subset of Ωn, we can find a sequence

Cn ⊃ (Aj)→ 0. Then (2.2.6), (2.2.5) and Theorem 2.7.3(i) imply that

r(B) = κΩn(0;B)← κΩn(Aj ;B) = κGn(σ(Aj);σ
′
Aj (Bj))→ κGn(0;σ′0(B)) = |trB|/n.

So r(B) = |trB|/n, i.e. the eigenvalues of B are equal.

Now let us formulate the following hypothesis for the zeroes of κΩn .

Hypothesis. κΩn(A;B) = 0 if and only if there exists a ϕ ∈ O(C,Ωn) so that ϕ(0) = A

and ϕ′(0) = B. In particular, if κΩn(A;B) = 0, then B ∈ CA.

Note that there are matrices B ∈ CA such that κΩn(A;B) 6= 0 (see Proposition
2.10.6(ii) and Corollary 2.10.7).

In some cases the above hypothesis can be checked.
The remarks at the beginning of this section imply that this hypothesis is true for

cyclic matrices.
Also, as the zeroes of κΩn(0; ·) are exactly the zero-spectrum matrices and this set of

matrices is a union of complex lines through the origin, the hypothesis is true for scalar
matrices.

As the noncyclic matrices A in Ω2 are only the scalar ones, we can choose m = 1

in Theorem 2.10.1 for n = 2; then CA coincides with the zeroes of κΩ2
(A; ·), as well as

with the set of matrices B = ϕ′(0) for some entire curve ϕ in Ω2. (On the other hand,
kerσ′A = {B ∈M2 : trB = 0}.) So we have a complete description of the set of zeroes of
κΩ2

and the above hypothesis is true for n = 2.

Now let us consider the set of zeroes of κΩ3
(A; ·), when A is a noncyclic and nonscalar

matrix (we will confirm the hypothesis for n = 3, too). The use of the automorphisms
Φλ and ΨP of Ω3 reduces the problem to the following two cases:

A = At :=

 0 0 0

0 0 0

0 0 t

 , t ∈ D∗, A = Ã :=

 0 0 0

0 0 1

0 0 0

 .
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It is easily seen that

C ′At ⊂ C
′′
At := {B ∈M3 : σ∗At(B)} = {B ∈M3 : b33 = b11 + b22 = b211 + b12b21 = 0},

C ′
Ã
⊂ C ′′

Ã
:= {B ∈M3 : σ∗

Ã
(B)} = {B ∈M3 : b11 + b22 + b33 = b32 = b12b31 = 0}

(for example, to check the second equality, we observe that if Bε = Ã+ εB + o(ε), then
trBε = ε trB+o(ε), σ2(Bε) = −εb32+o(ε) and detBε = ε2(b12b31−b11b32)+o(ε2)). As the
tangent cones are closed, the next proposition shows in particular that CAλ = C ′Aλ = C ′′Aλ
and CÃ = C ′

Ã
= C ′′

Ã
.

Proposition 2.10.6.

(i) If B ∈ C ′′At (t 6= 0), then there exists a ϕ ∈ O(C,Ω3) such that ϕ(0) = At and
ϕ′(0) = B.

(ii) Let B ∈ C ′′
Ã
. Then there exists a ϕ ∈ O(C,Ωn) so that ϕ(0) = Ã and ϕ′(0) = B only

if b11 = 0 and b12 6= b31. Otherwise κΩ3
(Ã;B) = 1.

As κΩ3(A;B) > 0 for B 6∈ C ′A, this proposition and the remarks preceding it give a
complete description of the set of zeroes of κΩ3

, thereby confirming the hypothesis for
n = 3.

Proof. (i) Let us first B ∈ C ′At . We express B in the form B = X + [Y,At], where X
is such that ψ(ζ) = At + ζX ∈ LAt for each ζ ∈ C. Then ϕ(ζ) = eζY ψ(ζ)e−ζY has the
required properties.

It is easily calculated that ψ(C) ⊂ LAt exactly when sp(X) = 0 and x11 + x22 =

x2
11 + x12x21 = 0. On the other hand,

[Y,At] = t

 0 0 y13

0 0 y23

−y31 −y32 0

 .

So we can choose

X =

 b11 b12 0

b21 b22 0

0 0 0

 , Y = t−1

 0 0 b13

0 0 b23

−b31 −b32 0

 .

(ii) Let first B ∈ C′
Ã
. If b11 = 0 or b12 6= b31, it suffices to find (as above) X and Y

so that B = X + [Y, Ã] and Ã+ ζX ∈ LÃ for each ζ ∈ C. The last condition means that
the eigenvalues of X are zeroes and x32 = x12x31 = 0. On the other hand,

[Y, Ã] =

 0 0 y12

−y31 −y33 y22 − y33

0 0 y32

 .

Suppose that b31 = 0 (when b12 = 0 the calculations are analogous). We have to
choose X of the form

X =

 b11 b12 b13 − y12

b21 + y31 b22 + y32 b23 − y22 + y33

0 0 −b11 − b22 − y32





66 N. Nikolov

so that detX = 0 and σ2(X) = 0, i.e. DT = 0 and D = T 2, where

D =

∣∣∣∣ b11 b12

b21 + y31 b22 + y32

∣∣∣∣ , T = b11 + b22 + y32.

These two conditions are true only if

y32 = −b11 − b22, y31 =

{
−b21, b11 = 0,

−b21 − b211/b12, b12 6= 0.

It remains to show that if b11 6= 0 and b12 = b31 = 0, then κΩ3(Ã;B) = 1. We can
assume that b11 = 1. Put B̃ = diag(1, e2πi/3, e4πi/3. As above, we can choose B̃ and Y so
that B = B̃+[Y,At]. Let α > 0 and ϕ ∈ O(αD,Ω3) be such that ϕ(0) = At and ϕ′(0) = B.

Putting ϕ̃(ζ) = e−ζY ϕ(ζ)eζY , we have ϕ̃ ∈ O(αD,Ω3), ϕ̃(0) = Ã and ϕ̃′(0) = B̃. So
κΩ3(Ã;B) ≥ κΩ3(Ã; B̃). The converse inequality follows similarly. It remains to apply
Proposition 2.11.2 from the next section.

Corollary 2.10.7. For each n≥3 there exist A∈Ωn and B∈CA so that κΩn(A;B)>0.

Proof. Put

Ã =

 0 0 0

0 0 1

0 0 0

 , B̃ε =

 1 ε 0

0 −1 0

0 0 0

 ,

A =

(
Ã O

O O

)
, Bε =

(
B̃ε O

O O

)
.

As in the proof of Proposition 2.10.6(ii), it follows that

• κΩn(A;B0) > 0;

• for ε 6= 0 there exists ϕε ∈ O(C,Ωn) such that ϕε(0) = A and ϕ′ε(0) = Bε.

Then Bε ∈ CA, ε 6= 0, so B0 ∈ CA.

2.11. The Kobayashi metric vs. the Lempert function. As an application of part
of the above considerations, in this section we will provide an example showing that, in
general, the Kobayashi pseudometric of a pseudoconvex domain is not equal to the weak
“derivative” of the Lempert function. The pseudoconvex domain will be the spectral ball
Ω3 ⊂ C9 (that is also a balanced nontaut unbounded domain).

Recall that the Kobayashi metric of a taut domain D ⊂ Cn coincides with the “deriva-
tive” of the Lempert function (see Section 1.2):

κD(z;X) = lim
t→0, z′→z,X′→X

lD(z′, z′ + tX ′)

|t|
.

On the other hand, Proposition 1.2.3 states that

κD(z;X) ≥ DlD(z;X) := lim sup
t→0, z′→z,X′→X

lD(z′, z′ + tX ′)

|t|
(2.11.1)

for an arbitrary domain D ⊂ Cn.
The aim of this section is to show that the inequality

κD(z;X) ≥ D̃lD(z;X) := lim sup
t→0

lD(z, z + tX)

|t|
(2.11.2)
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is strict in the general case (of a pseudoconvex domain). Put

A =

 0 0 0

0 0 1

0 0 0

 and Bt =

 1 0 0

0 ω 0

0 3t ω2

 .

where ω = e2πi/3. Let B = B0.

Proposition 2.11.1. The following inequality holds:

κΩ3
(A;B) > 0 = D̃lΩ3

(A;B).

Moreover, if tj → 0 and Cj → B (Cj = (cjk,l)) so that lim infj→∞ |cj3,2/tj − 3| > 0, then

lim
j→∞

lΩ3(A,A+ tjCj)

|tj |
= 0.

Remark. As κD and lD have the product property (see Section 1.7), in general the
inequality (2.11.2) is strict for pseudoconvex domains in Cn for n ≥ 9 (for example
for Ω3 × Dk). In fact the proof below shows that D̃lΩ̃3

(A;B) = 0, where Ω̃3 is the set
of zero-trace matrices in Ω3. Consequently, the inequality in (2.11.2) is strict for the
pseudoconvex domain Ω̃3 ⊂ C8.

Question. It would be interesting to find an example of a lower dimension, as well as
to see whether in general the inequality (2.11.1) is strict (the last question was posed at
the end of Section 1.2).

Recall that there exist matrices B̃ → B so that κΩ3
(A; B̃) = 0 (see Proposition 2.10.6

(ii)); in particular, the function κΩ3(A; ·) is not continuous at B.
Also note that the condition lim infj→∞ |cj3,2/tj − 3| > 0 in Proposition 2.11.1 is

essential, as seen by the following

Proposition 2.11.2. κΩ̃3
(A;B) = limt→0 lΩ3(A,A+ tBt)/|t| = 1. In particular,

1 = κΩ̃3
(A;B) = κΩ3

(A;B) = DlΩ̃3
(A;B) = DlΩ3

(A;B).

For the proof of Proposition 2.11.1 we will use the following special case of [115,
Proposition 4.1, Corollary 4.3] (see also [93] for more general facts).

Lemma 2.11.3. Let M ∈ Ω3 is a cyclic matrix and ϕ ∈ O(D,G3) be a mapping such
that ϕ(0) = 0 and ϕ(α) = σ(M) (α ∈ D). Then there exists a ψ ∈ O(D,Ω3) such that
ψ(0) = A, ψ(α) = M and ϕ = σ ◦ ψ exactly when ϕ′3(0) = 0. In particular,

lΩ3
(A,M) = inf{|α| : ∃ϕ ∈ O(D,G3) : ϕ(0) = 0, ϕ(α) = σ(M), ϕ′3(0) = 0}

and (as G3 is a taut domain) there exists an extremal disc for lΩ3(A,M).

Proof. If such a ψ exists, then one directly calculates ϕ′3(0) = (σ3 ◦ ψ)′(0) = 0.

Conversely, let ϕ′3(0) = 0. Put

ψ̃(ζ) :=

 0 ζ 0

0 0 1

ϕ3(ζ)/ζ −ϕ2(ζ) ϕ1(ζ)

 , ζ ∈ D.
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Then ψ̃(0) = A and ϕ = σ ◦ ψ̃. Furthermore, e3 = (0, 0, 1) is a cyclic vector for ψ̃(ζ)

when ζ 6= 0. So ψ̃(α) is a cyclic matrix with the same spectrum as the cyclic matrix M
and consequently they are similar (to their adjoint matrix) by Proposition 2.3.1. Then
we can express M in the form M = eSψ̃(α)e−S for some S ∈ M3. It remains to put
ψ(ζ) = eζS/αψ̃(ζ)e−ζS/α.

