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Summary

Our work is divided into six chapters. In Chapter I we introduce necessary notions and

present most important facts. We also present our main results. Chapter I covers the

following topics:

• Extremal plurisubharmonic functions: the relative extremal function and the pluri-

complex Green function;

• The analytic discs method of E. Poletsky: disc functionals, envelope of a disc func-

tional, examples of disc functionals;

• The Poisson functional: We present properties of the most important functional,

including the main result of the paper, plurisubharmonicity of the envelope of the Poisson

functional on a class of complex manifolds. We also prove the product property of the

relative extremal function;

• The Riesz functional: We state some properties of the Riesz functional which follow

from the properties of the Poisson functional and the Poisson–Jensen formula. Since these

results are contained in other papers, we do not give the proofs.

• The Green and Lelong functionals: We concentrate mainly on the product property

of the Green functional.

Chapter II is devoted to the general properties of disc functionals (Section 2.1, Propo-

sitions 2.1–2.5) and properties of analytic discs in complex manifolds (Section 2.3). In

Section 2.2 we study a class of complex manifolds which is important in Poletsky’s theory.

In Chapter III we give the main results of the paper. We show that the envelope of

the Poisson functional on any complex manifold is upper semicontinuous (Theorem 3.5).

Section 3.2 contains the most important (and most difficult) result of the paper. In

Theorem 3.10 we show the plurisubharmonicity of the Poisson functional on a class of

complex manifolds. Section 3.3 contains properties of the Poisson functional on Liouville

manifolds. Using Poletsky’s theory, we give a characterization of Liouville manifolds in

terms of analytic discs (Theorem 3.21).

Product properties of the Poisson and Green functionals are presented in Chapter IV

(Theorems 4.1 and 4.9).

In Chapter V we give applications of the results obtained. In Section 5.1 we state

some properties of the relative extremal function. In Section 5.2, using the product prop-

erty of the relative extremal function for open sets (Theorem 5.3.) we show the product

property of the plurisubharmonic measure in bounded domains in Cn (Theorem 5.6).

Section 5.3 is devoted to the pluricomplex Green function. We obtain the product prop-

erty of the pluricomplex Green function as a corollary of the product property of the

[5]



6 A. Edigarian

relative extremal function (Theorem 5.8). In Section 5.4 we give simple results related to

the polynomial hulls of compact sets in Cn (Theorem 5.10).

Chapter VI contains remarks related to Poletsky’s theory. We concentrate mainly on

holomorphically invariant pseudodistances (Section 6.4).

Most of the prerequisites that we use may be found in the following books: [15], [17],

[20], [24].

Some of the results contained in this work may be found in the following papers: [7],

[8], [9], [10], [11].

This research was partly supported by the Foundation for Polish Science (FNP).

The author thanks Professors Marek Jarnicki, Peter Pflug and W lodzimierz Zwonek

for their remarks and for stimulating discussions.

1. Introduction

1.1. Extremal plurisubharmonic functions. Let X be a complex manifold (1). We

denote by PSH(X) the set of all plurisubharmonic functions on X (2) (3).

Let U ⊂ PSH(X). We put

PU(x) = sup{u(x) : u ∈ U}, x ∈ X. (1.1)

It is well known that if the family U is locally bounded from above, then P ∗
U

is a pluri-

subharmonic function on X (cf. [20]), where v∗(x) = lim supy→x v(y) denotes the upper

semicontinuous regularization of a function v.

The construction (1.1) plays an important role in pluripotential theory (see e.g. [20]).

Let us consider some examples.

Let X be a complex manifold and let E be any subset of X. We put

ω(x,E,X) = sup{u(x) : u ∈ PSH(X), u ≤ −1 on E, u ≤ 0 on X}, x ∈ X.

The function ω(·, E,X), introduced in 1969 by J. Siciak [42], is called the relative extremal

function. As mentioned above, the function ω∗(·, E,X) is plurisubharmonic in X (4).

Since in the one-dimensional case the function ω∗(·, E,X) is closely related to the no-

tion of harmonic measure (see e.g. [37]), in higher dimensions it is sometimes called the

plurisubharmonic measure of E relative to X (cf. [20], [40]).

In 1991 Nguyen Thanh Van and J. Siciak [32] proved the following product property

of the relative extremal function.

(1) All complex manifolds considered in the paper are assumed to be connected.
(2) We assume that the constant function −∞ is plurisubharmonic.
(3) For convenience of the reader we list some standard notation in the section “List of

symbols”.
(4) Note that if U is an open set in X, then ω(·, U,X) = ω∗(·, U,X) and, therefore,

ω(·, U,X) ∈ PSH(X).
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Theorem 1.1. Let D ⊂ Cn and G ⊂ Cm be pseudoconvex domains (5) and let U ⊂ D,

V ⊂ G be open subsets. Then

ω((x, y), U × V,D ×G) = max{ω(x, U,D), ω(y, V,G)}, (x, y) ∈ D ×G.

The proof of Theorem 1.1 given in [32] extensively uses the pseudoconvexity of D

and G. The question whether Theorem 1.1 is true for any (non-pseudoconvex) domains

in Cn (or, more generally, complex manifolds) remained open until 1997.

In 1985 M. Klimek [20] introduced another extremal function, which is also important

in pluripotential theory, as follows. Let Ω be a domain in Cn. Define

gΩ(x, p) := sup{u(x) : u ∈ PSH−(Ω), u(y)− log ‖y − p‖ ≤ O(1) as y → p}, x, p ∈ Ω,

where PSH−(Ω) denotes the set of all negative plurisubharmonic functions on the do-

main Ω. The function gΩ(·, p) is called the pluricomplex Green function with pole at p.

It may be viewed as a natural analogue of the Green function from the classical potential

theory (cf. [37]).

In 1989 P. Lelong [27] defined on a domain Ω ⊂ Cn the pluricomplex Green function

with poles at p1, . . . , pN ∈ Ω and weights ν1, . . . , νN ∈ (0,∞), where pi 6= pj , i 6= j, as

follows:

gΩ(x; (p1, ν1), . . . , (pN , νN )) := sup{u(x) : u ∈ PSH(Ω), u < 0,

u(y)− νj log ‖y − pj‖ ≤ O(1) as y → pj , j = 1, . . . , N}, x ∈ Ω.

We see that gΩ( · ; p) = gΩ( · ; (p, 1)). P. Lelong [27] proved that in any hyperconvex

domain Ω (6) the pluricomplex Green function with poles at p1, . . . , pN and weights

ν1, . . . , νN is the unique solution of the Dirichlet problem (7). One can easily extend

Lelong’s definition to complex manifolds.

It seems that the most general pluricomplex Green function was introduced by A. Ze-

riahi [47] (see also [25]) as follows. Let X be a complex manifold and let α : X → [0,∞)

be a function. Define the pluricomplex Green function with pole function α by the formula

gX(x, α) := sup{u(x) : u ∈ PSH(X), u ≤ 0, ν(·, u) ≥ α},

(5) Recall that a domain Ω ⊂ Cn is called pseudoconvex if there exists a plurisubharmonic
exhaustion function u for Ω, i.e. {x ∈ Ω : u(x) < β} is relatively compact in Ω for any β ∈ R
(see e.g. [24]).
(6) Recall that a bounded domain Ω ⊂ Cn is called hyperconvex if there exists a negative

plurisubharmonic exhaustion function u for Ω, i.e. {x ∈ Ω : u(x) < β} is relatively compact in
Ω for any β < 0 (see e.g. [20]).
(7) More precisely, gΩ(x; (p1, ν1), . . . , (pN , νN )) is the unique solution of the following Dirich-

let problem: 



u ∈ C(Ω \ {p1, . . . , pN}) ∩ PSH(Ω),
(ddcu)n = 0 in Ω \ {p1, . . . , pN},
u(x)− νj log ‖x− pj‖ = O(1) as x→ pj , j = 1, . . . , N,
u(x)→ 0 as x→ ∂Ω,

where (ddcu)n is the Monge–Ampère operator (see e.g. [20], [23]).
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where ν(·, u) denotes the Lelong number of u (8). Note that for a plurisubharmonic

function u in a neighborhood of x0 ∈ C
n we have ν(x0, u) ≥ ν0 > 0 if and only if

u(x)−ν0 log ‖x−x0‖ ≤ O(1) when x→ x0. Therefore, in the case suppα = {p1, . . . , pN},

α(pj) = νj , j = 1, . . . , N , we have the equality

gX( · ; (p1, ν1), . . . , (pN , νN )) = gX( · , α).

We have the following equivalent definition of the pluricomplex Green function with

pole function α.

Proposition 1.2 (see Proposition 5.10 below). Let X be a complex manifold and let α

be a non-negative function on X. Then

gX(x, α) = sup{u(x) : u ∈ PSH(X), u ≤ inf
p∈X

α(p)gX(·, p)},

and , therefore, gX(·, α) is a plurisubharmonic function on X.

There is an interesting relation between the relative extremal function and the pluri-

complex Green function. We need some more definitions. We set |||x||| :=max{|z1|, . . . , |zn|},

x = (z1, . . . , zn) ∈ Cn, and P (x, r) := {y ∈ Cn : |||y − x||| < r}, r > 0. We put P (x, 0) = ∅,

x ∈ Cn. Set P (r) = P (0, r).

For a complex manifold X and a family of local coordinates {(Ux, ζx)}x∈X such that

ζx(x) = 0 and ζx(Ux) = P (1) we put

P(r, α) =
⋃

y∈X

ζ−1y [P (r1/α(y))], r ∈ (0, 1),

where r1/0 = 0 for r ∈ (0, 1). We have the following result (cf. [10]).

Theorem 1.3 (Theorem 5.11). Let X be a complex manifold and let α : X → [0,∞)

be any function. Assume that {(Ux, ζx)}x∈X is a family of local coordinates such that

ζx(x) = 0 and ζx(Ux) = P (1). Then

(− log r)ω(x,P(r, α), X) ց
r→0

gX(x, α), x ∈ X.

Using the method from [10], as a corollary of Theorem 1.3 we get the product property

of the pluricomplex Green function.

Theorem 1.4 (Theorem 5.12). Let X1 and X2 be complex manifolds. Assume that for

any open subsets E1 ⊂ X1 and E2 ⊂ X2 we have the following product property:

ω((x1, x2), E1×E2, X1×X2) = max{ω(x1, E1, X1), ω(x2, E2, X2)}, (x1, x2) ∈ X1×X2.

Then for arbitrary functions α1 : X1 → {0, 1} and α2 : X2 → {0, 1} we have

gX1×X2((x1, x2), α1 ⊗ α2) = max{gX1(x1, α1), gX2(x2, α2)}, (x1, x2) ∈ X1 ×X2,

where (α1 ⊗ α2)(x1, x2) := α1(x1)α2(x2).

(8) Recall that the Lelong number of u at the point x ∈ Ω is defined by

ν(x, u) := lim
r→0+

Mu(x, r)

log r
,

where Mu(x0, r) := supx∈Bn(x0,r)
u(x) and Bn(x, r) := {y ∈ Cn : ‖y − x‖ < r}. We put

ν(·,−∞) ≡ ∞. The Lelong number is a biholomorphic invariant (see e.g. [4], [5]).
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As a corollary of Theorems 1.4 and 1.1 we have the following.

Theorem 1.5. Let D ⊂ Cn and G ⊂ Cm be pseudoconvex domains. Then for arbitrary

functions α : D → {0, 1} and β : G→ {0, 1} we have

gD×G((x, y), α⊗ β) = max{gD(x, α), gG(y, β)}, (x, y) ∈ D ×G.

In particular ,

gD×G((x, y), (p, q)) = max{gD(x, p), gG(y, q)}, (x, y), (p, q) ∈ D ×G. (1.2)

The product property of the pluricomplex Green function for one pole in pseudoconvex

domains (i.e. (1.2)) was proved by M. Jarnicki and P. Pflug [17]. Later, the same authors

proved that it suffices to assume the pseudoconvexity of one of the domains D or G [18].

In the meantime, they conjectured that it is true for arbitrary domains, but until 1997

it was an open problem.

In the classical pluripotential theory (9) pseudoconvexity of a domain (or more pre-

cisely, hyperconvexity) is very important. It seems to be interesting to find methods which

work equally well on any domain. The purpose of the paper is to present such a method,

the analytic discs method of E. Poletsky . This technique allows us to study problems not

only in any domain in Cn but also on a large class of complex manifolds.

1.2. Analytic discs method of E. Poletsky. In the previous section we described

extremal functions which are defined with the help of plurisubharmonic functions. In 1991

E. Poletsky [35] proposed a method of characterization of some of them by the family

O(D, X) (10). This approach turns out to be very successful in solving many problems in

complex analysis which were unaccessible before.

The main idea is to study disc functionals and their envelopes. More precisely, we

proceed as follows. Let X be a complex manifold. A disc functional on X is a function

H : O(D, X) → R (11). The envelope of H is a function EH : X → R defined by the

formula

EH(x) := inf{H(f) : f ∈ O(D, X), f(0) = x}, x ∈ X.

Now, we give examples of disc functionals, some of which are related to the functions

considered above. The presented functionals will be studied more carefully later. The

functionals F1,F2,F4 were introduced by E. Poletsky in [35], Examples 3.1–3.3. Follow-

ing [25], we call them the Poisson functional , and Riesz functional , and Lelong functional

respectively. The first two are motivated by the Poisson–Jensen formula. The functional

F3 was suggested by E. Poletsky in [34] (see also [7], [9]).

Poisson functional. Let X be a complex manifold and let ϕ : X → R be a measurable

function. Assume that ϕ is locally bounded from above or below (i.e. ϕ is locally bounded

(9) Here, by classical we mean methods and techniques which are gathered in [20].

(10) O(D,X) denotes the family of all holomorphic mappings f : D→ X which are holomor-
phic in a neighborhood of the closure D.

(11) We put R = [−∞,∞].
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from above everywhere on X or ϕ is locally bounded from below everywhere on X) (12).

Define the functional F1 = F
ϕ
1 by the formula

F1(f) =
1

2π

2π\
0

ϕ(f(eiθ)) dθ, f ∈ O(D, X).

Riesz functional. Let X be a complex manifold and let v be a plurisubharmonic function

on X. We define the functional F2 = Fv2 as follows. If f ∈ O(D, X) and v ◦ f is not

identically −∞, then

F2(f) =
1

π

\
D

(log | · |)△(v ◦ f),

where △u denotes the generalized Laplacian of a subharmonic function u (see e.g. [37],

Chapter 3). If f ∈ O(D, X) and v ◦ f ≡ −∞, then we put F2(f) := 0.

Green functional. Let X be a complex manifold and let α : X → [0,∞) be an arbitrary

function. We define the functional F3 = Fα3 by the formula

F3(f) =
∑

z∈D∗

α(f(z)) log |z|, f ∈ O(D, X),

where D∗ := D \ {0}. The sum, which may be uncountable, is defined as the infimum of

finite partial sums.

Lelong functional. Let X be a complex manifold and let α : X → [0,∞) be an arbitrary

function. We define the functional F4 = Fα4 by the formula

F4(f) =
∑

z∈D∗

α(f(z)) ordz(f) log |z|, f ∈ O(D, X),

where ordz(f) denotes the multiplicity of f at z.

Lempert functional. Let X be a complex manifold and let α : X → [0,∞) be an arbitrary

function. We define the functional F5 = Fα5 by the formula

F5(f) = inf{α(f(z)) log |z| : z ∈ D∗}, f ∈ O(D, X).

Motivated by the Lempert function (see e.g. [17]), the functional F5, in case suppα =

{x} and α(x) = 1, was introduced in [7]. For any α it was introduced in [25].

The main point of E. Poletsky’s theory is the plurisubharmonicity of the envelopes of

disc functionals. In the paper we present systematically the plurisubharmonicity of the

envelope of the Poisson functional on a class of complex manifolds, containing all domains

in Cn. We get as a corollary the proof of the product property of the relative extremal

function and, consequently, of the pluricomplex Green function on any domains in Cn.

It is still an open problem whether the envelope of the Poisson functional is pluri-

subharmonic on any complex manifold. So, it seems to be interesting to give a class of

complex manifolds as large as possible on which the property holds.

(12) Note that in this case for any f ∈ O(D,X) the integral 1
2π

T2π
0
ϕ(f(eiθ)) dθ is well defined.

Note also that it may attain the value −∞ or ∞.
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1.3. A class of complex manifolds. The disc functional method of E. Poletsky was

first extended to a class P of complex manifolds by F. Lárusson and R. Sigurdsson [25]

in 1997.

Recall that an n-dimensional complex manifold X is said to be a Stein manifold if:

(a) X has a countable basis;

(b) X is holomorphically convex, i.e. for any compact set K ⊂ X the set

K̂O(X) := {x ∈ X : |f(x)| ≤ ‖f‖K for any f ∈ O(X)}

is compact in X, where ‖f‖K := sup{|f(x)| : x ∈ K};

(c) O(X) separates points in X, i.e. for any points x, y ∈ X, x 6= y, there exists an

f ∈ O(X) such that f(x) 6= f(y);

(d) for any point x ∈ X there exists a holomorphic mapping F : X → Cn such that

F is injective in a neighborhood of x.

Recall that for domains in Cn, Steinness coincides with pseudoconvexity (see e.g. [15],

Chapter VII).

Define P as the class of complex manifolds X for which there exists a finite sequence

of complex manifolds and holomorphic maps

X0
h1→ X1

h2→ . . .
hm→ Xm = X, m ≥ 0,

whereX0 is a domain in a Stein manifold and each hi, i = 1, . . . ,m, is either a holomorphic

covering or a finite branched covering (13).

Apart from domains in Stein manifolds, P contains for instance all Riemann surfaces

and all covering spaces of projective manifolds (14) (see [25]).

The definition of the class P, which may look unnatural, follows from the properties

of disc functionals. Studying more carefully these properties we propose an even larger

class of complex manifolds.

