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Abstract

Problems involving cracks are of particular importance in structural mechanics, and gave rise to
many interesting mathematical techniques to treat them. The difficulties stem from the singular-
ities of domains, which yield lower regularity of solutions. Of particular interest are techniques
which allow us to identify cracks and defects from the mechanical properties. Long before ad-
vent of mathematical modeling in structural mechanics, defects were identified by the fact that
they changed the sound of a piece of material when struck. These techniques have been refined
over the years. This volume gives a compilation of recent mathematical methods used in the
solution of problems involving cracks, in particular problems of shape optimization. It is based
on a collection of recent papers in this area and reflects the work of many authors, namely
Gilles Frémiot (Nancy), Werner Horn (Northridge), Jiří Jarušek (Prague), Alexander Khludnev
(Novosibirsk), Antoine Laurain (Graz), Murali Rao (Gainesville), Jan Sokołowski (Nancy) and
Carol Ann Shubin (Northridge).

We review the techniques which can be used for numerical analysis and shape optimization
of problems with cracks and of the associated variational inequalities. The mathematical results
include sensitivity analysis of variational inequalities, based on the concept of conical differential
introduced by Mignot. We complete results on conical differentiability obtained for obstacle
problems, by results derived for cracks with non-penetration condition and parabolic variational
inequalities. Numerical methods for some problems are given as an illustration. From the point
of view of applied mathematics numerical analysis is a necessary ingredient of applicability of
the models proposed. We also extend the result on conical differentiability to the case of some
evolution variational inequalities. The same mathematical model can be represented in different
ways, like primal, dual or mixed formulations for an elliptic problem. We use such possibilities
for models with cracks.

For the shape sensitivity analysis, in Chapters 1 to 3 we give a thorough introduction to the
use of first and second order shape derivatives and their application to problems involving cracks.
In Chapter 1, for the convenience of the reader, we provide classical results on shape sensitivity
analysis in smooth domains. In Chapter 2, the results on the first order Eulerian semi-derivative
in domains with cracks are presented. Of particular interest is the so-called structure theorem
for the shape derivative. In Chapter 3, the results on the Fréchet derivative in domains with
cracks are presented as well, for first and second order derivatives, using a technique different
from that in Chapter 2.

In Chapter 4, we extend those ideas to Banach spaces, and give some applications of this
extended theory. The polyhedricity of convex sets is considered in the spirit of [91], [113], in
the most general setting. These abstract results can be applied to sensitivity analysis of crack
problems with non-linear boundary conditions. The results obtained use non-linear potential
theory and are interesting on their own.

In Chapter 5, several techniques for the study of cracked domains with non-penetration con-
ditions on the crack faces in elastic bodies are presented. The classical crack theory in elasticity
is characterized by linear boundary conditions which do not correspond to the physical reality
since the crack faces can penetrate each other in this model. In this chapter, non-penetration
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6 Abstract

conditions on the crack faces are considered, which leads to a non-linear problem. The model is
presented and the shape sensitivity analysis is performed.

Chapter 6 is devoted to the newly developed smooth domain method for cracks. In that
chapter the problem on a domain with a crack is transformed into a new problem on a smooth
domain. This approach is useful for numerical methods. In [13] this formulation is used com-
bined with mixed finite elements, and some error estimates are derived for the finite element
approximation of variational inequalities with non-linear condition on the crack faces. We give
applications of this method to some classical problems.

Finally, in Chapter 7 we study integro-differential equations arising from bridged crack mod-
els. This is a classical technique, but we introduce a few modern approaches to it for completeness
sake.

2000Mathematics Subject Classification: Primary 35J85, 49J40, 74K20; Secondary 35J25, 49K10,
49Q10, 74M15, 74R10.

Key words and phrases: shape optimization for problems with unilateral conditions in nonsmooth
domains, nonlinear potential theory, topological derivative of shape functional, shape deriva-
tive, material derivative, frictionless contact problem, variational inequality, Griffiths crite-
rion for cracks with nonlinear contact conditions, Signorini problem, tangent cone, polyhedral
set in Dirichlet space, metric projection onto cone of positive elements in Dirichlet space,
rigid inclusion, shape derivatives of eigenvalues in nonsmooth domain, Lie derivative of shape
functional, smooth domain method in crack modeling, obstacle problem, elliptic boundary
value problem.

Received 18.10.2004; revised version 30.10.2008.



1. Introduction: Shape derivatives in smooth domains

In Chapters 2 and 3, the speed method as described in [126] is extended to domains
with cracks (cuts in two dimensions). The Hadamard structure theorem for differentiable
shape functionals is given for domains with cuts. In particular, the shape derivatives
of energy functionals can be used in crack’s propagation analysis in solids within the
Griffiths criterion.

In the present work, geometrical singularities associated with cracks and free bound-
ary problems of obstacle type are analysed. In general, shape sensitivity analysis can be
performed for such problems but the first variation of the shape functional, e.g. of the
energy functional, is non-smooth with respect to the direction of the domain perturba-
tions.

In the case of a crack, the singularities at the tips of a crack play a particular role.
There are terms associated with the singularities, and this leads in particular to the
Griffiths criterion for crack propagation. Such a criterion is derived even for the non-
penetration condition imposed on the crack faces, but in that case the singularities are
not known in any explicit way.

In the case of variational inequalities, the first variation of solutions with respect to
parameters depends on the cone of admissible directions. For problems with the admissible
convex set which is polyhedric, first order sensitivity analysis of solutions to variational
inequalities can be performed and the so-called conical differentiability of solutions with
respect to parameter perturbations is obtained.

For all models of the work, shape sensitivity analysis can be used to obtain the first
and second order optimality conditions and to develop the associated numerical methods
for solution of shape optimization problems.

As an introduction to Chapters 2 and 3, we provide in this chapter the standard shape
sensitivity calculations for the energy functional of the Laplacian in the smooth case. The
technique presented can be applied to more general operators and functionals.

1.1. The speed method. The first order shape sensitivity analysis yields shape gra-
dients and leads to gradient type numerical methods for solution of related shape opti-
mization problems. The specificity of problems with cracks in this field can be explained
as follows. The general theory of shape optimization applies with some additional terms
associated with singularities of the solution at the crack tips. These terms are identified,
even for problems where the form of the singularity is unknown. In this case the coefficient
of the singularity is given by a path independent functional. Here we present the classical
shape sensitivity analysis which is described in [126], where the so-called speed method
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8 G. Frémiot et al.

is proposed and the shape derivatives for broad classes of shape functionals are obtained.
We refer the reader to that monograph for the proofs of the results in the smooth case.

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ = ∂Ω (C2 regularity) and
f be a smooth function, e.g. f ∈ C2(R; R). We consider the following problem:{

−∆u = f in Ω,

u = 0 on Γ.
(1.1)

The variational, or weak, formulation, of the problem (1.1) is given by∫
Ω

〈∇u,∇w〉R2 dy =
∫

Ω

fw dy, ∀w ∈ H1
0 (Ω), (1.2)

where 〈·, ·〉R2 is the scalar product in R2. Solving this variational equation is equivalent
to minimization of the functional π(Ω; ·) which represents the potential energy associated
with (1.1),

π(Ω;ϕ) =
1
2

∫
Ω

‖∇ϕ‖2R2 dy −
∫

Ω

fϕ dy, ∀ϕ ∈ H1
0 (Ω),

where ‖ · ‖R2 is the euclidian norm in R2. We know that the variational equation (1.2)
has a unique solution u = uΩ ∈ H1

0 (Ω). The energy functional relative to the domain Ω
is given by the formula

J(Ω) = π(Ω;uΩ) =
1
2

∫
Ω

‖∇uΩ‖2R2 dy −
∫

Ω

fuΩ dy = inf
ϕ∈H1

0 (Ω)
π(Ω;ϕ).

Let V ∈ W 1,∞(R2; R2) ∩ C1(R2; R2) be a vector field and Tt(V ) (t ≥ 0) be the map
defined by

Tt(V ) : R2 → R2, X 7→ x(t),

where x(·) is the solution of the ordinary differential equation
dx

dt
(t) = V (x(t)), t > 0,

x(0) = X.

We denote by Ωt = Ωt(V ) the image of the domain Ω under the map Tt(V ), i.e. Ωt =
Tt(V )(Ω), and in the same way the boundary of Ωt is obtained by Γt = Γt(V ) = Tt(V )(Γ).
The coordinates of a given point which belongs to the domains Ω = Ω0, Ωt (t > 0), are
respectively denoted by y = (y1, y2) ∈ Ω, x = (x1, x2) ∈ Ωt; moreover, we know that the
map Tt(V ) is bijective. As previously, there exists a unique function ut ∈ H1

0 (Ωt) which
solves the variational equality∫

Ωt

〈∇ut,∇v〉R2 dx =
∫

Ωt

fv dx, ∀v ∈ H1
0 (Ωt). (1.3)

This weak solution ut is also obtained by minimizing the potential energy associated with
(1.3),

π(Ωt;ψ) =
1
2

∫
Ωt

‖∇ψ‖2R2 dx−
∫

Ωt

fψ dx, ∀ψ ∈ H1
0 (Ωt).
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The energy functional for the domain Ωt is given by the formula

J(Ωt) = π(Ωt;ut) =
1
2

∫
Ωt

‖∇ut‖2R2 dx−
∫

Ωt

fut dx = inf
ψ∈H1

0 (Ωt)
π(Ωt;ψ).

1.2. The first order shape derivative. First, let us recall some results about the
first order shape derivative, or Eulerian semi-derivative, of a functional J . This shape
derivative in direction V is defined by the limit

lim
t→0

J(Ωt)− J(Ω)
t

,

if it exists of course. In our case, for the energy functional, we derive the first shape
derivative by differentiation of the volume integral∫

Ω

FΩ dy,

where FΩ is a function depending on Ω. Indeed, we have [126]

d

dt

(∫
Ωt

FΩt dx

)∣∣∣∣
t=0

=
∫

Ω

F ′Ω dy +
∫

Γ

FΩ〈V, ν〉R2 dΓ(y),

where F ′Ω denotes the shape derivative of FΩ in direction V and ν is the exterior normal
vector to Γ. Moreover, according to the structure theorem [126], there exists a distribution
g∂Ω ∈ D′1(Ω), supported by Γ, such that

d

dt

(∫
Ωt

FΩt dx

)∣∣∣∣
t=0

= 〈g∂Ω, 〈V, ν〉R2〉,

where 〈·, ·〉 denotes de duality bracket. In our case, we obtain, by integration by parts,

g∂Ω = −1
2

(
∂uΩ

∂ν

)2

∈ L1(∂Ω).

Consequently, the Eulerian semi-derivative of the functional J in direction V is given by

dJ(Ω;V ) = −1
2

∫
Γ

(
∂uΩ

∂ν

)2

〈V, ν〉R2 dΓ(y).

For (1.3) the shape derivative u′(vν) satisfies−∆u′ = 0 in Ω,

u′ = −vν
∂u

∂ν
on Γ,

where vν = 〈V, ν〉.

1.3. The second order shape derivative. The second order shape sensitivity analysis
can be applied to derive sufficient optimality conditions for shape optimization problems,
and to construct a Newton type method of numerical solution in shape optimization. To
this end, the symmetric part of the shape Hessian can be used. We identify the shape
Hessian in the non-smooth case, and describe its structure for a model problem. However,
the technique proposed is general and can be used for problems with cracks in two or
three spatial dimensions.
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Now, we consider another vector field W ∈W 1,∞(R2; R2) ∩ C1(R2; R2), and for all s
positive, we define Ωs = Ωs(W ) = Ts(W )(Ω) and Γs = Γs(W ) = Ts(W )(Γ). The second
order shape derivative of the functional J in directions V and W is defined by

d2J(Ω;V,W ) =
d

ds
(dJ(Ωs;V ))

∣∣∣∣
s=0

,

with

dJ(Ωs;V ) = −1
2

∫
Γs

(
∂uΩs

∂νs

)2

〈V, νs〉R2 dΓs(x).

In order to obtain the second order shape derivative, we can use a result of [29]. Indeed,
if f ∈ C1(R2; R), we have the following formula for the second order shape derivative of
the surface integral:

d

ds

(∫
Γs

f〈V, νs〉R2 dΓs(x)
)∣∣∣∣

s=0

=
∫

Γ

[
f(〈D2b · wΓ, vΓ〉R2−〈vΓ,∇Γwν〉R2 − 〈wΓ,∇Γvν〉R2)

+
(
∂f

∂ν
+Hf

)
vνwν + f〈DV ·W, ν〉R2

]
dΓ(y),

where H denotes the mean curvature of Γ, b is the oriented distance function relative to Γ,
and f is the restriction to Γs of a given function defined in R2. For the shape functional
we need the formula for the function f = f(s, x); in that case the formula becomes

d

ds

(∫
Γs

f〈V, νs〉R2 dΓs(x)
)∣∣∣∣

s=0

=
∫

Γ

[
f(〈D2b · wΓ, vΓ〉R2−〈vΓ,∇Γwν〉R2−〈wΓ,∇Γvν〉R2)

+
∂f

∂s
vν +

(
∂f

∂ν
+Hf

)
vνwν + f〈DV ·W, ν〉R2

]
dΓ(y).

So we need to determine the displacement derivative
δf

δs
=
∂f

∂s
+
∂f

∂ν
wν

for the density of the gradient of the energy functional. We have, for s = 0,

∂f

∂s
=

∂

∂s

(
−1

2

∣∣∣∣∂uΩ

∂νs

∣∣∣∣2) = −∂u
∂ν

∂u′(wν)
∂ν

since ‖νs‖ = 1 hence ν>ν′ = 0. This leads to the following formula for the energy
functional:

d2J(Ω;V,W ) = −1
2

∫
Γ

[∣∣∣∣∂u∂ν
∣∣∣∣2(〈D2b · wΓ, vΓ〉R2 − 〈vΓ,∇Γwν〉R2 − 〈wΓ,∇Γvν〉R2)

+ 2
∂u

∂ν

∂u′(wν)
∂ν

vν +
(
∂

∂ν

∣∣∣∣∂u∂ν
∣∣∣∣2 +H

∣∣∣∣∂u∂ν
∣∣∣∣2)vνwν

+
∣∣∣∣∂u∂ν

∣∣∣∣2〈DV ·W, ν〉R2

]
dΓ(y).

If the last term is omitted in the above formula, then we obtain the symmetric part
of the second order shape derivative which leads e.g. to the Newton method in shape
optimization.
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2. Shape sensitivity analysis for cracks

2.1. The structure theorem. The structure theorem for differentiable shape function-
als is given in [126] in the case of smooth domains. The identification of shape gradients
becomes easy provided it is established that the functional in question is differentiable.
This part of the shape sensitivity analysis is usually performed by using the so-called ma-
terial derivatives of solutions to PDE’s. The second part of the shape sensitivity analysis,
important for numerical methods, is based on the structure theorem of shape gradients
for specific classes of shape functionals. We present such a structure theorem for problems
with cracks. We consider the Gateaux differentiability of shape functionals. The result is
given explicitly, provided the singularities of solutions at crack tips are known, or implic-
itly in the case of unilateral conditions on the crack, since the singularity of the solution
in that case is not known in any precise manner.

2.1.1. Introduction. Shape sensitivity analysis of boundary value problems defined in
domains with cracks is important for applications; we refer the reader to the review paper
[23] for some applications in fracture mechanics and a list of references. In the simplest
case such results are derived in [35]; we also refer to [49] and [15]. Since the structure
theorem was not established at the time, the direct approach is used in [35] which requires
in the case of the energy functional the existence of the shape derivative of solutions to
the elliptic equations defined in the domain with cracks. The same approach is in fact
used in [34] in the case of unilateral conditions on the crack faces, but in that case the
shape differentiability result does not seem to be known in the literature. We refer the
reader to [126] for related results on shape differentiability of solutions to variational
inequalities in smooth domains.

The problem with unilateral conditions on crack faces is considered in [72] for a
scalar equation and in [73] for an elasticity system, where the so-called Rice–Cherepanov
formula is derived. It is shown in [72], [73] that the result on shape differentiability of
solutions to variational inequalities is not required for the proof of the differentiability
of the energy functional with respect to the crack’s length for problems with unilateral
conditions prescribed on the crack faces.

2.1.2. The structure theorem in 3D. The structure theorem is important for appli-
cations in shape optimization, because it allows one to obtain the shape differentiability
of a specific shape functional by means of simple verification of hypotheses, usually in
the fixed domain setting, by an application of the material derivative method [126].

Let D ⊂ R3 be a bounded domain with smooth boundary Γ, and Σ be a part of a
smooth surface S. We assume that Σ, the closure of Σ in S, is contained in the domain D.
Therefore, we consider the domain Ω = D \ Σ with crack Σ. Let us denote by δΣ the
boundary of Σ in S. Assume that J is a domain functional which is shape differentiable
at Ω. We use a velocity field V to construct a family of domains Ωt = Tt(V )(Ω) using the
technique described in [126]. Without losing generality, we can consider the problem with
autonomous vector fields. We have the following result on the structure of the Eulerian
semi-derivative dJ(Ω;V ).



12 G. Frémiot et al.

Theorem 2.1 (Structure theorem). Let k be a non-negative integer. Assume that the
mapping Dk(D; R3) 3 V 7→ dJ(Ω;V ) ∈ R is linear and continuous. Then there exist two
linear forms φ and ψ which are continuous on Ck(Σ) and Ck(δΣ) respectively such that
for all vector fields V ∈ Dk(D; R3), we have

dJ(Ω;V ) = φ(〈V, n〉R3) + ψ(〈V, ν〉R3),

where 〈·, ·〉R3 denotes the scalar product in R3, n is the normal vector to Σ in R3 and ν
is the normal vector to δΣ in S.

n

ν

Σ

Σδ

Fig. 2.1. The curved crack Σ in 3D

Proof. To simplify the problem and without loss of generality, we may assume (otherwise
we can use an appropriate change of variables) that Σ, Σ and δΣ are given by

Σ = {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 < 1, x3 = 0},
Σ = {(x1, x2, x3) ∈ R3 | x2

1 + x2
2 ≤ 1, x3 = 0},

δΣ = {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 = 1, x3 = 0}.

The proof of the structure theorem is based on Nagumo’s theorem [6] (or on the double
viability conditions [28], [29]), and so we need the form, for any x ∈ Σ, of the tangent set

TΣ(x) =
{
v ∈ R3

∣∣∣∣ lim inf
h→0+

dΣ(x+ hv)
h

= 0
}
.

We have to distinguish two cases: x ∈ Σ and x ∈ δΣ.

• First case: x = (x1, x2, x3) ∈ Σ, i.e. x2
1 + x2

2 < 1, x3 = 0. In this case, the normal n(x)
to Σ at x ∈ Σ is well defined and TΣ(x) = Tx(Σ), where Tx(Σ) denotes the tangent
space to Σ at x; hence V (x) ∈ TΣ(x) if and only if 〈V (x), n(x)〉R3 = 0.
• Second case: x = (x1, x2, x3) ∈ δΣ, i.e. x2

1 + x2
2 = 1, x3 = 0. By definition, we have

TΣ(x) =
{
v = (v1, v2, v3) ∈ R3

∣∣∣∣ lim inf
h→0+

dΣ(x+ hv)
h

= 0
}
.

It is not difficult to see that the distance dΣ(x + hv) (between the point x + hv and
the crack Σ) is given by the formula{

h|v3| if x1v1 + x2v2 ≤ 0,

[h2v2
3 + (

√
(x1 + hv1)2 + (x2 + hv2)2 − 1)2]1/2 if x1v1 + x2v2 ≥ 0,
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δΣ

x+hv

x
n

ν

Fig. 2.2. Evaluation of TΣ(x)

thus

lim inf
h→0+

dΣt(x+ hv)
h

=

{
|v3| if x1v1 + x2v2 ≤ 0,

[v2
3 + (x1v1 + x2v2)2]1/2 if x1v1 + x2v2 ≥ 0,

and consequently the tangent set is given by

TΣ(x) = {v = (v1, v2, v3) ∈ R3 | v3 = 0 and x1v1 + x2v2 ≤ 0}.

For any x ∈ Σ, TΣ(x) is a vector space, thus −TΣ(x) = TΣ(x). On the other hand, if
x ∈ δΣ, we have

{TΣ(x)} ∩ {−TΣ(x)} = {v = (v1, v2, v3) ∈ R3 | v3 = 0 and x1v1 + x2v2 = 0}
= {v ∈ R3 | 〈v, n(x)〉R3 = 〈v, ν(x)〉R3 = 0},

so according to the double viability condition [28], [29], if the field V ∈ Dk(D; R3) satisfies〈V (x), n(x)〉R3 = 0, ∀x ∈ Σ,

〈V (x), ν(x)〉R3 = 0, ∀x ∈ δΣ,
(2.1)

then Σ is globally invariant under the associated transformation Tt(V ). The exterior
boundary Γ = ∂D is also invariant under Tt(V ), since the support of the field V is
included in D. So the boundary of Ω = D \Σ, i.e. ∂Ω = Γ∪Σ, is globally invariant under
Tt(V ). Consequently, Ωt = Tt(V )(Ω), hence

dJ(Ω;V ) = 0

for any vector field which satisfies (2.1). It follows that it is natural to consider the set

F (Ω) = {V ∈ Dk(D; R3) | 〈V, n〉R3 on Σ, 〈V, ν〉R3 = 0 on δΣ}. (2.2)

According to the hypothesis that the mapping V 7→ dJ(Ω;V ) is linear and continuous
from Dk(D; R3) in R, the set F (Ω) defined by (2.2) is included in its kernel. Consequently,
we have the following lemma.

Lemma 2.2. The mapping

Φ : Dk(D; R3)/F (Ω)→ Ck(Σ)× Ck(δΣ), {V } 7→ (〈V, n〉R3 , 〈V, ν〉R3),

is an isomorphism.
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Proof. First, we have to verify that the linear mapping Φ : {V } 7→ (〈V, n〉R3 , 〈V, ν〉R3)
is well defined. If {V } = {V ′}, i.e. V − V ′ ∈ F (Ω), then 〈V − V ′, n〉R3 = 0 on Σ and
〈V − V ′, ν〉R3 = 0 on δΣ, and so 〈V, n〉R3 = 〈V ′, n〉R3 on Σ and 〈V, ν〉R3 = 〈V ′, ν〉R3 on
δΣ. It follows that Φ is well defined.

Let {V } ∈ Dk(D; R3)/F (Ω) be such that Φ({V }) = 0, i.e. 〈V, n〉R3 = 0 on Σ and
〈V, ν〉R3 = 0 on δΣ, which means that V ∈ F (Ω) and {V } = {0}. Consequently, Φ is
one-to-one.

Now, let us show that Φ is onto. Let (v1, v2) ∈ Ck(Σ)×Ck(δΣ). We want to construct
a vector field V ∈ Dk(D; R3) such that Φ({V }) = (v1, v2). Since v1 ∈ Ck(Σ) ' Ck(BR2)
where BR2 = {(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1}, and by definition of Ck(BR2), there exists

ṽ1 ∈ Ck(R2) such that ṽ1|BR2
= v1. So we define

Ṽ3(x1, x2, x3) = ṽ1(x1, x2), ∀(x1, x2, x3) ∈ R3,

and it is evident that Ṽ3 ∈ Ck(R3). Let θ ∈ D(D; R) = C∞0 (D; R) be such that θ ≡ 1 in
a sufficiently small neighborhood of Σ. Set

V3(x1, x2, x3) = θ(x1, x2, x3)Ṽ3(x1, x2, x3), ∀(x1, x2, x3) ∈ R3;

then V3 ∈ Dk(D; R). Let θ̃ ∈ D(D; R) be such that θ̃ ≡ 0 in the vicinity of the origin and
θ̃ ≡ 1 in the neighborhood of δΣ. Define

V1(x1, x2, x3) = x1θ̃(x1, x2, x3)v2

((
x1√
x2

1 + x2
2

,
x2√
x2

1 + x2
2

))
,

V1(x1, x2, x3) = x2θ̃(x1, x2, x3)v2

((
x1√
x2

1 + x2
2

,
x2√
x2

1 + x2
2

))
,

for all (x1, x2, x3) ∈ R3. Finally, let V be the vector field with components V1, V2, V3. It
is not difficult to see that V ∈ D(D; R3) satisfies{

〈V, n〉R3 = v1 on Σ,

〈V, ν〉R3 = v2 on δΣ,

i.e. Φ({V }) = (v1, v2).

In order to complete the proof of the structure theorem in 3D, we need the following
lemma.

Lemma 2.3. There exists a continuous linear mapping Ψ : Ck(Σ) × Ck(δΣ) → R such
that for any vector field V ∈ Dk(D; R3), we have

dJ(Ω;V ) = Ψ(〈V, n〉R3 , 〈V, ν〉R3).

Proof. We define

Ψ({V }) = dJ(Ω;V ), ∀{V } ∈ Dk(D; R3)/F (Ω).

This mapping is well defined. Indeed, if {V } = {V ′}, i.e. if V ∈ {V ′}, then V −V ′ ∈ F (Ω),
but F (Ω) is included in the kernel of dJ(Ω; ·) and so dJ(Ω;V − V ′) = 0. Moreover, by
our assumption, the Eulerian semi-derivative dJ(Ω, ·) is linear and we obtain dJ(Ω;V ) =
dJ(Ω;V ′).
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Using Lemma 2.2 and the relation Dk(D; R3)/F (Ω) ' Ck(Σ)×Ck(δΣ), we can write

{V } = (〈V, n〉R3 , 〈V, ν〉R3),

thus
dJ(Ω;V ) = Ψ({V }) = Ψ(〈V, n〉R3 , 〈V, ν〉R3).

Furthermore, dJ(Ω, ·) is linear and continuous, which implies that so is Ψ.

Now, we can complete the proof of the structure theorem in 3D. Indeed, according to
Lemma 2.3, there exists a linear mapping Ψ which is continuous from Ck(Σ) × Ck(δΣ)
in R, such that

dJ(Ω;V ) = Ψ(〈V, n〉R3 , 〈V, ν〉R3), ∀V ∈ Dk(D; R3),

with Ψ ∈ (Ck(Σ)× Ck(δΣ))′ = (Ck(Σ))′ × (Ck(δΣ))′. We can conclude that there exist
two linear forms φ and ψ which are continuous on Ck(Σ) and Ck(δΣ) respectively such
that

dJ(Ω;V ) = φ(〈V, n〉R3) + ψ(〈V, ν〉R3), ∀V ∈ Dk(D; R3),

which completes the proof of the structure theorem in 3D.

2.1.3. The structure theorem in 2D. Let D ⊂ R2 be a bounded domain with smooth
boundary Γ, and Σ be a part of a smooth curve. We assume that Σ ⊂ D. Therefore, we
consider the domain Ω = D \ Σ with crack Σ. Let us denote by A and B the tips of Σ.
Assume that J is a domain functional which is shape differentiable at Ω. We refer the
reader to [126] for the definition of shape differentiability.

The velocity field V is used to construct a family of domains Ωt = Tt(V )(Ω) using the
technique described in [126]. Without losing generality, we can consider the problem with
autonomous vector fields. We have the following result on the structure of the Eulerian
semi-derivative dJ(Ω;V ).

Theorem 2.4 (Structure theorem). Let k be a non-negative integer. Assume that the
mapping Dk(D; R2) 3 V 7→ dJ(Ω;V ) ∈ R is linear and continuous. Then there exist two
real numbers αA and αB, and a linear form φ which is continuous on Ck(Σ), such that
for all fields V ∈ Dk(D; R2),

dJ(Ω;V ) = αA〈V (A), τ〉R2 + αB〈V (B), τ〉R2 + φ(〈V, n〉R2),

where 〈·, ·〉R2 denotes the scalar product in R2, and τ and n are respectively the tangential
and normal vectors on Σ.

Γ

Ω

Σ n
A B

τ
τ

Fig. 2.3. Domain Ω with a curved crack Σ in 2D
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Proof. In order to simplify the problem and without loss of generality, we may assume
(otherwise we can use an appropriate change of variables) that Σ is given by

Σ = {(x1, x2) ∈ R2 | 0 < x1 < 1, x2 = 0}.

1X

X2

n

Ω

Σ

Γ

B
(0,0)

A
(1,0) ττ

Fig. 2.4. Domain Ω with a rectilinear crack

As for the structure theorem in 3D, the proof of the structure theorem in 2D is based on
Nagumo’s theorem [6] (or on the double viability conditions [28], [29]), and so we need
the form, for any x ∈ Σ, of the tangent set

TΣ(x) =
{
v ∈ R2

∣∣∣∣ lim inf
h→0+

dΣ(x+ hv)
h

= 0
}
.

We have to distinguish three cases: x ∈ Σ, x = A and x = B.

• First case: x = (x1, x2) ∈ Σ, i.e. 0 < x1 < 1, x2 = 0. In this case, the normal n(x) to
Σ at x ∈ Σ is well defined and TΣ(x) = Tx(Σ), where Tx(Σ) denotes the tangent space
to Σ at x, and so V (x) ∈ TΣ(x) if and only if 〈V (x), n(x)〉R2 = 0.
• Second case: x = A = (0, 0). By definition, we have

X

X

A
(0,0)

B
(1,0)

A+hv

2

1

Fig. 2.5. Evaluation of TΣ(A)

TΣ(x) = TΣ(A) =
{
v = (v1, v2) ∈ R2

∣∣∣∣ lim inf
h→0+

dΣ(A+ hv)
h

= 0
}
.

It is not difficult to see that the distance dΣ(A+hv) (between A+hv and the crack Σ)
is given by

dΣ(A+ hv) =

{
h‖v‖R2 if v1 ≤ 0,

h|v2| if v1 ≥ 0,
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where ‖ · ‖R2 denotes the Euclidian norm in R2. Thus, we obtain

lim inf
h→0+

dΣ(A+ hv)
h

=

{
‖v‖R2 if v1 ≤ 0,

|v2| if v1 ≥ 0,

and consequently the tangent set is given by

TΣ((0, 0)) = TΣ(A) = {v = (v1, v2) ∈ R2 | v2 = 0 and v1 ≥ 0}.

• Third case: x = B = (1, 0). Just as for x = A = (0, 0), we have

TΣ((1, 0)) = TΣ(B) = {v = (v1, v2) ∈ R2 | v2 = 0 and v1 ≤ 0}.

For any x ∈ Σ, TΣ(x) is a vector space, thus −TΣ(x) = TΣ(x). On the other hand, we
have

{TΣ(A)} ∩ {−TΣ(A)} = {TΣ(B)} ∩ {−TΣ(B)} = {(0, 0)},

so according to the double viability condition [28], [29], if the field V ∈ Dk(D; R2) satisfies{
〈V (x), n(x)〉R2 = 0, ∀x ∈ Σ,

〈V (A), τ〉R2 = 〈V (B), τ〉R2 = 0,
(2.3)

then Σ is globally invariant under the associated transformation Tt(V ). The exterior
boundary Γ = ∂D is also invariant under Tt(V ), since the support of V is included in D.
So the boundary of Ω = D \ Σ, i.e. ∂Ω = Γ ∪ Σ, is globally invariant under Tt(V ).
Consequently, Ωt = Tt(V )(Ω), hence

dJ(Ω;V ) = 0

for any vector field which satisfies (2.3). It follows that it is natural to consider the set

F (Ω) = {V ∈ Dk(D; R2) | 〈V, n〉R2 on Σ, 〈V (A), τ〉R2 = 〈V (B), τ〉R2 = 0}. (2.4)

According to the hypothesis that the mapping V 7→ dJ(Ω;V ) is linear and continuous
from Dk(D; R2) in R, the set F (Ω) defined by (2.4) is included in its kernel. Consequently,
we have the following lemmas.

Lemma 2.5. The mapping

ψ : Dk(D; R2)/F (Ω)→ Ck(Σ)× R× R, {V } 7→ (〈V, n〉R2 , 〈V (A), τ〉R2 , 〈V (B), τ〉R2),

is an isomorphism.

Lemma 2.6. There exists a linear continuous mapping Φ : Ck(Σ) × R × R → R such
that for any vector field V ∈ Dk(D; R2),

dJ(Ω;V ) = Φ(〈V, n〉R2 , 〈V (A), τ〉R2 , 〈V (B), τ〉R2).

The proofs of these two lemmas are the same as in the 3D case. Finally, just as for
the 3D case, Lemmas 2.5 and 2.6 lead to the structure theorem in 2D.

2.2. Semi-derivatives of the eigenvalues. Shape sensitivity analysis of eigenvalues
is perfomed in [126] for the case of multiple eigenvalues in smooth domains. The shape
derivatives of such eigenvalues are in general only directional, so there exists an appropri-
ate subgradient instead of the shape gradient for eigenvalues. In the case of domains with
cracks the results include, as we could expect, contributions from the singularities at the
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crack tips. We provide a complete proof of the result for a model problem. The result can
be used in numerical methods of shape optimization, and leads to necessary optimality
conditions for specific optimization problems for multiple eigenvalues in domains with
geometrical singularities.

2.2.1. Introduction, notations and main result. There are many papers on Eulerian
semi-derivatives of eigenvalues in smooth domains; we refer e.g. to Rousselet [119], Zolésio
[137], Desaint [32] and Desaint & Zolésio [33]. The non-smooth case is analysed in the
present paper for the first time. The case of the first eigenvalue [43] is much simpler
compared to the general case of the (m + 1)th eigenvalue, m ∈ N∗. We consider the
model problem of the eigenvalues of the Laplacian but the method can be applied to the
general case of eigenvalues of a second order elliptic operator.

Let D ⊂ R2 be a bounded domain with smooth boundary Γ, and set

Σl = {(y1, y2) ∈ R2 | 0 < y1 < l, y2 = 0}.

1

A
n

Ω

Σ

Γ

Bl

y2

y(l,0)(0,0) ττ

Fig. 2.6. Domain Ω with the crack Σl

We assume that Σl ⊂ D for l > 0 small enough. A and B denote the tips of Σl, and n
and τ are the normal and tangent vectors to Σl respectively. The domain with crack Σl
is denoted by Ω = D \ Σl. We denote by Λi(Ω), i ≥ 1, the eigenvalues of the Laplacian
with the Dirichlet condition on the boundary Γ = ∂D and the Neumann condition on
the crack’s faces Σ±l . Consequently, there exists an eigenfunction ϕ ∈ H1

Γ(Ω), ϕ 6= 0, such
that ∫

Ω

〈∇ϕ,∇ψ〉R2 dy = Λi(Ω)
∫

Ω

ϕψ dy, ∀ψ ∈ H1
Γ(Ω). (2.5)

Let us point out that the eigenvalues Λi(Ω) are counted without multiplicity. The eigen-
functions ϕ ∈ H1

Γ(Ω) in (2.5) constitute a subspace of finite dimension di, with d1 = 1
since the first eigenvalue is simple. Moreover, since the Laplacian is a self-adjoint and
anti-compact operator, it follows that Λi(Ω) > 0, i ≥ 1, the sequence {Λi(Ω)}+∞i=1 is
strictly increasing and Λi(Ω) → +∞ as i → +∞. Let Fi(Ω), i ≥ 1, be the eigenspace
corresponding to the eigenvalue Λi(Ω),

Fi(Ω) = {ϕ ∈ H1
Γ(Ω) | ϕ satisfies the variational identity (2.5)};

the dimension of Fi(Ω) is equal to di (d1 = 1). Therefore, di stands for the multiplicity of
Λi(Ω). In order to take this multiplicity into account, we have to introduce the eigenvalues
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λi counted with multiplicity, and for i ≥ 2 we write

Λi = λPi−1
k=1 dk+1 = · · · = λPi

k=1 dk
.

We know that the first eigenvalue λ1(Ω) is shape differentiable [43]. The purpose of this
paper is to find the Eulerian semi-derivatives of the eigenvalues λm+1(Ω), m ∈ N∗. In
order to find these semi-derivatives, some hypothesis should be verified: such a verification
is performed in the proof of the main theorem of this paper.

Let θ1, θ2 ∈ C∞0 (D) = D(D) be two smooth functions with compact support in D.
Then the transformation Tδ : (x1, x2) 7→ (y1, y2) (see [73]) is defined by{

y1 = x1 − δθ1(x1, x2),

y2 = x2 − δθ2(x1, x2),
(2.6)

where δ > 0. Let V denote the vector field with components θ1, θ2. The Jacobian of (2.6)
equals

qδ = 1− δ div V + δ2 det(DV ),

where DV is the Jacobian matrix of the vector field V . For δ small enough, qδ > 0, so
the transformation (2.6) is one-to-one and we write y = y(x, δ), x = x(y, δ). Let Ωδ be
the image of Ω under T−1

δ . Since θ1, θ2 ∈ D(D), the exterior boundary Γ is invariant
under the transformation (2.6). For given m ∈ N∗, according to Auchmuty’s principle
[7], the (m+ 1)th eigenvalue of the Laplacian in the perturbed domain Ωδ, counted with
multiplicity and denoted by λm+1(Ωδ) = λm+1(δ), is given by the formula

− 1
2λm+1(δ)

= maxeψ∈(H1
Γ(Ωδ))

m
mineϕ∈H1

Γ(Ωδ)R
Ωδ

eϕ eψi dx=0

1≤i≤m

Gδ(ϕ̃), (2.7)

where ψ̃i, 1 ≤ i ≤ m, are the components of ψ̃ ∈ (H1
Γ(Ωδ))

m, and

Gδ(ϕ̃) =
1
2

∫
Ωδ

‖∇ϕ̃‖2R2 dx−

√∫
Ωδ

ϕ̃2 dx, ∀ϕ̃ ∈ H1
Γ(Ωδ).

For simplicity we set

µm+1(δ) = − 1
2λm+1(δ)

.

Indeed, the directional differentiability of µm+1(δ) at δ = 0 is equivalent to the directional
differentiability of λm+1(δ) at δ = 0 since λm+1(δ) 6= 0.

Remark 2.7. According to the proof of Auchmuty’s principle, the maximum in (2.7) is
attained on the set

B̃m,δ =
{
ψ̃ ∈ (H1

Γ(Ωδ))
m | (ψ̃i)1≤i≤m is a family of orthogonal eigenvectors,

ψ̃i associated to λi(δ), and moreover
∫

Ωδ

ψ̃2
i dx = 1, 1 ≤ i ≤ m

}
.
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In this notation, ψ̃i, 1 ≤ i ≤ m, is an eigenfunction of the Laplacian corresponding to
the eigenvalue λi(δ) and consequently the following variational equation is satisfied:∫

Ωδ

〈∇ψ̃i,∇ϕ̃〉R2 dx = λi(δ)
∫

Ωδ

ψ̃iϕ̃ dx, ∀ϕ̃ ∈ H1
Γ(Ωδ).

