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Abstract

The paper contains a revised, and extended by new results, part of the author’s PhD thesis. The
main objects that we study are toric varieties naturally associated to special Markov processes
on trees. Such Markov processes can be defined by a tree T and a group G. They are called
group-based models. The main, but not unique, motivation to consider these processes comes
from phylogenetics. We study the geometry, defining equations and combinatorial description of
the associated toric varieties. We obtain new results for a large class of not necessarily abelian
group-based models, which we call G-models. We also prove that equations of degree 4 define
the projective scheme representing the 3-Kimura model.
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1. Introduction

1.1. Short summary of results. To each Markov process on a tree one can associate
an algebraic variety. Motivated by biology, we focus on Markov processes defined by a
group action. We provide a precise description of the polytope representing the asso-
ciated toric variety for a large class of models (Theorem 4.63). We provide conditions
ensuring that the varieties obtained are normal (Proposition 4.73), as well as give ex-
amples when they are not (Proposition 4.74, Computation 4.75). One of the main tools
we use is the generalization of the notions of sockets and networks introduced in [BW07]
for the group Z2 to arbitrary abelian groups. In our setting the networks form a group
(Definition 4.24) that acts on the variety. Moreover, the ambient space of the variety is
the regular representation of this group.

The main open problem that we address is a conjecture of Sturmfels and Sullivant
[SS05, Conjecture 30] stating that the affine scheme associated to the 3-Kimura model is
defined by an ideal generated in degree 4. Our strongest result states that the associated
projective scheme can be defined by an ideal generated in degree 4 (Theorem 11.1). We
also present a part of a joint work with Maria Donten-Bury: a method for generating
phylogenetic invariants for any model. We prove that our method provides generators of
the ideal for many models and trees if and only if the conjecture of Sturmfels and Sullivant
holds (Proposition 6.8). We present some applications, for example to the identifiability
problem in biology.

1.2. Motivations. Our motivations come from applied mathematics. Let us recall basic
properties of Markov chains and Markov processes on trees. A Markov chain is a sequence
of random variables {Xi} that satisfy specific conditions. For a fixed state of a variable

· X0

...

· Xi−1

· Xi

...

[6]
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Xi−1 the variableXi is independent of the set of all the variablesXi−j for j > 1. Typically,
this chain is depicted vertically by associating a vertex to each variable and joining Xi

toXi−1. For a Markov chain we usually introduce conditional probabilities that specify all
the properties of the chain. Suppose that each variable Xi can be in ai <∞ states. Then
to each edge joining Xi−1 and Xi we can associate an ai−1×ai matrix. The columns and
rows of the matrix are indexed respectively by the states of Xi−1 and Xi. The entries
correspond to conditional probabilities. Namely, the entry indexed by a pair (p, q) of
states equals the probability that Xi is in state q under the condition that Xi−1 is in
state p. These matrices are called transition matrices. If we know the distribution of X0

and the transition matrices we can easily calculate the distributions of all other variables.
This construction can be directly generalized to rooted trees. By a rooted tree we will

always mean a connected graph with one distinguished vertex and no cycles. By leaves we
mean vertices of valency one. Nodes are vertices that are not leaves. We will sometimes
identify leaves with edges adjacent to them. To simplify the language we assume that the
tree is a directed graph and all the edges are directed away from the root. In the example
below the root is denoted by ◦.

◦

�� ��
·

�� �� ��

·

· · ·
As before, to each vertex we associate a random variable. We say that a node v1 is a
direct ancestor of v2 if there is an edge directed from v1 to v2. Note that there is always
one direct ancestor, except for the root that does not have ancestors. The descendants of
a vertex are all the vertices that can be reached from it by a directed path. The Markov
property ensures that a variable X is independent of all other variables that are not its
descendants once the state of the direct ancestor is fixed.

One of the possible approaches to problems in phylogenetics using algebraic geometry
is as follows. We fix a rooted tree T that we suspect is a correct model of evolution.
We consider any transition matrices with entries that are free parameters, which depend
only on the biological model that we choose. To the space of parameters we add also
possible distributions of the variable associated to the root. We calculate the distribution
of random variables associated to leaves. More precisely, we get a map (1) π ◦ ψ̂. Its do-
main parametrizes entries of transition matrices and possible distributions of the random
variable associated to the root. Its image parametrizes all possible distributions of the
random variables associated to leaves.

Example 1.1. In this example we suppose that each variable can be in two states,
denoted by 0 and 1. There is one root with two descendants. The variable associated to
the root attains the value 0 and 1 with probability respectively λ0 and λ1. The transition
matrices are as follows:

(1) The reason for choosing this notation will become clear in the following sections.
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◦[
a1 a2
a2 a1

]
��

[
b1 b2
b2 b1

]
��

· ·
Hence there are six parameters. The leaves can be in four states. We order them as
follows:

1) both leaves are in state 0,
2) the left leaf is in state 0 and the right one in state 1,
3) the left leaf is in state 1 and the right one in state 0,
4) both leaves are in state 1.

We obtain the map

π ◦ ψ̂ : (λ0, λ1, a1, a2, b1, b2)→
(λ0a1b1 + λ1a2b2, λ0a1b2 + λ1a2b1, λ0a2b1 + λ1a1b2, λ0a2b2 + λ1a1b1).

Let P be the point, established empirically, that represents the distribution of random
variables associated to leaves. We would like to check if P belongs to the image of π◦ ψ̂. If
it is not in the image, then we know that either the biological model we used is wrong, or
the tree T is not the right one. If the point P is in the image, we can ask for a description
of the fiber. However, determining whether P belongs to the image is hard in general.
One of the methods bases on the fact that π ◦ ψ̂ is an algebraic map. We can consider the
Zariski closure of its image. This is an affine algebraic variety. One would like to describe
its ideal and check whether the generators vanish at P . The elements of this ideal are
called phylogenetic invariants.

This approach may not be very effective. The description of the ideal of a variety given
by a parametrization is not an easy task. However, the maps we get are not arbitrary.
As first observed by Evans and Speed [ES93] and Hendy and Penny [HP89] for certain
models of evolution, the variety we consider is toric. More precisely, there are coordinates
in which the parametrization map is given by monomials. This allows us to apply methods
of toric geometry in order to determine the ideal of the variety.

Throughout the article we assume that the random variable associated to the root
has a uniform distribution. This assumption is not motivated by biology. We use it only
to obtain nicer results from the mathematical point of view. Hence, in our study the
parameter space contains only the coefficients of the transition matrices.

One of the main aims of this article is to provide a general description of toric varieties
appearing in phylogenetics. We present the most general known setting in Theorem 4.63.
In particular, we believe that our approach covers all biological models of interest that
are known to give rise to toric varieties. Further, we investigate the properties of the
toric varieties obtained. We prove that varieties associated to certain biological models
are normal (Proposition 4.73). However, we also give examples where the varieties are not
normal (Computation 4.75). Next we address the question for which models the varieties
associated to trivalent (2) trees belong to the same flat family. For the binary Jukes–

(2) The valency of all vertices is either one or three.
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Cantor this fact was known to be true by [BW07], while for 3-Kimura it does not hold
by [Kub12]. By calculating the Hilbert polynomials of many varieties we have found that
most models do not have this property.

Another important task concerns phylogenetic invariants.

Definition 1.2 (Claw tree). A claw tree Kn,1 is a tree with exactly one inner vertex
and n leaves.

For many models, in particular those that are most important for us, the study of
phylogenetic invariants of any tree reduces to the case of the claw tree [SS05], [AR08],
[DK09]. However, establishing phylogenetic invariants in this special case has turned
out to be difficult. We do not even know the degree in which the ideal of phylogenetic
invariants is generated. There is a well-known conjecture by Sturmfels and Sullivant
[SS05, Conjecture 1] that gives a precise upper bound for this degree. The conjecture
is astonishingly similar to an old theorem of Noether. The theorem bounds the degree
in which the ring of invariants of the group action on the polynomials is generated.
However, as we will see in Section 5, it is hard to give a description of the whole algebra
of the phylogenetic variety as a ring of invariants. Moreover, even if some description is
possible, the order of the group is large (Corollary 5.6). One interesting observation is
that the conjecture implies a description of the ideal as a sum of simpler ideals. In fact we
propose a method for obtaining many phylogenetic invariants for any model for the claw
tree (Section 6.2). We conjecture that our method gives a description of the whole ideal.
We show that in many cases our conjecture is equivalent to the one made by Sturmfels
and Sullivant (Proposition 6.8). Our strongest result, Theorem 11.1, proves a weaker,
scheme-theoretic version of [SS05, Conjecture 2], sufficient for applications.

2. Toric varieties: the setting

Let us start with an introduction to toric geometry. The study of toric varieties is a
relatively new subject. However, its origins can be traced back even to Newton who
introduced the idea of representing a polynomial by lattice points. To a monomial in
n variables xa11 · · ·xann =: xa one associates the point (a1, . . . , an) ∈ Zn. The following
definition will not be used in our article. However, we include it to give a reader not
familiar with toric geometry first foundations.

Definition 2.1 (Newton polytope). Let f =
∑
a∈Nn αax

a be a polynomial in n variables.
The Newton polytope of f is the convex hull of points associated to monomials xa, such
that αa 6= 0. The definition can be easily extended to Laurent polynomials.

To find information on Newton polytopes we advise the reader to consult [Stu98]. One
of the first papers where toric varieties were studied in a systematic way is [KKMSD73].
The authors call toric varieties “toroidal embeddings” and view them as special com-
pactifications of the algebraic torus (C∗)n. The classical references for toric varieties are
[Oda87] and [Ful93]. The latter book focuses more on the torus action. Recently a new,
very modern, user friendly book appeared [CLS11]. The point of view on toric varieties
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presented there is closest to ours. The reasons why toric varieties have recently become
so popular are numerous. A few most important ones are:

(i) toric varieties are strongly related to combinatorial objects, which makes a lot of
computations possible or at least easier,

(ii) toric varieties are simple, but fertile enough to provide a good testing ground for
conjectures, proofs, theorems and examples,

(iii) toric varieties appear naturally as simplifications of other varieties,
(iv) toric varieties appear in applied mathematics.

This section contains well-known results. We present the proofs, trying to find the
easiest and most direct ones. We hope that, with little effort, this section can be read by
people not familiar with toric geometry. Details that are skipped can be considered as
exercises. We avoid referring to any general theorems, as the theory is, at this level, easy
enough to develop from scratch. Many ideas presented in this part come from [CLS11]
and [Stu96]. Throughout the paper we will use the setting presented in this section. We
encourage the reader familiar with toric geometry to take a look, because our approach
is often different from the standard one.

In modern algebraic geometry, a variety is locally described as the spectrum of an
algebra. Thus the most important object connected to an affine algebraic variety is its
ideal containing all polynomials vanishing on it. Note however that many varieties can
be constructed in a different way. Given k polynomials f1, . . . , fk in n variables one can
consider the map (f1, . . . , fk) : Cn → Ck. The Zariski closure of the image is an algebraic
variety. Furthermore, we can generalize this construction assuming that the fi are Laurent
polynomials. In this case the domain of the map is (C∗)n.

Let us start the discussion of toric geometry by introducing affine toric varieties. In
simplest terms, the study of affine toric varieties is the study of the case where all fi are
monomials.

Definition 2.2 (Affine toric variety). Consider k Laurent monomials in n variables
fi = xai , where ai ∈ Zn. An affine toric variety is the Zariski closure of the image of the
map (f1, . . . , fk) : (C∗)n → Ck.

Note that we do not require the affine toric variety to be normal. This issue will be
addressed later. Moreover, affine toric varieties come with an embedding in the affine
space. Recalling Newton’s idea, the map (fi) can be represented by k points ai ∈ Zn.
The geometry of these points is strongly related to the geometry of the affine toric variety.
We will say that the variety is associated to the set of points {ai}.

Proposition 2.3. The ideal of the affine toric variety is generated by binomials. Suppose
that the parametrization of the variety is given by k monomials fi in n variables xi. Let
Pi ∈ Zk be the point associated to fi. A binomial yb11 · · · y

bk
k − y

c1
1 · · · y

ck
k for bi, ci ∈ N is

in the ideal if and only if
∑
i biPi =

∑
i ciPi.

Proof. The binomials of the given form vanish on the image of the map (f1, . . . , fk),
hence also on its Zariski closure. We will prove that they not only generate the ideal, but
span it as a vector space. Fix any order on the monomials. Suppose that the ideal is not
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spanned by the binomials of the given form. Let g be a polynomial in the variables yi
such that:

• g is in the ideal of the variety,
• g is not spanned by binomials of the given form,
• its leading coefficient is least possible.

Let αm(y1, . . . , yk) be the leading coefficient of g, where m is a monomial. As g is in the
ideal, by replacing yi by fi we get a Laurent polynomial that is zero on (C∗)n. Hence it
has to be zero. In particular the term αm(f1, . . . , fk) has to cancel with the term induced
by some different monomial βm′(f1, . . . , fk) appearing in g. Thus the monomials m and
m′ induce an integer relation between the points Pi. In particular m−m′ is a binomial
of the chosen form. By subtracting α(m −m′) from g we get a polynomial in the ideal
with a strictly smaller leading coefficient, which gives a contradiction.

The above proposition allows us to describe the algebra of an affine toric variety.

Definition 2.4 (Semigroup algebra). Let (C,⊕) be a monoid. As a vector space, the
monoid algebra C[C] is spanned freely by the elements of C. Multiplication is defined
as c1c2 := c1 ⊕ c2 for c1, c2 ∈ C ⊂ C[C] and extended to C[C] using the axioms of a
C-algebra.

Example 2.5. For the monoid Nn we obtain the algebra of polynomials in n variables.
For the group Zn we obtain the algebra of Laurent polynomials.

Corollary 2.6 (from Proposition 2.3). Consider the affine toric variety parametrized
by monomials fi in n variables. Let Pi ∈ Zn be the point representing fi. Let C be the
monoid generated by the points Pi. The algebra of the affine toric variety is C[C].

We will often be working with projective toric varieties.

Definition 2.7 (Projective toric variety). Consider k + 1 Laurent monomials fi in
n variables. A projective toric variety is the Zariski closure of the image of the map
(f1, . . . , fk+1) : (C∗)n → Pk.

If P ⊂ Zn is the set of points representing the monomials fi, we will say that the
closure of the image of (fi) in Pk is the projective toric variety associated to P , and we
will denote it by P(X)P . We can adapt Proposition 2.3 and Corollary 2.6. First let us
consider an affine cone over a projective toric variety. Its parametrization is as follows:

(λf1, . . . , λfk+1) : (C∗)n+1 → Ck+1.

Notice that we have added a nonzero parameter λ, as we passed to the affine space.
Of course λfi is still a monomial. If fi is represented by a point Pi ∈ Zn then λfi is
represented by Pi×{1} ∈ Zn+1. Thus in the projective case it is more natural to consider
the points Pi in the lattice of dimension one greater, and set the last coordinate to 1.
The monoid generated by Pi × {1} gives rise to a monoid algebra of the cone over the
projective variety. Moreover, the last coordinate gives the grading of this algebra. The
projective toric variety is the Proj of this graded algebra. Thus affine toric varieties
correspond to finitely generated monoids in Zn. Projective toric varieties correspond
to finitely generated monoids in Zn+1 with generators having last coefficient 1. As an
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exercise, the reader interested in this topic may extend these results to varieties embedded
in weighted projective spaces.

Usually one assumes that a toric variety is normal. Let us explain why. We start by
recalling basic definitions.

Definition 2.8 (Normal algebraic variety). An affine algebraic variety is normal if its
algebra is integrally closed in its field of fractions. An abstract algebraic variety is normal
if it can be covered by normal affine algebraic varieties.

The concept of normality is important for a number of reasons. Let us recall that
smoothness implies normality. Moreover, the singular locus of a normal variety has codi-
mension at least 2. Most toric geometers work with normal varieties, as they have a nice
combinatorial description [Oda87, Theorem 1.4].

Definition 2.9 (Lattice). A lattice is a finitely generated abelian group with no torsion.
In other words, a lattice is an abelian group isomorphic to Zn.

Consider a subset P of points in a lattice M ' Zn. As in Definition 2.7, the set P
defines a projective toric variety P(X)P together with an embedding. Let X be the affine
cone over P(X)P . Let C be the monoid generated by the points of P ×{1} ⊂M ×Z. We
know that X = SpecC[C]. Let M̃ ⊂M × Z be the sublattice generated by P × {1}.

Definition 2.10 (Projective normality). We call the projective variety P(X) projectively
normal if the affine cone X over this variety is normal.

Of course each projectively normal variety is normal. In the toric setting both nor-
mality and projective normality can be described in combinatorial language.

Definition 2.11 (Saturated monoid, saturation, saturated set of points). Let C be a
monoid contained in a lattice M̃ . We say that C is saturated if for any x ∈ M̃ and any
positive integer k, we have kx ∈ C if and only if x ∈ C.

For any monoid C one can define its saturation C̃, the smallest saturated monoid
containing C. In other words, x ∈ C̃ if and only if kx ∈ C for some positive integer k.

We say that a set of points is saturated in a lattice M if it generates a saturated
monoid. We say that a set of points is saturated if it is saturated in the lattice it generates.

Definition 2.12 (Integral polytope). An integral polytope is a convex hull of a finite
number of points in the lattice. As we will be dealing only with lattice polytopes, we will
often call them just polytopes. We will also identify polytopes with the set of their lattice
points.

Definition 2.13 (Normal polytope). We say that a polytope P ⊂ M is normal in the
lattice M if P × {1} is saturated in M × Z. We say that a polytope P is normal if it is
normal in the lattice it generates.

In other words, a polytope P is normal in the lattice M if and only if for any k ∈ N,
any point Q ∈ kP ∩M is a sum of k points from P ∩M .

Note that it is important to specify the lattice. Consider the polytope P ⊂M := Z3.
Suppose P has four integral points: (0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1). This is a normal
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polytope. Note however that it is not normal in M . Indeed, (1, 1, 1) ∈ 2P and (1, 1, 1) is
not the sum of two integral points of the polytope.

Remark 2.14. Some authors distinguish between normal polytopes, which is an intrinsic
property of the polytope, and integrally closed polytopes, which in our setting corresponds
to being normal in the ambient lattice; for details consult [BDGM15, Section 2].

Note that if the set P × {1} is saturated then P must be a polytope in the lattice it
generates. Indeed, letM be the lattice spanned by P . Let D ∈M be a linear combination
of points from P with positive coefficients summing to 1. By linear algebra, we can assume
that the coefficients are rational. Hence some multiple of D × {1} is in the monoid
generated by P ×{1}. As P ×{1} is saturated, it must contain D×{1}. Thus the convex
hull of P intersected with M equals P . Hence P is a polytope.

Fact 2.15. The variety P(X)P , defined by a set P of points, is projectively normal if
and only if P × {1} is saturated. Equivalently, P must be a normal polytope.

Fact 2.16. Let D ∈ P × {1}. Let PD = P × {1} − D, where the minus is the lattice
operation. The variety P(X)P associated to P × {1} is normal, if and only if for any
D ∈ P × {1} the set PD is saturated. In that case P need not be normal and is called
very ample.

Proof of Facts 2.15 and 2.16. Both facts are direct consequences of Proposition 2.23.
For the first, the algebra of the cone over the variety equals the monoid algebra for the
monoid C spanned by P × {1}. The monoid C is saturated if and only if P is normal.

For the second, notice that points of P × {1} correspond to variables of the ambient
projective space. Consider the affine subvariety of P(X) corresponding to setting one
variable, corresponding to a point D, to 1. The algebra of this affine variety is the monoid
algebra associated to the monoid spanned by PD.

Definition 2.17 (Cone, cone over a polytope). A cone is a finitely generated, saturated
submonoid of a lattice.

In the literature it is often called a convex polyhedral cone. More precisely, we identify
lattice points of the polyhedral cone with the cone.

Let P be a polytope that spans the lattice M . The cone over P is the saturation of
the monoid spanned by P × {1} ⊂M × Z.

We will see in Proposition 2.23 that normal affine toric varieties are associated to
finitely generated cones. Projectively normal projective toric varieties are associated to
cones over normal polytopes.

There is one important case where even in the projective case one can consider the set
P instead of P ×{1}. Suppose that P is contained in a hyperplane given by an equation∑
aixi = b for b 6= 0. In this case the monoid generated by P is isomorphic to the

monoid generated by P × {1}. In the first part of the article we will be considering such
polytopes.

We now explain the name of toric variety. It is connected to the algebraic torus
T = (C∗)n = SpecC[x±1i ]. Under coordinatewise multiplication, T is an algebraic group.
At the level of algebras the action is given by the morphism C[x±1i ] → C[x±1i ] ⊗ C[x±1i ]
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that associates to a generator xi the tensor product xi ⊗ xi. Note that an arbitrary
Laurent polynomial f is not sent to f⊗f : this is only true for monomials. Let us consider
algebraic morphisms T→ C∗ that preserve the abelian group structure. These are called
characters. Such a map is in particular a regular function on T, hence must be given
by a Laurent polynomial. As it must preserve the group structure, one can prove that
it must be a monomial. By identifying a monomial with a lattice point we see that the
characters form a lattice Zn. Intrinsically, one defines the sum of characters f and g by
(f + g)(x) = f(x)g(x).

Definition 2.18 (Lattice of characters). The latticeM of characters of a torus T consists
of all morphisms T → C∗ of algebraic groups with addition defined by (f + g)(x) =

f(x)g(x).

Dually one defines one-parameter subgroups as morphisms of algebraic groups
C∗ → T. By projecting onto coordinates we see that each such morphism is of the form
t 7→ (ta1 , . . . , tan) for some ai ∈ Z. It can be identified with a point (a1, . . . , an) ∈ Zn.
Hence the one-parameter subgroups also form a lattice.

Definition 2.19 (Lattice of one-parameter subgroups). The lattice N of one-parameter
subgroups of a torus T consists of all morphisms C∗ → T of algebraic groups with addition
defined by (λ+ δ)(t) = λ(t)δ(t).

It is well known that the lattices M and N are dual. The pairing can be described as
follows. Fix f ∈M and λ ∈ N . The composition f ◦ λ is a morphism of one-dimensional
tori. Hence it is of the form t 7→ ta. We define the product of f and λ to be equal to a.
After using the identification of M and N with Zn this is the standard scalar product.

As we have seen, the characters correspond exactly to monomials in the algebra of
the torus. Hence, T is the spectrum of the monoid algebra C[M ]. Points of T correspond
to maximal ideals of this algebra or to surjective morphisms of algebras f : C[M ] → C.
Of course, to determine such a morphism it is enough to define it onM . AsM is a group,
its image has to be contained in C∗. Moreover, since f is a map of algebras, the map
M → C∗ must preserve the group structure. Hence the points of T correspond to maps
M → C∗ that preserve the group structure. More precisely, for a point P we associate to
a character χ its value at P .

Definition 2.20 (Abstract toric variety). A toric variety X is an algebraic variety,
finitely generated over C, containing T as a dense open subset. Moreover, we require that
the action of T on itself extends to an algebraic action on X.

A crucial fact is that an abstract toric variety that is affine is an affine toric variety in
the sense of Definition 2.2. This is usually proved using the following important lemmas.

Lemma 2.21. Suppose that a torus T acts on a vector space V . Then there exists a basis
of V such that the action is diagonal.

Proof. For t ∈ T and v ∈ V we have

tv =
∑

χ(t)Aχ(v),
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where the sum is over a finite collection of characters χ of T. One can notice that Aχ are
projections to subspaces on which T acts by multiplication by a value of the corresponding
character.

Lemma 2.22. The algebra of an abstract toric variety X that is affine is a monoid algebra
associated to a monoid contained in the character lattice of the torus associated to the
variety.

We propose an approach that proves this lemma directly.

Proof. As T is Zariski dense in X, the algebra A of X is a subalgebra of C[M ]. Fix f ∈ A.
We know that f =

∑k
i=1 aiχi for some χi ∈ M and ai 6= 0. Let W be the vector space

spanned by the characters χi for i = 1, . . . , k. Consider the vector subspace V := A∩W .
Our first aim is to prove that V = W . Suppose that V is contained in a proper vector
subspace. Let (b1, . . . , bk) be such that if

∑k
i=1 diχi ∈ V , then

∑k
i=1 dibi = 0. By the

assumptions T acts on X, hence on A. The action of c ∈ T on χi is given by χi(c)χi.
Hence the action of c on f gives

∑k
i=1 aiχi(c)χi ∈ V . Thus for any c ∈ T we must have∑k

i=1 biaiχi(c) = 0. Hence
∑k
i=1 biaiχi must be identically zero on T. This is possible

only if all bi are zero, which gives a contradiction.
Hence the algebra A is spanned as a vector space by characters ofM . Obviously these

characters must form a monoid.

As we have seen, the algebra of an abstract toric variety X that is affine is equal
to C[C] for a monoid C ⊂ M . As the algebra is finitely generated, so is the monoid C.
Let χ1, . . . , χk be generators of C. Consider the embedding of the torus acting on X by
(χ1, . . . , χk). By Corollary 2.6 its Zariski closure in Ck is isomorphic to X.

Proposition 2.23. Let X be an affine toric variety. Let C be a monoid in the character
lattice M of the torus acting on X. The variety X is normal if and only if C is a cone.

Proof. First let us prove that if X is normal then C is saturated. Consider any point
kc ∈ C for c ∈M . We want to prove that c ∈ C. For m ∈M let χm be the corresponding
character. Consider a polynomial f(X) = Xk −χkc with coefficients in the algebra of X.
Clearly χc satisfies the equation f . Moreover, as C spans M , the character χc is in the
quotient field of the algebra of X. By the normality of X we know that χc is also in the
algebra. Hence c ∈ C.

Now we want to prove that if C is saturated, then C[C] is normal. First note that the
quotient field of C[C] is equal to the quotient field of C[M ]. As the torus is smooth, its
algebra is normal. One can also prove this by noticing that the algebra is a UFD (being a
localization of the polynomial ring). Consider any monic polynomial f ∈ C[C][x]. Suppose
that g is in the quotient field and satisfies f(g) = 0. From the normality of C[M ] we know
that g ∈ C[M ]. One can repeat the argument of Lemma 2.22. Namely we can act on the
equation f(g) by any point P of the torus. The action of P on f gives a monic polynomial
with coefficients in C[C]. Hence the action of P on g gives polynomials that are in the
normalization of C[C]. By the same arguments as in Lemma 2.22 we see that every
character appearing in g with nonzero coefficient must be in the normalization of C[C].
Thus we can assume that g ∈M .
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Suppose that f is of degree d. Notice that f(g) = 0 implies that dg = d′g + c0 for
some integer 0 ≤ d′ < d and c0 ∈ C, as the character χdg must cancel with some other
character. Thus (d− d′)g ∈ C, and by normality g ∈ C.