We say that a complex manifold X belongs to the class P̃ if there exists a sequence

of domains X1 ⊂ X2 ⊂ X3 ⊂ . . . in X, each in the class P, such that X =
⋃∞
k=1Xk.

As was shown by J. E. Fornæss [13], there exists a sequence X1 ⊂ X2 ⊂ X3 ⊂ . . . of

Stein manifolds such that X =
⋃∞
k=1Xk is not Stein. So, it seems (15) that the class P

is a proper subclass of the class P̃.

We have the following properties of the class P̃.

Proposition 1.6 (Proposition 2.8). Let Y be a domain in a complex manifold X. If X

is of class P̃, then Y is also of class P̃.

Proposition 1.7 (Proposition 2.9). Let X,Y be complex manifolds of class P̃. Then the

product X × Y is also of class P̃.

(13) We say that a holomorphic mapping F : X → Y is a finite branched covering if dimX =
dimY and F is a proper holomorphic mapping, i.e. for any compact set K ⊂ Y the set F−1(K)
is compact. Note that F is surjective and there exists k ∈ N such that #F−1(y) = k for any
y ∈ Y \ F (Z), where Z = {x ∈ X : rank dFx < dimX} (cf. [39]). We call Z the branched locus
of F .
(14) By a projective manifold we mean a complex submanifold of complex projective space Pn.

(15) We do not yet have an example showing that P  P̃.



12 A. Edigarian

1.4. The Poisson functional. The most important functional in applications is the

Poisson functional. Let us start with the following basic result.

Theorem 1.8 (Theorem 3.2). Let X be a complex manifold and let ϕ : X → R be a

measurable function which is locally bounded from above or below. Then

sup{v ∈ PSH(X) : v ≤ ϕ} ≤ EFϕ1
≤ ϕ on X. (1.3)

Therefore, if EFϕ1
is a plurisubharmonic function on X, then

EFϕ1
= sup{v ∈ PSH(X) : v ≤ ϕ} on X. (1.4)

In the course of his study of disc functionals, E. Poletsky [35] introduced the class

of approximately upper semicontinuous functions (16) (17). We think that the class of

functions given below, which is related to the class of approximately upper semicontinuous

functions, is more natural and more handy.

Let Ω be a domain in Cn and let ϕ : Ω → R be a measurable function locally bounded

from above or below. We say that ϕ is a weakly integrally upper semicontinuous function

if for any x0 ∈ Ω we have

lim sup
r→0+

1

bnr2n

[
sup

x∈Bn(x0,r)

\
Bn(x,r)

ϕ(y) dL2n(y)
]
≤ ϕ(x0),

where bn := L2n(Bn) (18).

The following result gives non-trivial examples of weakly integrally upper semicon-

tinuous functions.

Proposition 1.9 (Proposition 3.3). Let Ω be a domain in Cn and let ϕ be a superhar-

monic on Ω. Then ϕ is weakly integrally upper semicontinuous on Ω.

Let X be a complex manifold and let ϕ : X → R be a measurable function locally

bounded from above or below. We say that ϕ is an integrally upper semicontinuous

function (written ϕ ∈ IC↑(X)) if for any domain Ω ⊂ Cm, m ≥ 1, and any holomorphic

mapping F : Ω → X the function ϕ ◦ F is weakly integrally upper semicontinuous

on Ω (19).

(16) Let ϕ : Ω → R be a function, where Ω ⊂ Cn is a domain. We say that ϕ is an
approximately upper semicontinuous function if for any x ∈ Ω and any ε > 0 there exists a
measurable set F ⊂ Cn such that {y ∈ Ω : ϕ(y) > ϕ(x) + ε} ⊂ F and

lim sup
r→0

L2n(F ∩ Bn(x, r))/L
2n(Bn(x, r)) = 0,

where L2n denotes the Lebesgue measure in Cn.
(17) As shown by E. Poletsky, there exists a lower semicontinuous function ϕ on the unit ball

Bn := Bn(0, 1) in C
n such that EFϕ

1
is not plurisubharmonic. So, it seems interesting to give a

class of functions ϕ for which EFϕ
1
is plurisubharmonic and which contains upper semicontinuous

and plurisuperharmonic functions. The latter is important in the study of the Riesz functional
(see Section 1.5).
(18) Let ϕ(z) = 1 if z = 1/n, n ∈ N, and 0 otherwise. Note that ϕ is not an upper semicon-

tinuous function on C, but it is weakly integrally upper semicontinuous.
(19) Note that the relation between weakly integrally upper semicontinuous and integrally

upper semicontinuous functions is similar to the relation between superharmonic and plurisu-
perharmonic functions.
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We see from the definition that any upper semicontinuous function is integrally up-

per semicontinuous. The following proposition shows that there exist integrally upper

semicontinuous functions which are not upper semicontinuous.

Proposition 1.10 (Corollary 3.4). Let X be a complex manifold and let ϕ ∈ PSH(X).

Then −ϕ ∈ IC↑(X).

One of the main results connected with the Poisson functional is the following.

Theorem 1.11 (Theorem 3.5). Let X be a complex manifold. Assume that

(a) ϕ ∈ IC↑(X) is locally bounded from above or

(b) ϕ is a plurisuperharmonic function on X, ϕ 6≡ ∞.

Then EFϕ1
is upper semicontinuous.

The next result gives us a class of integrally upper semicontinuous functions for which

we have EFϕ1
<∞.

Proposition 1.12 (Proposition 3.9). Let X be a complex manifold. Assume that

(a) ϕ ∈ IC↑(X) is locally bounded from above or

(b) ϕ is a plurisuperharmonic function on X, ϕ 6≡ ∞.

Then EFϕ1
<∞.

We are able to prove the plurisubharmonicity of the envelope for complex manifolds

of class P̃ . As mentioned above, it is the main point of Poletsky’s theory.

Theorem 1.13 (Theorem 3.10). Let X be a complex manifold of class P̃. Assume that

(a) ϕ ∈ IC↑(X) is locally bounded from above or

(b) ϕ is a plurisuperharmonic function on X, ϕ 6≡ ∞.

Then EFϕ1
is a plurisubharmonic function and , therefore,

EFϕ1
= sup{v ∈ PSH(X) : v ≤ ϕ} on X.

Theorem 1.13 for upper semicontinuous functions and for domains in Cn was proved

by E. Poletsky [34], [35]. For upper semicontinuous functions on complex manifolds of

class P it was proved by F. Lárusson and R. Sigurdsson [25]. For plurisuperharmonic

functions and the same class of complex manifolds the proof was given by the author [11].

Now, let us consider the following special case of the Poisson functional. Let X be a

complex manifold and let U be an open subset of X. We put

ω̃(x, U,X) := inf

{
1

2π

2π\
0

−χU (f(eiθ)) dθ : f ∈ O(D, X), f(0) = x

}

= − sup

{
1

2π
σ({τ ∈ T : f(τ ) ∈ U}) : f ∈ O(D, X), f(0) = x

}
, x ∈ X,

where χU denotes the characteristic function of U and σ denotes the arc length measure

on the unit circle T. Note that −χU is upper semicontinuous.

As a corollary of Theorem 1.13 we obtain the following result.
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Corollary 1.14. Let X be a complex manifold of class P̃ and let U be an open subset

of X. Then

ω(x, U,X) = ω̃(x, U,X). (1.5)

The main result relating to this special function is the following product property,

first proven in [12].

Theorem 1.15 (Theorem 4.1). Let X1 and X2 be complex manifolds and let U1 ⊂ X1,

U2 ⊂ X2 be open sets. Then

ω̃((x1, x2), U1×U2, X1×X2) = max{ω̃(x1, U1, X1), ω̃(x2, U2, X2)}, (x1, x2) ∈ X1×X2.

Using Corollary 1.14 and Theorem 1.15 we obtain the product property for the relative

extremal function (see [12]).

Theorem 1.16 (Theorem 5.5). Let X1 and X2 be complex manifolds of class P̃ and let

E1 ⊂ X1, E2 ⊂ X2 be open or compact subsets. Then

ω((x1, x2), E1×E2, X1×X2) = max{ω(x1, E1, X1), ω(x2, E2, X2)}, (x1, x2) ∈ X1×X2.

1.5. The Riesz functional. By the Riesz representation, for a plurisubharmonic func-

tion v on a complex manifold X and a holomorphic mapping f ∈ O(D, X) such that

v ◦ f 6≡ −∞ we have

Fv2(f) = v(f(0))−
1

2π

2π\
0

v(f(eiθ)) dθ.

So,

Fv2(f) = v(f(0)) + F−v1 (f) and EFv2
= v + EF−v1

. (1.6)

As a simple corollary of Theorem 1.11 and (1.6) we have the following.

Corollary 1.17. Let X be a complex manifold and let v be a plurisubharmonic function

on X. Then EFv2
is an upper semicontinuous function on X.

Recall the following result.

Theorem 1.18 (see Theorem 4.4 in [25]). Let X be a complex manifold and let v be a

plurisubharmonic function on X. Then

sup{u ∈ PSH(X) : u ≤ 0, L(u) ≥ L(v)} ≤ EFv2
on X,

where L(v) denotes the Levi form i∂∂v of v, which is a closed positive (1, 1)-current on

X (see e.g. [20]) (20). Moreover , if EFv2
is plurisubharmonic then

sup{u ∈ PSH(X) : u ≤ 0, L(u) ≥ L(v)} = EFv2
on X.

As a corollary of Theorem 1.13, Theorem 1.18, and (1.6) we get we following

Theorem 1.19. Let X be a complex manifold of class P̃ and let v be a plurisubharmonic

function on X. Then EFv2
is a plurisubharmonic function on X and , therefore,

sup{u ∈ PSH(X) : u ≤ 0, L(u) ≥ L(v)} = EFv2
on X.

(20) We put L(−∞) = 0.
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Theorem 1.19 for plurisubharmonic functions on domains in Cn was stated by E. Po-

letsky (see [35]). For continuous plurisubharmonic functions on complex manifolds of

class P it was proved by F. Lárusson and R. Sigurdsson (see [25]). It seems that the first

complete proof for any plurisubharmonic function was given by the author (see [11]).

1.6. The Green and Lelong functionals. Since both functionals are related to the

pluricomplex Green function and are very similar, we decided to present their properties

together.

Let X be a complex manifold and let α : X → [0,∞) be any function. Note that

Fα4 ≤ Fα3 and, therefore, EFα4
≤ EFα3

.

For both functionals we have the following duality property (see Proposition 5.1

in [25], see also [35], [7]).

Theorem 1.20. Let X be a complex manifold and let α : X → [0,∞) be any function.

Put u = EHα , where H = F3 or F4. Then

sup{v ∈ PSH(X) : v ≤ 0, ν(·, v) ≥ α} ≤ u ≤ 0 on X.

Moreover , if u is a plurisubharmonic function on X, then ν(·, u) ≥ α on X. Therefore,

in this case we have

sup{v ∈ PSH(X) : v ≤ 0, ν(·, v) ≥ α} = u on X.

We have the following result, related to the plurisubharmonicity of the functionals Fα3
and Fα4 .

Theorem 1.21 (see Theorem 1 in [7], Theorem 5.3 in [25]). Let X be a domain in a

Stein manifold and let α be a non-negative function on X. Then

EFα3
= EFα4

= sup{v ∈ PSH(X) : v ≤ 0, ν(·, v) ≥ α}.

In the case when X is a domain in Cn, suppα = {x}, and α(x) = 1, Theorem 1.21

was proved by the author. The general case is proved by a similar method. One has to

use the Remmert–Bishop–Narasimhan embedding theorem and proceed in Cn as in [7]

(for more details see [25]).

We have the following product property.

Theorem 1.22 (Theorem 4.10 for F3). Let X1 and X2 be complex manifolds and let

α1 : X1 → {0, 1} and α2 : X2 → {0, 1} be arbitrary functions. Assume that H = F3 or

F4. Then

EHα1⊗α2 (x1, x2) = max{EHα1 (x1), EHα2 (x2)}, (x1, x2) ∈ X1 ×X2.

The study of the product property of disc functionals was initiated by the author

(see [8] where Theorem 1.22 is proved for the case suppα = {x} and α(x) = 1). Later

extensions to the general case and to the Poisson functional are modifications of the

original proof. Theorem 1.22 for the Green functional was proved by the author [9] and

for the Lelong functional by F. Lárusson and R. Sigurdsson [26].



16 A. Edigarian

2. Preliminary results

2.1. General properties of disc functionals. In this section we present simple but

important properties of disc functionals.

Proposition 2.1. Let X be a complex manifold and let {Xj}∞j=1, Xj ⊂ Xj+1, be a

sequence of domains in X such that X =
⋃∞
j=1Xj. Assume that H : O(D, X)→ R is a

disc functional. Then

EH|Xj ց EH as j →∞.

Moreover , if EH|Xj ∈ PSH(Xj) for any j ≥ 1, then EH ∈ PSH(X).

Proof. Note that

EH|Xj ≥ EH|Xj+1 ≥ EH on Xj , j = 1, 2, . . .

Fix an x0 ∈ X. We may assume that EH(x0) < ∞. Fix β ∈ R such that EH(x0)

< β. Then there exists an f ∈ O(D, X) such that f(0) = x0 and H(f) < β. There exists

j0 ≥ 1 such that f(D) ⊂ Xj for j ≥ j0. Then EH|Xj (x0) ≤ H(f) < β for j ≥ j0. Hence,

EH|Xj (x0)ց EH(x0) as j →∞.

Recall that if {uj}j∈N ⊂ PSH(Y ) is a decreasing sequence of plurisubharmonic func-

tions on a complex manifold Y , then u = limj→∞ uj ∈ PSH(Y ) (see e.g. Theorem 2.9.14

in [20]). So, if EH|Xj ∈ PSH(Xj) for any j ≥ 1, then EH ∈ PSH(Xj) for any j ≥ 1 and,

therefore, EH ∈ PSH(X).

Proposition 2.2. Let X be a complex manifold and let H be a disc functional. Assume

that Hj , j = 1, 2, . . . , is a sequence of disc functionals such that Hj(f)ց H(f) for any

f ∈ O(D, X). Then

EHj ց EH as j →∞.

Proof. Fix an x0 ∈ X. We may assume that EH(x0) <∞. Fix β ∈ R such that EH(x0)

< β. Then there exists an f ∈ O(D, X) such that f(0) = x0 and H(f) < β. There exists

j0 ≥ 1 such that Hj(f) < β and, therefore, EHj (x0) < β for j ≥ j0.

Proposition 2.3. Let X be a complex manifold. Assume that H : O(D, X) → R is a

disc functional. Then

EH(x) = inf{EH|Y (x) : Y is a relatively compact domain in X, x ∈ Y }, x ∈ X.

Proof. Note that the inequality “≤” follows from the definition of the envelope of a disc

functional.

Fix x0 ∈ X. We may assume that EH(x0) < ∞. Fix β ∈ R such that EH(x0) < β.

Then there exists an f ∈ O(D, X) such that f(0) = x0 and H(f) < β. There exists a

relatively compact domain Y such that f(D) ⊂ Y . Then EH|Y (x0) ≤ H(f) < β and,

therefore,

inf{EH|Y (x0) : Y is a relatively compact domain in X, x0 ∈ Y } < β.

Let X and Y be complex manifolds and let F : X → Y be a holomorphic mapping.

If H is a disc functional on Y , then the pullback disc functional F ∗H on X is defined by

the formula

F ∗H(f) = H(F ◦ f), f ∈ O(D, X).
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Proposition 2.4. Let X and Y be complex manifolds and let F : X → Y be a holo-

morphic mapping. Assume that H is a disc functional on Y . Then

EH ◦ F ≤ EF∗H .

Moreover , if F is a holomorphic covering , then EF∗H = EH ◦ F .

Proof. Fix x0 ∈ X. We may assume that EF∗H(x0) <∞. Fix β ∈ R such that EF∗H(x0)

< β. There exists an f ∈ O(D, X) such that f(0) = x0 and F ∗H(f) < β. Hence, H(F ◦f)

< β. Put f̃ = F ◦f . Note that f̃ ∈ O(D, Y ) and f̃(0) = F (x0). Therefore, EH(F (x0)) < β.

Assume that F is a holomorphic covering. Fix x0 ∈ X and fix β ∈ R such that

EH(F (x0)) < β. There exists an f ∈ O(D, Y ) such that f(0) = F (x0) and H(f) < β.

Since F is a holomorphic covering, there exists an f̃ ∈ O(D, X) such that f̃(0) = x0 and

f = F ◦ f̃ . Then H(f) = H(F ◦ f̃) and, therefore, EF∗H(x0) < β.

Proposition 2.5. Let X and Y be complex manifolds and let F : X → Y be a holo-

morphic finite branched covering. Let Z be the branched locus of F . Assume that H is a

disc functional on Y such that EH|
Ỹ

= EH , where Ỹ := Y \ F (Z). Then

E
H̃
◦ F = E

F∗H̃
on X̃,

where X̃ := X \ Z and H̃ := H|Ỹ .

Moreover , if EH = E
H̃
on Ỹ , then EF∗H = E

F∗H̃
on X̃.

Proof. Note that F |
X̃

: X̃ → Ỹ is a holomorphic covering. Hence,

E
H̃
◦ F = E

F∗H̃
on X̃.

We have EH ◦ F ≤ EF∗H , EH ◦ F ≤ EH̃ ◦ F , and EF∗H ≤ EF∗H̃ . So, if EH = E
H̃

on Ỹ ,

then EF∗H = E
F∗H̃

on X̃.

2.2. A class of complex manifolds. Let us start with the following two results, which

are crucial for our considerations. The first one is well known (see e.g. [15], Chapter VII).

Theorem 2.6 (Remmert–Bishop–Narasimhan embedding theorem). Let X be a Stein

manifold. Then there exists a holomorphic embedding of X into CN for some N ∈ N (21).

Theorem 2.7. Let X be a domain in a Stein manifold. Then there exist a domain Y in

Cn and holomorphic mappings Φ : X → Y , Ψ : Y → X such that Ψ ◦ Φ = idX .