By taking into account Remark 2.7, we can write

µm+1(δ) = maxeψ∈(H1
Γ(Ωδ))

mR
Ωδ

eψ2
i dx=1

1≤i≤m

mineϕ∈H1
Γ(Ωδ)R

Ωδ
eϕ eψi dx=0

1≤i≤m

Gδ(ϕ̃). (2.8)

By changing variables in (2.8), in order to transport the problem to the fixed domain Ω,
we obtain

µm+1(δ) = max
ψ∈(H1

Γ(Ω))
mR

Ω (ψ2
i /qδ) dy=1

1≤i≤m

min
ϕ∈H1

Γ(Ω)R
Ω (ϕψi/qδ) dy=0

1≤i≤m

G(δ, ϕ), (2.9)

where the functional G(δ, ·) is defined by

G(δ, ϕ) =
1
2

∫
Ω

‖Aδ · ∇ϕ‖2R2

qδ
dy −

√∫
Ω

ϕ2

qδ
dy, ∀ϕ ∈ H1

Γ(Ω),

with Aδ = I − δDV T .

Remark 2.8. By Remark 2.7, the maximum in (2.9) is attained on the set

Bm,δ = {ψ ∈ (H1
Γ(Ω))

m | ψi satisfies the relations (2.10) and (2.11), 1 ≤ i ≤ m},

where ∫
Ω

〈Aδ · ∇ψi, Aδ · ∇ϕ〉R2

qδ
dy = λi(δ)

∫
Ω

ψiϕ

qδ
dy, ∀ϕ ∈ H1

Γ(Ω), 1 ≤ i ≤ m, (2.10)∫
Ω

ψiψj
qδ

dy = δij , 1 ≤ i, j ≤ m, (2.11)

and δij is the Kronecker symbol.

We use the following notation. For any ψ = (ψ1, . . . , ψn) ∈ (H1
Γ(Ω))m, we define

h(δ, ψ) = min
ϕ∈H1

Γ(Ω)R
Ω (ϕψi/qδ) dy=0

1≤i≤m

G(δ, ϕ).

In view of Remark 2.8, let Km,δ be the subset of Bm,δ given by

Km,δ = {ψ ∈ Bm,δ | h(δ, ψ) = max
φ∈(H1

Γ(Ω))m
h(δ, φ)}.

For δ1, δ2 ∈ R+ and ψ ∈ (H1
Γ(Ω))m, Lδ1δ2,ψ denotes the set of minimizers ϕ ∈ H1

Γ(Ω) of
the functional G(δ1, ·) under the orthogonality conditions∫

Ω

ϕψi
qδ2

dy = 0, 1 ≤ i ≤ m.
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For δ ∈ R+ and ψ ∈ (H1
Γ(Ω))m, let

Hδ,ψ =
{
ϕ ∈ H1

Γ(Ω)
∣∣∣∣ ∫

Ω

ϕψi
qδ

dy = 0, 1 ≤ i ≤ m
}
.

Using these notations, we have

µm+1(δ) = h(δ, ψδ) = G(δ, ϕδδ,ψδ),

where ψδ ∈ Km,δ and ϕδδ,ψδ ∈ Lδδ,ψδ . Finally, we define, for i ≥ 1,

Ki = {ϕ ∈ Fi(Ω) | ∃ϕ̃ ∈ Fi(Ωδ), ϕ̃ ◦ T−1
δ → ϕ strongly in H1

Γ(Ω) as δ → 0+},

where Fi(Ωδ) is the eigenspace corresponding to the eigenvalue Λi(Ωδ) in the perturbed
domain Ωδ. The Eulerian semi-derivatives of the eigenvalues of the Laplacian are found
under the assumption of the convergence in the sense of Kuratowski of the sets Ki, i ≥ 1,
with respect to the parameter δ.

Theorem 2.9. If Ki = Fi(Ω), for all i ≥ 1, which means that any eigenfunction in the
domain Ω is a strong limit in H1

Γ(Ω) of eigenfunctions in the perturbed domain Ωδ, then
all the eigenvalues λm+1, m ∈ N∗, have an Eulerian semi-derivative at Ω in direction
V ∈ D1(D,R2) given by

dλm+1(Ω;V ) = 2λ2
m+1(Ω) max

ψ0∈Km,0

min
ϕ∈L0

0,ψ0

∂G

∂δ
(0, ϕ)

= α
(m+1)
A,V 〈V (A), τ〉R2 + α

(m+1)
B,V 〈V (B), τ〉R2 + φ

(m+1)
V (〈V, n〉R2),

where α(m+1)
A,V , α(m+1)

B,V ∈ R, φ(m+1)
V ∈ (C1(Σl))′ and ∂G

∂δ (0, ϕ) is given by

∂G

∂δ
(0, ϕ) =

1
2

∫
Ω

‖∇ϕ‖2R2 div V dy −
∫

Ω

〈∇ϕ,DV T · ∇ϕ〉R2 dy −
∫

Ω
ϕ2 div V dy

2‖ϕ‖L2(Ω)

. (2.12)

Moreover, for a vector field V such that V = (θ1, 0) where θ1 has support in D, B /∈
supp{θ1} and θ1 ≡ −1 in the vicinity of the origin A, the coefficient α(m+1)

A,V takes the
form

α
(m+1)
A,V = 2λ2

m+1(Ω) max
ψ0∈Km,0

min
ϕ∈L0

0,ψ0

πc2ϕ
4
,

where cϕ denotes the coefficient of singularity with respect to A of the function ϕ. The
same form can be obtained for α(m+1)

B,V ′ with V ′ = (θ2, 0), where θ2 has support in D,
A /∈ supp{θ2} and θ2 ≡ 1 in the vicinity of B.

Remark 2.10. If Ω is a smooth domain, integrating by parts in (2.12) leads to the
well-known formula

dλm+1(Ω;V ) = −λ2
m+1(Ω) max

ψ0∈Km,0

min
ϕ∈L0

0,ψ0

∫
Γ

‖∇ϕ‖2R2〈V, n〉R2 dσ(y).

The proof of Theorem 2.9 is involved and therefore, for the convenience of the reader,
we give an outline which describes the consecutive steps.
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2.2.2. Outline of the proof of Theorem 2.9. We start by studying the differen-
tiability in direction V of λm+1(δ) at δ = 0 which is equivalent to the differentiability
of µm+1(δ), because λm+1(δ) 6= 0, and so we have to find the limit of the differential
quotient

µm+1(δ)− µm+1(0)
δ

.

We begin by proving the inequalities

G(δ, ϕδ0,ψ0)−G(0, ϕδ0,ψ0)

δ
≤ µm+1(δ)− µm+1(0)

δ
≤
G(δ, ϕ0

δ,ψδ)−G(0, ϕ0
δ,ψδ)

δ

for δ > 0, ψ0 ∈ Km,0, ψδ ∈ Km,δ, ϕδ0,ψ0 ∈ Lδ0,ψ0 and ϕ0
δ,ψδ ∈ L0

δ,ψδ . In view of these
inequalities, to complete the proof of Theorem 2.9 it is sufficient to characterize the
limits of ψδ, ϕδ0,ψ0 and ϕ0

δ,ψδ as δ → 0+.
It is not difficult to obtain the existence of a constant M ∈ R+ independent of δ such

that
‖ψδ‖(H1

Γ(Ω))m ≤M

for δ > 0 small enough. This means that we can assume the weak convergence, for a
subsequence, ψδ ⇀ ψ in (H1

Γ(Ω))m as δ → 0+. In the same way, by using the Poincaré
inequality and the fact that ϕ0

δ,ψδ and ϕδ0,ψ0 are minimizers of the functionals G(0, ·) and
G(δ, ·), respectively, under the orthogonality conditions∫

Ω

ϕ0
δ,ψδψ

δ
i

qδ
dy = 0,

∫
Ω

ϕδ0,ψ0ψ0
i dy = 0, 1 ≤ i ≤ m,

we can show that the norms in H1
Γ(Ω) of ϕ0

δ,ψδ and ϕδ0,ψ0 are uniformly bounded with
respect to δ for δ > 0 small enough. Consequently,

ϕ0
δ,ψδ ⇀ ϕ and ϕδ0,ψ0 ⇀ ϕ̂ weakly in H1

Γ(Ω) as δ → 0+.

The compactness of the imbedding H1
Γ(Ω) ↪→ L2(Ω), the lower semicontinuity of the

functional ϕ 7→
∫

Ω
‖∇ϕ‖2R2 dy for the weak convergence in H1

Γ(Ω), in view of Poincaré’s
inequality and the fact that the orthogonality conditions are satisfied for the weak limits
for δ → 0+, enables us to show that the weak limit of ψδ in (H1

Γ(Ω))m belongs to Km,0.
We set ψ = ψ0, and we show that ϕ and ϕ̂ belong to L0

0,ψ0 and L0
0,ψ0 , respectively, where

ϕ = ϕ0
0,ψ0 and ϕ̂ = ϕ0

0,ψ0 . At this stage, we have shown that

ϕ0
δ,ψδ ⇀ ϕ0

0,ψ0 ∈ L0
0,ψ0 and ϕδ0,ψ0 ⇀ ϕ0

0,ψ0 ∈ L0
0,ψ0 weakly in H1

Γ(Ω).

Finally, we show that

ϕ0
δ,ψδ → ϕ0

0,ψ0 ∈ L0
0,ψ0 and ϕδ0,ψ0 → ϕ0

0,ψ0 ∈ L0
0,ψ0 strongly in H1

Γ(Ω).

This strong convergence is obtained by using the variational identities, that is, the Euler
equations, satisfied by ϕ0

δ,ψδ and ϕδ0,ψ0 . Indeed, these are minimizers of the functionals
G(0, ·) and G(δ, ·) under appropriate orthogonality conditions. By the Euler equations,
it follows that

‖ϕ0
δ,ψδ‖H1

Γ(Ω)
→ ‖ϕ0

0,ψ0‖
H1

Γ(Ω)
and ‖ϕδ0,ψ0‖

H1
Γ(Ω)
→ ‖ϕ0

0,ψ0‖
H1

Γ(Ω)
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as δ → 0+, which implies the strong convergence of ϕ0
δ,ψδ and ϕδ0,ψ0 to ϕ0

0,ψ0 and ϕ0
0,ψ0

respectively in H1
Γ(Ω). Using these convergences, we can pass to the limit as δ → 0+ in

the inequality

G(δ, ϕδ0,ψ0)−G(0, ϕδ0,ψ0)

δ
≤ µm+1(δ)− µm+1(0)

δ
≤
G(δ, ϕ0

δ,ψδ)−G(0, ϕ0
δ,ψδ)

δ

to obtain estimates from above and from below for the upper and lower limits of the
differential quotient. Finally, the convergence in the sense of Kuratowski of Ki(Ωδ) as
δ → 0+ is used to establish the equality of the inferior and superior limits of the differential
quotient, and consequently the Eulerian semi-derivatives of the (m+1)th eigenvalue exist.

However, the Eulerian semi-derivatives are not necessarily linear and so we cannot
directly apply the structure theorem [44]; nevertheless we can obtain the representation
formula

dλm+1(Ω;V ) = α
(m+1)
A,V 〈V (A), τ〉R2 + α

(m+1)
B,V 〈V (B), τ〉R2 + φ

(m+1)
V (〈V, n〉R2).

2.2.3. Proof of Theorem 2.9. We first prove some preliminary lemmas.

Lemma 2.11. We have

G(δ, ϕδs,ψ) ≤ G(δ, ϕδδ,ψδ) ≤ G(δ, ϕδ,ψδ)

for s ∈ R+, ψ ∈ (H1
Γ(Ω))m, ϕδ,ψδ ∈ Hδ,ψδ , ψδ ∈ Km,δ and ϕδs,ψ ∈ Lδs,ψ.

Proof. The second inequality is evident: ϕδδ,ψδ minimizes G(δ, ·) subject to the orthogo-
nality condition ∫

Ω

ϕδδ,ψδψ
δ
i

qδ
dy = 0, 1 ≤ i ≤ m,

and ϕδ,ψδ ∈ Hδ,ψδ satisfies the same orthogonality condition. Let us show the first ine-
quality. For ψδ ∈ Km,δ, we have

G(δ, ϕδδ,ψδ) = h(δ, ψδ) ≥ h(δ, ψ), ∀ψ ∈ (H1
Γ(Ω))

m
,

and replacing ψ ∈ (H1
Γ(Ω))m by qδ

qs
ψ ∈ (H1

Γ(Ω))m in the latter inequality, we obtain

G(δ, ϕδδ,ψδ) ≥ h
(
δ,
qδ
qs
ψ

)
= min

ϕ∈H1
Γ(Ω)R

Ω (ϕψi/qs) dy=0
1≤i≤m

G(δ, ϕ) = G(δ, ϕδs,ψ).

The inequalities in Lemma 2.11 are very important, since we want to find the Eulerian
semi-derivatives of the (m + 1)th eigenvalue, and so it is useful to estimate from above
and from below the differential quotient

µm+1(δ)− µm+1(0)
δ

, δ > 0. (2.13)

Such estimates are given in the following lemma.

Lemma 2.12. If ψ0 ∈ Km,0, ψδ ∈ Km,δ, ϕδ0,ψ0 ∈ Lδ0,ψ0 , ϕ0
δ,ψδ ∈ L0

δ,ψδ , then

G(δ, ϕδ0,ψ0)−G(0, ϕδ0,ψ0) ≤ µm+1(δ)− µm+1(0) ≤ G(δ, ϕ0
δ,ψδ)−G(0, ϕ0

δ,ψδ).
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Proof. We have, using the notation introduced above,

µm+1(δ)− µm+1(0) = G(δ, ϕδδ,ψδ)−G(0, ϕ0
0,ψ0).

However, the second inequality of Lemma 2.11 leads to

G(δ, ϕδδ,ψδ) ≤ G(δ, ϕ0
δ,ψδ). (2.14)

Moreover, by using the first inequality of Lemma 2.11 with δ = 0 we have

G(0, ϕ0
0,ψ0) ≥ G(0, ϕ0

s,ψ), ∀s ∈ R+, ∀ψ ∈ (H1
Γ(Ω))

m
,

so for s = δ and ψ = ψδ, we obtain

G(0, ϕ0
0,ψ0) ≥ G(0, ϕ0

δ,ψδ), (2.15)

and finally, by combining (2.14) and (2.15) it follows that

µm+1(δ)− µm+1(0) ≤ G(δ, ϕ0
δ,ψδ)−G(0, ϕ0

δ,ψδ). (2.16)

In the same way, we can estimate µm+1(δ) − µm+1(0) from below. Indeed, it is evident
that

G(0, ϕ0
0,ψ0) ≤ G(0, ϕδ0,ψ0), (2.17)

so from the first inequality of Lemma 2.11 applied with s = 0, ψ = ψ0, it follows
that

G(δ, ϕδ0,ψ0) ≤ G(δ, ϕδδ,ψδ), (2.18)

and finally, using (2.17) and (2.18) we obtain

µm+1(δ)− µm+1(0) ≥ G(δ, ϕδ0,ψ0)−G(0, ϕδ0,ψ0). (2.19)

The inequalities (2.16) and (2.19) enable us to estimate from below and from above
the differential quotient (2.13). It follows that we should characterize the limits as δ → 0+

of the functions ϕδ0,ψ0 and ϕ0
δ,ψδ in order to pass to the limit in the differential quotient

(2.13).

Lemma 2.13. There exists δ0 > 0 such that for all δ ∈ [0, δ0] and for all i ∈ N∗,

0 < λi(δ) ≤ 27λi(0).

Proof. According to Rayleigh’s principle,

λi(δ) = min
Ei,δ∈Vi,δ

max
v∈Ei,δ
v 6=0

∫
Ωδ
‖∇v‖2R2 dx∫
Ωδ
v2 dx

,

where Vi,δ denotes the family of subspaces Ei,δ of H1
Γ(Ωδ) such that dimVi,δ = i. By

a change of variables we can transport the max-min to the fixed domain Ω and ob-
tain

λi(δ) = min
Ei∈Vi

max
v∈Ei
v 6=0

∫
Ω

(‖Aδ · ∇v‖2R2/qδ) dy∫
Ω

(v2/qδ) dy
, (2.20)

where Vi is the family of subspaces Ei of H1
Γ(Ω) such that dimVi = i. Moreover, by

the uniform convergence of qδ to 1 as δ → 0+ on Ω, there exists δ1 > 0 such that
1/2 ≤ qδ ≤ 3/2 uniformly on Ω for any δ ∈ [0, δ1]. Moreover, the L∞-norm of the
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matrix function Aδ satisfies ‖Aδ‖∞ → 1 as δ → 0+, so there exists δ2 > 0 such
that

‖Aδ‖∞ ≤ 3/2, ∀δ ∈ [0, δ2].

Consequently, using the above estimates, with δ0 = min(δ1, δ2) > 0 we have∫
Ω

(‖Aδ · ∇v‖2R2/qδ) dy∫
Ω

(v2/qδ) dy
≤ 27

∫
Ω
‖∇v‖2R2 dy∫

Ω
v2 dy

, ∀δ ∈ [0, δ0],

and applying the latter inequality to the formula (2.20) for λi(δ), we obtain

λi(δ) ≤ 27λi(0), ∀δ ∈ [0, δ0].

Lemma 2.14. Let φδ ∈ Bm,δ be such that φδ ⇀ φ weakly in (L2(Ω))m as δ → 0+. Then
for any ϕ0,φ ∈ H0,φ, there exists ϕδ,φδ ∈ Hδ,φδ such that ϕδ,φδ → ϕ0,φ strongly in H1

Γ(Ω)
as δ → 0+.

Proof. Let us introduce

ϕδ,φδ = qδϕ0,φ −
m∑
j=1

φδj〈ϕ0,φ, φ
δ
j − φj〉L2(Ω)

.

First, we show that ϕδ,φδ ∈ Hδ,φδ . By definition, φδ ∈ Bm,δ and∫
Ω

φδiφ
δ
j

qδ
dy = δij , 1 ≤ i, j ≤ m,

which implies that∫
Ω

ϕδ,φδφ
δ
i

qδ
dy =

∫
Ω

ϕ0,φφ
δ
i dy − 〈ϕ0,φ, φ

δ
i − φi〉L2(Ω) = 〈ϕ0,φ, φi〉L2(Ω) = 0

for 1 ≤ i ≤ m, since ϕ0,φ ∈ H0,φ.
In the second step of the proof we show the strong convergence in H1

Γ(Ω) of ϕδ,φδ
to ϕ0,φ. First, let us note that qδϕ0,φ → ϕ0,φ converges strongly in H1

Γ(Ω) as δ → 0+.
Indeed,

‖qδϕ0,φ − ϕ0,φ‖2H1
Γ(Ω) =

∫
Ω

‖∇(qδϕ0,φ)−∇ϕ0,φ‖2R2 dy

=
∫

Ω

‖(∇qδ)ϕ0,φ + (qδ − 1)∇ϕ0,φ‖2R2 dy,

and by using the identities

qδ − 1 = −δ div V + δ2 det(DV ), ∇qδ = −δ(∇ div V ) + δ2∇(det(DV )),

the convergences ‖qδ−1‖L∞(Ω) → 0 and ‖∇qδ‖(L∞(Ω))2 → 0 for δ → 0+, and the estimate

‖qδϕ0,φ − ϕ0,φ‖H1
Γ(Ω) ≤ ‖∇qδ‖(L∞(Ω))2‖ϕ0,φ‖L2(Ω) + ‖qδ − 1‖L∞(Ω)‖∇ϕ0,φ‖L2(Ω),

it follows that ‖qδϕ0,φ − ϕ0,φ‖H1
Γ(Ω) → 0 as δ → 0+.

Now, let us show that for all j, 1 ≤ j ≤ m, φδj〈ϕ0,φ, φ
δ
j − φj〉L2(Ω)

→ 0 strongly in
H1

Γ(Ω) as δ → 0. By assumptions, φδ ∈ Bm,δ and for 1 ≤ i ≤ m,∫
Ω

〈Aδ · ∇φδi , Aδ · ∇ϕ〉R2

qδ
dy = λi(δ)

∫
Ω

φδiϕ

qδ
dy, ∀ϕ ∈ H1

Γ(Ω).
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In particular, by applying this relation with ϕ = φδi , we obtain∫
Ω

‖Aδ · ∇φδi ‖2R2

qδ
dy = λi(δ)

∫
Ω

(φδi )
2

qδ
dy = λi(δ).

The estimates of qδ given above lead to the inequality

‖Aδ · ∇φδi ‖L2(Ω) ≤
√

3
2
λi(δ), ∀δ ∈ [0, δ1],

which can be rewritten as

‖∇φδi + δB · ∇φδi ‖L2(Ω) ≤
√

3
2
λi(δ), ∀δ ∈ [0, δ1],

and in view of the inequality ‖B · ∇φδi ‖L2(Ω) ≤ 2‖B‖∞‖∇φδi ‖L2(Ω) we have the estimate

‖∇φδi ‖L2(Ω)(1− 2δ‖B‖∞) ≤
√

3
2
λi(δ), ∀δ ∈ [0, δ1].

Meanwhile there exists δ3 > 0 such that 1− 2δ‖B‖∞ ≥
1
2 for all δ ∈ [0, δ3] and so

‖∇φδi ‖L2(Ω) ≤
√

6λi(δ), ∀δ ∈ [0,min(δ1, δ3)].

But according to Lemma 2.13, 0 < λi(δ) ≤ 27λi(0) for all δ ∈ [0, δ0], and consequently, if
we set δ∗0 = min(δ0, δ3) > 0, we have

‖∇φδi ‖L2(Ω) = ‖φδi ‖H1
Γ(Ω) ≤ 9

√
2
√
λi(0), ∀δ ∈ [0, δ∗0 ].

Having shown this inequality, we can complete the proof of Lemma 2.14. Indeed, for all
δ ∈ [0, δ∗0 ],

‖φδj〈ϕ0,φ, φ
δ
j − φj〉L2(Ω)

‖
H1

Γ(Ω)
= |〈ϕ0,φ, φ

δ
j − φj〉L2(Ω)

| ‖φδj‖H1
Γ(Ω)

≤ 9
√

2
√
λj(0)|〈ϕ0,φ, φ

δ
j − φj〉L2(Ω)

|,

and taking the limit completes the proof, since, by assumptions, φδ → φ weakly in
(L2(Ω))m as δ → 0+.

Lemma 2.15. Let φ ∈ (H1
Γ(Ω))m. Then for all ϕ0,φ ∈ H0,φ, there exists ϕδ,φ ∈ Hδ,φ such

that ϕδ,φ → ϕ0,φ strongly in H1
Γ(Ω) as δ → 0+.

Proof. This result is of the same type as Lemma 2.14, but the proof is simpler. Indeed,
it is sufficient to set ϕδ,φ = qδϕ0,φ. We have to show that ϕδ,φ ∈ Hδ,φ. Let us note that∫

Ω

ϕδ,φφi
qδ

dy =
∫

Ω

ϕ0,φφi dy = 0

for 1 ≤ i ≤ m, since ϕ0,φ ∈ H0,φ. Moreover, in the same way as in the proof of Lemma
2.14, we establish the strong convergence ϕδ,φ → ϕ0,φ in H1

Γ(Ω) as δ → 0+.

Finally, we provide the variational equation satisfied by ϕδ1δ2,ψ ∈ Lδ1δ2,ψ.
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Lemma 2.16. Let δ1, δ2 ∈ R+ and ψ ∈ (H1
Γ(Ω))m. Then any element ϕδ1δ2,ψ ∈ Lδ1δ2,ψ

satisfies the variational identity

∫
Ω

〈Aδ1 · ∇ϕ
δ1
δ2,ψ

, Aδ1 · ∇ϕδ2,ψ〉R2

qδ1
dy =

∫
Ω

ϕδ1δ2,ψϕδ2,ψ

qδ1
dy√∫

Ω

ϕδ1δ2,ψ
2

qδ1
dy

, ∀ϕδ2,ψ ∈ Hδ2,ψ, (2.21)

and in particular, ∫
Ω

‖Aδ1 · ∇ϕ
δ1
δ2,ψ
‖

2

R2

qδ1
dy =

√∫
Ω

(ϕδ1δ2,ψ)2

qδ1
dy. (2.22)

Proof. ϕδ1δ2,ψ minimizes the functional G(δ1, ·) subject to the orthogonality condition∫
Ω

ϕδ1δ2,ψψi

qδ2
dy = 0, 1 ≤ i ≤ m,

and so ϕδ1δ2,ψ is a solution of the Euler equation (2.21). Then (2.22) follows easily by
applying (2.21) with ϕδ2,ψ = ϕδ1δ2,ψ.

Now, we can begin the proof of the main result. By Lemma 2.12, if ψ0 ∈ Km,0,
ψδ ∈ Km,δ, ϕδ0,ψ0 ∈ Lδ0,ψ0 , ϕ0

δ,ψδ ∈ L0
δ,ψδ , then

G(δ, ϕδ0,ψ0)−G(0, ϕδ0,ψ0) ≤ µm+1(δ)− µm+1(0) ≤ G(δ, ϕ0
δ,ψδ)−G(0, ϕ0

δ,ψδ).

Therefore, to find the Eulerian semi-derivatives of the (m+ 1)th eigenvalue of the Lapla-
cian, it is necessary to obtain the limits of ϕ0

δ,ψδ and ϕδ0,ψ0 as δ → 0+. The following
theorem gives the strong convergence of the sequence ϕ0

δ,ψδ in H1
Γ(Ω), and moreover we

precisely identify the limit function.

Theorem 2.17. ϕ0
δ,ψδ → ϕ0

0,ψ0 strongly in H1
Γ(Ω) as δ → 0+ where ψ0 ∈ Km,0 and

ϕ0
0,ψ0 ∈ L0

0,ψ0 .

Proof. According to the proof of Lemma 2.14, there exists a constant M ∈ R+ indepen-
dent of δ such that

‖ψδ‖(H1
Γ(Ω))m ≤M, ∀δ ∈ [0, δ∗0 ]. (2.23)

Therefore, we can assume there exists ψ ∈ (H1
Γ(Ω))m such that ψδ ⇀ ψ weakly in

(H1
Γ(Ω))m as δ → 0+. For the convenience of the reader, the proof of Theorem 2.17 is

divided into several steps.

Step 1. There exists a constant C > 0 such that ‖ϕ0
δ,ψδ‖H1

Γ(Ω)
≤ C for all δ ∈ R+.

We know that ϕ0
δ,ψδ is a minimizer of the functionalG(0, ·) subject to the orthogonality

condition ∫
Ω

ϕ0
δ,ψδψ

δ
i

qδ
dy = 0, 1 ≤ i ≤ m,
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and the function which is identically zero satisfies the same orthogonality condition, so
G(0, ϕ0

δ,ψδ) ≤ G(0, 0) = 0, which leads to

1
2
‖∇ϕ0

δ,ψδ‖
2

(L2(Ω))2 − ‖ϕ0
δ,ψδ‖L2(Ω)

≤ 0,

and by the Poincaré inequality, there exists a constant C = C(Ω) > 0 such that

‖ϕ0
δ,ψδ‖L2(Ω)

≤ C

2
‖∇ϕ0

δ,ψδ‖(L2(Ω))2 ,

thus
‖ϕ0

δ,ψδ‖H1
Γ(Ω)

= ‖∇ϕ0
δ,ψδ‖(L2(Ω))2 ≤ C. (2.24)

Therefore, we can assume that ϕ0
δ,ψδ ⇀ ϕ weakly in H1

Γ(Ω) as δ → 0+.

Remark 2.18. In the same way as in Step 1, we can show that there exists a constant
C = C(Ω) > 0 such that ‖ϕδ0,ψ0‖

H1
Γ(Ω)
≤ C for δ > 0 small enough, but we cannot claim

that the sequence is bounded for any δ ∈ R+, since we use the estimates of Aδ and qδ
which hold only for δ > 0 small enough. Hence, the weak convergence ϕδ0,ψ0 ⇀ ϕ̂ in
H1

Γ(Ω) follows for a subsequence as δ → 0+.

Step 2. ϕ ∈ L0
0,ψ

.

We are going to prove that ϕ minimizes the functional G(0, ·) and satisfies the or-
thogonality condition ∫

Ω

ϕψi dy = 0, 1 ≤ i ≤ m.

We know that ϕ0
δ,ψδ satisfies the orthogonality condition∫

Ω

ϕ0
δ,ψδψ

δ
i

qδ
dy = 0, 1 ≤ i ≤ m.

Moreover, ϕ0
δ,ψδ ⇀ ϕ weakly in H1

Γ(Ω) as δ → 0+ and since the imbedding H1
Γ(Ω) ↪→

L2(Ω) is compact, it follows that ϕ0
δ,ψδ → ϕ strongly in L2(Ω). It is not difficult to see

that ∫
Ω

ϕ0
δ,ψδψ

δ
i

qδ
dy →

∫
Ω

ϕψi dy, 1 ≤ i ≤ m,

as δ → 0. Indeed, for 1 ≤ i ≤ m, we have∫
Ω

ϕ0
δ,ψδψ

δ
i

qδ
dy = Aδ,i +Bδ,i + Cδ,i +

∫
Ω

ϕψi dy,

where

Aδ,i =
∫

Ω

1− qδ
qδ

ϕ0
δ,ψδ ψ

δ
i dy, Bδ,i =

∫
Ω

(ϕ0
δ,ψδ − ϕ)ψδi dy, Cδ,i =

∫
Ω

ϕ(ψδi − ψi) dy.

It is not difficult to see that each term Aδ,i, Bδ,i and Cδ,i converges to 0 as δ → 0+, for
any i. Moreover,

|Aδ,i| ≤ 2‖1− qδ‖L∞(Ω)

∫
Ω

|ϕ0
δ,ψδψ

δ
i | dy, ∀δ ∈ [0, δ1],

≤ 2‖1− qδ‖L∞(Ω)‖ϕ
0
δ,ψδ‖H1

Γ(Ω)
‖ψδ‖(H1

Γ(Ω))n , ∀δ ∈ [0, δ1],

≤ 2MC‖1− qδ‖L∞(Ω), ∀δ ∈ [0, δ∗0 ],
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in view of (2.23) and (2.24). Finally, the convergence ‖1− qδ‖L∞(Ω) → 0 as δ → 0+

implies the convergence Aδ,i → 0 for 1 ≤ i ≤ m. Furthermore, we have

|Bδ,i| ≤ ‖ϕ0
δ,ψδ − ϕ‖L2(Ω)

‖ψδ‖(H1
Γ(Ω))m ≤M‖ϕ

0
δ,ψδ − ϕ‖L2(Ω)

, ∀δ ∈ [0, δ∗0 ],

and by the strong convergence of ϕ0
δ,ψδ to ϕ in L2(Ω) we obtain the convergence of

Bδ,i to 0 as δ → 0+. Finally, Cδ,i → 0 as δ → 0+ since ψδ ⇀ ψ weakly in (H1
Γ(Ω))m.

Consequently, for 1 ≤ i ≤ m,

0 =
∫

Ω

ϕ0
δ,ψδψ

δ
i

qδ
dy →

∫
Ω

ϕψi dy

as δ → 0+, which implies that∫
Ω

ϕψi dy = 0, 1 ≤ i ≤ m,

which means that ϕ ∈ H0,ψ.
We have to show that ϕ is a minimizer of the functional G(0, ·). According to Lemma

2.14, for any ϕ0,ψ ∈ H0,ψ, there exists ϕδ,ψδ ∈ Hδ,ψδ such that ϕδ,ψδ → ϕ0,ψ strongly in
H1

Γ(Ω) as δ → 0+. Moreover, ϕδ,ψδ ⇀ ϕ weakly in H1
Γ(Ω) and the functional G(0, ·) is

sequentially lower semicontinuous on H1
Γ(Ω), and consequently

G(0, ϕ) ≤ lim inf
δ→0+

G(0, ϕ0
δ,ψδ) ≤ lim inf

δ→0+
G(0, ϕδ,ψδ),

since ϕ0
δ,ψδ is a minimizer of G(0, ·) subject to the orthogonality condition∫

Ω

ϕ0
δ,ψδψ

δ
i

qδ
dy = 0, 1 ≤ i ≤ m,

and ϕδ,ψδ ∈ Hδ,ψδ . It follows that

G(0, ϕ) ≤ lim inf
δ→0+

G(0, ϕδ,ψδ) = lim
δ→0+

G(0, ϕδ,ψδ) = G(0, ϕ0,ψ).

We have shown that G(0, ϕ) ≤ G(0, ϕ0,ψ) for any ϕ0,ψ ∈ H0,ψ and ϕ ∈ H0,ψ, thus
ϕ ∈ L0

0,ψ
. Using this inequality, we can write ϕ = ϕ0

0,ψ
.

The purpose of the following steps is to show that ψ ∈ Km,0. Since ψδ ∈ Km,δ, we
have

h(δ, ψδ) ≥ h(δ, ψ), ∀ψ ∈ (H1
Γ(Ω))

m
,

which is equivalent to
G(δ, ϕδδ,ψδ) ≥ G(δ, ϕδδ,ψ)

for ϕδδ,ψδ ∈ Lδδ,ψδ and ϕδδ,ψ ∈ Lδδ,ψ. In order to take the limit as δ → 0+ in this inequality,
we need to establish the following weak convergences.

Step 3. ϕδδ,ψ ⇀ ϕ0
0,ψ ∈ L0

0,ψ weakly in H1
Γ(Ω) as δ → 0+.

The element ϕδδ,ψ is a minimizer of G(δ, ·) over H1
Γ(Ω) subject to the orthogonality

condition ∫
Ω

ϕδδ,ψψi

qδ
dy = 0, 1 ≤ i ≤ m,
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and the function which is identically zero satisfies this orthogonality condition, so

G(δ, ϕδδ,ψ) ≤ G(δ, 0) = 0

and in the standard way, using the estimates of ‖Aδ‖∞ and ‖qδ‖L∞(Ω), the Poincaré
inequality, it follows that there exists a constant C = C(Ω) > 0 such that for δ > 0 small
enough, we have

‖ϕδδ,ψ‖H1
Γ(Ω)
≤ C.

Hence there exists ϕ∗ ∈ H1
Γ(Ω) such that ϕδδ,ψ ⇀ ϕ∗ weakly in H1

Γ(Ω) and ϕδδ,ψ → ϕ∗

strongly in L2(Ω) as δ → 0+, since the imbedding H1
Γ(Ω) ↪→ L2(Ω) is compact. Moreover,

in the same way as for the second step, we can take the limit in the orthogonality condition
satisfied by ϕδδ,ψ as δ → 0+ and it follows that ϕ∗ ∈ H0,ψ, so we have ϕ∗ = ϕ∗0,ψ.

Now, we show that ϕ∗0,ψ ∈ L0
0,ψ. Since ϕ

δ
δ,ψ minimizes G(δ, ·) over H1

Γ(Ω) subject to the
orthogonality condition ∫

Ω

ϕδδ,ψψi

qδ
dy = 0, 1 ≤ i ≤ m,

we have
G(δ, ϕδδ,ψ) ≤ G(δ, ϕδ,ψ), ∀ϕδ,ψ ∈ Hδ,ψ. (2.25)

According to Lemma 2.15, for any ϕ0,ψ ∈ H0,ψ, there exists a sequence ϕδ,ψ ∈ Hδ,ψ

such that ϕδ,ψ → ϕ0,ψ strongly in H1
Γ(Ω) as δ → 0+. Moreover, by the lower sequential

semicontinuity of the functional ϕ 7→
∫

Ω
‖∇ϕ‖2R2 dy for the weak topology of H1

Γ(Ω), and
since ϕδδ,ψ ⇀ ϕ∗0,ψ weakly in H1

Γ(Ω) as δ → 0+, by taking the lower limit in (2.25), we
obtain

G(0, ϕ∗0,ψ) ≤ G(0, ϕ0,ψ), ∀ϕ0,ψ ∈ H0,ψ.

Moreover ϕ∗0,ψ ∈ H0,ψ, so ϕ∗0,ψ ∈ L0
0,ψ and we set ϕ∗0,ψ = ϕ0

0,ψ.

Step 4. ϕδδ,ψ → ϕ0
0,ψ strongly in H1

Γ(Ω) as δ → 0+.

ϕδδ,ψ minimizes the functional G(δ, ·) and satisfies the orthogonality condition∫
Ω

ϕδδ,ψψi

qδ
dy = 0, 1 ≤ i ≤ m,

and according to Lemma 2.16, we have the relation∫
Ω

‖Aδ · ∇ϕδδ,ψ‖
2

R2

qδ
dy =

√∫
Ω

(ϕδδ,ψ)2

qδ
dy.

Then the strong convergence ϕδδ,ψ → ϕ0
0,ψ in L2(Ω) as δ → 0+ leads to∫

Ω

‖Aδ · ∇ϕδδ,ψ‖
2

R2

qδ
dy =

√∫
Ω

(ϕδδ,ψ)2

qδ
dy →

√∫
Ω

(ϕ0
0,ψ)2 dy =

∫
Ω

‖∇ϕ0
0,ψ‖

2

R2 dy,

the last inequality being due to Lemma 2.16, since ϕ0
0,ψ minimizes the functional G(0, ·)

with the orthogonality condition∫
Ω

ϕ0
0,ψψi dy = 0, 1 ≤ i ≤ m.



Boundary value problems in nonsmooth domains 31

Moreover, it is not difficult to see that, as δ → 0+,∫
Ω

‖Aδ · ∇ϕδδ,ψ‖
2

R2

qδ
dy −

∫
Ω

‖∇ϕδδ,ψ‖
2

R2 dy → 0.

In short, ϕδδ,ψ ⇀ ϕ0
0,ψ weakly in H1

Γ(Ω) as δ → 0+, and the convergence of the norms∫
Ω

‖∇ϕδδ,ψ‖
2

R2 dy →
∫

Ω

‖∇ϕ0
0,ψ‖

2

R2 dy

implies the strong convergence ϕδδ,ψ → ϕ0
0,ψ in H1

Γ(Ω).

Step 5. ψ ∈ Km,0.

By using the same method as in the third and fourth steps, we can show that
ϕδδ,ψδ → ϕ̃0

0,ψ
∈ L0

0,ψ
strongly in H1

Γ(Ω) as δ → 0+. By taking the limit in the in-
equality G(δ, ϕδδ,ψδ) ≥ G(δ, ϕδδ,ψ), we obtain G(0, ϕ̃0

0,ψ
) ≥ G(0, ϕ0

0,ψ) with ϕ̃0
0,ψ
∈ L0

0,ψ
,

ϕ0
0,ψ ∈ L0

0,ψ and consequently

h(0, ψ) ≥ h(0, ψ), ∀ψ ∈ (H1
Γ(Ω))

m
.