Proof of Proposition 2.11.1. By Proposition 2.11.2 we only need to check that

lim
j→∞

lΩ3
(A,A+ tjCj)/|tj | = 0

under the conditions for cj3,2.
Suppose the contrary. Then we may assume that

lΩ3(A,A+ tjCj)/|tj | → a > 0.

Step 1. Suppose that there exists a subsequence (not relabeled) such that all matrices
A+ tjCj are cyclic and belong to Ω3. By some calculations we get

σ(A+ tjCj) = (tjf1(Cj), tjf2(Cj), t
2
jf3(Cj)) =: (aj , bj , cj),

where f1(Cj)→ 0, f2(Cj)→ 0 and f3(Cj)→ 0.
Put

ϕj(ζ) = (ζaj/rj , ζbj/rj , ζ
2cj/r

2
j ), ζ ∈ D,

where rj = max{3|aj |, 3|bj |,
√

3|cj |}. Then ϕj ∈ O(D,G3) with ϕj(0) = 0, ϕ′j,3(0) = 0

and ϕj(rj) = σ(A+ tjCj). Lemma 2.11.3 implies that

lΩ3
(A,A+ tjCj)/|tj | ≤ rj/|tj | → 0,

a contradiction.

Step 2. Suppose that all matrices A+tjCj are noncyclic. Then their minimal polynomials
have degrees less than 3 (see Proposition 2.3.1). Consequently, these degrees are equal to
2 for all sufficiently large j. Hence

(A+ tjCj)
2 + xj(A+ tjCj) + yjI3 = 0,

where xj , yj ∈ C. We get nine equations (for the components); denote them by Ejk,`,
where k and ` are the indices of the row and the column, respectively. The equation
Ej2,3 gives xj/tj → 1. Using this in Ej1,1, we get yj/t2j → −2. Finally, Ej2,2 implies
cj3,2/tj → 2− ω − ω2 = 3, a contradiction.

Proof of Proposition 2.11.2. As A+ ζB ∈ Ω̃3 for each ζ ∈ D, we get κΩ̃3
(A;B) ≤ 1.

It remains to show that

lim inf
t→0

lΩ3
(A,A+ tBt)/|t| ≥ 1.

Note that A + tBt is similar to the matrix Dt = diag(t, t − 2t) and consequently
lΩ3

(A,A+ tBt) = lΩ3
(A,Dt) (we already applied this argument several times).

Suppose that tj → 0 so that lΩ3
(A,Dtj )/|tj | → c < 1.

Let ψj ∈ O(D,Ω3) be a disc such that ψj(0) = A, ψ(αj) = Dtj and |αj |/|tj | → c. Put
ϕj = σ ◦ ψj . Direct calculations lead to ϕ′j,3(0) = 0 and

ϕ′j,3(αj)− tjϕ′j,2(αj) + t2jϕ
′
j,1(αj) = 0.
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After expressing ϕj in the form

ϕj(ζ) = (ζθj,1(ζ), ζθj,2(ζ), ζ2θj,3(ζ)),

the last equality becomes

t3j = α2
j (αjθ

′
j,3(αj)− tjθ′j,2(αj) + t2jθ

′
j,1(αj)) (2.11.3)

(we use θj,1(αj) = 0, θj,2(αj) = −3t2j/αj and θj,3(αj) = −2t3j/α
2
j ). As G3 is a taut

domain, by passing to subsequences we can assume that ϕj → ϕ = (ζρ1, ζ
2ρ2, ζ

3ρ3) ∈
O(D,G3) and ρ1(0) = 0. Then (2.11.3) shows that if k = 1/c, then

ρ3(0) = k3 + kρ2(0).

Proposition 2.5.1 (see also [37, Proposition 16]) implies that

hG3
(z) = max{|λ| : λ3 − z1λ

2 + z2λ− z3 = 0}

is a (logarithmically) plurisubharmonic function and G3 = {z ∈ C3 : hG3
(z) < 1} (hG3

is
the Minkowski function of the (1, 2, 3)-balanced domain G3). As

|ζ|hG3
(ρ1(ζ), ρ2(ζ), ρ3(ζ)) = hG3

(ϕ(ζ)) < 1, ζ ∈ D,

the maximum principle for plurisubharmonic functions implies that hG3
(ρ1, ρ2, ρ3) ≤ 1

on D. In particular, hG3(ρ1(0), ρ2(0), ρ3(0)) ≤ 1. Consequently, all the three zeroes of
the polynomial P (λ) = λ3 − ρ1(0)λ2 + ρ2(0)λ − ρ3(0) lie in D. On the other hand,
P (λ) = (λ− k)(λ2 + kλ+ k2 + ρ2(0)) with k > 1, a contradiction.

3. Estimates and boundary behavior of invariant metrics on
C-convex domains

3.1. Synopsis. The main purpose of this chapter is to obtain estimates (in a geometric
way) for the Carathéodory, Kobayashi and Bergman metrics, as well as for the Bergman
kernel (on the diagonal), of an arbitrary C-convex domainD ⊂ Cn not containing complex
lines, in terms of the distance dD(z;X) from the point z ∈ D to the boundary ∂D in the
direction X ∈ (Cn)∗. These estimates show that on such a domain these three metrics
coincide up to a constant, depending only on n (Corollary 3.4.2). Similar results in the
special case of a C∞-smooth bounded C-convex domain of a finite type, with quite hard
proofs, are the main results of the dissertations of S. Blumberg [12] and M. Lieder [71].
In addition, the constants there depend on the domain. Earlier similar results for convex
domains can be found in the Ph.D. thesis [19] of J.-H. Chen and in the works [74, 75] of
J. D. McNeal; however their proofs have some essential deficiencies.

Using the 1/4-Theorem of Koebe, it is easily shown in Proposition 3.2.2 that
1/4 ≤ γD(z;X)dD(z;X) ≤ κD(z;X)dD(z;X) ≤ 1.

The two (absolute) constants are exact, and 1/4 can be replaced by 1/2 for convex
domains (see [8] or Proposition 3.2.1).

As an application of these estimates, in Section 3.3 we find that the standard and linear
multitypes of D’Angelo and Catlin coincide for a smooth boundary point of a C-convex
domain. This generalizes a result of M. Conrad [23] and J. Yu [121] (see also the works



70 N. Nikolov

of J. D. McNeal [73], and H. P. Boas and E. Straube [15]), while our proof is essentially
different and much shorter. It is based upon an easy result from [123] and transferring
the main result in [68] from the convex to the C-convex case (the considerations here are
easier than those in [68]).

The main result of Chapter 3, Theorem 3.4.1, states that there is an inequality for the
Bergman metric, similar to the above one; the corresponding constants depend only on the
dimension n of the domain. To prove this, in Theorem 3.2.4 we get some estimates for the
Bergman kernel, which are also of independent interest. The constants there depend only
on n and are exact for the class of convex domains. These estimates are connected with
the so-called minimal basis (for a point in a given domain), introduced by T. Hefer [44]
for the smooth case (of finite type) and somewhat later, but independently, by the author
and P. Pflug [84] in the general case. It is used in the proof of Theorem 3.4.1 and almost
all arguments are geometrical. One can define a minimal basis for a point in a given open
set (not containing complex lines) by induction: the first vector of the base is directed
towards the closest point from the set boundary, and the next ones are from the basis
of the intersection of the set with the complex hyperplane through the point, orthogonal
to that vector. The main (and trivial) property of that basis that is used for weakly
linearly convex domains is the orthogonality of the intersections of complex “support”
hyperplanes through the emerging boundary points, and the corresponding vectors form
the basis. The geometrical arguments are completed by the stability of C-convexity under
projections.

In the previously mentioned works [19, 74, 75], apart from the ∂-technique, the authors
use a similar (however notably more complicated) method but another basis that we will
call maximal. In Section 3.5 we provide a natural counterexample for the main “property”
of this basis (the same as for the minimal one) that is used in those and other works for
various problems (e.g. for the linear and D’Angelo types in the already cited paper [73]).
Nevertheless, in Section 3.6 we show how the estimates obtained in the minimal basis
imply those for the maximal one (using some combinatorial arguments).

Another aim of this chapter is to establish the local character of the results obtained
by showing that the estimates near a given boundary point a of a domain remain true if
the domain is weakly locally linearly convex near a and the boundary does not contain
analytic discs through a. Such a domain with a C2-smooth boundary near a turns out to
be locally C-convex (Proposition 3.7.1). Then the local character of the estimates for the
Kobayashi metric (if the domain is bounded) follows from the general localization propo-
sition 3.7.5. Its proof permits one to obtain immediately the exact boundary behavior of
this metric near an isolated point of a planar domain, having at least one more point on
its boundary. This essentially strengthens the main result from [61].

The local character of the estimates for the Bergman kernel and Bergman metric
is determined in Section 3.8, where the domain is assumed to be pseudoconvex (but
not necessarily bounded) and locally convex around a boundary point not contained in
analytic (or, equivalently, linear) discs from the boundary. The proof is based on the
existence of a locally holomorphic peak function at this point (Proposition 3.8.8) and
the localization theorem 3.8.3 for the Bergman kernel and Bergman metric (if such a
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function exists). In the case of a bounded pseudoconvex domain this theorem is contained
in the fundamental work [49] of L. Hörmander as an application of the L2-estimates
for the ∂-problem. Our proof is a variation of this technique. As a corollary we get a
stronger variant of the main result of G. Herbort [47] without the use of the ∂-technique
of Ohsawa–Takegoshi (see the remark at the end of Section 3.8). The proof also implies
weak localization of the Bergman kernel and Bergman metric for a planar domain with
a nonpolar complement (Corollary 3.8.6).

In the last section we get the exact boundary behavior of the invariant metrics under
consideration near a C1-smooth boundary point of an arbitrary planar domain, once again
using a geometric argument (the Pinchuk scaling method).

3.2. Estimates for the Carathéodory and Kobayashi metrics. The aim of this
section is to obtain estimates for the Kobayashi and Carathéodory metrics on C-convex
domains in terms of the distance to the boundary of the corresponding direction. These
results generalize similar statements for bounded smooth C-convex domains of finite type,
whose original proofs are quite hard (see [71]).

For a point z from a domain D ⊂ Cn and a vector X ∈ (Cn)∗, we denote by dD(z;X)

the distance from z to ∂D in the direction of X, i.e.

dD(z;X) = sup{r > 0 : ∆X(z, r) ⊂ D}, where ∆X(z, r) = {z + λX : |λ| < r}.

Clearly
dist(z, ∂D) =: dD(z) = inf

‖X‖=1
dD(z;X).

If dD(z;X) =∞, i.e. D contains the line through z in the direction of X, then

γD(z;X) = κD(z;X) = 0.

First recall the following result for convex domains.

Proposition 3.2.1 ([8]). Let D ⊂ Cn be a convex domain. If dD(z;X) <∞, then

1/2 ≤ γD(z;X)dD(z;X) = κD(z;X)dD(z;X) ≤ 1.

Proof. The upper estimate holds for each domain D, as DX(z, dD(z,X)) ⊂ D. For the
lower estimate consider an (open) supporting half-space Π of D for a boundary point of
the type z + λX. Then

γD(z;X) ≥ γΠ(z;X) =
‖X‖

dΠ(z;X)
=

‖X‖
dD(z;X)

.

It remains to note that the equality in the statement follows from the Lempert theorem
(see e.g. [69, 70]).

The constants 1/2 and 1 cannot be improved, as seen from the examples of a half-space
and a ball.

Now we will establish a similar result for C-convex domains.