Proof. Let X be a domain in a Stein manifold X̃. There exists a biholomorphic mapping

Φ̃ : X̃ → Z, where Z is a submanifold of CN .

By a theorem of Docquier and Grauert (see e.g. [15], VIII.C.8) there exists a connected

neighborhood Ỹ of Z in CN and a holomorphic retraction ξ : Ỹ → Z. We put Φ := Φ̃|X
and Ψ := Φ̃−1◦ξ|Y , where Y is a connected component of ξ−1(Φ(X)) which contains Φ(X).

It is easy to check that Ψ ◦ Φ = idX .

Note that if X,Y are complex manifolds, X is of class P and h : X → Y is either a

holomorphic covering or a finite branched covering, then Y is also of class P.

(21) Recall that a holomorphic mapping F : X → CN is called an embedding if F is injective,
proper, and for any x ∈ X the tangent mapping dFx : TxX → TF (x)C

N is injective.
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Proposition 2.8 (cf. Proposition 3.5 in [25]). Let Y be a domain in a complex mani-

fold X. If X is of class P̃, then Y is also of class P̃.

Proof. First note that it follows immediately from the definition that any complex ma-

nifold of class P̃ has countable base.

Let Y =
⋃∞
j=1 Yj , where Yj ⊂ Yj+1, j = 1, 2, . . . , are relatively compact domains

in Y . It suffices to prove that Yj are of class P, j = 1, 2, . . .

So, we may assume that Y is relatively compact in X. It suffices to prove that if X

is of class P, then Y is also of class P. Note that if h : X̃ → X is a holomorphic covering

(resp. a finite branched covering), Y is a domain in X and Ỹ is a connected component of

h−1(Y ), then h|Ỹ : Ỹ → Y is a holomorphic covering (resp. a finite branched covering).

Let

X0
h1→ X1

h2→ . . .
hm→ Xm = X, m ≥ 0,

be a sequence as in the definition of the class P.

If m = 0, then X is a domain in a Stein manifold and, therefore, Y is also a domain in

a Stein manifold. Hence, Y is a manifold of class P. If m ≥ 1, then we define a sequence

Y0
ℓ1→ Y1

ℓ2→ . . .
ℓm→ Ym = Y

by induction as follows. For i = m, . . . , 1, let Yi−1 ⊂ Xi−1 be a connected component of

h−1i (Yi) and let ℓi = hi|Yi−1 . Then Y0 is a domain in a Stein manifold, and we see that

Y is a complex manifold of class P.

Proposition 2.9 (cf. Proposition 3.6 in [25]). Let X,Y be complex manifolds of class P̃.

Then the product X × Y is also of class P̃.

Proof. It suffices to prove that if X,Y are of class P, then X ×Y is also of class P. Note

that if h : X̃ → X is a holomorphic covering (resp. a finite branched covering) and Z is a

complex manifold, then h× id : X̃ ×Z → X ×Z is a holomorphic covering (resp. a finite

branched covering). Note also that the product of Stein manifolds is a Stein manifold.

Let

X0
h1→ X1

h2→ . . .
hm→ Xm = X, Y0

ℓ1→ Y1
ℓ2→ . . .

ℓm→ Ym = Y,

be sequences as in the definition of class P. We may assume that they are of the same

length, because such sequences can always be extended by identity mappings. Now we

replace each mapping Xi
hi+1
−→ Xi+1 by the composition Xi

hi+1
−→ Xi+1

id
→ Xi+1 and each

mapping Yi
ℓi+1
−→ Yi+1 by the composition Yi

id
→ Yi

ℓi+1
−→ Yi+1. Then the sequence

X0×Y0
h1×id
−−−→ X1×Y0

id×ℓ1
−−−→ X1×Y1

h2×id
−−−→ . . .

hm×id
−−−→ Xm×Ym−1

id×ℓm
−−−→ Xm×Ym = X×Y

shows that X × Y is a complex manifold of class P.

2.3. Variation of analytic discs. This part of the paper is based mainly on the

results from [25]. For the sake of completeness we give proofs.

Theorem 2.10. Let X be a complex manifold. Let f : D→ X be a holomorphic mapping.

Then there exist open sets W ⊂ D×X, W̃ ⊂ D×Cn (n = dimX), and a biholomorphic
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mapping Ψ : W → W̃ such that

Ψ(z, f(z)) = (z, 0), z ∈ D.

Proof. Consider the graph

Γ = {(z, f(z)) : z ∈ D} ⊂ D×X.

Then Γ is a Stein submanifold of D × X. By Siu’s theorem (22) there exist a Stein

neighborhood W ⊂ D×X of Γ and a biholomorphic map Ψ̃ of W onto a neighborhood

of the zero section of the normal bundle of Γ , which identifies Γ with the zero section. It

is well known that the normal bundle of Γ is holomorphically trivial (23) and, therefore,

it is biholomorphic to Γ × Cn. From this we conclude that there exists a biholomorphic

map Ψ : W → W̃ such that Ψ(z, f(z)) = (z, 0) for all z ∈ D, where W̃ is a neighborhood

of D× {0}.

Corollary 2.11 (cf. Lemma 1.1 in [46]). Let X be a complex manifold and let f0 ∈

O(Dr0 , X), r0 > 1. Then for any r ∈ (1, r0) there exist an open set U ⊂ Dr0 ×X and a

biholomorphic mapping Φ : U → Dr × Dn such that

(i) {(z, f0(z)) : z ∈ Dr} ⊂ U ,

(ii) Φ(z, f0(z)) = (z, 0), z ∈ Dr.

Proof. By Theorem 2.10 there exist open sets W ⊂ Dr0 × X, W̃ ⊂ Dr0 × C
n, and a

biholomorphic mapping Ψ : W → W̃ such that

Ψ(z, f0(z)) = (z, 0), z ∈ Dr0.

Fix r ∈ (1, r0). Note that {(z, 0) : z ∈ Dr} is relatively compact in W̃ . Therefore, there

exists R > 0 such that

Ũ := {(z, z1, . . . , zn) : z ∈ Dr, |zj | < R, j = 1, . . . , n} ⊂ W̃ .

Put U = Ψ−1(Ũ) and Φ(z, x) = (Ψ1(z, x), (1/R)Ψ2(z, x)), where Ψ = (Ψ1, Ψ2).

Corollary 2.12 (see [25], Lemma 2.3; cf. [6], Theorem 1.1). Let X be a complex ma-

nifold and let f0 ∈ O(Dr0 , X), r0 > 1. Then for any r ∈ (1, r0) there exist an open

neighborhood V of x0 = f0(0) and f ∈ O(Dr × V,X) such that

(i) f(z, x0) = f0(z) for all z ∈ Dr,

(ii) f(0, x) = x for all x ∈ V .

Moreover , if f0 is non-constant , then for every finite set M ⊂ D∗ we can find an f

such that

(iii) f(w, x) = f0(w),

(22) Theorem (see [43], Corollary 1). Suppose that V is a complex submanifold of a complex
manifold M . If V is Stein, then there exists a biholomorphic map from an open neighborhood
W of V in M onto an open neighborhood of the zero cross section of the normal bundle of V
in M such that its restriction to V agrees with the canonical map from V onto the zero cross
section. As a consequence, there is a holomorphic retraction from W onto V .
(23) Theorem (see e.g. [14], Theorem 30.4). Let X be a non-compact Riemann surface,

i.e. a 1-dimensional connected complex manifold. Then every holomorphic vector bundle on X
is holomorphically trivial.
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(iv) ordw f( · , x) = ordw f0(·) for all w ∈M and all x ∈ V .

If f0 is constant , then for every finite set M ⊂ D∗ and every N ∈ N we can find an

f such that

(iii′ ) f(w, x) = f0(w),

(iv′ ) ordw f( · , x) ≥ N for all w ∈M and all x ∈ V .

Proof. Fix r ∈ (1, r0) and r̃ ∈ (r, r0). According to Corollary 2.11 there exist a neighbor-

hood U ⊂ Dr0×X of {(z, f0(z)) : z ∈ Dr̃} and a biholomorphic mapping Φ : U → Dr̃×D
n

such that Φ(z, f0(z)) = (z, 0), z ∈ Dr̃.

If M = ∅, then set P ≡ 1. If M 6= ∅, then we take m ∈ N such that m ≥ ordw(f0) +1,

w ∈M , if f0 is non-constant, and m ≥ N + 1 if f0 is constant. Define

P (z) =
[ ∏

w∈M

(1− z/w)
]m
.

Note that Φ(0, x0) = (0, 0). Hence, there exists a neighborhood V of x0 such that (z, 0) +

P (z)Φ(0, x) ∈ Dr̃ × D
n for all z ∈ Dr and x ∈ V .

Let pr : C×X → X be the natural projection. If we define the holomorphic mapping

by

f(z, x) = pr(Φ−1((z, 0) + P (z)Φ(0, x))), z ∈ Dr, x ∈ V,

then all the conditions are satisfied.

Corollary 2.13. Let X be a complex manifold and let f0 ∈ O(Dr0 , X), r0 > 1. Suppose

that {w1, . . . , wℓ} ⊂ D∗ are different points. Then for any r ∈ (1, r0) there exist disjoint

neighborhoods Uj ⊂ D∗ of wj , j = 1, . . . , ℓ, and f ∈ O(Dr × U1 × . . .× Uℓ, X) such that

(i) f(0, z1, . . . , zℓ) = f0(0),

(ii) f(zj , z1, . . . , zℓ) = f0(wj) for j = 1, . . . , ℓ and for all z1 ∈ U1, . . . , zℓ ∈ Uℓ.

Proof. Fix r ∈ (1, r0) and r̃ ∈ (r, r0). According to Corollary 2.11 there exist a neighbor-

hood U ⊂ Dr0×X of {(z, f0(z)) : z ∈ Dr̃} and a biholomorphic mapping Φ : U → Dr̃×D
n

such that Φ(z, f0(z)) = (z, 0), z ∈ Dr̃.

Since w1, . . . , wℓ are different points, there exist disjoint neighborhoods U1, . . . , Uℓ
⊂ D∗ of w1, . . . , wℓ. Consider the polynomial P (z, z1, . . . , zℓ) := (z − z1) . . . (z − zℓ) and

the holomorphic mapping

(2.1) f̃(z, z1, . . . , zℓ) =

[ ℓ∑

j=1

P (z, z1, . . . , zℓ)

P ′z(zj , z1, . . . , zℓ)(z − zj)
·
wj
zj

]
(z, 0),

z ∈ Dr0 , z1 ∈ U1, . . . , zℓ ∈ Uℓ.

Note that

ℓ∑

j=1

P (z, z1, . . . , zℓ)

P ′z(zj , z1, . . . , zℓ)(z − zj)
= 1, z ∈ Dr0 , z1 ∈ U1, . . . , zℓ ∈ Uℓ,

and, therefore,
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f̃(z, z1, . . . , zℓ)− (z, 0) =

[ ℓ∑

j=1

P (z, z1, . . . , zℓ)

P ′z(zj , z1, . . . , zℓ)(z − zj)
·

(
wj
zj
− 1

)]
(z, 0),

z ∈ Dr0 , z1 ∈ U1, . . . , zℓ ∈ Uℓ.

Hence, taking even smaller U1, . . . , Uℓ we may assume that f̃(z, z1, . . . , zℓ) ∈ Dr̃ ×D
n for

all z ∈ Dr, zj ∈ Uj , j = 1, . . . , ℓ.

Note that f̃(zj , z1, . . . , zℓ) = (wj , 0), j = 1, . . . , ℓ, and f̃(0, z1, . . . , zℓ) = 0, z1 ∈ U1,

. . . , zℓ ∈ Uℓ. Put f(z, z1, . . . , zℓ) = pr ◦ Φ−1(f̃(z, z1, . . . , zℓ)). It is easy to see that all the

conditions are satisfied.

3. The Poisson functional

3.1. Upper semicontinuity of the Poisson functional. In this section we study

the upper semicontinuity of the envelope of the Poisson functional.

As a corollary of Proposition 2.4 we have the following result.

Theorem 3.1. Let X and Y be complex manifolds and let F : X → Y be a holomorphic

mapping. Let ϕ : Y → R be a measurable function which is locally bounded from above

or below. Then

EFϕ1
◦ F ≤ EFϕ◦F1

.

Moreover , if F is a holomorphic covering , then

EF
ϕ
1
◦ F = EFϕ◦F1

.

Proof. Note that F ∗Fϕ1 = F
ϕ◦F
1 and use Proposition 2.4.

We have the following duality for the Poisson functional (see [34], [35], [25]).

Theorem 3.2. Let X be a complex manifold and let ϕ : X → R be a measurable function

which is locally bounded from above or below. Then

sup{v ∈ PSH(X) : v ≤ ϕ} ≤ EFϕ1
≤ ϕ on X. (3.1)

Therefore, if EFϕ1
is a plurisubharmonic function on X, then

sup{v ∈ PSH(X) : v ≤ ϕ} = EFϕ1
on X.

For the sake of completeness we give a proof.

Proof. Take a function f ∈ O(D, X) and a plurisubharmonic function v ≤ ϕ. Then

v(f(0)) ≤
1

2π

2π\
0

v(f(eiθ)) dθ ≤
1

2π

2π\
0

ϕ(f(eiθ)) dθ.

So, we have the left inequality of (3.1). For the right inequality it suffices to take constant

functions.

The following proposition served as a motivation for introducing (weakly) integrally

upper semicontinuous functions. It gives examples of integrally upper semicontinuous

functions which are not upper semicontinuous.
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Proposition 3.3. Let Ω be a domain in Cn and let ϕ : Ω → (−∞,∞] be a superhar-

monic function. Then ϕ is weakly integrally upper semicontinuous on Ω (24).

Proof. Fix x0 ∈ Ω and ε > 0. We may assume that ϕ(x0) 6= ∞. Put ε1 := ε/(22n − 1).

Since ϕ is lower semicontinuous, there exists r0 > 0 such that

ϕ(x) + ε1 ≥ ϕ(x0), x ∈ Bn(x0, 2r0) ⋐ Ω.

Fix x ∈ Bn(x0, r), r ∈ (0, r0). We have

ϕ(x0) ≥
1

bn(2r)2n

\
Bn(x0,2r)

ϕ(y) dL2n(y)

=
1

bn(2r)2n

\
Bn(x,r)

ϕ(y) dL2n(y) +
1

bn(2r)2n

\
Bn(x0,2r)\Bn(x,r)

ϕ(y) dL2n(y)

≥
1

bn(2r)2n

\
Bn(x,r)

ϕ(y) dL2n(y) +
1

bn(2r)2n
(ϕ(x0)− ε1)(bn(2r)2n − bnr

2n)

=
1

bn(2r)2n

\
Bn(x,r)

ϕ(y) dL2n(y) + (ϕ(x0)− ε1)

(
1−

1

22n

)

=
1

bn(2r)2n

\
Bn(x,r)

ϕ(y) dL2n(y) + ϕ(x0)− ϕ(x0)
1

22n
− ε1

(
1−

1

22n

)
.

So,

ϕ(x0) + ε ≥
1

bnr2n

\
Bn(x,r)

ϕ(y) dL2n(y) =
1

bn

\
Bn

ϕ(x+ ry) dL2n(y).

As a corollary of Proposition 3.3 we get

Corollary 3.4. Let X be a complex manifold and let ϕ ∈ PSH(X). Then −ϕ ∈

IC↑(X).

The main result of this section is the following

Theorem 3.5. Let X be a complex manifold. Assume that

(a) ϕ ∈ IC↑(X) is locally bounded from above or

(b) ϕ is a plurisuperharmonic function on X, ϕ 6≡ ∞.

Then EF
ϕ
1
is upper semicontinuous.

Before we go into the proof we need the following results.

Lemma 3.6. Let ϕ : T× Bn → R be an integrable function. Then

1

2πbn

2π\
0

\
Bn

ϕ(eiθ, y) dL2n(y) dθ =
1

2πbn

2π\
0

\
Bn

ϕ(eiθ, eiθy) dL2n(y) dθ. (3.2)

(24) Note that we may define weakly integrally upper semicontinuity at a point x0 ∈ Ω. Then
Proposition 3.3 may be reformulated as follows.

Proposition. Let Ω be a domain in Cn and let ϕ : Ω → (−∞,∞] be a lower semicontinu-
ous function. Assume that lim supr→0(bnr

2n)−1
T
Bn(x0,r)

ϕ(y)L2n(y) ≤ ϕ(x0). Then ϕ is weakly
integrally upper semicontinuous at x0.
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Therefore, there exists y0 ∈ Bn such that

1

2πbn

2π\
0

\
Bn

ϕ(eiθ, y) dL2n(y) dθ ≥
1

2π

2π\
0

ϕ(eiθ, eiθy0) dθ.

Proof. This follows immediately from measure theory (use change of variables).

Lemma 3.7. Let X be a complex manifold. Assume that

(a) ϕ ∈ IC↑(X) is locally bounded from above or

(b) ϕ is a plurisuperharmonic function on X, ϕ 6≡ ∞.

Suppose that Ω is a domain in Cm. Let f : Dr × Ω → X, r > 1, be a holomorphic

mapping such that ϕ ◦ f(eiθ, ·) 6≡ ∞, θ ∈ [0, 2π) (25). Then

F (y) :=
1

2π

2π\
0

ϕ(f(eiθ, y)) dθ, y ∈ Ω,

is an integrally upper semicontinuous function on Ω.

Proof. Note that if ϕ is a plurisuperharmonic function, then F is also plurisuperharmonic.

So, in case (b) the result follows from Corollary 3.4.

Hence, we may assume that we have case (a). Note that it suffices to prove that F is

weakly integrally upper semicontinuous. Fix y0 ∈ Ω. We may assume that F (y0) < ∞.

Fix β > F (y0). Suppose that there exist rm ց 0 and ym ∈ Bn(y0, rm) such that
1

bn

\
Bn

F (ym + rmy) dL2n(y) ≥ β.