It follows that ψ ∈ Km,0 and we write ψ = ψ0. Now, ϕ0
δ,ψδ ⇀ ϕ0

0,ψ0 weakly in H1
Γ(Ω) as

δ → 0+. In fact, in the same way as for the fourth step, we can prove that ϕ0
δ,ψδ → ϕ0

0,ψ0

strongly in H1
Γ(Ω). The proof of Theorem 2.17 is complete.

The following theorem gives the limit of ϕδ0,ψ0 as δ → 0+.

Theorem 2.19. ϕδ0,ψ0 → ϕ0
0,ψ0 strongly in H1

Γ(Ω) as δ → 0+ with ϕ0
0,ψ0 ∈ L0

0,ψ0 .

Proof. The proof is based on the same arguments as for Theorem 2.17, but it is easier
since the orthogonality condition satisfied by ϕδ0,ψ0 is independent of δ.

Having established the limits of the functions ϕ0
δ,ψδ and ϕδ0,ψ0 , we can come back to

analyzing the differential quotient (2.13). We have previously shown that

G(δ, ϕδ0,ψ0)−G(0, ϕδ0,ψ0)

δ
≤ µm+1(δ)− µm+1(0)

δ
≤
G(δ, ϕ0

δ,ψδ)−G(0, ϕ0
δ,ψδ)

δ

for δ > 0. Moreover, by the finite increase theorem, there exists s, 0 ≤ s ≤ δ, such that

G(δ, ϕ0
δ,ψδ)−G(0, ϕ0

δ,ψδ)

δ
=
∂G

∂δ
(s, ϕ0

δ,ψδ)→
∂G

∂δ
(0, ϕ0

0,ψ0),

since ϕ0
δ,ψδ → ϕ0

0,ψ0 strongly in H1
Γ(Ω) as δ → 0+. Consequently, we obtain an upper

bound

lim sup
δ→0+

µm+1(δ)− µm+1(0)
δ

≤ ∂G

∂δ
(0, ϕ0

0,ψ0).

In the same way,
G(δ, ϕδ0,ψ0)−G(0, ϕδ0,ψ0)

δ
→ ∂G

∂δ
(0, ϕ0

0,ψ0),

since ϕδ0,ψ0 → ϕ0
0,ψ0 strongly in H1

Γ(Ω) and we have a lower bound

lim inf
δ→0+

µm+1(δ)− µm+1(0)
δ

≥ ∂G

∂δ
(0, ϕ0

0,ψ0).
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To sum up, we have obtained the inequality
∂G

∂δ
(0, ϕ0

0,ψ0) ≤ lim inf
δ→0+

µm+1(δ)− µm+1(0)
δ

≤ lim sup
δ→0+

µm+1(δ)− µm+1(0)
δ

≤ ∂G

∂δ
(0, ϕ0

0,ψ0).

It is important to remark that we do not need the convergence in the sense of Kuratowski
up to now. In principle, the functions ϕ0

0,ψ0 and ϕ0
0,ψ0 are different, but owing to the

convergence in the sense of Kuratowski, that is, Ki = Fi(Ω), i ≥ 1, we can write
∂G

∂δ
(0, ϕ0

0,ψ0) ≤ lim inf
δ→0+

µm+1(δ)− µm+1(0)
δ

≤ lim sup
δ→0+

µm+1(δ)− µm+1(0)
δ

≤ ∂G

∂δ
(0, ϕ0

0,ψ0)

for all ψ0 ∈ Km,0 and ϕ0
0,ψ0 ∈ L0

0,ψ0 . The differential quotient (µm+1(δ)− µm+1(0))/δ
has a finite limit as δ → 0+, denoted dµm+1(Ω;V ) and given by

dµm+1(Ω;V ) = max
ψ0∈Km,0

min
ϕ∈L0

0,ψ0

∂G

∂δ
(0, ϕ).

The Eulerian semi-derivative at Ω in direction V of the eigenvalue λm+1(Ω) is then
obtained by the relation

dλm+1(Ω;V ) = 2λ2
m+1(Ω)dµm+1(Ω;V ).

Remark 2.20. Without the convergence in the sense of Kuratowski, we have only an
inequality for the inferior and superior limits of the differential quotient.

Step 6. We obtain the representation formula and determine the coefficients α(m+1)
A,V for

a vector field V such that V = (θ1, 0), where θ1 has support in D, B /∈ supp{θ1} and
θ1 ≡ −1 in the vicinity of A.

The map V 7→ dλm+1(Ω;V ) is not necessarily linear and so the structure theorem
[44] cannot be directly applied; nevertheless, we can obtain a representation formula for
the Eulerian semi-derivatives. Indeed, the semi-derivative of λm+1(Ω) at Ω in direction
V ∈ D1(D,R2) is given by

dλm+1(Ω;V ) = 2λ2
m+1(Ω) max

ψ0∈Km,0

min
ϕ∈L0

0,ψ0

∂G

∂δ
(0, ϕ) =

∂G

∂δ
(0, ϕ∗m+1),

where ϕ∗m+1 = ϕ∗m+1(V ) depends on the vector field V . But, for a fixed function ϕ, the
map V 7→ ∂G

∂δ (0, ϕ) is linear and continuous with respect to V , and the structure theorem
leads to

∂G

∂δ
(0, ϕ) = αA,ϕ〈V (A), τ〉R2 + αB,ϕ〈V (B), τ〉R2 + φϕ(〈V, n〉R2),

where αA,ϕ, αB,ϕ ∈ R and φϕ ∈ (C1(Σ))′. Taking ϕ = ϕ∗m+1 yields the representation
formula

dλm+1(Ω;V ) = α
(m+1)
A,V 〈V (A), τ〉R2 + α

(m+1)
B,V 〈V (B), τ〉R2 + φ

(m+1)
V (〈V, n〉R2).

Moreover, let V = (θ1, 0) be a vector field such that θ1 has support in D, B /∈ supp{θ1}
and θ1 ≡ −1 in the vicinity of the origin A. Let Ωε be the subset of Ω defined in polar
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coordinates by r > ε. By integrating on Ωε and taking the limit as ε→ 0+, we obtain

α
(m+1)
A,V = 2λ2

m+1(Ω) max
ψ0∈Km,0

min
ϕ∈L0

0,ψ0

πc2ϕ
4
,

where cϕ denotes the coefficient of singularity with respect to A of the function ϕ. For
more details about the method used, we refer the reader to [43]. That completes the proof
of Theorem 2.9.

2.3. The energy functional for elastic bodies with cracks and unilateral con-
ditions. The singularity at the crack tips for problems with unilateral constraints on
the crack faces is not known, in general. Therefore, the classical approach for the shape
sensitivity analysis in the case of the perturbation of the position of the tip cannot be
applied. We present the method which allows us to obtain a constructive result even in
this case. In particular, it allows applying the Griffiths criteria for crack propagation, if
applicable, for a specific problem. The proof of our result is elementary; as a result, a
path independent integral is obtained for the characterization of the increment of the
energy functional for the small perturbation of the position of the crack tip.

2.3.1. Introduction. We consider elasticity equations in a domain having a cut (a crack)
with unilateral boundary conditions at the crack faces. The boundary conditions provide
a mutual non-penetration between the crack faces, and the problem on the whole is non-
linear. Assuming that a general perturbation of the cut is given we find the derivative
of the energy functional with respect to the perturbation parameter. It is known that
calculation of the material derivative for similar problems meets the difficulty in finding
boundary conditions at the crack faces. We use a variational property of the solution,
thus avoiding a direct calculation of the material derivative.

There are many results relating to differentiation of the potential energy functional
with respect to variable domains (see e.g. [35, 97, 98, 95, 38, 104, 90]). A general theory
of calculating material and shape derivatives in linear and non-linear boundary value
problems is developed in [126].

Derivatives of energy functionals with respect to the crack length in classical linear
elasticity can be found in different ways. It is well known that the classical approach to
the crack problem is characterized by equality type boundary conditions at the crack
faces [25, 97, 101, 17, 48, 94]. For the analysis of solution dependence on the domain
shape for a wide class of elastic problems we refer the reader to [70].

In [72, 67] a technique of finding derivatives of the energy functional with respect
to the crack length for unilateral boundary conditions is proposed which can be used
for a wide class of unilateral problems. Qualitative properties of solutions (existence,
regularity, dependence on parameters etc.) in the crack problem for plates, shells, two-
and three-dimensional bodies with unilateral conditions on the crack faces are analyzed
in [67] (see also [61, 64, 62, 63]).

2.3.2. Problem formulation. Let D ⊂ R3 be a bounded domain with smooth bound-
ary Γ, and Ξ ⊂ D be a smooth two-dimensional surface. We assume that this surface can
be extended up to the outer boundary Γ in such a way that D is divided into subdomains
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D1 and D2 with Lipschitz boundaries. Assume that this inner surface Ξ is described
parametrically by the equations

xi = xi(y1, y2), i = 1, 2, 3, (2.26)

where (y1, y2) belongs to the closure of an open bounded connected set ω ⊂ R2 having a
smooth boundary γ. We suppose that the rank of the Jacobi matrix ∂xi/∂yj equals 2 at
every point (y1, y2) ∈ ω ∪ γ, and that the map (2.26) is one-to-one. Let ν = (ν1, ν2, ν3)
be a unit normal vector to Ξ, for example

ν =

∂x

∂y1
× ∂x

∂y2∣∣∣∣ ∂x∂y1
× ∂x

∂y2

∣∣∣∣ .
Set Ω = D \ Ξ. In the domain Ω, we consider the following boundary value problem

for a function u = (u1, u2, u3):

− σij,j = fi, i = 1, 2, 3, (2.27)

σij = aijklεkl, i, j = 1, 2, 3, (2.28)

u = 0 on Γ, (2.29)

[u]ν ≥ 0, σν ≤ 0, [σν ] = 0, στ = 0, σν [u]ν = 0 on Ξ. (2.30)

Here εkl = εkl(u) = 1
2 (uk,l + ul,k) are the strain tensor components, uk,l = ∂uk/∂xl;

σij = σij(u) denote the stress tensor components,

{σijνj}3i=1 = στ + σνν , σν = σijνjνi.

The bracket [v] = v+ − v− denotes the jump of v across Ξ, v+, v− stand for the values
of v on Ξ+,Ξ−, respectively, where Ξ+,Ξ− are defined for a given choice of positive and
negative directions of ν on Ξ. The coefficients aijkl are assumed to be constant and satisfy
the usual conditions of symmetry and positive definiteness, i.e.

aijkl = ajikl = aijlk, aijklξklξij ≥ c|ξ|2, c > 0, ξij = ξji.

The function f = (f1, f2, f3) ∈ C1
loc(R3) is given. The boundary value problem (2.27)–

(2.30) describes an equilibrium state of an elastic body occupying the domain Ω in its
non-deformable state, the surface Ξ corresponds to a crack in the body. Conditions (2.30)
provide the mutual non-penetration between the crack faces without friction [70]. Con-
sidering the problem (2.27)–(2.30) we have in mind its variational formulation. Define

K0 = {u = (u1, u2, u3) ∈ H1(Ω) | u = 0 on Γ; [u]ν ≥ 0 on Ξ}.

Then (2.27)–(2.30) corresponds to the following minimization problem:

min
u∈K0

{
1
2

∫
Ω

aijklεkl(u)εij(u)−
∫

Ω

fu

}
. (2.31)

By the assumptions imposed on Ω, aijkl, f , the problem (2.31) has a unique solution u
satisfying the following variational inequality:

u ∈ K0 :
∫

Ω

aijklεkl(u)(εij(u)− εij(u)) ≥
∫

Ω

f(u− u), ∀u ∈ K0. (2.32)



Boundary value problems in nonsmooth domains 35

In this paper, we consider a general perturbation of the boundary value problem
(2.27)–(2.30) and find the derivative of the energy functional with respect to the pertur-
bation parameter. Note that the result obtained holds true for other boundary conditions.
For example, we may assume that Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, measΓ1 > 0, u = 0 on Γ1,

σijnj = 0 on Γ2. Here n = (n1, n2, n3) is a unit normal vector to Γ.
Let Ωt be a family of domains such that, for each t, there exists a one-to-one mapping

y = Φt(x), x ∈ Ωt, y ∈ Ω, (2.33)

with positive Jacobian |∂Φt/∂x| > c > 0, Φt = (Φ1
t ,Φ

2
t ,Φ

3
t ). We assume that Φ0(x) = x,

Φ ∈ C2(0, T ;W 2,∞
loc (R3)). Let

x = x(t, y) = Φ−1
t (y) (2.34)

be the mapping inverse to Φt. By fixing y in (2.33) and differentiating (2.33) with respect
to t, we have

0 =
∂Φt
∂t

+
∂Φt
∂x

dx(t)
dt

,

whence

dx(t)
dt

= −
(
∂Φt
∂x

)−1
∂Φt
∂t

. (2.35)

It is clear that (2.35) can be viewed as a system of ordinary differential equations, thus

dx(t)
dt

= V (t, x(t)), (2.36)

x(0) = y, (2.37)

where

V (t, x(t)) = −
(
∂Φt(x(t))

∂x

)−1
∂Φt(x(t))

∂t
,

and hence for the solution x(t) of (2.36)–(2.37) we have x(t) = x(t, y). Note, that, by
(2.34),

dx(t, y)
dt

=
∂Φ−1

t (y)
∂t

,

hence

V (t, x(t)) =
∂Φ−1

t (y)
∂t

, x(t) = x(t, y).

Let Ξt = Φ−1
t (Ξ) and Γt = Φ−1

t (Γ). We can assume that Ξt has no self-intersections
and consider the boundary value problem similar to (2.27)–(2.30) for the domain Ωt =
Φ−1
t (Ω). Namely, in the domain Ωt we want to find a function ut = (ut1, u

t
2, u

t
3) such that

− σtij,j = fi, i = 1, 2, 3, (2.38)

σtij = aijklε
t
kl, i, j = 1, 2, 3, (2.39)

ut = 0 on Γt, (2.40)

[ut]νt ≥ 0, σtνt ≤ 0, [σtνt ] = 0, σtτt = 0, σtνt [u
t]νt = 0 on Ξt. (2.41)
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Here νt is a normal unit vector to Ξt, εtkl(u
t) = 1

2 (utk,l +utl,k). All the other notations are
similar to those of (2.27)–(2.30). In fact, the problem (2.38)–(2.41) can be written in the
variational form

ut ∈ Kt :
∫

Ωt

aijklεkl(ut)(εij(ut)− εij(ut)) ≥
∫

Ωt

f(ut − ut), ∀ut ∈ Kt, (2.42)

where

Kt = {u = (u1, u2, u3) ∈ H1(Ω) | u = 0 on Γt; [u]νt ≥ 0 on Ξt}.

We impose one more condition on the mapping Φt. Assume that the condition v(y) ∈ K0

implies vt(x) ∈ Kt, v
t(x) = v(y), x ∈ Ωt, y ∈ Ω, y = Φt(x), and conversely, if v(x) ∈ Kt

then vt(y) ∈ K0, vt(y) = v(x), x = x(t, y). Note that this condition is not very restrictive,
and it holds in many cases [67].

Let u, ut be the solutions of the problems (2.32), (2.42), respectively. Consider the
energy functionals

J(Ω) =
1
2

∫
Ω

aijkluk,lui,j −
∫

Ω

fu, J(Ωt) =
1
2

∫
Ωt

aijklu
t
k,lu

t
i,j −

∫
Ωt

fut.

Our purpose is to find the derivative of J(Ωt) with respect to the parameter t,

dJ(Ωt)
dt

∣∣∣∣
t=0

= lim
t→0

J(Ωt)− J(Ω)
t

.

2.3.3. Convergence of solutions. First of all we prove the convergence of ut to u in
a proper sense. Namely, let ut(x) = ut(y), x ∈ Ωt, y ∈ Ω, x = x(t, y). Denote by ‖ · ‖1,Ω
the norm in the space H1(Ω).

Lemma 2.21. We have
‖ut − u‖1,Ω ≤ ct,

where c is a constant independent of t.

Proof. The functions u, ut satisfy the variational inequalities

u ∈ K0 :
∫

Ω

aijkluk,l(ui,j − ui,j) ≥
∫

Ω

f(u− u), ∀u ∈ K0, (2.43)

ut ∈ Kt :
∫

Ωt

aijklu
t
k,l(u

t
i,j − uti,j) ≥

∫
Ωt

f(ut − ut), ∀ut ∈ Kt. (2.44)

Define ft(y) = f(x(t, y)), qt(y) = |∂Φ−1
t (y)/∂y|. We have

utk,l(x) = utk,p(y)Φpt,l(x), k, l = 1, 2, 3.

Consequently, the inequality (2.44) can be rewritten in the form

ut ∈ K0 :
∫

Ω

aijklutk,pΦ
p
t,l(uti,sΦ

s
t,j − uti,sΦst,j)qt

≥
∫

Ω

ft(ut − ut)qt, ∀ut ∈ K0. (2.45)

It is important to note that ut ∈ K0 due to the assumption imposed on Φt. Here
we used the one-to-one mapping between Kt and K0. In the inequality (2.45), we have
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Φpt,l = Φpt,l(x(t, y)). Denote by δpl the Kronecker symbol. Then

Φpt,l(x(t, y)) = Φp0,l(x(t, y)) +
∂Φpξ,l(x(t, y))

∂ξ
t, ξ ∈ (0, t).

Since Φp0,l = δpl , p, l = 1, 2, 3, these equalities can be rewritten as

Φpt,l(x(t, y)) = δpl + Φplξ (x(t, y))t, (2.46)

where ξ = ξ(t, p, l), and we have denoted ∂Φpξ,l/∂ξ by Φplξ , which satisfies

‖Φplξ ‖L∞(Ω) ≤ c uniformly in ξ ∈ (0, T ). (2.47)

Moreover, qt(y) = q0(y) + ∂qξ(y)
∂ξ t, ξ ∈ (0, t), and q0(y) = 1. Denote ∂qξ(y)/∂ξ by qξ(y),

which gives

qt(y) = 1 + qξ(y)t, (2.48)

with the uniform (in ξ) estimate ‖qξ‖L∞(Ω) ≤ c. By (2.46), the inequality (2.45) can be
written in the form∫

Ω

aijklutk,p(δ
p
l + tΦplξ )[uti,s(δsj + tΦsjξ )− uti,s(δsj + tΦsjξ )]qt ≥

∫
Ω

ft(ut − ut)qt. (2.49)

Now substitute u = ut, ut = u in (2.43), (2.49), respectively. By (2.48), this yields∫
Ω

aijkluk,l(uti,j − ui,j) ≥
∫

Ω

f(ut − u), (2.50)∫
Ω

aijklutk,l(ui,j − uti,j)(1 + qξt) + t

∫
Ω

aijklutk,pΦ
pl
ξ (ui,j − uti,j)qt

+ t

∫
Ω

aijklutk,l(ui,sΦ
sj
ξ − uti,sΦ

sj
ξ )qt

+ t2
∫

Ω

aijklutk,pΦ
pl
ξ (ui,sΦ

sj
ξ − uti,sΦ

sj
ξ )qt ≥

∫
Ω

ft(u− ut)qt. (2.51)

Summing (2.50) and (2.51) we obtain∫
Ω

aijkl(uk,l − utk,l)(ui,j − uti,j) ≤ t
∫

Ω

qξaijklutk,l(ui,j − uti,j)

+ t

∫
Ω

[aijklutk,pΦ
pl
ξ (ui,j − uti,j) + aijklutk,l(ui,sΦ

sj
ξ − uti,sΦ

sj
ξ )]qt

+ t2
∫

Ω

aijklutk,pΦ
pl
ξ (ui,sΦ

sj
ξ − uti,sΦ

sj
ξ )qt −

∫
Ω

f(ut − u) +
∫

Ω

ft(ut − u)qt. (2.52)

Taking ut = 0 in (2.49) we derive the uniform (in t ∈ (0, T )) estimate

‖ut‖1,Ω ≤ c.

Consequently, by (2.47), (2.48), from (2.52) it follows that∫
Ω

aijkl(ui,j − uti,j)(uk,l − utk,l) ≤ ct2 +
∫

Ω

|u− ut| |f − ft(1 + qξt)|, (2.53)

where the constant c is independent of t ∈ (0, T ). Since

fk(y)−fkt(y)(1+qξt)=fk(y)−
[
fk(y)+

∂fk
∂xi

dxi(ξ1)
dξ1

(1+qξt)t
]
, ξ1 ∈ (0, t), k=1, 2, 3,
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the inequality (2.53) implies ‖u − ut‖21,Ω ≤ ct2, which completes the proof of Lemma
2.21.

2.3.4. Main result. To find the derivative of the energy functional, we shall use the
variational property of the solution. Introduce first the notations

Π(Ωt;ϕ) =
1
2

∫
Ωt

aijklϕk,lϕi,j dx−
∫

Ωt

fϕ dx,

Πt(Ω;ϕ) =
1
2

∫
Ω

aijklϕk,pΦ
p
t,lϕi,sΦ

s
t,jqt dy −

∫
Ω

ftϕqt dy.

Since we have the one-to-one mapping between Kt and K0, the following equality holds:

min
ϕ∈K0

Πt(Ω;ϕ) = min
ϕ∈Kt

Π(Ωt;ϕ).

Note also that
J(Ω) = Π(Ω;u), J(Ωt) = Π(Ωt;ut),

where u, ut are the solutions of (2.32) and (2.42), respectively. Consequently,
J(Ωt)− J(Ω)

t
=

Π(Ωt;ut)−Π(Ω;u)
t

=
Πt(Ω;ut)−Π(Ω;u)

t
≤ Πt(Ω;u)−Π(Ω;u)

t
.

This implies

lim sup
t→0

J(Ωt)− J(Ω)
t

≤ lim sup
t→0

Πt(Ω;u)−Π(Ω;u)
t

. (2.54)

On the other hand,

lim sup
t→0

J(Ωt)− J(Ω)
t

=
Π(Ωt;ut)−Π(Ω;u)

t
≥ Πt(Ω;ut)−Π(Ω;ut)

t
,

whence

lim inf
t→0

J(Ωt)− J(Ω)
t

≥ lim inf
t→0

Πt(Ω;ut)−Π(Ω;ut)
t

. (2.55)

Now we aim to show that the right-hand sides of (2.54), (2.55) coincide, which implies
the existence of the limit

lim
t→0

J(Ωt)− J(Ω)
t

.

Let us find the right-hand side of (2.54). It suffices to find the derivative
d

dt
Πt(Ω;u)

∣∣∣∣
t=0

=
d

dt

{
1
2

∫
Ω

aijkluk,pΦ
p
t,lui,sΦ

s
t,jqt −

∫
Ω

ftuqt

}∣∣∣∣
t=0

. (2.56)

By denoting

Λ(y) = −V (0, y) =
∂Φt(x(t, y))

∂t

∣∣∣∣
t=0

, (2.57)

we have

Φpt,l(x(t, y))|t=0 = δpl ,
∂Φpt,l(x(t, y))

∂t

∣∣∣∣
t=0

= Λp,l(y) , (2.58)

and moreover, as t→ 0,

Φpt,l(x(t, y))→ δpl ,
∂Φpt,l(x(t, y))

∂t
→ Λp,l(y) in L∞(Ω). (2.59)
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Indeed,

Φpt,l(x(t, y)) = Φpt,l(x(t, y))− Φp0,l(x(t, y)) + Φp0,l(x(t, y))

=
∂Φpξ,l(x(t, y))

∂ξ
t+ Φp0,l(x(t, y)), ξ ∈ (0, t).

By (2.47),

∂Φpξ,l(x(t, y))
∂ξ

is bounded in L∞(Ω) uniformly in ξ, t ∈ (0, T ),

which together with the first equality of (2.58) implies the first convergence of (2.59).
Similarly, since

∂2Φpξ,l(x(t, y))
∂ξ2

is bounded in L∞(Ω) for all ξ, t ∈ (0, T )

and ∂Φp0,l(x)/∂ξ has the Lipschitz property in x, from the equality

∂Φpt,l(x(t, y))
∂t

=
∂Φpt,l(x(t, y))

∂t
−
∂Φp0,l(x(t, y))

∂t
+
∂Φp0,l(x(t, y))

∂t

=
∂2Φpξ,l(x(t, y))

∂ξ2
t+

∂Φp0,l(x(t, y))
∂t

, ξ ∈ (0, t),

we conclude that the second convergence of (2.59) holds.
It is well-known that [100]

∂qt(y)
∂t

= qt(y) div V (t, x(t, y)), (2.60)

and by (2.48), (2.57),

∂qt(y)
∂t

∣∣∣∣
t=0

= −div Λ(y).

We next obtain

div V (t, x(t, y)) = div V (0, y) +
d

dξ
div V (ξ, x(ξ, y))t, ξ ∈ (0, t),∥∥∥∥ ddξ div V (ξ, x(ξ, y))

∥∥∥∥
L∞(Ω)

≤ c uniformly in ξ ∈ (0, T ).

Hence, taking into account (2.48), as t→ 0,

qt(y) div V (t, x(t, y))→ −div Λ(y) in L∞(Ω).

By (2.60), this gives, as t→ 0,

∂qt
∂t
→ −div Λ in L∞(Ω). (2.61)

Also note that (2.58) implies Φpt,ls(x(t, y))|t=0 = 0, p, l, s = 1, 2, 3, so that

dΦpt,l(x(t, y))
dt

∣∣∣∣
t=0

=
∂Φpt,l(x(t, y))

∂t

∣∣∣∣
t=0

.
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Hence, by (2.59), (2.61), we can calculate the right-hand side of (2.56), i.e. the right-hand
side of (2.54):

d

dt
Πt(Ω;u)

∣∣∣∣
t=0

=
1
2

∫
Ω

(aijkluk,pui,sΛ
p
,lδ
s
j + aijkluk,pui,sΛs,jδ

p
l )

− 1
2

∫
Ω

aijkluk,pui,sδ
p
l δ
s
j (div Λ) +

∫
Ω

uk(∇fkΛ) +
∫

Ω

fudiv Λ

=
∫

Ω

{σkluk,pΛp,l −
1
2
σijεij div Λ}+

∫
Ω

uk div(fkΛ). (2.62)

Now we find the right-hand side of (2.55). To this end we consider the term

∆t =
1
t

∫
Ω

(utk,puti,sΦ
p
t,lΦ

s
t,jqt − utk,luti,j)

for fixed k, l, i, j. It is possible to write ∆t in the form

∆t =
1
t

∫
Ω

(utk,puti,sΦ
p
t,lΦ

s
t,j − utk,pδ

p
l uti,sΦ

s
t,j)qt +

1
t

∫
Ω

(utk,pδ
p
l uti,sΦ

s
t,j − utk,luti,j)

+
1
t

∫
Ω

(utk,puti,sΦ
p
t,lΦ

s
t,j − utk,pδ

p
l uti,sΦ

s
t,j)

+
1
t

∫
Ω

(utk,pδ
p
l uti,sΦ

s
t,j − utk,pδ

p
l uti,sδ

s
j )qt

+
1
t

∫
Ω

(utk,pδ
p
l uti,sδ

s
j − utk,pΦ

p
t,luti,sδ

s
j )qt

+
1
t

∫
Ω

(utk,pΦ
p
t,luti,sδ

s
j qt − utk,pΦ

p
t,luti,sδ

s
j )

+
1
t

∫
Ω

(utk,pΦ
p
t,luti,sδ

s
j − utk,pΦ

p
t,luti,sΦ

s
t,j). (2.63)

Recall that as t→ 0,

ut → u in H1(Ω), qt → 1 in L∞(Ω).

Since

qt(y)− q0(y)
t

=
∂qξ(y)
∂ξ

, ξ ∈ (0, t),

Φpt,l(x(t, y))− δpl
t

=
∂Φpξ,l(x(t, y))

∂ξ
, ξ ∈ (0, t),

by the convergences (2.59), (2.61), we can find the limit of each part of the right-hand
side of (2.63) as t→ 0, which implies

lim
t→0

∆t =
∫

Ω

{uk,pΛp,lui,j + uk,lui,sΛs,j + ui,juk,pΛ
p
,l + uk,lui,sΛs,j

− ui,juk,pΛp,l − uk,lui,j(div Λ)− uk,lui,sΛs,j}

=
∫

Ω

{ui,juk,pΛp,l + uk,lui,sΛs,j − uk,lui,j(div Λ)}. (2.64)
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In addition, as t→ 0,
fkt − fk

t
→ −∇fk · Λ in L∞(Ω), k = 1, 2, 3,

hence

lim
t→0

∫
Ω

ftqtut − fut
t

= lim
t→0

∫
Ω

(ft − f)qtut
t

+ lim
t→0

∫
Ω

fut(qt − 1)
t

= −
∫

Ω

uk(∇fkΛ)−
∫

Ω

fudiv Λ. (2.65)

From (2.64), (2.65) it follows that

lim
t→0

Πt(Ω;ut)−Π(Ω;ut)
t

=
∫

Ω

{
aijklui,juk,pΛ

p
,l −

1
2
aijklui,juk,l(div Λ)

}
+
∫

Ω

uk(∇fkΛ) +
∫

Ω

fudiv Λ

=
∫

Ω

{
σkluk,pΛ

p
,l −

1
2
σijεij div Λ

}
+
∫

Ω

uk div(fkΛ). (2.66)

By (2.62), (2.66), we conclude that the right-hand sides of (2.54), (2.55) coincide and we
obtain the following statement.

Theorem 2.22. Let the hypotheses concerning Φt hold. Then the derivative of the energy
functional is given by the formula

dJ(Ωt)
dt

∣∣∣∣
t=0

=
∫

Ω

{
σkluk,pΛ

p
,l −

1
2
σijεij div Λ

}
+
∫

Ω

uk div(fkΛ), (2.67)

where the vector field Λ is defined by (2.57).

In conclusion note that the formulae similar to (2.67) were obtained for isotropic two-
and three-dimensional cracked bodies with conditions (2.30) at the crack faces provided
that the perturbation Φt of the domain Ωt describes the crack length change [72, 67].

3. Fréchet differentiability in domains with cracks

In the first chapter, the first and second order shape derivative were computed in the
smooth case for the energy functional. In Chapter 2, the structure of the shape derivative
was obtained in 2D and 3D, for domains with cracks, for the Eulerian semi-derivative.
The Eulerian semi-derivative is only a directional derivative, and in this chapter, the
structure of the shape derivative is studied in the framework of Fréchet differentiability,
a stronger notion of derivative. This allows us to give the structure theorem for the first
order shape derivative and also for the second order shape derivative, which can be used
in Newton shape methods. The study is also performed in dimension two or greater. It
is necessary to study the 2D case as a special case. More details and examples can be
found in [83].

We generalize a method introduced in [96] to obtain the structure of the derivatives
in smooth domains. The main idea of this method is to decompose the perturbation field
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into normal and tangential components by using the implicit function theorem. Before
giving this theorem, we will define a class Fk(Ω) of cracked domains.

3.1. The structure theorem in dimension d ≥ 3

3.1.1. The structure theorem. In what follows, U is a bounded domain of Rd, d ≥ 3,
with a smooth boundary. The set U is called the hold-all and the perturbations θ defined
later leave U globally unchanged. Let also k ∈ N, k ≥ 1.

Domains: Define

Ok = {D b U | D bounded open of class Ck}. (3.1)

Being of class Ck means that, for every x ∈ ∂D, there exists an open neighbourhood ωx
of x in R2 and ξx : ωx → R of class Ck such that

∇ξx 6= 0 on ωx, ξx(ωx ∩ ∂D) = 0,

ξx(ωx ∩D) ⊂ [−∞, 0), ξx(ωx \ D̄) ⊂ (0,+∞].

Notice that n = ∇ξx/|∇ξx| locally defines the outer unit normal vector to D.

Domains with cracks: Let D ∈ Ok. The boundary ∂D = Σ of D is a closed manifold
of dimension d− 1. Let γ be a closed and connected submanifold of Σ of dimension d− 2
and of class Ck such that Σ\γ has two connected components S and S′. Then S is called
a crack and we define the cracked domain by Ω = U \ S.

Let Ω0 be a cracked domain. Then we have

γ0 ⊂ Σ0 = ∂D0, S0 ∪ S′0 = Σ0 \ γ0, Ω0 = U \ S0,

and we denote by n the outer unit normal vector to D. The codimension of γ0 is
two, which means that the complement in Rd of the tangent set to γ0 is of dimen-
sion two. Then we define the vector ν such that (n, ν) is an orthonormal basis of this
space.

For a given domain Ω0, let us introduce the perturbed domain Ωθ of Ω0 by some
vector field θ.

Functional framework: Let Θk be the space of vector fields from Ck(Rd,Rd) which
vanish on U c and whose derivatives are bounded up to order k. Equipped with the usual
norm ‖.‖k, Θk is a Banach space. Define

Dk := {θ ∈ Θk | ‖θ‖k < 1}.

For θ ∈ Dk, the map I + θ is a Ck-diffeomorphism (I is the identity in Rd). For given
θ ∈ Dk, define

Dθ = {(I + θ)(x) | x ∈ D0}, Σθ = {(I + θ)(x) | x ∈ Σ0},
Ωθ = {(I + θ)(x) | x ∈ Ω0}, γθ = {(I + θ)(x) | x ∈ γ0}.

Since D0 ∈ Ok, we clearly have Dθ ∈ Ok and Σθ is of class Ck. Also, since Ω0 is a cracked
domain with D0 ∈ Ok, we define

Fk(Ω0) = {Ωθ | θ ∈ Dk}
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to be the set of admissible cracked domains. For the sake of simplicity, since Ω0 is given,
we write Fk instead of Fk(Ω0).

Shape functional: Let J : Fk → R be a given shape functional. We associate to J the
functional E defined on Dk by the equality

∀θ ∈ Dk, E(θ) := J(Ωθ).

Since Θk is a Banach space, the Fréchet derivatives of E can be defined. Denote by
E′(θ) ∈ L(Dk; R) the first-order Fréchet derivative of E with respect to θ and by E′(θ)(ξ)
its value in direction ξ ∈ Θk. In a similar way E′′(θ) ∈ L(Dk×Dk; R) is the second-order
Fréchet derivative of E and E′′(θ)(ξ, η) stands for its value at ξ, η ∈ Θk.

Notations: For x, y ∈ Rd, denote by 〈x, y〉 the scalar product in Rd. Given a vector field
ξ on Σ0, we will write ξn instead of 〈ξ, n〉 and ξν instead of 〈ξ, ν〉. We will also write
ξΣ = ξ − ξnn for the component in the tangent space at a point x of the manifold Σ. We
then define ξγ := ξΣ − ξνν, the projection of ξ on the tangent space to the manifold γ.
Note that ξn and ξν are scalars while ξΣ and ξγ are vectors in Rd.

We are now able to give the main result of this chapter.

Theorem 3.1. Let k ≥ 1.

(i) Let Ω0 be a cracked domain with D0 ∈ Ok+1. Assume that E is Fréchet differentiable
in Θk at 0. Then there exist continuous linear forms l1 : Ck(Σ0,R) → R and l1ν :
Ck(γ0,R)→ R such that

E′(0)(ξ) = l1(ξn) + l1ν(ξν), ∀ξ ∈ Θk. (3.2)

(ii) Let Ω0 be a cracked domain with D0 ∈ Ok+2. Assume that E is twice Fréchet differ-
entiable at 0 in Θk. Then there exist bilinear forms

l2 : Ck(Σ0,R)× Ck(Σ0,R)→ R,
l2ν : Ck(γ0,R)× Ck(γ0,R)→ R,

L2 : Ck(Σ0,R)× Ck(γ0,R)→ R,

and a linear form l1n : Ck(γ0,R)→ R, such that for all vector fields ξ, η ∈ Θk+1,

E′′(0)(ξ, η) = l2(ξn, ηn) + l2ν(ξν , ην) + l1(Φ′′(0)(ξ, η)) + l1n(φ′′n(0)(ξ, η))

+ l1ν(φ′′ν(0)(ξ, η)) + L2(ξn, ην) + L2(ηn, ξν), (3.3)

with Φ′′(0)(ξ, η), φ′′n(0)(ξ, η) and φ′′ν(0)(ξ, η) given respectively by (3.6), (3.8) and
(3.9) below.

Remark 3.2. If Ω0 is a critical shape for E, i.e., E′(0) = 0 at 0, then l1 ≡ 0, l1ν ≡ 0, and
the expression (3.3) simplifies to

E′′(0)(ξ, η) = l2(ξn, ηn) + l2ν(ξν , ην) + l1n(φ′′n(0)(ξ, η)) + L2(ξn, ην) + L2(ηn, ξν).

3.1.2. Normal and tangential perturbations. For every l ∈ N, 1 ≤ l ≤ k, we set

Gk−l(Σ,Σ) := {g ∈ Ck−l(Σ,Rd) | g(Σ) ⊂ Σ},
Gk−l(γ, γ) := {g ∈ Ck−l(γ,Rd) | g(γ) ⊂ γ}.
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Denote by Φ(θ) and H(θ) the normal and tangential perturbations, respectively, on the
surface Σ. Denote also by φn(θ) and φν(θ) the normal perturbations to γ in directions n
and ν, and by h(θ) the tangential perturbations of γ. The implicit function theorem is
used to obtain the following lemma, which will be applied in the proof of the structure
theorem.

Lemma 3.3. Assume that Σ and γ are manifolds of class Ck. For every 1 ≤ l ≤ k, there
exists an open neighbourhood Uk of 0 in Θk and a unique vector of Cl functions

(H,Φ, h, φn, φν) : Uk → Gk−l(Σ,Σ)×Ck−l(Σ,R)×Gk−l(γ, γ)×Ck−l(γ,R)×Ck−l(γ,R)

such that (H,Φ, h, φn, φν)(0) = (I, 0, I, 0, 0) and for all θ ∈ Uk,

I + θ = (I + Φ(θ)n) ◦H(θ) on Σ0, (3.4)

H(θ) = (I + φn(θ)n+ φν(θ)ν) ◦ h(θ) on γ0. (3.5)

In addition, for every ξ, η ∈ Θk we get, for l ≥ 1,

H ′(0)(ξ) = ξΣ,

Φ′(0)(ξ) = ξn,

h′(0)(ξ) = ξγ ,

φ′n(0)(ξ) = 0,

φ′ν(0)(ξ) = ξν ,

and for l ≥ 2 the second order derivatives are given by

Φ′′(0)(ξ, η) = −〈DηξΣ, n〉 − 〈DξηΣ, n〉 − 〈DnξΣ, ηΣ〉, (3.6)

H ′′(0)(ξ, η) = −〈DnηΣ, ξΣ〉n− ηnDnξΣ − ξnDnηΣ, (3.7)

h′′(0)(ξ, η) = 〈ξγ , Dnηγ〉n+ 〈ξγ , Dνηγ〉ν − ηnDnξΣ − ξnDnηΣ

+ ηn〈DnξΣ, ν〉ν + ξn〈DnηΣ, ν〉ν − ξνDνηγ − ηνDνξγ
+ ξν〈Dνηγ , n〉n+ ην〈Dνξγ , n〉n,

φ′′n(0)(ξ, η) = −ηνξν〈Dnν, ν〉, (3.8)

φ′′ν(0)(ξ, η) = −〈ξγ , Dνηγ〉 − 〈ν,Dηξγ〉 − 〈ν,Dξηγ〉
− ηn〈ν,DnξΣ〉 − ξn〈ν,DnηΣ〉 − ηn〈n,Dνξγ〉 − ξn〈n,Dνηγ〉. (3.9)

Proof. Since Σ and γ are manifolds of class Ck and of dimension d− 1 and d− 2, respec-
tively, there exist ζ0, ζ1 ∈ Ck(Rd,R) and open neighbourhoods ω0 and ω1 respectively
of Σ and γ such that

Σ = {x ∈ ω0 | ζ0(x) = 0}, ∀x ∈ Σ, ∇ζ0(x) 6= 0,

γ = {x ∈ ω1 | ζ0(x) = 0, ζ1(x) = 0}, ∀x ∈ γ, ∇ζ1(x) 6= 0.