It is also worth mentioning how we can recover the torus of an affine toric variety
given by a parametrization. There are a few equivalent ways to do this. Note that our
construction of an affine or projective variety defines them with an embedding in an
affine or projective space with a distinguished system of coordinates. These coordinates
are in bijection with the points in the lattice that define the variety. The construction also
distinguishes a dense torus in the embedding space. It contains all points with nonzero
coordinates.

Fact 2.24. Consider a parametrization f = (f1, . . . , fk) : T′ := (C∗)n → Ck, where fi
are Laurent monomials in n variables. Let X be the Zariski closure of the image of this
map. Let T′′ = (C∗)k ⊂ Ck be the torus containing all points with all coordinates different
from zero, with the action given by coordinatewise multiplication. Let M ′ and M ′′ be the
character lattices respectively of the tori T′ and T′′. Then:

(i) At the level of algebras the parametrization map f is induced by a group homomor-
phism f̃ : M ′′ →M ′.

(ii) The image T of T′ in T′′ is Zariski closed, isomorphic to a torus, with the group
action induced from T′′.

(iii) The character lattice of T is equal to the image of f̃ or equivalently to the quotient
of M ′′ by the kernel of f̃ .

(iv) The variety X contains T as a dense open subset and the action of T extends to X.

One can identify the torus T that acts on the projective toric variety P(X)P . As in the
affine case, it is the image of the parametrizing torus. It is also equal to the intersection of
P(X)P with a torus T′′ containing all points of the projective space with all coordinates
different from zero. The action of T is induced from the action of T′′ on the projective
space. Using the basis, the action is given by coordinatewise multiplication.

We will be often comparing a projective variety with its affine cone. The following
discussion concerns the ambient spaces. There is a natural morphismm : Cn+1\{0} → Pn.
A system of coordinates determines a torus T′ in Cn+1 consisting of the points with all
coordinates different from zero. LetM ′ be the character lattice of T′. Choose a coordinate
system on Pn compatible with the one on Cn+1 under the morphism m. The image of
T′ is a torus T′′ consisting of the points with all coordinates different from zero. Let M ′′

be the character lattice of T′′. Note that Cn+1 is a toric variety, with the action of T′
given by coordinatewise multiplication. So is Pn with the action of T′′. Each coordinate
of Cn+1 is a character of M ′. All coordinates determine a basis of M ′. The morphism
m can be restricted to T′ and can be considered as a morphism of tori, preserving the
group action. It induces a map of character lattices m̃ : M ′′ → M ′. As m is a surjective
morphism of tori, the morphism m̃ is injective. Hence M ′′ is a sublattice of M ′. Using
the basis of M ′ we can give a precise description of the elements that belong to M ′′.
Namely, an element of M ′ belongs to M ′′ if and only if the sum of its coordinates in M ′

is zero.
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Definition 2.25 (Face of a cone). Let C be any cone in a lattice M . Let v ∈ M∗ =

Hom(M,Z). Suppose that for any c ∈ C we have v(c) ≥ 0. Let v⊥ be a hyperplane of M
consisting of all elements x such that v(x) = 0. A face of the cone C is any subset of the
form v⊥ ∩ C for some v satisfying the conditions above. Notice that a face of a cone is
also a cone.

Equivalently, a face F of C can be defined as a submonoid satisfying:

• For any c1, c2 ∈ C such that c1 + c2 ∈ F we have c1, c2 ∈ F .

For an affine toric variety corresponding to a cone C, the faces of C correspond to
orbits of the torus acting on it. Let us present this correspondence in detail. We fix a
finitely generated monoid C in a lattice M , and its generators χ1, . . . , χk ∈ C. As in
Definition 2.2 the closure of the embedding of the torus SpecC[M ] in Ck by means of
the characters χi is the affine toric variety X := SpecC[C]. Note that we distinguished a
basis in Ck, but not on the torus C[M ]. From Fact 2.24 we know that:

• the dense torus orbit of X contains precisely those points that have all coordinates
different from zero,

• the character lattice of the torus acting on X is equal to the sublattice of M spanned
by C.

We will generalize this to other orbits. Assume that C is a cone. Each orbit will be indexed
by a face F of C. The face F determines a subset I ⊂ {1, . . . , k} such that i ∈ I if and
only if χi ∈ F . The orbit corresponding to F can be characterized as follows:

(1) the orbit contains precisely those points that have coordinates corresponding to i ∈ I
different from zero and all the other zero,

(2) the orbit is a torus with character lattice spanned by elements of F ,
(3) the closure of the orbit is a toric variety given by the cone F ,
(4) each point of the orbit is a projection of the dense torus orbit onto the subspace

spanned by basis elements indexed by indices from I,
(5) the inclusion of the orbit in the variety is given by a morphism of algebras

C[C]→ C[F ]. This morphism is an identity on F ⊂ C[C] and zero on C \ F .

Note that each orbit will contain a unique distinguished point given by the projection of
the point (1, . . . , 1) ∈ Ck. We will only sketch the proof of these observations.

Proof. As in the case of the torus, we can identify points of X with monoid morphisms
C → (C, ·). Fix any x ∈ X. The characters χ ∈ C such that χ(x) 6= 0 must form a
face of F . Hence x determines a subset I ⊂ {1, . . . , k}. Of course the set of points in
X with nonzero coordinates indexed by I and other coordinates zero is invariant under
the action of the torus on X. So to prove (1) it is enough to prove that all these points
are in one orbit. The point x represents a morphism C → (C, ·) that is nonzero on F

and zero on C \ F . Consider the restriction of this morphism to F . As it is nonzero, it
can be extended to a morphism M ′ → C∗, where M ′ is the sublattice generated by F .
Next we can extend this morphism to the lattice M ′′ generated by C. Thus we obtain
a morphism f : M ′′ → C∗ that agrees with the one representing x on F . Note that f
represents a point p in the torus acting on X. By the action of p−1 on x we obtain a
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point given by a morphism that associates 1 to elements from F and zero to elements
from C \ F . Thus we have proved (1). Moreover, we showed that each orbit contains the
distinguished point. Point (2) follows, as morphisms that are nonzero on F and zero on
C \ F are identified with morphisms from M ′ to C∗. Point (3) is a consequence of (2)
and the previous discussion on affine toric varieties. Indeed, we already know that the
orbit is a torus with the lattice generated by F . This torus is the image of the torus
SpecC[M ] in Ck by means of the characters from I and all other coordinates equal to
zero. Let A be the affine space spanned by basis elements indexed by indices in I. The
orbit corresponding to F is contained in A. In fact, by the construction it is the image of
SpecC[M ] by the characters χi such that i ∈ I. The closure of this torus is exactly given
by SpecC[F ], as generators of the monoid C contained in F are generators of F . Point
(4) is obvious, as the point p constructed in the first part of the proof projects to x.

We finish this section by stating some results about normal abstract toric varieties.

Definition 2.26 (Fan). A fan Σ is a finite collection of cones in a lattice that satisfy
the following conditions:

(1) if a cone C is in the fan then all its faces are also in the fan,
(2) the intersection of any two cones from the fan is a face of both,
(3) for any cone C ∈ Σ, if x ∈ C then −x 6∈ C.

A general, normal toric variety can be represented by a fan in the one-parameter
subgroup lattice N .

Definition 2.27 (Dual cone). Let L and L′ be dual lattices with the pairing given
by (·, ·). Let δ ⊂ L be a cone in L. We define the dual cone δ∗ ⊂ L′ as

δ∗ = {x ∈ L′ : (x, y) ≥ 0 for any y ∈ δ}.

A toric variety X is constructed from a fan Σ by gluing together the affine schemes
Spec(C[σ∗i ]), where σ∗i ⊂ M is a cone dual to σi ∈ Σ. One-dimensional cones in Σ are
called rays. The generators of these monoids are called ray generators.

Many properties of the variety X can be described using the fan Σ. For example X
is smooth if and only if for every cone σi the set of its ray generators can be extended to
a basis of N . Moreover, to each ray generator v we may associate a unique T -invariant
Weil divisor denoted by Dv. For fans containing maximal dimensional cones there is a
well-known exact sequence

0→M → DivT → Cl(X)→ 0, (2.1)

where DivT is the group of T -invariant Weil divisors and Cl(X) is the class group. The
map M → DivT is given by

m→
∑

m(vi)Dvi ,

where the sum is taken over all ray generators vi.
So far we have defined objects of the category of toric varieties. Not every algebraic

morphism is a morphism in this category. Indeed, as toric varieties are endowed with the
torus action, it is natural to distinguish those morphisms that respect this action.
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Definition 2.28 (Toric morphism). Let f : X → Y be a morphism of toric varieties.
Let TX ⊂ X and TY ⊂ Y be the tori acting respectively on X and Y . We call f a toric
morphism if f(TX) ⊂ TY and for any points p, q ∈ TX we have

f(pq) = f(p)f(q).

Notice that, as the tori are Zariski dense in the varieties, this immediately implies that
for any p ∈ TX and q ∈ X the same equality holds.

As the restriction of a toric morphism is a morphism of algebraic tori, it induces a
map f̃ : MY → MX of character lattices. By dualizing, this gives a map f̃∗ : NX → NY
of one-parameter subgroups. In fact, one can easily characterize which morphisms of one-
parameter subgroups give rise to toric morphisms. For each cone δ in the fan representing
X there must be a cone δ′ in the fan representing Y such that f̃∗(δ) ⊂ δ′.

Much more information on this topic can be found in [CLS11], [Ful93].

3. Basic definitions

This section introduces objects that will be studied in the first part of the article. Subsec-
tion 3.1 is the most important. Other parts can be treated as motivations and examples.

We will be dealing with algebraic varieties associated to phylogenetic models. These
varieties are always given as the closure of the image of a parametrization map—details
will be presented in Section 3.1. A short algebraic introduction to the topic can be found
in [ERSS05].

Let S be a finite set, called the set of states. In the biological setting, S is often
supposed to have four elements. These elements correspond to four nucleobases. The set
S is the codomain of random variables in the Markov process. Let ∆ ⊂ R|S| be the
probabilistic simplex that contains all the points with nonnegative coordinates summing
to 1. The points of ∆ parametrize all possible distributions of random variables with the
set of states equal to S. In algebraic geometry, instead of considering the simplex ∆ one
considers the whole complex vector space C|S|.

Definition 3.1 (Space W ). We define W to be the complex vector space spanned freely
by elements of S. More precisely, W =

⊕
a∈S Ca, where Ca is a field of complex numbers

corresponding to the one-dimensional vector space spanned by a ∈ S.

Suppose that we are given a rooted tree T with edges directed from the root.

Definition 3.2 (Sets L, V , N and E). Let L, V , N and E be respectively the set of
leaves, vertices, nodes and edges of the tree T . We have V = L ∪N and L ∩N = ∅. We
identify leaves with edges adjacent to them.

The objects we study are derived from Markov processes on a tree. To each vertex one
can associate a random variable with the set of states equal to S. The Markov property
ensures that the variable at a vertex depends only on the variable associated to its first
ancestor. Formally, let Xi be a variable associated to a vertex vi. Suppose that there is an
edge directed from v1 to v2. Consider any set of vertices v3, . . . , vj that are not descendants
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of v2. Then P (X2 = x2 |X1 = x1, X3 = x3, . . . , Xj = xj) = P (X2 = x2 |X1 = x1), where
xi ∈ S. This mathematical model is applied for example in phylogenetics. The nodes of the
tree correspond to species, and the Markov property describes the fact that evolutionary
changes depend only on the direct ancestor. More information on Markov processes can be
found for example in [Ibe09]. The reader interested in phylogenetics is advised to consult
[PS05]. There one can also find a detailed explanation of the relationship between Markov
processes on trees and models that we consider.

To define a model, we need to distinguish a subspace Ŵ ⊆ End(W ).

Definition 3.3 (Transition matrix). Any element of the space Ŵ represented as a matrix
in the basis corresponding to S is called a transition matrix.

The entries of a transition matrix correspond in biology to probabilities of mutation.
Most often, a model is distinguished by specifying the type of transition matrices.

Let us present some of the models.

(i) The Cavender–Farris–Neyman model, also called the 2-state Jukes–Cantor
model (1). This is the simplest model. It was first introduced in [Ney71]. In most
biological articles it is called the Cavender–Farris–Neyman model or just the Neyman
model. However, recently, especially in algebraic phylogenetics, it is called the 2-state
Jukes–Cantor model or the binary model [SS05], [BW07], [ERSS05]. In this model,
S has two elements and the transition matrices are of the type[

a b

b a

]
.

This model has a lot of nice properties. One of the most interesting is that the
algebraic varieties arising from trivalent trees with the same number of leaves are
deformation equivalent—see [BW07] for the original, algebraic proof, and [Ilt10] for
a combinatorial one. It is a general group-based model for the group G = Z2; the
definition of general group-based models will be introduced in Subsection 4.1.

(ii) 3-Kimura model. This is a four-state model introduced in [Kim81]. It is a general
group-based model for the natural action of the groupG = Z2×Z2 on the nucleobases
A,C,G, T [ES93]. The transition matrices are of the type

a b c d

b a d c

c d a b

d c b a

 .
(iii) 2-Kimura model. This is a model for four states introduced in [Kim80]. The

transition matrices are of the type
a b c b

b a b c

c b a b

b c b a

 .
(1) We would like to thank Elizabeth Allman for the information on the ambiguity.
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(iv) Jukes–Cantor model. This is the simplest model for four states, introduced in
[JC69]. The transition matrices are of the type

a b b b

b a b b

b b a b

b b b a

 .
(v) General Markov model. This model can be considered on any number of states,

but for biological reasons it is typically considered for four states. The space Ŵ
is equal to the whole space of endomorphisms, EndW . Hence for four states the
transition matrices are arbitrary:

a b c d

e f g h

i j k l

m n o p

 .
3.1. A variety associated to a model. We will associate an algebraic variety to a
tree T and a space Ŵ ⊂ EndW . This is a standard construction. In the literature one
can find a lot of generalizations of the approach presented here—see for example [DK09].

Definition 3.4 (Spaces Wv and Ŵe). To each vertex v of the tree we attach a complex
vector space Wv with a fixed isomorphism isov : W ' Wv. The images of the basis
elements of W corresponding to states in S by isov give a basis of Wv. The elements of
this basis are denoted by {αv}. We also consider a vector space Ŵ ⊂ End(W ), determined
by the model we choose. To each edge e of the given rooted tree T we associate a vector
space Ŵe isomorphic to Ŵ .

Remark 3.5. The natural basis of W induces an isomorphism W ∼= W ∗. Hence End(W )
∼= W ∗ ⊗W ∼= W ⊗W . We may regard Ŵ and each Ŵe as subspaces of W ⊗W .

Definition 3.6 (Spaces WV , ŴE , WL). We recall that V , L and E are respectively the
set of vertices, leaves and edges of a tree. We define the following three spaces:

WV =
⊗
v∈V

Wv, WL =
⊗
l∈L

Wl, ŴE =
⊕
e∈E

Ŵe.

We call WV the space of all possible states of the tree, WL the space of states of leaves
and ŴE the parameter space.

Definition 3.7 (The map ψ̂ [BW07, Construction 1.5]). Let ψ̂ : ŴE → WV be a map
whose dual is defined as

ψ̂∗
(⊗
v∈V

α∗v

)
=
⊗
e∈E

(αv1(e) ⊗ αv2(e))
∗
|Ŵe

.

Here the edge e is directed from v1(e) to v2(e).

ψ̂ is just a map well known to biologists that to a given choice of matrices associates
the probability distribution on the set of all possible states of vertices of the tree.
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Example 3.8. Let us consider the binary Jukes–Cantor model. Fix the tree with one
root r and two leaves l1 and l2. The spaces W and Ŵ are two-dimensional. Hence the
spaces WV and ŴE are respectively 8- and 4-dimensional. The basis elements of WV

correspond to states of the variables associated to nodes of trees. Hence they can be
indexed by triples (p, q, s) for p, q, s = 0, 1. Assume that the first element of the triple is
associated to the state of r. The elements of Ŵ are matrices of the type[

a b

b a

]
.

Fix a simple tensor in ŴE represented by a pair of such matrices[
a1 b1
b1 a1

]
,

[
a2 b2
b2 a2

]
.

To this element the morphism ψ̂ associates an element of WV given as

a1a2(0, 0, 0) + a1a2(1, 1, 1) + a1b2(0, 0, 1) + a1b2(1, 1, 0)

+ b1a2(0, 1, 0) + b1a2(1, 0, 1) + b1b2(0, 1, 1) + b1b2(1, 0, 0).

Thus ψ̂ associates to a given choice of transition matrices the “probability distribution” on
the set of all possible states of the tree. This is up to a scalar, as we assume that the root
has uniform distribution. Moreover, as we work over complex numbers and there are no
probabilistic restrictions on elements of Ŵ , the map ψ̂ is obtained by the rule for Markov
processes, but in general the elements of the image have no probabilistic meaning.

Recall N = V \ L is the set of nodes of a tree. We consider the map δ =
∑
α∗i ∈W ∗

that sums all the coordinates.

Definition 3.9 (π). Let π : WV →WL be defined as π = (
⊗

v∈L idWv
)⊗ (

⊗
v∈N δWv

).
The map π sums the probabilities of all the states of vertices that differ only at nodes.

If we compose ψ̂ with π we obtain a map from ŴE to WL. This induces a rational
map

ψ̌ :
∏
e∈E

P(Ŵe) 99K P(WL).

The closure of the image of this map is denoted by P(X(T,W, Ŵ )). This is the algebraic
projective variety associated to the model that is the main object of our study. We will
also consider the affine model X(T,W, Ŵ ) that is the affine cone over this variety.

4. Group-based models

Some parts of this section were published separately in [Mic11]. Our aim is to investigate
the properties of certain models. The space of transition matrices will be given as a
subspace invariant under a group action. We will see under what conditions we obtain
a toric variety. We will also study the properties of the varieties so obtained, and their
connections with trees and groups. We have to point out that in this section we do
not assume that a toric variety has to be normal. We only assume that a torus acts
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on a variety and one of the orbits is dense. This setting is most common when dealing
with applications. Much information can be found in [Stu96]. The main drawback of
this approach is that the varieties we consider will not be given by a fan. However, they
can still be represented by polytopes, which do not have to be normal. For this reason
we will often work with the character lattice M instead of the one-parameter subgroup
lattice N .

We will be defining objects that will depend on a tree T and a group G. For any
object O, if we want to stress its dependence on either T or G we indicate them with
indices, OTG. For vector spaces on which a group G acts we use the standard notation for
the subspace of invariants, by putting G in the superscript.

4.1. General group-based models. In our study we are mainly interested in specific
models. We set the notation for general group-based models. We generalize the notions
of “sockets” and “networks” introduced in [BW07]. This enables us to extend some of the
results from Z2 to arbitrary abelian groups. We believe that these notions give a nice,
unified description of the variety associated to the model.

The inspiration for this section comes from the work [ES93] of Evans and Speed who
recognized a natural action of an abelian group G on S in a biological case. Namely, the
group G = Z2 × Z2 acts on {A,C,G, T} transitively and freely. Hence from now on we
assume that we have a transitive and free action of an abelian group G on S. In such a
situation, S is often called a G-torsor. The action of G on S extends naturally to the
action of G on W . The fact that general group-based models give toric varieties was
already observed in [ES93], [SSE93].

Definition 4.1 (Ag). For g ∈ G let Ag be the transition matrix (equivalently the linear
map) corresponding to the action of g on W .

By choosing one element of S and associating to it the neutral element of G we obtain
an action-preserving bijection between the elements of S and G. The element associated
to a ∈ S will be denoted by ga. Canonically the rows and columns of the transition
matrix are labeled by elements of S. After fixing the bijection we can also label them
with group elements, but this is not canonical. The choice of the bijection allows us also
to find another basis of W , indexed by characters of G. This is done by the discrete
Fourier transform.

Definition 4.2 (wχ). Let χ ∈ G∗ be any character of the group G. We define a vector
wχ ∈W by

wχ =
∑
a∈S

χ(ga)a.

By orthogonality of characters, the elements wχ form a basis of W . Notice that al-
though the choice of the bijection between S and G is not canonical, the one-dimensional
spaces spanned by wχ are. Changing the bijection just multiplies each vector wχ by χ(g)

for some g ∈ G. In the language of representation theory, W is the regular representation
of G. The one-dimensional spaces spanned by wχ are of course the unique irreducible
one-dimensional representations corresponding to characters of G.
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The group structure also naturally determines a specific model, a vector space Ŵ .
This is done as follows. We have a natural action of G on W ⊗W—the action of g is just
g ⊗ g:

g
(∑

λa1 ⊗ a2
)

=
∑

λg(a1)⊗ g(a2).

Definition 4.3 (Ŵ ). Let G be an abelian group acting on the set S transitively and
freely. By Remark 3.5 we identify End(W ) withW ⊗W . For a general group-based model
we define Ŵ as the set of fixed points of the G action on End(W ) ∼= W ⊗W .

Remark 4.4. In other words, we only take transition matrices that satisfy the follow-
ing condition for any g ∈ G: If we permute the columns and rows of a matrix with a
permutation corresponding to g, then we obtain the same matrix.

Hence the parameters in the transition matrices depend only on the difference of the
group elements labelling the row and column of a given entry. In particular, the dimension
of Ŵ is equal to |G|.

In general we assume that the tree is rooted and directed away from the root. However,
the construction from Subsection 3.1 can be easily generalized to other orientations of
the edges of the tree. We make this assumption because it simplifies the formulations.

Remark 4.5. One can see that if A ∈ Ŵ , then AT ∈ Ŵ . This means that if we consider a
tree T with two different orientations, then the associated varieties are exactly the same.
If a point is the image of some element of the parameter space with respect to a given
orientation, then it is also the image of an element of the parameter space with respect
to the other orientation. We just have to transpose matrices that are associated to edges
with different orientation.

The following elements are invariant with respect to the G action, hence belong to Ŵ .

Definition 4.6 (Elements lχ ∈ Ŵ ). Let χ be a character of G. We define

lχ(wχ′) :=

{
wχ, χ = χ′,

0, χ 6= χ′.

It follows that (lχ)χ∈G∗ is a base of Ŵ . Moreover, Ŵ is equal to the space of diagonal
matrices in the basis (wχ)χ∈G∗ . The following proposition gives the description of lχ in
terms of the basis associated to elements of S. We omit the proof, as it relies on basic
computations.

Proposition 4.7.

lχ(a0) =
1

|G|
χ(g−1a0 )wχ =

1

|G|
∑
a∈S

χ(g−1a0 ga)a.

The vectors lχ are independent of the choice of the bijection between S and G. The
element g−1a0 ga is a unique element of G that sends a0 to a, hence does not depend on
the bijection. The map lχ is a projection onto the (canonical) one-dimensional subspace
spanned by wχ.

Using this basis we will see that the map ψ̂ is injective. Hence the induced algebraic
map

∏
e∈E P(We) → P(WV ) is given by the full Segre system. The algebraic map π ◦ ψ̂
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will be given by a subsystem of the Segre system. We will describe it using the notions of
“sockets” and “networks”. Let us start with a few lemmas. The action of G on W extends
to an action on WV and WL.

Lemma 4.8. The dimensions of G-fixed subspaces of WV and WL are as follows:

dimWG
V = |G||V |−1, dimWG

L = |G||L|−1.

Proof. Let us consider the basis of WV given by (
⊗

v∈V wχv ). The action of g in this
basis is diagonal, so the space of fixed vectors is spanned by fixed elements of this basis.
As g(wχ) = χ(g−1)wχ, we obtain

g
(⊗
v∈V

wχv

)
=
⊗
v∈V

χv(g
−1)wχv

=
∏
v∈W

χv(g
−1)

⊗
v∈V

wχv
,

so an element
⊗

v∈V wχv is fixed if and only if for any g ∈ G we have
∏
v∈V χv(g) = 1.

This is equivalent to
∑
v∈V χv being the trivial character (we use additive notation for

the group G∗ of characters). From this we see that dimWG
V is equal to the number of

sequences, indexed by vertices of the tree, of characters that sum to the neutral character.
This gives us |G∗||V |−1 sequences and proves the first equality, as for abelian groups
|G∗| = |G|. The proof of the second equality is the same.

Remark 4.9. The basis {
⊗

v∈V wχv
} of WV depends on the choice of the bijection

between S and G. However, the basis {
⊗

v∈V wχv
:
∑
v∈V χv = χ0} of WG

V is natural.
Changing the bijection multiplies wχ by χ(g) for a fixed g ∈ G. As

∑
v∈V χv = χ0, we

have (
∑
v∈V χv)(g) = 1, and the vectors remain unchanged.

One can easily see that the image of ŴE in WV is invariant with respect to the action
of G.

Proposition 4.10. The map ψ̂ is a vector space isomorphism of ŴE and WG
V . It takes

the base {
⊗

e∈E |G|lχe
} bijectively onto the base {

⊗
v∈V wχv

:
∑
v∈V χv = χ0}, where χ0

is the trivial character.

Proof. Using Proposition 4.7 we can see that(⊗
v∈V

av

)∗(
ψ̂
(⊗
e∈E
|G|lχe

))
=

∏
e=(v1,v2)∈E

(−χe)(gav1 )χe(gav2 ).

For given characters χe, define characters χv for all v vertices of the tree by

χv :=
∑

(v,w)∈E

χ(v,w) −
∑

(w,v)∈E

χ(w,v).

This corresponds to summing all characters on edges adjacent to v with appropriate signs,
depending on the orientation of the edge. We consider an element

⊗
v∈V wχv

, which is
clearly in the chosen basis of WG

V as each character χe is taken twice with different signs,
so the sum of all χv is a trivial character. Moreover,⊗

v∈V
wχv

=
⊗
v∈V

(∑
a∈S

χv(ga)a
)
,

so (
⊗

v∈V av)
∗(
⊗

v∈V wχv
) =

∏
v∈V χv(gav ), which proves the theorem.
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Corollary 4.11. The morphism

ψ :
∏
e∈E

P(Ŵe)→ P(WG
V )

is given by a full Segre system. In the basis from Proposition 4.10 it is given by monomials.