Note that

1

bn

\
Bn

F (ym + rmy) dL2n(y) =
1

2π

2π\
0

[
1

bn

\
Bn

ϕ(f(eiθ, ym + rmy)) dL2n(y)

]
dθ.

By Fatou’s theorem

lim sup
m→∞

1

2π

2π\
0

[
1

bn

\
Bn

ϕ(f(eiθ, ym + rmy)) dL2n(y)

]
dθ

≤
1

2π

2π\
0

lim sup
m→∞

[
1

bn

\
Bn

ϕ(f(eiθ, ym + rmy)) dL2n(y)

]
dθ.

But for any fixed θ ∈ [0, 2π), ϕ(f(eiθ, ·)) is an integrally upper semicontinuous function

and, therefore,

lim sup
m→∞

[
1

bn

\
Bn

ϕ(f(eiθ, ym + rmy)) dL2n(y)

]
≤ ϕ(f(eiθ, y0)).

So,

β ≤ lim sup
m→∞

1

2π

2π\
0

[
1

bn

\
Bn

ϕ(f(eiθ, ym + rmy)) dL2n(y)

]
dθ ≤ F (y0).

The contradiction finishes the proof.

Lemma 3.8. Let X be a complex manifold. Suppose that

(25) Note that ϕ ◦ f(eiθ, ·) ≡ ∞, θ ∈ [0, 2π), is possible only in case (b).
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(a) ϕ ∈ IC↑(X) is locally bounded from above or

(b) ϕ is a plurisuperharmonic function on X, ϕ 6≡ ∞.

Assume that x0 ∈ X, β ∈ R, and f0 ∈ O(D, X) is such that f0(0) = x0 and F1(f0) < β,

where F1 := F
ϕ
1 . Then there exist a neighborhood V of x0 in X, r > 1, and f ∈

O(Dr × Bn(r)× V,X) such that:

(a) f(0, 0, x) = f(0, y, x) = x for any x ∈ V and any y ∈ Bn;

(b) f(z, 0, x0) = f0(z) for any z ∈ D;

(c)
1

bn

\
Bn

F1(f( · , y, x)) dL2n(y) < β for all x ∈ V.

Proof. According to Corollary 2.12, there exist an r̃ > 1, an open neighborhood Ṽ of x0,

and an f̃ ∈ O(Dr̃ × Ṽ , X) such that f̃(z, x0) = f0(z) for all z ∈ Dr̃ and f̃(0, x) = x for

all x ∈ Ṽ .

Let (U, ζ) be a local coordinate such that ζ(x0) = 0. We may assume that U ⊂ Ṽ ,

ζ : U → ζ(U) = Bn. Consider the function

F (w) =
1

2π

2π\
0

ϕ(f̃(eiθ, ζ−1(w))) dθ, w ∈ Bn.

By Lemma 3.7, F is an integrally upper semicontinuous function on Bn. Fix an ε > 0

such that F1(f0) < β − ε. Then there exists an r0 ∈ (0, 1/2) such that
1

bn

\
Bn

F (y1 + r1y) dL2n(y) < β,

for any y1 ∈ Bn(r1), r1 ∈ (0, r0). Fix r1 ∈ (0, r0). Put f(z, y, x) := f̃(z, ζ−1(ζ(x) + r1zy))

and V := ζ−1(Bn(r1)). We have

1

bn

\
Bn

F1(f( · , y, x)) dL2n(y) =
1

bn

\
Bn

[
1

2π

2π\
0

ϕ(f(eiθ, y, x)) dθ

]
dL2n(y)

=
1

bn

\
Bn

[
1

2π

2π\
0

ϕ(f̃(eiθ, ζ−1(ζ(x) + r1e
iθy))) dθ

]
dL2n(y)

=
1

bn

\
Bn

[
1

2π

2π\
0

ϕ(f̃(eiθ, ζ−1(ζ(x) + r1y))) dθ

]
dL2n(y)

=
1

bn

\
Bn

F (ζ(x) + r1y) dL2n(y) < β.

Take r ∈ (1, r̃) such that ζ(x) + r1zy ∈ Bn for any x ∈ V , z ∈ Dr, y ∈ Bn(r).

Proof of Theorem 3.5. Fix an x0 ∈ X. We may assume that EF1(x0) < ∞, where

F1 = F
ϕ
1 . Let β > EF1(x0) be fixed. By definition there exists an f0 ∈ O(D, X) such that

f0(0) = x0 and F1(f0) < β. According to Lemma 3.8 there exist a neighborhood V of x0
in X, r > 1, and f ∈ O(Dr × Bn(r)× V,X) such that f(0, 0, x) = x and

1

bn

\
Bn

F1(f( · , y, x)) dL2n(y) < β for all x ∈ V.
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Fix an x ∈ V . By Lemma 3.6 there exists y0 ∈ Bn such that

1

bn

\
Bn

F1(f( · , y, x)) dL2n(y) ≥ F1(g),

where g(z) = f(z, zy0, x). It suffices to note that g(0) = x.

Proposition 3.9. Let X be a complex manifold. Assume that

(a) ϕ ∈ IC↑(X) is locally bounded from above or

(b) ϕ is a plurisuperharmonic function on X, ϕ 6≡ ∞.

Then EF
ϕ
1
<∞.

Proof. Note that case (a) is trivial. Assume that ϕ is a plurisuperharmonic function.

Let x0 ∈ X be fixed. We have to show that EFϕ1
(x0) <∞. Assume that (U, ζ) is a local

coordinate such that ζ(x0) = 0. We may assume that ζ : U → ζ(U) = Bn(2). Take an

x1 ∈ U , x1 6= x0, such that ϕ(x1) <∞. Consider the superharmonic function u := ϕ ◦ f ,

where f(z) := ζ−1(zζ(x1)/‖ζ(x1)‖), z ∈ D. Note that f(0) = x0 and u(‖ζ(x1)‖) =

ϕ(x1) <∞. Since u 6≡ ∞,

F
ϕ
1 (f) =

1

2π

2π\
0

ϕ ◦ f(eiθ) dθ =
1

2π

2π\
0

u(eiθ) dθ <∞.

Hence, EFϕ1
≤ F

ϕ
1 (f) <∞.

3.2. Plurisubharmonicity of the Poisson functional. In this section we study the

Poisson functional on complex manifolds of class P̃ . First we show plurisubharmonicity

on domains in Stein manifolds. Later, using Propositions 2.1, 2.4, and 2.5 we extend the

results obtained to the class P̃.

The main result of this part (and, actually, of the whole paper) is the following.

Theorem 3.10. Let X be a complex manifold of class P̃. Assume that

(a) ϕ ∈ IC↑(X) is locally bounded from above or

(b) ϕ is a plurisuperharmonic function on X, ϕ 6≡ ∞.

Then EFϕ1
is a plurisubharmonic function on X.

We assume first that X is a domain in a Stein manifold. The idea of the proof in this

case goes back to E. Poletsky ([34], [35]). First note that EF1 <∞ (use Proposition 3.9)

and EF1 is an upper semicontinuous function in both cases (use Theorem 3.5), where

F1 = F
ϕ
1 . Therefore, we have to prove that

EF1(h(0)) ≤
1

2π

2π\
0

EF1(h(eiθ)) dθ

for any h ∈ O(D, X). Fix an h ∈ O(D, X). Since EF1 is upper semicontinuous, there exists

a sequence of continuous functions vn on X such that vn ց EF1 (cf. [30], Chapter III).

Hence, it suffices to show that for every ε > 0 and v ∈ C(X,R) with v > EF1 there exists
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g ∈ O(D, X) such that g(0) = h(0) and

F1(g) ≤
1

2π

2π\
0

v(h(eiθ)) dθ + ε.

For the construction of g, we first show that there exist r > 1 and F ∈ C∞(Dr × T, X)

such that F (·, w) ∈ O(D, X), F (0, w) = h(w) for all w ∈ T, and

1

2π

2π\
0

F1(F (·, eiθ)) dθ ≤
1

2π

2π\
0

v(h(eiθ)) dθ + ε.

Next we show that there exist s ∈ (1, r) and G ∈ O(Ds×Ds, X) such that G(0, w) = h(w)

for all w ∈ Ds and

1

2π

2π\
0

F1(G(·, eiθ)) dθ ≤
1

2π

2π\
0

F1(F (·, eiθ)) dθ + ε.

Finally, we show that there exists a θ0 ∈ [0, 2π) such that if g is defined by the formula

g(z) = G(eiθ0z, z), then

F1(g) ≤
1

2π

2π\
0

F1(G(·, eiθ)) dθ.

As we see, the main steps of the proof coincide with the proof of the plurisubharmonicity

of EFϕ1
for an upper semicontinuous function ϕ (see the discussion before Lemma 2.3 in

[25]). But the proofs of these steps turn out to be technical and complicated.

Let us start with the following result, which follows from measure theory.

Lemma 3.11. Let ψ : T → R be a measurable function such that
T
T
|ψ| dσ < ∞ (i.e.

ψ ∈ L1(T)). Then for any ε > 0 there exists δ > 0 such that\
I

ψ(w) dσ(w) < ε

for any measurable set I ⊂ T with σ(I) < δ.

Proof. Fix ε > 0. We have
T
T
|ψ| dσ <∞. Hence, there exists C > 0 such that\
{z∈T:|ψ(z)|≥C}

|ψ| dσ <
ε

2
.

Take δ := ε/(2C). Then\
I

ψ dσ ≤
\
I

|ψ| dσ =
\

{z∈I:|ψ(z)|<C}

|ψ| dσ +
\

{z∈I:|ψ(z)|≥C}

|ψ| dσ ≤ Cσ(I) +
ε

2
< ε.

Lemma 3.12 (cf. Lemma 5.5 in [34], Lemma 2.5 in [25]). Let h ∈ O(D, X), ε > 0, and

v ∈ C(X,R) with v > EF1 . Assume that:

(a) ϕ is an integrally upper semicontinuous function on X locally bounded from

above or

(b) ϕ is a plurisuperharmonic function on X such that ϕ ◦ h 6≡ ∞.
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Then there exist r > 1 and F ∈ C∞(Dr×T, X) such that F (·, w) ∈ O(Dr, X), F (0, w) =

h(w) for all w ∈ T, and

1

2π

2π\
0

F1(F (·, eiθ)) dθ <
1

2π

2π\
0

v(h(eiθ)) dθ + ε. (3.3)

Proof. Let w0 ∈ T. Put x0 = h(w0). From Lemma 3.8 it follows that there exist r0 > 1,

f0 ∈ O(Dr0 × Bn(r0)× V0, X) such that f0(0, 0, x) = f0(0, y, x) = x, x ∈ V0, y ∈ Bn(r0),

and
1

bn

\
Bn

F1(f0( · , y, x)) dL2n(y) < v(x0) for all x ∈ V0.

Replacing V0 by a smaller neighborhood of x0 we get

1

bn

\
Bn

F1(f0( · , y, x)) dL2n(y) < v(x) +
ε

4
, x ∈ V0.

We can take an open arc I0 ⊂ T containing w0 such that h(w) ∈ V0 for all w ∈ I0.

Define F0 : Dr0 × Bn(r0) × I0 → X by F0(z, y, w) = f0(z, y, h(w)). Replacing r0 by a

smaller number in (1,∞) and I0 by a smaller open arc containing w0, we may assume

that F0(Dr0 × Bn(r0)× I0) is relatively compact in X.

Using a compactness argument, we see that there exist a covering of T by open arcs

{Iν}Nν=1, rν > 1, and Fν ∈ C∞(Drν × Bn(rν)× Iν , X) such that

a) Fν(·, ·, w) ∈ O(Drν × Bn(rν), X),

b) Fν(0, 0, w) = Fν(0, y, w) = h(w),

c) Fν(Drν × Bn(rν)× Iν) is relatively compact in X,

d)
1

bn

\
Bn

F1(Fν( · , y, w)) dL2n(y) < v(h(w)) +
ε

4

for y ∈ Bn(rν), w ∈ Iν , ν = 1, . . . , N .

Put r := minν rν . Choose M ⊂ X to be a compact set such that

h(D) ∪
N⋃

ν=1

Fν(Dr × Bn(r)× Iν) ⊂M.

Let C > max{supM |v|, supM ϕ} in case (a) and let C > supM |v| in case (b).

In the case of a plurisuperharmonic function ϕ such that ϕ ◦ h 6≡ ∞ it is well known

that ϕ ◦ h ∈ L1(T) (cf. [37]). So, by Lemma 3.11 there exists δ > 0 such that for any

measurable set I ⊂ T with σ(I) < δ we have\
I

ϕ ◦ h dσ <
πε

2
.

In case (a) we put δ = 1. There exist a subset A ⊂ {1, . . . , N} and disjoint closed arcs

Jν ⊂ Iν , ν ∈ A, such that σ(T \
⋃
Jν) < min{δ, πε/(2C)}. By possibly removing some

arc Iν from the covering of T, we may assume that A = {1, . . . , N}. We choose disjoint
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open arcs Kν such that Jν ⊂ Kν ⊂ Iν and a function ̺ ∈ C∞(T) such that

• 0 ≤ ̺ ≤ 1,

• ̺(w) = 1 for w ∈
⋃
Jν ,

• ̺(w) = 0 for w ∈ T \
⋃
Kν .

Note that \
Jν

1

bn

\
Bn

F1(Fν(·, y, w)) dL2n(y) dσ(w) ≤
\
Jν

v(h(w)) dσ(w) +
ε

4
σ(Jν).

Hence, there exists yν ∈ Bn such that\
Jν

F1(Fν(·, yν , w)) dσ(w) ≤
\
Jν

v(h(w)) dσ(w) +
ε

4
σ(Jν). (3.4)

We define F : Dr × T→ X by

F (z, w) =

{
Fν(̺(w)z, yν , w), z ∈ Dr, w ∈ Kν ,

h(w), z ∈ Dr, w ∈ T \
⋃
Kν .

The choice of ̺ ensures that F ∈ C∞(Dr × T, X), F (·, w) ∈ O(Dr, X), and F (0, w) =

h(w), w ∈ T. We have

2π\
0

F1(F (·, eiθ)) dθ =
∑

ν

\
Jν

F1(Fν(·, yν , w)) dσ(w)

+
∑

ν

\
Kν\Jν

F1(Fν(̺(w)·, yν , w)) dσ(w) +
\

T\
⋃
ν Kν

ϕ(h(w)) dσ(w).

By (3.4) we get
∑

ν

\
Jν

F1(Fν(·, yν , w)) dσ(w) ≤
∑

ν

\
Jν

v(h(w)) dσ(w) +
ε

4
σ
(⋃

ν

Jν

)
.

Let us estimate
∑
ν

T
Kν\Jν

F1(Fν(̺(w)·, yν , w)) dσ(w). Note that

∑

ν

\
Kν\Jν

F1(Fν(̺(w)·, yν , w)) dσ(w) =
∑

ν

\
Kν\Jν

1

2π

2π\
0

ϕ(Fν(̺(w)·, yν , w)) dθ dσ(w).

In case (a) we have

∑

ν

\
Kν\Jν

1

2π

2π\
0

ϕ(Fν(̺(w)eiθ, yν , w)) dθ dσ(w) ≤ Cσ
(⋃

ν

Kν \
⋃

ν

Jν

)
.

And in case (b) we have

∑

ν

\
Kν\Jν

1

2π

2π\
0

ϕ(Fν(̺(w)eiθ, yν , w)) dθ dσ(w) ≤
∑

ν

\
Kν\Jν

ϕ(Fν(0, yν , w)) dσ(w)

=
∑

ν

\
Kν\Jν

ϕ(h(w)) dσ(w).
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If we combine the inequalities we already have, then in case (a) we get

2π\
0

F1(F (·, eiθ)) dθ ≤
\

⋃
ν Jν

v(h(w)) dσ(w) +
ε

4
σ
(⋃

ν

Jν

)

+ Cσ
(⋃

ν

Kν \
⋃

ν

Jν

)
+ Cσ

(
T \
⋃

ν

Kν

)

≤
\
T

v(h(w)) dσ(w)−
\

T\
⋃
ν Jν

v(h(w)) dσ(w) + πε

<
\
T

v(h(w)) dσ(w) + 2πε.

In case (b) we have

2π\
0

F1(F (·, eiθ)) dθ ≤
\

⋃
ν Jν

v(h(w)) dσ(w) +
ε

4
σ
(⋃

ν

Jν

)

+
\

⋃
ν Kν\

⋃
ν Jν

ϕ(h(w)) dσ(w) +
\

T\
⋃
ν Kν

ϕ(h(w)) dσ(w)

≤
\
T

v(h(w)) dσ(w)−
\

T\
⋃
ν Jν

v(h(w)) dσ(w) + πε

<
\
T

v(h(w)) dσ(w) + 2πε.

Recall the following approximation result (see Lemma 2.6 in [25], cf. Lemma 5.6

in [34], Lemma 6 in [7]).

Lemma 3.13. Let X be a domain in a Stein manifold. Let r > 1, h ∈ O(Dr, X), and

F ∈ C∞(Dr×T, X) be such that F (·, w) ∈ O(Dr, X), and F (0, w) = h(w) for all w ∈ T.

Then for any s ∈ (1, r) there exists a sequence Fj ∈ O(Ds × Aj , X), j ≥ 1, where Aj is

an open annulus containing T, such that

(i) Fj → F uniformly on Ds × T as j →∞,

(ii) there is an integer kj ≥ j such that the map (z, w) 7→ Fj(zw
kj , w) can be extended

to a map Gj ∈ O(D2sj , X), where sj ∈ (1, s) and

(iii) Gj(0, w) = h(w) for all w ∈ Dsj .