In addition the outer unit normal vector to S is given by

∀x ∈ Σ, n(x) = ∇ζ0(x)/|∇ζ0(x)|,

and we can choose ζ0 and ζ1 so that (n(x), ν(x)) is an orthonormal basis, with ν(x)
defined as

∀x ∈ γ, ν(x) = ∇ζ1(x)/|∇ζ1(x)|.
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The plane orthogonal to γ at x ∈ γ is then given by the orthonormal basis (n(x), ν(x)). Let
us now introduce Zl = Ck−l(Σ,Rd)×Ck−l(Σ,R)×Ck−l(γ,Rd)×Ck−l(γ,R)×Ck−l(γ,R)
and define T : Θk × Zl → Zl by

(θ, (H,Φ, h, φn, φν)) 7→


I + θ − (I + Φn) ◦H

ζ0 ◦H
H − (I + φnn+ φνν) ◦ h

ζ1 ◦ h
ζ0 ◦ h

 .

First of all it can be checked that T is Cl. For all (H,Φ, h, φn, φν) ∈ Zl, we have

T (0, (I, 0, I, 0, 0)) = (0, 0, 0, 0, 0),

D(H,Φ,h,φn,φν)T (0, (I, 0, I, 0, 0))(H,Φ, h, φn, φν) =



−Φn−H
Dζ0H

H − φnn− φνν − h
Dζ1h

Dζ0h


.

(3.10)

Note that Dζ0H = |∇ζ0|〈n,H〉, Dζ0h = |∇ζ0|〈n, h〉 and Dζ1h = |∇ζ1|〈n, h〉. In order to
prove that D(H,Φ,h,φn,φν)T (0, (I, 0, I, 0, 0)) is an isomorphism of Zl onto Zl, it must be
proved first that for all (A, u, a, w, v), the solution of

D(H,Φ,h,φn,φν)T (0, (I, 0, I, 0, 0))(H,Φ, h, φn, φν) = (A, u, a, w, v)

is unique. We calculate the scalar product of the first lign of (3.10) with n to find that

Φ = −〈A,n〉 − |∇ζ0|−1u, H = |∇ζ0|−1un−AΣ.

Then the scalar products of (3.10) with n and ν are computed and we obtain

φn = |∇ζ0|−1u− |∇ζ0|−1v − 〈a, n〉,
φν = −|∇ζ1|−1w − 〈A, ν〉 − 〈a, ν〉,
h = −Aγ − aγ + |∇ζ0|−1vn+ |∇ζ1|−1wν.

Thus, D(H,Φ,h,φn,φν)T (0, (I, 0, I, 0, 0)) is an isomorphism of Zl, and the function T sat-
isfies the conditions of the implicit function theorem in the neighbourhood of (0, (I, 0, I,
0, 0)). Hence there exists an open neighbourhood Uk ⊂ Θk of 0 and functions

(H,Φ, h, φn, φν) : Uk → Zl

of class Cl such that (H,Φ, h, φn, φν)(0) = (I, 0, I, 0, 0) and

I + θ = (I + Φ(θ)) ◦H(θ), (3.11)

H(θ) = (I + φn(θ)n+ φν(θ)ν) ◦ h(θ), (3.12)

ζ0(H(θ)) = 0, (3.13)

ζ0(h(θ)) = 0, (3.14)

ζ1(h(θ)) = 0. (3.15)
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It is always possible to restrict Uk so that H(θ) takes its values in ω0 and h(θ) takes its
values in ω0 ∩ ω1; then (3.13)–(3.15) imply H(θ)(x) ∈ Σ for all x ∈ Σ and h(θ)(x) ∈ γ
for all x ∈ γ. Thus we have shown the first part of the lemma.

Now we can differentiate the five equations (3.11)–(3.15) with respect to θ in the
neighbourhood of 0. For all ξ ∈ Θk, we get

ξ = H ′(θ)(ξ) +D(Φ(θ)n) ◦H(θ)H ′(θ)(ξ) + (Φ′(θ)(ξ)n) ◦H(θ), (3.16)

H ′(θ)(ξ) = h′(θ)(ξ) +D(φn(θ)n+ φν(θ)ν) ◦ h(θ)h′(θ)(ξ)

+ (φ′n(θ)(ξ)n+ φ′ν(θ)(ξ)ν) ◦ h(θ), (3.17)
Dζ0(H(θ))H ′(θ)(ξ) = 0, (3.18)

Dζ0(h(θ))h′(θ)(ξ) = 0, (3.19)

Dζ1(h(θ))h′(θ)(ξ) = 0. (3.20)

In particular, for θ = 0, one obtains

ξ = H ′(0)(ξ) +D(Φ(0)n)H ′(0)(ξ) + Φ′(0)(ξ)n, (3.21)

H ′(0)(ξ) = h′(0)(ξ) +D(φn(0)n+ φν(0)ν)h′(0)(ξ) + (φ′n(0)(ξ)n+ φ′ν(0)(ξ)ν), (3.22)

Dζ0H
′(0)(ξ) = 0 = |∇ζ0|〈n,H ′(0)(ξ)〉, (3.23)

Dζ0 h
′(0)(ξ) = 0 = |∇ζ0|〈n, h′(0)(ξ)〉, (3.24)

Dζ1 h
′(0)(ξ) = 0 = |∇ζ1|〈ν, h′(0)(ξ)〉. (3.25)

Then we multiply (3.21) by n, and in view of (3.23) we get

H ′(0)(ξ) = ξΣ, (3.26)

Φ′(0)(ξ) = ξn. (3.27)

Multiplying (3.22) by n and ν, and using equalities (3.24) and (3.25), we get

h′(0)(ξ) = ξγ , (3.28)

φ′n(0)(ξ) = 0, (3.29)

φ′ν(0)(ξ) = ξν . (3.30)

Now, in order to get the second order shape derivative, we differentiate (3.16)–(3.20) at
θ = 0. The following system of equations is derived, for all ξ, η ∈ Θk:

0 = H ′′(0)(ξ, η) +D(Φ′(0)(η)n)H ′(0)(ξ)

+ Φ′′(0)(ξ, η)n+D(Φ′(0)(ξ)n)H ′(0)(η), (3.31)

H ′′(0)(ξ, η) = h′′(0)(ξ, η) + (φ′′n(0)(ξ, η)n+ φ′′ν(0)(ξ, η)ν)

+D(φ′n(0)(ξ)n+ φ′ν(0)(ξ)ν)h′(0)(η)

+D(φ′n(0)(η)n+ φ′ν(0)(η)ν)h′(0)(ξ), (3.32)

0 = Dζ0H
′′(0)(ξ, η) +D2ζ0H

′(0)(ξ)H ′(0)(η), (3.33)

0 = Dζ0 h
′′(0)(ξ, η) +D2ζ0 h

′(0)(ξ)h′(0)(η), (3.34)

0 = Dζ1 h
′′(0)(ξ, η) +D2ζ0 h

′(0)(ξ)h′(0)(η). (3.35)

Nevertheless, since Dζ0 k = |∇ζ0|〈n, k〉 for all k ∈ Rd, it follows that for all l ∈ Rd,

D2ζ0(k, l) = (D(|∇ζ0|) l)〈n, k〉+ |∇ζ0|〈Dn l, k〉
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so that
D2ζ0(ξΣ, ηΣ) = |∇ζ0|〈DnηΣ, ξΣ〉. (3.36)

Plugging (3.26)–(3.30) into (3.31)–(3.35) and using (3.36) we get

0 = H ′′(0)(ξ, η) +D(〈η, n〉n)ξΣ + Φ′′(0)(ξ, η)n+D(ξnn)ηΣ, (3.37)

H ′′(0)(ξ, η) = h′′(0)(ξ, η) + (φ′′n(0)(ξ, η)n+ φ′′ν(0)(ξ, η)ν)

+D(ξνν) ηγ +D(〈η, ν〉ν) ξγ , (3.38)

0 = 〈ξΣ, Dn ηΣ〉+ 〈n,H ′′(0)(ξ, η)〉, (3.39)

0 = 〈ξγ , Dn ηγ〉+ 〈n, h′′(0)(ξ, η)〉, (3.40)

0 = 〈ξγ , Dν ηγ〉+ 〈ν, h′′(0)(ξ, η)〉. (3.41)

Multiplying (3.37) by n and using (3.39) we get

Φ′′(0)(ξ, η) = 〈ξΣ, DnηΣ〉 − 〈D(ηnn)ξΣ, n〉 − 〈D(ξnn)ηΣ, n〉. (3.42)

We can simplify (3.42) to

〈D(ηnn)ξΣ, n〉 = 〈DnξΣ, n〉ηn + 〈(n⊗∇ηn)ξΣ, n〉. (3.43)

The first term on the right-hand side of (3.43) is equal to 0 since 〈n, n〉 = 1 implies
〈Dnk, n〉 = 0 for all k ∈ Rd. As a consequence, (3.43) becomes

〈D(ηnn) ξΣ, n〉 = 〈∇ηn, ξΣ〉 (3.44)

= 〈Dη ξΣ, n〉+ 〈DnξΣ, η〉 (3.45)

= 〈Dη ξΣ, n〉+ 〈DnξΣ, ηΣ〉. (3.46)

Then, injecting (3.46) into (3.42) one obtains

Φ′′(0)(ξ, η) = −〈DηξΣ, n〉 − 〈DξηΣ, n〉 − 〈DnξΣ, ηΣ〉. (3.47)

Using now equations (3.37) and (3.47) and in view of the decomposition (3.43) we get

H ′′(0)(ξ, η) = −〈DnηΣ, ξΣ〉n− ηnDnξΣ − ξnDnηΣ. (3.48)

Multiplying (3.38) by n and ν and using (3.40) and (3.41) we get

φ′′n(0)(ξ, η) = 〈ξγ , Dn ηγ〉 − 〈ξΣ, Dn ηΣ〉 − 〈n,D(ξνν) ηγ〉 − 〈n,D(ηνν) ξγ〉, (3.49)

φ′′ν(0)(ξ, η) = 〈ξγ , Dν ηγ〉 − 〈ν, ηnDnξΣ〉 − 〈ν, ξnDnηΣ〉
− 〈ν,D(ξνν) ηγ〉 − 〈ν,D(ηνν) ξγ〉. (3.50)

As for (3.43)–(3.46), we can write

D(ηνν)ξγ = ηνDνξγ + 〈ν,Dηξγ〉ν + 〈η,Dνξγ〉ν. (3.51)

In addition we have the decomposition

〈ξΣ, DnηΣ〉 = 〈ξγ , Dnηγ〉+ ηνξν〈Dnν, ν〉+ ην〈Dnν, ξγ〉+ ξν〈Dnηγ , ν〉. (3.52)

Plugging (3.52) and (3.51) into (3.49) one finally obtains

φ′′n(0)(ξ, η) = −ηνξν〈Dnν, ν〉. (3.53)
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Now let us deal with the case of φ′′ν(0)(ξ, η). Inserting (3.51) into (3.50) one obtains

φ′′ν(0)(ξ, η) = −〈ξγ , Dν ηγ〉 − 〈ν,Dη ξγ〉 − 〈ν,Dξ ηγ〉
− ηn〈ν,Dn ξΣ〉 − ξn〈ν,Dn ηΣ〉 − ηn〈n,Dν ξγ〉 − ξn〈n,Dν ηγ〉. (3.54)

Now let us gather expressions (3.54), (3.53) and (3.48) and insert them in (3.39) to obtain

h′′(0)(ξ, η) = 〈ξγ , Dn ηγ〉n+ 〈ξγ , Dν ηγ〉ν − ηnDnξΣ − ξnDnηΣ

+ ηn〈DnξΣ, ν〉ν + ξn〈DnηΣ, ν〉ν − ξνDνηγ − ηνDνξγ
+ ξν〈Dνηγ , n〉n+ ην〈Dνξγ , n〉n.

Thus the proof of Lemma 3.3 is complete.

3.1.3. Proof of the structure theorem. Our objective is to prove that if θ is close
enough to 0 in Dk, there exists a function F such that

E(θ) = F (Φ(θ), φn(θ), φν(θ)) (3.55)

where F is a functional on Ck(Σ,R)×Ck(γ,R)×Ck(γ,R) and the functions Φ, φn and
φν are defined in (3.4)–(3.5).

Lemma 3.4. Let h1,ε, h2,ε be in Ck(Σ,Σ) equipped with the usual norm ‖ · ‖k. Suppose
that these functions are close to the identity in the following sense:

‖h1,ε − I‖k, ‖h2,ε − I‖k → 0, ε→ 0. (3.56)

Then

∃ε0, ∀ε ≤ ε0, h1,ε(Σ) = h2,ε(Σ) = Σ and h1,ε(γ) = h2,ε(γ) ⇒ h1,ε(S) = h2,ε(S).

Proof. First of all, if ε is close enough to 0, then h1,ε and h2,ε are Ck-diffeomorphisms,
thanks to (3.56). Thus there exists ε0 such that for all ε ≤ ε0, h1,ε(Σ) = h2,ε(Σ) = Σ.
Since S ∪ S′ = Σ \ γ, we also have

h1,ε(S) ∪ h1,ε(S′) = Σ \ h1,ε(γ), (3.57)

h2,ε(S) ∪ h2,ε(S′) = Σ \ h2,ε(γ), (3.58)

because h1,ε and h2,ε are Ck-diffeomorphisms. The set Σ \ h1,ε(γ) has two connected
components since Σ \ γ has two connected components. Since the unions of (3.57)–(3.58)
are disjoint unions of open sets, h1,ε(S) and h1,ε(S′) are the sought connected components.
The same is true for h2,ε, and as a consequence we have two possible situations:

h1,ε(S) = h2,ε(S) or h1,ε(S) = h2,ε(S′).

In the first case the lemma is proven; we will show that the case h1,ε(S) = h2,ε(S′) is
not possible if ε is close enough to zero 0. Otherwise, there exists a sequence (εi) which
goes to 0 such that h1,εi(S) ∩ h2,εi(S) = ∅. For simplicity, we write ε instead of εi, and
for x ∈ S define

x1,ε = h1,ε(x), x2,ε = h2,ε(x), h1,ε(γ) = h2,ε(γ) = γε.

Since h1,ε(S)∩h2,ε(S) = ∅, x1,ε and x2,ε are separated by γε, which means that for every
path α joining x1,ε to x2,ε, we have α∩ γε 6= ∅. Let A be the set of smooth curves joining
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x1,ε to x2,ε. Then
d(x1,ε, x2,ε) = inf

α∈A
L(α)

where d is the distance on the manifold Σ and L(α) is the length of the path α. Hence

∀δ > 0, ∃ε > 0, ∃αε d(x1,ε, x2,ε) ≥ L(αε)− δ. (3.59)

We choose yε in γε ∩ αε such that

L(αε) = L(
_
x1,εyε) + L(

_
yεx2,ε).

Taking the limit as ε→ 0 one obtains

lim
ε→0

L(αε) ≥ 2d(x, γ).

If one chooses δ = d(x, γ), then (3.59) becomes

d(x1,ε, x2,ε) ≥ L(αε)− d(x, γ)

and so
lim
ε→0

d(x1,ε, x2,ε) ≥ 2d(x, γ)− d(x, γ) = d(x, γ) > 0,

which is impossible since limε→0 d(x1,ε, x2,ε) = 0.

Now we apply Lemma 3.3 with k replaced by k + 1 and l = 1. Thus there exists an
open neighbourhood Uk+1 ⊂ Θk+1 of 0 and a vector of C1 functions

(H,Φ, h, φn, φν) : Uk → Gk−l(Σ,Σ)×Ck−l(Σ,R)×Gk−l(γ, γ)×Ck−l(γ,R)×Ck−l(γ,R).

We can always restrict Uk+1, and thus we can assume that H(θ) and h(θ) are bijective
from Σ to Σ and from γ to γ, respectively, for all θ ∈ Uk+1. Using (3.5) it is possible to
write

H(θ)(γ) = (I + φn(θ)n+ φν(θ)ν) ◦ h(θ)(γ)

= (I + φn(θ)n+ φν(θ)ν)(γ).

Let v be a continuous extension,

v : Ck(γ,Σ)→ Ck(Σ,Σ),

such that the image under v of an element from Ck(γ,Σ) is close to the identity in the
sense of Lemma 3.4. Such an extension exists, and we give an explicit construction of it
in the particular case of dimension 2. Then v(I + φn(θ)n + φν(θ)ν) ∈ Ck(Σ,Σ) can be
written as

v(I + φn(θ)n+ φν(θ)ν) = I + w(φn(θ), φν(θ)))

where w is a function from Ck(γ,Rd)2 to Ck(Σ,Rd). Applying Lemma 3.4 we obtain

H(θ)(γ) = (I + φn(θ)n+ φν(θ)ν) ◦ h(θ)(γ) ⇒ H(θ)(S) = (I + w(φn(θ), φν(θ)))(S).

Now let u be a continuous extension,

u : Ck(Σ,Rd)→ Ck(Rd,Rd).
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Using (3.4) and (3.5) one obtains

(I + θ)(S) = [I + Φ(θ)n] ◦ [I + w(φn(θ), φν(θ))](S)

= [I + w(φn(θ), φν(θ)) + Φ((θ)n) ◦ (I + w(φn(θ), φν(θ)))](S)

= [I + u[w(φn(θ), φν(θ)) + Φ((θ)n) ◦ (I + w(φn(θ), φν(θ)))]](S). (3.60)

Since Ωθ is defined by U \ Sθ, we clearly deduce from (3.60) that

E(θ) = E(u[w(φn(θ), φν(θ)) + Φ((θ)n) ◦ (I +w(φn(θ), φν(θ)))]) =: F (Φ(θ), φn(θ), φν(θ)),

which gives (3.55). Now we differentiate (3.55) at θ = 0 in direction ξ ∈ θk+1. Using
Lemma 3.3 and the chain rule we get

E′(0)(ξ) = FΦ(Φ′(0)(ξ)) + Fφν (φ′ν(0)(ξ)) + Fφn(φ′n(0)(ξ)) = FΦ(ξn) + Fφν (ξν),

where FΦ is the derivative of F with respect to Φ. Since Θk+1 is dense in Θk, and FΦ,
Fφν and Fφn are continuous linear forms, one obtains (3.2) with l1 = FΦ and l1ν = Fφν .
One also sets l1n = Fφn . In order to prove the second part of Theorem 3.1, one can apply
3.3 with k replaced by k + 2 and l = 2. One then obtains (3.3) similarly to (3.2).

3.2. The structure theorem in dimension 2

3.2.1. The structure theorem. The 2-dimensional case is a degenerate case of the
general framework studied in the previous chapter. Indeed, if we use similar notations,
D is a bounded open set of class Ck in R2, Σ = ∂D is a closed curve of class Ck, and γ
is a connected manifold of dimension 0. One can see that in order to obtain a crack, γ
should be the union of two points in Σ exactly. Therefore we will make this assumption
in what follows.

The previous results can actually be adapted without difficulty to the 2-dimensional
case. In what follows, the structure theorem and its proof are presented in dimension 2.
The results are simpler than in Rd, d ≥ 3, but the notations are kept as close as possible
to those in the general case. We will also refer to the general case when the notions to be
introduced or the demonstrations are redundant, the main difference being that γ is the
union of two points and thus is not connected.

In what follows, U is a bounded open set of R2 with a smooth boundary. The set U
is called the hold-all and the perturbations θ defined later leave U globally unchanged.
Let also k ∈ N, k ≥ 1. The set Ok is defined as in (3.1).

Domains with cracks: Let D ∈ Ok, and write Σ = ∂D. Let A1 and A2 be two distinct
points in Σ, and define γ = {A1, A2}. Then Σ \ γ has two connected components S and
S′, S is called a crack and one defines Ω = U \ S to be the cracked domain.

Let Ω0 be a cracked domain. Then we have

γ0 ⊂ Σ0 = ∂D0, S0 ∪ S′0 = Σ0 \ γ0, Ω0 = U \ S0,

and we denote by n the outer unit normal vector to D, and by τ the tangent unit normal
vector to Σ. The vector τ corresponds to the vector ν in the general case.

The function space Θk, the perturbed domains Ωθ, the set Fk of admissible cracked
domains and the functional E are defined as in Section 3.1.
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Notations: For x, y ∈ R2, denote by 〈x, y〉 the scalar product in R2. In what follows,
for simplicity we use the summation convention: one writes αiβi :=

∑2
i=1 αiβi. Given a

vector ξ in R2, we have ξ = ξnn + ξττ where ξn = 〈ξ, n〉 and ξτ = 〈ξ, τ〉 stand for the
normal and tangential components, respectively. Note that ξn and ξτ are scalars.

Now we are able to give the main result of this section.

Theorem 3.5. Let k ≥ 1.

1. Let Ω0 be a cracked domain with D0 ∈ Ok+1. Assume that E is Fréchet differentiable in
Θk at 0. Then there exists a continuous linear form l1 : Ck(Σ0,R)→ R and constants
αi, i = 1, 2, such that

E′(0)(ξ) = l1(ξn) + αiξτ (Ai), ∀ξ ∈ Θk. (3.61)

2. Let Ω0 be a cracked domain with D0 ∈ Ok+2. Assume that E is twice Fréchet different-
iable at 0 in Θk, and denote by H the mean curvature of Σ0. Then there exist constants
βi, i = 1, 2, constants α̃i, i = 1, 2, and bilinear forms

l2 : Ck(Σ0,R)× Ck(Σ0,R)→ R, L2 : Ck(Σ0,R)× R2 → R

such that for all vector fields ξ, η ∈ Θk+1,

E′′(0)(ξ, η) = l2(ξn, ηn) + βiξτ (Ai)ητ (Ai) + β12(ξτ (A1)ητ (A2) + ξτ (A2)ητ (A1))

− l1(Hξτητ + 〈n,Dξτ〉ητ + 〈n,Dητ〉ξτ )

+ αiH(Ai)(ξτηn + ξnητ )(Ai) + α̃iH(Ai)ξτ (Ai)ητ (Ai)

+ L2(ξn, ητ (A1), ητ (A2)) + L2(ηn, ξτ (A1), ξτ (A2)). (3.62)

Remark 3.6. If Ω0 is a critical shape for E i.e., E′(0) = 0 at Ω0, then l1 ≡ 0 and αi = 0
i = 1, 2, thus the expression of the second-order derivative becomes

E′′(0)(ξ, η) = l2(ξn, ηn) + βiξτ (Ai)ητ (Ai) + β12(ξτ (A1)ητ (A2) + ξτ (A2)ητ (A1))

+ α̃iH(Ai)ξτ (Ai)ητ (Ai)

+ L2(ξn, ητ (A1), ητ (A2)) + L2(ηn, ξτ (A1), ξτ (A2)).

Remark 3.7. We have used here a relation specific to the 2D case: 〈Dnτ, τ〉 = H, where
H is the mean curvature of the curve Σ0. This equality links (3.62) and the formula (3.3)
in the general case.

3.2.2. Normal and tangential perturbations. For all l ∈ N with 1 ≤ l ≤ k, we set

Gk−l(Σ,Σ) := {g ∈ Ck−l(Σ,R2) | g(Σ) ⊂ Σ}.

Denote by Φ(θ) and H(θ) the normal and tangential perturbations, respectively, on the
surface Σ. In contrast to the general case, it is not necessary to introduce the functions
φn(θ), φν(θ) and h(θ) defined in (3.5). The implicit function theorem is used to obtain
the following lemma, which will be used for the proof of the structure theorem.

Lemma 3.8. Assume that Σ is a manifold of class Ck. For all 1 ≤ l ≤ k, there exists an
open neighbourhood Uk of 0 in Θk and a unique vector (H,Φ) of Cl functions

(H,Φ) : Uk → Gk−l(Σ,Σ)× Ck−l(Σ,R)
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such that (H,Φ)(0) = (I, 0) and for all θ ∈ Uk,

I + θ = (I + Φ(θ)n) ◦H(θ) on Σ0. (3.63)

In addition, for all ξ, η ∈ Θk we have, for l ≥ 1,

H ′(0)(ξ) = ξττ,

Φ′(0)(ξ) = ξn,

and for l ≥ 2 the second order derivatives are given by

H ′′(0)(ξ, η) = −H[(ξτηn + ξnητ )τ + ξτητn], (3.64)

Φ′′(0)(ξ, η) = −Hξτητ − 〈n,Dξτ〉ητ − 〈n,Dητ〉ξτ . (3.65)

Remark 3.9. Formulas (3.65) and (3.64) correspond to formulas (3.6) and (3.7) in the
general case d ≥ 3, respectively. These formulae simplify in dimension two due to the
relation 〈Dnτ, τ〉 = H.

Proof of Lemma 3.8. The decomposition (3.63) is obtained in much the same way as
(3.4) in the general case, i.e. by using the implicit function theorem. Consequently, the
proof is not repeated here.

Since Σ0 is of class Ck, there exists ζ ∈ Ck(R2,R) such that ∇ζ(x) 6= 0 for all x ∈ Σ0,
and an open neighbourhood ω0 of Σ0 in R2 such that

Σ0 = {x ∈ ω0 | ζ(x) = 0}.

The oriented distance function to D0 (see [30] for more details) satisfies this hypothesis.
The function ζ can be used in order to define the normal vector n to Σ0,

∀x ∈ Σ0, n(x) = ∇ζ(x)/|∇ζ(x)|.

Two equations are derived for the maps Φ and H:

I + θ = (I + Φ(θ)n) ◦H(θ), (3.66)

ζ(H(θ)) = 0. (3.67)

The set Uk can be reduced, thus we can assume that H(θ) takes values in ω0. Then
equation (3.67) implies thatH(θ)(Σ0) ⊂ Σ0. Differentiating (3.66) and (3.67) with respect
to θ in the neighbourhood of 0, it follows that for all ξ ∈ Θk,

ξ = H ′(θ)(ξ) +D(Φ(θ)n) ◦H(θ)H ′(θ)(ξ) + (Φ′(θ)(ξ)n) ◦H(θ), (3.68)

0 = Dζ(H(θ))H ′(θ)(ξ). (3.69)

In particular, for θ = 0, in view of H(0) = I, we have

ξ −H ′(0)(ξ) + Φ′(0)(ξ)n = 0, (3.70)

DζH ′(0)(ξ) = 0. (3.71)

Since n = ∇ζ/|∇ζ|, multiplying (3.70) by n and using (3.71) one obtains

Φ′(0)(ξ) = ξn, H ′(0)(ξ) = ξττ. (3.72)

Now, in order to obtain the second order shape derivative, we differentiate (3.68) and
(3.69) at θ = 0. Using (3.72), the following system of equations is deduced, for all ξ, η
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in Θk:

0 = H ′′(0)(ξ, η) +D(ηnn)ξττ + Φ′′(0)(ξ, η)n+D(ξnn)ηττ, (3.73)

0 = D2ζ(ξττ, ηττ) + 〈|∇ζ|n,H ′′(0)(ξ, η)〉. (3.74)

The value of D2ζ(ξττ, ηττ) can be obtained by differentiating Dζh = 〈|∇ζ|n.h〉. A cal-
culation leads to

D2ζ(ξττ, ηττ) = |∇ζ|〈Dnτ, τ〉ητξτ = |∇ζ|Hητξτ .

Thus, thanks to (3.74),
〈H ′′(0)(ξ, η), n〉 = −Hητξτ .

In a similar way, using (3.73), we obtain

〈H ′′(0)(ξ, η), τ〉 = −ξτ 〈D(ηnn)τ, τ〉 − ητ 〈D(ξnn)τ, τ〉
= −ηnξτ 〈Dnτ, τ〉 − ξnητ 〈Dnτ, τ〉 = −H(ηnξτ + ξnητ ).

The equality 〈D(ηnn)τ, τ〉 = ηn〈Dnτ, τ〉 follows from

D(ηnn) = ηnDn+ n⊗∇ηn.

In view of 〈n, τ〉 = 0, it follows that

〈(n⊗∇ηn)τ, τ〉 =
2∑

i,j=1

niτi(∇ηn)jτj = 0.

Finally, we need to compute Φ′′(0)(ξ, η) to check that the result coincides with (3.65).
The following calculation is used:

〈D(ξnn)ηττ, n〉 = 〈Dnηττ, n〉ξnητ + 〈(n⊗∇ξn)τ, n〉ητ = 〈∇ξn, τ〉ητ
= 〈Dξτ, n〉ητ + 〈Dnτ, ξ〉ητ = 〈Dξτ, n〉ητ + 〈Dnτ, τ〉ξτητ

and inserting 〈D(ξnn)ηττ, n〉 = 〈Dξτ, n〉ητ + 〈Dnτ, τ〉ξτητ in (3.73) one obtains (3.65).

3.2.3. Proof of the structure theorem. First of all we introduce a function K from
Dk to Σ× Σ:

K(θ) =
(
H(θ)(A1)
H(θ)(A2)

)
. (3.75)

This function plays a role equivalent in dimension two to decomposition (3.5) in the
general case. Our objective is to prove that for θ close enough to 0 in Dk, there exists a
function F such that

E(θ) = F (Φ(θ),K(θ)) (3.76)

where Φ and K are defined respectively in (3.63) and (3.75).

Lemma 3.10. Let h1,ε and h2,ε be functions in Ck(Σ,Σ) equipped with the usual norm
‖ · ‖k, close to the identity in the following sense:

‖h1,ε − I‖k, ‖h2,ε − I‖k → 0, ε→ 0.

Then

∃ε0, ∀ε ≤ ε0, h1,ε(Σ) = h2,ε(Σ) = Σ and h1,ε(γ) = h2,ε(γ)⇒ h1,ε(S) = h2,ε(S).
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The proof of this lemma is similar to the proof of Lemma 3.4. Now we are able to
complete the proof of the structure theorem in dimension two.

Lemma 3.8 is applied with k replaced by k + 1 and l = 1. Then there exists an open
neighbourhood Uk+1 ⊂ Θk+1 of 0, and a vector (H,Φ) of C1 functions

(H,Φ) : Uk → Gk−l(Σ,Σ)× Ck−l(Σ,R).

Since we can restrict Uk+1, we can assume that H(θ) is bijective from Σ to Σ for all
θ ∈ Uk+1.

Let v : Σ× Σ→ Ck(Σ,Σ) be a continuous extension which satisfies in addition

∀ε > 0, ∃δ > 0,∀(B1, B2) ∈ Σ× Σ,

‖(B1, B2)− (A1, A2)‖ ≤ δ ⇒ ‖v(B1, B2)− I‖Ck(Σ,Σ) ≤ ε,

where I stands for the identity function in Ck(Σ,Σ). Such an extension exists, and we
can give an explicit construction as follows. The curve Σ can be parameterized by a
diffeomorphism ϕ of class Ck satisfying

ϕ([0, 1]) = Σ, ϕ(0) = ϕ(1),

and we set
a1 := ϕ(A1), a2 := ϕ(A2).

It is always possible to assume, since we can modify the parameterization, that 0 < a1 <

a2 < 1. Now we can build a function

ṽ : [0, 1]2 → C∞([0, 1]2), (b1, b2) 7→ ṽb1,b2 , (3.77)

satisfying
‖ṽb1,b2 − I‖C∞([0,1]2) ≤ 2 max(|b1 − a1|, |b2 − a2|). (3.78)

Indeed, let f be the piecewise affine function defined by

f(x) =



b1
a1
x on [0, a1],

b2
x− a1

a2 − a1
+ b1 on [a1, a2],

x− a2

1− a2
+ b2 on [a2, 1].

Since C∞([0, 1]) is dense in C0([0, 1]), and ‖f − I‖ ≤ max(|b1−a1|, |b2−a2|), there exists
a function ṽ satisfying (3.77) and (3.78). Setting then v := ṽ◦ϕ−1, we obtain the required
extension. The function v(K(θ)) ∈ Ck(Σ,Σ) can be written as

v(K(θ)) = I + w(K(θ))

where w is a function from Σ× Σ to Ck(Σ,Σ).
Applying Lemma 3.10, which is possible thanks to (3.78), one obtains the implication

H(θ)(γ) = K(θ)(γ) ⇒ H(θ)(S) = I + w(K(θ))(S).

Now let u be a continuous extension,

u : Ck(Σ,R2)→ Ck(R2,R2).
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Using (3.63) one obtains

(I + θ)(S) = [I + Φ(θ)n] ◦ [I + w(K(θ))](S)

= [I + w(K(θ)) + Φ((θ)n) ◦ (I + w(K(θ))](S)

= [I + u[w(K(θ)) + Φ((θ)n) ◦ (I + w(K(θ))]](S). (3.79)

Since Ωθ is defined by U \ Sθ, we clearly deduce from (3.79) that

E(θ) = E(u[w(K(θ)) + Φ((θ)n) ◦ (I + w(K(θ)))]) =: F (Φ(θ),K(θ)),

which gives (3.76). Now we differentiate (3.76) at θ = 0 in direction ξ ∈ Θk+1. Using
Lemma 3.8 and the chain rule, one obtains

E′(0)(ξ) = FΦ(Φ′(0)(ξ)) + FK(K ′(0)(ξ)),

where FΦ is the derivative of F with respect to Φ. Since Θk+1 is dense in Θk and FΦ, FK
are continuous linear forms, one obtains (3.61) with l1 = FΦ and

FK =
(
α1〈·, τ〉+ α̃1〈·, n〉
α2〈·, τ〉+ α̃2〈·, n〉

)
.

For the proof of the second part of Theorem 3.5, we apply Lemma 3.8 with k replaced
by k + 2 and l = 2. One then obtains (3.62) in much the same way as we have obtained
(3.61):

E′′(0)(ξ, η) = FΦΦ(0)(Φ′(0)(ξ),Φ′(0)(η)) + FΦ(0)(Φ′′(0)(ξ, η))

+ FΦK(0)(Φ′(0)(ξ),K ′(0)(η)) + FΦK(0)(Φ′(0)(η),K ′(0)(ξ))

+ FKK(0)(K ′(0)(ξ),K ′(0)(η)) + FK(0)(K ′′(0)(ξ, η)).

Since Θk+2 is dense in Θk+1, and from the continuity of the linear forms in this formula,
l2 and L2 in (3.62) are given by l2 = FΦΦ(0) and L2 = FΦK(0). Concerning FKK(0), one
notices that the function K(θ) can be written in the following way:

K(θ) =
(
K1(θ)
K2(θ)

)
. (3.80)

Then we can write

FKK(0)(K ′(0)(ξ),K ′(0)(η))

= FK1K1(0)(K ′1(0)(ξ),K ′1(0)(η)) + FK2K2(0)(K ′2(0)(ξ),K ′2(0)(η))

+ FK2K1(0)(K ′2(0)(ξ),K ′1(0)(η)) + FK1K2(0)(K ′1(0)(ξ),K ′2(0)(η)),

and the functions FK1K1(0), FK2K2(0), FK2K1(0) and FK1K2(0) can each be identified
with a second order square matrix. With the notation, for i = 1, 2,

FKiKi(0) =
(
βi δi
λi µi

)
, FK1K2(0) = FK2K1(0) =

(
β12 δ12

λ12 µ12

)
,

we indeed find formula (3.62).
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4. Tangent sets in Banach spaces

In variational inequalities the data include some convex set K, and the solution u of the
variational inequality is required to belong to this set, i.e., u ∈ K. The definition of the
set depends on the problem; we consider in particular sets defined by linear constraints,
called unilateral constraints.

In our analysis of variational inequalities, the specific form of the tangent set Tk(u) at
u ∈ K, for the convex set K of the problem, plays an important role. Sensitivity analysis
requires the explicit form of the tangent set Tk(u) in order to verify the polyhedricity
condition at a given solution u ∈ K of the variational inequality under consideration.

We present an abstract framework for calculation of tangent sets and establishing their
properties. Non-linear potential theory is one of the tools used to prove such results. The
results of this chapter are interesting on their own, and there are still some open questions
we cannot answer, e.g., what is the form of the directional derivative for the metric
projection onto the convex set which is not polyhedric, even for unilateral conditions in
Sobolev spaces.

4.1. Introduction. We consider the tangent cones and the polyhedricity of convex sets
K = {v ∈ B | v ≥ 0} in Banach spaces using non-linear potential theory as a tool.
In the case of Besov spaces the form of the tangent cones is given in [112]. Besides the
form of tangent cones, the so-called polyhedricity of convex sets is of importance for
applications in sensitivity analysis [16], [86], [108], [109], [110]. We will give a sufficient
condition for the polyhedricity of the set K. For the elementary proof we refer to the
proof of Theorem 4.15.

The results on the so-called conical differentiability of the metric projection onto poly-
hedric convex sets were established by Fulbert Mignot and Alain Haraux in the seventies
in the Hilbert space setting. Our results allow us to extend the conical differentiability to
more general variational inequalities, in particular for the evolution case—this work is in
progress. We provide an example in Sec. 5, for a model static variational inequality with
non-penetration condition on the crack faces [72]. We establish the conical differentiability
of the solution to the variational inequality with respect to the crack length. Furthermore,
the second order directional differentiability of the energy functional with respect to the
crack length is proved. Such results seem to be new, and can be extended to the case of
linear elasticity with frictionless contact conditions prescribed on the crack faces.

4.2. Notation and preliminaries. Let X be a non-empty set, and let N be an ideal
of subsets of X. More precisely:

(i) If N ∈ N and M ⊂ N , then M ∈ N.
(ii) If Nk ∈ N for k ∈ N, then

⋃∞
k=1Nk ∈ N.

We say that a property holds N-almost everywhere (N-a.e.) if it holds outside a set
from N.