Our aim will be to obtain a result similar to Proposition 4.10 for the map π◦ψ̂. Notice
that apart from the action of G on W ⊗W given by g ⊗ g that allowed us to define Ŵ ,
we have another action of G on W ⊗W given by g ⊗ id, where id is the identity map.

Lemma 4.12. The action g ⊗ id restricts to Ŵ .

Proof. It is enough to prove that the image of the action of g ⊗ id on any element that
is fixed for the action g′ ⊗ g′ is also fixed. Let C ∈ Ŵ . Then

(g′ ⊗ g′)(g ⊗ id)C = (g′g ⊗ g′)(C) = (gg′ ⊗ g′)(C) = (g ⊗ id)(g′ ⊗ g′)(C)

= (g ⊗ id)(C).

Here we have used the fact that G is abelian.

Definition 4.13 (The group GN ). For each v ∈ N , g ∈ G and e ∈ E we define an
isomorphism ρgv,e of the space Ŵe. The action on Ŵe depends on e and v. If e is not
adjacent to v, it is the identity. If e is an outgoing edge from v, it is equal to g ⊗ id, and
if e is an incoming edge, it is equal to g−1 ⊗ id.

For each v ∈ N and g ∈ G we define an isomorphism of ŴE by ρgv :=
⊗

e∈E ρ
g
v,e. We

also define GN ⊂ End(ŴE) to be the group generated by all ρgv.

Remark 4.14. It is crucial to realize how g ⊗ id acts on elements of Ŵ considered as
morphisms. One can check that g⊗ id(Ag′) = Ag′ ◦Ag−1 , so the action of g⊗ id composes
a given morphism with Ag−1 .

To obtain a nice description of the morphism π ◦ ψ̂ we need a technical lemma.

Lemma 4.15. We have GN ∼= G|N |. There is a base in which GN acts diagonally on ŴE.

Proof. Using 4.14 we obtain

(g ⊗ id(lχ))(wχ′) = lχAg−1(wχ′) = lχAg−1

(∑
a∈A

χ′(ga)a
)

= lχ

(∑
a∈S

χ′(ga)g−1a
)

= lχ

(∑
a∈S

χ′(gag)a
)

= χ′(g)lχ(wχ′) = χ(g)lχ(wχ′),

where the last equality follows from the fact that lχ(wχ′) is nonzero only if χ = χ′. This
proves that g ⊗ id(lχ) = χ(g)lχ, which proves the theorem.

Let F be any abelian group. In our examples F = G or F = G∗. Consider the groups
FE and FN . The elements of each are assignments of group elements respectively to
edges and to nodes of the tree.

Definition 4.16 (Adding morphism add , projection pv). We define a morphism add :

FE → FN . Let m ∈ FE and pv : FN → F be the projection onto the component indexed
by the vertex v ∈ N . The element pv(add(m)) is equal to the sum of the group elements
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associated by m to the edges incoming into v minus the sum of the group elements
associated to the edges outgoing from v.

Example 4.17. Consider F = Z3. Let T be a claw tree with three edges. We have

add : (Z3)3 → Z3,

where add is the usual sum in Z3.

Definition 4.18 (Trivial signed sum). We say that an elementm ∈ FE has trivial signed
sum around a vertex v if pv(add(m)) is the neutral element of F .

Definition 4.19 (Map add ′). We define a map add ′ : FL → F . This map sends a
function to the sum of its values.

Remark 4.20. As in Proposition 4.10, elements of the base of ŴE are in bijection with
the sequences of characters indexed by edges of a tree. In other words, an element of
the basis of ŴE can be described as assigning a character of G to each edge of a tree.
Moreover, the elements of the basis of ŴE that are fixed under the action of GN are
exactly the assignments such that the signed sum of the characters around each inner
vertex is the trivial character.

Lemma 4.21. The map π : WV →WL can be described as follows:

π
(⊗
v∈V

wχv

)
= |G||N |

⊗
l∈L

wχl

if all the characters χv for the inner vertices are trivial, and zero otherwise.

Proof. First let us look at
⊗

v∈V wχv in the old coordinates:⊗
v∈V

wχv
=
⊗
v∈V

(∑
a∈S

χv(ga)a
)

=
∑

(au)u∈V ∈SV

(∏
v∈V

χv(gav )
)(⊗

v∈V
av

)
,

where the sum
∑

(au)u∈V ∈SV is taken over all |V |-tuples (indexed by vertices) of basis
vectors. In other words, this sum parametrizes the basis of WV made of tensor products
of base vectors corresponding to elements of G. This is equal to∑

(au)u∈N∈SN

∑
(al)l∈L∈SL

∏
v∈N

χv(gav )
∏
f∈L

χf (gaf )
⊗
v∈N

av
⊗
f∈L

af .

We see that π(
⊗

v∈V wχv
) is equal to∑

(au)u∈N∈SN

∑
(al)l∈L∈SL

∏
v∈N

χv(gav )
∏
f∈L

χf (gaf )
⊗
f∈L

af

=
(∏
v∈N

(∑
g∈G

χv(g)
)) ∑

(gl)l∈L∈GN

∏
f∈L

χf (gl)
⊗
f∈L

af .

The product
∏
u∈N (

∑
g∈G χu(g)) is zero unless all characters χu for u ∈ N are trivial.

In the latter case the product is equal to |G||N |. Of course∑
(gl)l∈L∈GN

(∏
f∈L

χf (gl)
)(⊗

l∈L

gl

)
=
⊗
l∈L

wχl
,

which proves the proposition.
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The following theorem is a direct generalization to arbitrary abelian groups of Theo-
rem 2.12 from [BW07].

Theorem 4.22. The spaces WG
L and (ŴE)GN are isomorphic.

Proof. One can prove this using a dimension argument, but it is better to look how
the bases are transformed. The base of (ŴE)GN is given by

⊗
e∈E |G|lχe , where the

signed sum of all characters at any vertex is trivial. This, thanks to Proposition 4.10,
is transformed bijectively by the morphism ψ̂ : ŴE → WV onto an independent set⊗

v∈V wχv , where characters for inner vertices are trivial and the sum of all characters
is trivial. By Lemma 4.21 the image of this set under π gives the set |G||N |

⊗
l∈L wχl

,
where the characters χl sum to the trivial character. The last set forms a base of WG

L .

Corollary 4.23. The morphism π ◦ ψ̂ is a toric morphism.

Proof. Follows from the proof of Theorem 4.22.

Our aim is to describe the monomials that define π ◦ ψ̂. This motivates the following
definitions of groups of sockets and networks.

Definition 4.24 (Groups S and N). We fix an abelian group F = G∗. The group of
networks N is the kernel of the morphism add. The group of sockets S is the kernel of
the morphism add′.

Hence a socket is an assignment of characters from G∗ to each leaf in such a way that
the sum of all these characters is the trivial character. A network is an assignment of
characters from G∗ to each edge in such a way that the signed sum of characters at each
inner vertex gives the trivial character.

Example 4.25. Consider the group G ∼= G∗ = Z3 and the following tree:

◦
e1

e2

e3
e4

e5

Here e2, e3, e4 and e5 are leaves. An example of a socket is the assignment e2 7→ 1,
e3 7→ 1, e4 7→ 2, e5 7→ 2.

Example 4.26. We consider the same tree as in Example 4.25. We can make a network
using the same assignment and extending it by e1 7→ 2.

Remark 4.27. Networks and sockets were introduced in [BW07]; see the discussion be-
low. As the construction presented here directly generalizes the previous one, we decided
to keep the name. However, networks could also be named group based flows. Indeed, the
condition that at each vertex the sum of the elements assigned to the incoming edges
equals the sum of the elements assigned to the outgoing edges is the well-known condition
for a flow. The only difference is that we are assigning elements of an arbitrary group. As
we will see in Proposition 4.30, there is a bijection between sockets and networks. This
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is similar to the theorem that for a flow the sum over all sources equals the sum over all
sinks. One can also generalize the definition to arbitrary graphs—cf. [BBKM].

In [BW07], for the group Z2 the socket was defined as an even subset of leaves. That
corresponds to assigning 1 to some leaves and 0 to the others. The condition that the
subset has an even number of elements is just the condition that the elements from
the group sum to the neutral element. We see that this definition is compatible with
Definition 4.24. Networks were defined as subsets of edges such that there was an even
number chosen around each inner vertex—this is also the condition of summing to the
neutral element around each inner vertex.

Let us generalize the results on sockets and networks from [BW07].

Lemma 4.28. There are exact sequences of abelian groups

0→ N→ (G∗)E
add−−→ (G∗)N → 0, 0→ S→ (G∗)L

add′−−−→ G∗ → 0.

Proof. As add and add′ are surjective, the lemma follows from Definition 4.24.

Definition 4.29 (Morphisms fo and bi). There is a group morphism fo : (G∗)E →
(G∗)L that forgets all the components indexed by edges not adjacent to leaves. From the
diagrams in Lemma 4.28 the image of N by fo is contained in S. We define bi : N→ S

to be the restriction of fo.
We have the following diagram:

0 → N → (G∗)E
add−−→ (G∗)N → 0

↓bi ↓fo ↓−sum

0 → S → (G∗)L
add′−−−→ G∗ → 0

The map −sum : (G∗)N → G∗ associates to an |N |-tuple of characters minus their sum.

Proposition 4.30. For any tree and any abelian group G the morphism bi that assigns
a socket to a network is a group isomorphism.

Proof. Let n be a network. We know that the signed sum pv(add(n)) around each inner
vertex v is the neutral element. Hence

∑
v∈N pv(add(n)) = e, where e is the neutral

element. Consider an edge directed from v1 to v2, where v1, v2 ∈ N . Note that the group
elements n(v1, v2) and n(v1, v2)−1 appear in pv1(add(n)) and pv2(add(n)). We see that∑
v∈N pv(add(n)) =

∑
l∈L n(l). This means that the restriction of the network to leaves

gives a socket.
Given a socket s we can define a function n : E → G inductively, starting from leaves,

using the condition of summing to the neutral element around inner edges. The only
nontrivial thing is to notice that the sum around the root also gives the neutral element.
This follows from the previous equality

∑
v∈N pv(add(n)) =

∑
l∈L n(l) and the fact that

pv(add(n)) = e for each node v different from the root.

Each network naturally determines an element of the basis of (ŴE)GN , and each
socket determines an element of the basis of WG

L . The isomorphism in Theorem 4.22 just
uses the natural bijection (Proposition 4.30). This motivates the following definition.
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Definition 4.31 (Spaces W̃E , W̃L). We define the subspace W̃E := (ŴE)GN ⊂ ŴE .
Recall that basis elements of ŴE are indexed by elements of (G∗)E as in Remark 4.20.
The basis elements of W̃E correspond to elements of N.

We define the subspace W̃L := WG
L ⊂ WL. The basis elements of W̃L correspond to

assignments that form a socket—cf. proof of Lemma 4.8.

Using Theorem 4.22 we find that the variety X(T,W, Ŵ ) is the closure of the image
of the rational map induced by π ◦ ψ̂:

ψ̌ :
∏

Ŵe = C|G||E| → W̃L,

where the coordinates of the domain are indexed by pairs (e, χ) for e ∈ E and χ ∈ G∗.
The coordinates of the codomain are indexed by sockets (or equivalently networks). In
fact the codomain is a regular representation of the group N. In forthcoming sections we
will use the action of this group on the variety X(T,W, Ŵ ).

Note that for a fixed basis of a vector space, the points with nonzero coordinates form
an algebraic torus that acts on the space. Let us describe the affine map π ◦ ψ̂ in toric
terms.

Definition 4.32 (Lattices MS , Me, ME). To each edge e we associated a vector space
Ŵe with the distinguished basis given by ωχ. The points with nonzero coordinates in this
basis form an algebraic torus with the action given by coordinatewise multiplication. We
define Me to be the character lattice of this torus.

The product vector space
∏
e∈E Ŵe has a basis induced from each Ŵe. The points

with nonzero coordinates form an algebraic torus with the character lattice given byME .
The vector spaces W̃E

∼= W̃L have a distinguished bases with elements corresponding
to sockets. The points with nonzero coordinates form an algebraic torus with the character
lattice given by MS .

Let us note that the coordinate system on the vector space determines the basis of the
lattice. The basis of each lattice Me is indexed by characters. As ME =

⊕
e∈EMe, the

basis ofME is indexed by pairs (e, χ) where e is an edge and χ a character of G. The basis
elements of MS correspond to sockets or networks. The rational map ψ̌ :

∏
e∈EWe →

W̃E
∼= W̃L is an equivariant parametrization of a toric variety.

Definition 4.33 (Morphism ψ̃). ψ̃ : MS → ME is the morphism of lattices induced
by ψ̌.

In this setting the description of ψ̃ is particularly simple. Let fn ∈ MS be a basis
vector corresponding to a network n. The element ψ̃(fn) will be an element of the unit
cube in ME . Let h(e,χ) ∈ME be the basis vector corresponding to a pair (e, χ) ∈ E×G∗
and let h∗(e,χ) be its dual. We have

h∗(e,χ)(ψ̃(fn)) =

{
1 if n(e) = χ,

0 otherwise.

We come to the most important definition of this section.
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Definition 4.34 (Polytope P ). We define the polytope P ⊂ ME to be the convex hull
of the image of the basis of MS by ψ̃. In other words, the vertices of P correspond to
networks. More precisely, each vertex has 1 on coordinates indexed by pairs that form
a network, and 0 on other coordinates. Note that P is a subpolytope of the unit cube.
Hence all its integer points are vertices.

Example 4.35. Consider a tree T with one inner vertex and three leaves l1, l2 and l3.
Let G ∼= G∗ = Z2. The lattice MS is the 4-dimensional lattice generated freely by vectors
e(0,0,0), e(1,1,0), e(1,0,1), e(0,1,1) that correspond to sockets/networks on T . The latticeME

is a 6-dimensional lattice with basis vectors f(li,g) with 1 ≤ i ≤ 3 and g ∈ Z2. We have

ψ̂(e(a,b,c)) = f(l1,a) + f(l2,b) + f(l3,c).

Hence each vertex of P will have three coordinates equal to zero and three to one. Con-
sider the base of ME in the order f(l1,0), f(l1,1), . . . , f(l3,0), f(l3,1). The vertex correspond-
ing to e(0,0,0) is (1, 0, 1, 0, 1, 0). In the same order e(1,1,0) 7→ (0, 1, 0, 1, 1, 0), e(1,0,1) 7→
(0, 1, 1, 0, 0, 1) and e(0,1,1) 7→ (1, 0, 0, 1, 0, 1). These are of course all the vertices of P .

Remark 4.36. Suppose that a tree T has a vertex v of degree two. Let e1 = (u, v) and
e2 = (v, w) be respectively an incoming and outgoing edge. Consider any network n. We
have n(e1) = n(e2). Let T ′ be the tree obtained from T by removing the vertex v and
the edges e1, e2, and adding an edge (u,w). We see that the polytope associated to T is
isomorphic to the polytope associated to T ′.

The polytope P is the polytope associated to the toric variety X(T,G). The algebra of
this variety is the algebra associated to the monoid generated by P inME . The generating
binomials of a toric ideal associated to P correspond to integral relations between integer
points of this polytope (Corollary 2.6). Hence in our situation phylogenetic invariants
correspond to relations between networks. Each such relation can be described in the
following way. We number all edges of a tree from 1 to e. The networks are specific
e-tuples of group elements. For example, for the claw tree these are e-tuples of group
elements summing to the neutral element. Each relation of degree d between the networks
is encoded as a pair of matrices with d columns and e rows with entries that are group
elements. We require that each column represents a network. Moreover, the rows of both
matrices are the same up to permutation.

Example 4.37. Consider the binary Jukes–Cantor model and the tree

v1 (4.1)

The leaves adjacent to v1 have numbers 1 and 2. We assign 3 to the inner edge. An
example of a relation is given by the pair of matrices
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1 0

0 1

1 1

1 0

0 1

0 0


,



0 1

1 0

1 1

1 0

0 1

0 0


.

The numbers 0 and 1 are treated as elements of Z2. By the definition of the socket the
third row has to be the sum of both the first two and the last three rows.

Note that P does not have to generate the lattice ME .

Definition 4.38 (Lattice M̂E). We define the lattice M̂E as the sublattice of ME gen-
erated by the vertices of P .

The lattices defined so far corresponded to affine objects. A rational map from a vector
space to its projectivization is well defined at points with nonzero coordinates. Hence it
induces a surjective morphism of tori, which corresponds to an injective morphism of
character lattices.

Definition 4.39 (Degree functions dege). Note that for a character lattice M with a
distinguished basis we can define a function deg : M → Z that sums the coordinates.
The degree of a lattice element is the degree of the monomial function associated to it.
For the lattices Me the corresponding degree functions are denoted by dege.

Definition 4.40 (Lattices MS,0, ME,0 and M̂E,0). For a lattice MS we define MS,0 as
the sublattice of elements with coordinates summing to zero. In particular MS,0 is the
character lattice of the torus whose points are identified with points of P(W̃E) with all
coordinates different from zero.

We defineME,0 to be the sublattice ofME defined by the equalities dege = 0 for each
edge e. This is the character lattice of the torus whose points are identified with points
of
∏

P(We) with all coordinates different from zero.
We define M̂E,0 := ME,0∩ M̂E . This is the character lattice of the torus whose points

are identified with points of the projective toric variety P(X(T )) with all coordinates
different from zero.

Recall that the basis of the latticeME is indexed by pairs (e, χ) where e is an edge and
χ is a character of G. Also to each such pair we can associate a one-parameter subgroup
in the dual of ME . It is given as a morphism from ME to Z that is the dual vector to
the vector of the base of ME that is indexed by the pair (e, χ). In particular for each leaf
l and character χ ∈ G∗ we obtain a one-parameter subgroup λχl . Using the morphism
dual to ψ̃ : MS → ME , for each pair (e, χ) we obtain a one-parameter subgroup in the
lattice dual to MS . For each t ∈ C∗ we have an action of λχl (t) on A(|L|−1)×|G| ⊃ X. The
weight of this action on the coordinate indexed by a socket s is either 1 or 0 depending
on whether the socket s associates to the leaf l the character χ or not.

Remark 4.41. In [BW07] the authors considered only one one-parameter subgroup for
each leaf although their group had two elements. Notice however that in our notation for
the group Z2 the weights of the action of λ0l are completely determined by the weights
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of the action of λ1l—one type weights are negations of the others. In our notation the
authors of [BW07] considered only λ1l .

The setting presented here, where an abelian group G acts transitively and freely on
the set of states, is best understood. The models obtained in this way are called general
group-based models. Although this definition is quite clear, the question what is a group-
based model is much less obvious. This motivates the discussion of the next section.

4.2. Notation. In Section 4.1 we have introduced the general group-based models. The
key point of the definition was that the vector space Ŵ was given as a subspace of EndW

invariant under the action of an abelian group that acts transitively and freely on the
basis of W . This setting enabled us to apply the discrete Fourier transform and associate
toric varieties with the models. There are a few possibilities to generalize this construction
depending on the assumptions on the group, its action on the space W and properties of
the associated variety.

The first idea would be to consider any action of any group on W . An even more
general construction is presented in [DK09], where the vector space W may vary depend-
ing on the vertex of the tree. Such models are called equivariant models. Of course, in
this case, in general one cannot apply the discrete Fourier transform, as the group G is
not abelian. Moreover, if G is small the transition matrices may be too general and the
associated variety will not be toric. For example, if G has only one element it is abelian.
However, the corresponding model is just the general Markov model. The varieties associ-
ated to this model are an object of intensive study: see for example [AR08] and references
therein. They are far from being toric, and establishing their properties even for the sim-
plest tree is a great challenge. For example, it is an open problem to determine the ideal
in the case of the tripod.

As we want to work with toric varieties, it is reasonable to make further assumptions.
Let us notice that the adjective “general” indicates that other group-based models should
be more specific. In other words, the subspace Ŵ for a group-based model should contain
specific transition matrices of a general group-based model. Thus we fix an abelian group
H that acts on the spaceW transitively and freely. A group-based model will be obtained
by requiring further conditions on the space of transition matrices.

Before stating some definitions, let us present the state of the art. In the literature
one can find many references to group-based models [SS05], [APRS11], [PS05, p. 327].
In this setting one assumes that there is a bijection between elements of an abelian
group and elements of S, as in general group-based models. One also requires that the
entries of the transition matrices depend only on the difference of the group elements
labelling the row and the column of the given entry. However, we allow the parameters for
different differences to be the same—a formal definition is presented in Definition 4.43.
This is a very general definition that covers many models, like Jukes–Cantor on any
number of states, 2-Kimura or any general group-based model. However, for example in
[APRS11], [SS05, p. 460], one can also find theorems, usually referring to [ES93], that
group-based models are toric. This would require an additional assumption, e.g. that the
invertible matrices in the model form a group—otherwise see Appendix 1, where after the
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Fourier transform we do not get monomials but polynomials. The reason is that equality
of variables before Fourier transform does not imply equality of parameters after the
transform. We stress that the fact that Jukes–Cantor and 2-Kimura give rise to toric
varieties was known before. To give a formal definition of group based-models we use a
method of labellings by Sturmfels and Sullivant [SS05, Section 3].

Definition 4.42 (Labelling function). Let Lab be any finite set and H an abelian group.
A labelling function is any function f : H → Lab.

Later, we will consider special labellings, induced by group actions, which will turn
out to have interesting properties.

Definition 4.43 (Group-based model). We define group-based models by specifying the
space Ŵ of transition matrices. Suppose that an abelian group H acts on the set S of
states transitively and freely. For any s1, s2 ∈ S we define a morphism ps1,s2 : EndW → C
by ps1,s2(M) = s∗2(M(s1)) where s1 ∈W is an element of the basis and s∗2 is an element
of the dual basis. Let gs1,s2 ∈ H be the unique element sending s1 to s2.

We fix any labelling function f on H. We define Ŵ as the largest subspace of tran-
sition matrices M satisfying the following condition: For any s1, s2, s3, s4 ∈ S such that
f(gs1,s2) = f(gs3,s4) we have ps1,s2(M) = ps3,s4(M).

Less formally but more intuitively, one labels the rows and columns of transition
matrices with elements of H. The condition is that the entries labelled by (g1, g2) and
(g3, g4) are equal if (f(g1), f(g2)) = (f(g3), f(g4)). Notice that the space Ŵ is obtained
from the space of transition matrices of a general group-based model by specific hyper-
plane sections. It is important to understand that in this setting the class of group-based
models is much larger than the class of general group-based models. The latter are called
“general” because the space Ŵ is the most general. They correspond to labellings that are
injective. This is a motivation for the next section. We will distinguish a class of group-
based models, called G-models. For them, we will require that the labelling is given by
a specific group action. In this setting the associated varieties will be toric, and we will
provide an explicit description of the polytope.

4.3. G-models. This section contains results from [Mic11]. Our main aim is to introduce
the general framework that would include all models of interest described as group-based,
but still would give rise to toric varieties with an explicit construction of the associated
polytope.

The setting of this section is sufficiently general to cover many Markov processes,
in particular this will be a generalization of the results of Section 4.1. However, the
inspiration is the 2-Kimura model, that is, the phylogenetic model in which the transition
matrices are of the following type: 

a b c b

b a b c

c b a b

b c b a

 .
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In this case, as in the previous section, we also have an abelian group, H = Z2 × Z2,
that acts on the basis (A,C,G, T ) of a 4-dimensional vector space W . As we have seen,
the fixed points of the action ofH onW⊗W define the 3-Kimura model. We may however
define a larger group G, namely the dihedral group of order 8, which contains H as a
normal subgroup. The action of G on W ⊗W defines the 2-Kimura model. Details of this
construction can be found in [BDW09]. This motivates the following setting.

Let S be an n-element set of states. Let G be a subgroup (1) of Sn = Sym(S) acting
on S. Suppose moreover that the group G contains a normal, abelian subgroup H and
the action of H on S is transitive and free. Elements of S once again correspond to states
of vertices of a phylogenetic tree T . We define W as in Definition 3.1.

The basic difference from the abelian case is that we define elements of Ŵ as matrices
fixed not only under the action of H, but under the whole action of G. We assume that
End(W ) ∼= W ⊗W (cf. Remark 3.5).

Definition 4.44. Let

Ŵ =
{ ∑
ai,aj∈S

λai,ajai ⊗ aj : λai,aj = λg(ai),g(aj) ∀g ∈ G
}
.

Remark 4.45. The characterization of Ŵ from Remark 4.4 is still valid. However, by
additional symmetries the dimension is different.

Remark 4.46. The situation of the previous section corresponds to G = H.

Remark 4.47. As before, by choosing an element e ∈ S we make a bijection between
S and H. An element associated to a ∈ S will be denoted by ha ∈ H. The element e
corresponds to the neutral element of H and is the index of the first row of transition
matrices. Notice that the action of G on S (as permutations) will not generally be the
same as the action of G on H (as a group).

We will often use the following easy observation.

Lemma 4.48. Suppose that h ∈ H as a permutation sends a to b, where a, b ∈ S. Then
h = hbh

−1
a .

Proof. Both elements send a to b, so because H acts on S freely, they have to be equal.

Definition 4.49 (G-model). Let G be a finite group acting on a finite set S. Suppose
that G contains a normal, abelian subgroup H that acts on the set S transitively and
freely. A G-model is an algebraic variety X(T,W, Ŵ ) for W and Ŵ as in Definitions 3.1
and 4.44.

Our aim is to provide the description of the associated toric varieties in this generalized
setting. We will proceed in four steps.

(i) We introduce a general method for constructing endomorphisms ofW from complex
functions onH. We prove that under certain conditions (namely a function should be
constant on orbits of the conjugation action of G on H), the resulting endomorphism

(1) Not necessarily abelian.
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is in Ŵ . Such functions can be regarded as a generalization of class functions to pairs
of groups.

(ii) We prove that some sums (over the orbits of the action of G on H∗) of characters
of H are functions that can define elements of Ŵ . We also notice that we obtain a
set of independent vectors of Ŵ .

(iii) Using dimension arguments we prove that the set defined in step (ii) is in fact a
basis.

(iv) Finally, using theorems from Section 4.1, we provide, using the new coordinates, the
toric description of the variety.

Definition 4.50. We define ŴH to be the vector space of matrices fixed under the action
of H.