Proof. By Theorem 2.7 there exist a domain Y in Cn and holomorphic mappings Φ :

X → Y , Ψ : Y → X such that Ψ ◦ Φ = idX . We define F̃ = Φ ◦ F , h̃ = Φ ◦ h. For any

j ∈ N we put

F̃j(z, w) = h̃(w) +

j∑

k=−j

(
1

2π

2π\
0

(F̃ (z, eiθ)− h̃(eiθ))e−ikθ dθ

)
wk. (3.5)

Since the function θ 7→ F̃ (z, eiθ) − h̃(eiθ) is infinitely differentiable with period 2π, its

Fourier series converges uniformly on R. Hence the series in (3.5) converges uniformly on

Dt × T, t ∈ (1, r).
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Let t ∈ (s, r). Since F̃ (z, w) ∈ Y for all (z, w) ∈ Dr × T and F̃j → F̃ uniformly on

Dt × T, we can choose j0 so large that F̃j(z, w) ∈ Y for all (z, w) ∈ Dt × T and j ≥ j0.

Since s ∈ (1, t), by continuity we can choose an open annulus Aj containing T such that

F̃j(z, w) ∈ Y for all (z, w) ∈ Ds × Aj . We define Fj ∈ O(Ds × Aj , X) by Fj = Ψ ◦ F̃j .

Then (i) holds.

For every z ∈ Dr the mapping w 7→ F̃j(z, w) − h̃(w) has a pole of order at most j

at the origin, and for every w ∈ Dr \ {0} the mapping z 7→ F̃j(z, w) − h̃(w) has a zero

at the origin. Hence (z, w) 7→ F̃j(zw
k, w) can be extended to a holomorphic mapping

D× D→ Cn for every k ≥ j.

Since F̃j(0, w) = h̃(w) ∈ Y for all w ∈ Dr \ {0}, there exists δ > 0 such that

F̃j(zw
k, w) ∈ Y for all integers k ≥ j and (z, w) ∈ Dδ × D. Since F̃j(z, w) ∈ Y for

all (z, w) ∈ D × T, we can choose ̺j ∈ (0, 1) such that F̃j(z, w) ∈ Y for all (z, w) ∈

D × (D \ D̺j ), so we conclude that F̃j(zw
k, w) ∈ Y for all (z, w) ∈ D × (D \ D̺j ) and

all integers k ≥ j. Now we take kj so large that |zwkj | < δ for all (z, w) ∈ D × D̺j .

Then F̃j(zw
kj , w) ∈ Y for all (z, w) ∈ D × D. We finally choose sj ∈ (1, s) such that

F̃j(zw
kj , w) ∈ Y for all (z, w) ∈ Dsj × Dsj and define Gj(z, w) = Ψ ◦ F̃j(zwkj , w). Then

(ii) and (iii) hold.

Lemma 3.14. Let X be a domain in a Stein manifold. Let h and F satisfy the conditions

of Lemma 3.12. Then for every ε > 0 there exist s ∈ (1, r) and G ∈ O(Ds×Ds, X) such

that G(0, w) = h(w) for all w ∈ Ds, and

1

2π

2π\
0

F1(G(·, eiθ)) dθ ≤
1

2π

2π\
0

F1(F (·, eiθ)) dθ + ε.

Proof. By Theorem 2.7 there exist a domain Y in Cn and holomorphic mappings Φ :

X → Y , Ψ : Y → X such that Ψ ◦ Φ = idX . We define F̃ = Φ ◦ F , F̃k = Φ ◦ Fk, and

ϕ̂ := ϕ ◦ Ψ . Note that ϕ̂ is a weakly approximately upper semicontinuous function on Y .

For any fixed z, w ∈ T there exists r(z, w) > 0 such that

1

bn

\
Bn

ϕ̂(y1 + ry) dL2n(y) ≤ ϕ̂(F̃ (z, w)) +
ε

2
= ϕ(F (z, w)) +

ε

2

for y1 ∈ B(F (z, w), r), r ∈ (0, r(z, w)). Hence, for any fixed z, w ∈ T we have

lim sup
m→∞

lim sup
k→∞

1

bn

\
Bn

ϕ̂

(
F̃k(z, w) +

1

m
y

)
dL2n(y) ≤ ϕ(F (z, w)) +

ε

2
.

By Fatou’s theorem, we have

lim sup
m→∞

lim sup
k→∞

1

4π2

2π\
0

2π\
0

[
1

bn

\
Bn

ϕ̂

(
F̃k(eiτ , eiθ) +

1

m
y

)
dL2n(y)

]
dτ dθ

≤
1

4π2

2π\
0

2π\
0

[
lim sup
m→∞

lim sup
k→∞

1

bn

\
Bn

ϕ̂

(
F̃k(eiτ , eiθ) +

1

m
y

)
dL2n(y)

]
dτ dθ

≤
1

4π2

2π\
0

2π\
0

ϕ(F (eiτ , eiθ)) dτ dθ +
ε

2
.
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Hence, there exist m0 and k0 such that

1

4π2

2π\
0

2π\
0

[
1

bn

\
Bn

ϕ̂

(
F̃k0(e

iτ , eiθ) +
1

m0
y

)
dL2n(y)

]
dτ dθ

≤
1

4π2

2π\
0

2π\
0

ϕ(F (eiτ , eiθ)) dτ dθ + ε.

So, there exists y0 ∈ Bn such that

1

4π2

2π\
0

2π\
0

ϕ̂

(
F̃k0(e

iτ , eiθ) +
1

m0
eiτy0

)
dτ dθ ≤

1

4π2

2π\
0

2π\
0

ϕ(F (eiτ , eiθ)) dτ dθ + ε

Put G̃(z, w) = Φ ◦ Gk0(z, w) + (1/m0)zw
ℓk0 y0 and G = Ψ ◦ G̃, where Gk0 is given by

Lemma 3.13. Finally we note that

1

2π

2π\
0

F1(G(·, eiθ)) dθ =
1

4π2

2π\
0

2π\
0

ϕ(G(eiτ , eiθ)) dτ dθ

=
1

4π2

2π\
0

2π\
0

ϕ̂(G̃(eiτ , eiθ)) dτ dθ

≤
1

4π2

2π\
0

2π\
0

ϕ(F (eiτ , eiθ)) dτ dθ + ε =
1

2π

2π\
0

F1(F (·, eiθ)) dθ + ε.

Lemma 3.15. Let s > 1 and G ∈ O(Ds × Ds, X). Then there exists g ∈ O(Ds, X) such

that g(0) = G(0, 0) and

F1(g) ≤
1

2π

2π\
0

F1(G(·, eiθ)) dθ.

Proof. Note that

1

2π

2π\
0

F1(G(·, eiθ)) dθ =
1

4π2

2π\
0

2π\
0

ϕ(G(eiτ , eiθ)) dτ dθ

=
1

4π2

2π\
0

2π\
0

ϕ(G(eiτ , eiθ+iτ )) dτ dθ.

So, there exists θ0 ∈ [0, 2π) such that

1

4π2

2π\
0

2π\
0

ϕ(G(eiτ , eiθ+iτ )) dτ dθ ≥
1

2π

2π\
0

ϕ(G(eiτ , eiθ0eiτ )) dτ.

Put g(z) = G(z, eiθ0z).

Now we are going to prove Theorem 3.10 for any manifold of class P̃. First recall the

following result.

Lemma 3.16 (see Proposition 2.9.26 in [20], cf. Lemma 3.2 in [25]). Let X,Y be complex

manifolds and let h : X → Y be a finite branched covering. Let u be a plurisubharmonic
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function on X. Then the function h∗u defined by the formula

h∗u(y) = max{u(x) : x ∈ h−1(y)}, y ∈ Y,

is plurisubharmonic on Y (26).

For the sake of completeness we give a proof.

Proof. Let S ⊂ Y be the branch locus of h. Then h : X \ h−1(S) → Y \ S is a finite

holomorphic covering, so h∗u is plurisubharmonic on Y \ S. The restriction h∗u|Y \S
extends to a plurisubharmonic function v on Y with

v(y) = lim sup
ỹ→y, ỹ 6∈S

h∗u(ỹ), y ∈ S.

If u is continuous, then h∗u is also continuous and, hence, plurisubharmonic. In the

general case, let p ∈ S and U be an open coordinate ball containing p. We have a finite

map h : h−1(U) → U , so h−1(U) is Stein, and the main approximation theorem for

plurisubharmonic functions holds on h−1(U). Let V be a relatively compact open ball in

U with p ∈ V . Then there are smooth plurisubharmonic functions un on h−1(V ) such

that un ց u. Since h∗un are plurisubharmonic and h∗un ց h∗u, we conclude that h∗u

is plurisubharmonic on V .

Recall also the following modifications of Propositions 3.1, 3.3 from [25].

Proposition 3.17. Let X,Y be complex manifolds such that there exists a finite

branched covering h : X → Y . If EFϕ1
∈ PSH(X) for every integrally upper semicontinu-

ous function ϕ on X locally bounded from above, then EFϕ1
∈ PSH(Y ) for every function

ϕ on Y with the same properties.

Proof. Let ϕ : Y → R ∪ {−∞} be an integrally upper semicontinuous function locally

bounded from above. Let ψ = EFϕ◦h1
. By assumption ψ is plurisubharmonic on X and

EF
ϕ
1
◦ h ≤ ψ. Now ψ ≤ ϕ ◦ h, so h∗ψ ≤ ϕ and h∗ψ ≤ EF

ϕ
1

. Hence,

(h∗ψ) ◦ h ≤ EFϕ1
◦ h ≤ ψ.

Note that (h∗ψ) ◦ h ≤ ψ implies that (h∗ψ) ◦ h = ψ. Hence, EFϕ1
◦ h = ψ and EFϕ1

= h∗ψ

is plurisubharmonic.

Proposition 3.18. Let X,Y be complex manifolds such that there exists a finite

branched covering h : X → Y . If EFϕ1
∈ PSH(X) for every plurisuperharmonic function

ϕ on X, ϕ 6≡ ∞, then EFϕ1
∈ PSH(Y ) for every such function ϕ on Y .

Proof. The same as the proof of Proposition 3.17.

Propositions 2.1, 2.4, 3.17, 3.18 imply Theorem 3.10 for any complex manifold of

class P̃.

3.3. Liouville manifolds. We say that a complex manifold X is a Liouville manifold

if any negative plurisubharmonic function on X is constant (27).

(26) Recall the following useful result. Suppose that x0 ∈ X is an isolated point of the set
h−1(h(x0)). It is well known (see e.g. [41]) that there exist domains U ⊂ X and V ⊂ Y such
that h−1(h(x0)) ∩ U = {x0} and h|U : U → V is a finite branched covering.
(27) Recall that by Liouville’s theorem, Cn is a Liouville manifold (see e.g. [20]).
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In this section we study the envelope of the Poisson functional on Liouville manifolds.

Let us start with the following result, which is crucial for our considerations.

Proposition 3.19 (cf. [25], Proposition 6.1). Let X be a Liouville manifold. Let U 6= ∅

be an open set in X such that ω̃(·, U,X) is a plurisubharmonic function on X. Then

for every x ∈ X and every ε > 0 there exists an f ∈ O(D, X) such that f(0) = x and

σ(T ∩ f−1(U)) > 2π − ε.

Proof. We know that ω̃(·, U,X) = E
F
−χU
1

. Since ω̃(·, U,X) ≤ 0, from the assumptions we

get ω̃(·, U,X) ≡ −1. Hence, for every x ∈ X and every ε > 0 there exists an f ∈ O(D, X)

such that f(0) = x and

ε

2π
− 1 >

1

2π

\
T

(−χU ◦ f) dσ = −
σ(T ∩ f−1(U))

2π
.

Hence, σ(T ∩ f−1(U)) > 2π − ε.

Proposition 3.20 (cf. [25], Proposition 6.1). Let X be a complex manifold. Assume that

for any x ∈ X, any open set U 6= ∅ in X, and any ε > 0 there exists an f ∈ O(D, X)

such that f(0) = x and σ(T ∩ f−1(U)) > 2π − ε. Then for every upper semicontinu-

ous function ϕ : X → [−∞,∞) bounded from above, EFϕ1
is constant (and , therefore,

plurisubharmonic) on X. In particular , X is a Liouville manifold and ω̃(·, U,X) is a

plurisubharmonic function on X for any open subset U of X.

Proof. Note that EFϕ1
≥ infX ϕ on X.

Suppose that ϕ < C on X. Fix c ∈ R such that c > infX ϕ. Put Uc := {x ∈ X :

ϕ(x) < c}. Note that Uc 6= ∅ is an open subset in X. Fix ε > 0. Let f ∈ O(D, X) be such

that f(0) = x and σ(T ∩ f−1(U)) > 2π − ε. Then we have\
T

ϕ ◦ f dσ =
\

T∩f−1(Uc)

ϕ ◦ f dσ +
\

T\f−1(Uc)

ϕ ◦ f dσ ≤ cσ(T ∩ f−1(Uc)) + Cε ≤ 2πc+ Cε.

So,

EFϕ1
(x) ≤ F

ϕ
1 (f) ≤ c+ C

ε

2π
.

Since ε > 0 is arbitrary, we get EFϕ1
(x) ≤ c. Take cց infX ϕ. Hence, EFϕ1

≡ infX ϕ.

Let us give some corollaries of Propositions 3.19 and 3.20. First, we have the following

characterization of Liouville manifolds in terms of analytic discs.

Theorem 3.21. Let X be a complex manifold from class P̃ (28). Then X is a Liouville

manifold if and only if for any x ∈ X, any ε > 0, and any open set U 6= ∅ there exists

an f ∈ O(D, X) such that f(0) = x and σ(T ∩ f−1(U)) > 2π − ε.

Corollary 3.22. Let X be a Liouville manifold. Then the following conditions are

equivalent:

(1) ω̃(·, U,X) is a plurisubharmonic function on X for every open subset U of X;

(2) For any x ∈ X, any open subset U 6= ∅, and any ε > 0 there exists an f ∈ O(D, X)

such that f(0) = x and σ(T ∩ f−1(U)) > 2π − ε.

(28) Actually, it suffices to assume that ω̃(·, U,X) ∈ PSH(X) for any open subset U of X.
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Moreover , if X is a compact manifold , then the above conditions are equivalent to

(3) For any upper semicontinuous function ϕ : X → [−∞,∞) the function EF
ϕ
1
is

plurisubharmonic on X.

Proof. It suffices to note that on a compact complex manifold any upper semicontinuous

function is bounded from above.

We have the following result.

Proposition 3.23 (see Proposition 6.4 in [25]). Let X, Y be complex manifolds and let

F : X → Y be a surjective holomorphic mapping. Assume that X (and , therefore, Y ) is a

Liouville manifold and that ω̃(·, U,X) is a plurisubharmonic function on X for every open

subset U of X. Then ω̃(·, V, Y ) is a plurisubharmonic function on Y for every open subset

V of Y . Moreover , if Y is a compact complex manifold , then EFϕ1
is a plurisubharmonic

function on Y for any upper semicontinuous function ϕ : Y → [−∞,∞).

Proof. Let V 6= ∅ be an open subset of Y . Then

ω̃(F (x), V, Y ) ≤ ω̃(x, F−1(V ), X), x ∈ X.

By the assumptions ω̃(·, F−1(V ), X) ≡ −1. Therefore, ω̃(·, V, Y ) ≡ −1.

Proposition 3.24 (cf. Remark 6.2 in [25]). Let X be a Liouville manifold. Assume that

X is taut (29). Then for any r > 1 there exists an open subset U 6= ∅ of X such that

ω̃r(x, U,X) := inf

{
1

2π

\
T

(−χU ◦ f) dσ : f ∈ O(Dr, X), f(0) = x

}

is not a plurisubharmonic function on X.

Proof. Fix r > 1. Assume that ω̃r(·, U,X) is a plurisubharmonic function on X for any

open subset U 6= ∅ of X.

Let x0 ∈ X and let (Un) be a decreasing neighborhood basis of a point y0 6= x0
in X. Then ω̃r(·, Un, X) ≡ −1. We get holomorphic mappings fn : Dr → X such that

fn(0) = x0 and σ(T∩f−1n (Un)) > 2π−1/n. Since X is taut, there exists a subsequence of

(fn) which converges uniformly on compact sets to a holomorphic mapping f : Dr → X.

Then f(0) = x0 and f(T) = {y0}. Hence, we obtain a contradiction.

Remark 3.25. Note that C \S is a Liouville taut domain for any closed polar set S ⊂ C

with #S > 1 (see e.g. [17]).

3.4. The Poisson functional on domains in Cn. In the definition of the envelope

of a disc functional we use all analytic discs. In this section we show that for domains in

Cn it suffices to take analytic discs which are restrictions of the polynomial mappings.

(29) Recall that X is called taut if the space O(D, X) is normal, i.e. for any sequence

{fj}j∈N ⊂ O(D,X) there exists a subsequence {fjν} with fjν
K
=⇒
ν→∞

f ∈ O(D,X) or there

exists a subsequence {fjν} which diverges uniformly on compact sets, i.e. for any two compact
sets K ⊂ D, L ⊂ X there is an index ν0 ∈ N such that fjν (K) ∩ L = ∅ if ν ≥ ν0 (cf. [45]).
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Theorem 3.26. Let Ω be a domain in Cn and let ϕ : Ω → [−∞,∞) be an upper

semicontinuous function. Then

EFϕ1
(x) = inf{Fϕ1 (f) : f ∈ O(D, Ω), f : C→ Cn is a polynomial, f(0) = x}.

Proof. Note that

EFϕ1
(x) ≤ inf{Fϕ1 (f) : f ∈ O(D, Ω), f : C→ Cn is a polynomial, f(0) = x}.

Fix x0 ∈ X. We may assume that EFϕ1
(x0) <∞. Take β ∈ R such that EFϕ1

(x0) < β. By

the definition, there exists an f ∈ O(D, X) such that f(0) = x0 and F
ϕ
1 (f) < β. Assume

that

f(z) =
∞∑

k=0

ckz
k, z ∈ D,

is the Taylor expansion of f , where ck ∈ Cn. Put fN :=
∑N
k=0 ckz

k. There exists n0 ∈ N

such that fN (D) ⊂ Ω for any N ≥ n0. We have

lim sup
N→∞

F
ϕ
1 (fN ) ≤

1

2π

2π\
0

lim sup
N→∞

ϕ(fN (eiθ)) dθ ≤ F
ϕ
1 (f) < β.