Proposition 3.2.2. Let D ⊂ Cn be a C-convex domain. If dD(z;X) <∞, then

1/4 ≤ γD(z;X)dD(z;X) ≤ κD(z;X)dD(z;X) ≤ 1.
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The constant 1/4 is the best possible in the plane, as seen in the example with the
image D = C \ [1/4,∞) of D for the Koebe transformation z 7→ z/(1 + z)2.

Corollary 3.2.3. For each C-convex domain D ⊂ Cn, we have κD ≤ 4γD.

This is another argument supporting the hypothesis that κD = γD for each C-convex
domain D ⊂ Cn (a weaker variant of [125, Problem 4′]; see the Introduction).

Proof of Proposition 3.2.2. We can assume that ‖X‖ = 1. Let l be the complex line
through z with directionX, and a ∈ l∩∂D so that ‖z−a‖ = dD(z;X). Consider a complex
hyperplane H through a not intersecting D and denote by G the projection of D onto l
in the direction of H. Note that G is a simply connected domain (see e.g. [5, Theorem
2.3.6] or [50, Theorem 2.3.6]), a ∈ ∂G and dD(z;X) = ‖z− a‖ = dG(z) := dist(z, ∂G). It
remains to apply the Koebe 1/4-theorem to get

γD(z;X) ≥ γG(z; 1) ≥ 1

4dG(z)
.

Indeed, if f : D→ G is a conformal mapping such that f(0) = z, by the Koebe theorem
G contains the disc of center z and radius |f ′(0)|/4. So |f ′(0)| ≤ 4dG(z) and hence

1 = γD(0; 1) = γG(f(0); f ′(0)) = |f ′(0)|γG(z; 1) ≤ 4dG(z)γG(z; 1),

and the result follows.

Recall that if a C-convex domain in Cn contains a complex line, then it is linearly
equivalent to the Cartesian product of C and a C-convex domain in Cn−1 (see Section 2.6).

In view of this it is natural to ask about the boundary behavior of the metrics in the
directions for which there are (linear) discs in the boundary in these directions.

More precisely, for a boundary point a of a domain D ⊂ Cn we denote by La the
set of all vectors X ∈ Cn such that there exists an ε > 0 so that ∂D ⊃ ∆X(a, ε). The
following result is an application of Proposition 3.2.2.

Proposition 3.2.4. Let a be a boundary point of a C-convex domain D ⊂ Cn.

(i) We have
lim
z→a

γD(z;X) =∞ locally uniformly in X 6∈ La.

(ii) If ∂D is C1-smooth at a, then La is a linear space. In addition, for each nontangent
cone Λ with vertex a (7) we have

lim sup
Λ3z→a

κD(z;X) <∞ locally uniformly in X ∈ La.

The proof of this proposition, as well as of a part of the next ones, will be based on
the following geometrical property of weakly linearly convex domains (see also [126]).

Lemma 3.2.5. Suppose that a weakly linearly convex domain G ⊂ Cn contains the n
unit discs lying in the coordinate lines. Then G contains the convex hull of these discs,
E = {z ∈ Cn :

∑n
j=1 |zj | < 1}.

(7) Λ = {z ∈ Cn : c‖z − a‖ < |pra(z)|}, where c ∈ (0, 1) and pra is the projection onto the
interior normal to ∂D at a.
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Proof. For each ε ∈ (0, 1) there exists a δ > 0 so that

Xε =

n⋃
j=1

(
δD× · · · × δD× εD︸︷︷︸

jth place

×δD× · · · × δD
)
⊂ G.

Note that X̂ε ⊂ G, where X̂ε is the least linearly convex set that contains Xε. In addition,

X̂ε = {z ∈ Cn | ∀b ∈ Cn : 〈z, b〉 = 1 ∃a ∈ Xε : 〈a, b〉 = 1}

(see e.g. [5, p. 7] or [50, Proposition 4.6.2]). Then X̂ε is a balanced domain and as it is
linearly convex, it is convex (see Proposition 2.6.1). Consequently,

Eε =
{
z ∈ Cn :

n∑
j=1

|zj | < ε
}
⊂ X̂ε ⊂ G

and letting ε→ 1 we get the desired proposition.

Remark. The same arguments show that G contains the convex hull of each of its
balanced subdomains. In particular, the maximal balanced subdomain of G is convex
(see also [126]).

Proof of Proposition 3.2.4. (i) Assuming the contrary, we can find r > 0 and sequences
D 3 zj → a and Cn 3 Xj → X 6∈ La such that 4rγD(zj ;Xj) ≤ 1. By Proposition 3.2.2,
dD(zj ;Xj) ≥ r. Then ∆Xj (zj , r) ⊂ Dr = D ∩ Bn(a, 2r) for each sufficiently large j. Note
that Dr is a (weakly) linearly convex open set. By Proposition 2.6.3, it is taut. Therefore
∆X(a, r) ⊂ ∂D, a contradiction.

(ii) As ∂D is C1-smooth, for any two linearly independent vectors X,Y ∈ La one can
find a neighborhood U of a and a number ε > 0 so that ∆X(z, ε) ⊂ D and ∆Y (z, ε) ⊂ D
for z ∈ D ∩ U ∩ Λ. By Lemma 3.2.5, ∆X+Y (z, ε′) ⊂ D for some ε′ > 0. As in (i) we
get ∆X+Y (a, ε′) ⊂ ∂D. Consequently, La is a linear space. Then, choosing a basis for La
and applying Lemma 3.2.5, we find a neighborhood U of a and a number c > 0 so that
∆X(z, c) ⊂ D for each z ∈ D ∩ U ∩ Λ and each unit vector X ∈ La. Now the required
estimate follows from Proposition 3.2.2.

Remark. The smoothness condition is redundant if D is a convex domain. Indeed, in
this case it is clear that La is a linear space. Also, if ∆ ⊂ ∂D, then for each b ∈ D and
each t ∈ (0, 1] we have tb+ (1− t)∆ ⊂ D. So we can replace Λ by an arbitrary cone with
vertex a having as base an arbitrary compact set of D.

3.3. Types of boundary points. The aim of this section is to find estimates on the
behavior of invariant metrics of C-convex domains near a boundary point depending on
the multitype of this point.

Let a be a (C∞-)smooth boundary point of a domain D ⊂ Cn. Denote by ma the
(D’Angelo) type of a, i.e. the maximal order of tangency of ∂D at a with (nontrivial)
analytic discs through a (see e.g. the Ph.D. thesis [79] of the author; we will refer to it
several times in this chapter):

ma = sup
γ

orda(r ◦ γ)

orda γ
,
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where γ varies over all analytic discs through a, while r is a smooth defining function of
D near a (this definition depends on r). By requiring γorda γ(a) = X, for a given vector
X ∈ (Cn)∗, we define the number ma,X .

The point a is said to be of finite type if ma <∞. A bounded domain D is said to be
of finite type if all its boundary points are of finite type.

Replacing the analytic discs by complex lines, we define the linear type la of a. We
can also define the number la,X as the order of tangency of ∂D at a to the line through
a in the direction of X.

Then la,X ≤ ma,X and la ≤ ma. Note that if la,X <∞, then X 6∈ La.

Proposition 3.3.1. Let a be a smooth boundary point of a C-convex domain D ⊂ Cn
and let X ∈ (Cn)∗ so that la,X <∞. Denote by na the interior normal to ∂D at a. Then
there exists a neighborhood UX of a and a constant cX ≥ 1 so that

c−1
X dD(z) ≤ dD(z;X)la,X ≤ cXdD(z), z ∈ D ∩ UX ∩ na.

Proof. We can assume that Re z1 < 0 is the interior normal to ∂D at a = 0. Let r(z) =

Re z1 + o(|z1|) + ρ(′z) be a smooth defining function of D near 0.

For each sufficiently small δ > 0 we have δ = dD(δn), where δn = (−δ,′ 0). Put
Lδ(ζ) = −δn + ζX, ζ ∈ Cn.

We consider two cases.
1. la,X = 1. This means that X1 6= 0. Then r(Lδ(ζ)) = −δ + Re(ζX1) + o(|ζ|).

Consequently, Lδ(ζ) ∈ D if |ζ| < δ/(2|X1|) and δ is sufficiently small. This proves the
left inequality.

The right inequality follows from the inequality r(Lδ(2δ/X1)) > 0, which holds for
each small δ > 0.

2. la,X ≥ 2. This means that X1 = 0. Then r(Lδ(ζ)) = −δ+ρ(ζ ′X). As ρ(ζ ′X) ≤ c|ζ|l
for some c1 > 0, we get Lδ(ζ) ∈ D, if c1|ζ|l < δ. This proves the left inequality.

To prove the right inequality, we need to find a c2 > 0 so that for each small δ > 0

there exists ζ such that |ζ|l = c−1
2 δ and ρ(ζ ′X) ≥ δ. As D is a (weakly) linearly convex

domain, it follows that ρ(ζ ′X) = h(ζ) + o(|ζ|l) ≥ 0, where

h(ζ) =
∑
j+k=l

ajkζ
jζ
k 6≡ 0.

Homogeneity of h implies h ≥ 0. In addition, as h 6≡ 0, we can find ζ so that |ζ| = 1 and
h(ζ) > c2 > 0. Now the constant c2 has the required properties for all small δ > 0.

Combining Propositions 3.2.2 and 3.3.1, we directly get the following generalization
(in an easy way) of the main result in [68] that deals with convex domains.

Corollary 3.3.2. In the notation of Proposition 3.3.1, if z ∈ D ∩ UX ∩ na, then

(4cX)−1(dD(z))−1/la,X ≤ γD(z;X) ≤ κD(z;X) ≤ cX(dD(z))−1/la,X .

The main result in [73] (see also [15]) states that ma = la for each convex domain.
As an application of Corollary 3.3.2 we will easily show something more, even for an
arbitrary C-convex domain.
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Proposition 3.3.3. If a is a smooth boundary point of a C-convex domain D ⊂ Cn,
then ma,X = la,X for each vector X 6= 0. In particular, ma = la.

Proof. It suffices to prove that ma,X ≤ la,X if la,X <∞. By Corollary 3.3.2 we have

lim sup
D∩na3z→a

κsD(z;X)d1/la,X ≥ lim inf
D∩na3z→a

γD(z;X)d1/la,X > 0

(see Section 2.10 for the definition of κsD) and the desired inequality follows from [123,
Corollary].

The following result is important if the boundary is not real-analytic near a boundary
point of infinite type.

Proposition 3.3.4. If a is a C1-smooth boundary point of a C-convex domain D ⊂ Cn,
then ∂D does not contain analytic discs through a exactly when La = {0} (i.e. ∂D does
not contain linear discs through a).

Proof. We use the notation from the proof of Proposition 3.3.1. It suffices to show that if
ϕ : D→ ∂D is an analytic disc for which ϕ(0) = 0, then La 6= {0}. As ∂D is C1-smooth
near a, there exists c > 0 so that ϕδ(ζ) = −δn + ϕ(ζ) ∈ D for δ < c and |ζ| < c. Put
m = ord0 ϕ and X = ϕ(m)(0)/m!. Then γD(δn;X) ≤ κsD(δn;X) ≤ 1/c and as in the
proof of Proposition 3.2.4 it follows that ∆X(a, c/4) ⊂ ∂D.

Remark. In the case of a convex domain the smoothness condition is redundant, as seen
in the argument of the last remark in the previous section.