Remark 4.51. From the previous subsection we know that the closure of the image of
the map

ψ :
∏
e∈E

P((̂WH)e) 99K P(WL)

is a toric variety. Moreover, we have found the base in which the described morphism
is given by monomials. As Ŵ ⊂ ŴH , our aim is to find a monomial description of the
above map. We will use the base on ŴH to define the base of Ŵ .

Step 1: Correspondence between functions on H and endomorphisms of W . We are going
to define some endomorphisms of W .

Definition 4.52. Let f : H → C be any function. We define

lf =
1

|H|
∑
a,b∈S

f(h−1a hb)a⊗ b.

Remark 4.53. Notice that by Proposition 4.7 this definition is consistent with the defi-
nition of lχ for χ ∈ H∗. Moreover, the vector lf depends only on the function f and not
on the bijection between S and H, as h−1a hb is the only element from H that sends a
to b.

Proposition 4.54. Consider the conjugation action of G on H:

(g, h) 7→ ghg−1.

If f is constant on orbits of this action then lf ∈ Ŵ .

Proof. Fix g ∈ G. We focus on two entries of the matrix lf , namely (a1, b1) and (a2, b2),
where

g(a1) = a2 and g(b1) = b2.

From the definition of lf these entries are respectively f(h−1a1 hb1) and f(h−1a2 hb2). By Re-
mark 4.4 we want to prove that f(h−1a1 hb1)=f(h−1a2 hb2). Consider the element ghb1h−1a1 g

−1.
Clearly it is in H (because H is a normal subgroup of G) and sends a2 to b2. From Lem-
ma 4.48 we obtain

ghb1h
−1
a1 g
−1 = hb2h

−1
a2 .

This completes the proof, as f is constant on orbits of the conjugation action.
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Step 2: Appropriate functions on H. In the abelian case we considered the characters of
H. As G was equal to H, these functions were of course constant on (one-element) orbits
of the action of G on H. In the general case it may happen that we do not have the
equality

χ(ghg−1) = χ(h).

Of course this equality holds if the character of H extends to a character of G, but this
is not always the case. If we define the vectors lχ for χ ∈ H∗ they may not be in Ŵ . To
obtain the vectors in Ŵ we will sum some characters to obtain functions that satisfy the
condition of Proposition 4.54. Consider the action of G on H∗ given by

χg(h) = χ(ghg−1).

Let O be the set of orbits of this action. The elements of O give a partition of H∗. Let
us define for each o ∈ O a function fo : H → C.

Definition 4.55 (Function fo). Let fo =
∑
χ∈o χ. Here we are summing characters as

complex-valued functions, not as characters, so this is the usual sum, not the product.
We obtain lfo =

∑
χ∈o lχ.

Proposition 4.56. The function fo satisfies the conditions of Proposition 4.54, that is,
it is constant on orbits of the conjugation action of G on H.

Proof. As the action of g′ is a permutation of the orbit o, we have

fo(g
′hg′−1) =

∑
χ∈o

χ(g′hg′−1) =
∑
χ∈o

(g′, χ)(h) =
∑
χ∈o

χ(h) = fo(h).

Corollary 4.57. The vectors lfo for o ∈ O are in Ŵ . Moreover, as lχ forms a basis
of ŴH , and lfo are sums over a partition of this basis, they are independent.

Proposition 4.58. Any complex function constant on orbits of O is a linear combination
of the functions fo.

Proof. Let f be a function constant on orbits. As the characters of H span the space of
all functions, we know that f =

∑
χ∈H∗ aχχ. We have to prove that the coefficients of χ

in the same orbit are the same. Let χg1 = χ2. We know that for any h ∈ H we have∑
χ∈H∗

aχχ(h) = f(h) = f(ghg−1) =
∑
χ∈H∗

aχχ(ghg−1) =
∑
χ∈H∗

aχχ
g(h).

From the linear independence of characters we see that aχ1
= aχ2

, which completes the
proof.

Corollary 4.59. The number of orbits in O (and so the number of vectors lfo) is equal
to the number of orbits of the conjugation action of G on H.

Proof. This follows by comparing the dimensions of the spaces of complex functions on
H that are constant on orbits.

Step 3: Dimension of Ŵ . We are going to prove that the dimension of Ŵ is equal to
the number of orbits, |O|. First note that all the entries of any matrix in Ŵ (in the
basis S) are determined by the entries in the first row. This follows from Section 4.1. We
see that dim Ŵ is equal to the number of independent parameters in the first row, which
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is indexed by e. The action of G imposes some conditions, namely the entry in the eth
row and ath column and the entry in the eth row and bth column for a, b ∈ S have to be
equal if and only if there exists g ∈ G such that

g(e) = e and g(a) = b.

Lemma 4.60. The following conditions are equivalent:

(i) there exists g ∈ G that sends e to e and a to b,
(ii) ha and hb are in the same orbit of the action (g, h) = ghg−1.

Proof. Of course ha and hb are in the same orbit if and only if h−1a and h−1b are in the
same orbit. For the proof we use the latter variant.

(i)⇒(ii): From Lemma 4.48 we know that gh−1a g−1 = h−1b , because both sides send b
to e.

(i)⇐(ii): Suppose that gh−1a g−1 = h−1b . Let g′ = h−1b ghg−1(b). The element g′ sends e
to e, but g′ = gh−1a hg−1(b), hence it also sends a to b.

Proposition 4.61. The dimension of Ŵ is equal to |O|.

Proof. Classes of equal parameters in the first row of matrices in Ŵ correspond bijectively
to orbits of the action of G on H, from Lemma 4.60 and remarks at the beginning of this
subsection. By Corollary 4.59 this finishes the proof.

Corollary 4.62. The elements lfo for o ∈ O form a basis of Ŵ .

Proof. The vectors lfo are independent by Corollary 4.57. Their number equals the di-
mension of the space by Proposition 4.61.

Step 4: Toric description of G-models. Consider the basis of Ŵe consisting of the vectors
lfo . We consider the inclusion map i : Ŵe → (̂WH)e in the bases consisting respectively of
lfo and lχ. We know that lfo =

∑
χ∈o lχ. Let us describe the morphism i in the coordinates

corresponding to the basis lfo of Ŵe and to the basis lχ of (̂WH)e. Fix χ ∈ o. We have
l∗χ(i(x)) = l∗fo(x).

This shows that the map from
∏
e∈E P(Ŵe) to P(WL) that parametrizes the model is

also given by monomials—these are exactly the monomials from Section 4.1, where we
just set some variables equal to each other. Let us describe which variables are identified.
We recall that variables in the abelian case correspond to networks. Fix two networks n1
and n2. We identify them if and only if for each edge e the characters n1(e) and n2(e)

are in the same orbit of the adjoint G action.
We have the following commutative diagram:∏

e∈E P(Ŵe) → P(ŴE) 99K P(WL)

↓ ↓ l∏
e∈E P(ŴHe) → P(ŴHE) 99K P(WL)

This proves the main theorem of this section.

Theorem 4.63. Let G be a finite group that acts faithfully on a finite set S. Let H be a
normal, abelian subgroup of G. Suppose that the action of H on S is transitive and free.
Let Ŵ be the space of matrices invariant with respect to the action of G and let W be
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the vector space spanned freely by the elements of S. Then the G-model X(T,W, Ŵ ) is
toric for any tree T . Its polytope is a projection of the polytope associated to the general
group-based model for H. The projection is determined by the adjoint action of G on H.

We will now describe the lattices of characters of the tori that appear in the con-
struction. As in Section 4.1, there is a lattice MS with basis elements corresponding to
sockets, and two lattices M̂E,H ⊂ ME,H . The letter has basis elements indexed by pairs
(e, χ) where e ∈ E is an edge of the tree and χ ∈ H∗ is a character.

Definition 4.64 (Lattice ME,G). Let ME,G be the lattice with basis elements indexed
by pairs (e, o), where e ∈ E and o is an orbit of the adjoint action of G on H∗.

Let fe,χ ∈ ME,H be the basis element indexed by the pair (e, χ). Let fe,o ∈ ME,G

be the basis element indexed by (e, o). There is a natural projection ME,H → ME,G; to
fe,χ we associate fe,o, where χ ∈ o. The image of a polytope P ⊂ ME,H for the general
group-based model is a polytope P̃ that is associated to the variety representing the G-
model. Hence P̃ is a subpolytope of a unit cube. An element

∑
e∈E fe,oe is a vertex of P̃

if and only if there exist characters χoe ∈ oe such that
∑
e∈E fe,χoe

is a vertex of P . The
lattice spanned by P̃ will be denoted by M̂E,G. The following diagram commutes:

MS
//

""

ME,H

��
ME,G

The morphisms fromMS correspond to embeddings of both models in an affine space. The
vertical surjective morphism corresponds to inclusion of models. Indeed, by introducing
new conditions on transition matrices for a G-model we restrict the image, hence there
is a natural inclusion in a general group-based model.

We finish this section by presenting relations of G-models to labellings of Defini-
tion 4.42. From Lemma 4.60 it follows that the entries of the transition matrix labelled
respectively by (h1, h2) ∈ H2 and (h3, h4) ∈ H2 are equal if h−11 h2 and h−13 h4 are in the
same orbit of the adjoint action of G on H. Let Lab be the set of orbits of the adjoint
action of G on H. The labelling function f : H → Lab associates to an element its orbit.

Definition 4.65 (m-friendly labelling, friendly labelling [SS05, Definition 8]). Let H be
any abelian group and Lab any finite set. Fix a labelling function f : H → Lab. For
m ≥ 3 consider the set

Z =
{

(g1, . . . , gm) ∈ Hm :

m−1∑
i=1

gi = gm

}
.

Consider the induced map f̃ : Z ⊂ Hm → Labm and denote by πi the projection
πi : Hm → H onto the ith coordinate. The function f is called m-friendly if, for every
l = (l1, . . . , lm) ∈ f̃(Z) ⊂ Labm,

πi(f̃
−1(l)) = f−1(li) for all i = 1, . . . ,m.

A labelling is friendly if it is m-friendly for all m ≥ 3.
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Lemma 4.66. The labellings for G-models are friendly.

Proof. Fix an m-tuple of orbits (o1, . . . , om) for the adjoint action of G on an abelian
normal subgroup H. Suppose that there exist hi ∈ oi such that

∏m−1
i=1 hi = hm. Fix

any h̃i0 ∈ oi0 . There is g ∈ G such that h̃i0 = ghi0g
−1. Consider the element (gh1g

−1,

. . . , ghmg
−1). Let f̃ and πi be as in Definition 4.65. Of course f̃(gh1g

−1, . . . , ghmg
−1) =

(o1, . . . , om). Moreover, πi0(gh1g
−1, . . . , ghmg

−1) = h̃i0 , which proves that the labelling
is friendly.

The main reason for introducing friendly labellings is that they allow one to apply
an important inductive procedure. Assuming that we are dealing with a model given by
friendly labelling, the variety associated to any tree T can be described in terms of the
varieties associated to claw trees. The polytope associated to a tree T is a fiber product
of polytopes associated to claw trees. More information can be found in Section 4.5 and
[Sul07], [SS05, Lemma 12].

At this point we should make a remark about the difference between group elements
and characters. To define the space of transition matrices for a G-model we used a G
action on End(W ). We considered the basis of W that corresponded to states, or by
choosing a bijection to elements of an abelian group. The adjunction action of G on H
allowed us to define the labelling that described the G-model. Note however that this
is not the labelling that identifies the coordinates of the parametrization of the variety.
In the latter case the variables correspond to pairs (e, χ) where χ ∈ H∗. The labelling
identifies the variables corresponding to pairs with characters on the second coordinate
that are in the same orbit. Hence the set of labels is the set of orbits of the adjoint action
of G on H∗. The labelling associates to a character its orbit in the adjoint action. The
same proof as for Lemma 4.66 shows that this is also a friendly labelling.

4.4. Example of a 2-Kimura model. In this subsection we will show how the con-
struction from the previous subsection works on Kimura models. We will also present
an algorithm for constructing a polytope of a model for a given group G with a normal
subgroup H. The method was described in a different language in [SS05]. The main dif-
ference (apart from the notation) is that the authors assumed the existence of a friendly
labelling function that described which characters are identified. In the case of G-models
we know this function exactly: it associates to a given character its orbit under the G
action. This is a friendly labelling.

If G = H the construction is particularly easy. The polytope has |G||E|−|N | vertices
and the algorithm works in time O(|N |(|G||E|−|N |)) assuming that we can perform group
operations in unit time.

Algorithm 1. INPUT: A rooted tree T and an abelian group G.
OUTPUT: Vertices of the polytope associated to the toric variety representing the

model for the tree T and the group G.

(i) Orient the edges of the tree from the root.
(ii) For each inner vertex choose one outgoing edge.
(iii) Fix a bijection b : G→ B ⊂ Z|G|, where B is the standard basis of Z|G|.
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(iv) Consider all possible assignments of elements of G to nonchosen edges (there are
|G||E|−|N | such assignments).

(v) For each such assignment, complete the assignment by assigning an element of G to
each chosen edge in such a way that the signed sum of elements around each inner
vertex gives the neutral element in G.

(vi) For each complete assignment, output the vertex of the polytope: (b(ge)e∈E), where
ge is the element of the group assigned to the edge e.

Example 4.67. For the 3-Kimura model corresponding to the group Z2 × Z2 on a tree
with one inner vertex and three leaves, the vertices of P correspond to triples of characters
of the group that sum to the neutral character:

1) (0, 0), (0, 0), (0, 0), 2) (0, 0), (1, 0), (1, 0), 3) (1, 0), (0, 0), (1, 0),
4) (1, 0), (1, 0), (0, 0), 5) (0, 0), (0, 1), (0, 1), 6) (0, 1), (0, 0), (0, 1),
7) (0, 1), (0, 1), (0, 0), 8) (0, 0), (1, 1), (1, 1), 9) (1, 1), (0, 0), (1, 1),
10) (1, 1), (1, 1), (0, 0), 11) (0, 1), (1, 0), (1, 1), 12) (0, 1), (1, 1), (1, 0),
13) (1, 0), (1, 1), (0, 1), 14) (1, 0), (0, 1), (1, 1), 15) (1, 1), (0, 1), (1, 0),
16) (1, 1), (1, 0), (0, 1).

In the coordinates of the lattice, this gives us vertices of the polytope:

1) (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0), 2) (1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0),
3) (0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), 4) (0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0),
5) (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0), 6) (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0),
7) (0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0), 8) (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1),
9) (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1), 10) (0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0),
11) (0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1), 12) (0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0),
13) (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0), 14) (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1),
15) (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0), 16) (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0).

The basis for Ŵ for 3-Kimura (in previous notation, the vectors lχ =
∑
χ(h−1a hb)a⊗b)

is the following:

l1 =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 , l2 =


1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

,

l3 =


1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

 , l4 =


1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

.
For the 2-Kimura model the four elements of H, treated as permutations decomposed
into cycles, are:

(1)(2)(3)(4); (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3).

The group G is spanned by H and the transposition (3, 4).
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If we consider the action of G on H∗ we obtain the following three orbits:

(i) The orbit of the trivial character. It contains only the trivial character, so the vector

f1 =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


is in ŴG and will be considered as the first basis vector.

(ii) The orbit of the character that assigns −1 to (1, 3)(2, 4) and (1, 4)(2, 3) and 1 to
other elements. It also has only one element. For example,

χ((3, 4)(1, 3)(2, 4)(3, 4)) = χ((1, 4)(2, 3)) = −1 = χ((1, 3)(2, 4)).

This means that the vector

f2 =


1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1


is a basis vector of ŴG.

(iii) The orbit that contains the remaining two characters. If we take their sum (as
functions, not characters) we obtain a function that associates 2 to (1)(2)(3)(4),
−2 to (1, 2)(3, 4) and 0 to the other two elements. This gives

f3 =


2 −2 0 0

−2 2 0 0

0 0 2 −2

0 0 −2 2

 .
This is the sum of the other two lχ.

We obtain f1 = l1, f2 = l4, f3 = l2 + l3. Let F = {f1, f2, f3} and L = {l1, . . . , l4}. From
the previous section we know that F is a basis of ŴG and L is a basis of ŴH . This can
be checked directly in this example. Let us now look at the map for the tripod tree .
Elements of ŴG are special elements of ŴH . We have a map

(feij )j=1,2,3, i=1,2,3 → (leij )j=1,...,4, i=1,2,3.

Here j parametrizes base vectors and i parametrizes edges. Our model is the composition
of this map and a model map for H. The image of the first map is given by the condition
that the coordinates corresponding to lei2 and lei3 are equal for i = 1, 2, 3. Let us see this
directly.

The fixed bijection b from Algorithm 1 is the following:

b(e) = (1, 0, 0, 0), b(χ3) = (0, 1, 0, 0),

b(χ1) = (0, 0, 1, 0), b(χ2) = (0, 0, 0, 1),

where χ1 and χ3 are in the same orbit. The domain of ψ̂ for the groupH is {(x1, . . . , x12) :

xi ∈ C} in the order as in Example 4.67 (we fix an isomorphism with χ1 = (1, 0) and
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χ3 = (0, 1)). Hence the subspace
∏
e∈E(ŴG)e is given by the conditions x2 = x3 (the

coordinates of l2 and l3 for Ŵ e1
H ), x6 = x7, x10 = x11.

This procedure works generally. After having fixed the polytope for a subgroup H

that is in the lattice M (whose coordinates are indexed by edges and characters of H),
we consider a morphism from M onto the lattice M ′ (whose coordinates are indexed by
edges and orbits of characters of H) that just assigns a character to a given orbit. This
morphism sums coordinates that are in the same orbit of the action of G on H∗. The
image of the polytope P is the polytope of our model. For 3-Kimura we sum coordinates
ordered as in Example 4.67 obtaining a polytope for the 2-Kimura model:

1) (1, 0, 0, 1, 0, 0, 1, 0, 0), 2) (1, 0, 0, 0, 1, 0, 0, 1, 0),
3) (0, 1, 0, 1, 0, 0, 0, 1, 0), 4) (0, 1, 0, 0, 1, 0, 1, 0, 0),
5) (1, 0, 0, 0, 1, 0, 0, 1, 0), 6) (0, 1, 0, 1, 0, 0, 0, 1, 0),
7) (0, 1, 0, 0, 1, 0, 1, 0, 0), 8) (1, 0, 0, 0, 0, 1, 0, 0, 1),
9) (0, 0, 1, 1, 0, 0, 0, 0, 1), 10) (0, 0, 1, 0, 0, 1, 1, 0, 0),
11) (0, 1, 0, 0, 1, 0, 0, 0, 1), 12) (0, 1, 0, 0, 0, 1, 0, 1, 0),
13) (0, 1, 0, 0, 0, 1, 0, 1, 0), 14) (0, 1, 0, 0, 1, 0, 0, 0, 1),
15) (0, 0, 1, 0, 1, 0, 0, 1, 0), 16) (0, 0, 1, 0, 1, 0, 0, 1, 0).

After removing double entries we get the following vertices:

1) (1, 0, 0, 1, 0, 0, 1, 0, 0), 2) (1, 0, 0, 0, 1, 0, 0, 1, 0),
3) (0, 1, 0, 1, 0, 0, 0, 1, 0), 4) (0, 1, 0, 0, 1, 0, 1, 0, 0),
5) (1, 0, 0, 0, 0, 1, 0, 0, 1), 6) (0, 0, 1, 1, 0, 0, 0, 0, 1),
7) (0, 0, 1, 0, 0, 1, 1, 0, 0), 8) (0, 1, 0, 0, 1, 0, 0, 0, 1),
9) (0, 1, 0, 0, 0, 1, 0, 1, 0), 10) (0, 0, 1, 0, 1, 0, 0, 1, 0).

4.5. Further notation and applications. In this section we will introduce notation
concerning specific group-based models. We start by introducing the so called “time-
reversibility” condition. This condition forces the transition matrices to be symmetric
[PS05, Lemma 17.2]. It is satisfied for many models considered in applications, for example
for the 3-Kimura model. One can notice that a general group-based model gives rise to
symmetric transition matrices if and only if all nonneutral group elements are of order
two. We have to point out that in the literature one often adds to the definition of group-
based models the requirement that matrices are symmetric [BDW09], [PS05, p. 328]. We
do not use this convention. This leads to the following definition.

Definition 4.68 (general symmetric group-based model, symmetric group-based model).
Let H be an abelian group acting transitively and freely on the set S of states. We define
the general symmetric group-based model as the model associated to the vector space Ŵ
given as the maximal space of symmetric matrices invariant with respect to the H action.

Analogously we define a symmetric group-based model as a model associated to a
subspace of Ŵ given by hyperplane sections that make some parameters of the transition
matrices equal.
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Symmetric group-based models do not have to be toric. For a counterexample, one
can consider the general group-based model for Z6. The transition matrices are of the
following type: 

a b c d e f

f a b c d e

e f a b c d

d e f a b c

c d e f a b

b c d e f a


Let us consider a symmetric submodel with transition matrices of the type

a a c d c a

a a a c d c

c a a a c d

d c a a a c

c d c a a a

a c d c a a


.

After the Fourier transform we do not get a map given by monomials—see Appendix 1.
However, the general symmetric group-based models belong to the class of G-models. In
particular, we can provide an explicit toric description.

Proposition 4.69. General symmetric group-based models are special G-models.

Proof. Suppose that H is any abelian group. Let G be a semidirect product of H by
Z2 where the action of 1 ∈ Z2 on h gives h−1. In this case the subspace invariant with
respect to the G action gives the general symmetric group-based model.

There are two abelian groups of order 4. For Z2 × Z2 the general symmetric group-
based model is the same as the general group-based model, and is the 3-Kimura model.
For Z4 the general symmetric group-based model is the 2-Kimura model. Notice however
that the class of general symmetric group-based models does not include Jukes–Cantor
on four states, which is a G-model. It can be obtained for example by an embedding of
Z2 × Z2 in S4 as a normal subgroup; more precisely, as {id; (12)(34); (13)(24); (14)(23)}.

We would like to finish this subsection by restating the results of Sturmfels and Sul-
livant obtained for group-based models, in the case of G-models. We have seen that to
each tree T and a G-model we can associate a polytope P . Fix a group G with a normal
abelian subgroup H. The polytope P defines a projective toric variety as described in Sec-
tion 2, and this is the variety representing the model. For the general group-based model
the points of P correspond to networks (Definition 4.24), that is, special assignments of
characters of a group to edges of the tree. Using the labelling method we identify two
networks if for each edge the associated characters are in the same orbit of the adjoint
action of G on H∗.

Definition 4.70 (Join of two trees, split of a tree into two subtrees). Fix a tree T with
an inner edge e = (v1, v2). We distinguish two subsets S1 and S2 of vertices of T . The set
S1 contains all descendants of v1, including v1. The set S2 contains all vertices that are
not descendants of v2, including v2. Let T1 and T2 be induced subtrees of T with vertices
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given respectively by S1 and S2. Note that the edge e is a distinguished leaf both in T1
and T2. One can specify the roots of T1 and T2 arbitrarily. The canonical choice is to take
respectively v1 and v2.

We call the trees T1 and T2 the split of T . The tree T is a join of T1 and T2 (with a
distinguished edge e).

Friendly labellings allow describing the polytope associated to T as a fiber product
of the polytopes associated to T1 and T2. In particular we can give a description of the
polytope of any tree knowing just the polytopes associated to claw trees [Sul07], [KR14].

Recall that the polytope associated to the tree T is contained in the latticeME,G with
the basis given by pairs (k, o), where k is an edge of T and o is an orbit of the adjoint G
action on H.

Fact 4.71 ([Sul07, Theorem 12], [SS05, Theorem 23]). Let T be a join of two trees T1
and T2 with a distinguished edge e. Let M be the lattice associated to the tree T . Consider
a G-model associated to a group G with a normal abelian subgroup H. Let M1 and M2 be
the corresponding lattices for the trees T1 and T2. Let Me be the lattice generated by the
basis elements (e, o), where o is any orbit of the adjoint G action on H and e is a fixed
edge. There are natural projections p1 : M1 →Me and p2 : M2 →Me.

The polytope associated to the tree T is a fiber product over the projections p1 and p2
of the polytopes associated to the trees T1 and T2.

4.6. Normality of G-models. We have seen that the models associated to a group
containing a normal, abelian subgroup are toric. The monomial parametrization map is
sufficient for applications. However, for an algebraic geometer this would not be enough,
as one would also need to prove the normality of these varieties. We will now address
this problem. By normality we will mean projective normality, that is, normality of the
affine cone equivalent to normality of polytopes. We will see that in general one cannot
expect a G-model to be normal, but in many cases it is. First let us start with a technical
lemma. Different versions of it that worked only for polytopes with a unimodular cover
were presented in [BW07] and [Zwi]. Recently these results were generalized in [EKS14].

Lemma 4.72. Let P1 and P2 be two normal polytopes contained respectively in lattices
L1 and L2 spanned by the points of the polytopes. Suppose that we have morphisms
pi : Li → L of lattices for i = 1, 2 such that pi(Pi) ⊂ S, where S is a standard sim-
plex (the convex hull of the standard basis). Then the fiber product P1×L P2 is normal in
the lattice spanned by its points.

Proof. Let q ∈ n(P1 ×L P2) for some positive integer n. Let qi be the projection of q
to Li. Suppose q is in the lattice spanned by the points of P1 ×L P2. Hence q is equal to
the sum of points that belong to P1 ×L P2 with integral coefficients summing to n. We
know that it is in the convex hull of n(P1×L P2). Hence each qi is the sum of points that
belong to Pi with coefficients summing to n, and is in the convex hull of nPi. This means
that qi ∈ nPi ∩ Li. From the assumptions we obtain

qi =

n∑
j=1

vij ,
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with each vij ∈ Pi. We also know that p1(q1) = p2(q2), and this is an element of nS. More-
over, pi(vij) ∈ S. Notice that each element of nS can be uniquely written as the sum of n el-
ements of S. This means that the collections (p1(v11), . . . , p1(v1n)) and (p2(v21), . . . , p2(v2n))

are the same up to permutation, so we can assume that p1(v1j ) = p2(v2j ). Thus we can lift
each pair (v1j , v

2
j ) to a point vj ∈ P1 ×L P2 that projects respectively to v1j and v2j . One

obtains q =
∑n
j=1 vj , which completes the proof.