Hence, there exists N ∈ N such that F
ϕ
1 (fN ) < β.

4. Product property

4.1. Product property of the Poisson functional. The main result of this part is

the following product property.

Theorem 4.1 (cf. [12]). Let X1 and X2 be complex manifolds and let U1 ⊂ X1, U2 ⊂ X2
be open sets. Then

ω̃((x1, x2), U1×U2, X1×X2) = max{ω̃(x1, U1, X1), ω̃(x2, U2, X2)}, (x1, x2) ∈ X1×X2.

For the proof of Theorem 4.1 we need some technical results. First recall the following

two of them.

Theorem 4.2 (see [33], Chapter III). Let π : D→ D be an inner function (30). Assume

that π is non-constant and not a Blaschke product (31). Then there exists a θ ∈ [0, 2π)

such that π∗(eiθ) = 0.

Theorem 4.3 (see [33], Chapter II). Let π be a bounded holomorphic function on the

unit disc and let A be a compact polar set in C. Assume that there exists a set I ⊂ T of

positive measure such that π∗(z) ∈ A, z ∈ I. Then π is constant.

(30) Recall that a function π : D → D is called inner if π∗(eiθ) := limr→1 π(re
iθ) ∈ T for

almost all θ ∈ [0, 2π).
(31) Let {an} ⊂ D∗ and let

∑
n
(1− |an|) <∞. A function of the form

B(z) = eiθzm
∏

n

|an|

an

an − z

1− ānz
, θ ∈ R,

is called a Blaschke product . Note that for a Blaschke product we have B(0) = 0 for m ≥ 1 and
|B(0)| =

∏
n
|an| for m = 0. It is well known that any Blaschke product is an inner function (see

e.g. [38], Theorem 15.24).
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Lemma 4.4. Let A be a compact polar subset of the unit disc D and let π : D → D \ A

be a universal covering. Then π is an inner function. Moreover , if 0 6∈ A, then π is a

Blaschke product.

Proof. Note that if π∗(eiθ) exists for a θ ∈ [0, 2π), then π∗(eiθ) ∈ T∪A. From Theorem 4.3

we deduce that π∗(eiθ) ∈ T for almost all θ ∈ [0, 2π).

If 0 6∈ A, then from Theorem 4.2 we see that π is a Blaschke product.

Lemma 4.5. Let B be a finite Blaschke product and let π : D → D be a holomorphic

function. Then π is an inner function if and only if B ◦ π is inner.

Proof. It suffices to note that B extends holomorphically to D and B(T) ⊂ T.

We need a version of Löwner’s theorem (cf. [44], Theorem VIII.30). But first recall

the following.

Theorem 4.6 (see [37], Theorem 1.2.4, [44], Theorem IV.1). Let ϕ ∈ L1(T). Put

uϕ(z) :=
1

2π

2π\
0

P (z, θ)ϕ(eiθ) dθ,

where P (z, θ) = (1− |z|2)/|eiθ − z|2 denotes the Poisson kernel. Then

(a) uϕ is a harmonic function on D, infT ϕ ≤ uϕ ≤ supT ϕ;

(b) u∗ϕ(eiθ) = limr→1 uϕ(reiθ) exists for almost all θ ∈ [0, 2π); moreover , u∗ϕ = ϕ a.e.

on T;

(c) if ϕ is continuous at ζ0 ∈ T, then uϕ extends continuously to ζ0.

Lemma 4.7 (Löwner’s theorem). Let π : D→ D be an inner holomorphic function such

that π(0) = 0. Then for any open set I ⊂ T we have σ((π∗)−1(I)) = σ(I).

Proof. Note that any open I ⊂ T can be written as I =
⋃∞
j=1 Ij , where Ij are disjoint

open arcs. So, we may assume that I is an open arc.

Fix an open arc I ⊂ T. Note that J := (π∗)−1(I) is a measurable set. Put

uI(z) :=
1

2π

2π\
0

P (z, θ)χI(e
iθ) dθ,

uJ (z) :=
1

2π

2π\
0

P (z, θ)χJ(eiθ) dθ,

u(z) := uI(π(z))− uJ (z), z ∈ D.

Note that uI is a continuous function on T \ ∂I. Put

A := {ζ ∈ T : lim
r→1

uJ(rζ) does not exist}

∪ {ζ ∈ T : u∗J(ζ) = lim
r→1

uJ (rζ) exists and u∗J (ζ) 6= χJ}

∪ {ζ ∈ T : lim
r→1

π(rζ) does not exist}

∪ {ζ ∈ T : π∗(ζ) = lim
r→1

π(rζ) exists and π∗(ζ) ∈ ∂I}.
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Note that A ⊂ T is of measure zero (use Theorem 4.3). Moreover, if eiθ ∈ J \ A

(i.e. u∗J (eiθ) = 1 and π∗(eiθ) ∈ I), then

u∗(eiθ) = lim
r→1

u(reiθ) = lim
r→1

(uI(π(reiθ))− uJ (reiθ)) = 1− 1 = 0.

If eiθ 6∈ J∪A, then u∗(eiθ) ≤ 0. So, u∗ ≤ 0 a.e. on T (actually, on T\A). Hence, u ≤ 0 (32)

and, therefore,

0 ≥ u(0) = uI(0)− uJ (0) =
σ(I)

2π
−
σ(J)

2π
.

So, σ(I) ≤ σ(J).

By the same reason

σ(T \ I) ≤ σ((π∗)−1(T \ I)) ≤ σ(T \ J).

Hence, 2π − σ(I) ≤ 2π − σ(J) and, therefore, σ(I) ≥ σ(J).

Lemma 4.8. Let {Ij}kj=1 be a family of disjoint open arcs on the unit circle, let I =⋃k
j=1 Ij , and let σ(I) = α > 0. Then for every ε > 0 there exists a finite Blaschke

product B : D → D such that B(0) = 0, B′(z) 6= 0 for z ∈ B−1(0), and B−1(Jε) ⊂ I,

where Jε = {eiθ : 0 < θ < α− ε}.

Proof. We may assume that α < 2π. Note that the functions

uj(z) =
1

2π

2π\
0

P (z, θ)χIj dθ, 1 ≤ j ≤ k,

are harmonic on D. Let vj be a conjugate harmonic function to uj such that vj(0) = 0.

So, hj = uj + ivj : D→ R = {z ∈ C : 0 < Re z < 1} is a holomorphic mapping such that

hj(0) = σ(Ij)/(2π). Actually, it is not difficult to see that

hj(z) = −
i

π
Log

(
z − eiθ2j

z − eiθ1j

)
−
σ(Ij)

2π
, z ∈ D,

where Ij = {eiθ : θ1j < θ < θ2j} (hence, σ(Ij) = θ2j−θ1j) and Log : {z : Im z > 0} → {z :

0 < Im z < π} is such that Log i = πi/2 (cf. [31]). Moreover, hj extends homeomorphically

to T \ {eiθ1j , eiθ2j} → {z ∈ C : Im z = 0 or Im z = π} and hj(Ij) = {z ∈ C : Im z = 0}.

The mapping h =
∑k

j=1 hj also maps D into R and h(0) = α/(2π). Moreover, h ex-

tends homeomorphically to T \ ∂I and h|I : I → J ′ := {z ∈ C : Re z = 2π} (and

I = h−1(J ′)). Let

F (z) =
eπzi − eαi/2

eπzi − e−αi/2
, z ∈ R.

Then F : R → D is a conformal mapping such that F (α) = 0 and F (J ′) = J = {eiθ :

0 < θ < α}. Note that F extends homeomorphically to ∂R. Let B = F ◦ h. Then

(32) Note that if u is a subharmonic function on D bounded from above, such that u∗ ≤ 0
a.e. on T, then u ≤ 0 on D. Indeed,

u(0) ≤ lim sup
r→1

1

2π

2π\
0

u(reiθ) dθ ≤
1

2π

2π\
0

lim sup
r→1

u(reiθ) dθ ≤
1

2π

2π\
0

u∗(eiθ) dθ ≤ 0.

Using automorphisms of the unit disc, we get u ≤ 0 on D.
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B(0) = 0. Note that B|T\∂I : T \ ∂I → T. Moreover, B(I) = J and B(T \ I ) = T \ J .

A straightforward calculation shows that

B(z) =

∏k
j=1(z − e

iθ2j )− eiα
∏k
j=1(z − e

iθ1j )
∏k
j=1(z − e

iθ2j )−
∏k
j=1(z − e

iθ1j )
.

Hence, B(eiθ1j ) = 1 and B(eiθ2j ) = eiα, j = 1, . . . , k. Therefore, B(T) ⊂ T and we deduce

that B is a finite Blaschke product (cf. [39], Chapter 7.3.1).

Suppose that

B(z) = eiτ
N∏

j=1

(
z − aj
1− ajz

)mj
.

Note that B(T \ I) ⊂ T \ J . Take a closed arc J̃ ⊂ J such that σ(J̃ ) ≥ α− ε. Then

B(T \ I) ⊂ T \ J̃ .

Take different points aj1, . . . , ajmj , j = 1, . . . , N , sufficiently close to aj such that aj ∈

{aj1, . . . , ajmj}. It is sufficient to replace B by

B̃(z) = eiτ
N∏

j=1

mj∏

ℓ=1

(
z − ajℓ
1− ajℓz

)
.

If aj1, . . . , ajmj are close enough to aj , then

B̃(T \ I) ⊂ T \ J̃ .

Note that B̃−1(J̃) ⊂ I. Take B̂(z) = B̃(eiθz) with θ such that B̂ satisfies the conclusion

of the lemma.

The following result is a simple corollary of the definition of ω̃ and Proposition 2.4.

Proposition 4.9. Let X,Y be complex manifolds and let U ⊂ X, V ⊂ Y be open sets.

Suppose that F : X → Y is a holomorphic mapping such that F (U) ⊂ V . Then

ω̃(x, U,X) ≥ ω̃(F (x), V, Y ), x ∈ X.

Moreover , if F is a holomorphic covering and U = F−1(V ), then

ω̃(x, U,X) = ω̃(F (x), V, Y ), x ∈ X.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. For the proof of the inequality “≥” it suffices to consider the

projections pr1 : X1 ×X2 → X1 and pr2 : X1 ×X2 → X2 and use Proposition 4.9.

To prove “≤”, put u1 = −χU1 and u2 = −χU2 .

Let (x1, x2) ∈ X1 ×X2 be fixed and let β ∈ R be an arbitrary number such that

max{ω̃(x1, U1, X1), ω̃(x2, U2, X2)} < β.

By definition there are holomorphic mappings f1 : D → X1 and f2 : D → X2 such that

f1(0) = x1, f2(0) = x2, and

1

2π

2π\
0

uj(fj(e
iθ)) dθ < β, j = 1, 2.
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Note that f1
−1(U1) ∩ T is an open set in T. So, we may choose a finite set of disjoint

open arcs I11 , . . . , I
1
m ⊂ f1

−1(U1)∩T on the unit circle T such that σ(I1) > −2πβ, where

I1 =
⋃m
j=1 I

1
j . Similarly we choose I21 , . . . , I

2
k with I2 =

⋃k
j=1 I

2
j . By Lemma 4.8 we may

find Blaschke products B1, B2 and an open arc I on the unit circle with σ(I) > −2πβ

such that B−11 (I) ⊂ I1 and B−12 (I) ⊂ I2, Bj(0) = 0, B′j(z) 6= 0 for z ∈ B−1j (0), j = 1, 2.

Let A be the set of critical values of the mappings B1 and B2. Note that 0 is not in A.

Let π be a holomorphic universal covering of D \A by D with π(0) = 0. If Ĩ = (π∗)−1(I),

then according to Lemma 4.7, σ(Ĩ) = σ(I). There are liftings ψ1 and ψ2 of D into D such

that π = B1 ◦ ψ1 = B2 ◦ ψ2 and ψ1(0) = ψ2(0) = 0. Note that by Lemma 4.5, ψ1, ψ2 are

inner holomorphic mappings because π is inner. Also the non-tangential boundary values

of ψ1 and ψ2 on Ĩ belong to I1 and I2 respectively. Put f̃1 = f1 ◦ ψ1 and f̃2 = f2 ◦ ψ2.

Then

1

2π

2π\
0

max{u1(f̃1(e
iθ), f̃2(e

iθ)), u2(f̃1(e
iθ), f̃2(e

iθ))} dθ ≤ −
σ(Ĩ)

2π
< β.

By Fatou’s theorem the same inequality holds if we replace f̃j(z), j = 1, 2, with f̃j(rz),

where r < 1 is sufficiently close to 1. Hence, ω̃((x1, x2), U1 × U2, X1 ×X2) < β. Since β

was arbitrary, we get the assertion.

4.2. Product property of the Green functional. The main result of this part is

the following product property (cf. [8], [9]).

Theorem 4.10. Let X1 and X2 be complex manifolds. Assume that α1 : X1 → {0, 1}

and α2 : X2 → {0, 1} are arbitrary functions. Then

E
F
α1⊗α2
3

(x1, x2) = max{EF
α1
3

(x1), EF
α2
3

(x2)}, (x1, x2) ∈ X1 ×X2.

For the proof of Theorem 4.10 we need some technical results. Let a1, . . . , aℓ ∈ D and

let m1, . . . ,mℓ ∈ N. Suppose that

B(z) = eiθ
ℓ∏

j=1

(
aj − z

1− ajz

)mj
.

We put mult(B) = m1 + . . .+mℓ.

Lemma 4.11. For any c ∈ D,

Bc(z) =
B(z)− c

1− cB(z)

is a Blaschke product and multBc = multB.

Proof. Since Bc is a proper holomorphic function in D, Bc is a finite Blaschke product

(see e.g. [38]). Note that

B(z) =
Bc(z) + c

1 + cBc(z)
.

Hence, it suffices to show that mult(Bc) ≥ mult(B). Observe that B′(z) = 0 if and only

if B′c(z) = 0. The equation Bc(z) = −c has mult(B) solutions in D. Let

Bc(z) = eiθc
ℓ∏

j=1

(
bj − z

1− bjz

)
.
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The equation

eiθc
ℓ∏

j=1

(bj − z) + c
ℓ∏

j=1

(1− bjz) = 0

has at least mult(B) solutions. Therefore, ℓ ≥ mult(B).

Lemma 4.12. Let

B(z) = eiθ
ℓ∏

j=1

(
aj − z

1− ajz

)
,

where the numbers a1, . . . , aℓ ∈ D are different. In the above notation

B(z) =
Bc(z) + c

1 + cB(z)
=

eiθc
ℓ∏

j=1

(
bj − z

1− bjz

)
+ c

1 + ceiθc
ℓ∏

j=1

(
bj − z

1− bjz

) ,

where c ∈ D. Let

B̃(z) =

eiθc
ℓ∏

j=1

(
b̃j − z

1− b̃jz

)
+ c

1 + ceiθc
ℓ∏

j=1

(
b̃j − z

1− b̃jz

) = eiτ
ℓ∏

j=1

(
ãj − z

1− ãjz

)
.

If the numbers b̃1, . . . , b̃ℓ are sufficiently close to b1, . . . , bℓ, then the numbers ã1, . . . , ãℓ
are sufficiently close to a1, . . . , aℓ.

Proof. Note that the numbers a1, . . . , aℓ are solutions of the equation Bc(z) = −c. Put

P (z) = eiθc
ℓ∏

j=1

(bj − z) + c
ℓ∏

j=1

(1− bjz).

Notice that P (a1) = . . . = P (aℓ) = 0. The polynomial P is of degree ℓ and has ℓ different

zeros. Then the polynomial

P̃ (z) = eiθc
ℓ∏

j=1

( b̃j − z) + c

ℓ∏

j=1

(1− b̃jz) = 0

has also ℓ zeros close to a1, . . . , aℓ for b̃1, . . . , b̃ℓ sufficiently close to b1,. . . ,bℓ.

The following result is a simple corollary of Proposition 2.4.

Proposition 4.13. Let X and Y be complex manifolds and let F : X → Y be a holo-

morphic mapping. Assume that α : Y → [0,∞) is any function. Then

EFα3
◦ F ≤ EFα◦F3

.

Moreover , if F is a holomorphic covering , then

EFα3
◦ F = EFα◦F3

.
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Proof of Theorem 4.10. Assume first that α1 ≡ 0. Then α1 ⊗ α2 ≡ 0, EF
α1
3
≡ 0,

E
F
α1⊗α2
3

≡ 0 and, therefore,

E
F
α1⊗α2
3

(x1, x2) = max{EF
α1
3

(x1), EF
α2
3

(x2)}, (x1, x2) ∈ X1 ×X2.

Hence, we may assume that α1, α2 6≡ 0.

For the proof of the inequality “≥”, consider the projections pr1 : X1×X2 → X1 and

pr2 : X1 ×X2 → X2 and use Proposition 4.13.

To prove “≤”, fix (x1, x2) ∈ X1 ×X2. Suppose that β ∈ R is such that

max{EF
α1
3

(x1), EF
α2
3

(x2)} < β.

It is sufficient to prove that

E
F
α1⊗α2
3

(x1, x2) < β.

By the definition there are holomorphic mappings f1 : D → X1 and f2 : D → X2 such

that f1(0) = x1, f2(0) = x2,

ν∑

j=1

log |zj | < β and

µ∑

j=1

log |wj | < β,

where {z1, . . . , zν} ⊂ f
−1
1 (suppα1) and {w1, . . . , wµ} ⊂ f

−1
2 (suppα2), zj , wj 6= 0.

We may assume that f1 and f2 are such that ν and µ are minimal and that |z1| ≤

. . . ≤ |zν | and |w1| ≤ . . . ≤ |wµ|.