Now we will discuss the so-called multitypes of a smooth boundary point a of a domain
D ⊂ Cn. For each k = 1, . . . , n put

mk
a = inf

L
sup
γ

orda(r ◦ γ)

orda γ
,

where S varies over all hyperplanes through a with dimension k, while γ varies over all
analytic discs in S that pass through a (see e.g. [79]). By replacing the analytic discs by
complex lines we define lka. For k = n these numbers coincide withma and la, respectively.
Clearly l1a = m1

a = 1 and lka ≤ mk
a. The D’Angelo multitype of a ∈ ∂D is defined as the

nondecreasing n-tuple of numbers Ma = (m1
a, . . . ,m

n
a). The D’Angelo linear type La is

defined in a similar way. We can also define the Catlin multitype M̃a = (m̃1
a, . . . , m̃

n
a) and

the Catlin linear multitype L̃a = (l̃1a, . . . , l̃
n
a ) (see e.g. [121]). Note that

lka ≤ l̃na ≤ m̃k
a ≤ mk

a.

The main result of [121] states that L̃a = Ma (and so = M̃a) for each convex domain.
Using [121] and other nontrivial facts, in [23] this equality is proven for C-convex domains.

As a corollary of Proposition 3.3.3 (that we proved easily), we can get the above
results and even strengthen them a bit.

Proposition 3.3.5. If a a is smooth boundary point of the C-convex domain D ⊂ Cn,
then La = Ma.

Proof. We can assume that a = 0. We have to show that lk0 ≥ mk
0 if lk0 < ∞ and

k > 1. Let lk0 be attained for some S and a line s ∈ S. If S is orthogonal to the complex
normal N0 to ∂D at 0, we consider the subspace S′ generated by N0 and a subspace
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of S of codimension 1, containing s. Then Dk = D ∩ S′ ⊂ Ck is a C-convex domain,
which is smooth near 0. Let m0,k and l0,k be the type and the linear type of the point
0 ∈ ∂Dk, respectively. Then l0,k = lk0 , as if a line s′ ⊂ S′ is not orthogonal to N0,

then ord0(r ◦ s′) = 1 ≤ lk0 . It remains to use that mk
0 ≤ m0,k and m0,k = l0,k by

Proposition 3.3.3.

Let us mention that a pseudoconvex point a of finite type for which M̃a = Ma, is
called semiregular (see [31]). Thus each smooth point of finite type of a C-convex domain
is semiregular.

3.4. Estimates for the Bergman kernel and the Bergman metric. In this section
we will prove some estimates for the Bergman kernel and the Bergman metric of a C-
convex domain D ⊂ Cn not containing complex lines. The constants in these estimates
depend only on n. The estimate for the Bergman metric is in the spirit of those for the
Carathéodory and Kobayashi metrics from Section 3.2. As a corollary we find that these
three metrics are comparable with constants depending only on n.

First recall the definitions of the Bergman kernel and Bergman metric for a domain
D ⊂ Cn. For these and other basic facts see e.g. [58].

Denote by L2
h(D) the Hilbert space of square-integrable holomorphic functions f in D.

This space has a (unique) reproducing kernel K̃D(z, w), the Bergman kernel. For brevity,
its restrictionKD(z) = K̃D(z, z) to the diagonal is also called the Bergman kernel; further
we will mainly work with KD. It is well-known that KD is a solution to the following
extremal problem:

KD(z) = sup{|f(z)|2 : f ∈ L2
h(D), ‖f‖D ≤ 1},

where ‖ · ‖ is the L2-norm. If KD(z) > 0 for some z ∈ D, then the quadratic form
n∑

j,k=1

∂2

∂zj∂zk
logKD(z)XjXk, X ∈ Cn,

is positive semidefinite and its square root BD(z;X) is called the Bergman metric. It also
solves an extremal problem:

BD(z;X) =
MD(z;X)√
KD(z)

,

where MD(z;X) = sup{|f ′z(X)| : f ∈ L2
h(D), ‖f‖D = 1, f(z) = 0}.

Recall that the Carathéodory metric does not exceed the Bergman metric (if the latter
is defined):

γD ≤ BD.

There are the following transformation rules for the Bergman kernel and the Bergman
metric: if f : G→ D is a biholomorphism between domains in Cn, then

KD(f(z), f(w)) Jac f(z) Jac f(w) = KG(z, w), BD(f(z); f ′z(X)) = BG(z;X).

Note that unlike the Carathéodory and Kobayashi metrics, the Bergman metric is not
monotone under domain inclusions. However, it is the quotient of two monotone invari-
ants, MD and KD.
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This will help us to attain the main goal of this section, namely to show the converse
inequality to γD ≤ BD up to a constant depending only on n.

Theorem 3.4.1. There exists a constant cn > 0, depending only on n, so that for each
C-convex domain D ⊂ Cn not containing a complex line (8), we have the inequality

1/4 ≤ BD(z;X)dD(z;X) ≤ cn.

By Propositions 3.2.1 and 3.2.3, and by the inequality γD ≤ BD, we get

Corollary 3.4.2. There exists a constant cn ≥ 1, depending only on n, so that for each
C-convex domain D ⊂ Cn not containing a complex line, we have

κD/4 ≤ BD ≤ cnγD.

If D is a convex domain, then the constant 4 can be replaced by 1.

The first results, similar to Theorem 3.4.1 and to Theorem 3.4.3 below (for the
Bergman kernel KD), refer to bounded smooth convex domains of finite type [19, 74, 75].
Unfortunately the geometric construction there (see also [73]) has a flaw, as we will ob-
serve in the next section. These results are later proven for bounded smooth C-convex
domains of finite type [12] using a correct geometric construction from [44, 45, 23] and
the paper [84] of the author and P. Pflug (see also [29]). Note that the constants in the
corresponding estimates depend on the domains.

Now let us show the most general form of this construction.
Let D ⊂ Cn be a domain not containing a complex line. For a point z we choose

a1 ∈ ∂D so that d1 := ‖a1−z‖ = dD(z). PutH1 = z+span(a1−z)⊥ andD1 = D∩H1. Let
a2 ∈ ∂D1 so that d2 := ‖a2−z‖ = dD1

(z). PutH2 = z+span(a1−z, a2−z)⊥, D2 = D∩H2

and so on. Thus we get an orthonormal basis of the vectors ej = (aj − z)/‖aj − z‖,
1 ≤ j ≤ n, which will be called minimal (for D at z), and positive numbers d1 ≤ · · · ≤ dn
(the basis and the numbers are not uniquely determined).

Put
pD(z) = d1 . . . dn.

The lower estimate for the Bergman kernel KD via pD in the next theorem is a main
point in the proof of Theorem 3.4.1, but is also of independent interest.

Theorem 3.4.3. Let D ⊂ Cn be a C-convex domain not containing a complex line. Then

1

(16π)n
≤ KD(z)p2

D(z) ≤ (2n)!

(2π)n
.

In addition, the lower estimate is precise for n = 1, while the upper estimate is exact for
each n (even for convex domains); the inequality is strict for n ≥ 2.

In addition, if D is a convex domain not containing complex lines, the lower estimate
can be improved by replacing the number 16 by 4. In this case the estimate is precise for
each n.

(8) Under this assumption D is biholomorphic to a bounded domain (see Proposition 2.6.5),
so BD is defined.
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Proof. The upper estimate. We can assume that z = 0. By Lemma 3.2.5,

D ⊃ G =
{
z ∈ Cn :

n∑
j=1

|zj |/dj < 1
}
.

Consequently, G ∪ Bn(0, d1) ⊂ D and so

KD(0) ≤ KG∪Bn(0,d1)(0) ≤ KG(0) = KE(0)/p2
D(0),

where

E =
{
z ∈ Cn :

n∑
j=1

|zj | < 1
}

(here we applied the transformation rule for the Bergman kernel under the dilatation
of the coordinates (z1, . . . , zn) 7→ (z1/d1, . . . , zn/dn)). As E is a complete Reinhardt
domain, KE(0) = vol(E)−1. It is easily calculated that this volume equals (2π)n

(2n)! (2π)n,

thereby proving the upper estimate.
It is precise for n = 1, as seen in the example of the unit disc and its center. If

n ≥ 2, then G does not contain Bn(0, d1) so the second inequality above is strict (since
the volume of G is less than that of G ∪ Bn(0, d1)).

To finish the discussion of the upper estimate, it remains to show that it is pre-
cise for n ≥ 2. For m ∈ N put bj = jm for 1 ≤ j ≤ n. Let Bj = Bn(0, bj) ∩ H ′j−1,

where H ′j−1 = {0} × Cn−j+1. Denote by T the convex hull of the union of
⋃n
j=1Bj and

{z ∈ Cn :
∑n
j=1 |zj |/bj < 1}. It is not hard to see that bj = dist(0, ∂(T ∩H ′j−1)).

Further, if Ψ(z) = (z1/b1, . . . , zn/bn), then Ψ(T ) is the convex hull of the union of
S =

⋃n
k=1 Ψ(Bk) and E. For each k > j we have bk/bj →∞ if m→∞. Consequently, for

every λ > 1 one can find an m such that S ⊂ λE. As λE is a convex domain, it contains
Ψ(T ). So

KT (0)(b1 . . . bn)2 = KΨ(T )(0) ≥ KλE(0) =
KE(0)

λ2n

and as λ > 1, the upper estimate is precise.

The lower estimate (9). After a translation and a rotation, we can assume that z = 0,
Hj = {0} ×Cn−j (j = 1, . . . , n− 1) and aj = (0, ajj , 0) ∈ Cj−1 ×C×Cn−j (j = 1, . . . , n)
so that dj = |ajj |.

As D is a C-convex domain, there exists a hyperplane aj + Wj−1 through aj that is
disjoint from D. By our construction the ball in H1 of center 0 and radius a2

2 lies in D
and so W1 ∩ H1 is orthogonal to a2, i.e. W1 ∩ H1 ⊂ {0} × Cn−2. Consequently, W1 is
defined by the equation α1,1z1 + z2 = 0. The same argument shows that the equation of
Wj for j = 0, . . . , n− 1 is

αj,1z1 + · · ·+ αj,jzj + zj+1 = 0.

Let F : Cn → Cn be the linear mapping whose matrix A has rows (αj,1, . . . , αj,j , 1, 0,

. . . , 0), j = 0, . . . , n − 1. Then G = F (D) is also a C-convex domain (G was another
domain in the proof of the upper estimate). Note that KD(0) = KG(0), as detA = 1.

(9) The geometric proof is close to that of Proposition 2.6.5.
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Put Gj = πj(G), where πj is the projection onto the jth coordinate plane. Then Gj is a
simply connected domain (see e.g. [5]) and G ⊂ G1 × · · · ×Gn. Consequently,

KD(0) ≥ KG1×···×Gn(0) = KG1(0) · · ·KGn(0). (3.4.1)

As Gj 6= C is a simply connected domain, it is biholomorphic to D and
√
πKD(0) = 1 =

γD(0; 1) implies that √
πKGj (0) = γGj (0; 1). (3.4.2)

On the other hand,

γGj (0; 1) ≥ 1

4dGj (0)
(3.4.3)

by the Koebe 1/4-theorem (this argument was already used in the proof of Proposition
3.2.2).

Further, F (aj) ∈ ∂G, and the jth coordinate of this point is ajj . In addition, the
hyperplane {z ∈ Cn : zj = ajj} does not intersect G. Consequently, a

j
j ∈ ∂Gj ; in particular

dj = |ajj | ≥ dGj (0).