By Fact 4.71 the polytope associated to a tree with more than one inner vertex is
the fiber product of polytopes associated to trees with a strictly smaller number of inner
vertices. By Lemma 4.72, if we want to prove normality of a polytope associated to
any trivalent tree we only have to consider normality of a polytope for a tripod. More
generally, if we want to prove normality of a polytope associated to a tree with vertices
of valency less than or equal to m we have to check the normality of polytopes associated
to claw trees with at most m leaves.

Proposition 4.73. Let us consider a trivalent tree. The G-models for the abelian groups
Z2, Z2 × Z2, Z3 and Z4 are normal.

Proof. One can find the polytopes for the tripod and check their normality using the
Macaulay computer program [GS]. The proposition then follows from Lemma 4.72.

Proposition 4.74. The polytope of the 2-Kimura model for the tripod is not normal.
Moreover, the projective variety associated to the model is not normal.

Proof. As the second part of the statement is stronger, we prove only that part. The
polytope P of the 2-Kimura model has vertices

1) (1, 0, 0, 1, 0, 0, 1, 0, 0), 2) (1, 0, 0, 0, 1, 0, 0, 1, 0),
3) (0, 1, 0, 1, 0, 0, 0, 1, 0), 4) (0, 1, 0, 0, 1, 0, 1, 0, 0),
5) (1, 0, 0, 0, 0, 1, 0, 0, 1), 6) (0, 0, 1, 1, 0, 0, 0, 0, 1),
7) (0, 0, 1, 0, 0, 1, 1, 0, 0), 8) (0, 1, 0, 0, 1, 0, 0, 0, 1),
9) (0, 1, 0, 0, 0, 1, 0, 1, 0), 10) (0, 0, 1, 0, 1, 0, 0, 1, 0).

Let Q = (1, 0, 0, 1, 0, 0, 1, 0, 0) be a vertex of P . By Fact 2.16 it is enough to prove
that the monoid C generated by the integral points of P − Q is not saturated. Let us
consider the cone C̃ that is the saturation of C. The point L = (−1, 0, 1,−1, 0, 1,−1, 0, 1)

is in C, as 2L is equal to

(−1, 0, 1,−1, 0, 1, 0, 0, 0) + (−1, 0, 1, 0, 0, 0,−1, 0, 1) + (0, 0, 0,−1, 0, 1,−1, 0, 1).

The point L is also in the lattice spanned by the vertices as

L = (0, 1, 0, 0, 1, 0, 0, 0, 1)− (0, 1, 0, 0, 1, 0, 1, 0, 0) + (0, 1, 0, 0, 0, 1, 0, 1, 0)

− (0, 1, 0, 0, 0, 1, 0, 1, 0) + (0, 0, 1, 0, 1, 0, 0, 1, 0)− (0, 0, 1, 0, 1, 0, 0, 1, 0).

However, it is not an integral sum with positive coefficients of the vertices of P − Q.
Indeed, each vertex of P − Q with 0 on the second, fifth and eighth coordinate has an
even sum of third, sixth and ninth coordinates. However, the sum of these coordinates
for L is odd.
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In a joint work with Maria Donten-Bury [DBM12] we managed to get further results.
Using the implementation of Algorithm 1 one can obtain the set of vertices of the polytope
related to the group under study and the tripod. We applied Polymake [GJ00] to check
the normality of this polytope (in the lattice generated by its vertices). We obtained:

Computation 4.75. The polytope associated with the G-model for the tripod and the
group G = H = Z6 is not normal. Hence the affine algebraic variety representing this
model is not normal.

In particular, the class of abelian models contains nonnormal models. We believe it
can be difficult to characterize the class of groups for which G-models are normal, or even
to determine a big (infinite) class of normal, toric G-models. On the other hand, one has
the following result:

Proposition 4.76. Let T be a phylogenetic tree and let G1 be a subgroup of an abelian
group G2. If the variety corresponding to the tree T and the group G1 is not normal, then
the variety corresponding to the tree T and the group G2 is not normal either.

Proof. Let Mi be a lattice whose basis is indexed by pairs of an edge of the tree and
an element of the group Gi. The inclusion G1 ⊆ G2 gives a natural injective morphism
f : M1 → M2. Let Pi ⊂ Mi be the polytope associated to the model for the tree T and
the group Gi. Let M̃i ⊂Mi be a sublattice spanned by vertices of the polytope Pi.

As P1 is not normal in the lattice spanned by its vertices, there exists a point x ∈
nP1 ∩ M̃1 that is not a sum of n vertices of P1. Let y = f(x). The vertices of P1 are
mapped to vertices of P2. We see that y ∈ nP2 ∩ M̃2. If P2 were normal in M̃2, we would
be able to write y =

∑n
i=1 qi with qi ∈ P2.

Notice that each point in f(M1) has a zero entry for each coordinate indexed by any
edge and any element g ∈ G2 \G1. In particular y has zero entries for these coordinates.
As all entries of all vertices of P2 are nonnegative, this proves that all entries indexed by
any edge and any g ∈ G2 \G1 are zero for qi. However, vertices of P2 that have nonzero
entries for all coordinates indexed by an edge and g ∈ G1 are in the image of P1. Hence
qi = f(pi) for some pi ∈ P1. We see that x =

∑
pi, which is impossible.

In particular, all abelian groups G such that |G| is divisible by 6 give rise to non-
normal models.

5. Description of the variety using the group action

Let us describe precisely the characters of the torus that is the dense orbit of the variety
associated to a model. Let us fix a tree T and an abelian group H. We have the following
diagram:

ψ̂ : MS
// // M̂E ⊂ME

MS,0

?�

OO 99
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Let us define a sublattice of ME .

Definition 5.1 (Mdeg).

Mdeg = {m ∈ME : dege1(m) = dege2(m) for all e1, e2 ∈ E}.

Proposition 5.2. The lattice M̂E is contained in the sublattice Mdeg.

Proof. For any basis element b ∈ MS corresponding to a socket and for any edge e ∈ E
we have dege(ψ̂(b)) = 1. Hence the image of any element of MS satisfies the relations in
the definition of Mdeg.

Of course the elements of M̂E satisfy more relations. We will describe them now.

Definition 5.3 (Morphism add). There is a natural surjective group morphism add :

ME → (H∗)N . For a node n ∈ N let pn : (H∗)N → H∗ be the projection onto the
corresponding factor. Let fe,χ ∈ ME be a basis element corresponding to an edge e and
a character χ ∈ H∗. We define

pn(add(fe,χ)) =


χ0 if n is not adjacent to e,
χ if e is an edge incoming to n,
−χ if e is an edge outgoing from n,

where χ0 is the neutral character.
We say that an elementm ∈ M̂E has a trivial sum around a node n if pn(add(m)) = χ0.

Consider the composition add ◦ ψ̂. Let s ∈ MS be a basis element corresponding to
a network s̃ ∈ N ⊂ (H∗)E . We have add ◦ ψ̂(s) = add(s̃). However, by Definition 4.24
we have add(s̃) = 0, hence add ◦ ψ̂(s) : MS → (H∗)N is zero. This means that M̂E is
contained in the kernel of the morphism add.

We will prove that there is an exact sequence

0→ M̂E →Mdeg → (H∗)N → 0,

where the last morphism is the restriction of add to Mdeg. In particular the ranks of M̂E

and Mdeg are equal.

Corollary 5.4. The dimension of the affine variety associated to the model is equal to
the dimension of the dense torus orbit, that is,

dim M̂E = dimMdeg = (|H| − 1)|E|+ 1.

The dimension of the projective variety equals (|H| − 1)|E|.

We have to prove the following lemma.

Lemma 5.5. Every element of Mdeg that is in the kernel of add belongs to M̂E.

Proof. We proceed by induction on the number of inner vertices of the tree. First let us
assume that the tree T is a claw tree with l leaves. The elements ofMdeg can be described
by sequences of length l given by elements (

∑
a1χχ, . . . ,

∑
alχχ) with

∑
a1χ = · · · =

∑
alχ.

We prove that elements of the form (g1 + g2 − g1g2 − χ0, 0, . . . , 0), where g1, g2 ∈
H∗ are any characters, are in M̂E . Such an element is equal to (g1, g

−1
1 , χ0, . . . , χ0) +

(g2, χ0, g
−1
2 , χ0, . . . , χ0)− (g1g2, g

−1
1 , g−12 , χ0, . . . , χ0)− (χ0, . . . , χ0). Each element of the

sum is given by a socket, hence it is in M̂E .
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We now fix any element (
∑
a1χχ, . . . ,

∑
alχχ) = m ∈Mdeg that is in the kernel of add.

We will reduce it modulo the image of MS to zero. Let us assume that
∑
a1χ = · · · =∑

alχ = d.
Using elements as above we can reduce m and assume that for χ 6= χ0 the coefficient

ajχ for each 1 ≤ j ≤ l is zero apart from one character for each j for which the coefficient
can be one. More precisely, if there are two characters with a positive (resp. negative)
coefficient, we can replace them with their sum plus (resp. minus) the trivial character.
If one entry is equal to g1 − g2 we add g2 + g1g

−1
2 − g1 −χ0. If there is one negative g on

an entry we add g + g−1 − 2χ0.
In other words, m is equal to (χ1, . . . , χl) + (d − 1)(χ0, . . . , χ0) modulo the image

of MS . As
∑
χj = χ0 in H∗, this element is in the image of MS .

Now we will prove the induction step. Let us fix a tree T with at least two inner
vertices. We may choose an inner edge e of T such that cutting along e we obtain two
trees T1 and T2 (the tree T is a join of T1 and T2) with strictly lower number of inner
vertices. In one of the trees, say T2, we have to choose a root—this will be a vertex
belonging to the edge e. In this way all edges of T2 are oriented as in T apart from e

which has an opposite direction. An element m ∈ Mdeg gives two elements mi ∈ M i
deg

for i = 1, 2 that are also in the kernels of add for both trees. By induction hypothesis
we can find two elements si ∈ M i

S whose images give mi. Let si =
∑
cijb

i
j where bij is

the basis of M i
S corresponding to sockets on Ti. Let us consider the multisets Zi that

are the projections of
∑
cjb

i
j onto the edge e—each bj distinguishes an element on e.

The multiset Zi has cj elements distinguished by bij with a minus sign if cj < 0. Zi is a
signed multiset of characters. Let Z ′i be a multiset obtained by reductions cancelling χ
with −χ in Zi. The multiset Z ′1 is just the signed multiset of characters corresponding
to me. The multiset Z ′2 gives the same multiset as Z ′1 if we inverse all characters. This
means that we can pair together elements from Z ′1 and Z ′2 so that each pair gives rise to
a socket on the tree T . The image of the sum of these sockets does not have to give m
yet. We have to lift also the sockets that we cancelled by passing from Zi to Z ′i. This is
done as follows. Suppose that two sockets b1 and b′1 give χ on the edge e, and so b1 and
−b′1 cancel each other in Z1. We choose any socket s on T2 that gives χ−1 on the edge e.
We can glue together b1 and s obtaining a socket (b1, s) of the tree T , and analogously
(b′1, s). The image of the difference of the sockets (b1, s)− (b′1, s) on the edges of the tree
T1 is the same as the difference b1− b′1 and zero on the edges belonging to T2. In this way
we obtain the socket of T whose image agrees with

∑
cjb

i
j on Ti, hence is equal to m.

Corollary 5.6. For the tree T and the group H, the dense torus orbit of the affine
variety representing the model has a natural description as a quotient of the dense orbit
of the torus of the parameter space by the HN × (C∗)|E|−1 action.

Proof. The characters of the dense orbit of the parameter space are given by the lat-
tice ME . Its algebra is C[ME ] = C[x±1(e,χ)]e∈E,χ∈H∗ . First let us describe the action of
Gr = (C∗)|E|−1. We regard this torus as a subtorus of (C∗)|E| with an additional con-
dition that the product of all coordinates is one. Hence an element of Gr is just an
assignment of a nonzero complex number to each edge of the tree T so that the product
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of all these numbers is one. The action of Gr just multiplies x(e,χ) by the complex number
associated to e. In this way the invariant monomials are those whose degree with respect
to each edge is the same, hence MGr

E = Mdeg.
The coordinates of the group HN are indexed by nodes. There is a natural diagonal

action of HN on the algebra C[ME ]. Fix a node v ∈ N . The action of h ∈ H considered
as an element of HN , equal to h on the coordinate indexed by v and the neutral element
on the other coordinates, is as follows:

• for an edge e incoming to v we have h(x(e,χ)) = χ(h)x(e,χ),
• for an edge e outgoing from v we have h(x(e,χ)) = (χ(h))−1x(e,χ),
• for the other edges h(x(e,χ)) = x(e,χ).

First notice that elements of M̂E are invariant by the action of HN . They are in the
kernel of add, so the signed sum of characters around each inner vertex gives a trivial
character. But the action of h ∈ H ⊂ HN just multiplies the monomial by the value at
h of the character that is a signed sum of characters associated to edges adjacent to v,
hence by 1. Conversely, if the signed sum of characters at any h ∈ H is 1, the sum has to
be a trivial character. So an element of Mdeg is invariant with respect to the HN action
if and only if it is in the kernel of add, so by Lemma 5.5 if and only if it belongs to M̂E .

Note that the group HN × (C∗)|E|−1 acts also on the algebra of the parameter space
C[x(e,χ)]e∈E,χ∈H∗ . However, the quotient is not equal to the variety representing the
model, contrary to what is stated in [CFS08, Theorem 3.6]. Indeed, the algebra of
the variety is generated by the polytope (contained in the positive quadrant of Mdeg)
and is invariant by the action of HN × (C∗)|E|−1. However, the invariant monomials of
C[x(e,χ)]e∈E,χ∈H∗ correspond to all the monomials of M̂E that are in the positive quad-
rant of ME . Not all such monomials are generated by the polytope. For example, for
the 3-Kimura model the monomial x2e0,χ

∏
ei∈E x

2
ei,e, where e is the trivial character, is

invariant for any χ and any distinguished edge e0 (because χ + χ = e). This is not,
however, the sum of any two vertices of the polytope associated to the variety.

Let us present some applications.

Corollary 5.7. There is an exact sequence of groups

MS,0 →ME,0 → (H∗)|N | → 0,

where the first map is given by ψ̂, and the second is the restriction of add to ME,0.

This corollary can be applied in the identifiability problem to determine the parame-
ters of transition matrices. We will do this in Section 10.4.1.

Fix an abelian group H and a tree T . We will prove that the group N of networks
acts on the variety X(T,G). Recall that the ambient space W̃L is a regular representation
of N.

Proposition 5.8. The action of the group N of networks on W̃L restricts to the variety
X(T,G).

Proof. Consider the parametrization morphism πL ◦ ψ̂ : C|E| |H∗| → W̃L. The basis vec-
tors of the affine space C|E| |H∗| are indexed by pairs (e, χ) ∈ E × H∗. We denote the
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corresponding basis elements by b(e,χ). For t ∈ C|E| |H∗| we define t(e,χ) := b∗(e,χ)(t). The
basis elements of W̃L are indexed by networks n ∈ (H∗)E . We identify a network with
a sequence of characters n = (ne := χe)e∈E indexed by edges. Note that the group of
networks acts also on the domain C|E| |H∗| by

(n(t))(e,χ) := t(e,n−1
e χ).

It is easy to check that the morphism πL ◦ ψ̂ is equivariant.

6. Phylogenetic invariants

This section contains results of joint work with Maria Donten-Bury [DBM12]. We inves-
tigate the most important objects of phylogenetic algebraic geometry—ideals of phyloge-
netic invariants. The main problem in this area is to give an effective description of the
whole ideal of the variety associated to a given model on a tree. Our task is to find an
efficient way to compute generators of these ideals.

We suggest a way of obtaining all phylogenetic invariants of a claw tree of a G-model—
more precisely, we conjecture that our invariants generate the whole ideal of the variety.
These, together with Fact 4.71, could provide an algorithm listing all generators of the
ideal of phylogenetic invariants for any tree and for any G-model (so in particular for
a general group-based model).

6.1. Inspirations. The inspirations for our method were the conjectures made by Sturm-
fels and Sullivant [SS05]. They are still open but, as we will see, they strongly support
our ideas. In particular, we will prove later that our algorithm listing the generators of
the ideal works for the 3-Kimura model if we assume that the weaker conjecture made in
[SS05] holds.

First we introduce some notation. As before, let Kn,1 be a claw tree with n leaves.
Let φ(G,n) = d be the least natural number such that the ideal associated to Kn,1 for
the group-based model G is generated in degree d. The phylogenetic complexity of the
group G is defined as φ(G) = supn φ(G,n). Note that by [SS05, Theorem 23] (see also
[Sul07, Theorem 12]) the number φ(G,n) bounds the degree in which the ideal associated
to any tree of valency at most n is generated. Based on numerical results, Sturmfels and
Sullivant suggested the following conjecture:

Conjecture 6.1. For any abelian group G we have φ(G) ≤ |G|.

This conjecture was separately stated for the 3-Kimura model, that is, forG = Z2×Z2.
Still very little is known about the function φ apart from the case of the binary

Jukes–Cantor model (see also [CP07]):

Proposition 6.2 (Sturmfels and Sullivant [SS05]). For the binary Jukes–Cantor model,
φ(Z2) = 2.

There are also some computational results—to the table in [SS05] presenting the
computations made by Sturmfels and Sullivant a few cases can be added.
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Using 4ti2 software [tt] we obtained the following:

Computation 6.3.

• φ(Z3, 6) = 3,
• φ(Z5, 4) = 4,
• φ(Z8, 3) = 8,
• φ(Z2 × Z2 × Z2, 3) = 8.

For the 3-Kimura model we do not even know whether the function φ is bounded. As
we will see later, this conjecture is strongly related to the one stated in the next section.

6.2. A method for obtaining phylogenetic invariants. We propose a method that
is inspired by the geometry of the varieties we consider. First we have to introduce some
notation.

Definition 6.4. Let Vi be the set of vertices of a tree Ti for i = 1, 2. Let e be an inner
edge of T2 joining v1, v2 ∈ V2. We say that the tree T1 is obtained from T2 by contraction
of an edge e if:

• V1 = {v} ∪ (V2 \ {v1, v2}),
• for w ∈ V1 \ {v} a pair (v, w) is an edge of T1 if and only if (v1, w) or (v2, w) is an edge

of T2,
• for w ∈ V1 \ {v} a pair (w, v) is an edge of T1 if and only if (w, v1) or (w, v2) is an edge

of T2,
• for w, u ∈ V1 \ {v} a pair (w, u) is an edge of T1 if and only if (w, u) is an edge of T2.

In such a situation we say that T2 is a prolongation of T1.

Remark 6.5. Note that these definitions are not the same as the definitions of flattenings
introduced in [AR08] and further studied in [DK09].

Assume that we are in an abelian case, that is, we are dealing with a general group-
based model. Using Algorithm 1 one can see that vertices of the polytope correspond
to sockets. As explained in Section 2, vertices of the polytope correspond to coordinates
of the ambient space of the variety. In this setting the variety X(T1) associated to the
tree T1 is in a natural way a subvariety of X(T2). Notice that we can identify sockets
of both varieties, as we may identify their leaves, so both varieties are contained in Ps,
where s is the number of sockets. The natural inclusion corresponds to a projection of
the character lattices: we forget all the coordinates corresponding to the edge joining
the vertices v1 and v2. The details are presented in Proposition 7.1. In this setting the
following conjecture is natural:

Conjecture 6.6. The variety X(Kn,1) is equal to the (scheme-theoretic) intersection
of all the varieties X(Ti), where Ti is a prolongation of Kn,1 that has only two inner
vertices, both of valency at least three.

As X(Kn,1) is a subvariety of X(Ti) for any prolongation Ti, one inclusion is obvious.
Note also that the valency assumption is made, because otherwise the conjecture would be
obvious: one of the varieties that we intersect would be equal to X(Kn,1) by Remark 4.36.
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All Ti have a strictly smaller maximal valency than Kn,1, so if the conjecture holds then
we can inductively use Theorem 23 of Sturmfels and Sullivant [SS05] (see also [Sul07,
Theorem 12]) to obtain all phylogenetic invariants for a given model for any tree of any
valency, knowing just the ideal of the tripod. In such a case the ideal of X(Kn,1) is just
the sum of ideals of trees with smaller valency. More precisely, if Conjecture 6.6 holds
then the degree in which the ideals of claw trees are generated cannot grow when the
number of leaves increases. This means that φ(G) = φ(G, 3), which can be computed in
many cases. In particular, Conjecture 6.6 implies all cases of Conjecture 6.1 in which we
can compute φ(G, 3)—this includes the most interesting 3-Kimura model.

Remark 6.7. Note that the varieties X(T1) and X(T2) are naturally contained in the
same ambient space for any model, even if it does not give rise to toric varieties. Indeed,
using the construction of the variety presented in Section 3 one can see that the ambient
space depends only on the leaves of the tree. Hence if we can identify the leaves of trees,
we can identify the ambient spaces of the associated varieties. Thus Conjecture 6.6 can
help to compute the ideals of claw trees for a large class of phylogenetic models.

Of course one may argue that Conjecture 6.6 above is too strong to be true. Later we
will prove it for the binary Jukes–Cantor model. We will also consider two weakenings
of this conjecture, which can still have a lot of applications. The first modification just
states that Conjecture 6.6 holds for n large enough.

Proposition 6.8. For any G-model Conjecture 6.6 holds for n large enough if and only
if the function φ is bounded.

Proof. One implication is obvious. Suppose that Conjecture 6.6 holds for n > n0. We
choose d such that the ideals associated to Kl,1 are generated in degree m for l ≤ n0.
Using Conjecture 6.6 and the results of [SS05], we can describe the ideal associated to
Kn,1 as the sum of ideals generated in degreem. It follows that this ideal is also generated
in degree m, so the function φ is bounded by m.

For the other implication assume that φ(n) ≤ m. Let us consider any binomial B that
is in the ideal of the claw tree and is of degree less than or equal to m. We prove that B
belongs to the ideal of some prolongation of a tree T , which is in fact more than stated
in Conjecture 6.6.

Such a binomial can be described as a linear relation between (at most m) vertices of
the polytope of the variety. Each vertex is given by an assignment of orbits of characters
to edges such that there exist representatives of orbits that sum to a trivial character.
Let us fix such representatives, so that each vertex is given by n characters summing to
a trivial character.

Now the binomial B can be presented as a pair of matrices A1 and A2 with characters
as entries. Each column of the matrices is a vertex of the polytope. The matrices have
at most m columns and exactly n rows. Consider the matrix A = A1 − A2, that is, the
entries of the matrix A are the characters that are differences of entries of A1 and A2.
We can subdivide the first column of A into groups of at most |H| elements summing to
a trivial character. Then inductively we can subdivide the rows into groups of at most
|H|i elements summing to a trivial character in each column up to the ith one.
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For n > |H|m + 1 we can find a set S of rows of A such that the characters sum to a
trivial character in each column restricted to S, and both the cardinality of S and of its
complement are greater than 1. Note that the sums of the entries lying in a chosen column
and in the rows in S are the same in A1 and A2. Therefore, adding to both matrices an
extra row whose entries are equal to the sum of the entries in S gives a representation of
the binomial B on a prolongation of T .

In particular, this proof shows that if Conjecture 6.1 of Sturmfels and Sullivant holds
for the 3-Kimura model, then Conjecture 6.6 also holds for this model for n > 257. Later
we will significantly improve this estimation.

For the second modification of Conjecture 6.6 let us recall a few facts on toric varieties.
Let T1 and T2 be two tori with lattices of characters respectivelyM1 andM2. Assume that
both tori are contained in a third torus T with character lattice M . The inclusions give
natural isomorphisms M1 'M/K1 and M2 'M/K2, where K1 and K2 are torsion free
lattices corresponding to the characters that are trivial when restricted respectively to T1
and T2. The ideal of each torus (inside the algebra of the big torus) is generated by bino-
mials corresponding to such trivial characters. The points of T are given by monoid mor-
phismsM → C∗. The points of Ti are those morphisms that associate 1 to each character
from Ki. We see that the points of T1∩T2 are those morphismsM → C∗ that associate 1
to each character from the lattice K1+K2. Of course the (possibly reducible) intersection
Y is generated by the ideal corresponding to K1 +K2. This lattice may not be saturated,
but Y contains a distinguished torus T ′, namely one of its connected components. If
K ′ is the saturation of the lattice K1 + K2, then the characters of T ′ are given by the
lattice M/K ′. Suppose that X is a toric variety that contains the dense torus orbit equal
to T . Let Xi be the toric variety that is the closure of Ti, and X ′ be the closure of T ′ in X.
We call the toric variety X ′ the toric intersection of X1 and X2. The definition extends to
a greater number of toric varieties embedded equivariantly in one toric variety. The most
important case that we will use is when X is the affine space and the Xi are affine toric
varieties.

In the setting of Conjecture 6.6 we conjecture the following:

Conjecture 6.9. The toric variety X(T ) is the toric intersection of all the toric vari-
eties X(Ti).

This conjecture differs from the previous one by the fact that we allow the intersection
to be reducible, with one distinguished irreducible component equal to X(T ). We state
this conjecture because it can be checked using only the tori. As the points important
from the biological point of view are contained in the torus (see [CFS08, Definition 2.13]),
this conjecture is a weaker version of Conjecture 6.6 which is still suitable for applications.
Moreover, it is quite easy to check it for trees with small enough number of leaves using
computer programs. To explain this properly, let us consider the following general setting.

Assume that the tori Ti are associated to polytopes Pi, and that T is just the torus
of the projective space Pn ⊇ Ti consisting of the points with all coordinates different
from zero. Let Ai be a matrix whose columns represent the vertices of the polytope Pi.
The characters trivial on Ti, or respectively binomials generating the ideal of Ti, are
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exactly represented by integer vectors in the kernel of Ai. The characters trivial on the
intersection are given by integer vectors in the sum of lattices kerA1 + kerA2.

Note that the ideal of the toric intersection T ′ of the tori Ti in T is generated by
binomials corresponding to characters trivial on T ′, that is, by the saturation of kerA1 +

kerA2. These binomials define a toric variety in Pn. This variety is contained in the
intersection (in fact it is a toric component) of the toric varieties that are the closures
of Ti. Equality may not hold however, as the intersection might be reducible.