Let B be a vector space of N-a.e. defined functions taking values in [−∞,+∞] such
that for every u ∈ B, {|u| = +∞} ∈ N. We assume that there is a seminorm ‖ ‖ on B
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such that ‖u‖ = 0 implies that u = 0 N-a.e. As is customary, we identify functions that
are equal N-a.e., and denote by the letter B the vector space of equivalence classes. Then
(B, ‖ ‖) becomes a normed space. There is a natural order on B: for u, v ∈ B, u ≥ v as
equivalence classes if u ≥ v N-a.e. as functions.

Let B∗ denote the dual space of B with the dual norm ‖ ‖. The duality pairing between
φ ∈ B∗ and u ∈ B will be denoted by 〈φ, v〉. We will assume that (B, ‖ ‖) satisfies the
following hypotheses:

(H1) B is a reflexive Banach space,
(H2) B is strictly convex,
(H3) B is smooth.

Let us recall that a normed space B is strictly convex if for all u, v ∈ B such that
u 6= v and ‖u‖ = ‖v‖ = 1, it follows that ‖u+ v‖ < 2. Equivalently, every element of B∗
assumes its norm at most at one point in the unit ball of B. The space B is smooth if for
every u ∈ B, u 6= 0, there exists a unique φ ∈ B∗ such that 〈φ, u〉 = ‖u‖ and ‖φ‖ = 1. It
is well known that B is smooth if and only if the norm ‖ ‖ is Gateaux differentiable on
B \ {0}. Moreover, since B is reflexive, B is smooth (respectively strictly convex) if and
only if B∗ is strictly convex (respectively smooth). Therefore, by our hypotheses on B,
the dual space B∗ is also strictly convex and smooth.

In addition we assume that

(H4) If (un, n ∈ N) is a sequence in B such that limn→∞ un = u in B, then there exists
a subsequence (nk, k ∈ N) such that limnk→∞ unk = u N-a.e.

We assume that non-negative elements of B∗ are positive measures, and that the following
condition holds:

(H5) For every u ∈ B there exists an element v ∈ B such that

u+ ≤ v and ‖v‖ ≤ ‖u‖.

A non-negative measure µ ∈ B∗ is called a measure of finite energy . A subset E of X
is called quasi-null if µ(E) = 0 for all measures µ of finite energy.

It is known that the collection of quasi-null sets is contained in N and is in general
much smaller than the N-null sets.

If u ∈ B and u ≥ 0 N-a.e. then u ≥ 0 quasi-everywhere (q.e.).
From now on all inequalities and equalities are deemed to hold q.e., i.e., except for a

quasi-null set.

4.2.1. Duality mapping. Let us recall some facts about the duality mapping. For com-
pleteness and convenience of the reader some proofs are supplied. Let ω : [0,∞)→ [0,∞)
be a continuous and strictly increasing function such that ω(0) = 0 and limt→∞ ω(t) =
+∞.

Definition 4.1. A map J : B→ B∗ is called an ω-duality map if for all u ∈ B,

(A1) 〈Ju, u〉 = ‖Ju‖ ‖u‖,
(A2) ‖Ju‖ = ω(‖u‖).

Theorem 4.2. An ω-duality map exists.
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Proof. By the Hahn–Banach theorem, given an element u ∈ B, there exists T̃ u ∈ B∗ such
that

‖T̃ u‖ = 1, 〈T̃ u, u〉 = ‖u‖.

Remark 4.3. Of course ‖T̃ u‖ has to be at least 1, so that T̃ u is an element in the convex
set {L ∈ B∗ | Lu = ‖u‖}, of minimum norm.

To get an ω-duality map simply define Ju = ω(‖u‖)T̃ u.

Theorem 4.4. An ω-duality map with ω strictly increasing is strictly monotone on a
strictly convex space, i.e.,

(A3) 〈Ju− Jv, u− v〉 > 0 if u 6= v.

Proof. Expanding the left-hand side we have

〈Ju− Jv, u− v〉 = 〈Ju, u〉+ 〈Jv, v〉 − 〈Ju, v〉 − 〈Jv, u〉.

Since 〈Ju, u〉 = ω(‖u‖)‖u‖ etc., 〈Ju, v〉 ≤ ‖Ju‖ ‖v‖ etc., we get

〈Ju− Jv, u− v〉 ≥ ω(‖u‖)‖u‖+ ω(‖v‖)‖v‖ − ω(‖u‖)‖v‖ − ω(‖v‖)‖u‖
= (ω(‖u‖)− ω(‖v‖))(‖u‖ − ‖v‖) ≥ 0,

and this is strictly positive if ω is strictly ↑ and ‖u‖ 6= ‖v‖. From the above inequality
we see that if the left-hand side of (A3) is zero then

〈Ju, v〉 = ‖Ju‖ ‖v‖ and 〈Jv, u〉 = ‖Jv‖ ‖u‖

and ‖u‖ = ‖v‖. We get

〈Ju, v/‖v‖〉 = ‖Ju‖ and of course 〈Ju, u/‖u‖〉 = ‖Ju‖.

Hence by strict convexity u/‖u‖ = v/‖v‖, and since ‖u‖ = ‖v‖ we must have u = v.

The following result is due to Asplund [8]: The space B is smooth if and only if the
ω-duality map is single valued. In this case

〈Ju, ϕ〉 =
d

dt
Ω(‖u+ tϕ‖)|t=0, ∀u, ϕ ∈ B, where Ω(t) =

∫ t

0

ω(s) ds.

In particular, Ju is the unique element of B∗ such that 〈Ju, u〉 = ‖Ju‖ ‖u‖ with ‖Ju‖ =
ω(‖u‖).

4.2.2. Examples covered by our setup

Lp-Potential theory. Let (X,m) be a measure space, G be a kernel on X ×X and B =
{Gf | f ∈ Lp(X,m)} with the norm ‖Gf‖ = ‖f‖p. Under very mild hypotheses on G,
B satisfies our conditions. More generally, using `q(Lp) (resp. Lp(`q)) spaces instead of
Lp-spaces we obtain the Besov space Bp,qα (respectively the Lizorkin–Triebel space Fp,qα )
also on subsets of Bn. For details we refer to [1], [114] and [57].

The weighted Sobolev space W 1,p(Ω, µ). The spaces W 1,p(Ω, µ) and W 1,p
0 (Ω, µ) with the

norm
‖u‖1,p,µ = ‖u‖Lp(µ) + ‖∇u‖Lp(µ).

Here µ is a suitable weight. For details see [51].
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Spaces Wm,2
0 (B). The spaceWm,2

0 (B) where B is an open ball in RN . For details we refer
to [114].

4.3. Non-linear potential theory. Let K = B+ denote the convex cone of non-
negative elements from B,

K = {ϕ ∈ B | ϕ ≥ 0}.

Let K∗ = B∗+ denote the dual cone in B∗,

K∗ = {w ∈ B∗ | 〈w,ϕ〉 ≥ 0, ∀ϕ ∈ K}.

For any closed convex set C ⊂ B there exists a unique element u0 ∈ C which minimizes
the norm over C,

‖u0‖ = min{‖v‖ | v ∈ C}.

The existence follows from the reflexivity of B using Mazur’s lemma, and the uniqueness
from the strict convexity of the norm. For the set C with C+K ⊂ C we have the following
result [114].

Theorem 4.5. If C has the property that v ∈ C, ϕ ∈ K imply that v + ϕ ∈ C, then
Ju0 ∈ K∗, where ‖u0‖ = min{‖v‖ | v ∈ C} and J is the ω-duality map.

Proof. Since Ω(t) is strictly increasing,

Ω(‖u0‖) = min{Ω(‖v‖) | v ∈ C}.

Let ϕ ≥ 0. Then u0 + tϕ ∈ C for every t ≥ 0. Hence Ω(‖u0 + tϕ‖) ≥ Ω(‖u0‖) for every
t ≥ 0, implying that

0 ≤ d

dt
Ω(‖u0 + tϕ‖)

∣∣∣∣
t=0

= 〈Ju0, ϕ〉.

Since this holds for every ϕ ≥ 0, it follows that Ju0 ∈ K∗.

Definition 4.6. u ∈ B is called a potential if Ju ∈ K∗.

Theorem 4.7. Let u ∈ B. The following are equivalent:

(i) u is a potential, i.e., Ju ∈ K∗.
(ii) For every v ∈ B such that v ≥ u it follows that ‖v‖ ≥ ‖u‖.

Proof. (i)⇒(ii). If v ∈ B and v ≥ u then v − u ∈ K. Hence

〈Ju, v − u〉 ≥ 0, i.e. 〈Ju, v〉 ≥ 〈Ju, u〉 = ‖Ju‖ ‖u‖.

Since Ju is a linear map this gives ‖v‖ ≥ ‖u‖.
(ii)⇒(i). If ϕ ∈ K then u+ tϕ ≥ u for all t > 0. Hence

‖u+ tϕ‖ ≥ ‖u‖ so Ω(‖u+ tϕ‖) ≥ Ω(‖u‖).

It follows that 〈Ju, ϕ〉 = d
dtΩ(‖u+ tϕ‖)|t=0 ≥ 0 for all ϕ ∈ K, i.e., Ju ∈ K∗.

4.4. Tangent cones. Let B be as above and let

K = {v ∈ B : v ≥ 0}.
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Then K is a closed convex set. Each f ∈ B has a unique projection u0 = PKf onto K
characterized by

‖u0 − f‖ = inf
v∈K
‖v − f‖.

We are interested in the differentiability of t 7→ PK(f + th). Let ut = PK(f + th). Set

vt =
ut − u0

t
.

Then
ut = u0 + tvt ∈ K.

This motivates the following definition. For u0 ∈ K we set

CK(u0) = {v ∈ B : ∃t > 0, u0 + tv ∈ K}, TK(u0) = CK(u0).

TK(u0) is called the tangent cone to K at u0 ∈ K. We see that the derivative q is in
TK(u0), whenever it exists.

It is thus of interest to determine the form of the tangent cone. But first we have the
following result characterizing PKf .

Theorem 4.8. Let f ∈ B and C be any closed cone containing K. Then

C 3 w0 = PCf

implies
w0 − f is a potential, (4.1)

its measure µ = J(w0 − f) satisfies
∫
w0 dµ = 0. (4.2)

If C = K, (4.1) and (4.2) are also sufficient. More precisely, if w0 ∈ K and w0 − f
is a potential whose measure µ satisfies

∫
w0 dµ = 0, then w0 = PKf . In this case, since

w0 ≥ 0, the measure µ is concentrated on the set Ξ = {PKf = 0}.

Proof. Let w0 = PCf . To show that w0 − f is a potential we use Theorem 4. So let
B 3 h ≥ w0 − f . Then h+ f − w0 ≥ 0, implying C ⊃ K 3 h+ f − w0. Since w0 ∈ C and
C is a cone,

(h+ f − w0) + w0 = h+ f ∈ C.

Hence from the definition of w0,

‖h‖ = ‖(h+ f)− f‖ ≥ ‖w0 − f‖.

Thus w0 − f is a potential. Now for any g ∈ C,

‖w0 − f + tg‖ ≥ ‖w0 − f‖,

implying ∫
g dµ = lim

t→0
[Ω(‖w0 − f + tg‖)− Ω(‖w0 − f‖)] ≥ 0. (4.3)

In particular, ∫
w0 dµ ≥ 0. (4.4)
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Again, since C is a cone, tw0 ∈ C for all t > 0 implies for 0 < t < 1

‖w0 − f‖ ≤ ‖(1− t)w0 − f‖ = ‖w0 − f − tw0‖.

It follows that we can replace g by −w0 in (4.3) and the right-hand side remains ≥ 0 for
−1 ≤ t. Hence

−
∫
w0 dµ ≥ 0.

(4.4) together with the last inequality give (4.2).
It remains to prove that for C = K the conditions on w0 are sufficient to guarantee

that w0 = PKf . To this end let w0 ∈ K satisfy

• w0 − f is a potential and its measure ν annihilates w0:
∫
w0 dν = 0.

Let w̃0 = PKf . From what we have already proved, w̃0 − f is a potential. Let

ϕ(t) = Ω(‖t(w̃0 − f) + (1− t)(w0 − f)‖).

Then ϕ is convex and because w̃0 = PKf ,

ϕ(0) = Ω(‖w0 − f‖) ≥ Ω(‖w̃0 − f‖) = ϕ(1). (4.5)

Thus ϕ′(0) ≤ 0 (because ϕ′ is increasing, so if ϕ′(0) > 0, then ϕ′(t) > 0 for t > 0 implies
ϕ is strictly increasing for t > 0, which contradicts (4.5)).

Writing
ϕ(t) = Ω(‖w0 − f + t(w̃0 − w0)‖)

we find again differentiating

0 ≥ ϕ′(0) =
∫

(w̃0 − w0) dν =
∫
w̃0 dν

because
∫
w0 dν = 0. Since w̃0 ≥ 0 and ν is a non-negative measure we conclude

∫
w̃0 dν

= 0, i.e. ϕ′(0) = 0. But then (since ϕ′ is increasing) ϕ′ ≥ 0 for t > 0 implies ϕ(1) ≥ ϕ(0).
(4.5) then gives ‖w0 − f‖ = ‖w̃0 − f‖. By uniqueness w0 = w̃0.

The above theorem has an immediate corollary:

Corollary 4.9. Let f ∈ B and u0 = PKf . If h ∈ CK(u0)∩[u0−f ]⊥, i.e., if
∫
h dµ0 = 0,

then for all t small enough,

PK(f + th) = PKf + th. (4.6)

Proof. Since h ∈ CK(PKf), there is t0 such that

PKf + th ∈ K, t ≤ t0.

Then PKf + th− (f + th) = PKf − f is a potential. Its measure µ0 satisfies∫
(PKf + th) dµ0 = t

∫
h dµ0 = 0

because h ∈ (u0 − f)⊥. Thus (4.6) follows from Theorem 4.8.

Remark 4.10. Corollary 4.9 extends to CK(u0) ∪ [u0 − f ]⊥ in the following sense: For
h ∈ CK(u0) ∪ [u0 − f ]⊥,

PK(f + th) = PKf + th+ o(t). (4.7)
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To establish (4.7) one should prove e.g. that the map f 7→ PKf is Lipschitz. This is the
case e.g. for the Lp spaces since PKf = f+ in Lp.

To accommodate more general h we first need to characterize the tangent cone TK(u0).
This is given in Theorem 4.11 below and has an easy proof.

Theorem 4.11. Let u0 ∈ K and Ξ = {x | u0(x) = 0}. Then TK(u0) = {v ∈ B : v ≥ 0
on Ξ}.

Proof. Since u0 = 0 on Ξ, we see from the definition of CK(u0) that all elements in
CK(u0) are ≥ 0 on Ξ. And taking limits the same is true for elements of TK(u0).

Let w ∈ B be such that w ≥ 0 on Ξ and let w0 be its projection on TK(u0). It can be
verified that TK(u0) is a closed cone. It contains K.

From Theorem 4.8, w0 − w is a potential whose measure µ annihilates w0, and

〈J(w0 − w), w0 − w〉 = ω(‖w0 − w‖)‖w0 − w‖ =
∫

(w0 − w) dµ = −
∫
w dµ. (4.8)

Recall that
∫
h dµ ≥ 0 for all h ∈ TK(u0) (see the proof of Theorem 4.8). Since u0 and

−u0 are in CK(u0) ⊂ TK(u0) we see that
∫
u0 dµ = 0, implying µ must be concentrated

on Ξ. Since w ≥ 0 on Ξ, we have therefore∫
w dµ ≥ 0.

Together with (4.8) this gives
∫
w dµ = 0 and hence w0 = w. This completes the proof

since w ∈ TK(u0).

Let us now investigate the metric projection onto K in more detail. We establish some
notation. Given f, z ∈ B write

u0 = PKf, ξt =
PK(f + tz)− PKf

t
,

so that
PK(f + tz) = u0 + tξt.

Since the projection PK is Lipschitz in some cases, we see that in such cases ξt is uniformly
bounded in norm, which we assume below. Recall that by Theorem 4.8, u0 − f and
u0 + tξt − (f + tz) are potentials. Denote by µ0 and µt their measures. Then

0 =
∫
u0 dµ0 =

∫
(u0 + tξt) dµt. (4.9)

With the above notation we have:

Theorem 4.12. Every weak limit q of {ξt} as t→ 0 belongs to

q ∈ TK(u0) ∩ (u0 − f)⊥ = TK(u0) ∩ µ⊥0 . (4.10)

Proof. Recall that the duality map is monotone,

〈Jx − Jy, x− y〉 ≥ 0. (4.11)
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For potentials x and y, the maps Jx and Jy are the corresponding measures. Taking
x = u0 − f , y = u0 + tξt − (f + tz) in (4.11) and expanding we get, using (4.9),

−
∫
f dµ0 −

∫
(f + tz) dµt ≥

∫
(u0 + tξt − (f + tz)) dµ0 +

∫
(u0 − f) dµt

= t

∫
(ξt − z) dµ0 +

∫
(u0 − f) dµt −

∫
f dµ0.

Simplifying gives

−t
∫
z dµt ≥ t

∫
(ξt − z) dµ0 +

∫
u0 dµt ≥ t

∫
(ξt − z) dµ0

because µt is a positive measure and u0 ≥ 0. Canceling t we get

−
∫
z dµt ≥

∫
(ξt − z) dµ0.

Duality maps are continuous from strong to weak∗ topology: as t→ 0, u0 + tξt− (f + tz)
converges strongly to u0 − f so that µt converges weak∗ to µ0. Therefore, as t → 0, for
any weak limit q of ξt we have

−
∫
z dµ0 ≥

∫
(q − z) dµ0.

Since q ∈ TK(u0) and hence q ≥ 0 on Ξ, we get (4.10).

4.5. Conical differentiability for evolution variational inequalities. A variational
inequality with unilateral conditions on the boundary can be seen as a free boundary
problem. The evolution of the coincidence set {x ∈ Σc | u(x) = 0} for the condition
v|Σc ≥ 0 in a parabolic variational inequality is given by a measure µ associated with
the variational problem. Variations of the free boundary with respect to perturbations of
e.g. the source or the right-hand side of the variational inequality are given by variations
of the support of the measure µ. This feature of such problems shows that sensitivity
analysis becomes a difficult task. We provide a rigorous analysis of such variations, and
introduce the notion of conical differentiability in the parabolic case. Shape sensitivity
analysis for the class of evolution inequalities is still to be established.

4.5.1. Tangent sets and measures of finite energy. Let T > 0 be a real number.
Define Q = (0, T ) × Ω, Γ = ∂Ω, Σ = (0, T ) × Γ . Moreover, we assume that there
is a disjoint decomposition Γ = Γc ∪ Γd such that both sets have positive (N − 1)-
measures and their relative interiors riΓc, riΓd are dense in Γc, Γd, respectively. We
define Σz = (0, T ) × Γz for z = c, d. Furthermore, let V = H1/2,1(Q) be the anisotropic
Sobolev potential space in the sense of Section 4.2 and let us introduce the spaces

H = {v ∈ V | v|Σd = 0} and V̊ = {v ∈ V | v|Σ = 0}.

Here H is a Hilbert space, indeed a Dirichlet space; let H∗ denote the dual space.
Let us recall for the convenience of the reader that a Hilbert space H of functions de-

fined on Q is called a Dirichlet space provided the following three conditions are satisfied:
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• η+, η− ∈ H ∀η ∈ H,
• ((η+, η−)) ≤ 0 ∀η ∈ H,
• H ∩ C0(Q) is dense in C0(Q),

where η+ = max{0, η}, η− = max{0,−η} and ((η+, η−)) denotes the scalar product
in H.

We refer the reader to [105], [106], [107] for the parabolic case. Our presentation will
be self-contained.

Let us write down some results which will be useful later.
Any linear form L ∈ H∗ such that L ≥ 0, i.e., L[u] ≥ 0 if u ≥ 0 a.e., is given by a

unique positive measure µ,

L[u] = 〈L, u〉 =
∫
u dµ, u ∈ H ∩ C(Q).

Therefore we say a measure µ is of finite energy if

u ∈ H ∩ C(Q) ⇒
∫
|u| dµ ≤ Cµ‖u‖H.

Let
M = {set of all (signed) measures of finite energy}.

A set E will be called quasi-null if µ(E) = 0 for all µ ∈M. Since the Lebesgue measure
on Q belongs to M we see that quasi-null sets are necessarily of Lebesgue measure zero.
The collection of quasi-null sets is much smaller.

The following fact can be easily proved.

Proposition 4.13. Let {um} ⊂ H ∩ C(Q) be a Cauchy sequence in H. Then there is a
subsequence which converges pointwise quasi-everywhere.

By Proposition 4.13 we see that functions in H have a value quasi-everywhere in Q.
Hence we can say H ⊂ L1(µ) if µ ∈M.

In the present paper the following convex cone in H is considered:

K = {v ∈ H | v|Σc ≥ 0}.

Therefore, in order to define quasi-null subsets of Σc, the measures from M which
live on Σc are considered. If u ∈ H and u ≥ 0 a.e. with respect to (N − 1)-dimensional
Lebesgue measure on Σc then u ≥ 0 quasi-everywhere (q.e.).

From now on all inequalities and equalities on Σc are deemed to hold q.e., i.e., except
for a quasi-null set.

Given u0 ∈ K we define

CK(u0) = {v ∈ H | ∃t > 0, u0 + tv ∈ K}, TK(u0) = CK(u0).

TK(u0) is called the tangent cone to K at u0 ∈ K. For cones with unilateral constraints
in function spaces, the tangent cones are determined in [112].

As in the elliptic case [113] we can prove

TK(u0) = {v ∈ H1/2,1(Q) | v ≥ 0 on Ξ, v|Σd = 0},

where
Ξ = {(x, t) ∈ Σc | u0(x, t) = 0}.
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Let Λ ∈M be a positive measure living on Ξ. Introduce the cone

O(Λ) = Λ⊥ =
{
v ∈ H

∣∣∣∣ 〈Λ, v〉 = Λ[v] =
∫
v dΛ = 0

}
Definition 4.14. Let u0 ∈ K = {v ∈ H | v|Σc ≥ 0} be a given element, and Λ ∈ M a
positive measure living on Ξ = {(x, t) ∈ Σc | u0(x, t) = 0}. The convex set K is called
polyhedric at u0 ∈ K for Λ ∈M if

TK(u0) ∩O(Λ) = CK(u0) ∩O(Λ). (4.12)

If the condition (4.12) is satisfied for all positives measures from M living on Ξ, the set
K is called polyhedric at u0. If K is polyhedric for all u0 ∈ K, it is called polyhedric,
which is the case for the cone K under consideration.

Let us recall that the polyhedricity of the set K at u0 implies the conical differentia-
bility at u0 of the metric projection onto K [91].

Polyhedricity of K. We prove the following result due to F. Mignot [91], in a slightly
different setting. To be precise, in [91] the convex set {v ∈ H1(Ω) | v|∂Ω ≥ 0} is consid-
ered.

Actually, if the duality map is a contraction then the proof of polyhedricity is easy.

Theorem 4.15. For any u0 ∈ K and all positive measures µ ∈ M such that µ lives on
{(x, t) ∈ Σc | u0(x, t) = 0}, it follows that

TK(u0) ∩ µ⊥ = CK(u0) ∩ µ⊥.

Proof. Indeed, let

w ∈ TK(u0) ∩ µ⊥.

Then w = 0 µ-a.e. We construct a sequence in CK(u0) ∩ µ⊥ which converges strongly
to w. Let CK(u0) 3 vn → w. Then v−n → w−, v+

n → w+ and v+
n ∧ w+ − v−n → w. Now,

if v ∈ CK(u0) then u0 + τv ≥ 0 for some τ > 0. We claim v+
n ∧ w+ − v−n ∈ CK(u0) ∩ µ⊥

so the required sequence is of the form v+
n ∧w+ − v−n . Indeed, u0 + τ [v+

n ∧w+ − v−n ] ≥ 0
so v+

n ∧ w+ − v−n ∈ CK(u0) and µ[v+
n ∧ w+ − v−n ] = µ[v+

n ∧ w+] = 0 because µ[w+] = 0.
We have taken into account that vn ≥ 0 on {u0 = 0} and µ lives on {u0 = 0}, therefore
µ[v−n ] = 0.

4.5.2. Conical differentiability. We are interested in directional differentiability of
solutions to a parabolic variational inequality with respect to perturbations of the right-
hand side. To this end we derive some relations for weak limits.

Denote by A the parabolic operator ∂/∂t−∆x. Then A : H→ H∗ is defined by

〈Au, v〉 = 〈u̇, v〉+ a(u, v),

where

〈u̇, v〉 =
∫

Ω

∂u

∂t
v dx and a(u, v) =

∫
Ω

∇u · ∇v dx.
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We already know [56] that A is an isomorphism H→ H∗. If u is a solution of{
u ∈ K : 〈u̇, v − u〉Q + a(u, v − u) ≥ 〈f, v − u〉Q ∀v ∈ K,
u(0) = u0,

we see that Au− f is a non-negative element of H∗ and hence is given by a measure.
Let now fτ = f + τh and

Λτ = Auτ − fτ ∈ H∗.

For any τ we have the unique solution uτ of the variational inequality{
uτ ∈ K : 〈u̇τ , v − uτ 〉+ a(uτ , v − uτ ) ≥ 〈f + τh, v − uτ 〉 ∀v ∈ K,
uτ (0) = ũ0,

and the corresponding Λτ is a non-negative Radon measure which lives on Σ and inte-
grates functions from the spaceH1/2,1(Q). Formally, by integration by parts and standard
interpretation of variational inequalities [70],

〈Λτ , v〉 =
∫ T

0

∫
Γc

∂uτ
∂ν

(x, t)v(x, t) dΓ(x) dt

and we have
〈Λτ , uτ 〉 = 0. (4.13)

To see this it is enough to take v = 2uτ , v = uτ/2 in the inequality 〈Λτ , v − uτ 〉 ≥ 0,
which holds for all v ∈ K. Furthermore, 〈Λτ , v〉 ≥ 0 for any v ∈ K and, in view of (4.13),
Λτ lives in the set

Ξτ = {(x, t) ∈ Σc | uτ (x, t) = 0}.

Let us look at the mappings τ 7→ Λτ , t 7→ ut more closely. By the Lipschitz continuity
we have

C|t− s|2 ≥ |〈Λt − Λs, ut − us〉| = |−〈Λt, us〉 − 〈Λs, ut〉| = 〈Λt, us〉+ 〈Λs, ut〉.

Since ut, us ∈ K and Λt,Λs are positive measures we see that

〈Λt, us〉 ≥ 0, 〈Λs, ut〉 ≥ 0.

Thus for all t, s ≥ 0,
〈Λt, us〉 ≤ C|t− s|2. (4.14)

Since t 7→ Λt and t 7→ ut are Lipschitz, we see that{
ut − u
t

∣∣∣∣ 0 < t ≤ 1
}
,

{
Λt − Λ
t

∣∣∣∣ 0 < t ≤ 1
}

are relatively weak and weak∗ compact, respectively.
Let η be any weak∗ limit of (Λt − Λ)/t as t→ 0. Now we show that 〈η, v〉 ≥ 0 for all

v ∈ TK(u) ∩ Λ⊥. To this end we first show 〈η, u〉 = 0. We have, in view of (4.14),

〈η, u〉 = lim
τi→0

〈
Λτi − Λ
τi

, u

〉
= lim
τi→0

〈
Λτi
τi
, u

〉
= 0.

Set ut = u+ tv, so u0 = u, and by polyhedricity,

TK(u0) ∩ Λ⊥ = CK(u0) ∩ Λ⊥,
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so that we only need to show η ≥ 0 on CK(u0) ∩ Λ⊥. Let v ∈ CK(u0) ∩ Λ⊥. Then for
t > 0, u+ tv ∈ K ∩ Λ⊥, and

〈η, u+ tv〉 = lim
τi→0

〈
Λτi − Λ
τi

, u+ tv

〉
= lim
τi→0

〈
Λτi
τi
, u+ tv

〉
≥ 0

because u+ tv ∈ K. Thus 〈η, v〉 ≥ 0 since 〈η, u〉 = 0 as was shown before. Thus

η ≥ 0 on TK(u0) ∩ Λ⊥.

If q denotes a weak limit of (ut − u)/t at t = 0+, it follows by definition of the tangent
cone TK(u) that q ∈ TK(u). Now we show that

• q ∈ SK(u) = TK(u) ∩ Λ⊥,
• 〈η, q〉 = 0.

Let us observe that q ∈ SK(u) follows if we show that

〈Λ, q〉 = 0.

We have
〈Λ, q〉 ≥ 0

since q ∈ TK(u) so q ≥ 0 on Ξ and Λ lives on Ξ (see Section 4.5.1 for details). On the
other hand,〈

Λτ ,
uτ − u
τ

〉
=
〈

Λ,
uτ − u
τ

〉
+
〈

Λτ − Λ,
uτ − u
τ

〉
→ 〈Λ, q〉+ 0

since ∥∥∥∥Λτ − Λ
τ

∥∥∥∥
H∗
≤ C.

This shows that

lim
〈

Λτ ,
uτ − u
τ

〉
≥ 0.

In order to conclude that 〈Λ, q〉 = 0, let us note that〈
Λτ ,

uτ − u
τ

〉
= −1

τ
〈Λτ , u〉 ≤ 0

for τ ≥ 0 since u ∈ K is ≥ 0 on Ξτ . Therefore,〈
Λτ ,

uτ − u
τ

〉
≤ 0,

which implies that

lim
τ→0

〈
Λτ ,

uτ − u
τ

〉
≤ 0.

This completes the proof of the required property 〈Λ, q〉 = 0, which implies q ∈ SK(u).
Now we come to the crucial result, namely 〈η, q〉 = 0. Since 〈Az, z〉 ≥ 0 we deduce

1
2

(〈Au, v〉+ 〈Av, u〉) ≤ 〈Au, u〉1/2〈Av, v〉1/2. (4.15)

Now for any θ > 0, and h = (fθ − f)/θ,

A(uθ − u) = θh+ Λθ − Λ. (4.16)
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Using (4.15) with uτ − u, ut − u yields

〈A(uτ −u), uτ −u〉1/2〈A(ut−u), ut−u〉1/2 ≥
1
2
{〈A(uτ −u), ut−u〉+〈A(ut−u), uτ −u〉}.

Using (4.16) we get

〈τh+ Λτ − Λ, uτ − u〉1/2〈th+ Λt − Λ, ut − u〉1/2.

Dividing both sides by τt we get〈
h+

Λτ − Λ
τ

,
uτ − u
τ

〉1/2〈
h+

Λt − Λ
t

,
ut − u
t

〉1/2

≥ 1
2

{〈
h+

Λτ − Λ
τ

,
ut − u
t

〉〈
h+

Λt − Λ
t

,
uτ − u
τ

〉}
.

Now
〈Λθ − Λ, uθ − u〉 = −〈Λθ, u〉 − 〈Λ, uθ〉 < 0.

Thus〈
h,
uτ − u
τ

〉1/2〈
h,
ut − u
t

〉1/2

≥
〈
h+

Λτ − Λ
τ

,
uτ − u
τ

〉1/2〈
h+

Λt − Λ
t

,
ut − u
t

〉1/2

≥ 1
2

{〈
h+

Λτ − Λ
τ

,
ut − u
t

〉〈
h+

Λt − Λ
t

,
uτ − u
τ

〉}
. (4.17)

Let now τi and ti be sequences tending to zero such that

Λτi − Λ
τi

w∗
⇁ η1,

uτi − u
τi

w
⇁ q1,〈

Λτi − Λ
τi

,
uτi − u
τi

〉
→ −α (α > 0),

Λti − Λ
ti

w∗
⇁ η2,

uti − u
ti

w
⇁ q2,〈

Λti − Λ
ti

,
uti − u
ti

〉
→ −β (β > 0).

In (4.17) let τ tend to zero along τi to get

〈h, q1〉1/2
〈
h,
ut − u
t

〉1/2

≥ (〈h, q1〉 − α))1/2

〈
h+

Λt − Λ
t

,
ut − u
t

〉1/2

≥ 1
2

{〈
h+ η1,

ut − u
t

〉
+
〈
h+

Λt − Λ
t

, q1

〉}
.

Now let t tend to zero along ti to get

〈h, q1〉1/2〈h, q2〉1/2 ≥ (〈h, q1 − α〉)1/2(〈h, q2 − β〉)1/2

≥ 1
2
{〈h+ η1, q2〉+ 〈h+ η2, q1〉}
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=
1
2
{〈h, q1〉+ 〈h, q2〉+ 〈η1, q2〉+ 〈η2, q1〉}

≥ 1
2
{〈h, q1〉+ 〈h, q2〉} (4.18)

(because as shown before, ηi ≥ 0 on SK(u) and qi belongs to SK(u) for i = 1, 2)

≥ 〈h, q1〉1/2〈h, q2〉1/2.

Thus all the inequalities in (4.18) are equalities. We collect all this as

Theorem 4.16. For any two weak limits q1, q2 of (uθ − u)/θ and any two weak limits
η1, η2 of (Λθ − Λ)/θ we have

〈h, q1〉 = 〈h, q2〉,
〈η1, q2〉 = 〈η2, q1〉 = 0,

lim
τ→0

〈Λτ , u〉+ 〈Λ, uτ 〉
τ2

= 0.

As an immediate corollary we have:

Theorem 4.17. Any weak limit q satisfies the variational inequality

q ∈ SK(u) : 〈Aq, v − q〉 = 〈q̇, v − q〉+ a(q, v − q) ≥ 〈h, v − q〉 ∀v ∈ SK(u), (4.19)

q(0) = 0. (4.20)

In view of the uniqueness of solutions to (4.19)–(4.20), the above theorem shows that
the couple η, q is unique.

4.6. Applications. We provide applications of the general results we have obtained. We
restrict ourselves to the model variational inequality introduced in [72]. The unilateral
conditions are prescribed on the crack faces, so the solutions are singular at the crack
tips. Our method is general, and therefore can be applied to variational inequalities in
elasticity, with frictionless contact conditions prescribed on the crack faces. We also apply
the results to an evolution variational inequality in a work in progress.

The analysis of abstract variational inequalities leads to the concept of conical differ-
entiability of solutions. We recall here the result proved in [126] which gives the conical
differentiability of solutions to variational inequalities with respect to shape variations.
Such a result leads to the first and second order shape differentiability of energy func-
tionals in domains with cracks.

4.6.1. An abstract result. For the convenience of the reader we recall here the ab-
stract result which is a generalization of the implicit function theorem for variational
inequalities.

Let K ⊂ V be a convex and closed subset of a Hilbert space V , and let 〈·, ·〉 denote
the duality pairing between V ′ and V , where V ′ denotes the dual of V .

We shall consider the following family of variational inequalities depending on a pa-
rameter t ∈ [0, δ), δ > 0:

yt ∈ K : at(yt, ϕ− yt) ≥ 〈ft, ϕ− yt〉 ∀ϕ ∈ K. (4.21)
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Moreover, let yt = Pt(ft) be a solution to (4.21). Let us note that for ft = 0 and yt = Pt(0)
we obtain y′ = Π′(−A′y0) in (4.22).

Theorem 4.18. Assume that:

• the bilinear form at(·, ·) : V ×V → R is coercive and uniformly continuous with respect
to t ∈ [0, δ); let At ∈ L(V ;V ′) be the linear operator defined by at(φ, ϕ) = 〈Atφ, ϕ〉 for
φ, ϕ ∈ V ; suppose that there exists A′ ∈ L(V ;V ′) such that

At = A0 + tA′ + o(t) in L(V ;V ′);

• for t > 0 small enough,
ft = f0 + tf ′ + o(t) in V ′,

where ft, f0, f
′ ∈ V ′;

• K ⊂ V is convex and closed, and for the solutions to the variational inequality

Πf = P0(f) ∈ K : a0(Πf, ϕ−Πf) ≥ 〈f, ϕ−Πf〉 ∀ϕ ∈ K

the following differential stability result holds:

∀h ∈ V ′ : Π(f0 + εh) = Πf0 + εΠ′h+ o(ε) in V

for ε > 0 small enough, where the mapping Π′ : V ′ → V is continuous and positively
homogeneous, and o(ε) is uniform with respect to h ∈ V ′ on compact subsets of V ′.

Then the solutions to the variational inequality (4.21) are right-differentiable with respect
to t at t = 0, i.e. for t > 0 small enough,

yt = y0 + ty′ + o(t) in V,

where
y′ = Π′(f ′ −A′y0). (4.22)

4.6.2. Unilateral conditions on the crack. Let D ⊂ R2 be a bounded domain with
smooth boundary Γ, and Σl+δ be the set {(x1, x2) | 0 < x1 < l + δ, x2 = 0}. We assume
that this set is contained in D for all sufficiently small δ, and some l > 0. The domains
with cracks Σl+δ, Σl are denoted by Ωδ = D\Σl+δ, Ω = D\Σl, respectively. We consider
an elastic membrane in the reference domain Ω with crack Σl of length l and with the
unilateral condition prescribed on the crack for the displacement of the membrane [72].
Therefore, in the domain Ω, we consider the following boundary value problem for a
function u:

−∆u = f in Ω, (4.23)

u = 0 on Γ, (4.24)

[u] ≥ 0, [uy2 ] = 0, uy2 ≤ 0, uy2 [u] = 0 on Σl. (4.25)

Here f ∈ C1(D̄) is a given function, [u] = u+−u− is the jump of u across Σl. The vector
n = (0, 1) is orthogonal to Σl, and u± denote the traces of u on the crack faces, corre-
sponding to the positive and negative directions of n. In order to define weak solutions
to (4.23)–(4.25), we consider the minimization of the functional

I(φ) =
1
2

∫
Ω

|∇φ|2 −
∫

Ω

fφ
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over the set
K0 = {w ∈ H1(Ω) | [w] ≥ 0 on Σl; w = 0 on Γ},

of all admissible functions from the Sobolev space

H1
Γ(Ω) = {v ∈ H1(Ω) | v|Γ = 0}.

Therefore, for any value of the parameter δ ∈ [−δ0, δ0], δ0 > 0, the function uδ is the
solution of the variational inequality

uδ ∈ Kδ :
∫

Ωδ

〈∇uδ,∇v −∇uδ〉 ≥
∫

Ωδ

f(v − uδ) ∀v ∈ Kδ, (4.26)

where
Kδ = {w ∈ H1(Ωδ) | [w] ≥ 0 on Σl+δ; w = 0 on Γ}.

The energy functional for a weak solution of the problem (4.23)–(4.25) is defined by the
formula

J(Ω) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

fu, (4.27)

and the energy functional for the problem (4.26) is equal to

J(Ωδ) =
1
2

∫
Ωδ

|∇uδ|2 −
∫

Ωδ

fuδ.