Then

|z1 . . . zν | ≥ e
β|zν |

ν and |w1 . . . wµ| ≥ e
β |wµ|

µ. (4.1)

For, if |z1 . . . zν | < eβ |zν |
ν then we may consider the mapping f1(zνz), and we have a

contradiction with the minimality of ν.

If |z1 . . . zν | < |w1 . . . wµ|, we replace f1 with the mapping f̃1(z) = f1(tz), where

t = (|z1 . . . zν |/|w1 . . . wµ|)1/ν . Then |zj/t| < 1, j = 1, . . . , ν, (use (4.1)) and
∣∣∣∣
z1
t
. . .

zν
t

∣∣∣∣ = |w1 . . . wµ|.

Hence, we may assume that

|z1 . . . zν | = |w1 . . . wµ| =: C < eβ .

Moreover, replacing f1(z) with f1(e
−iθ1z) and f2(z) with f2(e

−iθ2z), where θ1, θ2 are

so chosen that eiθ1z1 . . . e
iθ1zν = C and eiθ2w1 . . . e

iθ2wµ = C, we may assume that

z1 . . . zν = w1 . . . wµ = C.

We consider the Blaschke products

B1(z) =
ν∏

j=1

(
zj − z

1− zjz

)

and

B̃1(z) =
B1(z)−B1(0)

1−B1(0)B1(z)
= eiθ

ν∏

j=1

z − wj
1− wjz

, z ∈ D.
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We choose different w′j , 1 ≤ j ≤ ν, as close to wj as we want, such that 0 ∈ {w′1, . . . , w
′
ν}.

Define

G1(z) = eiθ
ν∏

j=1

z − w′j
1− w′jz

.

Note that B̃−11 (−C) = {z1, . . . , zν}. We can find w′1, . . . , w
′
ν such that G−11 (−C) consists

of ν different points z′j , 1 ≤ j ≤ ν, as close to zj as we want. Using Corollary 2.13,

let us replace the mapping f1 with f̃1 : D → X in such a way that f̃1(0) = f1(0) and

f̃1(z
′
j) = f1(zj), j = 1, . . . , ν.

Repeating this process for f2 we may assume that for the Blaschke products B1 and

B2 the derivatives are equal to 0 neither on preimages of C nor at the points zj or wj
respectively.

Let A be the union of the images of the singular points under the mappings B1
and B2. Note that neither 0 nor C are in A. Let π be a holomorphic universal covering

of D \ A by D with π(0) = C. There are liftings ψ1 and ψ2 mapping D into D such that

π = B1 ◦ ψ1 = B2 ◦ ψ2 and ψ1(0) = ψ2(0) = 0. If π−1(0) = {η1, η2, . . .}, then f1 ◦ ψ1 and

f2 ◦ ψ2 map 0 into z1 and z2, and all points ηj into suppα1 and suppα2 respectively.

By Theorem 4.2 we see that π is a Blaschke product. Thus

π(z) =

∞∏

j=1

ηj
|ηj |

ηj − z

1− ηjz
and

∣∣∣
∞∏

j=1

ηj

∣∣∣ = π(0) = C < eβ .

Since (f1 ◦ ψ1, f2 ◦ ψ2) maps D into X1 ×X2,

E
F
α1⊗α2
3

(x1, x2) ≤
∞∑

j=1

log |ηj | < β.

5. Applications

5.1. The relative extremal function. Let us start with the following simple result.

Proposition 5.1. Let X be a complex manifold and let ϕ : X → [−∞,∞) be an upper

semicontinuous function. Then

vϕ(x) := sup{u(x) : u ∈ PSH(X), u ≤ ϕ}, x ∈ X,

is a plurisubharmonic function on X.

Proof. Note that vϕ ≤ ϕ and, therefore, v∗ϕ ≤ ϕ∗ = ϕ. It is well known that v∗ϕ is a

plurisubharmonic function on X (cf. [20]). Hence, v∗ϕ ≤ vϕ.

As an immediate corollary we get

Corollary 5.2. Let X be a complex manifold and let U ⊂ X be an open set. Then

ω∗(·, U,X) = ω(·, U,X) ∈ PSH(X).

Now, let us give the formula for the relative extremal function ω(·, E,X), where E

and X are concentric balls with respect to a norm in Cn.
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Proposition 5.3 (cf. [20], Lemma 4.5.8). Let q : Cn → [0,∞) be such that q(tx) =

|t|q(x) for any t ∈ C and x ∈ Cn. Then for any R, r with R > r > 0 we have

ω(x,Bq(r), Bq(R)) ≤ max

{
log q(x)

R

log R
r

,−1

}
=

log+ q(x)
r

log R
r

− 1, x ∈ Bq(R), (5.1)

where Bq(̺) = {x ∈ Cn : q(x) < ̺}, ̺ > 0. Moreover , if log q ∈ PSH(Cn), then in (5.1)

we have equality.

Proof. Fix an x0 ∈ Cn. If q(x0) < r, then x0 ∈ Bq(r). Therefore,

ω(x0, Bq(r), Bq(R)) = −1.

Assume that q(x0) ∈ (r,R). The function

u(t) = ω(tx0, Bq(r), Bq(R))−
log q(tx0)

R

log R
r

is subharmonic in the annulus A = D(R/q(x0)) \ D(r/q(x0)) (33). Moreover,

lim sup
A∋t→s

u(t) ≤ 0, s ∈ ∂A.

By the maximum principle for subharmonic functions u ≤ 0 in A.

If log q ∈ PSH(Cn), then from the definition of the relative extremal function we have

the inequality “≥” in (5.1) and the result follows.

Theorem 5.4 (cf. [29]). Let X be a complex manifold and let E ⊂ X be any subset.

Then
ω(x,E,X) = sup{ω(x, U,X) : E ⊂ U open}, x ∈ X.

In particular , if E is compact , then for any neighborhood basis U1 ⊃ U2 ⊃ . . . of E we

have
ω(x,E,X) = lim

j→∞
ω(x, Uj , X), x ∈ X.

Proof. Let u ∈ PSH−(X) be such that u ≤ −1 on E. Fix an ε ∈ (0, 1). Then Uε = {x ∈

X : u < −1 + ε} is an open subset of X such that E ⊂ Uε. Hence,
u

1− ε
≤ ω(·, Uε, X).

Therefore,

u(x) ≤ (1− ε) sup{ω(x, U,X) : E ⊂ U open}, x ∈ X.

Taking ε→ 0, we obtain the required result.

Using Corollary 1.14 and Theorem 4.1 we obtain the following product property for

the relative extremal function.

Theorem 5.5. Let X1 and X2 be complex manifolds of class P̃ and let E1 ⊂ X1,

E2 ⊂ X2 be open or compact subsets. Then

(5.2) ω((x1, x2), E1 × E2, X1 ×X2) = max{ω(x1, E1, X1), ω(x2, E2, X2)},

(x1, x2) ∈ X1 ×X2.

Proof. Using Theorem 5.4 we may pass from the open subsets to the subsets Ej , j = 1, 2.

(33) Recall that ω(·, Bq(r), Bq(R)) ∈ PSH(Bq(R)).



44 A. Edigarian

5.2. Plurisubharmonic measure. Recall that for a complex manifold X and a subset

E of X, by the plurisubharmonic measure of E relative to X we mean ω∗(·, E,X). Here,

u∗(x) = lim supy→x u(y) is the upper semicontinuous regularization of a function u : X →

[−∞,∞) locally bounded from above. Recall also that ω∗(·, E,X) is a plurisubharmonic

function on X.

Then we have the following counterpart of Theorem 5.4 for the plurisubharmonic

measure.

Proposition 5.6. Let X be a separable complex manifold and let E be any subset of

X. Then there exist open subsets Uj , j = 1, 2, . . . , such that E ⊂ Uj , Uj+1 ⊂ Uj , and

ω∗(x,E,X) = ( lim
j→∞

ω(x, Uj , X))∗, x ∈ X.

Proof. By Choquet’s lemma (34) there is a family of plurisubharmonic functions {vk}
∞
k=1

⊂ PSH(X) such that vk ≤ 0 on X, vk ≤ −1 on E, and ω∗(·, E,X) = (sup vk)∗. Take uj =

supk≤j vk. Then ω∗(·, E,X) = (limj→∞ uj)
∗. Put Uj := {x ∈ X : uj(x) < −1 + 1/j}.

For bounded domains in Cn we also have the following very useful result.

Proposition 5.7 (cf. [1]). Let Ω be a bounded domain in Cn and let E be any subset

of Ω. Put Eε := {x ∈ Ω : ω∗(x,E,Ω) < −1 + ε} (35), where ε ∈ (0, 1). Then

ω∗(·, E,Ω)

1− ε
≤ ω(·, Eε, Ω) ≤ ω∗(·, E,Ω) on Ω.

Therefore, ω(·, Eε, X)ր ω∗(·, E,Ω) as εց 0.

Proof. Put N := {x ∈ Ω : ω(x,E,Ω) < ω∗(x,E,Ω)} and Ẽ := E \ N . It is well known

(see e.g. Theorem 4.7.6 in [20]) that N is a pluripolar set, i.e. there exists a negative

plurisubharmonic function v ∈ PSH(Ω), v 6≡ −∞, such that N ⊂ {x ∈ Ω : v(x) = −∞}.

Let us show that ω∗(·, E,Ω) ≡ ω∗(·, Ẽ, Ω). Since Ẽ ⊂ E, it follows that ω∗(·, E,Ω) ≤

ω∗(·, Ẽ, Ω).

Take an ε > 0 and u ∈ PSH(Ω) such that u ≤ −1 on Ẽ and u ≤ 0 on Ω. Then

ũ := u + εv ∈ PSH(Ω) is such that ũ ≤ −1 on E and ũ ≤ 0 on Ω. Hence, ũ ≤

ω(·, E,Ω) ≤ ω∗(·, E,Ω). So, ω∗(·, Ẽ, Ω) + εv ≤ ω∗(·, E,Ω) on Ω. Take ε → 0. Then

ω∗(·, Ẽ, Ω) ≤ ω∗(·, E,Ω) on Ω \ {x ∈ Ω : v(x) = −∞} and ω∗(·, Ẽ, Ω) ≤ ω∗(·, E,Ω)

on Ω (36).

Note that

ω∗(x, Ẽ, Ω) = ω∗(x,E,Ω) = ω(x,E,Ω) = −1, x ∈ Ẽ.

Therefore, Ẽ ⊂ Eε and

ω∗(·, E,Ω) = ω∗(·, Ẽ, Ω) ≥ ω(·, Eε, Ω).

(34) Choquet’s Lemma (cf. Lemma 2.3.4 in [20]). Let X be a separable metric space and let
{uα}α∈A be a family of real-valued functions on X. Suppose that this family is locally bounded
from above. Then there exists a countable subset B of A such that (supα∈A uα)

∗ = (supβ∈B uβ)
∗.

(35) Note that Eε is an open set.
(36) Use Theorem 2.9.2, Corollary 2.9.8, Corollary 2.9.10 of [20].
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Put u(x) := ω∗(·, E,Ω)/(1− ε), x ∈ Ω. Note that u is a plurisubharmonic function

such that u ≤ 0 on Ω and u ≤ −1 on Eε. Hence, u ≤ ω(·, Eε, Ω) on Ω.

For the plurisubharmonic measure we have the following product property.

Theorem 5.8. Let Ω1 ⊂ Cn1 , Ω2 ⊂ Cn2 be bounded domains and let E1 ⊂ Ω1, E2 ⊂ Ω2
be any subsets. Then

ω∗((x1, x2), E1×E2, Ω1×Ω2) = max{ω∗(x1, E1, Ω1), ω
∗(x2, E2, Ω2)}, (x1, x2)∈Ω1×Ω2.

For the proof we need the following.

Lemma 5.9. Let X1, X2 be complex manifolds and let E1 ⊂ X1, E2 ⊂ X2 be any subsets.

Then

(5.3) max{ω(x1, E1, X1), ω(x2, E2, X2)} ≤ ω((x1, x2), E1 × E2, X1 ×X2)

≤ −ω(x1, E1, X1)ω(x2, E2, X2) ≤ −ω
∗(x1, E1, X1)ω

∗(x2, E2, X2)

for any (x1, x2) ∈ X1 ×X2.

Proof. Note that the first inequality is trivial. Let us show the second inequality. Fix

u ∈ PSH(X1 ×X2) such that u ≤ 0 on X1 ×X2, u ≤ −1 on E1 × E2. Note that

u( · , x2) ≤ ω(·, E1, X1) = ω(·, E1, X1) · [−ω(x2, E2, X2)], x2 ∈ E2,

u(x1, · ) ≤ ω(·, E2, X2) = ω(·, E2, X2) · [−ω(x1, E1, X1)], x1 ∈ E1.

So,

u(x1, x2) ≤ −ω(x1, E1, X1)ω(x2, E2, X2), (x1, x2) ∈ (E1 ×X2) ∪ (X1 × E2).

Fix x1 ∈ E1. If ω(x1, E1, X1) = 0, then

u(x1, x2) ≤ 0 = −ω(x1, E1, X1)ω(x2, E2, X2), x2 ∈ X2.

Hence, we may assume that ω(x1, E1, X1) 6= 0. Put v(x) := u(x1, x)/(−ω(x1, E1, X1)),

x ∈ X. Note that v ∈ PSH(X2), v ≤ 0. Moreover, v ≤ −1 on E2. So, v ≤ ω(·, E2, X2)

on X2.

Proof of Theorem 5.8. Fix an ε ∈ (0, 1). Then by (5.3),

ω((x1, x2), E1 × E2, Ω1 ×Ω2) ≤ −(1− ε)2 on (E1)ε × (E2)ε.

So,

ω∗((x1, x2), E1 × E2, Ω1 ×Ω2) ≤ −(1− ε)2 on (E1)ε × (E2)ε.

It follows that on Ω1 ×Ω2,

ω∗(·, E1 × E2, Ω1 ×Ω2)

(1− ε)2
≤ ω(·, (E1)ε × (E2)ε, Ω1 ×Ω2) ≤ ω

∗(·, E1 × E2, Ω1 ×Ω2).

Therefore,

ω∗((x1, x2), E1 × E2, Ω1 ×Ω2)

= lim
ε→0

ω((x1, x2), (E1)ε × (E2)ε, Ω1 ×Ω2)

= lim
ε→0

max{ω(x1, (E1)ε, Ω1), ω(x2, (E2)ε, Ω2)}

= max{ω∗(x1, E1, Ω1), ω
∗(x2, E2, Ω2)}, (x1, x2) ∈ Ω1 ×Ω2.
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Theorem 5.8 for pseudoconvex domains Ω1, Ω2 was proved in [32]. The general case

is stated in [12]. The proof can be found in Błocki [1].

5.3. The pluricomplex Green function. For the pluricomplex Green function with

pole function α we have the following equivalent definition.

Proposition 5.10. Let X be a complex manifold and let α be a non-negative function

on X. Then

gX(x, α) = sup{u(x) : u ∈ PSH(X), u ≤ inf
p∈X

α(p)gX(·, p)},

and , therefore, gX(·, α) is a plurisubharmonic function on X.

Proof. Put ϕ(x) := infp∈X α(p)gX(x, p) and v(x) := sup{u(x) : u ∈ PSH(X), u ≤ ϕ},

p, x ∈ X. Note that ϕ is an upper semicontinuous function on X and, therefore, v ∈

PSH(X). It suffices to show that gX(·, α) = v on X.

Let u ∈ PSH(X), u ≤ ϕ on X. Fix p ∈ X. Then u ≤ α(p)gX(·, p) and, therefore,

ν(p, u) ≥ α(p). Hence, ν(·, u) ≥ α. So, u ≤ gX(·, α) and, therefore, v ≤ gX(·, α).

Assume that u ∈ PSH(X), u ≤ 0 on X, and ν(·, u) ≥ α. Fix p ∈ X. Then ν(p, u) ≥

α(p) and, therefore, u ≤ α(p)gX(·, p) on X. So, u ≤ ϕ on X. Hence, u ≤ v and, therefore,

gX(·, α) ≤ v.

In this section we show that the pluricomplex Green function may be considered as

an infinitesimal version of the relative extremal function. More precisely, we have the

following (cf. [10]).

Theorem 5.11. Let X be a complex manifold and let α : X → [0,∞) be any function.

Assume that {(Ux, ζx)}x∈X , is a family of local coordinates such that ζx(Ux) = P (1) and

ζx(x) = 0. Then

(− log r)ω(x,P(r, α), X) ց
r→0

gX(x, α),

where

P(r, α) =
⋃

y∈X

ζ−1y [P (r1/α(y))], r ∈ (0, 1).

Proof. Note that the case α ≡ 0 is trivial. Hence, we may assume that α 6≡ 0. The proof

will be divided into 3 steps.

Step 1. We show that for any r ∈ (0, 1) we have

(− log r)ω(x,P(r, α), X) ≥ gX(x, α).

Put

u(x) :=
gX(x, α)

− log r
.

Note that u is a negative plurisubharmonic function on X. Take x ∈ P(r, α). Choose

y ∈ X such that x ∈ ζ−1y (P (r1/α(y))) ⊂ Uy. Then

u(x) ≤
gUy (x, (y, α(y)))

− log r
=
gP (1)(ζy(x), (0, α(y)))

− log r
= α(y)

log |||ζy(x)|||

− log r
≤ −1.
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Here, we use the formula (cf. [20])

gP (1)(x, (0, ν)) = ν log |||x|||, x ∈ P (1).

Hence, we have the required inequality.

Step 2. We show that

ur(x) := (− log r)ω(x,P(r, α), X), x ∈ X,

is an increasing sequence of functions with respect to r ∈ (0, 1).

Fix r < ̺ < 1. Put

u(x) :=
ur(x)

− log ̺
, x ∈ X.

Note that u is a negative plurisubharmonic function on X. It suffices to show that u ≤ −1

on P(̺, α). Take x ∈ P(r, α). Choose y ∈ X such that x ∈ ζ−1y (P (r1/α(y))) ⊂ Uy. Then

u(x) ≤
(− log r)ω(x, ζ−1y [P (r1/α(y))], Uy)]

− log ̺
≤ −1.