In Conjecture 6.9 we have to compare two tori, one contained in the other. To do
this, it is enough to compare their dimensions, that is, the ranks of the character lattices.
Note that the dimension of T1 ∩ T2 is n minus the dimension (as a vector space) of
kerA1 +kerA2, as it is equal to the rank of the lattice Zn∩ (kerA1 +kerA2). To compute
this dimension it is enough to compute the ranks of the matrices A1, A2 and B, where
B is the matrix obtained by putting A1 under A2 (that is, kerB = kerA1 ∩ kerA2). This
can be done very easily using GAP [GAP]. The results obtained for small trees will be
used in the following section.

6.3. Main results. To support Conjecture 6.6 let us consider the case of the binary
Jukes–Cantor model. This model is well understood [BW07], [CP07], [SS05].

Proposition 6.10. Conjecture 6.6 holds for the binary Jukes–Cantor model.

Proof. We use the same notation as in the proof of Proposition 6.8.
Let us fix the number of leaves l. We claim that we can find two special trees T1 and

T2 for which the scheme-theoretic intersection X(T1,Z2)∩X(T2,Z2) equals X(Kl,1,Z2).
We number the leaves from 1 to l. The trees T1 and T2 are isomorphic as graphs but have
different leaf labelling. The topology of the trees is as follows:

v1

For the tree T1 the leaves adjacent to v1 have numbers 1 and 2. For the tree T2 they
are numbered 1 and 3. The ideal of the variety associated to a tree for the group Z2

is always generated in degree 2 by Proposition 6.2. Hence the generators of the ideals
are of the form n1n2 = n3n4 where ni for 1 ≤ i ≤ 4 are the coordinates corresponding
to networks. Each binomial equality corresponds to a pair of matrices (M0,M1), with
entries that are group elements, whose columns represent networks and rows are the
same up to permutation. Hence each generator of the ideal of X(Kl,1,Z2) is represented
by a pair of 2 × l matrices with entries from Z2. Moreover, the sum in each column is
the neutral element, and the rows of both matrices are the same up to permutation. As
we can permute the columns of each matrix, we may assume that the first rows of both
matrices coincide. Consider any such generator (M0,M1) in the ideal of X(Kl,1,Z2).
First suppose that the entries in the first row are the same, that is, either 00 or 11.
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Then the relation holds for both X(T1) and X(T2). Hence we may suppose that the
first row is 01 or 10. If the second row were 00 or 11, then the relation would hold for
X(T1). The same reasoning holds for the third row and X(T2). Hence all three rows in
both matrices are either 01 or 10. If the second (resp. third) rows are the same in both
matrices then the relation holds for X(T1) (resp. X(T2)). So the only possibility left is
that the second and third rows of M1 are respectively the negations of the second and
third rows ofM0. In this case the relation does not hold in any X(Ti), but we can generate
it. We consider a matrix M that is equal to M0 with the first two rows permuted. The
pair (M0,M) represents a relation in X(T1). Moreover, the pair (M,M1) represents a
relation in X(T2).

From the proof above it follows that in fact to obtain the variety of the claw tree
for the binary Jukes–Cantor model it is enough to intersect two varieties corresponding
just to three subdivisions. These subdivisions correspond to S containing exactly the first
and second rows or the first and third rows. Note that it is not enough to intersect two
varieties corresponding to any prolongations—see Section 7.

Now we prove the following conditional result for the 3-Kimura model:

Proposition 6.11. If Conjecture 6.1 of Sturmfels and Sullivant holds then Conjecture 6.6

holds for n > 8.

Proof. We use the same notation as in Proposition 6.8. Consider any binomial of degree
k represented by a pair of matrices (M1,M2) with entries given by group elements. Let
A = M1 − M2, where minus is the group substraction. The matrix A has k columns
with entries from Z2 × Z2. Let A′ be the matrix with 2k columns and entries from Z2,
obtained from A by applying the two projections Z2×Z2 → Z2 to each entry. Recall that
the matrices M1 and M2 had the same rows up to permutation. This means that also
after each projection the rows were the same up to permutation. Note that the difference
of two vectors with entries from Z2 that are the same up to permutation always has an
even number of 1’s. Thus if we consider any row of A′ and either odd or even entries of
this row, the number of 1’s is always even.

Once again we may assume that the entries in the first row of A′ are neutral elements,
that is, they are zero. Let A′′ be the matrix obtained by deleting the first row of A′. For
each subset of rows of A′′ we may consider a vector of length equal to the number of
columns of A′′, whose entries are given by sums of group elements from the subset. Note
that this vector always has an even number of 1’s both in even and odd columns. Because
we assume Conjecture 6.1, the matrix A′′ has at most eight columns. By the pigeonhole
principle, if n > 8 then we can find two subsets of rows of A′′ that are not complements
of each other, such that their sum vector is the same. If we take the symmetric difference
of these subsets, we obtain a proper, nonempty subset S of rows of A′′, summing in each
column to the neutral element. We add the first row of A′ to S or its complement, so that
both sets have more than one element. Thus we obtain a subdivision of the set of rows of
A such that the given binomial is in the ideal of the tree corresponding to this division.

For n ≤ 8 we checked, using Polymake, 4ti2, Macaulay2 and GAP, that the toric
intersection of the tori of the subdivisions gives the torus of the claw tree. We used the
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linear algebra described in the previous section. This proves that if Conjecture 6.1 holds
for the 3-Kimura model, then Conjecture 6.9 holds. Moreover, in all the checked cases it
was enough to consider just two subdivisions. This is not a coincidence, as we will prove
in Section 10.

To summarize, we know that for the 3-Kimura model Conjecture 6.6 implies both
Conjectures 6.9 and 6.1, and moreover Conjecture 6.1 implies Conjecture 6.9, and for
n > 8 also Conjecture 6.6.

7. Interactions between trees and varieties

The ideas from the preceding sections are general. We can define an order on trees with
l leaves as follows. We say that T1 ≤ T2 if T1 can be obtained from T2 by a series of
contractions of inner edges. Here by an edge contraction we mean identifying two vertices
of a given edge as in Definition 6.4. The smallest tree with l leaves is the claw tree Kl,1

with one inner vertex. This is a part of a construction of the tree space [BHV01]. We fix
an abelian group G.

Proposition 7.1. If T1 ≤ T2 then X(T1, G) ⊂ X(T2, G).

Proof. Although the statement is very easy, we believe that the following discussion
may be helpful to better understand the forthcoming sections. Both trees have the same
number of leaves, so we can make a natural bijection between their sockets. This gives an
isomorphism of the ambient spaces W̃E . As T1 ≤ T2, we can make an injection from the
edges of T1 to the edges of T2. Note that a network on T2 restricted to the edges of T1 is
a network on T1. This gives a projection π : MT1

E �MT2

E . The map π simply forgets the
coordinates indexed by (e, g), where e is an edge of T2 not corresponding to an edge of
T1. Moreover, the projection of PT2 is equal to PT1 . The following diagram commutes:

MT2

E

����
MS
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((
MT1

E

Any relation between the vertices of PT2 is also a relation between the vertices of PT1 .
Hence any polynomial in the ideal of X(T2, G) is also in the ideal of X(T1, G).

The surjective morphism of algebras corresponding to the inclusion of varieties is
given by the restriction of the surjective morphism between MT2

E and MT1

E to the cones
spanned by the polytopes PT2 and PT1 .

It is natural to ask what is the relation between X(T0, G) and the scheme-theoretic
intersection of all X(T,G) for T0 < T . Conjecture 6.6 states that if there exists at least
one T > T0, then they are equal. So far we only know that the answer is positive for
G = Z2 [CP07], [SS05], [DBM12].

Conjecture 6.6 can be stated for any phylogenetic model, not necessarily given by a
group (1), in particular for a general Markov model. One would also be interested to know

(1) I would like to particularly thank Elizabeth Allman for discussions on this topic.
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exactly what is the intersection of a few varieties associated to different trees. In particular
how many ideals do we have to sum to obtain the ideal associated to the claw tree? One
could also hope that the intersection of X(T1, G) and X(T2, G) is equal to X(T,G) where
T is the largest tree smaller than T1 and T2. Here we present a counterexample. We will
prove that the scheme-theoretic intersection X(T1,Z2) ∩X(T2,Z2) does not have to be
equal to X(Kl,1,Z2) even if Kl,1 is the only tree smaller than T1 and T2. We consider the
case of five leaves, l = 5. The trees T1 and T2 are isomorphic as graphs but have different
leaf labelling. Their topology is as follows:

v1 (7.1)

For the tree T1 the leaves adjacent to v1 have numbers 1 and 2. The tree T2 is isomorphic,
with two distinguished leaves labelled with 4 and 5. We consider the relation given by
the pair of matrices 

1 0

0 1

0 0

0 1

1 0

 ,


1 0

1 0

0 0

0 1

0 1

 .
This corresponds to a generator of the ideal of X(K5,1,Z2). Consider any relation involv-
ing the first matrix and some other matrix M for X(T1) or X(T2). One can see that the
first two rows of M must be negations of each other, and the third one is 00. Hence it is
impossible to generate the relation above.

8. Computational results

This section contains results of the joint work with Maria Donten-Bury [DBM12]. We
used the implementation of Algorithm 1.

8.1. Hilbert–Ehrhart polynomials. The binary Jukes–Cantor model (for trivalent
trees) has an interesting property, stated and proved in [BW07]: an elementary mutation
of a tree gives a deformation of the associated varieties (see Construction 3.23). This
implies that the binary Jukes–Cantor models of trivalent trees with the same number
of leaves are deformation equivalent [BW07, Theorem 3.26]. As it was not obvious what
to expect for other G-models, we computed the Hilbert–Ehrhart polynomials, which are
invariants of deformation, in some simple cases.

Let us recall basic facts about the Hilbert polynomials for projective toric varieties.
Suppose that our variety corresponds to a polytope P × {1} contained in the lattice M
spanned by its integral points. There are two functions that one can associate to the
polytope P .
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(i) Let h : N→ N where h(n) is the number of points in the monoid generated by P×{1}
with the last coordinate equal to n. We call h the Hilbert function.

(ii) Let e : N→ N where e(n) is the number of integral points in nP , or equivalently in
n(P × {1}). We call e the Ehrhart function.

The function e is a polynomial function, thus we call it the Ehrhart polynomial. The
function h is a polynomial function for large enough values. The polynomial h̃ such that
for n large enough h̃(n) = h(n) is called the Hilbert polynomial. From the definition of
normal polytope (Definition 2.13), we see that the Hilbert function equals the Ehrhart
polynomial if and only if P is normal, that is, if and only if the associated variety is
projectively normal. The associated variety is normal if and only if the Hilbert polynomial
equals the Ehrhart polynomial [Stu96, Theorem 13.11]. In this case we call it the Hilbert–
Ehrhart polynomial.

8.1.1. Numerical results. We checked models for two different trees with six leaves
(this is the least number of leaves for which there are nonisomorphic trees, exactly two),
the snowflake and the 3-caterpillar. The most interesting ones were the cases of the
biologically meaningful 2-Kimura and 3-Kimura models.

To determine the Hilbert–Ehrhart polynomial of a G-model we compute the number
of lattice points in multiples of its polytope. Even if it is not possible to get enough
data to determine the polynomials (e.g. because numbers are too big), sometimes we can
establish that the polynomials for two models are not equal, because their values for some
n are different.

Before we completed our computations, Kubjas computed the numbers of lattice
points in the third dilations of the polytopes for the 3-Kimura model on the snowflake
and the 3-caterpillar with six leaves, and got respectively 69248000 and 69324800 points
[Kub12]. Thus she proved that the varieties associated with these models are not defor-
mation equivalent.

Our computations confirm her results for the 3-Kimura model, and also give the
following

Computation 8.1. The varieties associated with 2-Kimura models for the snowflake
and the 3-caterpillar trees have different Ehrhart polynomials. In the second dilations
of the polytopes there are 56992 lattice points for the snowflake and 57024 for the
3-caterpillar.

Also, the pairs of varieties associated with G-models for the snowflake and the
3-caterpillar trees and

(i) G = H = Z3,
(ii) G = H = Z4,
(iii) G = H = Z5,
(iv) G = H = Z7

have different Hilbert–Ehrhart polynomials, and therefore are not deformation equiva-
lent. (For these pairs the G-models are normal, which can be checked using Polymake.)
The precise results of the computations are presented in Appendix 2.
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In the cases of

(i) G = H = Z8,
(ii) G = H = Z2 × Z2 × Z2,
(iii) G = H = Z9

the varieties have different Hilbert functions. We have not been able to check if they are
normal, but if they are then their Hilbert–Ehrhart polynomials are different.

8.2. Some technical details. The first attempt to compute the numbers of lattice
points in dilations of a polytope was the direct method: constructing the list of lattice
points in nP by adding the vertices of P to the lattice points in (n − 1)P and reducing
repeated entries. This algorithm is not very efficient, but (after adding a few technical
upgrades to the implementation) we were able to confirm Kubjas’ results [Kub12]. How-
ever, this method does not work for nonnormal polytopes. As we planned to investigate
the 2-Kimura model, we had to implement another algorithm.

The second idea is to compute inductively the relative Hilbert polynomials, i.e. the
number of points in the nth dilation of the polytope intersected with the fiber of the
projection onto the group of coordinates that correspond to a given leaf. Our approach
is quite similar to the methods used in [Kub12] and [Sul07].

First we compute two functions for the tripod. Let P ⊂ Z3m ∼= Zm×Zm×Zm be the
polytope associated to a tripod. Let pri : Z3m ∼= Zm×Zm×Zm → Zm be the projection
onto the ith group of coordinates. We distinguish one edge of the tripod corresponding
to the third group of coordinates in the lattice. Let f be a function such that f(a) for
a = (a1, . . . , am) ∈ Zm is the number of lattice points in (a1 + · · · + am)P that project
to a under pr3. We compute f(a) for sufficiently many values of a to proceed with the
algorithm.

Example 8.2. The polytope P for the binary Jukes–Cantor model has the following
vertices:

v1 = (0, 1, 0, 1, 0, 1), v3 = (1, 0, 0, 1, 1, 0),

v2 = (0, 1, 1, 0, 1, 0), v4 = (1, 0, 1, 0, 0, 1).

These are the only integral points in P . In this case f(1, 0) = 2, because there are exactly
two points, (1, 0, 0, 1, 1, 0) and (0, 1, 1, 0, 1, 0), that are in 1P = P and project to (1, 0)

via the third projection.

The function f will be our base for induction. Next, we need to compute the number
of points in the fiber of the projection onto two distinguished leaves. Let g be a function
such that g(a, b) for (a, b) = (a1, . . . , am, b1, . . . , bm) ∈ Zm × Zm is the number of lattice
points in (a1 + · · ·+ am)P that project to a under pr3 and to b under pr2. We compute
g(a, b) for sufficiently many pairs (a, b) to proceed with the algorithm.

Let T be a tree with a corresponding polytope P and a distinguished leaf l. Let h be a
function such that h(a) for a = (a1, . . . , am) ∈ Zm is the number of points in the fiber of
the projection corresponding to the leaf l of (a1 + · · ·+am)P onto a. We construct a new
tree T ′ by attaching a tripod to the chosen leaf l of T . We call T ′ the join of T and the
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tripod. The chosen leaf of T ′ will be one of the leaves of the attached tripod. As proved
in [BW07], [SS05], [Mic11], [Sul07] (depending on the model), the polytope associated to
a join of two trees is a fiber product of the polytopes associated to these trees. Thus we
can calculate the function h′ for T ′ by the following rule: h′(a) =

∑
b g(a, b)h(b), where

the sum is taken over all b ∈ Zm such that g(a, b) 6= 0.
This allows us to compute inductively the relative Hilbert polynomial. The last tripod

could be attached in the same way. Then one obtains the Hilbert function from the relative
Hilbert functions simply by summing over all possible projections. However, it is better
to do the last step in a different way.

Suppose that as before we are given a tree T with a distinguished leaf l and a corre-
sponding relative Hilbert function h. We compute the Hilbert function of the tree T ′ that
is a join of the tree T and a tripod using the equality h′(n) =

∑
a f(a)h(a), where a =

(a1, . . . , am) and
∑
ai = n. The function f is the basis for induction introduced above.

Thus decomposing the snowflake and the 3-caterpillar trees into joins of tripods, we
can inductively compute (a few small values of) the corresponding Hilbert functions.
This method also works for nonnormal models, if only the Hilbert function for the tripod
can be computed. In particular, for the 2-Kimura model the computations turned out
to be possible, because its polytope for the tripod is quite well understood at least to
describe fully its second dilation. More precisely, the points of the polytope and the point
constructed in the proof of Proposition 4.74 generate the cone over the polytope. This
way we obtained the results of Computation 8.1.

9. Categorical setting

The aim of this section is to present a category GM of G-models and its connections with
other categories. As an application of the theory we will present a proof of Conjecture
6.9 for the 3-Kimura model.

9.1. Category of G-models. A G-model is the following set of data:

• a tree T ,
• a group G,
• a normal, abelian subgroup H CG.

Recall that the group G acts on the characters H∗ by adjunction, χg(h) = χ(ghg−1).
This motivates the following definition.

Definition 9.1 (Compatible morphism of subgroups). Fix two pairs (Hi, Gi) where Hi

is an abelian, normal subgroup of Gi for i = 1, 2. We say that a morphism f : H1 → H2

is compatible if the dual morphism f∗ : H∗2 → H∗1 preserves the orbits of the groups Gi.
That is, for any pair of characters χ, χ′ ∈ H∗2 in the same orbit of the G2 action the
images f∗(χ) and f∗(χ′) are in the same orbit of the G1 action.

Remark 9.2. Note that in the abelian case, that is, Gi = Hi, all morphisms are com-
patible. Note also that compatibility does not mean that the orbits of the adjoint action
of Gi on Hi are preserved by f .



62 M. Michałek

Now we are ready to state the definition of the category GM .

Definition 9.3 (Category GM of G-models). Let GM be the category whose objects
are all triples (T,G,H) as described above. A morphism in GM between (T1, G1, H1) and
(T2, G2, H2) will be a pair of maps f : T1 → T2 and g : H1 → H2, where g is a compatible
group morphism and f is a morphism of graphs, that is, an isomorphism onto its image.

We define the category of polytopes Poly .

Definition 9.4 (Category Poly of polytopes). Let Poly be the category whose objects
are pairs (P, M̂), where M̂ is a lattice and P a lattice polytope that spans the whole
lattice. A morphism from (P1, M̂1) to (P2, M̂2) is a lattice morphism from M̂1 to M̂2 that
takes points of P1 to points of P2.

9.1.1. Construction of the functor F . Our aim is to define a contravariant functor F
from GM to Poly . We have already done this on objects; to a tree T and a group GBH
we associate a pair (P̃ , M̂E,G) as in the discussion after Definition 4.64. Let us define the
functor F on morphisms. Suppose that we have a morphism in GM , that is, a pair of
morphisms f : T1 → T2 and g : H1 → H2. Let Pi ⊂ M̂i be the polytope and the lattice
corresponding to the tree Ti with the group Gi BHi. Let also Mi be the lattice with the
basis elements indexed by (e, o) (cf. Definition 4.64) where e is an edge of Ti and o an
orbit in H∗i . The lattice Mi contains the lattice M̂i. The morphism g gives a morphism
of characters g∗ : H∗2 → H∗1 . We proceed in two steps.

Step 1: The group morphism. We consider a polytope P̃ associated to the tree T2 with the
group G1 BH1. Let M ′ be the lattice associated to this tree. The basis of M ′ is indexed
by pairs (e, o), where e is an edge of T2 and o is an orbit in H∗1 . Using the morphism g∗,
we can define a morphism m : M2 →M ′ by sending a character over an appropriate edge
to its image by g∗. Of course, the points of P2 are mapped to the points of P̃ , because the
condition of summing to the trivial character is preserved by the action of the morphism
and so are the orbits. This means that we can restrict m to a morphism m′ : M̂2 → M̂ ′,
where M̂ ′ is a sublattice of M ′ spanned by points of P̃ . This gives a morphism in Poly
from (P2, M̂2) to (P̃ , M̂ ′).

Step 2: The tree morphism. Here we forget the coordinates corresponding to edges that
are not in the image. Of course the condition of summing to the trivial character around
vertices that are in the image is preserved.

Remark 9.5. In the “big” lattice Mi our morphism always consists in:

• first, summing up coordinates (that correspond to the orbits of characters in the inverse
image of a given orbit),
• second, forgetting coordinates indexed by pairs (e, o) where e is an edge not in the

image of the morphism of trees.

However, we have to remember about smaller lattices and the fact that the image of
our polytope may not span the whole “small” lattice M̂i (if g∗ is not surjective).

Next we consider a covariant functor from Poly to the category of algebras. We asso-
ciate to a polytope P ⊂M the monoid algebra for the submonoid of Z×M spanned by
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{1} × P . We have a well-known contravariant functor from the category of algebras to
the category of varieties. In the toric case it was described in Section 2. Composing all,
we obtain a covariant functor from GM to the category of toric varieties.

Remark 9.6. Note that first we associate to a polytope P ⊂ M the algebra associated
to the submonoid of Z ×M spanned by {1} × P . This is not necessarily a cone, as P
does not have to be normal. Then we associate to this algebra a variety. This does not
have to be a toric variety associated to a polytope in the sense of [Ful93], [CLS11]—that
construction always gives a normal variety.

9.2. Morphisms of groups and rational maps of varieties. The motivation for
this subsection is the following observation: if we look at graded algebras (or respectively
projective varieties), then the map of graded algebras obtained from the map of polytopes
in general gives only a rational map of varieties. However, we obtain a morphism, for
example if the map of graded algebras is surjective.

This observation allows us to define a functor G from GM to Proj , where Proj

is the category of embedded projective varieties with rational morphisms. The func-
tor G is a composition of the functor F from the previous section, a natural func-
tor that associates to a polytope a graded algebra generated in degree one (cf. Re-
mark 9.6), and a well-known functor that associates to a graded algebra a projective
variety [Har77, p. 76].

In particular, consider the abelian case, that is, a full subcategory GMab ⊂ GM

containing all objects for which G = H. Then to each morphism of groups G1 → G2 we
can associate a rational morphism of projective varieties. Note that this is a well-defined
morphism of affine cones over the projective varieties. More information on the abelian
case can be found in Section 9.3.

Consider a G-model (T1, G1, H1). The affine variety associated to this model can be
realized as a subvariety of As, where s is the number of vertices of the associated polytope.
Notice that a morphism between two G-models that is an identity on trees induces an
equivariant morphism of ambient spaces.

The following description of a morphism between varieties will be useful in the fol-
lowing sections. Consider two G-models (T,G1, H1) and (T,G2, H2). Let f : H1 → H2

be a compatible morphism that, together with an identity on T , induces a morphism of
G-models. Let P1 and P2 be the polytopes associated to the two models. As in Definition
4.64 the polytope Pi is contained in the lattice ME,Gi with basis elements indexed by
pairs (e, o) for e an edge of T and o an orbit of the Gi action on H∗i . The vertices of Pi
correspond also to coordinates of the affine space containing the affine variety associated
to the model. Note that f∗ induces a morphism m : ME,G2

→ME,G1
. Each vertex of P2

can be represented by an assignment of characters from H∗2 to edges. The morphism m

is simply an application of f∗ to the representatives.

Proposition 9.7. Consider the setting described above. Let si be the number of ver-
tices of Pi, and let Asi be the affine space containing the affine variety associated to
(T,Gi, Hi). Every morphism m of the G-models induces a morphism m̃ : As1 → As2 of
affine spaces. This is an equivariant morphism induced by the restriction of m to positive
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quadrants. More precisely, let e∗v be the coordinate corresponding to the vertex v ∈ P2.
Then e∗v(m̃(x)) = e∗m(v)(x).

Now fix morphisms from (T,Gi, Hi) to (T,G0, H0) that are identities on trees and are
given by compatible group morphisms fi : Hi → H0. Let Pi be the polytope associated
to the model (T,Gi, Hi). Let MSi be the lattice with basis elements indexed by vertices
of Pi. We obtain a morphism of lattices m : MS0

→
∏
MSi

. Let si be the dimension of
MSi

. Let pj :
∏
MSi

→MSj
be the projection to the jth factor.

Remark 9.8. The morphism of lattices described above corresponds to the morphism of
ambient spaces

∏
Asi → As0 that can be described in coordinates as follows:

A coordinate corresponding to a vertex v0 ∈ P0 is the product of all coordinates
corresponding to the vertices pj(m(v0)) ∈ Pj .

9.3. Abelian case. In this section we will establish connections between morphisms of
abelian groups and morphisms of the corresponding varieties. Once again, our main aim
is an application in geometry. We are building a set up for the next section. That is why
we restrict to special cases. This reduces the complexity of the language but still gives a
geometric insight. Let us fix a tree T .

Let f : G1 → G2 be a morphism of abelian groups. It induces morphisms of groups
of sockets SG2 → SG1 . This gives the following commutative diagram:

MS,G1
// M̂E,G1

MS,G2
//

OO

M̂E,G2

OO

Hence the morphism M̂E,G1
→ M̂E,G2

of the character lattices restricts to cones over
polytopes. This gives a morphism of the algebras of the associated varieties. The mor-
phism MS,G2

→ MS,G1
restricts to positive quadrants of both lattices. Hence we get a

morphism of ambient spaces f̂ : ŴL,G1 → ŴL,G1 compatible with a morphism of varieties
f̂ ′ : X(T,G1) → X(T,G2). This gives a covariant functor from the category of abelian
groups to the category of embedded affine toric varieties. Moreover, if f∗ is injective (resp.
surjective) then f̂ ′ is dominant (resp. injective). The second assertion is an easy exercise.
We also need the following setting. Suppose that we have morphisms φi : Gi → G for
i = 1, . . . ,m. Just as above, this gives us a morphism fi : X(T,Gi)→ X(T,G) of embed-
ded varieties. Let P be the polytope associated to X(T,G) and let Pi be the polytope
associated to X(T,Gi). Consider the induced morphism f̃ : M̂E,G →

∏
M̂E,Gi . If the

product f∗1 ×· · ·×f∗m : G∗ →
∏
G∗i is surjective, then f̃ restricted to the monoid spanned

by P is surjective onto the monoid spanned by
∏
Pi. However, in general, if the product

f∗1 ×· · ·× f∗m is injective then the restriction of f̃ to the monoid generated by P does not
have to be injective. If f̃ is injective, then it induces a dominant map from the product∏
X(T,Gi) to X(T,G).
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10. Applications to the 3-Kimura model, part 1

Our aim is to prove Conjecture 6.9 for G = Z2×Z2. The results of this section were also
presented in [Mic].