This together with (3.4.1), (3.4.2) and (3.4.3) proves the lower estimate.
Note that the constant 16 is the best possible for n = 1, as shown by the example of

the image D = C\ [1/4,∞) of D under the Koebe transformation z 7→ z/(1+z)2 (already
used in Section 3.2). This example is not applicable for n ≥ 2 in a trivial way, since a
C-convex Cartesian product of domains that are different from C is necessarily convex
(see the first remark in Section 2.6).

For the lower estimate in the case of a convex domain it is sufficient to note that the
Gj are convex domains, so the number 4 can be replaced by 2 due to Proposition 3.2.1.

Finally note that in this case the constant 4 is the best possible, as seen in the example
of a Cartesian product of half-planes.

Using the lower estimate in Theorem 3.4.3, we can now prove Theorem 3.4.2.

Proof of Theorem 3.4.2. We will use the geometric configuration from the proof of The-
orem 3.4.3.

Let X ∈ (Cn)∗. First we will find an upper estimate for MD(0;X). Fix a k ∈ J = {j :

Xj 6= 0}. Then

Ψk(z) =

(
z1 −

X1

Xk
zk, . . . , zk−1 −

Xk−1

Xk
zk, zk, zk+1 −

Xk+1

Xk
zk, . . . , zn −

Xn

Xk
zk

)
is a linear mapping of Jacobian 1 and

Y k := Ψk(X) = (0, . . . , 0, Xk, 0, . . . , 0).

Let ∆j be the disc in the jth coordinate plane of center 0 and radius dj for j 6= k, and
radius d′k = |Xk|dD(0, X) for j = k. Then ∆j ⊂ Dk = Ψk(D) and by Lemma 3.2.5,

Dk ⊃ Ek =

{
z ∈ Cn :

|zk|
d′k

+

n∑
j=1, j 6=k

|zj |
dj

< 1

}
.
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Consequently,

MD(0;X) = MDk(0;Y k) ≤MEk(0;Y k) =
Cndk,D(0)

|Xk|pD(0)d2
D(0, X)

,

where Cn := ME(0; e1) =
√

(2(n+1))!
6(2π)n (the latter is calculated directly, as E is a complete

Reinhardt domain), and e1 is the first basis vector.
From this estimate and the lower estimate in Theorem 3.4.3 it follows that

BD(0;X) =
MD(0;X)√
KD(0)

≤ c′ndk,D(0)

|Xk|d2
D(0, X)

, 1 ≤ k ≤ n, (3.4.4)

where c′n = (4
√
π)nCn = 2n

√
2n−1(2(n+ 1))!/3.

It remains to note that Lemma 3.2.5 implies the inequality

1

dD(0, X)
≤

n∑
j=1

|Xj |
dj

(3.4.5)

and then put cn = nc′n.

The above results and their proofs allow us to understand the boundary behavior
of any of the metrics FD considered—Carathéodory, Kobayashi or Bergman—of a C-
convex domain that does not contain a complex line, in terms of minimal bases. This
strengthens some results from [19, 74, 75, 12, 71], dealing with bounded smooth domains
of finite type; the constants there depend on the domain (the first three works even refer
to convex domains).

Proposition 3.4.4. There exists a constant cn ≥ 1, depending only on n, so that for
each C-convex domain D ⊂ Cn not containing a complex line, we have

c−1
n ≤ FD(z;X)

( n∑
j=1

|〈X, ej(z)〉|
dj(z)

)−1

≤ cn.

(Here ej(z) are the basis vectors of a minimal basis of D at z, and dj(z) are the corre-
sponding numbers.)

Proof. By (3.4.4) and the inequality

BD(z;X) ≥ 1

4dD(z;X)

we get
|Xj(z)|
dj(z)

≤ 4c′n
dD(z)

.

So
1

dD(z;X)
≤

n∑
j=1

|Xj(z)|
dj(z)

≤ 4cn
dD(z;X)

,

where cn = nc′n. Then (3.4.4) and (3.4.5) show that

(16cn)−1 ≤ FD(z;X)

( n∑
j=1

|Xj(z)|
dj(z)

)−1

≤ cn.
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The following result is in the spirit of Proposition 3.4.4, but it deals with a fixed basis.
As each boundary point of a bounded C-convex domain is semiregular (see the end of
Section 3.3), the result directly follows from [124, 16] and [79, Theorem 3.3.1].

Proposition 3.4.5. Let a be a boundary point of finite type of a bounded smooth C-convex
domain D ⊂ Cn. Denote by M̃a = (m1, . . . ,mn) the Catlin multitype of a. Then there
exists a linear basis change with the following property: for each nontangent cone Λ with
vertex a there exists a constant c > 0 so that for an arbitrary vector X = (X1, . . . , Xn)

in the new basis we have

c−1 ≤ lim inf
Λ3z→a

FD(z;X)

( n∑
j=1

|Xj |
(dD(z))1/mj

)−1

≤ lim sup
Λ3z→a

FD(z;X)

( n∑
j=1

|Xj |
(dD(z))1/mj

)−1

≤ c.

In addition, for the Bergman kernel we have

c−1 ≤ lim inf
Λ3z→a

KD(z)(dD(z))−2q ≤ lim sup
Λ3z→a

KD(z)(dD(z))−2q ≤ c,

where q = 1/m1 + · · ·+ 1/mn.

The basis change can be chosen to be linear because L̃a = M̃a.

Note that Proposition 3.4.5 implies a more precise variant of Proposition 3.3.1 in the
case of finite type, namely that for each vector X ∈ (Cn)∗ there exists j = 1, . . . , n so
that la,X = mj .

Finally let us mention that by a result from [23] the quotient (dj,D)m/dD is bounded
near a (recall that m = mn is the type of a) and then Proposition 3.4.4 provides a
neighborhood U of a and a constant c > 0 so that

κD(z;X) ≥ c‖X‖
(dD(z))1/m

, z ∈ D ∩ U.

3.5. Maximal basis. A counterexample. To get estimates for the Bergman kernel
and the Bergman metric for C-convex domains, in the previous section we introduced a
basis (called minimal) with origin at a given point of the domain. As mentioned, in the
special case of a smooth convex domain of finite type, in [19, 74, 75] a similar basis is
introduced (that we call maximal). The minimal and maximal bases can be considered
in the context of the so-called extremal bases (see [18]). Many other important results,
like those connected with the linear type, with the ∂-problem or with domains with
noncompact groups of automorphisms (see e.g. [73, 76, 77, 41]), use in an essential way
the properties of the maximal basis, and most of all one extremal property, satisfied also
by the minimal basis. In general, this property means that the vectors from the basis are
orthogonal to the corresponding hyperplanes (see the Introduction; the details are given
below). Unfortunately exactly this property of the maximal basis turns out to be wrong
(the hints for corresponding proofs are based on an incorrect application of the method
of Lagrange multipliers).
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The main aim of this section is to provide a counterexample to the extremal property
of the maximal basis.

Now we define the notion of “maximal basis”. Let D ⊂ Cn be a domain, not containing
a complex line. For q ∈ D we choose a unit vector a1 ∈ Cn so that

s1 := dD(q; a1) = dD(q).

Then we choose a unit vector a2 ∈ span(a1)⊥ so that

s2 := dD(q; a2) = sup dD(q; a),

where the supremum is taken over all the unit vectors a ∈ span(a1)⊥. In the next step
we choose a unit vector a3 ∈ span(a1, a2)⊥ so that

s3 := dD(q; a3) = sup dD(q; a),

where the supremum is taken over the unit vectors a ∈ span(a1, a2)⊥. Continuing the
procedure, we get an orthonormal basis a1, . . . , an that will be called maximal (forD at q)
and a sequence of positive numbers s2 ≥ · · · ≥ sn ≥ s1 ≥ 0 (but they are not uniquely
determined). Note that, unlike the minimal basis, after the first step the corresponding
distances are chosen maximal (rather than minimal).

Assume now that D is a convex domain that is smooth near a boundary point p1

(of finite type). Let r be a locally defining function. Now we will describe the extremal
property mentioned in the Introduction. For q ∈ D on the interior normal to ∂D at p1,
sufficiently close to p1, we consider a coordinate system defined by the maximal basis at q,
i.e. we put q = 0 and express each z ∈ Cn in the form z =

∑n
j=1 wjaj . We choose pk ∈ ∂D,

k = 2, . . . , n, so that pk = λkak, where |λk| = sk. Many of the works mentioned in the
Introduction (see e.g. [19, Proposition 2.2(ii)], [73, Proposition 3.1(i)], [74, Proposition
2.1(iii)]) claim that

∂r(pk)

∂wj
= 0, j = k + 1, . . . , n. (∗)

This means that

TC
pk

(∂D) ∩ span(a1, . . . , ak)⊥ = span(ak+1, . . . , an). (∗∗)

Note that the minimal basis has a very essential property which is equivalent to (∗) in
the smooth case; we started from it when obtaining the lower estimate for the Bergman
kernel in Theorem 3.4.3.

However now we will demonstrate a counterexample in C3 to the property (∗) of the
maximal bases at the points from an interior normal to the boundary of a domain in C3

(in C2 this property clearly holds).
Let 0 < β2 < β1 < 1. Put

D = {z ∈ C2 × C : ρ(z) + |z3|2 < 1},

where ρ(z) = x2
1 + β1y

2
1 + x2

2 + β2y
2
2 . Note that D is a strictly (pseudo)convex domain

with real-analytic boundary. Let q = (0, 0, δ), where 0 < δ < 1. The construction of a
maximal basis of D at q leads to s1 = 1− δ and a1 = (0, 0, 1). From the next step we get
the domain

Dδ = {z ∈ C2 : ρ(z) < 1− δ2}.
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Note that a homothety transforms Dδ into D0 and so we can examine only D0. For
the second vector a2 from the maximal basis we have a2 = (b, 0), where b ∈ C2. Then
span(a1, a2)⊥ is generated by (−b2, b1, 0). Put

T =

{
b ∈ C2 :

∂ρ(b)

∂z1
(−b2) +

∂ρ(b)

∂z2
(b1) = 0

}
.

Lemma 3.5.1. T = {b ∈ C2 : b1 = 0 or b2 = 0 or Im b1 = Im b2 = 0}.

Proof. Some elementary calculations show that b ∈ T exactly when

(β1 − β2) Im b1 Im b2 = 0, (1− β1) Im b1 Re b2 = (1− β2) Im b2 Re b1,

and the result follows.

Let p2 ∈ ∂D0 so that
dD0

(0; p2)

‖p2‖
= s2 = sup

‖a‖=1

dD0
(0; a).

The following result shows that the property (∗∗), equivalent to (∗), is not true at the
points on the interior normal to D at (1, 0, 0) (formally we must also consider the case
δ < 0, but then the closest point is (−1, 0, 0) and the situation is similar).

Proposition 3.5.2. p2 6∈ T .

Proof. Let b ∈ T be a unit vector. Note that ρ(reiαb) < 1 for each α ∈ R if and only
if r2R(b) < 1, where R(b) = maxα∈R ρ(eiαb). Consequently, dD0

(0; b) = 1/
√
R(b). Let

b = (eiϕ1 cos Θ, eiϕ2 sin Θ), where 0 ≤ Θ < 2π and 0 ≤ ϕ1, ϕ2 ≤ π/2. By Lemma 3.5.1
there are three possibilities for b:

• Θ = 0 or Θ = π: ρ(eiαb) = cos2(α+ ϕ1) + β1 sin2(α+ ϕ1).

• Θ = π/2 or Θ = 3π/2: ρ(eiαb) = cos2(α+ ϕ2) + β2 sin2(α+ ϕ2).