Here, we use Proposition 5.3.

Step 3. Put

u(x) := lim
r→0

(− log r)ω(x,P(r, α), X), x ∈ X.

Fix y ∈ X. It suffices to show that

u(x) ≤ α(y) log |||ζy(x)||| for any x ∈ Uy.

Note that u is a negative plurisubharmonic function. Fix x ∈ Uy \ {y} and take

r < |||ζy(x)|||α(y). Then

u(x) ≤ (− log r)ω(x,P(r, α), X) ≤ (− log r)ω(x, ζ−1y [P (r
1
α(y) )], Uy)

= (− log r)
α(y) log |||ζy(x)|||

− log r
= α(y) log |||ζy(x)|||.

Hence, u(·) ≤ gX(·, α).

Using the method from [10], as a corollary of Theorem 5.11 we have the product

property of the pluricomplex Green function.

Theorem 5.12. Let X1 and X2 be complex manifolds. Assume that for any open subsets

E1 ⊂ X1 and E2 ⊂ X2 we have the following product property:

ω((x1, x2), E1×E2, X1×X2) = max{ω(x1, E1, X1), ω(x2, E2, X2)}, (x1, x2) ∈ X1×X2.

Then for arbitrary functions α1 : X1 → {0, 1} and α2 : X2 → {0, 1} we have

gX1×X2((x1, x2), α1 ⊗ α2) = max{gX1(x1, α1), gX2(x2, α2)}, (x1, x2) ∈ X1 ×X2.

Proof. Suppose that {(Ujx, ζjx)}x∈Xj is a local coordinate centered at x such that

ζjx(Ujx) = P (1) and ζjx(x) = 0, j = 1, 2. Then (U1x1×U2x2 , ζ1x1×ζ2x2), (x1, x2) ∈X1 ×

X2, is a local coordinate centered at (x1, x2) such that ζ1x1 × ζ2x2(U1x1 × U2x2) = P (1).
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Then

gX1×X2((x1, x2), α1 ⊗ α2) = lim
r→0

(− log r)ω((x1, x2),P(r, α1 ⊗ α2), X1 ×X2)

= lim
r→0

(− log r)ω((x1, x2),P(r, α1)×P(r, α2), X1 ×X2)

= lim
r→0

(− log r) max{ω(x1,P(r, α1), X1), ω(x2,P(r, α2), X2)}

= max{gX1(x1, α1), gX2(x2, α2)}, (x1, x2) ∈ X1 ×X2.

As a corollary we get

Corollary 5.13. Let X1 and X2 be complex manifolds of class P̃. Assume that α1 :

X1 → {0, 1} and α2 : X2 → {0, 1} are arbitrary functions. Then

gX1×X2((x1, x2), α1 ⊗ α2) = max{gX1(x1, α1), gX2(x2, α2)}, (x1, x2) ∈ X1 ×X2.

5.4. Polynomial hulls. Let K be a compact set in Cn. The polynomial hull K̂ of K

is defined as follows:

K̂ = {x ∈ Cn : |p(x)| ≤ ‖p‖K for any polynomial p : Cn → C}.

We say that Ω ⊂ Cn is a Runge domain if for any compact set K ⊂ Ω we have K̂ ⊂ Ω.

For a Runge domain Ω ⊂ Cn we have K̂ = KO(Ω) = KPSH(Ω) (see e.g. [24]), where

KPSH(Ω) = {x ∈ Ω : u(x) ≤ sup
K
u for any u ∈ PSH(Ω)}.

We have the following characterization of the polynomial hull.

Theorem 5.14 (cf. Theorem 7.1 in [35], Theorem 7.4 in [25]). Let K be a compact set

in Cn and let x0 ∈ C
n. Then the following conditions are equivalent:

(a) x0 ∈ K̂;

(b) there exists a Runge domain Ω in Cn such that for any neighborhood U of K we

have ω(x0, U,Ω) = −1;

(c) there exists a Runge domain Ω in Cn such that for any neighborhood U of K and

any ε > 0 there exists an f ∈ O(D, Ω) such that f(0) = x and σ(T ∩ f−1(U)) > 2π − ε.

Proof. (a)⇒(b). Take an open ball B containing K and x0. Suppose that x0 ∈ K̂. Then

x0 ∈ KPSH(B). Let U be a neighborhood of K in B and let ϕ = −χU . Then u = EFϕ1
is

a plurisubharmonic function in B. We have u = −1 on U . Hence, u(x0) = −1.

(b)⇒(c). Follows immediately from the definition of the envelope of a disc functional.

(c)⇒(a). Let p be a polynomial. Then

|p(x)| ≤
1

2π

\
T

|p ◦ f | dσ ≤ sup
U
|p|+

1

2π
σ(T \ f−1(U)) sup

Ω
|P |.

Take U ց K and ε→ 0. Then |p(x)| ≤ ‖p‖K .

A more refined characterization of the polynomial hull of a compact set in Cn can be

found in [35].
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6. Concluding remarks

6.1. Envelope of disc functionals. For someone who works in the part of complex

analysis which is connected with pluripotential theory, the definition of envelope of a disc

functional is very natural. But one can give other possible definitions. From the point

of view of interpolation theory, probably, it would be natural to consider more general

types of envelopes. Namely, let X be a complex manifold and let H : O(D, X)→ R be a

disc functional. Take different points z1, . . . , zℓ ∈ D and points x1, . . . , xℓ ∈ X and put

EH(x1, . . . , xℓ) := inf{H(f) : f ∈ O(D, X), f(z1) = x1, . . . , f(zℓ) = xℓ}.

6.2. Complex manifolds. As mentioned in the Introduction, it is still an open prob-

lem whether the envelope of the Poisson functional is plurisubharmonic on any complex

manifold.

Peter Pflug noted that any complex manifold of class P̃ (and therefore, of class P)

has a countable basis. It is known that there exists a simply connected two-dimensional

complex manifold M which has no countable basis (cf. [2]). So, the complex manifold M

does not belong to the class P̃ .

Proposition 2.3 shows a possible extension of the class P̃, so as to include complex

manifolds with non-countable base.

6.3. The Poisson functional on domains in Cn. Dealing with general complex

manifolds, we introduced the notion of the integrally upper semicontinuous function.

Analyzing the proof of Theorem 3.5 more carefully one can show that for domains in Cn

it suffices to assume only weak integral upper semicontinuity. More precisely, we have the

following interesting result.

Theorem 6.1. Let Ω be a domain in Cn. Assume that

(a) ϕ : Ω → [−∞,∞) is a weakly integrally upper semicontinuous function locally

bounded from above or

(b) ϕ is a superharmonic function on Ω, ϕ 6≡ ∞.

Then EFϕ1
is a plurisubharmonic function on Ω.

6.4. Holomorphically invariant pseudodistances. Lempert’s theorem. In this

section we present some results and definitions from the theory of holomorphically in-

variant families. As we shall see many properties of analytic disc functions are motivated

by the properties of holomorphically invariant families. This is the main point of this

section.

Let us start with the following basic result.

Theorem 6.2 (Schwarz–Pick Lemma). Let f ∈ O(D,D). Then

p(f(z1), f(z2)) ≤ p(z1, z2), z1, z2 ∈ D,

where p := tanh−1(m) is the Poincaré distance and m(z, w) := |(z − w)/(1− wz)| is

the Möbius distance. Moreover , if equality holds for some z1 6= z2, then it holds for all

z1, z2 ∈ D.
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There are many ways of extending the above result to higher dimensions.

In 1927 Carathéodory [3] defined for any domain Ω in Cn the function

cΩ(x, y) := sup{p(f(x), f(y)) : f ∈ O(Ω,D)}, x, y ∈ Ω.

We call cΩ the Carathéodory pseudodistance of Ω. It is not difficult to see that it is really

a pseudodistance (37).

Note that cD = p and cΩ2(F (x), F (y)) ≤ cΩ1(x, y) for any domains Ω1 ⊂ Cn1 ,

Ω2 ⊂ Cn2 , any holomorphic mapping F : Ω1 → Ω2, and any points x, y ∈ Ω1. More on

the Carathéodory pseudodistance can be found in [17].

In 1967 S. Kobayashi [21] (see also [22]) defined the following pseudodistance:

kΩ(x, y) := inf
{ N∑

j=1

k̃Ω(xj−1, xj) : N ≥ 1, x = x0, x1, . . . , xN−1, xN = y ∈ Ω
}
,

where

k̃Ω(x, y) := inf{p(z, w) : there is f ∈ O(D, Ω) with f(z) = x, f(w) = y}, x, y ∈ Ω.

We call kΩ the Kobayashi pseudodistance and k̃Ω the Lempert function of Ω. One can

see that in a general domain Ω the Lempert function k̃Ω is not a pseudodistance (i.e. it

does not satisfy the triangle inequality; see e.g. [17]).

From the Schwarz–Pick Lemma and from the definition it follows immediately that

kD = k̃D = p and

kΩ2(F (x), F (y)) ≤ kΩ1(x, y), k̃Ω2(F (x), F (y)) ≤ k̃Ω1(x, y)

for any domains Ω1 ⊂ Cn1 , Ω2 ⊂ Cn2 , any holomorphic mapping F : Ω1 → Ω2 and any

points x, y ∈ Ω1.

From these considerations we come to the definition of the (holomorphically) con-

tractible family of functions.

We say that d := (dΩ)Ω a domain inCn , where dΩ : Ω × Ω → [0,∞), is a (holomorphi-

cally) contractible family of functions if

dD = p,

dΩ2(F (x), F (y)) ≤ dΩ1(x, y) for any F ∈ O(Ω1, Ω2), x, y ∈ Ω1.

It is immediate from the definition that for a biholomorphic mapping F : Ω1 → Ω2 we

have the equality dΩ2(F (x), F (y)) = dΩ1(x, y), x, y ∈ Ω1.

As we have seen, the Carathéodory and Kobayashi pseudodistances, and the Lempert

function form holomorphically contractible families of functions.

In view of the Schwarz–Pick Lemma, the Carathéodory pseudodistance is the smallest

and the Lempert function is the largest among all holomorphically contractible families of

(37) Recall that d : Ω × Ω → [0,∞) is a pseudodistance on Ω if it satisfies the following
conditions:

(i) d(x, x) = 0, x ∈ Ω,
(ii) d is symmetric (i.e., d(x, y) = d(y, x), x, y ∈ Ω),
(iii) d satisfies the triangle inequality (i.e., d(x, y) ≤ d(x, z) + d(z, y), x, y, z ∈ Ω).
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functions. Therefore, for any holomorphically contractible family of functions (dΩ)Ω⊂Cn

we have

cΩ ≤ dΩ ≤ k̃Ω .

Moreover, if dΩ is a pseudodistance then dΩ ≤ kΩ .

We have the following properties of the pluricomplex Green function ([20], [17]):

(i) gD(z, w) = logm(x, y), z, w ∈ D;

(ii) for any holomorphic mapping F : Ω1 → Ω2, where Ωj is a domain in Cnj , j = 1, 2,

we have

gΩ2(F (x), F (y)) ≤ gΩ1(x, y), x, y ∈ Ω1.

In other words, the family (ĝΩ)Ω is a contractible family of functions, where ĝΩ :=

tanh−1(egΩ ).

In 1981 L. Lempert [28] proved the following deep result (see also [17]).

Theorem 6.3 (Lempert theorem). Let Ω be a convex domain in Cn. Then

cΩ = k̃Ω .

We see from the Lempert theorem that on convex domains any holomorphically con-

tractible family of functions may be defined in a unique way.

Using automorphisms of the unit disc, it is elementary to show that for the Carathéo-

dory pseudodistance we have

c∗Ω(x, y) = sup{|f(y)| : f ∈ O(Ω,D), f(x) = 0}, x, y ∈ Ω,

where c∗Ω := tanh cΩ. We know that cΩ is the smallest holomorphically invariant function

on Ω. Trying to make it “larger” we have to consider the supremum above over a larger

family of functions. It is well known that log |f | is plurisubharmonic for any holomorphic

function f . So, from this point of view we come immediately to the definition of the

pluricomplex Green function gΩ given by M. Klimek.

Using again automorphisms of the unit disc, it is not difficult to see that

k̃∗Ω(x, y) := inf{t > 0 : there is f ∈ O(D, Ω) with f(0) = x, t ∈ f−1(y)}, x, y ∈ Ω,

where k̃∗Ω := tanh k̃Ω .

We also know that k̃Ω is the largest holomorphically invariant function on Ω. Trying

to make it “smaller” it seems reasonable to take all the preimages of y in the above

definition.

In 1989 (38) E. Poletsky [36] defined the following function. Let Ω be a domain in Cn

and let p be a point in Ω. Define

g̃Ω(x, p) = inf
{ ∑

z∈f−1(p)

ordz(f) log |z| : f ∈ O(D, Ω), f(0) = x
}
.

We see that g̃Ω = EFα4
, where suppα = {p} and α(p) = 1. In a series of papers E. Poletsky

([36], [34], [35]) claimed the equality

gΩ = g̃Ω. (6.1)

(38) In 1989 the English translation of the book appeared. The Russian version was published
in 1986.
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Note that the equality gΩ = g̃Ω is equivalent to the plurisubharmonicity of g̃Ω . It seems

that the first complete proof of (6.1) was given in 1997 by the author [7].

The equality (6.1) may be considered as a generalization of the Lempert theorem to

all domains in Cn.

We say that a family of holomorphically contractible functions d has the product

property if for any domains Ω1, Ω2 and for any points (x1, x2), (y1, y2) ∈ Ω1×Ω2 we have

dΩ1×Ω2((x1, x2), (y1, y2)) = max{dΩ1(x1, y1), dΩ2(x2, y2)}. (6.2)

It follows from the contractibility that the inequality “≥” in (6.2) is always fulfilled.

One can show that the Lempert function, the Kobayashi and Carathéodory pseu-

dodistances have the product property (see [17], [19]). The proof of the product property

of the pluricomplex Green function for arbitrary domains, given by the author [8], is

similar in spirit to the proof of the product property of the Lempert function.

Recall also that all the contractible families of functions discussed above are contin-

uous with respect to increasing sequences of domains (see [17]). More precisely, for any

sequence of domains {Ωj}
∞
j=1 ⊂ C

n, Ωj ⊂ Ωj+1, Ω =
⋃∞
j=1Ωj we have (see e.g. [17])

dΩj → dΩ as j →∞,

where d = c, g, k or k̃. So, we see that the invariant functions considered behave like disc

functionals with respect to increasing sequences of domains (Theorem 2.1):



List of symbols

C := the field of complex numbers;

R := the field of real numbers;

R := [−∞,∞];

N := the set of natural numbers (0 ∈ N);

Dr := {z ∈ C : |z| < r}, r > 0;

D := D1 the unit disc in C;

D∗ := D \ {0};

T := the unit circle in C;

σ := the arc length measure on the unit circle T;

χU := the characteristic function of a set U ;

‖x‖ :=
√
|z1|2 + . . .+ |zn|2, x = (z1, . . . , zn) ∈ C

n;

Bn(x, r) := {y ∈ C
n : ‖y − x‖ < r} = the Euclidean ball with center x ∈ Cn and radius r > 0;

Bn := Bn(0, 1);

|||x||| := max{|z1|, . . . , |zn|}, x = (z1, . . . , zn) ∈ C
n;

P (x, r) := {y ∈ Cn : |||y − x||| < r}, r > 0;

P (r) := P (0, r);

L2n := the Lebesgue measure in Cn;

bn := L
2n(Bn);

(α1 ⊗ α2)(x1, x2) := α1(x1)α2(x2).

O(X,Y ) := the set of all holomorphic mappings F : X → Y ;

O(X) := O(X,C);

O(D,X) := the set of all holomorphic mappings f : D → X which extend holomorphically to a
neighborhood of the closure D of D;

△u:= the generalized Laplacian of a subharmonic function u;

PSH(X) := the set of all plurisubharmonic functions on X;

PSH−(X) := the set of all negative plurisubharmonic functions on X;

gX (·, α) := the pluricomplex Green function on X with pole function α;

PU(x) := sup{u(x) : u ∈ U}, x ∈ X, where U ⊂ PSH(X);

u∗ := the upper semicontinuous regularization of u;

ω(·, E,X) := the relative extremal function of a subset E ⊂ X;

ω∗(·, E,X) := the plurisubharmonic measure of a subset E ⊂ X;

ω̃(·, U,X) := the special case of the Poisson functional for an open subset U of a complex
manifold X;

gX (·, p) := the pluricomplex Green function with pole at p ∈ X;

gX (x; (p1, ν1), . . . , (pN , νN )) := the pluricomplex Green function with poles at p1, . . . , pN ∈ X
and of weights ν1, . . . , νN ∈ (0,∞), pi 6= pj , i 6= j;

P(r, α) :=
⋃
y∈X ζ

−1
y [P (r

1/α(y))], where r ∈ (0, 1), {(Ux, ζx)}x∈X is a family of local coordinates

on a complex manifold X such that ζx(x) = 0 and ζx(Ux) = P (1);

‖f‖K := sup{|f(x)| : x ∈ K}, where f : K → C;

[53]
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K̂ := {x ∈ Cn : |p(x)| ≤ ‖p‖K for any holomorphic polynomial p : C
n → C} the polynomial

hull of a compact set K ⊂ Cn;
K̂O(X) := {x ∈ X : |f(x)| ≤ ‖f‖K for any f ∈ O(X)} the holomorphic hull of a compact set
K ⊂ X;
EH(x) := the envelope of a disc functional H;
F1 := the Poisson functional;
F2 := the Riesz functional;
F3 := the Green functional;
F4 := the Lelong functional;
F5 := the Lempert functional;
ordz(f) := the multiplicity of a holomorphic mapping f : D→ X at z ∈ D;
IC↑(X) := the class of integrally upper semicontinuous functions on a complex manifold X.
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