Conjecture 10.1. The dense torus orbit of the toric variety X(Kl,1,Z2 × Z2) is the
intersection of the dense torus orbits of the varieties X(T,Z2 × Z2), where T is any tree
with l leaves different from the claw tree.

Note that all dense torus orbits are contained in the dense torus orbit O of the pro-
jective (or affine) ambient space. In the algebraic set O all the orbits under consideration
are closed subschemes. Hence Conjecture 10.1 can be regarded in a set-theoretic or in
a scheme-theoretic version. Both are equivalent. This follows for example from a more
general statement of [ES96, Corollary 2.2], and is particularly simple in the toric case.
However, because the proofs of both versions are basically the same for G = Z2×Z2, we
have decided to include both. Moreover, this also gives an idea of how the elements of
the ideal of X(Kl,1,Z2×Z2) can be generated by elements of the ideals of X(T,Z2×Z2).

The main idea of the proof is to extend the results known for binary models to
the 3-Kimura model. Binary models are very well understood and have a lot of special
properties [BW07]. In particular, from Proposition 6.10 we know that Conjecture 6.6
holds for G = Z2. As G is abelian we will be identifying G with G∗. In particular, in
this subsection we assume that networks and sockets assign to edges group elements, not
characters. This convention does not change anything, but simplifies the language.

We have three natural projections fi : Z2 × Z2 → Z2 for i = 1, . . . , 3. The map
f1 × f2 × f3 : Z2 ×Z2 → Z2 ×Z2 ×Z2 is injective. Moreover, it induces a dominant map
from the product of three binary models onto the 3-Kimura model. This map is the key
tool that will allow us to transfer some of the properties from the binary model to the
3-Kimura model. Unfortunately the map is not surjective, but just dominant. We can
projectivise the varieties, but then we get a rational map. It turns out that a combined
use of both maps allows us to derive the main theorem.

Let f∗i : MS,Z2×Z2 →MS,Z2 be the morphism of lattices induced by fi. More precisely,
a socket that assigns to an edge e a group element g ∈ Z2 × Z2 is sent to a socket that
assigns to e the element fi(g) ∈ Z2. Let i : ME,Z2×Z2 → ME,Z2 ×ME,Z2 ×ME,Z2 be the
morphism of lattices induced by f1×f2×f3. A basis vector indexed by (e, g) is sent to the
product of three basis vectors indexed respectively by (e, f1(g)), (e, f2(g)) and (e, f3(g)).
For sublattices spanned by basis vectors indexed by a fixed edge, the morphism i can be
described in coordinates as

(a, b, c, d)→ (a+ c, b+ d, a+ b, c+ d, a+ d, b+ c).

In particular, we see that i is indeed injective. Let g : MS,Z2 →ME,Z2 be the morphism of
lattices that corresponds to the parametrization map of the binary model (cf. Definition
4.33). Let g0 : MS,Z2×Z2 → ME,Z2×Z2 be the morphism of lattices that corresponds to
the parametrization map of the 3-Kimura model.
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We have the following commutative diagram:

MS,Z2
×MS,Z2

×MS,Z2

g×g×g // ME,Z2 ×ME,Z2 ×ME,Z2

MS,Z2×Z2

g0 //

f∗1×f
∗
2×f

∗
3

OO

ME,Z2×Z2

i

OO

The following fact follows from Corollary 5.4.

Fact 10.2. The dimension of the affine 3-Kimura model is 3|E| + 1. The dimension of
the product of three affine binary models is 3(|E| + 1). The dimension of the projective
3-Kimura model is 3|E|. The dimension of the product of three projective binary models
is 3|E|.

It follows that if we consider projective varieties representing the models, the dominant
morphism from the product of three binary models to the 3-Kimura model described
above becomes a rational, generically finite map. As a map between projective varieties
is not a morphism, we will restrict our attention to dense orbits of tori. On these tori
orbits all maps are well defined and are represented by morphisms of lattices.

10.1. Maps of dense torus orbits. Consider the following diagram:

MS,Z2 ×MS,Z2 ×MS,Z2

g×g×g // ME,Z2 ×ME,Z2 ×ME,Z2

MS,0,Z2
×MS,0,Z2

×MS,0,Z2

7 W

ii

// M̂E,0,Z2
× M̂E,0,Z2

× M̂E,0,Z2

7 W

jj

MS,Z2×Z2

g0 //

f∗1×f
∗
2×f

∗
3

OO

ME,Z2×Z2

?�

i

OO

MS,0,Z2×Z2

7 W

ii f

OO

h // M̂E,0,Z2×Z2

7 W

jj

?�

j

OO

(10.1)

The back rectangle is just the previous diagram. The front rectangle is induced from
it by taking sublattices (cf. Definition 4.40). At the level of varieties the back is the affine
picture, while the front is the projective picture. The left square with lattices of type MS

corresponds to morphisms of ambient spaces. The square on the right describes the maps
between varieties, or parametrizing spaces. The upper square corresponds to the product
of three binary models, while the bottom square to the 3-Kimura model.

Let us explain the morphism j. It is injective, as it is a restriction of i. The lattice M̂E,0

is the character lattice of the torus acting on the projective toric variety representing the
model. The morphism j is induced by the rational finite map from the product of three
P(X(T,Z2)) to P(X(T,Z2×Z2)). Via the coordinate system we can identify dense torus
orbits with the tori.

Definition 10.3 (The torus TX). Let X be any toric variety in an affine or projective
space with a distinguished coordinate system. Suppose that X is embedded equivariantly,
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as in Section 2. The dense torus orbit of X will be denoted by TX ⊂ X. Recall that TX
consists precisely of those points of X that have all coordinates different from 0.

The morphism j of character lattices is induced by a finite morphism from T(P(X(T,Z2)))3

= (TP(X(T,Z2)))
3 to TP(X(T,Z2×Z2)). From the discussion in the proof of Proposition 7.1

we also know that the morphism of ambient spaces does not depend on the tree, but only
on the number l of leaves. Hence the vertical morphisms of lattices in the left part of
Diagram 10.1 are the same for all trees with l leaves.

10.2. Idea of the proof. The main reason for passing to tori is that we want to have
a well-defined dominant finite map. This allows us to take advantage of toric geom-
etry. For example, we know that the number of points in the fiber of the morphism
of tori (TP(X(T,Z2)))

3 → TP(X(T,Z2×Z2)) is equal to the index I1 of the image of j in
(M̂E,0,Z2)3.

For the projective ambient spaces the situation is a little different. The morphism
f : MS,0,Z2×Z2

→ (MS,0,Z2
)3 is not injective, so the corresponding morphism of tori is

not surjective. We will show that the image of f in (MS,0,Z2)3 is of finite index, say I2.
This means that the corresponding morphism of tori is finite with each fiber having I2
elements. Moreover, we will show that I2 = I1. Hence we get the diagram

T
(P(W̃E,Z2 )

3)
// TP(W̃E,Z2×Z2 )

T(P(X(T,Z2)))3
?�

OO

// // TP(X(T,Z2×Z2))

?�

OO

where the horizontal maps are finite, étale of the same degree.
This means that if we consider the morphism of projective ambient spaces, then

the preimage of TP(X(T,Z2×Z2)) is precisely T(P(X(T,Z2)))3 . Hence any intersection results
that hold for the binary model must also hold for the 3-Kimura model. In particular,
since Conjecture 6.6 holds for the binary model, we obtain a set-theoretic version of
Conjecture 10.1 for the 3-Kimura model. By easy algebraic arguments we will also prove
Conjecture 10.1 scheme-theoretically for the 3-Kimura model.

10.3. Proof. Our first step will be to understand the morphism of projective ambient
spaces (P(W̃E,Z2

))3 99K P(W̃E,Z2×Z2
). This is a well-defined map on dense tori orbits.

The map of tori corresponds to the morphism f : MS,0,Z2×Z2 → (MS,0,Z2)3 of lattices.
This morphism depends only on the number of leaves, not on the tree.

By the definition we can embed the group S of sockets in Gl. We can also view the
group S as a Z-module. This gives group morphisms MS → S→ Gl. The element of the
basis of MS indexed by a socket s is mapped to the socket s.

Example 10.4 (The case of the binary model and trivalent claw tree). Consider the
tree K3,1 and the group Z2. We have four sockets: (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1). By
coordinatewise action they form a subgroup of (Z2)3. The lattice MS is freely generated
by four basis vectors e(0,0,0), e(1,1,0), e(1,0,1), e(0,1,1). The morphismMS → S maps e(a,b,c)
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to (a, b, c). Of course ke(a,b,c) is mapped to k(a, b, c). For example, 3e(1,1,0) is mapped to
(1, 1, 0) + (1, 1, 0) + (1, 1, 0) = (1, 1, 0).

Lemma 10.5. We have an exact sequence of groups

MS,0,Z2×Z2 → (MS,0,Z2)3 → (Z2)l,

where the first morphism is given by f , and the second is the sum of three morphisms
MS,0,Z2 → (Z2)l described above (1).

Proof. It is clear that this is a complex. Let (b′i)i≥0 be the basis of MZ2

S corresponding to
sockets. Let si be the socket corresponding to b′i. Moreover, suppose that b′0 corresponds
to the trivial socket, that is, the neutral element of S. Let bi be the basis of MS,0,Z2

defined as bi = b′i − b′0 for i > 0. Note that an element (b′i, b
′
j , b
′
k) is in the image of

f∗1 × f∗2 × f∗3 if and only if the corresponding three sockets si, sj , sk sum to the neutral
element of S. Hence the elements of the form (bi, bi, 0) = (b′i, b

′
i, b
′
0)−(b′0, b

′
0, b
′
0) are in the

image of f . We see that (2bi, 0, 0) = (bi, bi, 0) + (bi, 0, bi)− (0, bi, bi) is also in the image.
Furthermore, for any two sockets si and sj there exists a socket sk := si + sj such that
(bi, bj , bk) is in the image of f . This reduces any element from (MS,0,Z2)3 to an element
(bi, 0, 0) modulo the image of f or to 0. Hence any element is in the image if the XOR of
all its coordinates is zero.

Definition 10.6 (The kernel K). For any tree T let KT = KT
1 ×KT

2 ×KT
3 ⊂MS,0,Z2

×
MS,0,Z2

×MS,0,Z2
be the restriction of the kernel of the morphism g× g× g to MS,0,Z2

×
MS,0,Z2 ×MS,0,Z2 .

Each character in KT is a character of (TP(W̃ Z2
E )

)3 that is the trivial character when
restricted to (TP(X(Z2)))

3. Each such character is a triple of characters of TP(W̃ Z2
E )

. Each
character of the triple is a quotient m1/m2 of monomials of the same degree on the
projective space P(W̃Z2

E ). The polynomials m1−m2 span (2) the ideal of the toric variety
P(X(Z2)). We want to view characters as functions. Hence we restrict our attention to
(TP(W̃ Z2

E )
)3. In the algebra of this torus the ideal of (TP(X(Z2)))

3 is generated by the
elements k − 1, where k ∈ KT .

Definition 10.7 (The kernel D). For any tree T let DT be the kernel of the map h

defined in Diagram 10.1.

The elements of D represent characters trivial on the projective 3-Kimura variety.
In the setting described at the end of Section 6.2 we want to prove that the sublattices
DT for different trees T with l leaves generate the sublattice DKl,1 . The idea is to push
the lattices D to (MS,0,Z2

)3 using the morphism f . Next we use the results on binary
models to obtain the generation for f(D). Using properties of the image of f we are able
to conclude the generation in MS,0,Z2×Z2

. The following lemma enables us to restrict to
the image of f instead of regarding the whole lattice (MS,0,Z2

)3.

Lemma 10.8. For any tree T the kernel KT is a sublattice of the image of f .

(1) In this case the second operation is often called XOR.
(2) They do not only generate the ideal, but even span it as a vector space.
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Proof. It is enough to show thatKT
1 ×{0}×{0} ⊂ Im f . Suppose thatm =

∑
i aibi ∈ KT

1 ,
where each bi is as in the proof of Lemma 10.5. Hence bi = (gi1− e, . . . , gil − e), where e is
the neutral element of Z2 and the gij ∈ Z2 are elements forming a socket. We know that
g(m) = 0. In particular, the coordinates of ME indexed by leaves are equal to zero. Fix
k that is a number of a leaf, 1 ≤ k ≤ l. Let us look at all coordinates indexed by (k, q)

where q ∈ Z2. The restriction of ME to these coordinates is a free abelian group spanned
by elements of Z2. Hence

∑
i ai(gk − e) = 0 in the free abelian group generated formally

by elements of Z2. Hence, a fortiori,
∑
i ai(gk− e) = e where now the sum is taken in Z2.

As the action in S is coordinatewise, we see that the image of m in S, and hence in Zl2,
is the neutral element. Using Lemma 10.5 we see that m ∈ Im f .

Proposition 10.9. The index of the image of f in (MS,0,Z2)3 is equal to the index of
the image of j in (M̂E,0,Z2

)3.

Proof. This is a consequence of Lemma 10.8.

Corollary 10.10. Conjecture 10.1 holds set-theoretically.

Proof. The index of the image of f equals the degree of a finite map of tori. In particular,
we are in the situation of Diagram 10.2. The corollary follows from the discussion at the
beginning of Section 10.2.

Now we will prove Conjecture 10.1 scheme-theoretically. Let T0 = Kl,1. We consider
trees Ti such that the ideal of TP(X(T,Z2)) is the sum of the ideals TP(X(Ti,Z2)). Let K

Ti

be the kernel of g × g × g for the tree Ti. Let DTi be the kernel of h for the tree Ti. We
know from Proposition 6.10 that the lattices KTi for i > 0 span KT0 .

Theorem 10.11. The lattices DTi for i > 0 span DT0 . Conjecture 10.1 holds scheme-
theoretically.

Proof. Let a ∈ DT0 . We know that f(a) ∈ KT0

Z2
, so f(a) =

∑
ki where ki ∈ KTi

Z2
. Using

Lemma 10.8 we can find k′i ∈ DTi such that f(k′i) = ki. This means that a −
∑
k′i is in

the kernel of f . In particular, as j is injective, a−
∑
k′i belongs to every DTi , hence we

obtain the desired decomposition.

Remark 10.12. From Proposition 6.10 it is enough to take two (particular) different
i > 0 to span DT0 , as it was in the case of the binary model.

10.4. Applications to phylogenetics. In this section we present a few applications.
The basic result that we use is by Marta Casanellas and Jesús Fernández-Sánchez [CFS08].
It states that all points important for biologists are contained in the dense torus orbit of
X(T,Z2×Z2). Thus, following [CFS08], we call points of the dense torus orbit biologically
meaningful. In Section 10 we gave a precise description of this orbit for any tree. This is
sufficient for biologists.

People dealing with applications are usually interested in trivalent trees. Let us mo-
tivate the use of other trees. The first, obvious reason is that they can appear (at least
hypothetically) as right models of evolution. This however is a degenerate situation that
is often neglected. The next subsection presents another reason.
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10.4.1. Identifiability. Dealing with applications we are given a point P in the space
of all possible probabilities W̃L. The first question is for which trees this point can be
realized. More precisely, for which trees T do we have P ∈ X(T,Z2 × Z2)? We are
interested in knowing if there is only one such tree T , or there are several possibilities.
This is a first part of the identifiability problem. Hence Conjecture 6.6 is a question
about the locus of points for which the identifiability problem cannot be resolved at all.
Of course, a generic point that belongs to any of the varieties belongs to exactly one
X(T,Z2×Z2) with T trivalent. Much more is known about the identifiability of different
models. For the precise results the reader is advised to consult [AR06] or [APRS11] and
the references therein.

In particular we see that points that belong to some X(T,Z2 × Z2) where T is not
trivalent cannot identify the tree topology. Hence the question about the locus of these
points, or equivalently about the polynomials defining such varieties, may give some
results for trivalent trees. However, as the situation in Section 7 shows, the phylogenetic
invariants of two varieties X(T,Z2) for two different trees do not generate the ideal of
the variety associated to their degeneration.

The second, but equally important question about the identifiability is to give the
description of the fiber of the parametrization map of the model ψ̌−1(P ). A biologist
aims at distinguishing one point in the fiber. This would enable to identify not only the
tree topology, but also the corresponding probabilities of mutation. The algebraic setting
allows us to give a description of this fiber. We assume that P is biologically meaningful,
that is, contained in the dense torus orbit. Equivalently, all coordinates of P after the
Fourier transform are different from zero. We prefer to work up to multiplicity, that is,
regard the projectivization of ψ̌ denoted by ψ̌P. The fiber ψ̌−1P (P ) is contained in the
dense torus orbit of

∏
P(We). As this parameter space is of the same dimension as the

image, we know that ψ̌P is a generically finite map. Moreover, when restricted to dense
torus orbits it is étale and finite. Hence each fiber is finite and contains the same number
of points, independent of P . This number is the index of the lattice M̂E in a saturated
sublattice of ME . Of course we do not claim that all the points in the fiber have a prob-
abilistic meaning. We just prove that from the algebraic point of view there is always a
fixed, finite number of possible candidates for transition matrices.

We will now give a precise description of a general fiber for a general group-based
model corresponding to an abelian group H. From Corollary 5.4 we know that the map
of projective tori parametrizing the model is a finite map. By dualizing the exact sequence
in Corollary 5.7, we see that the kernel has a group structure isomorphic to H |N |. By
[CFS08] the only biologically meaningful points are contained in the dense torus orbit.

Corollary 10.13. Let T be any tree and H any abelian group. Let P(X) be the projective
variety associated to the model. Let x ∈ P(X) be a biologically meaningful point. Up to
multiplication by a constant, there are exactly |H||N | parameters in the fiber of x. In other
words, there are exactly |H||N | possible transition matrices.

Note that we do not use further restrictions on the parameters of transition matrices.
For example, we do not assume that the parameters are real. This condition for sure
further decreases the number of possible transition matrices. However, we see that when
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we consider complex parameters, the number of possible parameters is already finite and
moreover independent of the point considered.

10.4.2. Phylogenetic invariants. The main theorem gives an inductive way of obtain-
ing phylogenetic invariants of any tree. It is an open problem if these invariants generate
the whole ideal. It is proved however that they give a description of all biologically mean-
ingful points in the case of the 3-Kimura model. The method is very simple. Suppose
that we know the phylogenetic invariants for all trees with vertices of degree less than or
equal to d. By the results of [SS05] it is enough to describe the phylogenetic invariants
for the claw tree Kd+1,1. For 3-Kimura, to obtain the description of the dense torus orbit
we just take the sum of two ideals (cf. Remark 10.12). They are both associated to trees
with the same topology. The tree has two inner vertices v1 and v2 of degrees 3 and d

respectively. The difference between the ideals is a consequence of different labelling of
leaves. For one tree the leaves adjacent to v1 are labelled 1 and 2. For the second tree
they are labelled 1 and 3. Notice that in fact we have to compute just one ideal. The
second one can be obtained by permuting the variables.

11. Applications to the 3-Kimura model, part 2

The aim of this section is to further investigate Conjecture 6.1 for the 3-Kimura model.
These results were also presented in [Mic13].

Let In be the ideal of the variety X(T,Z2 ×Z2) where T is a claw tree with n leaves.
Let I ′n be the subideal of In generated in degree 4. The conjecture of Sturmfels and
Sullivant states that In = I ′n for any n. In this section we will prove that In and I ′n define
the same projective scheme. This is equivalent to the fact that their saturations are equal
[Har77, Exercise 5.10 b)]. In particular, it follows that they define the same affine set.
One concludes that in order to check if any point belongs to the variety, it is enough to
consider the phylogenetic invariants of degree 4. By [SS05, Theorem 23] the result will
follow for any tree. Let us state the main theorem of this section.

Theorem 11.1. Consider any tree T and the 3-Kimura model. The ideal of the variety
associated to it and the subideal generated by polynomials of degree at most 4 define the
same projective scheme.

We hope that the method presented in this section can be applied to other problems
of the type, “prove that a toric projective scheme can be defined by an ideal generated in
degree d”. Indeed, recently the method was applied in [LM14, Bru13]. In general, let I be
the ideal of a projective toric variety. Let I ′ be the subideal generated in degree d. The
aim is to prove that the saturation of I ′ with respect to the irrelevant ideal equals I.

Suppose that the variety is given by a polytope P , with points corresponding to
coordinates of the ambient projective space—as in Section 2. Proving that the saturation
of I ′ equals I is equivalent to proving that I ′ and I are equal in each localization with
respect to any coordinate, represented by a point Q ∈ P . Thus we have to prove that
any generator of I multiplied by a sufficiently high power of the variable corresponding
to Q belongs to I ′.
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Let us translate this condition into the combinatorial language. The generators of I
correspond to relations between points of P × {1}. Fix a relation

∑
Ai =

∑
Bj , where

Ai, Bj ∈ P × {1}. Multiplying the corresponding element of the ideal by the variable
corresponding to Q is equivalent to adding Q to both sides of the relation. Thus we have
to prove that the binomial corresponding to the relation

∑
Ai + mQ =

∑
Bj + mQ is

generated by binomials from I of degree at most d for m sufficiently large.
A binomial corresponding to a relation

∑
Ri =

∑
Si between points of a polytope is

generated in degree d if and only if one can transform
∑
Ri to

∑
Si using a sequence of

simple steps. In each single transformation one can replace points R1, . . . , Rk for k ≤ d

by R′1, . . . , R′k if they satisfy the relation
∑k
i=1Ri =

∑k
i=1R

′
i. In that case we say that

the relation is generated in degree d.
The proof scheme is very simple:

(∗) (i) Using degree d relations reduce Ai and Bi to some simple, special points of
P × {1} contained in a subset LQ ⊂ P .

(ii) Show that any relation between points of LQ is generated in degree d.

In general, any of these two points can be very difficult.

Remark 11.2. It is well-known that the projective toric variety defined by a polytope
P is covered by affine subsets given by localizations by coordinates corresponding to
vertices. Thus one may be tempted to prove that I = I ′ only in the localizations by
vertices. Note however that in general we do not know if the scheme defined by I ′ is also
covered by localizations by coordinates corresponding to vertices. Indeed, I ′ and I may
be different at the set-theoretical level. For example if Proj I ′ contains a point that is
zero at the coordinates corresponding to vertices and nonzero at some other coordinates,
then such a point will not belong to any localization with respect to vertices. However,
if rad I ′ = I then of course it is enough to consider localizations with respect to vertices.

As our polytopes have only vertices, the problem described in Remark 11.2 does not
concern us.

Remark 11.3. We have the following equivalences for a toric ideal I given by a polytope
P × {1}.

• All relations between vertices of P × {1} are generated in degree d ⇔ the ideal I is
generated in degree d.
• For any point Q ∈ P×{1} and any relation there is an integer m such that after adding
mQ to both sides of the relation, it is generated in degree d ⇔ the projective scheme
defined by I can be defined by an ideal generated in degree d.
• For any relation there are (1) points Qi ∈ P ×{1} such that after adding

∑
Qi to both

sides, it is generated in degree d ⇔ the dense torus orbit of the variety is defined by
an ideal generated in degree d in the algebra of the ambient torus.

In order to prove Theorem 11.1, following the arguments of [SS05, Chapter 5] one
immediately reduces to the case when T = K1,l for some l ∈ N. Let us restate the

(1) Not necessarily different.
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general definitions in the case of the group G = Z2×Z2 (the 3-Kimura model) on a claw
tree K1,l.

Definition 11.4 (Group-based flow). A group-based flow is an assignment of elements
of the group Z2 × Z2 to edges of K1,l such that the sum of all elements is the natural
element.

We will identify a group-based flow with an l-tuple of group elements summing to zero.
The sum of such l-tuples will be a coordinatewise sum, where each entry is treated as an
element of the free abelian group generated by elements of Z2 × Z2. Each group-based
flow represents a vertex of a polytope P . The addition described above is the addition in
the lattice generated by the vertices of the polytope.

Example 11.5. For l = 4,(
(0, 0) + (0, 1), (1, 0) + (1, 1), 2(0, 1), 2(0, 0)

)
+
(
(0, 1), (1, 0), (1, 1), (0, 0)

)
=
(
(0, 0) + 2(0, 1), 2(1, 0) + (1, 1), 2(0, 1) + (1, 1), 3(0, 0)

)
.

The neutral group-based flow is nt = ((0, 0), (0, 0), (0, 0), (0, 0)).

Definition 11.6 (Pair, triple). We say that a group-based flow is a pair if the cardinality
of its support is 2. We say that a group-based flow is a triple if the cardinality of its support
is 3.

Lemma 11.7. Suppose that Q is a group-based polytope with a group G acting transitively
on its integral points. The projective scheme Proj C[Q] can be represented by an ideal
generated in degree at most d if and only if there exists a point R ∈ Q such that for
any relation

∑
Ai =

∑
Bi between points of Q, for m sufficiently large

∑
Ai + mR =∑

Bi +mR is generated in degree d.

Proof. As G acts transitively, the assumption that there exists a point R with the given
property is equivalent to the fact that the property holds for all integral points of Q.

Lemma 11.8. Consider a claw tree K1,n and a finite abelian group G. Consider any
relation

∑
Ai =

∑
Bi of integral points of P . There exists m such that the relation

mnt+
∑
Ai = mnt+

∑
Bi can be transformed, using only quadrics, to a relation among

group-based flows with support of cardinality at most D(G), where D(G) is the Davenport
constant of the group G. In particular, when G is not a cyclic group then the supports
are of cardinality at most |G| − 1.

Proof. Consider any group-based flow A. Suppose its support is of cardinality greater
than D(G). Then we can find a proper subset S of edges in the support such that∑
e∈S A(e) is the neutral element of G, where the addition is taken in G. Thus nt + A

equals the sum of two group-based flows with strictly smaller support. The lemma follows
easily.

By Lemmas 11.7 and 11.8 we have to generate relations only between group-based
flows that are pairs and triples. This completes the first step of the method (∗) presented
above. The set L consists of pairs and triples. Note that this part of the proof can
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be adjusted to other groups G for L consisting of group-based flows with support of
cardinality at most |G|.

Fix any relation
∑
Ai =

∑
Bi, where Ai and Bi are either pairs or triples. Our aim

is to transform
∑
Ai to

∑
Bi in a series of steps, each time replacing at most four Ai

by group-based flows with the same sum (2). We assume that among Ai there are more
or the same number of triples as among Bi. We first try to reduce the relation, so that
consecutively:

(i) among Ai there are as few triples as possible,
(ii) among Bi there are as few triples as possible,
(iii) the degree of the relation is as small as possible.