• ϕ1 = ϕ2 = 0: ρ(eiαb) = cos2 α+ sin2 α(β1 cos2 Θ + β2 sin2 Θ).

In all three cases R(b) = 1.

On the other hand, there exists a unit vector b∗ ∈ C2 such that R(b∗) < 1, and so
p2 6∈ T . To define b∗, put Θ = π/4 ϕ1 = 0 and ϕ2 = π/2. Then 2ρ(eiαb∗) = 1 + β2 +

(β1 − β2) sin2 α. As β1 < β2 < 1, we conclude that R(b∗) = (1 + β2)/2 < 1.

3.6. Estimates in a maximal basis. The aim of this section is to prove, using the
estimates for invariants in terms of a minimal basis, that they remain true in terms of a
maximal basis, in spite of the counterexample from the last section. A similar approach
allows one to confirm the correctness of other results using the maximal basis.

Let D ⊂ Cn be a C-convex domain not containing a complex line (i.e. each nonempty
intersection of D with a complex line is biholomorphic to D). For z ∈ D, let e1, . . . , en be
a minimal basis of D at z, and a1, . . . , an a reordered maximal basis of D at z, meaning
that the new a1 is the old ã1, but a2 = ãn, a3 = ãn−1, . . . , an = ã2. Let d1 ≤ · · · ≤ dn
and s1 ≤ · · · ≤ sn be the corresponding numbers (recall that d1 = s1 = dD(z)). Put
pD(z) =

∏n
j=1 dj and sD(z) =

∏n
j=1 sj . As before, KD(z) denotes the Bergman kernel

(on the diagonal). Let FD(z;X) be any of the metrics of Carathéodory, Kobayashi or
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Bergman. For X ∈ Cn put

ED(z;X) =

n∑
j=1

|〈X, ej〉|
dj

, AD(z;X) =

n∑
j=1

|〈X, aj〉|
sj

.

Now, we will write f(z) . g(z) if f(z) ≤ cng(z) for some constant cn > 0 depending only
on n; f(z) ∼ g(z) means that f(z) . g(z) . f(z). By Proposition 3.2.2, Theorems 3.4.2,
3.4.3 and Proposition 3.4.4 we know that

KD(z) ∼ 1/p2
D(z), FD(z;X) ∼ ED(z;X) ∼ 1/dD(z;X)

(as noted, under the much stronger requirements that the domain be C-convex, smooth,
bounded and of finite type these estimates follow also from [12, 71]). For brevity we will
sometimes omit the arguments z and X. Lemma 3.2.5 easily implies that

KD . 1/s2
D, FD . AD.

In particular,
1/dD(z;X) ∼ ED(z;X) . AD(z;X).

As mentioned, the main corollary from the incorrect property (∗) for the maximal bases
(for a bounded smooth C-convex domain of finite type) is that

AD(z;X) ∼D 1/dD(z;X),

where the constant in ∼D depends on D. Based on this fact, in [19, 74, 75] it is shown
that

KD ∼D 1/s2
D, FD ∼D AD.

The next two propositions show that anyway these estimates are correct.
The first estimate can also be obtained from [45] in the case of a bounded smooth

C-convex domain of finite type. The proof there uses the incorrectly proven estimate
1/dD(z;X) ∼D AD(z;X), but a closer look shows that one can only use the correct part
of that estimate, 1/dD(z;X) .D AD(z;X).

Proposition 3.6.1. Let D ⊂ Cn be a C-convex domain not containing complex lines.
Then for each z ∈ D we have dj ∼ sj, j = 1, . . . , n.

Once again observe that the constant in ∼ depends only on the dimension n of D.

Proof. We first prove that sj . dj . As ED . AD, it suffices to check that if ED ≤ cAD,

then sj ≤ c′dj , where c′ = n!c.

The formula for the determinant of the unitary transformation between two bases im-
plies that

∏n
j=1 |〈aj , eσ(j)〉| ≥ 1/n! for some permutation of σ of {1, . . . , n}. In particular,

|〈aj , eσ(j)〉| ≥ 1/n!. Then ED(z; aj) ≤ cAD(z; aj) implies sj ≤ c′dσ(j).

Suppose now that c′dk < sk for some k. Then

c′dk < sk ≤ sj ≤ c′dσ(j), j ≥ k.

Consequently, σ(j) > k for each j ≥ k, a contradiction, as σ is a permutation.
These arguments show that d̃j ∼ dj , where d̃j are the corresponding numbers for

another minimal basis ofD at z. Thus we can assume that e1 = a1.We know that s1 = d1.

It remains to show that sk & dk for k ≥ 2. Choose a unit vector in span(ek, . . . , en) that
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is orthogonal to ak+1, . . . , an (a′n = en if k = n). Then a′k is also orthogonal to a1 = e1.

Consequently, sk ≥ dD(z; a′k) (by the construction of a maximal basis). On the other
hand, as a′k is orthogonal to e1, . . . , ek−1, we have

1

dD(z; a′k)
∼ ED(z; a′k) =

n∑
j=k

|〈a′k, ej〉|
dj

.
1

dk
.

So sk ≥ dD(z; a′k) & dk.

Proposition 3.6.2. Let D be as in Proposition 3.6.2. Then AD ∼ ED.

Proof. In view of the inequality ED . AD and Proposition 3.6.1 (sk ∼ dk), it suffices to
prove

|〈X, ak〉|/dk . ED(z;X)

for each k. Put bjk = 〈aj , ek〉. As
1

dj
∼ 1

dD(z; aj)
∼ ED(z; aj) ≥

|bjk|
dk

,

it follows that |bjk| . dk/dj . The unitary transformation with matrix B = (bjk) trans-
forms the basis e1, . . . , en into a1, . . . , an. For the inverse matrix C = (cjk) we have

|cjk| ≤
∑
σ

|b1σ(1) . . . bk−1,σ(k−1)bk+1,σ(k+1) . . . bn,σ(n)|

.
∑
σ

dσ(1)

d1
. . .

dσ(k−1)

dk−1

dσ(k+1)

dk+1
. . .

dσ(n)

dn
=
∑
σ

dk
dj

= (n− 1)!
dk
dj
,

where σ varies over all bijections between {1, . . . , k − 1, k + 1, . . . , n} and {1, . . . , j − 1,

j + 1, . . . , n}. Consequently,

|〈X, ak〉|
dk

≤
n∑
j=1

|〈X, ej〉|
|bkj |
dk

=

n∑
j=1

|〈X, ej〉|
|cjk|
dk

. ED.

Remark. The constructions of minimal and maximal bases can be generalized in the
following way: we choose “minimal” discs at steps 1, . . . , k and “maximal” discs at steps
k + 1, . . . , n − 1 (the nth choice is canonical); k = n − 1 gives a minimal basis, k = 1 a
maximal one, and k = 0 a basis without “minimal” discs. Note that Propositions 3.6.1
and 3.6.2 remain true when sj are replaced by the numbers in the new basis and we
express AD in this basis. (This construction has an obvious real analogue.)

3.7. Localizations. It is natural to ask whether the results from the preceding sec-
tions have local character, i.e. whether C-convexity is a local notion (like convexity and
pseudoconvexity) and whether the behavior of the invariant metrics considered near a
boundary point of a given domain is similar to that on the intersection of the domain
with a neighborhood of the points.

It is hard to get localization results for the Carathéodory metric and here we are not
going to deal with them. Some such results can be found in [79].

First we will discuss the local character of C-convexity. As noted in Section 2.6, each
bounded C-convex domain is (weakly) linearly convex, and the converse is true under the
additional assumption of a C1-smooth boundary.
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The next proposition shows that this fact has local character.

Proposition 3.7.1. Let a be a Ck-smooth boundary point (2 ≤ k ≤ ∞) of a domain
D ⊂ Cn that is locally weakly linearly convex near a (10), i.e. for each b ∈ ∂D near
a there exists a neighborhood Ub so that D ∩ Ub ∩ TC

b (∂D) = ∅. Then there exists a
neighborhood U of a for which D ∩ U is a Ck-smooth C-convex domain.

Clearly this proposition has “convex” and “pseudoconvex” analogues, proven in a sim-
ilar, but easier, way.

Proof. We can assume that a = 0. Denote by Hf (z;X) the Hessian of a C2-smooth
function f . Put Bs = Bn(0, s) (s > 0) and

r(z) =

{
−dD(z), z ∈ D,
dD(z), z 6∈ D.

The differential inequality for r2 in the proof of [5, Proposition 2.5.18, (ii)⇒(iii)] easily
implies that there exists an ε > 0 so that r is a Ck-smooth defining function of D on B3ε,
and Hr(z;X) ≥ 0 if 〈∂r(z), X〉 = 0 and z ∈ D ∩ B2ε. Then the proof of [27, Lemma 1]
shows that there exists a c > 0 such that Hr(z;X) ≥ −c‖X‖ · |〈∂r(z), X〉|, z ∈ D ∩B2ε.

We can suppose that 2εc ≤ 1 and D ∩ Bε is connected. Choose a smooth function χ so
that χ(x) = 0 for x ≤ ε2 and χ′(x), χ′′(x) > 0 for x > ε2. Put θ(z) = χ(‖z‖2). We can
find a C ≥ 1/2 such that

B2ε c G′ = {z ∈ B2ε : 0 > ρ(z) = r(z) + Cθ(z)} ⊂ D.

Now, the inequalities 2cε ≤ 1 and |〈∂θ(z), X〉| ≤ χ′(‖z‖2)‖z‖ ·‖X‖ yield χ′(‖z‖2)‖X‖
> c|〈∂θ(z), X)| if z ∈ B2ε \Bε and X 6= 0. This, together with

Hr(z;X) ≥ −c‖X‖ · |〈∂r(z), X〉|, z ∈ G′,
Hρ(z;X) = Hr(z;X) + 4Cχ′′(‖z‖2)Re2〈z,X〉+ 2Cχ′(‖z‖2)‖X‖2, C ≥ 1/2,

and the triangle inequality, implies that

Hρ(z;X) ≥ −c‖X‖ · |〈∂ρ(z), X〉|, z ∈ G′.

In addition, the last inequality is strict if z ∈ G′ \Bε and X 6= 0. This shows that ∂ρ 6= 0

on ∂G′ \Bε (otherwise ρ would attain a local minimum at some point of this set, which
is clearly impossible). Thus ∂ρ 6= 0 on ∂G′.

Let G be a connected component of G′ that contains D ∩ Bε. Then [5, Proposition
2.5.18] (see also [50, Proposition 4.6.4]) implies that G is a Ck-smooth C-convex domain.
It remains to put U = Bn(0, ε) ∪G.

Now we will discuss the localization of the Kobayashi metric. First recall that if D
is a hyperbolic domain (i.e. the Kobayashi pseudodistance kD is a distance), then the
following weak localization holds (see e.g. [79]):

Proposition 3.7.2. If V b U are neighborhoods of a boundary point of a hyperbolic
domain D ⊂ Cn, then there exists a constant C ≥ 1 such that for each z ∈ D ∩ V and

(10) Cf. Section 2.6.
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each X ∈ Cn we have

κD(z;X) ≤ κD∩U (z;X) ≤ CκD(z;X).

Propositions 3.7.1 and 3.7.2 show that all the above results for the Kobayashi metric,
as well as those connected with types and multitypes, have local character in the case of
bounded domains.