The form of the derivative of the energy functional J(Ωδ) with respect to variations of
the crack’s length

dJ(Ωδ)
dδ

∣∣∣∣
δ=0

= lim
δ→0

J(Ωδ)− J(Ω)
δ

(4.28)

is obtained in [72] (see Theorem 4.20 below).
The dependence of the energy functional on the crack length is important in fracture

mechanics. The derivative of the functional is often used to formulate fracture criteria.
The formulae for derivatives of the energy functional with respect to the crack length are
called the Griffith formulae. Invariant integrals over curves surrounding the crack tips are
usually called the Rice–Cherepanov integrals. In the present paper we extend the results
of [72] and obtain the second order shape derivative of the energy functional with respect
to the crack length.

In order to find the derivative (4.28), the transformation of the domain Ωδ onto the
domain Ω is introduced. The transformation, depending on the function θ, is constructed
in the following way.

Let θ ∈ C∞0 (D) be any function such that θ = 1 in a neighbourhood of the point
xl = (l, 0). To simplify the argument the function θ is assumed to be equal to zero
in a neighbourhood of the point (0, 0). Consider the transformation of the independent
variables

y1 = x1 − δθ(x1, x2), y2 = x2, (4.29)

where (x1, x2) ∈ Ωδ, (y1, y2) ∈ Ω. The Jacobian qδ of this transformation is equal to∣∣∣∣ ∂(y1, y2)
∂(x1, x2)

∣∣∣∣ = 1− δθx1 .
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For small δ, the Jacobian qδ is positive, hence the transformation (4.29) is one-to-one.
Therefore, in view of (4.29) we have y = y(x, δ), x = x(y, δ).

Remark 4.19. We shall use the same transformation with θ replaced by ψ, in order to
define the second order shape derivatives in the directions θ and ψ. It is then useful to
assume that ψ is supported on the set θ = 1, which simplifies the form of the second
order derivative. We refer the reader to [124] for the details on the decomposition of the
second order shape derivatives.

Let uδ(x) be the solution of (4.26), and uδ(x) = uδ(y), x = x(y, δ). We have the
formulae

uδx1
= uδy1(1− δθx1), uδx2

= uδy1(−δθx2) + uδy2 .

Consequently, ∫
Ωδ

|∇uδ|2 dx =
∫

Ω

〈Aδ∇uδ,∇uδ〉 dy,

where Aδ = Aδ(y) is the matrix

Aδ(y) =
1

1− δθx1

(
(1− δθx1)2 + δ2θ2

x2
−δθx2

−δθx2 1

)
, θ = θ(x(y, δ)).

Note that A0(y) = E is the identity matrix.
It is easy to find the derivative of Aδ(y) with respect to δ:

A′(y) =
dAδ(y)
dδ

∣∣∣∣
δ=0

= lim
δ→0

Aδ(y)−A0(y)
δ

.

We have

A′(y) =
(
−θy1(y) −θy2(y)
−θy2(y) θy1(y)

)
, (4.30)

and we shall also write A′(y) = A′(θ)(y) to show the dependence of A′ on θ. In the same
way A′(y) = A′(ψ)(y) is obtained for the transformation depending on ψ.

By change of variables it follows that∫
Ωδ

fuδ dx =
∫

Ω

f(x(y, δ))uδ(y)
1− δθx1

dy.

Set

fδ(y) =
f(x(y, δ))
1− δθx1

and find the derivative

f ′(y) =
dfδ(y)
dδ

∣∣∣∣
δ=0

= lim
δ→0

fδ(y)− f0(y)
δ

.

Assuming that y, δ are independent variables in (4.29) we have x = x(y, δ). Differentiation
of (4.29) with respect to δ yields

0 =
dx1

dδ
− θ − δθx1

dx1

dδ
,

whence
dx1

dδ
=

θ

1− δθx1

,
dx2

dδ
= 0. (4.31)
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Consequently, by (4.31),

∂f(x(y, δ))
∂δ

∣∣∣∣
δ=0

= fx1

dx1

dδ

∣∣∣∣
δ=0

+ fx2

dx2

dδ

∣∣∣∣
δ=0

= fy1θ. (4.32)

Now we are in a position to find the derivative f ′(y). Indeed, by (4.32), since θx1 = θy1 ,

f ′(y) = lim
δ→0

(
f(x(y, δ))
1− δθx1

− f(y)
)

1
δ

= lim
δ→0

f(x(y, δ))− f(y)
δ

+ θx1f(y)|δ=0

= fy1θ + θy1f =
∂

∂y1
(θf),

i.e. f ′(y) = (θf)y1(y). Since f ∈ C1(Ω̄) we can see that as δ → 0,

fδ(y)− f0(y)
δ

→ f ′(y) in L∞(Ω).

Also, notice that, in addition to (4.30), as δ → 0,

Aδ(y)−A0(y)
δ

→ A′(y) in L∞(Ω).

In view of (4.29), let x = x(y, δ). Then wδ(x) = wδ(y). The inclusion wδ ∈ Kδ implies
wδ ∈ K0, and conversely, wδ ∈ K0 implies wδ ∈ Kδ. This means that the transformation
(4.29) maps Kδ onto K0, and it is one-to-one. It is easy to see that the solution to the
variational inequality is Lipschitz with respect to δ.

Let uδ be the solution of (4.26), uδ(x) = uδ(y), and u be the solution of (4.23)–(4.25).
Then

‖uδ − u‖H1(Ω) ≤ Cδ, δ → 0.

To underline the dependence of the domain Ω on the crack length l we shall write
Ωl instead of Ω. On the other hand, to underline the dependence of the transformed
domain Ωδ on the function θ when dealing with the first order shape derivative, and on
the function ψ in the procedure of derivation of the second order shape derivative, we
shall write Ωδ = Ω(θ) and Ωδ = Ω(ψ), respectively.

Let J(Ωl) be defined by the formula (4.27). The Griffith formula established in [72]
gives the derivative of the energy functional with respect to the crack length for the
problem (4.23)–(4.25).

Theorem 4.20. The derivative of J(Ωl) with respect to l is given by

dJ(Ωl)
dl

= −1
2

∫
Ω

(θy1(u2
y1
− u2

y2
) + 2θy2uy1uy2)−

∫
Ω

(θf)y1u.

The first derivative is independent of the choice of θ with the required properties. We
can obtain the second order shape derivative of the energy functional in directions θ and
ψ using the following result which seems to be new and follows by the arguments given
in Section 4.1.

Theorem 4.21. The set K0 is polyhedric.

Theorem 4.18 implies that the function uδ ∈ K0, obtained by transport to the fixed
domain Ω of the solution uδ ∈ Kδ to the variational inequality defined in Ωδ = Ω(ψ), is
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right differentiable at δ = 0, i.e. for δ > 0 small enough,

uδ = u+ δQ+ o(δ)

where ‖o(δ)‖H1
Γ(Ω)/δ → 0 as δ ↓ 0. The directional derivative Q of uδ in direction θ is

given by the unique solution to the variational inequality

Q ∈ S :
∫

Ω

〈∇Q,∇(v−Q)〉R2 ≥ −
∫

Ω

〈A′(ψ)∇u,∇(v−Q)〉R2 +
∫

Ω

f ′(ψ)(v−Q) ∀v ∈ S,

where
S = {v ∈ H1

Γ(Ω) | [v] ≥ 0 on Ξ, v ∈ Λ⊥},

with

Ξ = {x ∈ Σl | [u(x)] = 0} and Λ⊥ =
{
v

∣∣∣∣ ∫
Ω

〈∇u,∇v〉 =
∫

Ω

fv

}
.

Therefore, we obtain the second order shape derivative of the energy functional J(Ωl) in
directions θ, ψ.

Theorem 4.22. The second order directional derivative of the energy functional J(Ωl)
with respect to the crack length is given by

d2J(Ωl)
dl2

=
1
2

∫
Ω

θy1ψy1 [u2
y1

+ u2
y2

]−
∫

Ω

[θy1ψy2uy1uy2 − θy2ψy2u
2
y1

]

−
∫

Ω

θy1 [uy1Qy1 − uy2Qy2 ]−
∫

Ω

θy2 [uy1Qy2 + uy2Qy1 ]

−
∫

Ω

u(ψ(θf)y1)y1 −
∫

Ω

Q(ψ)(θf)y1 ,

where Q = Q(ψ) solves the variational inequality for A′(y) = A′(ψ)(y) and f ′(y) =
(ψf)y1(y).

Remark 4.23. The same result can be obtained in the case of the elasticity system [73]
with frictionless contact conditions on the crack faces, i.e. the convex set is polyhedric
and the second order directional differentiability of the energy functional follows by the
same argument as above for the scalar equation.

Remark 4.24. Taking ψ with the support in the set θ = 1 we have

d2J(Ωl)
dl2

= −
∫

Ω

θy1 [uy1Qy1 − uy2Qy2 ]−
∫

Ω

θy2 [uy1Qy2 + uy2Qy1 ]

−
∫

Ω

u(θ(ψf)y1)y1 −
∫

Ω

Q(ψ)(θf)y1 .

5. Non-penetration conditions on crack faces in elastic bodies

5.1. Introduction. The chapter is concerned with new recent results related to crack
theory in elasticity with possible contact between crack faces. We discuss problem formu-
lations, peculiarities of the problems and possible relations between topics under inves-
tigation. It is well known that the classical crack theory in elasticity is characterized by
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linear boundary conditions which leads to linear boundary value problems. This approach
has a clear shortcoming from the mechanical standpoint since opposite crack faces can
penetrate each other. We consider non-linear boundary conditions on crack faces, the
so-called non-penetration conditions, written in terms of inequalities. From the stand-
point of applications these boundary conditions are preferable since they ensure mutual
non-penetration between crack faces. As a result, a free boundary problem is obtained,
which means that a concrete boundary condition at a given point can be found provided
that we have a solution of the problem.

The main attention in this chapter is focused on dependence of solutions of the prob-
lem on domain perturbations, and in particular on the crack shape.

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ, and Γc ⊂ Ω be a smooth
curve without self-intersections, Ωc = Ω \ Γc (see Fig. 5.1).

It is assumed that Γc can be extended in such a way that this extension crosses Γ at
two points, and Ωc is divided into two subdomains D1 and D2 with Lipschitz boundaries
∂D1, ∂D2, meas(Γ ∩ ∂Di) > 0, i = 1, 2. Denote by ν = (ν1, ν2) a unit normal vector to
Γc. We assume that Γc does not contain its tip points, i.e. Γc = Γc \ ∂Γc.

Fig. 5.1. Domain Ωc

The equilibrium problem for a linear elastic body occupying Ωc is as follows. In the
domain Ωc we have to find a displacement field u = (u1, u2) and stress tensor components
σ = {σij}, i, j = 1, 2, such that

−div σ = f in Ωc, (5.1)

σ = Aε(u) in Ωc, (5.2)

u = 0 on Γ, (5.3)

[u]ν ≥ 0, [σν ] = 0, σν · [u]ν = 0 on Γc, (5.4)

σν ≤ 0, στ = 0 on Γ±c . (5.5)

Here [v] = v+ − v− is the jump of v on Γc, and the signs ± correspond to the positive
and negative crack faces with respect to ν, f = (f1, f2) ∈ L2(Ωc) is a given function,

σν = σijνjνi, στ = σν − σν · ν, στ = (σ1
τ , σ

2
τ ), σν = (σ1jνj , σ2jνj),

the strain tensor components are denoted by εij(u),

εij(u) =
1
2

(ui,j + uj,i), ε(u) = {εij(u)}, i, j = 1, 2.

The elasticity tensor A = {aijkl}, i, j, k, l = 1, 2, is given and satisfies the usual properties
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of symmetry and positive definiteness

aijklξklξij ≥ c0|ξ|2, ∀ξij , ξij = ξji, c0 = const,

aijkl = aklij = ajikl, aijkl ∈ L∞(Ω).
Relations (5.1) are equilibrium equations, and (5.2) is Hooke’s law, ui,j = ∂ui/∂uj ,

(x1, x2) ∈ Ωc. All functions with two lower indices are symmetric in those indices, i.e.
σij = σji etc. The summation convention over repeated indices is assumed throughout
the chapter.

The first condition in (5.4) is called the non-penetration condition. It provides a mu-
tual non-penetration between the crack faces Γ±c . The second condition of (5.5) provides
zero friction on Γc. For simplicity we assume a clamping condition (5.3) at the external
boundary Γ.

Note that a priori we do not know at which points on Γc strict inequalities hold in
(5.4), (5.5). Due to this, the problem (5.1)–(5.5) is a free boundary value problem. If we
have σν = 0 then, together with στ = 0, the classical boundary condition σν = 0 follows
which is used in the linear crack theory. On the other hand, due to (5.4), the condition
σν < 0 implies [u]ν = 0, i.e. we have a contact between the crack faces at a given point.
The strict inequality [u]ν > 0 at a given point means that we have no contact between
the crack faces.

Hence, the first difficulty in studying the problem (5.1)–(5.5) is concerned with the
boundary conditions (5.4)–(5.5). The second one is more general—presence of non-smooth
boundaries. We refer the reader to [49], [81] for general results on boundary value problems
defined in non-smooth domains.

5.2. Existence of solution. First of all we note that problem (5.1)–(5.5) admits sev-
eral equivalent formulations. In particular, it corresponds to minimization of an energy
functional. To check this, introduce the Sobolev space

H1
Γ(Ωc) = {v = (v1, v2) | vi ∈ H1(Ωc), vi = 0 on Γ, i = 1, 2}

and a closed convex set of admissible displacements

K = {v ∈ H1
Γ(Ωc) | [v]ν ≥ 0 a.e. on Γc}. (5.6)

In this case, due to the Weierstrass theorem, the problem

min
v∈K

{
1
2

∫
Ωc

σij(v)εij(v)−
∫

Ωc

fivi

}
has a (unique) solution u satisfying the variational inequality

u ∈ K, (5.7)∫
Ωc

σij(u)εij(v − u) ≥
∫

Ωc

fi(vi − ui), ∀v ∈ K, (5.8)

where σij(u) = σij are defined from (5.2).
The formulations (5.1)–(5.5) and (5.7)–(5.8) are equivalent: any smooth solution of

(5.1)–(5.5) satisfies (5.7)–(5.8) and conversely.
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Below we provide two more equivalent formulations for the problem (5.1)–(5.5), the so-
called mixed and smooth domain formulations. To this end, we first discuss in what sense
the boundary conditions (5.4)–(5.5) are satisfied. Denote by Σ a closed curve without
self-intersections of class C1,1, which is an extension of Γc such that Σ ⊂ Ω, and the
domain Ω is divided into two subdomains Ω1 and Ω2 (see Fig. 5.2). In this case Σ is the
boundary of the domain Ω1, and the boundary of Ω2 is Σ ∪ Γ.

Fig. 5.2. Extension of Γc to Σ

Introduce the space H1/2(Σ) with the norm

‖v‖2
H

1
2 (Σ)

= ‖v‖2L2(Σ) +
∫

Σ

∫
Σ

|v(x)− v(y)|2

|x− y|2
dx dy (5.9)

and denote by H−1/2(Σ) the dual space of H1/2(Σ). Also, consider the space

H
1/2
00 (Γc) = {v ∈ H1/2(Γc) | v/

√
ρ ∈ L2(Γc)}

with the norm
‖v‖21/2,00 = ‖v‖21/2 +

∫
Γc

ρ−1v2,

where ρ(x) = dist(x; ∂Γc) and ‖v‖1/2 is the norm in the space H1/2(Γc). It is known
that functions from H

1/2
00 (Γc) can be extended to Σ by zero, and moreover this extension

belongs to H1/2(Σ). More precisely, let v be defined at Γc, and v be the extension of v
by zero, i.e.

v(x) =

{
v(x), x ∈ Γc,

0, x ∈ Σ \ Γc.

Then (see [67])
v ∈ H1/2

00 (Γc) if and only if v ∈ H1/2(Σ).

With the above notations, it is possible to describe in what sense the boundary conditions
(5.4)–(5.5) hold. Namely, the condition σν ≤ 0 in (5.5) means that

〈σν , φ〉1/2,00 ≤ 0, ∀φ ∈ H1/2
00 (Γc), φ ≥ 0 a.e. on Γc,

where 〈·, ·〉1/2,00 is the duality pairing between H−1/2
00 (Γc) and H1/2

00 (Γc). The condition
στ = 0 in (5.5) means that

〈σν , φ〉1/2,00 = 0, ∀φ = (φ1, φ2) ∈ H1/2
00 (Γc).

The last condition of (5.4) holds in the following sense:

〈σν , [u]ν〉1/2,00 = 0.
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5.2.1. Mixed formulation of the problem. Now we will give a mixed formulation of
the problem (5.1)–(5.5). Introduce the space for stresses

H(div) = {σ = {σij} | σ ∈ L2(Ωc),div σ ∈ L2(Ωc)}

with the norm
‖σ‖2H(div) = ‖σ‖2L2(Ωc)

+ ‖div σ‖2L2(Ωc)

and the set of admissible stresses

H(div; Γc) = {σ ∈ H(div) | [σν] = 0 on Γc; σν ≤ 0, στ = 0 on Γ±c }.

We should note at this step that for σ ∈ H(div) the traces (σν)± are correctly defined on
Σ± as elements of H−1/2(Σ). The first condition in the definition of H(div; Γc) is satisfied
in the following sense:

(σν)+ = (σν)− on Σ

for any curve Σ with the prescribed properties (see [67]). The relations σ ≤ 0, στ = 0 on
Γ±c also make sense. The values σν , στ are defined as elements of the space H−1/2

00 (Γc).
The mixed formulation of the problem (5.1)–(5.5) is as follows. We have to find a

displacement field u = (u1, u2) and stress tensor components σ = {σij}, i, j = 1, 2, such
that

u ∈ L2(Ωc), σ ∈ H(div; Γc), (5.10)

−div σ = f in Ωc, (5.11)∫
Ωc

Cσ(σ − σ) +
∫

Ωc

u(div σ − div σ) ≥ 0 ∀σ ∈ H(div; Γc). (5.12)

The tensor C is obtained by inverting Hooke’s law (5.2), i.e.

Cσ = ε(u).

It is possible to prove existence of a solution to the problem (5.10)–(5.12) and check
that (5.10)–(5.12) is formally equivalent to (5.1)–(5.5) (see [65], [76]). For (5.10)–(5.12)
existence can be proved independently of (5.1)–(5.5). On the other hand, the solution
exists due to the equivalence, and we already have the solution to the problem (5.1)–
(5.5).

5.2.2. Smooth domain formulation. Along with the mixed formulation (5.10)–(5.12)
the so-called smooth domain formulation of the problem (5.1)–(5.5) can be provided. In
this case the solution of the problem is defined in the smooth domain Ω. To do this, we
should notice that the solution of the problem (5.1)–(5.5) satisfies (5.7)–(5.8), thus the
condition

[σν] = 0 on Γc

holds, and therefore it can be proved that in the distributional sense

− div σ = f in Ω.

Hence, the equilibrium equations (5.1) hold in the smooth domain Ω.
Introduce the space for stresses defined in Ω,

H(div) = {σ = {σij} | σ, div σ ∈ L2(Ω)}



Boundary value problems in nonsmooth domains 79

and the set of admissible stresses

H(div; Γc) = {σ ∈ H(div) | στ = 0, σν ≤ 0 on Γc}.

The norm in the space H(div) is defined as follows:

‖σ‖2H(div) = ‖σ‖2L2(Ω) + ‖div σ‖2L2(Ω).

We see that for σ ∈ H(div), the boundary conditions στ = 0, σν ≤ 0 on Γc are correctly
defined in the sense H−1/2

00 (Γc). Thus, we can provide the smooth domain formulation
for the problem (5.1)–(5.5): find a displacement field u = (u1, u2) and stress tensor
components σ = {σij}, i, j = 1, 2, such that

u ∈ L2(Ω), σ ∈ H(div; Γc), (5.13)

− div σ = f in Ω, (5.14)∫
Ω

Cσ(σ − σ) +
∫

Ω

u(div σ − div σ) ≥ 0 ∀σ ∈ H(div; Γc). (5.15)

It is possible to prove existence of a solution to the problem (5.13)–(5.15) (see [65],
[76]). Moreover, any smooth solution of (5.1)–(5.5) satisfies (5.13)–(5.15), and conversely,
(5.13)–(5.15) implies (5.1)–(5.5). An advantage of the formulation (5.13)–(5.15) is that
it is given in the smooth domain. This formulation reminds contact problems with thin
obstacle when restrictions are imposed on sets of small dimensions (see [70]).

Numerical aspects of the problems like (5.1)–(5.5) are discussed, for example, in
[12], [80].

5.3. Fictitious domain method. In this section we provide a connection between the
problem (5.1)–(5.5) and the Signorini contact problem. It turns out that the Signorini
problem is a limit problem for a family of problems like (5.1)–(5.5). First we give a
formulation of the Signorini problem. Let Ω1 ⊂ R2 be a bounded domain with smooth
boundary Γ1, Γ1 = Γc ∪ Γ0, Γc ∩ Γ0 = ∅, meas Γ0 > 0 (see Fig. 5.3).

Fig. 5.3. Signorini problem

For simplicity, we assume that Γc is a smooth curve (without its tip points). Denote
by ν = (ν1, ν2) a unit normal inward vector to Γc. We have to find a displacement field
u = (u1, u2) and stress tensor components σ = {σij}, i, j = 1, 2, such that

−div σ = f in Ω1, (5.16)

σ = Aε(u) in Ω1, (5.17)
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u = 0 on Γ0, (5.18)

uν ≥ 0, σν ≤ 0, στ = 0, uν · σν = 0 on Γc. (5.19)

Here f = (f1, f2) ∈ L2
loc(R2) is a given function, A = {aijkl}, i, j, k, l = 1, 2, is a given

elasticity tensor, aijkl ∈ L∞loc(R2), with the usual properties of symmetry and positive
definiteness.

It is well known (see [40]) that the problem (5.16)–(5.19) has a variational formulation
providing existence of solution. Namely, define

H1
Γ0

(Ω1) = {v = (v1, v2) ∈ H1(Ω1) | vi = 0 on Γ0, i = 1, 2}

and introduce the set of admissible displacements

Kc = {v = (v1, v2) ∈ H1
Γ0

(Ω1) | vν ≥ 0 a.e. on Γc}.

In this case the problem (5.16)–(5.19) is equivalent to minimization of the functional

1
2

∫
Ω1

σij(v)εij(v)−
∫

Ω1

fivi

over the set Kc and can be written in the form of the variational inequality

u ∈ Kc, (5.20)∫
Ω1

σij(u)εij(v − u) ≥
∫

Ω1

fi(vi − ui) ∀v ∈ Kc. (5.21)

Here σij(u) = σij are defined from Hooke’s law (5.17). The variational inequality (5.20)–
(5.21) is equivalent to (5.16)–(5.19), and conversely, i.e., any smooth solution of (5.16)–
(5.19) satisfies (5.20)–(5.21), and (5.20)–(5.21) implies (5.16)–(5.19). Along with the vari-
ational formulation (5.20)–(5.21) the problem (5.16)–(5.19) admits a mixed formulation
which is omitted here.

The aim of this section is to prove that the problem (5.16)–(5.19) is a limit problem
for a family of problems like (5.1)–(5.5). In what follows we explain this statement.

First of all we extend the domain Ω1 by adding a domain Ω2 with smooth boundary Γ2.
The extended domain is denoted by Ωc, and it has a crack (cut) Γc. The boundary of Ωc
is Γ∪Γ±c (see Fig. 5.4). Define Σ0 = Γ1 ∩Γ2, Σ = Σ0 \Γ, thus Σ does not contain its tip
points.

Fig. 5.4. Extended domain Ωc
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We introduce a family of elasticity tensors with a positive parameter λ,

aλijkl =

{
aijkl in Ω1,

λ−1aijkl in Ω2.

Write Aλ = {aλijkl}, and in the extended domain Ωc, consider a family of crack problems.
Find a displacement field uλ = (uλ1 , u

λ
2 ) and stress tensor components σλ = {σλij}, i, j =

1, 2, such that

−div σλ = f in Ωc, (5.22)

σλ = Aλε(uλ) in Ωc, (5.23)

uλ = 0 on Γ, (5.24)

[uλ]ν ≥ 0, [σλν ] = 0, σλν · [u]ν = 0 on Γc, (5.25)

σλν ≤ 0, σλτ = 0 on Γ±c . (5.26)

As before, [v] = v+− v− is the jump of v through Γc, where ± correspond to the positive
and negative crack faces Γ±c . All the other notations follow Section 5.1. We see that for any
fixed λ > 0 the problem (5.22)–(5.26) describes an equilibrium state of a linear elastic
body with the crack Γc where non-penetration conditions are prescribed. Hence, the
problem (5.22)–(5.26) is exactly like (5.1)–(5.5), and we are interested in passage to the
limit as λ→ 0. In particular, the problem (5.22)–(5.26) admits a variational formulation.
The boundary conditions (5.25)–(5.26) are satisfied in the form as in Section 1. It can be
proved (see [52]) that as λ→ 0,

uλ → u0 strongly in H1
Γ(Ωc), (5.27)

uλ√
λ
→ 0 strongly in H1(Ω2), (5.28)

where u0 = u on Ω1, i.e. the restriction of the limit function from (5.27) to Ω1 coincides
with the unique solution of the Signorini problem (5.16)–(5.19). From (5.27)–(5.28) it
is seen that the limit function u0 is zero in Ω2. On the other hand, there is no limit
passage for σλ in Ω2 as λ → 0. Thus, the domain Ω2 can be understood as an unde-
formable body, and the stresses are not defined in Ω2. This means that the Signorini
problem is, in fact, a crack problem with non-penetration condition between crack faces,
where the crack Γc is located between the elastic body Ω1 and the non-deformable (rigid)
body Ω2. It is worth noting that, in fact, we can write the problem (5.22)–(5.26) in the
equivalent form in the smooth domain Ωc ∪ Γc by using the smooth domain formulation
(Section 2.2). The details of the fictitious domain method in crack theory can be found
in [52], [129].

5.4. Crack on the boundary of rigid inclusion. We can consider a rigid inclusion
inside a rigid body. This section is concerned with a crack situated on the boundary of
the rigid inclusion.

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ, and ω ⊂ Ω be a sub-
domain with smooth boundary Σ and ω ⊂ Ω. Assume that Σ is composed of two parts:
Σ = Γc ∪ (Σ \ Γc), meas(Σ \ Γc) > 0 (see Fig. 5.5). Write Ωc = Ω \ Γc. As before, we
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Fig. 5.5. Rigid inclusion ω in an elastic body

denote by A = {aijkl} an elasticity tensor with the usual symmetry and positive definite-
ness properties, aijkl ∈ L∞loc(R2). For a positive parameter λ > 0, introduce the elasticity
tensor

aλijkl =

{
aijkl in Ω \ ω,
λ−1aijkl in ω,

i, j, k, l = 1, 2,

and consider the problem of finding a displacement field uλ = (uλ1 , u
λ
2 ) and stress tensor

components σλ = {σλij}, i, j = 1, 2, such that

− div σλ = f in Ωc, (5.29)

σλ −Aλε(uλ) = 0 in Ωc, (5.30)

uλ = 0 on Γ, (5.31)

[uλ]ν ≥ 0, [σλν ] = 0, σλν · [uλ]ν = 0 on Γc, (5.32)

σλτ = 0, σλν ≤ 0 on Γ±c . (5.33)

Here f = (f1, f2) ∈ L2(Ω) is a given function. We see that for any λ > 0 the problem
(5.29)–(5.33) is like (5.1)–(5.5) describing the equilibrium state for an elastic body with
the crack Γc. This problem has a variational formulation, mixed formulation and smooth
domain formulation. Our aim is to consider the limit case as λ→ 0. This can be done by
analyzing the variational inequality

uλ ∈ K, (5.34)∫
Ωc

σλij(u
λ)εij(v − uλ) ≥

∫
Ωc

fi(vi − uλi ) ∀v ∈ K. (5.35)

Here σλij(uλ) = σλij are defined from (5.30), and the set K was introduced in (5.6).
We can pass to the limit in (5.34)–(5.35) as λ → 0. To this end, we introduce the

space of infinitesimal rigid displacements

R(ω) = {ρ = (ρ1, ρ2) | ρ(x) = Bx+D, x ∈ ω},

where

B =
(

0 b

−b 0

)
, D = (d1, d2), b, d1, d2 = const.

Consider next the space

H1,ω
Γ (Ωc) = {v ∈ H1

Γ(Ωc) | v = ρ on ω, ρ ∈ R(ω)}
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and the set of admissible displacements

Kω = {v ∈ H1,ω
Γ (Ωc) | (v+ − ρ)ν ≥ 0 a.e. on Γc}.

Here v+ corresponds to the crack faces Γ+
c . Now we take v = 0, v = 2uλ as test functions

in (5.35). This provides the relation∫
Ωc

σλij(u
λ)εij(uλ) =

∫
Ωc

fiu
λ
i ,

which implies the estimates

‖uλ‖H1
Γ(Ωc) ≤ c1,

1
λ

∫
ω

aijklεkl(uλ)εij(uλ) ≤ c2, (5.36)

uniformly in λ, 0 < λ < λ0. Consequently, we can assume that as λ→ 0,

uλ → u weakly in H1
Γ(Ωc).

Moreover, by (5.36),
εij(u) = 0 in ω, i, j = 1, 2.

This means existence of a function ρ0 such that

u = ρ0 in ω, ρ0 ∈ R(ω).

Since uλ converges to u weakly in H1
Γ(Ωc) and uλ ∈ K, it follows that

(u+ − ρ0)ν ≥ 0 on Γc.

In particular, u ∈ Kω. Now we take an arbitrary function v ∈ R(ω). In this case, there
exists ρ ∈ R(ω) such that v = ρ on ω. It is clear that v can be substituted in (5.35) as a
test function. Since Aλ = A in Ω \ ω we can pass to the limit as λ→ 0 in (5.34), (5.35),
which provides the following variational inequality:

u ∈ Kω, (5.37)∫
Ω\ω

σij(u)εij(v − u) ≥
∫

Ωc

fi(vi − ui) ∀v ∈ Kω. (5.38)

The problem (5.37)–(5.38) describes an equilibrium state of the body occupying the
domain Ωc which has the crack Γc and the rigid inclusion ω. The latter means that any
possible displacement in ω has the form ρ(x), x ∈ ω, where ρ ∈ R(ω). The problem
(5.37)–(5.38) can be written in differential form. This formulation is as follows. In the
domain Ωc, we have to find a displacement field u = (u1, u2) with u = ρ0 in ω, and
ρ0 ∈ R(ω), and in the domain Ω \ ω we have to find stress tensor components σ = {σij},
i, j = 1, 2, such that

−div σ = f in Ω \ ω, (5.39)

σ −Aε(u) = 0 in Ω \ ω, (5.40)

u = 0 on Γ, (5.41)

(u− ρ0)ν ≥ 0, στ = 0, σν ≤ 0 on Γ+
c , (5.42)

σν · (u− ρ0)ν = 0 on Γ+
c , (5.43)

−
∫

Σ

σν · ρ =
∫
ω

fiρi ∀ρ ∈ R(ω). (5.44)
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The formulations (5.37)–(5.38) and (5.39)–(5.44) are equivalent. This means that any
smooth solution of (5.39)–(5.44) satisfies (5.37)–(5.38), and conversely, (5.39)–(5.44) fol-
lows from (5.37)–(5.38).

As in the previous sections, it is possible to describe in what sense the boundary
conditions (5.42)–(5.44) hold. In particular, the last two conditions of (5.42) are satisfied
in the sense of H−1/2

00 (Γc). As for (5.43) it holds in the form

〈σ+
ν , (u− ρ0)ν〉1/2,00,Γc = 0.

Condition (5.44) holds as follows:

−〈σν, ρ〉1/2,Σ =
∫
ω

fiρi ∀ρ ∈ R(ω).

To conclude this section, we note that the variational inequality (5.37)–(5.38) is equivalent
to minimization of the functional

1
2

∫
Ω\ω

σij(v)εij(v)−
∫

Ωc

fivi

over the set Kω.

5.5. Shape derivatives of energy functionals. In crack theory, the Griffith criterion
is widely used to predict a crack propagation. This criterion says that a crack propagates
provided that the derivative of the energy functional with respect to the crack length
reaches a critical value. In this section we discuss this question for the model (5.1)–(5.5).
We also refer to [77] for some developments in the framework of finite strain elasticity
and rate-independent model.

A general point of view is that we should consider a perturbed problem with respect
to (5.1)–(5.5). In particular, crack length may be perturbed. Perturbation will be char-
acterized by a small parameter t, and t = 0 corresponds to the unperturbed problem, i.e.
to (5.1)–(5.5). To describe the perturbation properly, we should have a perturbation of
the domain Ωc. This will be done via the velocity method (see [126]). This means that
we consider a given velocity field V defined in R2 and describe a perturbation of Ωc by
solving a Cauchy problem of a system of ODE. Namely, let V ∈ W 1,∞(R2)2 be a given
field, V = (V1, V2). Consider the Cauchy problem of finding a function Φ = (Φ1,Φ2) with

dΦ
dt

(t, ·) = V (Φ(t, ·)) for t 6= 0, Φ(0, x) = x. (5.45)

There exists a unique solution Φ to (5.45) such that

Φ = (Φ1,Φ2)(t, x) ∈ C1([0, t0];W 1,∞
loc (R2)2), |t0| > 0. (5.46)

Simultaneously, we can find a solution Ψ = (Ψ1,Ψ2) to the Cauchy problem

dΨ
dt

(t, ·) = −V (Ψ(t, ·)) for t 6= 0, Ψ(0, y) = y, (5.47)

with the same regularity

Ψ = (Ψ1,Ψ2)(t, y) ∈ C1([0, t0];W 1,∞
loc (R2)2), |t0| > 0. (5.48)
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It can be proved that for any fixed t, the function Ψ(t, ·) is inverse to Φ(t, ·), which means
(see the proof in [68])

y = Φ(t,Ψ(t, y)), x ∈ Ψ(t,Φ(t, x)), x, y ∈ R2.

Due to this, we have a one-to-one mapping between the domain Ωc and a perturbed
domain Ωtc, namely

y = Φ(t, x) : Ωc → Ωtc, x = Ψ(t, y) : Ωtc → Ωc.

Moreover, by (5.46), (5.48), we have the following asymptotic expansions (I denotes the
identity operator):

Φ(t, x) = x+ tV (x) + r1(t), (5.49)

Ψ(t, y) = y − tV (y) + r2(t),

∂Φ(t)
∂x

= I + t
∂V

∂x
+ r3(t),

∂Ψ(t)
∂y

= I − t∂V
∂y

+ r4(t),

‖ri(t)‖W 1,∞
loc (R2)2 = o(t), i = 1, 2,

‖ri(t)‖L∞loc(R2)2×2 = o(t), i = 3, 4.

Hence, in the domain Ωtc it is possible to consider the following boundary value problem
(perturbed with respect to (5.1)–(5.5)): Find a displacement field ut = (ut1, u

t
2) and stress

tensor components σt = {σtij}, i, j = 1, 2, such that

− div σt = f in Ωtc, (5.50)

σt = Aε(ut) in Ωtc, (5.51)

ut = 0 on Γt, (5.52)

[ut]νt ≥ 0, [σtνt ] = 0, σtνt · [ut]νt = 0 on Γtc, (5.53)

σtνt ≤ 0, σtτt = 0 on Γt±c . (5.54)

Here
y = Φ(t, x) : Γ→ Γt, Γc → Γtc,

and we assume in this section that f = (f1, f2) ∈ C1(R2) and that aijkl = const,
i, j, k, l = 1, 2. All the other notations in (5.50)–(5.54) remain those of (5.1)–(5.5), in
particular, νt = (νt1, ν

t
2) is a unit normal vector to Γtc.

Fig. 5.6. Perturbed domain Ωt
c
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We can provide a variational formulation of the problem (5.50)–(5.54). Indeed, intro-
duce the Sobolev space

H1
Γt(Ω

t
c) = {v = (v1, v2) | vi ∈ H1(Ωtc), vi = 0 on Γt, i = 1, 2}

and the set of admissible displacements

Kt = {v ∈ H1
Γt(Ω

t
c) | [v]νt ≥ 0 a.e. on Γtc}.

Consider the functional

Π(Ωtc; v) =
1
2

∫
Ωtc

σtij(v)εij(v)−
∫

Ωtc

fivi

and the minimization problem
min
v∈Kt

Π(Ωtc; v). (5.55)

Here σtij(v) are defined from Hooke’s law similar to (5.51). A solution of the problem
(5.55) exists and it satisfies the variational inequality

ut ∈ Kt, (5.56)∫
Ωtc

σtij(u
t)εij(v − ut) ≥

∫
Ωtc

fi(vi − uti) ∀v ∈ Kt. (5.57)

Having found a solution of the problem (5.56)–(5.57) we can define the energy functional

Π(Ωtc;u
t) =

1
2

∫
Ωtc

σtij(u
t)εij(ut)−

∫
Ωtc

fiu
t
i.

Note that for t = 0, we have Ω0
c = Ωc and u0 = u, where u is the solution of the

unperturbed problem (5.7), (5.8). The question is whether it is possible to differentiate
the functional Π(Ωtc;u

t) with respect to t. We have in mind existence of the following
derivative:

d

dt
Π(Ωtc;u

t)
∣∣∣∣
t=0

= lim
t→0

Π(Ωtc;u
t)−Π(Ωc;u)
t

.

The answer is positive in many practical situations. We consider two cases, where the
derivative

I =
d

dt
Π(Ωtc;u

t)
∣∣∣∣
t=0

(5.58)

exists.

a) Assume that the normal vector ν to Γc keeps its value under the mapping x 7→ Φ(t, x),
i.e. νt = ν. In this case, a formula for I can be obtained (see [69], [79], [84]):

I =
1
2

∫
Ωc

{div V · εij(u)− 2Eij(V ;u)}σij(u)−
∫

Ωc

div(V fi)ui, (5.59)

where
Eij(U ; v) =

1
2

(vi,kUk,j + vj,kUk,i), U = {Uij}, i, j = 1, 2;

Note that the assumption concerning the normal vector ν holds for rectilinear cracks
Γc and vector fields V tangential to Γc (see Fig. 5.7). In this situation, (5.59) can
provide a formula for the derivative of the energy functional with respect to the crack
length, which is practically needed to use the Griffith criterion. It will be the case when
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V = 1 in a vicinity of the right crack tip and suppV lies in a small neighbourhood of
this tip (see Fig. 5.7).

Fig. 5.7. Rectilinear crack Γc and tangential field V

b) A formula for the derivative (5.58) can also be derived for curvilinear cracks when
the above assumption on the normal vector ν is not satisfied. We provide here the
formula (5.58) when the crack Γc is described as a graph of a smooth function.

Fig. 5.8. Domain Ωl with a crack Γl

Let ψ ∈ H3(0, l1) be a given function, l1 > 0, and

Σ = {(x1, x2) | x2 = ψ(x1), 0 < x1 < l1}.