More precisely, let t and t′ be the number of triples among respectively Ai and Bi. Let d′

be the degree of the relation. Our proof will be inductive on (t, t′, d′) with lexicographic
order.

To prove Theorem 11.1 we consider separately three cases depending on the number
of triples among Ai. The cases are:

(a) there are no triples,
(b) there is exactly one triple,
(c) there are at least two triples.

We say that a family of group-based flows agrees on an index j of an edge if they all
associate the same element to j, and j belongs to their support. We will denote by g1, g2
and g3 the three nonneutral elements of Z2 × Z2. A triple that associates g1 to index a,
g2 to b, and g3 to c is denoted by (a, b, c). A pair that associates an element gi to indices
d and e will be denoted by (d, e)gi and called a gi pair. We say that gi is contained in
the group-based flow if there exists an index j such that the group-based flow associates
gi to j. We believe that the following proofs are impossible to follow without a piece of
paper. We strongly encourage the reader to note what group-based flows appear on both
sides of the relation at each step of the proof.

11.1. The case with no triples. First note that there are no triples among Bi. Without
loss of generality we may assume that A1 is a pair equal to (a, b)g1 . Hence there exists
(b, c)g1 among Bi for some index c. If c = a we can reduce this pair, hence we assume
c 6= a. There exists a group-based flow, say A2, that is (c, d)g1 . If d = b we can reduce
this pair. We consider two cases:

1) d 6= a. Then we use the degree two relation (a, b)g1 + (c, d)g1 = (a, d)g1 + (b, c)g1
and we can reduce (b, c)g1 .

2) d = a. Then there is a group-based flow, say B1, given by (a, e)g1 . If e = b or
e = c, we can reduce this pair. In the other cases we use the relation (a, e)g1 + (b, c)g1 =

(a, b)g1 + (e, c)g1 and we reduce (a, b)g1 .
Notice that in this very easy case we have only used degree two relations.

(2) We are also allowed to add the group-based flow nt to both sides.
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11.2. The case with one triple. Let A1 be the only triple among Ai.

Lemma 11.9. There is exactly one triple among Bi.

Proof. By the assumptions we know that there is at most one triple among Bi. We exclude
the case when there are no triples by comparing the parity of the number of times the
element g1 appears on both sides of the relation.

By the previous lemma we may assume that B1 is the only triple among Bi. Without
loss of generality, assume A1 = (1, 2, 3).

11.2.1. The triples agree on at least two elements in their support. Suppose
that A1 = (1, 2, 3) and B1 = (1, 2, c). Of course if c = 3 we can make a reduction.
Otherwise we must have a pair (c, d)g3 among Ai. If d 6= 3 then we use the relation
(c, d)g3 + (1, 2, 3) = (1, 2, c) + (3, d)g3 and reduce the triples. Assume d = 3. Analogously,
we can assume there is a pair (3, c)g3 among Bi, hence we can reduce this pair.

11.2.2. The triples agree on exactly one element in their support. Consider the
case when the triples agree on at least one element, say 1, in their common support. By
the previous case we may assume that they agree on exactly one element.

As before let A1 = (1, 2, 3) and B1 = (1, b, c). We consider three cases.

1) b 6= 3. There must be a pair (b, d)g2 among Ai. If d 6= 2 then we can apply the relation
(b, d)g2 + A1 = (1, b, 3) + (d, 2)g2 . This reduces to the case 11.2.1. So we assume d = 2.
There must be a pair (2, e)g2 among Bi. We may assume e 6= b, as otherwise we would be
able to make a reduction. Hence there must also be a pair (e, f)g2 among Ai. If f 6= b we
can use the relation (e, f)g2 + (2, b)g2 = (e, 2)g2 + (f, b)g2 and reduce (e, 2)g2 . For f = b

we must have a pair (b, g)g2 among Bi. If g = 2 or g = e then this pair can be reduced. In
the other case we use the relation (e, 2)g2 +(b, g)g2 = (e, g)g2 +(b, 2)g2 and reduce (b, 2)g2 .

2) c 6= 2. This case is analogous to 1).

3) b = 3 and c = 2.

Lemma 11.10. If there is a pair (p, q)g2 among Ai such that p, q 6= 2 then we may assume
that it is equal to (1, 3).

Proof. Suppose that p 6= 1, 2, 3 and q 6= 2. We apply the relation (p, q)g2 +A1 = (1, p, 3)+

(q, 2)g2 and reduce to case 2) c 6= 2.

Analogously, if there is a pair (p, q)g2 among Bi such that p, q 6= 3 then we can assume
it is equal to (1, 2)g2 .

Notice that there must be a pair (3, d)g2 among Ai and a pair (2, e)g2 among Bi. From
Lemma 11.10, d is either 2 or 1, and e is either 3 or 1. We will consider several subcases.

3.1) d = 2. If e = 3 then we can make a reduction of pairs. If e = 1 we must have a pair
(1, f)g2 among Ai. If f = 2 we make a reduction, hence we assume f = 3. This means
that there must be a pair (3, g)g2 among Bi. If g = 2 or g = 1 we can make a reduction.
Otherwise we apply the relation (1, 2)g2 +(3, g)g2 = (1, 3)g2 +(2, g)g2 and reduce the pair
(1, 3)g2 .

3.2) e = 3. This case is similar to 3.1).
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3.3) d = 1 and e = 1. As this is the only case left, we may repeat the same reasoning
for g3. In particular, we can assume there is a pair (1, 2)g3 among Ai. We see that we can
reduce the triples by applying the following relation:

(1, 2, 3) + (1, 3)g2 + (1, 2)g3 = (1, 3, 2) + (1, 2)g2 + (1, 3)g3 .

This is a degree three relation.

11.2.3. The triples do not agree on any element of the support. We want to
reduce to one of the previous cases. Consider the following two cases.

1) The triples A1 and B1 have different supports. Once again let (1, 2, 3) = A1 and let
(a, b, c) = B1. We may assume that a is not in the support of A1. We see that there
must be a pair (a, f)g1 among Ai. If f 6= 1 we can use the relation (a, f)g1 + A1 =

(a, 2, 3) + (f, 1)g1 . This reduces to the case 11.2.2, hence we assume that f = 1. There
must be a pair (g, 1)g1 among Bi. If g = a we can reduce this pair, so we assume g 6= a.
Notice that there must be a pair (g, h)g1 among Ai. If h 6= a then we can use the relation
(1, a)g1 + (g, h)g1 = (g, 1)g1 + (h, a)g1 and reduce the pair (g, 1)g1 . So we can assume
h = a. Then there must be a pair (a, i)g1 among Bi. If i = 1 then we can reduce it.
Otherwise we can use the relation (g, 1)g1 + (a, i)g1 = (g, a)g1 + (1, i)g1 and reduce the
pair (g, a)g1 .

2) The set {1, 2, 3} is the support of B1 and A1. Remember that by the assumption 11.2.3
the triples A1 and B1 do not agree on any element from their support. Without loss of
generality we may assume A1 = (1, 2, 3) and B1 = (2, 3, 1). Hence there must be a pair
(2, a)g1 among Ai, and (1, b)g1 among Bi. If a = 1 and b = 2 then the pairs are the same
and can be reduced. As both cases are symmetric, we can assume that a 6= 1.

If a 6= 3 we can use the relation (2, a)g1 + (1, 2, 3) = (a, 2, 3) + (2, 1)g1 . This reduces
to the case with different supports. We are left with the case a = 3. There must be a pair
(3, z)g1 among Bi. If z 6= 1 we can use the relation (3, z)g1 +B1 = (z, 3, 1) + (2, 3)g1 . This
would enable us to reduce the (2, 3)g1 pair and decrease the degree. So we can assume
that z = 1. So far we have shown that there must be pairs (2, 3)g1 among Ai and (3, 1)g1
among Bi (3). By the same reasoning for g2 and g3 we see that we can use the following
relation:

(1, 2, 3) + (2, 3)g1 + (1, 3)g2 + (1, 2)g3 = (2, 3, 1) + (2, 3)g3 + (1, 3)g1 + (1, 2)g2 .

Notice that this is a degree 4 relation. It enables us to reduce triples.

11.3. The case with at least two triples. We suppose that there are at least two
triples among Ai.

Lemma 11.11. If there are two triples A1, A2 among Ai that do not agree on any element
of their supports then we can make a reduction. Thus we can assume that any two triples
among Ai agree on at least one index.

(3) Notice that we have made the symmetry assumption a 6= 1. The symmetric assumption
would be b 6= 2. However, as the result we got was symmetric, also for b 6= 2 we prove the
existence of the same pairs.
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Proof. The assumptions are equivalent to A1 = (a, b, c), A2 = (d, e, f) with a 6= d, b 6= e,
c 6= f . We apply the relation A1 +A2 + nt = (a, d)g1 + (b, e)g2 + (c, f)g3 that reduces the
number of triples.

Lemma 11.12. If there is no index on which all triples among Ai agree then we can make
a reduction.

Proof. Suppose there is no index on which all triples among Ai agree. We may consider
only two cases by Lemma 11.11.

1) Any two triples from Ai agree on at least two elements. Consider any triple A1 =

(1, 2, 3). Since not all triples from Ai associate g1 to 1, there is a triple (a, 2, 3) with a 6= 1

among Ai. There must also be a triple that does not associate g2 to 2. But this cannot
happen, as the triple must agree with both (1, 2, 3) and (a, 2, 3) on two indices, which
gives a contradiction.

2) There exist two triples that agree only on one index. Let A1 = (1, 2, 3) and A2 =

(1, b, c) with b 6= 2 and c 6= 3. By the case assumption there is a triple A3 = (d, e, f) with
d 6= 1. Any two triples have to agree on at least one element by Lemma 11.11. Hence
without loss of generality we can assume e = b and f = 3. We can apply the relation

A1 +A2 +A3 + nt = (d, 1)g1 + (2, b)g2 + (3, c)g3 + (1, b, 3).

This relation reduces the number of triples.

By the previous lemma we may assume that there exists an index, say 1, such that all
triples Ai associate to it the same nonneutral element, say g1.

Definition 11.13 (k). Let k be the number of indices on which all triples among Ai
agree. We know that 1 ≤ k ≤ 3.

We proceed inductively on k, as for k = 0 we already know from Lemma 11.12 how
to reduce the relation. Hence from now on decreasing k is also a reduction.

Lemma 11.14. Suppose that all triples Ai associate gj to an index l. If there is a pair
(x, y)gj among Ai with l 6= x, y, then either {l, x, y} is the support of all triples among
Ai or we can make a reduction.

Proof. Suppose that there is a triple Ai with support {l, b, c} different from {l, x, y}.
We can assume x 6= b, c. We apply the relation Ai + (x, y)gj = Ãi + (l, y)gj , where Ãi
associates gj to x and agrees with Ai on b and c. This relation reduces k.

Lemma 11.15. Suppose that all triples from Ai associate gj to an index l. If all pairs
(x, y)gj among Ai have l in the support then we can reduce all such pairs.

Proof. Recall that t is the number of triples among Ai. Let p be the number of gj pairs
among Ai. Let t′1 (resp. t′2) be the number of triples in Bi that assign (resp. do not assign)
gj to l. Let p′1 (resp. p′2) be the number of gj pairs among Bi that have (resp. do not
have) l in the support. We know that t ≥ t′1 + t′2. Comparing the number of times gj
appears in Ai and Bi we get

t+ 2p = t′1 + t′2 + 2(p′1 + p′2).
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Comparing the number of times gj appears on index l we get

t+ p = t′1 + p′1.

This forces t′2 = p′2 = 0, t = t′1 and p = p′1. Hence all gj pairs and triples among Ai and
Bi must assign gj to l. Hence the multisets of pairs must be the same for Ai and Bi.

Lemma 11.16. Suppose that all triples from Ai associate gj to an index l. If there are gl
pairs among Ai, then we can make a reduction.

Proof. Without loss of generality we assume gl = g1. By Lemma 11.15, it is enough to
prove that if there are pairs (a, b)g1 among Ai with a, b 6= 1 then we can make a reduction.
Suppose that there is such a pair. By Lemma 11.14 all the triples among Ai must have
the support {1, a, b}. So either k = 1 or k = 3. If k = 1 we can apply the relation

(1, a, b) + (1, b, a) + (a, b)g1 + nt = (1, a)g1 + (1, b)g1 + (a, b)g2 + (a, b)g3 .

This reduces the number of triples. Thus we can assume that all triples among Ai are
equal to (1, a, b).

Claim. Consider any pair (c, d)g2 among Ai. We can assume that its support is contained
in {1, a, b}.
Proof of the Claim. Suppose this is not the case, that is, c 6∈ {1, a, b}. By Lemma 11.14
we can assume d = a. There are two cases to consider:

1) There is a g2 pair among Ai that does not contain a in the support. It must be equal to
(1, b)g2 by Lemma 11.14. We can apply the relation (1, b)g2 + (a, c)g2 = (c, 1)g2 + (a, b)g2 .
Applying once again Lemma 11.14 to the pair (c, 1)g2 we can make a reduction.

2) All g2 pairs among Ai contain a in the support. By Lemma 11.15 we can make a
reduction.

Thus the support of all g2 pairs among Ai is contained in {1, a, b}. The same holds for
g1 and g3 pairs. Thus all group-based flows among Ai have support contained in {1, a, b}.
Hence the same must hold for Bi. So our relation is a relation only on three indices. It is
well-known [SS05] that the ideal for a tree with three edges is generated in degree 4, so
in particular the relation in question is generated in degree 4.

Corollary 11.17. If all triples among Ai associate gj to an index l, then there are no gj
pairs among Ai. Consequently, there are no gj pairs among Bi and all triples among Bi
associate gj to l. Moreover, the number of triples among Ai equals the number of triples
among Bi.

By the previous corollary we assume that there are no g1 pairs among Ai or Bi. More-
over, there are the same number of triples among Ai and Bi and they all associate g1 to 1.

Lemma 11.18. If all the triples among Ai and Bi have support contained in {1, 2, 3} then
we can make a reduction.

Proof. Suppose all triples have support contained in {1, 2, 3}. In this case k = 1 or k = 3.
If k = 1 then among Ai there is a triple (1, 2, 3) and (1, 3, 2). Any triple among Bi is
equal to one of these. In particular, one of these triples can be reduced. If k = 3 there
are no pairs. All triples among Ai and Bi are equal, thus the relation is trivial.
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11.3.1. Case k = 1. We first consider the most difficult case k = 1. As always let
A1 = (1, 2, 3) and B1 = (1, b, c). As the proof is quite complicated, we include a diagram
that describes the most important cases. While reading the proof, the reader is encouraged
to follow at which node we are. The proof is “depth-first, left-first”.

k = 1

ss �� ++
b = 2

�� ++ ,,

c = 3 any triples agree on exactly one index

no (3, l)g3 , (c, w)g3

�� ''

(3, l)g3

�� %%

(c, w)g3

(c, f)g2 (1, c, g) (1, 3, p) (3, o)g2

We start with the left node in the second row—assume b = 2. Then we may assume
c 6= 3, or else we can reduce.

We move to the leftmost node in the third row: suppose that there is no g3 pair
among Ai that has c in the support, and symmetrically there is no g3 pair among Bi
that has 3 in the support. There must be a triple (1, e, c) among Ai. If e 6= 3 then we
apply the relation (1, 2, 3)+(1, e, c) = (1, 2, c)+(1, e, 3) and reduce the triple (1, 2, c). We
may assume e = 3. Analogously, we may assume that there is a triple (1, c, 3) among Bi.
Hence there must be either a pair (c, f)g2 or a triple (1, c, g) among Ai.

We continue to the leftmost node in the fourth row; suppose there is a pair (c, f)g2 .
If f 6= 2 we apply the relation (1, 2, 3) + (c, f)g2 = (1, c, 3) + (f, 2)g2 and reduce the triple
(1, c, 3). If f = 2 we apply the relation (1, 3, c) + (c, 2)g2 = (1, 2, c) + (3, c)g2 and reduce
the triple (1, 2, c).

Hence we can assume that there is a triple (1, c, g) among Ai, the second node in the
fourth row. If g 6= 2 then we apply the relation (1, c, g) + (1, 2, 3) = (1, 2, g) + (1, c, 3) and
reduce the triple (1, c, 3). For g = 2 we apply the relation (1, 2, 3) + (1, 3, c) + (1, c, 2) =

(1, 2, c) + (1, 3, 2) + (1, c, 3) and reduce the triple (1, 2, c).
We continue to the second node in the third row. We assume that there is a pair

(3, l)g3 among Bi. If l 6= c we apply the relation (1, 2, c) + (3, l)g3 = (1, 2, 3) + (c, l)g3 and
reduce the triple (1, 2, 3). If there were a pair (c,m)g3 among Ai then analogously we could
assume m = 3 and we would be able to reduce this pair. So there must be a triple (1, n, c)

among Ai. If n 6= 3 then we apply the relation (1, 2, 3) + (1, n, c) = (1, n, 3) + (1, 2, c) and
reduce the triple (1, 2, c). So we assume A2 = (1, 3, c). Hence there is either a pair (3, o)g2
or a triple (1, 3, p) among Bi.

We move to the third node in the fourth row: suppose that there is a triple (1, 3, p)

among Bi. If p 6= 2 we apply the relation (1, 2, c) + (1, 3, p) = (1, 2, p) + (1, 3, c) and
we reduce (1, 3, c). So we assume p = 2. We apply the relation (1, 3, 2) + (3, c)g3 =

(1, 3, c) + (2, 3)g3 and reduce the triple (1, 3, c).
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We pass to the fourth node in the fourth row: we assume that there is a pair (3, o)g2 and
there is no triple (1, 3, p) among Bi. If o 6= 2 then we apply the relation (1, 2, c)+(3, o)g2 =

(1, 3, c) + (2, o)g2 and reduce (1, 3, c). So we assume there is a pair (2, 3)g2 among Bi.
Suppose that this pair appears r > 0 times among Bi. Note that we may assume that
there are no pairs (2, s)g2 among Ai. Indeed, suppose that there is such a pair. If s 6= 3

then we apply the relation (1, 3, c) + (2, s)g2 = (1, 2, c) + (3, s)g2 and reduce the triple
(1, 2, c). If s = 3 we reduce the pair (2, 3)g2 . Hence we assume there are at least r + 1

triples of the type (1, 2, t) among Ai. If there is a triple with t 6= 3 then we apply the
relation (1, 3, c) + (1, 2, t) = (1, 3, t) + (1, 2, c) and reduce the triple (1, 2, c). Hence we
assume there are at least r + 1 triples (1, 2, 3) among Ai. Notice that we may assume
there are no triples of the type (1, y, 3) among Bi. Indeed, in that case we could apply
the relation (1, y, 3) + (2, 3)g2 = (1, 2, 3) + (y, 3)g2 and reduce (1, 2, 3). Hence we assume
there are at least r + 1 pairs of the type (3, u)g3 among Bi. If u 6= c then we apply the
relation (1, 2, c) + (3, u)g3 = (1, 2, 3) + (c, u)g3 and reduce the triple (1, 2, 3). Hence we
assume there are at least r+1 pairs (3, c)g3 among Bi. Note that we can assume there are
no pairs of the type (c, v)g3 among Ai. Indeed, if v = 3 we could reduce this pair. If v 6= 3

we apply the relation (1, 2, 3) + (c, v)g3 = (1, 2, c) + (3, v)g3 and reduce the triple (1, 2, c).
Hence we must have at least r+1 triples of the type (1, z, c) among Ai. If z 6= 3 we apply
the relation (1, 2, 3) + (1, z, c) = (1, 2, c) + (1, z, 3) and reduce the triple (1, 2, c). So we
may assume there are at least r + 1 triples (1, 3, c) among Ai. Note that the elements g2
on 3 cannot be reduced: among Bi there are only r pairs containing them and no triples.
The contradiction finishes this case.

Consider the third node in the third row: there is a pair (c, w)g3 among Ai. This is
completely analogous to the second node in this row, which was already considered.

Also the second node in the second row, c = 3, is analogous to the first node in the
second row.

We are left with the last, third node in the second column: any two triples Ai and Bj
agree on exactly one index, that is, on 1. By Lemma 11.18, there is a triple among Bi,
say B1, with support different from some triple in Ai, say A1. Exchanging g2 and g3 if
necessary, we can assume b 6= 2 and b 6= 3. By the case assumption there must be a pair
(b, d)g2 among Ai. If d 6= 2 then we apply the relation (1, 2, 3)+(b, d)g2 = (1, b, 3)+(d, 2)g2
and reduce to the case b = 2 (4). Analogously, we must have the same pair among Bi
and it can be reduced.

11.3.2. Case k = 2 or k = 3. Suppose now that k = 2. Let A1 = (1, 2, 3) and B1 =

(1, 2, c). If we cannot reduce B1 then there must be a pair (c, d)g3 among Ai and a pair
(3, e)g3 among Bi. If d = 3 and e = c we can reduce the pairs. Thus we can assume that
d 6= 3. We apply the relation (1, 2, 3) + (c, d)g3 = (1, 2, c) + (3, d)g3 and reduce the triple
(1, 2, c).

The last, easiest case is k = 3. Then all triples are equal to (1, 2, 3), and there are
no pairs by Corollary 11.17. Hence we can reduce the triples. This finishes the proof of
Theorem 11.1.

(4) Notice that we do not reduce to the case k = 2, as if this were true we would have already
been in the first node in the second column b = 2.
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12. Open problems

We have already presented a few conjectures. Here we would like to give a list of problems
that should be much easier, but still we find them interesting.

We start with the questions concerning normality. We already know that many general
group-based models give rise to projectively normal varieties for trivalent trees. However,
not much is known about trees of higher valency. Of course, by Proposition 4.72, it is
enough to consider claw trees. The normality questions are important, as many toric
methods work only for normal polytopes. We have already applied some of them to
compute Hilbert functions. Further applications to the conjecture of Sturmfels and Sulli-
vant could be possible by the methods of “finite generation in rings with infinitely many
variables”; for more details see [HS12], [DK14].

Conjecture 12.1. Let T be any tree. The polytope representing the binary 3-Kimura
model on T is normal.

In [DBM12] it was proved that the projective variety representing the 2-Kimura model
is not normal. We also know that the affine variety representing the general group-based
model for Z6 is not normal.

Another question is to what extent the methods of Section 11 can be applied to other
abelian groups. The following conjecture appearing in the author’s PhD was recently
proved in [DB14].

Conjecture 12.2. The projective scheme associated to the group-based model for Z3

and any tree can be represented by an ideal generated in degree 3.

We finish by restating, in our opinion, the most interesting, important and difficult
Conjecture 6.6.

Conjecture 12.3. The variety X(Kn,1) is equal to the (scheme-theoretic) intersection
of all the varieties X(Ti), where Ti is a prolongation of Kn,1 that has only two inner
vertices, both of them of valency at least 3.

Appendix 1

Here we give an explicit example when the equality of parameters before the Fourier
transform does not imply the equality after it.

Let G = Z6. The transition matrices are of the form

a b c d e f

f a b c d e

e f a b c d

d e f a b c

c d e f a b

b c d e f a


.

The matrix of the type above corresponds to a function g : G → C such that g(0) = a,
g(1) = b, g(2) = c, g(3) = d, g(4) = e and g(5) = f . The Fourier transform of g
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gives ĝ(χ0) = a + b + c + d + e + f , f̂(χ1) = a + jb + j2c + j3d + j4e + j5f , f̂(χ2) =

a + j2b + j4c + d + j2e + j4f etc. where j is a primitive sixth root of unity. We con-
sider a submodel defined by g(0) = g(1) = g(5) and g(2) = g(4). This corresponds to
a = b = f and c = e. The Fourier transform gives (x0, x1, x2, x3, x4, x5) = (3a + 2c + d,

2a− c− d,−c+ d,−a+ 2c− d,−c+ d, 2a− c− d). This defines a linear subspace given by
x4 = x2, x5 = x1 and x1+3x2+2x3 = 0. The latter is not an equality of distinct variables.

Appendix 2

Here we present the precise results of computing the Hilbert–Ehrhart polynomials for a
few G-models. The results are taken from a joint work with Maria Donten-Bury [DBM12].

For the groups Z8, Z2 × Z2 × Z2 and Z9 we computed only the Hilbert function and,
as we could not check normality, we do not know if it is equal to the Hilbert–Ehrhart
polynomial.

Models for G = H = Z3.
dilation snowflake 3-caterpillar

1 243 243
2 21627 21627
3 903187 904069
4 21451311 21496023
5 330935625 331976637
6 3647265274 3662146270
7 30770591364 30920349834
8 209116329075 210269891871
9 1189466778457 1196661601837
10 5831112858273 5868930577941
11 25205348411361 25377886917819

Models for G = H = Z2 × Z2 (3-Kimura).

dilation snowflake 3-caterpillar
1 1024 1024
2 396928 396928
3 69248000 69324800
4 5977866515 5990170739
5 291069470720 291864710144
6 8967198289920 8995715702784

Models for G = H = Z4.
dilation snowflake 3-caterpillar

1 1024 1024
2 396928 396928
3 69248000 69324800
4 6122557220 6138552524
5 310273545216 311525688320
6 10009786400352 10062179606880
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Models for G = H = Z5.
dilation snowflake 3-caterpillar

1 3125 3125
2 3834375 3834375
3 2229584375 2230596875
4 640338121875 642089603125

Models for G = H = Z7. In this case the first three dilations of the polytopes have the
same number of points. The numbers of points in the fourth dilations were too large to
obtain precise results. Hence we computed only the numbers of points mod 64, which is
sufficient to prove that the Hilbert–Ehrhart polynomials are different.

dilation snowflake 3-caterpillar
1 16807 16807
2 117195211 117195211
3 423913952448 423913952448
4 ≡ 54 mod 64 ≡ 14 mod 64

Models for G = H = Z8.
dilation snowflake 3-caterpillar

1 32768 32768
2 454397952 454397952
3 3375180251136 3375013036032

Models for G = H = Z2 × Z2 × Z2.
dilation snowflake 3-caterpillar

1 32768 32768
2 454397952 454397952
3 3375180251136 3375013036032

Models for G = H = Z9.
dilation snowflake 3-caterpillar

1 59049 59049
2 1499667453 1499667453
3 20938605820263 20937202945056
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