To see this, note the following. If a is a boundary point of a bounded domain D ⊂ Cn,
then it is easily seen that for each neighborhood U of a we have

pD(z) ∼∗ pD∩U (z), sD(z) ∼∗ sD(z), dD(z;X) ∼∗ dD∩U (z;X),

ED(z;X) ∼∗ ED∩U (z;X), AD(z;X) ∼∗ AD∩U (z;X)

near a; here the constant in ∼∗ depends on D and U.
Thus we get the following corollary of Propositions 3.2.2, 3.7.1 and 3.7.2.

Corollary 3.7.3. Let a be a boundary point of a bounded domain D ⊂ Cn, as in
Proposition 3.7.1. Then

κD(z;X) ∼D dD(z;X) ∼D ED(z;X)

near a (the constant in ∼D depends on D).

Now we will sharpen the last corollary if ∂D does not contain analytic discs through
a (by Proposition 3.3.4 this is equivalent to ∂D not containing linear discs through a).

Proposition 3.7.4. Let a be a boundary point of a bounded domain D ⊂ Cn, as in
Proposition 3.7.1. Also assume that ∂D does not contain analytic discs through a. Then

1

4
≤ lim inf

z→a
κD(z;X)dD(z;X) ≤ lim sup

z→a
κD(z;X)dD(z;X) ≤ 1

uniformly in X ∈ (Cn)∗.

As in ∂D there are no analytic discs through a, Propositions 3.2.3, 3.2.4 and 3.7.1
imply that for each sufficiently small neighborhood U of a we have limz→a dD(z;X) =∞
uniformly in all unit vectors in Cn. Then by shrinking U (if necessary), dD(z;X) =

dD∩U (z;X) for each z near a (also ED(z;X)=ED∩U (z;X) and AD(z;X)=AD∩U (z;X)).
After these remarks, Proposition 3.7.4 follows from the following strict localization

for the Kobayashi metric (cf. Proposition 2.6.3).

Proposition 3.7.5. Let D ⊂ Cn be a bounded domain whose boundary does not contain
nontrivial analytic discs through a point a ∈ ∂D. Suppose that there exists a neighborhood
U of a and a function f ∈ O(D ∩ U) such that limz→a |f(z)| = ∞. Then for each
neighborhood V of a we have

lim
z→a

κD∩V (z;X)

κD(z;X)
= 1

uniformly in X ∈ (Cn)∗.

Proof. Using the condition on the discs, as in the proof of Proposition 2.6.3, it follows
that each sequence of analytic discs ϕj with ϕj(0) → a converges to a uniformly (on
compact subsets of D). Then the proposition is contained in [79, Corollary 2.3.4].
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As a planar domain having at least two points in its boundary is hyperbolic (see e.g.
[58]), the proof of the above proposition shows that the statement can be strengthened
for n = 1.

Proposition 3.7.6. Let a be a boundary point of a domain D ( C \ {a}. Then for each
neighborhood V of a we have

lim
z→a

κD∩V (z; 1)

κD(z; 1)
= 1.

In particular, if a is an isolated boundary point of D, then

lim
z→a

κD(z; 1)|z| log |z| = −1/2.

Note that the last equality follows from the formula κD∗(z; 1) = − 1
2|z| log |z| (see e.g.

[58]).
Proposition 3.7.6 generalizes essentially, and with a short proof, [61, Theorem 1].

3.8. Localization of the Bergman kernel and the Bergman metric. In this section
we provide localization theorems for the Bergman kernel and the Bergman metric, which
together with Proposition 3.7.1 will allow us to localize the results from the preceding
sections that deal with the Bergman kernel and the Bergman metric.

In the case when D ⊂ Cn is a bounded pseudoconvex domain, the corresponding
results are well known (see e.g. [30]).

Theorem 3.8.1. Let V b U be neighborhoods of a boundary point z0 of a bounded pseu-
doconvex domain D ⊂ Cn. Then there exists a constant c ≥ 1 such that for each z ∈ D∩V
and for each X ∈ Cn we have

c−1KD∩U (z) ≤ KD(z) ≤ KD∩U (z), c−1BD∩U (z;X) ≤ BD(z;X) ≤ cBD∩U (z;X).

By imitating the proof of Corollary 3.7.3, we get

Corollary 3.8.2. Let a be a boundary point of a bounded domain D ⊂ Cn, as in
Proposition 3.7.1. Then

KD(z) ∼D 1/p2
D(z), BD(z;X) ∼D 1/dD(z;X) ∼D ED(z;X)

near a.

Note that for the Bergman kernel, the localization is strict if z0 ∈ ∂D is a holomorphic
peak point in the most general sense, i.e. there exists a function p ∈ O(D,D) such that

lim
z→z0

p(z) = 1 > sup
D\U
|p|

for each neighborhood U of z0. This is proved in the fundamental work [49] of L. Hör-
mander as an application of the L2-estimates for the ∂-problem. More general results can
be found in [48].

One of the goals of this section is to carry over this result to the case of an arbitrary
pseudoconvex domain (not necessarily bounded). We will say that z0 ∈ ∂D is a locally
holomorphic peak point if z0 is a holomorphic peak point of D∩U for some neighborhood
U of z0.
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Theorem 3.8.3. Let U be a neighborhood of a boundary locally holomorphic peak point
z0 of a pseudoconvex domain D ⊂ Cn. Then

lim
z→z0

KD∩U (z)

KD(z)
= 1, lim

z→z0

BD∩U (z;X)

BD(z;X)
= 1

uniformly on X ∈ (Cn)∗.

In particular, KD∩U (z) > 0 and so BD∩U (z;X) exists for z close to z0.

To prove Theorem 3.8.3, we need a localization lemma for the pluricomplex Green
function gD (for the definition see Section 1.7).

Lemma 3.8.4. Let U be a neighborhood of a locally holomorphic peak point z0 of a pseu-
doconvex domain D ⊂ Cn. Then

lim inf
z→z0,w∈D\U

gD(z, w) = 0. (11)

In addition, there exists a neighborhood V ⊂ U of z0 such that

inf{gD(z, w)− gD∩U (z, w) : z ∈ D ∩ V, w ∈ D ∩ U \ {z}} = 0.

In particular, we have strong localization for the Azukawa metric:

lim
z→z0

AD∩U (z;X)

AD(z;X)
= 1

uniformly in X ∈ (Cn)∗.

The first equality means that D has the so-called property (P ) (see e.g. [21]), which
has applications in problems about Bergman invariants, as well in pluripotential theory.

Proof. We use the fact that each locally holomorphic peak point is a plurisubharmonic
peak point, i.e. there exists a negative function ϕ ∈ PSH(D) such that

lim
z→z0

ψ(z) = 0 > inf
D\U1

ψ

for each neighborhood U1 of z0. Indeed, one can assume that p is a holomorphic peak
function on D ∩ U1 at z0. Then it suffices to choose a neighborhood U2 b U1 of z0 such
that G = D ∩ U1 \ U2 6= ∅ and to put δ = supG |p| and

ϕ = −1 +

{
max(δ, |p|), D ∩ U2,

δ, D \ U2.

(This argument shows that the notion “plurisubharmonic peak point” has local character.)
On the other hand, each plurisubharmonic peak point is a plurisubharmonic antipeak

point (see e.g. [42]), i.e. there exists a negative function ψ ∈ PSH(D) such that

lim
z→z0

ψ(z) = −∞ < inf
D\U1

ψ

for each neighborhood U1 of z0: to see this, put ψ = − log(−ϕ).

Now we pass to the proof proper. Let us first suppose that z0 is a holomorphic peak
point of D∩U. LetW b U be a neighborhood of z0.We can choose another neighborhood
V b W of z0 so that infD\W ψ ≥ c := 1 + supD∩∂V ψ. Fix z ∈ D ∩ V and put d(z) =

(11) Here and further we assume D \ U 6= ∅.



90 N. Nikolov

infw∈D∩∂V gD∩U (z, w), u(z, w) = (c−ψ(w))d(z) for w ∈ D. As u(z, w) ≤ gD∩U (z, w) for
w ∈ D ∩ ∂V and u(z, w) ≥ 0 > gD∩U (z, w) for w ∈ D ∩ U \W, the function

v(z, w) =


gD∩U (z, w), w ∈ D ∩ V,
max{gD∩U (z, w), u(z, w)}, w ∈ D ∩W \ V,
u(z, w), w ∈ D \W,

is plurisubharmonic in the second variable and has a logarithmic singularity at z. Also,
v(z, w) < cd(z) and so gD(z, w) ≥ v(z, w)−cd(z). As v(z, w) = u(z, w) ≥ 0 for w ∈ D\W,
we get gD(z, w) ≥ −cd(z) for w ∈ D \W. Since

gD∩U (z, w) ≥
∣∣∣∣ p(w)− p(z)
1− p(z)p(w)

∣∣∣∣,
limz→z0 d(z) = 0 and so limz→z0 infw∈D\W gD(z, w) = 0, which proves the first equality
in the lemma.

Let now U be an arbitrary neighborhood of z0. We repeat the above considerations.
Using the first equality in the lemma for V instead of U and the inequality gD∩U ≥ gD,

we get limz→z0 d(z) = 0. Then the equality v(z, w) = gD∩U (z, w) for w ∈ D ∩ V implies
the second equality in the lemma.

Remark. The above proof shows that for each neighborhood U of a plurisubharmonic
antipeak point z0, there exists a neighborhood V ⊂ U of z0 so that

lim
z→z0

inf{gD(z, w)− gD∩U (z, w) : w ∈ D ∩ V \ {z}} > −∞.

In particular, we have the following weak localization for the Azukawa metric: for each
neighborhood U of z0, there exist a constant C > 0 and a neighborhood V ⊂ U of z0 so
that for each z ∈ D ∩ V and for each X ∈ Cn we have

C−1AD∩U (z;X) ≤ AD(z;X) ≤ AD∩U (z;X).

Note that each boundary point of a bounded domain is a plurisubharmonic antipeak
point, as shown by the function log(‖z − z0‖)/diam(D).

A key role in the proof of Theorem 3.8.3 will be played by the following lemma
(replacing the existence of a bounded strictly plurisubharmonic function on bounded
domains).

Lemma 3.8.5. For each plurisubharmonic antipeak point z0 of an open set D ⊂ Cn,
there exists a neighborhood V containing z0, a number c > 0 and a bounded function
s ∈ PSH(D) such that −1 < s ≤ 0 and the function s(z)− c‖z‖2 is plurisubharmonic in
D ∩ V.

Proof. Let ϕ be a plurisubharmonic antipeak function for z0, and W be a bounded
neighborhood of z0 such that D ∩ ∂W 6= ∅. Then

m = inf
D∩∂W

(ϕ− ‖ · −z0‖2) > −∞

and consequently

s̃ =

{
max{ϕ, ‖ · −z0‖2 +m}, D ∩W,
ϕ, D \W,
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is a bounded plurisubharmonic function on D that coincides with ‖ · −z0‖2 +m in some
neighborhood V of z0. It remains to put

s =
supD s̃− s̃

supD s̃− infD s̃
.

Proof of Theorem 3.8.3. Recall that

BD(z;X) =
MD(z;X)√
KD(z)

,

where MD(z;X) = sup{|f ′z(X)| : f ∈ L2
h(D), ‖f‖D = 1, f(z) = 0}.