Consider a crack Γl ⊂ Σ as the graph of the function ψ (see Fig. 5.8),

Γl = {(x1, x2) | x2 = ψ(x1), 0 < x1 < l}, 0 < l < l1.

Here l is a parameter that characterizes the length of the projection of the crack Γl onto
the x1 axis. Consider a smooth cut-off function θ with support in the vicinity of the
crack tip (l, ψ(l)); moreover we assume that θ = 1 in a small neighbourhood of (l, ψ(l)).
We can consider a perturbation of the crack Γl along Σ via a small parameter t. Define
Ωl = Ω \ Γl. The perturbed crack Γtl has a tip (l + t, ψ(l + t)), and we consider the
perturbed domain Ωtl = Ω \ Γ

t

l . It is possible to establish a one-to-one correspondence
between Ωl and Ωtl by the formulas

y1 = x1 + tθ(x),
y2 = x2 + ψ(x1 + tθ(x))− ψ(x1),

(x1, x2) ∈ Ωl, (y1, y2) ∈ Ωtl . (5.60)

Transformation (5.60) is equivalent to the following (cf. (5.49)):

y = x+ tV (x) + r(t, x)

with the velocity field
V (x) = (θ(x), ψ′(x1)θ(x)). (5.61)
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In the domain Ωtl , we can consider a perturbed problem formulation: find a displacement
field ut = (ut1, u

t
2) and stress tensor components σt = {σtij}, i, j = 1, 2, such that

−div σt = f in Ωtl , (5.62)

σt = Aε(ut) in Ωtl , (5.63)

ut = 0 on Γ, (5.64)

[ut]νt ≥ 0, [σtνt ] = 0, σtνt · [ut]νt = 0 on Γtl , (5.65)

σtνt ≤ 0, σtτt = 0 on Γt±l . (5.66)

Here νt = (νt1, ν
t
2) is a unit normal vector to Γtl . For a solution ut of (5.62)–(5.66) it is

possible to define the energy functional

Π(Ωtl ;u
t) =

1
2

∫
Ωtl

σtij(u
t)εij(ut)−

∫
Ωtl

fiu
t
i

and to find the derivative

Π′(l) =
dΠ(Ωtl ;u

t)
dt

∣∣∣∣
t=0

with the formula (see [115])

Π′(l) =
1
2

∫
Ωl

{div V · εij(u)− 2Eij(V ;u)}σij(u)

−
∫

Ωl

div(V fi)ui +
∫

Ωl

σij(u)εij(w)−
∫

Ωl

fiwi, (5.67)

where the vector field V is defined in (5.61) and w = (0, θψ′′u1) is a given function. Note
that the formula (5.67) contains the function θ, but in fact there is no dependence of
the right-hand side of (5.67) on θ. In particular, if ψ′′ = 0, the formula (5.67) reduces
to (5.59) with Ωc = Ωl. In this case we have a rectilinear crack and νt = ν. Formula
(5.67) defines the derivative of the energy functional with respect to the length of the
projection of the crack Γl onto the x1 axis. Hence, the derivative of the energy functional
with respect to the length of the curvilinear crack is

Π′(s) = Π′(l)(ψ′(l)2 + 1)−1/2,

where

s =
∫ l

0

√
ψ′(t)2 + 1

is the length of the crack Γl.
To conclude this section we briefly discuss the existence of so-called invariant integrals

in crack theory. It turns out that the formula (5.59) for the derivative of the energy
functional can be rewritten as an integral over a closed curve surrounding the crack tip.

Consider the simplest case of a rectilinear crack Γc = (0, 1) × {0} assuming that
Γc ⊂ Ω (see Fig. 5.9). Let θ be a smooth cut-off function equal to 1 near the point (1, 0),
with supp θ in a small neighbourhood of the point (1, 0). Then we can take the vector
field V = (θ, 0) in (5.45), (5.47) which, according to (5.49), corresponds to the following
change of independent variables:

y1 = x1 + tθ(x) + r11(t), y2 = x2.
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Fig. 5.9. Curve L surrounding a crack tip

In this case the formula (5.59) (or the formula (5.67) in the particular case ψ = 0) provides
the derivative of the energy functional with respect to the crack length. This formula can
be rewritten as an integral over a curve L surrounding the crack tip (1, 0) (see Fig. 5.9,
the solid line). Namely, the following formula is valid (see [74], [79]):

I =
∫
L

{
1
2
ν1σij(u)εij(u)− σij(u)ui,1νj

}
(5.68)

provided that f is equal to zero in a neighbourhood of the point (1, 0). We should underline
two important points. First, the formula (5.68) is independent of L, and second, the right-
hand side of (5.68) is equal to the derivative of the energy functional with respect to the
crack length.

In fact, invariant integrals like (5.68) can be obtained in more complex situations.
For example, we can assume that the crack Γc is situated on the interface between two
media, which means that the elasticity tensor A = {aijkl} is as follows (see Fig. 5.9):

aijkl =

{
a1
ijkl for x2 > 0,

a2
ijkl for x2 < 0.

Here a1
ijkl = const, a2

ijkl = const, i, j, k, l = 1, 2, and {a1
ijkl}, {a2

ijkl} have the usual
properties of symmetry and positive definiteness. In this case, formula (5.59) for the
derivative of the energy functional holds true provided that V is tangent to Γc. This
formula provides existence of an invariant integral of the form (5.68). We should remark
at this point that when the integral (5.68) is calculated, the values σij(u)ui,1νj can be
taken at Γ+

c or at Γ−c . This gives the same value of the integral (5.68). This statement
holds due to the equality (see [66])

[σij(u)ui,1νj ] = 0 on Γc.

On the other hand, we can analyze the case when the rigidity of the elastic body part
Ωc∩{x2 < 0} goes to infinity. Indeed, consider the following elasticity tensor for a positive
parameter λ > 0:

aλijkl =

{
a1
ijkl for x2 > 0,

λ−1a2
ijkl for x2 < 0.

Then for any fixed λ > 0, the solution of the equilibrium problem like (5.1)–(5.5) exists,
and a passage to the limit as λ → 0 can be made. As already noted in Section 3, in
the limit the following contact Signorini problem is obtained: Find a displacement field
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u = (u1, u2) and stress tensor components σ = {σij}, i, j = 1, 2, such that

−div σ = f in Ωc ∩ {x2 > 0}, (5.69)

σ = Aε(u) in Ωc ∩ {x2 > 0}, (5.70)

u = 0 on ∂(Ωc ∩ {x2 > 0}) \ Γc, (5.71)

uν ≥ 0, σν ≤ 0, στ = 0, σν · uν = 0 on Γc. (5.72)

For the problem (5.69)–(5.72) it is possible to differentiate the energy functional in the
direction of the vector field V = (θ, 0), where the properties of θ are described above.
The formula for the derivative has the following form (cf. (5.59)):

I =
1
2

∫
Ω1

{div V · σij(u)− 2Eij(V, u)}σij(u)−
∫

Ω1

div(V fi)ui. (5.73)

Assume that f = 0 in a neighbourhood of the point (1, 0). In this case, formula (5.73)
can be rewritten in the form of invariant integral

I =
∫
L1

{
1
2
ν1σij(u)εij(u)− σij(u)ui,1νj

}
, (5.74)

where L1 is a smooth curve “covering” the point (1, 0) (see Fig. 5.10, solid line). Just as for
invariant integrals in crack problems, formula (5.74) is independent of the choice of L1.

Fig. 5.10. Curve L1 “covering” a tip of contact set

5.6. Evolution of a kinking crack. The problem of kink is of special interest, because
it represents a change of topology from a smooth crack to a non-smooth one. The topology
change is the main difficulty of mathematical analysis of cracks with a kink. In this section
we apply the shape optimization approach to a two-parameter problem for kinking crack.
Namely, we fix a point of kink and find unknown shape parameters of kink angle and
crack length, which minimize the total potential energy due to the Griffith approach. This
non-linear minimization problem describes evolution of the kinking crack with respect to
the time-like loading parameter. In the linear crack theory, the optimization Griffith
approach was used in [41].

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ. Assuming that the origin
O = (0, 0) belongs to Ω, we consider a given crack Γ0 ⊂ Ω with tips at Γ and at the origin,
and an unknown part C(r,φ) of the crack, whose tip is described in polar coordinates as

(r cosφ, r sinφ), (r, φ) ∈ ω,

where ω is the set of admissible parameters

ω = {(r, φ) | 0 < r < R(φ) for φ ∈ (φ0, φ1)}, [φ0, φ1] ⊂ (−π, π),

with a given periodic function R ∈W 2,∞(−π, π).
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Fig. 5.11. Kinking crack

Admissible kinking cracks are defined as a union Γ(r,φ) = Γ0∪C(r,φ). Denote by Ω(r,φ)

a domain with a crack Γ(r,φ), i.e. Ω(r,φ) = Ω \ Γ(r,φ) (see Fig. 5.11). In the domain Ω(r,φ)

we can consider an equilibrium problem like (5.1)–(5.5). Namely, let ν be a normal vector
to Γ(r,φ) and f = (f1, f2) ∈ C1(Ω) be a given function. The problem formulation is as
follows. In the domain Ω(r,φ) we have to find a displacement vector u = (u1, u2) and
stress tensor components σ = {σij}, i, j = 1, 2, such that

−div σ = f in Ω(r,φ), (5.75)

σ = Aε(u) in Ω(r,φ), (5.76)

u = 0 on Γ, (5.77)

[u]ν ≥ 0, [σν ] = 0, σν · [u]ν = 0 on Γ(r,φ), (5.78)

σν ≤ 0, στ = 0 on Γ±(r,φ). (5.79)

For any given (r, φ) ∈ ω, a solution to the problem (5.75)–(5.79) exists in the Sobolev
space H1

Γ(Ω(r,φ)). Hence, for any (r, φ) ∈ ω we can define a solution u(r,φ) and the energy
functional

Π(Ω(r,φ);u(r,φ)) =
1
2

∫
Ω(r,φ)

σij(u(r,φ))εij(u(r,φ))−
∫

Ω(r,φ)

fiu
(r,φ)
i ,

where σij(u(r,φ)) = σij are found from (5.76). Thus, differentiability of the energy func-
tional with respect to (r, φ) can be analyzed. These results can be found in [68]. The main
difficulty in studying the differentiability is the following. Considering perturbations of
the problem (5.75)–(5.79), we have no one-to-one correspondence between sets of admis-
sible displacements for perturbed and unperturbed problems. This requires additional
considerations to prove differentiability of Π(Ω(r,φ);u(r,φ)) with respect to r, φ.

In what follows, we formulate an evolution problem for a kinking crack. Set

P (r, φ) = Π(Ω(r,φ);u(r,φ)).

For a time-like loading parameter t ≥ 0 we consider a family of forces tf in (5.75). Let
the length of the crack Γ0 be equal to l0 ≥ 0. Note that if the solution u(r,φ) corresponds
to the force f in (5.75), we obtain a solution tu(r,φ) for the force tf due to homogeneity of
the problem (5.75)–(5.79). Let the initial crack (at t = 0) be given as Γ0. For the loading
tf , we look for a propagating crack Γ(r(t),φ∗) ⊂ Ω with kink at the origin O and unknown
shape parameters of crack length l0 + r(t) and kink angle φ∗ ∈ [φ0, φ1]. To this end, we
use a shape optimization approach, which is based on the Griffith hypothesis. Following
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this hypothesis, we define a function of total potential energy

T (r, φ)(t) = 2γ(l0 + r) + t2P (r, φ), (r, φ) ∈ ω. (5.80)

The first term in (5.80) represents the surface energy distributed uniformly at two crack
faces with a constant density γ > 0 (the given material parameter). The second term in
(5.80) represents the potential energy which is quadratic in t,

P (r, φ)(t) = Π(Ω(r,φ); tu(r,φ)) = t2P (r, φ).

Thus we arrive at the problem of evolution of a kinking crack:

r(0) = 0; (5.81)

for t > 0, find parameters (r(t), φ(t)) ∈ ω that

minimize T (r, φ)(t) over (r, φ) ∈ ω, (5.82)

subject to φ ∈
⋂
s<t

{φ(s)}. (5.83)

The constraint (5.83) allows us to preserve the shape of the kinking crack during its
evolution. This means that if the kinking angle φ∗ is found, its value is preserved during
the evolution. Problem (5.81)–(5.83) has a solution (see [68]). It turns out that the radius
r(t) during the evolution may be multi-valued, i.e. r(t) ∈ [r−(t), r+(t)], which means a
non-stable crack evolution. To conclude this section we refer the reader to the paper [21],
where a smooth deviation problem for a crack was analyzed in the framework of linear
crack models.

5.7. 3D problems and open questions. Most of the problems discussed in this chapter
can be solved in 3D when the crack is represented as a 2D smooth surface. For example,
it can be described as

xi = xi(y1, y2), i = 1, 2, 3,

where (y1, y2) ∈ D,D ⊂ R2 is a bounded domain with smooth boundary, and the mapping
y 7→ x is non-degenerate.

All formulas and statements of Sections 1–5 hold true with suitable specifications. In
particular, when discussing the boundary conditions (5.4)–(5.5) we should introduce the
Hilbert space H1/2(Σ), where Σ is an extension of Γc to a closed 2D smooth surface. The
norm in H1/2(Σ) in this case is defined as follows (cf. (5.9)):

‖v‖2H1/2(Σ) = ‖v‖2L2(Σ) +
∫

Σ

∫
Σ

|v(x)− v(y)|2

|x− y|3
dx dy.

Mixed and smooth domain formulations in 3D case hold true, as does the fictitious
domain method.

Also, we can consider a crack located on the boundary of a rigid inclusion for a
3D elastic body and prove all statements of Section 5. Notice that in 3D the space of
infinitesimal rigid inclusions is defined as follows:

R(ω) = {ρ = (ρ1, ρ2, ρ3) | ρ(x) = Bx+D, x ∈ ω},
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where

B =

 0 b12 b13

−b21 0 b23

−b13 −b23 0

 , D = (d1, d2, d3),

bij , d
i = const, i, j = 1, 2, 3.

As for differentiation of energy functionals with respect to a perturbed parameter
(Section 6), we have a large variety of perturbations in the 3D case. The simplest ones
provide a perturbation of the crack front. For example, let

Γc = {(x1, x2, 0) | 0 ≤ x1 ≤ φ(x2), x2 ∈ [−1, 1], φ(x2) > 0},

with a given smooth function φ. In this case, the 3D vector field can be

V (x) = (θ(x), 0, 0),

where θ is a given smooth function with support in the vicinity of the crack front

{(x1, x2, x3) | x1 = φ(x2), x3 = 0, x2 ∈ [−1, 1]}.

This allows us to differentiate the energy functional in the direction of the field V , which
implies the formula (5.58) with i, j = 1, 2, 3; see [69], [79].

As in Section 6, in 3D we can consider curvilinear cracks described as the graph of a
function

x3 = ψ(x1, x2), (x1, x2) ∈ D,

where D ⊂ R2 is a bounded domain with smooth boundary. The formulas for derivatives
of the energy functional in this case can be found in [116].

As for invariant integrals, in 3D we should integrate over closed 2D surfaces surround-
ing a crack front (see [66], [74]).

To conclude the chapter, we formulate some open questions:

1. When a crack crosses the external boundary Γ at a zero angle, the problem (5.1)–(5.5)
is not solvable in the general case (since Korn’s inequality is not valid). Is it possible
to overcome this difficulty?

2. Particular invariant integrals in the case of curvilinear cracks are presented in [129].
Is it possible to construct any more?

3. Is it possible to prove uniqueness of solution for the problem (5.80)–(5.82)?

6. Smooth domain method for crack problems

In the so-called smooth domain method of modeling of problems with cracks, the geo-
metrical singularity in the form of a cut in the reference domain is replaced by pointwise
constraints in the function space of admissible functions for the model under considera-
tion. This leads, in particular, to efficient numerical methods; we refer to [13] for related
results on convergence of numerical methods for the smooth domain method.
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6.1. Introduction. A new approach to crack theory for linear elastic bodies with in-
equality type boundary conditions prescribed on the crack faces was proposed in [76]. The
results of this method are summarized in this chapter. This mathematical model allows
us to solve the crack problem in a smooth domain. The problem under consideration
is characterized by non-linear boundary conditions imposed on non-smooth parts of the
boundary [67]. These conditions describe the mutual non-penetration between the crack
faces.

It is well known that for a linear elastic body the frictionless contact problem is
variational and can be formulated as the minimization of the energy functional over the
set of admissible displacements. Such an admissible set contains all displacement fields
from a suitable function space, usually a Sobolev space, satisfying the unilateral non-
penetration condition on the crack faces. The boundary conditions for stresses on the
crack faces follow directly from the variational formulation. In particular, the normal
stresses are non-positive and the tangential stresses vanish.

A different setting is proposed for the contact problem, with some inequality type con-
ditions for admissible stress fields on crack faces. For such a setting, the non-penetration
conditions for the displacement field follow from the variational formulation and can be
derived from the model, i.e., from the equations and the inequalities which form the
mathematical model. This is the so called mixed problem formulation. For domains with
smooth boundaries and classical boundary conditions mixed problem formulations are an-
alyzed in the book [18]. The peculiarity of the problem analyzed here is that the boundary
conditions imposed on non-smooth parts of the boundary are unilateral type relations. It
turns out that the setting proposed in this paper is useful for the modeling and analysis
of crack problems in smooth domains and results in a smooth domain method for solving
the crack models with non-penetration conditions on the boundary. In this case, restric-
tions imposed on the stress tensor components are considered to be internal restrictions,
i.e. to be relations prescribed on given subsets of the smooth domain. In fact, we extend
the unknown functions to the crack surface and find the solution in the smooth domain.
Note that the problem analyzed in this paper is a free boundary problem. In particular,
a specific boundary condition at a given point can be found after the problem is solved.
The boundary conditions provide a possibility of contact between crack faces. Notice that
the classical crack problem is characterized by equality type boundary conditions on the
crack faces; we refer the reader to [25]–[36], [85], [90]–[101]. For the crack theory with
a possible contact between crack faces for different constitutive laws, some results can
be found in [67]. We should remark that the smooth domain method can be applied to
the classical linear crack problems as well as to many other linear and non-linear elliptic
boundary value problems.

Throughout this chapter we shall use the following notations for geometrical domains
(see Figures 6.1 and 6.2). Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ,
and Γc ⊂ Ω be a smooth curve without self-intersections.

We assume that Γc can be extended to a closed curve Σ without self-intersections of
class C1,1 so that Σ ⊂ Ω, and the domain Ω is divided into two subdomains Ω1,Ω2. In
this case Σ is the boundary of Ω1, and the boundary of Ω2 is Σ ∪ Γ.
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Fig. 6.1. Domain with a crack

Ω

Ω
Σ

Γ

Γc

1

2

Fig. 6.2. Extension of the crack

Assume that Γc does not contain the tip points, i.e., Γc = Γ̄c \ ∂Γc. Denote by
n = (n1, n2) the unit external normal vector to Γ and by ν = (ν1, ν2) a unit normal
vector to Σ and therefore to Γc. Let Ωc = Ω \ Γ̄c. In applications Γc defines a crack in an
elastic body in the reference domain configuration.

To demonstrate the idea of the smooth domain method a simple example for the
Poisson equation is discussed. We prescribe the sign of the jump of a displacement on Γc
for an elastic membrane, i.e. [u] = u+ − u− ≥ 0. The following free boundary problem is
considered in Ωc (see [67], [72]).

Γ

Γ

c

[u]>0
+

−

Ωc

Fig. 6.3. Elastic membrane

Find a function u such that

−∆u = f in Ωc, (6.1)

u = 0 on Γ, (6.2)

[u] ≥ 0,
[
∂u

∂ν

]
= 0, [u] · ∂u

∂ν
= 0 on Γc, (6.3)

∂u

∂ν
≤ 0 on Γ±c . (6.4)

It is clear that there exists a unique weak solution to the problem (6.1)–(6.4) which can
be formulated as minimization of the energy functional
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1
2

∫
Ωc

|∇v|2 −
∫

Ωc

fv

over the convex set in the Sobolev space H1(Ωc) with unilateral condition [v] ≥ 0 on Γc
and the condition v = 0 on Γ. For such a problem we can introduce the following smooth
domain formulation. In the domain Ω we have to find functions u, p = (p1, p2) such that

u ∈ L2(Ω), p ∈M, (6.5)

−div p = f in Ω, (6.6)∫
Ω

p(p̄− p) +
∫

Ω

u(div p̄− div p) ≥ 0 ∀p̄ ∈M, (6.7)

where
M = {p = (p1, p2) ∈ L2(Ω) | div p ∈ L2(Ω), pν ≤ 0 on Γc}.

The formulations (6.1)–(6.4) and (6.5)–(6.7) are equivalent. The advantage of (6.5)–(6.7)
is that the solution is defined in the smooth domain Ω.

Proposition 6.1. There exists a unique solution to the problem (6.5)–(6.7).

The proof is similar to the proofs of Theorem 6.8 and Theorem 6.12 below in the more
complicated setting of elasticity problems.

6.1.1. Main results. We present two results which are proved in [76]. The smooth
domain method is applied to the two-dimensional elasticity and the Kirchhoff plate model.
As we can see from Theorem 6.8 and Theorem 6.12 below the variational formulation
of the crack contact problem is obtained in the smooth domain Ω. Therefore, from a
numerical point of view the discretization is required in the domain Ω, but the restriction
imposed on the solution is considered on the curve Γc inside Ω. This means that unknown
functions are defined in the smooth domain Ω and should satisfy some inequality type
constraints. In the last two sections we will present some results for three-dimensional
models.

Two-dimensional elasticity. The boundary value problem for frictionless contact on crack
faces in two-dimensional elasticity is given in (6.25)–(6.29) below. The unilateral condi-
tions (6.28)–(6.29) are imposed on Γc and Γ±c . The smooth domain formulation of this
problem is considered in the smooth domain Ω = Ωc ∪ Γ̄c. It takes the following form.

Find u = (u1, u2), σ = {σij}, i, j = 1, 2, such that

u ∈ L2(Ω), σ ∈ N, (6.8)

−div σ = f in Ω, (6.9)

(Cσ, σ̄ − σ)Ω + (u,div σ̄ − div σ)Ω ≥ 0 ∀σ̄ ∈ N, (6.10)

where

N = {σ ∈ H | στ = 0, σν ≤ 0 on Γc}, H = {σ = {σij} | σ, div σ ∈ L2(Ω)}.

Here σν are normal stresses, and στ are tangential forces; (·, ·)Ω is the scalar product in
L2(Ω). We prove the following statement.

Theorem 6.2. There exists a unique solution to the problem (6.8)–(6.10).
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The proof is given in Section 6.2.

Kirchhoff plate. The boundary value problem for the Kirchhoff plate with an inequality
type boundary condition imposed on Γc is given in (6.59)–(6.66) below. The smooth
domain formulation for this problem is as follows.

We have to find functions u,w, σ,m such that

u = (u1, u2) ∈ L2(Ω), w ∈ L2(Ω), (σ,m) ∈ N, (6.11)

−div σ = f in Ω, (6.12)

−∇∇m = F in Ω, (6.13)

(u,div σ̄ − div σ)Ω + (w,∇∇m̄−∇∇m)Ω

+ (Cσ, σ̄ − σ)Ω + (Dm, m̄−m)Ω ≥ 0 ∀(σ̄, m̄) ∈ N, (6.14)

where

N = {(σ,m) ∈ H | στ = 0, tν(m) = 0, |mν | ≤ −σν on Γc},
H = {(σ,m) | σ = {σij},m = {mij}; σ, div σ ∈ L2(Ω),m,∇∇m ∈ L2(Ω)}.

Here mν are the bending moments, and tν(m) are transverse forces.

Theorem 6.3. There exists a unique solution to the problem (6.11)–(6.14).

The proof is given in Section 6.3.
Note that the case of cracks which come out at Γ = ∂Ω is also treated by the smooth

domain formulation. This means that the method is applied to the case when Γ̄c crosses
the external boundary Γ (see Remarks 6.9, 6.13).

Three-dimensional case.We study elastoplastic models of Hencky type for bodies Ωc ⊂ R3

with a crack Γc and a smooth boundary Γ. Such models take the form

−σij,j = fi, i = 1, 2, 3, (6.15)

εij(u) = aijklσkl + ξij , i, j = 1, 2, 3, (6.16)

Φ(σ) ≤ 0, ξij(σ̄ij − σij) ≤ 0 ∀σ̄, Φ(σ̄) ≤ 0, (6.17)

σijnj = 0, i = 1, 2, 3, on Γ, (6.18)

σijνj = 0, i = 1, 2, 3, on Γ±c , (6.19)

where Φ : R6 → R is a continuous convex function. The main result is

Theorem 6.4. The system (6.15)–(6.19) has a weak solution.

This is proved in Section 6.4.

Elastoplasic plates with cracks. The method can also be applied to the two-dimensional
problem of an elastoplastic plate with cracks. This problem is described by the following
system of equations:

−mij,ij = f, (6.20)

−w,ij = aijklmkl + ξij , i, j = 1, 2, (6.21)
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Ψ(mij) ≤ 0, ξij(m̄ij −mij) ≤ 0 ∀m̄, Ψ(m̄ij) ≤ 0, (6.22)

w = 0, mijnjni = 0 on Γ, (6.23)

mijνjνi = 0, Rν(mij) = 0 on Γ±c , (6.24)

where Ψ : R3 → R is a convex and continuous function. The main result is:

Theorem 6.5. The system (6.20)–(6.24) has a weak solution.

The proof is given in Section 6.5.

6.2. Two-dimensional elasticity. In this section the detailed proof of Theorem 6.2 is
given. We start with the variational inequality for frictionless contact on crack faces in
two-dimensional elasticity.

6.2.1. Variational formulation. The equilibrium problem for a linear elastic body
occupying the domain Ωc with the interior crack Γc can be formulated as follows [67].
We have to find functions u = (u1, u2), σ = {σij}, i, j = 1, 2, such that

−div σ = f in Ωc, (6.25)

Cσ − ε(u) = 0 in Ωc, (6.26)

u = 0 on Γ, (6.27)

[u]ν ≥ 0, [σν ] = 0, σν · [u]ν = 0 on Γc, (6.28)

σν ≤ 0, στ = 0 on Γ±c . (6.29)

Here [u] = u+ − u− is the jump of the displacement field across Γc, and the signs ±
indicate the positive and negative directions of the normal ν; f = (f1, f2) ∈ L2(Ω) is a
given external force acting on the body, and the following notations are used:

σν = σijνjνi, στ = σν − σν · ν, στ = {σiτ}2i=1, σν = {σijνj}2i=1,

εij(u) =
1
2

(ui,j + uj,i), i, j = 1, 2, ε(u) = {εij(u)}2i,j=1,

{Cσ}ij = cijklσkl, cijkl = cjikl = cklij , cijkl ∈ L∞(Ω).

The tensor C satisfies the ellipticity condition

cijklξjiξkl ≥ c0|ξ|2, ∀ξji = ξij , c0 > 0. (6.30)

We use the summation convention over repeated indices i, j, k, l = 1, 2.
Equations and inequalities (6.28)–(6.29) describe the mutual non-penetration between

crack faces without friction. Relation (6.25) is the equilibrium equation, the equation
(6.26) is the Hooke constitutive law, and the condition (6.27) corresponds to the fixed
displacements on the boundary Γ.

In order to introduce the variational formulation of the problem (6.25)–(6.29) we need
the following Sobolev space:

H1,0(Ωc) = {v = (v1, v2) | vi ∈ H1(Ωc), vi = 0 on Γ, i = 1, 2}

and a closed convex set of admissible displacements

K = {v ∈ H1,0(Ωc) | [v]ν ≥ 0 a.e. on Γc}. (6.31)
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In this case we can consider the minimization problem

min
v∈K

{
1
2

(σ(v), ε(v))Ωc − (f, v)Ωc

}
which has a unique solution u ∈ K satisfying the variational inequality

(σ(u), ε(v − u))Ωc ≥ (f, v − u)Ωc ∀v ∈ K. (6.32)

Here (·, ·)Ωc is the scalar product in L2(Ωc), and the stress tensor σ(u) = σ is found
from Hooke’s law (6.26). From (6.32) it follows that the equilibrium equation (6.25) is
satisfied in the sense of distributions. To verify this it suffices to substitute v = u ± ϕ,
ϕ ∈ C∞0 (Ωc), in the variational inequality (6.32). It can be shown [67] that for the solution
to the variational inequality (6.32) all the boundary conditions (6.28)–(6.29) are satisfied.
In the next section we specify the meaning of such conditions.

6.2.2. Mixed formulation. Consider the space of stresses

H(div) = {σ = {σij} | σ ∈ L2(Ωc),div σ ∈ L2(Ωc)}

equipped with the norm

‖σ‖2H(div) = ‖σ‖2L2(Ωc)
+ ‖div σ‖2L2(Ωc)

and define the set of admissible stresses

H(div; Γc) = {σ ∈ H(div) | [σν] = 0 on Γc; σν ≤ 0, στ = 0 on Γ±c }.

For simplicity the same notation L2(Ωc) is used for the space of scalar functions and
the space [L2(Ωc)]2 = L2(Ωc; R2) of vector functions as well as for the space [L2(Ωc)]4 of
tensor-valued functions.

Introduce the space H1/2(Σ) with the norm

‖ϕ‖2H1/2(Σ) = ‖ϕ‖2L2(Σ) +
∫

Σ

∫
Σ

|ϕ(x)− ϕ(y)|2

|x− y|2
dx dy

and denote by H−1/2(Σ) the space dual to H1/2(Σ). Note that for σ ∈ H(div) the traces
(σν)± can be defined as elements ofH−1/2(Σ) (see [67], [131]), and the trace operators are
continuous from H(div) to H−1/2(Σ). Also, it is possible to define σ±ν , (σiτ )± ∈ H−1/2(Σ),
i = 1, 2, such that the Green formula holds:

(div σ, ψ)Ω1 = −(σ, ε(ψ))Ω1 + 〈σ−ν , ψν〉1/2 + 〈σ−τ , ψτ 〉1/2 ∀ψ = (ψ1, ψ2) ∈ H1(Ω1),

where ν is assumed to be the external normal vector to the boundary ∂Ω1 = Σ, and
〈·, ·〉1/2 is the duality pairing between H−1/2(Σ) and H1/2(Σ). A similar formula holds
for the domain Ω2 with the external normal vector −ν to the part Σ of its boundary
Γ ∪ Σ. The zero jump condition for σν in the definition of H(div; Γc) means

〈(σν)+ − (σν)−, ϕ〉1/2 = 0 ∀ϕ = (ϕ1, ϕ2) ∈ H1/2(Σ).

Since (σν)+ and (σν)− coincide, it follows that σ+
ν = σ−ν , (σiτ )+ = (σiτ )−, i = 1, 2. Let

suppϕ denote the support of the function ϕ. The second and the third conditions in the
definition of H(div; Γc) can be written as

〈σ±ν , ϕ〉1/2 ≤ 0 ∀ϕ ∈ H1/2(Σ), ϕ ≥ 0 a.e. on Γc, suppϕ ⊂ Γc
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and

〈σ±τ , ϕ〉1/2 = 0 ∀ϕ = (ϕ1, ϕ2) ∈ H1/2(Σ), ϕiνi = 0 a.e. on Γc, suppϕ ⊂ Γc,

respectively. Thus, the convex cone H(div; Γc) is closed in the space H(div). Hence
H(div; Γc) is weakly closed in H(div).

The above arguments allow us to define function spaces on Γc. Recall the definition
of the weighted Sobolev space on Γc (see e.g. [48] for details):

H
1/2
00 (Γc) = {ϕ ∈ H1/2(Γc) | ϕ/

√
ρ ∈ L2(Γc)}

equipped with the norm

‖ϕ‖21/2,00 = ‖ϕ‖21/2 +
∫

Γc

ρ−1ϕ2,

where ρ(x) = dist(x, ∂Γc), and ‖ · ‖1/2 is the norm in H1/2(Γc). It is well known [89] that
functions from the space H1/2

00 (Γc) can be extended to Σ by zero, and such an extension
is an element of H1/2(Σ). The extension of ϕ is denoted by ϕ̄, i.e.,

ϕ̄(x) =

{
ϕ(x), x ∈ Γc,

0, x ∈ Σ \ Γc,

and we have ϕ ∈ H1/2
00 (Γc) if and only if ϕ̄ ∈ H1/2(Σ).

Let us observe that by the above formulae the elements σν ∈ (H1/2
00 (Γc))∗ and σiτ ∈

(H1/2
00 (Γc))∗, i = 1, 2, can be defined [67]. The inequalities on Γc are understood in the

sense of duality, i.e. [σν ] = 0, σν ≤ 0 in the definition of H(div; Γc) mean

〈σν , ϕ〉1/2,00 ≤ 0 ∀ϕ ∈ H1/2
00 (Γc) such that ϕ ≥ 0 a.e. on Γc;

furthermore, the condition στ = 0 on Γ±c in the definition of the cone H(div; Γc) takes
the form

〈στ , ϕ〉1/2,00 = 0 ∀ϕ = (ϕ1, ϕ2) ∈ H1/2
00 (Γc) such that ϕiνi = 0 a.e. on Γc.

Here 〈·, ·〉1/2,00 is the duality pairing between (H1/2
00 (Γc))∗ and H

1/2
00 (Γc).

It is important that in the above formulae the curve Σ is assumed to be arbitrary,
but it should be sufficiently smooth. This means that the formulae mentioned are valid
for closed curves Σ which are smooth enough. All boundary conditions for σ included
in the definition of H(div; Γc) are precisely the same as the boundary conditions for the
solution σ(u) = σ of the variational inequality (6.32). Let us note that dependence of the
solution on domain variations for classical boundary value problems is analyzed in [126].
For domain variations in free boundary crack problems we refer the reader to [67], [72]
(see also [87]).

Now, we are in a position to give the mixed formulation for the problem (6.25)–(6.29).
We have to find functions u = (u1, u2), σ = {σij}, i, j = 1, 2, such that

u ∈ L2(Ωc), σ ∈ H(div; Γc), (6.33)

−div σ = f in Ωc, (6.34)

(Cσ, σ̄ − σ)Ωc + (u,div σ̄ − div σ)Ωc ≥ 0 ∀σ̄ ∈ H(div; Γc). (6.35)
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The boundary value problem (6.25)–(6.29) is formally equivalent to (6.33)–(6.35). Indeed,
assuming that the solutions to (6.33)–(6.35) are sufficiently regular, we can derive from
(6.35) the Hooke law by taking test functions of the form σ̄ = ±σ̃+σ, where σ̃ are smooth
functions with compact support in Ωc,

Cσ − ε(u) = 0 in Ωc.

The boundary conditions

[u]ν ≥ 0, σν · [u]ν = 0 on Γc (6.36)

follow from (6.35) by an application of the Green formula. Thus, all boundary conditions
(6.28)–(6.29) are satisfied. On the other hand, by multiplication of (6.26) by σ̄ − σ,
σ̄ ∈ H(div; Γc), it can be shown that the inequality (6.35) follows from (6.25)–(6.29).

Note that the set H(div; Γc) includes only the restriction imposed on the stress tensor
components. As for the relations (6.36), they are included in the problem (6.33)–(6.35).
On the other hand, the set K in the variational inequality (6.32) includes only the re-
striction imposed on the displacement u, and the equations and inequalities (6.28), (6.29)
can be derived from (6.32).

We aim at investigation of the problem (6.33)–(6.35). First, we prove the existence of
a solution.

Theorem 6.6. There exists a solution to the system (6.33)–(6.35).

Proof. In order to establish a priori estimates for solutions we introduce a function σ0 ∈
H(div; Γc) which solves the equilibrium equations

−div σ0 = f in Ωc.

Such a function can be found by solving the variational inequality (6.32) with an arbitrary
Hooke’s law satisfying the condition (6.30). Let us point out that the existence of a
solution to the system (6.33)–(6.35) can in fact be established directly by solving (6.32),
but we provide a different argument without any requirement on the solvability of (6.32).
The reason to proceed in this way is that later we can use exactly the same arguments
in order to analyze the smooth domain formulation for the problem under consideration.

To prove the existence of solutions to (6.33)–(6.35) we introduce the regularized
boundary value problem depending on a parameter δ > 0. Then the existence of a solu-
tion for the regularized problem is shown and a priori estimates are obtained. The proof
is completed by the passage to the limit δ → 0.

Let us fix 0 < δ < δ0. The regularized problem takes the form

uδ ∈ L2(Ωc), σδ ∈ H(div; Γc), (6.37)

δuδ − div σδ = f in Ωc, (6.38)

(Cσδ, σ̄ − σδ)Ωc + (uδ,div σ̄ − div σδ)Ωc ≥ 0 ∀σ̄ ∈ H(div; Γc). (6.39)

From (6.38), (6.39) it follows that

δ(uδ, uδ)Ωc − (div σδ, uδ)Ωc = (f, uδ)Ωc ,

(Cσδ, σ0 − σδ)Ωc + (uδ,div σ0 − div σδ)Ωc ≥ 0,
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and the following estimate is obtained:

δ‖uδ‖2L2(Ωc)
+ ‖σδ‖2L2(Ωc)

≤ c (6.40)

with the constant c uniform with respect to δ. Moreover, (6.38) implies that

div σδ = δuδ − f in Ωc.

Thus, in view of (6.40), the following uniform estimate is obtained:

‖div σδ‖2L2(Ωc)
≤ c. (6.41)

Let us show that for a given δ there exists a solution to the problem(6.37)–(6.39). Indeed,
from (6.38) it follows that uδ = 1

δ (f + div σδ). Substituting this value of uδ in (6.39) we
derive the variational inequality

(Cσδ, σ̄ − σδ)Ωc +
1
δ

(f + div σδ,div σ̄ − div σδ)Ωc ≥ 0 ∀σ̄ ∈ H(div; Γc).

It is clear that solving this variational inequality is equivalent to minimization of the
functional

G(σ) =
1
2

(Cσ, σ)Ωc +
1
2δ

(div σ, div σ)Ωc +
1
δ

(f, div σ)Ωc

over the weakly closed convex set H(div; Γc). The functional G is coercive and weakly
lower semicontinuous on the spaceH(div), hence the minimization problem has a (unique)
solution σ = σδ. Having found σδ we define uδ from (6.38). The solution uδ, σδ satisfies
the relations (6.37)–(6.39). Now we perform the passage to the limit in (6.37)–(6.39) as
δ → 0.

From (6.39) it follows that

Cσδ − ε(uδ) = 0 in Ωc

in the sense of distributions, i.e., in particular ε(uδ) ∈ L2(Ωc). Since uδ ∈ L2(Ωc), by an
application of the second Korn inequality which holds in the domain Ωc it follows that
uδ ∈ H1(Ωc). On the other hand,

uδ = 0 on Γ,

which can be deduced from (6.39) taking into account that the vector function σ̄n is free
on Γ. Hence uδ ∈ H1,0(Ωc), and, by the first Korn inequality, the uniform estimate with
respect to δ is obtained:

‖uδ‖H1,0(Ωc) ≤ c.