We will only prove that

lim
z→z0

MD∩U (z;X)

MD(z;X)
= 1

uniformly in X ∈ (Cn)∗. The proof of the equality

lim
z→z0

KD∩U (z)

KD(z)
= 1

is analogous (even simpler) and we omit it. These two equalities imply the theorem.
By shrinking (if necessary) the neighborhood V in Lemma 3.8.5, we can assume that

V ⊂ U and that there exists a locally holomorphic peak function p for z0, defined on
D ∩ V. Let χ be a smooth function with support in V such that 0 ≤ χ ≤ 1 and χ ≡ 1 in
a neighborhood V1 b V of z0. By Lemma 3.8.4, there exists a neighborhood V2 b V1 of
z0 so that

m = inf{gD(z, w) : z ∈ D ∩ V2, w ∈ D \ V1} > −∞.

For k ∈ N, z ∈ D ∩ V2 and f ∈ L2
h(D ∩ U) such that f(z) = 0, put α = ∂(χfpk) and

extend α trivially as a ∂-closed (0, 1)-form on D. Let

β = exp(−2(n+ j)gD(z, ·)− s),

where s is the function from Lemma 3.8.5. As − log β − c‖ · ‖2 is a plurisubharmonic
function on the open set {w ∈ D : α(w) 6= 0}, from the proof of [49, Theorem 2.2.1′] it
follows that there exists a smooth function h on D such that ∂h = α and∫

D

|h|2β ≤ c−1

∫
D

|α|2β.

Then g = χfpk − h is a holomorphic function on D. As the right-hand side of the above
inequality is bounded, so is the left-hand side. Then h(z) = 0 and hence

g′z(X) = (p(z))kf ′z(X).

In addition, from gD < 0 and s < 0 it follows that

‖h‖2D ≤
∫
D

|h|2β.

On the other hand, if C = exp(−2(n+ j)m+ 1) sup |∂χ|2 and q = supD∩V \V1
|p|, then∫

D

|α|2β ≤ Cq2k.
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On putting C1 =
√
C/c, the last three inequalities imply

‖g‖D ≤ 1 + C1q
k.

Now the definition of MD implies that

MD∩U (z;X) ≥MD(z;X) ≥ MD∩U (z;X)|p(z)|2k

(1 + C1qk)2
.

Letting z → z0, then k → ∞ and using limz→z0 p(z) = 1 and q < 1, we get the desired
equality.

From the above proof (for k = 0) we get

Corollary 3.8.6. If U is a neighborhood of a plurisubharmonic antipeak point z0 of an
(arbitrary) domain D ⊂ Cn, then there exist a constant c > 0 and a neighborhood V ⊂ U
of z0 so that

c−1KD∩U (z) ≤ KD(z) ≤ KD∩U (z), c−1BD∩U (z;X) ≤ BD(z;X) ≤ cBD∩U (z;X)

for each z ∈ D ∩ V and for each X ∈ Cn. In particular, such a localization holds for an
arbitrary boundary point z0 of a domain D ⊂ C whose complement is not a polar set.

Recall that a set E ⊂ C is called polar if E ⊂ u−1(−∞) for some −∞ 6≡ u ∈ PSH(D).

If the complement of a domain D ⊂ C is not polar, then KD > 0; otherwise KD ≡ 0.

To see that z0 is a subharmonic antipeak point of D, it suffices to note that for each
sufficiently small neighborhood V of z0, the complement of G = D∪V is not polar. Then
gG(z0, ·) is a bounded function on G outside an arbitrary neighborhood of z0 and so it is
a subharmonic antipeak function for z0.

Corollary 3.8.6 can be applied to prove that the completeness of the Bergman distance
of a planar domain with a nonpolar complement has local character (see [81]).

To apply Theorem 3.8.3, note that if a is a boundary point of a domain D ⊂ Cn as
in Proposition 3.7.1, and in addition a is of finite type, then it is a locally holomorphic
peak point. Indeed, as noted at the end of Section 3.3, a is a semiregular point and so
it suffices to use the main result in [122]. A more general result in the smooth C-convex
case can be found in [28]. So we get

Corollary 3.8.7. Let a be a smooth boundary point of finite type of a (not necessarily
bounded) domain D ⊂ Cn as in Proposition 3.7.1. Then

KD(z) ∼ 1/p2
D(z), BD(z;X) ∼ 1/dD(z;X) ∼ ED(z;X)

near a.

Recall that the constants in ∼ depend only on n. This corollary essentially strengthens
some of the main results in [19, 74, 75, 12].

The next proposition allows us to sharpen this result, as well as Corollary 3.7.4 in
the case of convex domains. In less generality this proposition is formulated in [113] with
only a hint for a proof.

Proposition 3.8.8. Let D ⊂ Cn be a convex domain. Then a ∈ ∂D is a holomorphic
peak point exactly when La = {0}.
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Proof. The necessity of the condition La = {0} is almost obvious. Indeed, suppose that
there exists a holomorphic peak function f for D at a, but La 6= {0}. By the remark after
the end of the proof of Proposition 3.2.4, one can find a vector X 6= 0, a number ε > 0

and a sequence of points zj → a so that ∆X(zj , ε) ⊂ D. Then, considering the restriction
of f on the complex line through zj in the direction of X, we get a contradiction with
the maximum principle.

Let now La = {0}. Then D does not contain complex lines; otherwise D would be
biholomorphic to C × D′, and the corresponding biholomorphism would extend over a
neighborhood of a (see the proof of Proposition 2.6.5) and so D could contain analytic
discs, and so also linear discs through a (see the remark after the proof of Proposition
3.3.4); a contradiction. Consequently, D is biholomorphic to a bounded domain and
the corresponding biholomorphism extends to a neighborhood of a (see the proof of
Proposition 2.6.5). Thus we can suppose that D is a bounded domain. Note that if c
is a positive number such that c infz∈D Re(z1) > −1 (D is bounded), then the function
f1(z) = exp(z1+cz2

1) belongs to A(D) = O(D)∩C(D) and |f1(z)| < 1 for z ∈ D\{z1 = 0}.
This easily implies (cf. [39]) that supp µ ⊂ D1 := ∂D ∩ {z1 = 0}. Since L(0) = 0, the
origin is a boundary point of the compact convex set D1. As above, we may assume
that D1 ⊂ {z ∈ Cn : Re(z2) ≤ 0} (z2 is independent of z1) and then construct a
function f2 ∈ A(D) such that |f2(z)| < 1 for z ∈ D1 \ {z2 = 0}. This implies that
suppµ ⊂ D1 ∩ {z2 = 0}. Repeating this argument we conclude that suppµ = {0}, i.e. 0

is a peak point for the algebra A(D) (see e.g. [39]), which even means that there exists a
function f ∈ A(D) such that f(a) = 1 and |f(b)| < 1 for each point D 3 b 6= a.

Corollary 3.8.9. Let the pseudoconvex domain D ⊂ Cn be locally convex near its
boundary point a. If ∂D does not contain analytic discs through a, then

KD(z) ∼ 1/p2
D(z), BD(z;X) ∼ κD(z;X) ∼ 1/dD(z;X) ∼ ED(z;X)

near a.

The estimate for κD(z;X) follows from the strong localization for the Kobayashi
metric near a locally holomorphic peak point of an arbitrary (not necessarily bounded)
domain (see e.g. [79, Theorem 2.3.9]).

Remark. Corollary 3.8.9 immediately implies that under these assumptions we get

lim
z→a

BD(z;X) =∞ (3.8.1)

locally uniformly in X ∈ (Cn)∗. Thus we carry over (in an easy way) the main result from
[47] even to unbounded domains (the proof there is based on the ∂-technique of Ozawa–
Takegoshi). In the case of bounded pseudoconvex domains that are locally C-convex
near a, the equality (3.8.1) also remains true due to Theorem 3.8.1. This is another
strengthening of the above mentioned result. On the other hand, using the inequality
γD ≤ BD and Proposition 3.2.4 we can “reverse” the above considerations, i.e. from
(3.8.1) to get La = {0}.

3.9. Boundary behavior of invariant metrics of planar domains. After discussing
the boundary behavior of the invariant metrics of domains in Cn, it is natural to see
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whether these results can be more precise for planar domains. In this short section we
will prove the following

Proposition 3.9.1. If a0 is a C1-smooth boundary point of a domain D ⊂ C, then

lim
a→a0

γD(a; 1)dD(a) = lim
a→a0

κD(a; 1)dD(a) = 1/2,

lim
a→a0

KD(a)d2
D(a) =

1

4π
and lim

a→a0
BD(a; 1)dD(a) =

√
2

2
.

The smoothness condition is essential, as shown e.g. by the first quadrant.

Proof. The proposition for the Carathéodory and Kobayashi metrics is equivalent to the
inequalities

lim sup
a→a0

κD(a; 1)dD(a) ≤ 1/2, (3.9.1)

lim sup
a→a0

γD(a; 1)dD(a) ≥ 1/2. (3.9.2)

Inequality (3.9.1) is given in [79, p. 60] in a more general situation (we are not including
its proof here): Let a0 be a C1-smooth boundary point of a domain D ⊂ C, Xa → X for
a→ a0. If XN is the projection of X onto the complex normal to ∂D at a0, then

lim sup
a→a0

κD(a;Xa)dD(a) ≤ ‖XN‖/2. (3.9.3)

Now we will prove the less trivial inequality (3.9.2) (via the Pinchuk scaling method).
We can assume that a0 = 0. For each a ∈ D close to 0, there exists â ∈ ∂D such

that ‖a− â‖ = dD(a) and a lies on the interior normal to ∂D at â. Let r be a C1-smooth
defining function for D near 0. Put Φa(z) = ∂r

∂z (â)(â− z). Let also

Eε = {z ∈ C : Re z > −ε|z|}, Fε = {z ∈ C : |z| > ε}.

For each sufficiently small ε > 0 we have Φa(D) ⊂ Eε ∪Fε for |a| < ε. As ã = Φa(a) > 0,

γD(a; 1) ≥ γEε∪Fε(ã;X(a)) = γGε,a(1; 1)
|X(a)|
ã

=
γGε,a(1; 1)

dD(a)
, (3.9.4)

where X(a) = − ∂r∂z (â) and Gε,a = Eε ∪ Fε/ã. Note that

lim
a→a0

γGε,a(1; 1) = γEε(1; 1) (3.9.5)

and
lim
ε→0+

γEε(1; 1) = γE0
(1; 1) = 1/2. (3.9.6)

Then (3.9.2) follows from (3.9.4)–(3.9.6).
To prove (3.9.5), we denote by Hε and Hε,a the images of Eε and Gε,a, respectively,

for the mapping z 7→ 2/(z+ 1) if ã < ε < 1. Then Hε and H̃ε,a = Hε,a ∪{0} are bounded
simply connected domains and consequently CHε = KHε and CHε,a = CH̃ε,a = KH̃ε,a

.
Now, using the Montel theorem, it is easily seen that

lim
a→a0

KH̃ε,a
(1; 1) = KHε(1; 1),

which implies (3.9.5).
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The equality (3.9.6) is proven in a similar way (or by using the conformal equivalence
of Eε and E0).

The statement for the Bergman kernel and Bergman metric is obtained analogously
(bearing in mind that BD(z; 1) = MD(z; 1)/

√
KD(z)) and we omit the proof.

Remark. Under the somewhat stronger requirement that the boundary be Dini-smooth
near a0, the proposition for the Bergman kernel, as well as for the metrics of Bergman
and Kobayashi, can also be proven by using that:

• each C1-smooth boundary point a of a domain D ⊂ C is a locally holomorphic peak
point and so we have strong localization for these invariants;
• there exists a neighborhood U of a so that G = D ∩ U is a bounded Dini-smooth

simply connected domain and so the Riemann mapping between G and D extends to
a C1-diffeomorphism between G and D.
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