Taking into account (6.40), (6.41), we have the uniform estimate with respect to δ,

‖σδ‖L2(Ωc) + ‖div σδ‖L2(Ωc) ≤ c.

Therefore, there exist elements u, σ such that for δ → 0 we have the following convergences
for subsequences:

uδ → u weakly in H1,0(Ωc) and strongly in L2(Ωc),

σδ → σ weakly in L2(Ωc),

div σδ → div σ weakly in L2(Ωc).
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Finally, for δ → 0 we pass to the limit in (6.38), (6.39), and (6.33)–(6.35) follows,
which completes the proof of Theorem 6.6.

Note that the solution to (6.33)–(6.35) is unique. Indeed, if there are two solutions
(u1, σ1) and (u2, σ2) to (6.35), it follows that σ1 = σ2. Since Cσi = ε(ui), i = 1, 2, we
have ε(u1 − u2) = 0, hence u1 = u2.

Remark 6.7. The mixed formulation of the problem (6.25)–(6.29) can be applied to the
case when Γ̄c crosses the external boundary Γ, and also to the case when Γc is only C0,1-
regular. The C1,1-regularity of the curve Σ was needed to define σν , στ . It is possible
to avoid the interpretation of the boundary conditions involved in the set H(div; Γc).
Indeed, consider a crack Γc of C0,1-regularity such that Γ̄c crosses the boundary Γ (see
Figure 6.4). Assume that the angle between Γ and Γ̄c at the common point xc is non-zero.

Ω

Γ

c

Γ
c

x
c

Fig. 6.4. Boundary crack

Ω

Γ

Ω

Γ

1

2

c

Fig. 6.5. Contact problem

Introduce the set of admissible stresses in the following equivalent form:

H(div; Γc) =
{
σ ∈ H(div)

∣∣∣∣ ∫
Ωc

(σε(ū) + ūdiv σ) ≥ 0 ∀ū ∈ K
}
,

where the set K is defined in (6.31). For such a definition of H(div; Γc) we can verify
that all boundary conditions for stresses are satisfied provided that the function σ is
sufficiently regular. Note that if Γc divides Ω into two separate domains Ω1 and Ω2,
we obtain a contact problem for two elastic bodies occupying the domains Ω1, Ω2 with
inequality type boundary conditions (6.28)–(6.29) imposed on the common boundary Γc
(see Figure 6.5).

6.2.3. Smooth domain method. In this section the smooth domain method for the
crack problem in two-dimensional elasticity is formulated. The main feature of such a
formulation is that the constraints on the stress tenosr are imposed on subsets of the
smooth domain Ω, and the unknown functions u, σ are defined in the smooth domain
Ω. We extend unknown functions u, σ from the non-smooth domain Ωc to the smooth
domain Ω (cf. [9]). Such an extension reduces in fact to a definition of two fields u, σ on
the curve Γc. We shall use the same notation u, σ for the extended functions defined on
Ω and write the problem (6.25)–(6.29) in the domain Ω. The problem takes the following
form.
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We have to find functions u = (u1, u2), σ = {σij}, i, j = 1, 2, such that

−div σ = f in Ω, (6.42)

Cσ − ε(u) + p(u)δΓc = 0 in Ω, (6.43)

u = 0 on Γ, (6.44)

[u]ν ≥ 0, σν ≤ 0, στ = 0, σν · [u]ν = 0 on Γc, (6.45)

where we write p(u)ij = 1
2 ([ui]νj + [uj ]νi), and δΓc is the single layer distribution on Γc

defined by

〈δΓc , ϕ〉 =
∫

Γc

ϕ ∀ϕ ∈ C∞0 (Ω).

We have denoted by 〈T, ϕ〉 the value of a distribution T on the function ϕ ∈ C∞0 (Ω). Let
us point out that solutions to the system (6.25)–(6.29) determined from the variational
inequality (6.32) satisfy the jump condition

[σν] = 0 on Γc, (6.46)

and therefore equation (6.42) is of the same form as (6.25). Let us verify this statement.
It follows from (6.32) that σ = σ(u) satisfies

σ ∈ L2(Ωc), div σ ∈ L2(Ωc), − div σ = f in Ωc. (6.47)

Then in view of (6.46), (6.47) it follows that for any ϕ ∈ C∞0 (Ω),

〈σij,j + fi, ϕ〉 = −(σij , ϕ,j)Ω1 − (σij , ϕ,j)Ω2 + (fi, ϕ)Ω

= 〈[σijνj ], ϕ〉1/2 + (σij,j + fi, ϕ)Ω1 + (σij,j + fi, ϕ)Ω2 = 0, i = 1, 2,

which proves that equation (6.42) holds in the sense of distributions.
The difference between the systems (6.25)–(6.29) and (6.42)–(6.45) is that now the

conditions (6.45) are considered to be internal constraints for the solutions which are
imposed on the curve Γc located in the interior of the smooth domain Ω. Let us note
that the equivalence of the systems (6.25)–(6.29) and (6.42)–(6.45) is straightforward for
smooth solutions. We show that this is also the case for weak solutions. We need the
following notation for the space of stresses and the convex cone of admissible stresses in
the smooth domain Ω:

H(div) = {σ = {σij} | σ, div σ ∈ L2(Ω)},
H(div; Γc) = {σ ∈ H(div) | στ = 0, σν ≤ 0 on Γc}.

The norm in the space H(div) is defined by the formula

‖σ‖2H(div) = ‖σ‖2L2(Ω) + ‖div σ‖2L2(Ω).

As indicated before for the cone H(div; Γc), also the convex cone H(div; Γc) is closed
in the space H(div) since the conditions στ = 0, σν ≤ 0 on Γc are well defined for any
σ ∈ H(div). Indeed, for any curve Σ satisfying the prescribed conditions the functionals
σν , σ

i
τ , i = 1, 2, are uniquely defined in the space H−1/2(Σ). The conditions στ = 0,

σν ≤ 0 on Γc in the definition of H(div; Γc) are understood in the sense

〈στ , ϕ〉1/2 = 0 ∀ϕ = (ϕ1, ϕ2) ∈ H1/2(Σ), ϕiνi = 0 a.e. on Γc, suppϕ ⊂ Γc,
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and
〈σν , ϕ〉1/2 ≤ 0 ∀ϕ ∈ H1/2(Σ), ϕ ≥ 0 a.e. on Γc, suppϕ ⊂ Γc,

respectively.
The weak formulation of the system (6.42)–(6.45) takes the form of the following

problem in Ω: Find u = (u1, u2), σ = {σij}, i, j = 1, 2, such that

u ∈ L2(Ω), σ ∈ H(div; Γc), (6.48)

−div σ = f in Ω, (6.49)

(Cσ, σ̄ − σ)Ω + (u,div σ̄ − div σ)Ω ≥ 0 ∀σ̄ ∈ H(div; Γc). (6.50)

Note that (6.50) follows directly from (6.35) since we can replace integration over Ωc by
integration over Ω.

Theorem 6.8. There exists a solution to the problem (6.48)–(6.50).

Proof. The general scheme of the proof remains the same as for Theorem 6.6. First of all,
the function σ0 defined in the proof of Theorem 6.6 can be extended to the domain Ω, the
extended function is also denoted by σ0, σ0 ∈ H(div; Γc), and furthermore the equilibrium
equations are satisfied,

−div σ0 = f in Ω.

Now, for a positive parameter δ consider the regularized problem

uδ ∈ L2(Ω), σδ ∈ H(div; Γc), (6.51)

δuδ − div σδ = f in Ω, (6.52)

(Cσδ, σ̄ − σδ)Ω + (uδ,div σ̄ − div σδ)Ω ≥ 0 ∀σ̄ ∈ H(div; Γc). (6.53)

From (6.51)–(6.53) we can obtain the uniform (with respect to δ) estimate

δ‖u‖2L2(Ω) + ‖σ‖2L2(Ω) + ‖div σ‖2L2(Ω) ≤ c. (6.54)

In the same way as in the proof of Theorem 6.6, from (6.52)–(6.53) the following estimate
is obtained, uniform with respect to δ:

‖uδ‖H1,0(Ωc) ≤ c. (6.55)

By estimates (6.54), (6.55), we have as δ → 0 the following convergences, for subsequences,

uδ → u strongly in L2(Ω),

σδ → σ weakly in L2(Ω),

div σδ → div σ weakly in L2(Ω).

Consequently, we can pass to the limit as δ → 0 in (6.51)–(6.53) and obtain (6.48)–(6.50),
which completes the proof of Theorem 6.8.

The solution to (6.48)–(6.50) is unique.
Formulation of the free boundary crack problem in the form (6.48)–(6.50) is attractive

since the domain Ω does not contain non-smooth components of the boundary. Moreover
the restrictions imposed on the stress tensor components are given on subsets of Ω. So
the formulation (6.48)–(6.50) reminds that of classical contact problems with restrictions
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imposed on subsets of the domain. A wide class of contact problems with restrictions
imposed on subsets of domains can be found in [70].

Remark 6.9. Similar to the mixed problem formulation (see Remark 6.7) we can consider
an equivalent definition of the admissible stresses,

H(div; Γc) =
{
σ ∈ H(div)

∣∣∣∣ ∫
Ωc

(σε(ū) + ūdiv σ) ≥ 0 ∀ū ∈ K
}
.

The set K is defined in (6.31). The above definition of H(div; Γc) can be applied both
for the interior and boundary cracks (see Figures 6.4, 6.5).

Remark 6.10. Now observe that the classical approach to the two-dimensional crack
problem is characterized by the equality type boundary conditions (cf. (6.28), (6.29))

σν = στ = 0 on Γ±c . (6.56)

In this case the smooth domain method can be successfully applied to the problem (6.25)–
(6.27), (6.56). Indeed, the set of admissible stresses is defined as follows:

H(div; Γc) = {σ ∈ H(div) | σν = 0, στ = 0 on Γc}. (6.57)

Instead of (6.50) we obtain the identity

(Cσ, σ̄)Ω + (u,div σ̄)Ω = 0 ∀σ̄ ∈ H(div; Γc). (6.58)

Hence, the smooth domain method for the classical boundary value crack problem can
be formulated in the form (6.48), (6.49), (6.58), where H(div; Γc) is defined in (6.57).

6.3. Kirchhoff plate with a crack. In this section we show that the smooth domain
method can be applied to equilibrium problems for Kirchhoff plates having cracks with
inequality type boundary conditions given at the crack faces. As in two-dimensional
elasticity, these boundary conditions describe mutual non-penetration between the crack
faces. The problem formulation is as follows [67].

In the domain Ωc, we have to find functions u = (u1, u2), w, σ = {σij},m = {mij},
i, j = 1, 2, such that

−div σ = f in Ωc, (6.59)

−∇∇m = F in Ωc, (6.60)

Cσ − ε(u) = 0 in Ωc, (6.61)

Dm+∇∇w = 0 in Ωc, (6.62)

u = w =
∂w

∂n
= 0 on Γ, (6.63)

[u]ν ≥
∣∣∣∣[∂w∂ν

]∣∣∣∣, [σν ] = 0, [mν ] = 0 on Γc, (6.64)

|mν | ≤ −σν , σν · [u]ν −mν

[
∂w

∂ν

]
= 0 on Γc, (6.65)

στ = 0, tν(m) = 0 on Γ±c . (6.66)
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Here f = (f1, f2); F, fi ∈ L2(Ω) are given functions, i = 1, 2,

∇∇m = mij,ij , mν = mijνjνi, ∇∇w = {w,ij}2i,j=1,

tν(m) = mij,jνj +mij,kτkτjνi, (τ1, τ2) = (−ν2, ν1).

We use the same notations as in the previous sections. The tensor C is symmetric and
satisfies the condition (6.30). Similar conditions are imposed on the tensor D,

{Dm}ij = dijklmkl, i, j = 1, 2.

Note that (6.59), (6.60) are equilibrium equations; relations (6.61), (6.62) provide the
constitutive law. The boundary conditions (6.63) mean that the plate is clamped along
the external boundary Γ. Equations and inequalities (6.64)–(6.66) describe mutual non-
penetration between the crack faces Γ±c . The functions u,w are horizontal and vertical
displacements of the mid-surface points of the plate; σ,m are the stress tensor and moment
tensor, respectively.

For a variational formulation of the problem (6.59)–(6.66) we need the Sobolev space

H2,0(Ωc) =
{
v ∈ H2(Ωc)

∣∣∣∣ v =
∂v

∂n
= 0 on Γ

}
.

Consider the convex set of admissible displacements,

Kc =
{

(u,w) ∈ [H1,0(Ωc)]2 ×H2,0(Ωc)
∣∣∣∣ [u]ν ≥

∣∣∣∣[∂w∂ν
]∣∣∣∣ a.e. on Γc

}
. (6.67)

There exists a solution to the following minimization problem:

min
(u,w)∈Kc

{
1
2

(σ(u), ε(u))Ωc −
1
2

(m(w),∇∇w)Ωc − (f, u)Ωc − (F,w)Ωc

}
,

which is equivalent to the variational inequality

(u,w) ∈ Kc, (σ(u), ε(ū− u))Ωc − (m(w),∇∇w̄ −∇∇w)Ωc

≥ (f, ū− u)Ωc + (F, w̄ − w)Ωc ∀(ū, w̄) ∈ Kc. (6.68)

The setKc is weakly closed, and the functional being minimized is coercive and weakly
lower semicontinuous in the space [H1,0(Ωc)]2 ×H2,0(Ωc). Hence, the problem (6.68) is
solvable. Furthermore, the solution is unique.

Now, we introduce a mixed formulation of the problem (6.59)–(6.66). Consider the
space

H(Ωc) = {(σ,m) | σ = {σij}, m = {mij}; σ, div σ ∈ L2(Ωc), m,∇∇m ∈ L2(Ωc)}

equipped with the norm

‖(σ,m)‖2H(Ωc)
= ‖σ‖2L2(Ωc)

+ ‖div σ‖2L2(Ωc)
+ ‖m‖2L2(Ωc)

+ ‖∇∇m‖2L2(Ωc)
.

We introduce the set of admissible stresses and moments,

K(Ωc) = {(σ,m) ∈ H(Ωc) | [σν] = [mν ] = [tν(m)] = 0 on Γc;

|mν | ≤ −σν , στ = 0, tν(m) = 0 on Γ±c }.
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Also, consider the space H3/2(Σ) with the norm

‖ϕ‖2H3/2(Σ) = ‖ϕ‖2H1(Σ) +
∫

Σ

∫
Σ

|∇ϕ(x)−∇ϕ(y)|2

|x− y|2
dx dy

and its dual H−3/2(Σ). In the domain Ω1, we can define traces on the boundary Σ, in
particular, m−ν ∈ H−1/2(Σ), tν(m)− ∈ H−3/2(Σ), and the following Green formula holds
[67], [131]:

(w,∇∇m)Ω1 = (∇∇w,m)Ω1 + 〈tν(m)−, w〉3/2−〈m−ν , ∂w/∂ν〉1/2 ∀w ∈ H2(Ω1), (6.69)

where 〈·, ·〉3/2 stands for the duality pairing between H−3/2(Σ) and H3/2(Σ). For the
domain Ω2 we can write the Green formula similar to (6.69). In this case the boundary
of Ω2 contains two parts, Σ and Γ. In addition to two-dimensional elasticity, we should
explain in what sense the boundary conditions are satisfied in the definition of K(Ωc).
The zero jump condition for tν(m) means

〈tν(m)+ − tν(m)−, ϕ〉3/2 = 0 ∀ϕ ∈ H3/2(Σ).

The condition tν(m) = 0 on Γ±c reads

〈tν(m)±, ϕ〉3/2 = 0 ∀ϕ ∈ H3/2(Σ), suppϕ ⊂ Γc. (6.70)

It is seen that the set K(Ωc) is convex. By the continuity of the trace operators, the set
K(Ωc) is closed. Hence K(Ωc) is weakly closed.

As in two-dimensional elasticity, in (6.70) we can choose test functions ϕ̄, where ϕ̄ is
an extension of ϕ to Σ by zero, with ϕ ∈ H3/2

00 (Γc). The norm in the space H3/2
00 (Γc) is

defined by the formula

‖φ‖2
H

3/2
00 (Γc)

= ‖φ‖2H3/2(Γc)
+
∫

Γc

ρ−1|∇φ|2.

It is known that ϕ ∈ H
3/2
00 (Γc) if and only if ϕ̄ ∈ H3/2(Σ) [89]. Now we are in a

position to provide the mixed formulation for the problem (6.59)–(6.66).
We have to find functions u = (u1, u2), w, σ = {σij},m = {mij} such that

u = (u1, u2) ∈ L2(Ωc), w ∈ L2(Ωc), (σ,m) ∈ K(Ωc), (6.71)

−div σ = f on Ωc, (6.72)

−∇∇m = F on Ωc, (6.73)

(u,div σ̄ − div σ)Ωc + (w,∇∇m̄−∇∇m)Ωc

+ (Cσ, σ̄ − σ)Ωc + (Dm, m̄−m)Ωc ≥ 0 ∀(σ̄, m̄) ∈ K(Ωc). (6.74)

Inequality (6.74) follows from (6.61)–(6.62). It suffices to multiply these equations by
σ̄−σ, m̄−m, respectively, with (σ̄, m̄) ∈ K(Ωc). On the other hand, the equations (6.61),
(6.62) follow from (6.74). To prove this, it suffices to take in (6.74) the test functions
(σ̄, m̄) = (σ,m)+(σ̃, m̃), (σ̃, m̃) ∈ C∞0 (Ωc). Moreover, the relations (6.71)–(6.74) contain
all boundary conditions (6.63)–(6.66).

The existence of a solution to (6.71)–(6.74) can be shown by the procedure used in
the proof of Theorem 6.12 below. The solution is unique.
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Remark 6.11. We can observe that just as in two-dimensional elasticity it is possible
to avoid the explicit formulation of the boundary conditions for stresses and moments
included in the set K(Ωc). Namely, it suffices to introduce the set of admissible stresses
and moments by using the “dual” formula

K(Ωc) =
{

(σ,m) ∈ H(Ωc)
∣∣∣∣ ∫

Ωc

(σε(ū) + ūdiv σ) +
∫

Ωc

(w̄∇∇m−m∇∇w̄) ≥ 0

∀(ū, w̄) ∈ Kc

}
,

where the set Kc is defined in (6.67). This equivalent definition of the set K(Ωc) is
suitable also in the case when Γ̄c crosses the external boundary Γ (see Figures 6.4, 6.5).
In particular, if Γc divides Ω into two separate domains Ω1,Ω2, we obtain the contact
problem for two elastic plates occupying the domains Ω1,Ω2 with contact conditions
(6.64)–(6.66) on the common boundary Γc.

Now we can formulate the smooth domain method for the problem (6.59)–(6.66). In
this case the solution is defined in the smooth domain Ω. In fact, we extend the unknown
functions from the domain Ωc to the domain Ω. To simplify formulae below we use the
same notations for the extended functions. The formulation of the problem is as follows.

In the domain Ω, we have to find functions u = (u1, u2), w, σ = {σij},m = {mij},
i, j = 1, 2, such that

−div σ = f in Ω, (6.75)

−∇∇m = F in Ω, (6.76)

Cσ − ε(u) + p(u)δΓc = 0 in Ω, (6.77)

Dm+∇∇w + P (w) = 0 in Ω, (6.78)

u = w =
∂w

∂n
= 0 on Γ, (6.79)

[u]ν ≥
∣∣∣∣[∂w∂ν

]∣∣∣∣, στ = 0, tν(m) = 0 on Γc, (6.80)

|mν | ≤ −σν , σν · [u]ν −mν

[
∂w

∂ν

]
= 0 on Γc. (6.81)

Here

P (w)ij = −([w]νiδΓc),j − [w,i]νjδΓc .

It is very important that the solution of the problem (6.59)–(6.66) determined from the
variational inequality (6.68) possesses the properties

[σν] = 0, [mν ] = 0, [tν(m)] = 0 on Γc. (6.82)

This allows us to write the equilibrium equations (6.59), (6.60) in the domain Ω in the
same form. Let us verify this statement. The validity of the equation (6.75) in the domain
Ω is already shown (see Section 2). So we just check (6.76). From (6.68) it follows

m ∈ L2(Ωc), ∇∇m ∈ L2(Ωc), −∇∇m = F in Ωc. (6.83)
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Let m denote the extended function, defined in Ω. Then, by (6.82)–(6.83), for any ϕ ∈
C∞0 (Ω) we have

〈∇∇m+ F,ϕ〉 = (m,∇∇ϕ)Ω1 + (m,∇∇ϕ)Ω2 + (F,ϕ)Ω

= (∇∇m+ F,ϕ)Ω1 + (∇∇m+ F,ϕ)Ω2

+ 〈[tν(m)], ϕ〉3/2 − 〈[mν ], ∂ϕ/∂ν〉1/2 = 0.

Hence the equilibrium equation (6.76) holds in Ω in the sense of distributions. To give
the weak formulation of (6.75)–(6.81) we need additional notations. Consider the space

H(Ω) = {(σ,m) | σ = {σij}, m = {mij}; σ, div σ ∈ L2(Ω), m,∇∇m ∈ L2(Ω)}

equipped with norm

‖(σ,m)‖2H(Ω) = ‖σ‖2L2(Ω) + ‖div σ‖2L2(Ω) + ‖m‖2L2(Ω) + ‖∇∇m‖2L2(Ω).

We introduce the admissible set of stresses and moments

K(Ω) = {(σ,m) ∈ H(Ω) | στ = 0, tν(m) = 0, |mν | ≤ −σν on Γc}.

The interpretation of the conditions imposed on σ,m in the definition of K(Ω) is simpler
than in the case of the non-smooth domain Ωc since the jumps on Σ of the functions
σν, mν , tν(m) are equal to zero by definition. Hence the equalities and inequality are
satisfied in the following sense:

〈σν ±mν , ϕ〉1/2 ≤ 0 ∀ϕ ∈ H1/2(Σ), ϕ ≥ 0 a.e. on Γc, suppϕ ⊂ Γc,

〈στ , ϕ〉1/2 = 0 ∀ϕ = (ϕ1, ϕ2) ∈ H1/2(Σ), ϕiνi = 0 a.e. on Γc, suppϕ ⊂ Γc,

〈tν(m), ϕ〉3/2 = 0 ∀ϕ ∈ H3/2(Σ), suppϕ ⊂ Γc.

In the weak formulation of the problem (6.75)–(6.81) unknown functions u,w, σ,m are
such that

u = (u1, u2) ∈ L2(Ω), w ∈ L2(Ω), (σ,m) ∈ K(Ω), (6.84)

−div σ = f in Ω, (6.85)

−∇∇m = F in Ω, (6.86)

(u,div σ̄ − div σ)Ω + (w,∇∇m̄−∇∇m)Ω

+ (Cσ, σ̄ − σ)Ω + (Dm, m̄−m)Ω ≥ 0 ∀(σ̄, m̄) ∈ K(Ω). (6.87)

We can prove the following statement.

Theorem 6.12. There exists a unique solution to the problem (6.84)–(6.87).

Proof. The general scheme of the proof is the same as in Theorem 6.8. We introduce
functions (σ0,m0) ∈ K(Ω) satisfying the equations

−div σ0 = f, −∇∇m0 = F in Ω.

The functions (σ0,m0) can be obtained by solving the variational inequality (6.68) with
arbitrary constitutive laws (6.61)–(6.62) for any given tensors C,D. Of course the tensors
C,D should satisfy the required conditions. To prove the existence of a solution a similar
regularization procedure is used. For a positive parameter δ the following regularized
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problem is considered:

uδ = (uδ1, u
δ
2) ∈ L2(Ω), wδ ∈ L2(Ω), (σδ,mδ) ∈ K(Ω), (6.88)

δuδ − div σδ = f in Ω, (6.89)

δwδ −∇∇mδ = F in Ω, (6.90)

(Cσδ, σ̄ − σδ)Ω + (Dmδ, m̄−mδ)Ω + (uδ,div σ̄ − div σδ)Ω

+ (wδ,∇∇m̄−∇∇mδ)Ω ≥ 0 ∀(σ̄, m̄) ∈ K(Ω). (6.91)

Taking (σ̄, m̄) = (σ0,m0) in (6.91) and multiplying (6.89), (6.90) by uδ, wδ, respectively,
we derive the a priori estimate

δ‖uδ‖2L2(Ω) + δ‖wδ‖2L2(Ω) + ‖σδ‖2L2(Ω) + ‖mδ‖2L2(Ω) ≤ c (6.92)

where the constant c is uniform with respect to δ. By (6.92), from (6.89), (6.90) we have,
uniformly in δ,

‖div σδ‖2L2(Ω) + ‖∇∇mδ‖2L2(Ω) ≤ c. (6.93)

Solvability of the problem (6.88)–(6.91) can be obtained by the variational approach.
To this end it suffices to substitute the values uδ, wδ, taken from (6.89), (6.90), into (6.91).
In this way we obtain a variational inequality for (σδ,mδ) which admits a solution. Let
us perform the passage to the limit in (6.89)–(6.91) as δ → 0. From (6.91) it follows that

Cσδ − ε(uδ) = 0, Dmδ +∇∇wδ = 0 in Ωc, (6.94)

hence ε(uδ) ∈ L2(Ωc). By the second Korn inequality in Ωc, since uδ ∈ L2(Ωc), we obtain
uδ ∈ H1(Ωc). On the other hand,

uδ = 0 on Γ ,

and consequently uδ = (uδ1, u
δ
2) ∈ H1,0(Ωc). We use the first Korn inequality,

‖uδ1‖H1,0(Ωc) + ‖uδ2‖H1,0(Ωc) ≤ c‖ε(u
δ)‖L2(Ωc),

where the constant c depends only on Ωc. Since the deformations ε(uδ) are bounded in
L2(Ωc) uniformly in δ, the following estimate holds:

‖uδi ‖H1,0(Ωc) ≤ c, i = 1, 2. (6.95)

Next, the second equation of (6.94) implies ∇∇wδ ∈ L2(Ωc). Consequently, wδ ∈
H2(Ωc). Taking into account the boundary conditions

wδ =
∂wδ

∂n
= 0 on Γ

it follows that wδ ∈ H2,0(Ωc). We can use the inequality

‖wδ‖H2,0(Ωc) ≤ c‖∇∇w
δ‖L2(Ωc)

with the constant c independent of δ, which leads to the uniform estimate with respect
to δ,

‖wδ‖H2,0(Ωc) ≤ c. (6.96)
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Hence, by (6.92), (6.93), (6.95), (6.96), we can assume that as δ → 0,

uδi → ui strongly in L2(Ω), i = 1, 2,

wδ → w strongly in L2(Ω),

(σδ,mδ)→ (σ,m) weakly in H(Ω).

These convergences allow us to pass to the limit in (6.88)–(6.91) as δ → 0, which implies
(6.84)–(6.87).

The solution is unique. Indeed, assume that we have two solutions (u1, w1, σ1,m1)
and (u2, w2, σ2,m2). From (6.87) it follows that σ1 = σ2,m1 = m2. Since

Cσi − ε(ui) = 0, Dmi +∇∇wi = 0 in Ωc, i = 1, 2,

we obtain ε(u1 − u2) = 0, ∇∇(w1 − w2) = 0. Consequently, u1 = u2, w1 = w2.

Remark 6.13. Similar to two-dimensional elasticity we can use a definition of admissible
stresses and moments which is suitable both for interior and boundary cracks, namely,

K(Ω)=
{

(σ,m) ∈ H(Ω)
∣∣∣∣ ∫

Ωc

(σε(ū)+ūdiv σ)+
∫

Ωc

(w̄∇∇m−m∇∇w̄)≥0 ∀(ū, w̄)∈Kc

}
.

In particular, this definition is useful for contact problems (see Figure 6.5).

Remark 6.14. Consider the classical crack problem for the Kirchhoff plate. In this case
instead of (6.64)–(6.66) we have the linear boundary conditions

mν = tν(m) = σν = στ = 0 on Γ±c . (6.97)

The smooth domain method proposed in this paper can be applied to the problem (6.59)–
(6.63), (6.97). The admissible set of stresses and moments in this linear case is introduced
as follows:

K(Ω) = {(σ,m) ∈ H(Ω) | mν = tν(m) = σν = στ = 0 on Γc}. (6.98)

The inequality (6.87) should be replaced by the identity

(u,div σ̄)Ω + (w,∇∇m̄)Ω + (Cσ, σ̄)Ω + (Dm, m̄)Ω = 0 ∀(σ̄, m̄) ∈ K(Ω). (6.99)

Hence the smooth domain method in the classical crack problem for plates can be for-
mulated in the form (6.84)–(6.86), (6.99), where the set K(Ω) is defined in (6.98).

6.4. Three-dimensional case

6.4.1. Preliminaries. We consider elastoplastic models of the Hencky type for bodies
having cracks. The presence of a crack entails that the geometrical domain has a non-
smooth component of the boundary. New formulations for these models are proposed.
The resulting mathematical models allow us to solve the crack problem in a smooth geo-
metrical domain. The problems under consideration are characterized by linear boundary
conditions imposed on non-smooth parts of the boundary. These conditions describe the
traction free crack faces. Notice that linear crack problems for elastic bodies have been
analyzed in many papers; we refer the reader to [25]–[27], [36], [90]–[101]. For the non-
linear crack theory with a possible contact between crack faces for various constitutive
laws, the results can be found in [67]. Solvability of elastoplastic problems was analyzed in
[19], [20], [31], [58]–[71], [130], [131]. We should remark that the smooth domain method
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proposed in this paper can be applied to elastic linear crack problems as well as to many
other linear and non-linear elliptic boundary value problems. For elastic bodies with
non-linear cracks the smooth domain method was developed in [76].

Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ, and Γc ⊂ Ω be a
smooth orientable two-dimensional surface. We assume that this surface can be extended
up to the outer boundary Γ in such a way that Ω is divided into two subdomains with
Lipschitz boundaries. We assume that this inner surface Γc is described parametrically
by the equations

xi = xi(y1, y2), i = 1, 2, 3,

where (y1, y2) belong to the closure of a bounded domain ω ⊂ R2 having a smooth
boundary γ. We suppose that the rank of the Jacobi matrix ∂xi/∂yj equals 2 at every
point (y1, y2) ∈ ω ∪ γ, and that the map is one-to-one. Let ν = (ν1, ν2, ν3) be a unit
normal vector to Γc. Define Ωc = Ω \ Γc.

The boundary of Ωc consists of three components Γ,Γ+
c ,Γ

−
c , where Γ±c correspond

to the positive and negative directions of the normal ν, respectively. Notice that for all
functions on Ωc to be discussed below, their traces will in general differ on Γ+

c and Γ−c . We
also assume that Γc can be extended up to a closed surface Σ without self-intersections
of class C0,1 so that Σ ⊂ Ω, and the domain Ω is divided into two subdomains Ω1,Ω2. In
this case Σ is the boundary of the domain Ω1, and the boundary of Ω2 is Σ ∪ Γ.

We define the Banach space

LD(Ωc) = {u = (u1, u2, u3) | ui ∈ L1(Ωc), i = 1, 2, 3, εij(u) ∈ L1(Ωc), i, j = 1, 2, 3}

equipped with the norm

‖u‖LD(Ωc) = ‖u‖L1(Ωc) +
3∑

i,j=1

‖εij(u)‖L1(Ωc). (6.100)

Here εij(u) = (ui,j + uj,i)/2 are the components of the strain tensor. Consider function
spaces whose elements are characterized by the conditions∫

Ωc

u = 0,
∫

Ωc

(uixj − ujxi) = 0, i, j = 1, 2, 3, u = (u1, u2, u3). (6.101)

In particular, we define

LDN (Ωc) = {u ∈ LD(Ωc) | u satisfies (6.101)}.

Note that the linear space R(Ωc) of functions ρ satisfying the conditions εij(ρ) = 0 in
Ωc, i, j = 1, 2, 3, can be described as ρ(x) = c + Bx, x ∈ Ωc, where c = (c1, c2, c3)
is a constant vector, B = (bij) is a constant matrix with bij = −bji, for all i, j. In
componentwise notation, ρi(x) = ci+bijxj . One can see that the orthogonal complement
of the subspace R(Ωc) in L2(Ωc) coincides with the subspace of all functions from L2(Ωc)
satisfying (6.101). Therefore we see that if ρ ∈ R(Ωc) satisfies (6.101), then ρ ≡ 0.

Since ∣∣∣∣∫
Ωc

u

∣∣∣∣+
3∑

i,j=1

∣∣∣∣∫
Ωc

(uixj − ujxi)
∣∣∣∣



114 G. Frémiot et al.

is a seminorm on the space LD(Ωc) and a norm on R(Ωc), it follows that

|u|LD(Ωc) =
∣∣∣∣∫

Ωc

u

∣∣∣∣+
3∑

i,j=1

∣∣∣∣∫
Ωc

(uixj − ujxi)
∣∣∣∣+

3∑
i,j=1

‖εij(u)‖L1(Ωc)

defines a norm on LD(Ωc) which is equivalent to the original norm (6.100) (see [131]).
Consider next the space of bounded measuresM1(Ωc). We know thatM1(Ωc) is the dual
of the normed space C0(Ωc) of continuous functions with compact support, endowed with
the uniform convergence topology (see [47], [131]). Any ball in M1(Ωc) is compact in the
weak star topology, and every bounded sequence in M1(Ωc) has a subsequence which
is weak∗ convergent. We recall that by definition a sequence gm ∈ M1(Ωc) is weak∗

convergent to an element g ∈M1(Ωc) if

gm(φ)→ g(φ), m→∞,

for any fixed φ ∈ C0(Ωc). Now we can introduce the Banach space of bounded deforma-
tions

BD(Ωc) = {u = (u1, u2, u3) | ui ∈ L1(Ωc), i = 1, 2, 3, εij(u) ∈M1(Ωc), i, j = 1, 2, 3}

equipped with the norm

‖u‖BD(Ωc) = ‖u‖L1(Ωc) +
3∑

i,j=1

‖εij(u)‖M1(Ωc).

Also, denote by BDN (Ωc) the subspace of BD(Ωc) which consists of all elements of
BD(Ωc) satisfying (6.101). Consider also the space

H1(Ωc) = {u = (u1, u2, u3) | ui ∈ L2(Ωc), i = 1, 2, 3; ui,j ∈ L2(Ωc), i, j = 1, 2, 3}

with the norm

‖u‖H1(Ωc) = ‖u‖0 +
3∑

i,j=1

‖ui,j‖0, (6.102)

where ‖ · ‖0 is the norm in L2(Ωc). To simplify the notations, we write H1(Ωc) instead
of [H1(Ωc)]3. Let

H1
N (Ωc) = {u ∈ H1(Ωc) | u satisfies (6.101)}.

We shall use the following norm in H1(Ωc):

|u|H1(Ωc) =
∣∣∣∣∫

Ωc

u

∣∣∣∣+
3∑

i,j=1

∣∣∣∣∫
Ωc

(uixj − ujxi)
∣∣∣∣+

3∑
i,j=1

‖εij(u)‖0,

which is equivalent to the norm (6.102). It is easy to see that

|u|H1
N (Ωc) =

3∑
i,j=1

‖εij(u)‖0 (6.103)

is a norm on the subspace H1
N (Ωc).

Let us recall the well-known Green formula. Namely, if σij ∈ L2(Ω), σij,j ∈ L2(Ω),
i, j = 1, 2, 3, then the values σijnj can be correctly defined on Γ, and moreover σijnj ∈
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H−1/2(Γ),

−〈σij,j , θ〉 = 〈σij , θ,j〉 − 〈σijnj , θ〉1/2,Γ, ∀θ ∈ H1(Ω), i = 1, 2, 3. (6.104)

Here n=(n1, n2, n3) is the outer normal to the boundary Γ, the brackets 〈 · , · 〉, 〈 · , · 〉1/2,Γ
denote the scalar product in L2(Ω) and the duality pairing between the spaces H−1/2(Γ)
and H1/2(Γ), respectively.

All functions which carry two lower indices are assumed to be symmetric with respect
to those indices, i.e. σij = σji, etc.

6.4.2. Existence of solutions. In this section we prove existence of a solution of the
elastoplastic boundary value problem for a body having a crack. The formulation of the
elastoplastic problem for a body occupying the domain Ωc in its undeformed state is
as follows. In the domain Ωc we have to find functions u = (u1, u2, u3), σ = {σij}, ξij ,
i, j = 1, 2, 3, which satisfy the following equations and inequalities:

−σij,j = fi, i = 1, 2, 3, (6.105)

εij(u) = aijklσkl + ξij , i, j = 1, 2, 3, (6.106)

Φ(σ) ≤ 0, ξij(σ̄ij − σij) ≤ 0 ∀σ̄, Φ(σ̄) ≤ 0, (6.107)

σijnj = 0, i = 1, 2, 3, on Γ, (6.108)

σijνj = 0, i = 1, 2, 3, on Γ±c . (6.109)

Here Φ : R6 → R is a continuous convex function describing the plastic yield condition.
The equations (6.106) provide a decomposition of the strain tensor εij(u) into the sum of
an elastic part aijklσkl and a plastic part ξij , and (6.105) are the equilibrium equations.

We assume that the functions aijkl(x) possess the property aijkl = ajikl = aklij , and
that there exist constants c1, c2 > 0 such that

c1|σ|2 ≤ aijklσklσij ≤ c2|σ|2, ∀σ = {σij}. (6.110)

This condition allows us to solve the equations εij(u) = aijklσkl, i, j = 1, 2, 3, with respect
to σij , and to obtain σij = bijklεkl(u), i, j = 1, 2, 3. The functions bijkl have the same
properties as the functions aijkl. In particular, the inequalities corresponding to (6.110)
hold true.

The basic assumption on the function Φ is that the subset {σ = {σij} | Φ(σ) ≤ 0} of
R6 contains zero as its interior point.

The functions ξij can be eliminated from (6.106), (6.107). Indeed, multiply (6.32) by
σ̄ij − σij , where Φ(σ̄) ≤ 0, σ̄ijnj = 0, i = 1, 2, 3, on Γ, and σ̄ijνj = 0, i = 1, 2, 3, on Γ±c ,
sum the relations thus obtained over i, j and integrate over Ωc. By the second inequality
(6.33) this yields the relation∫

Ωc

aijklσkl(σ̄ij − σij) +
∫

Ωc

ui(σ̄ij,j − σij,j) ≥ 0,

which will be used to define a solution of the problem (6.105)–(6.109).
Introduce two more notations, namely

V (Ωc) = {σ = {σij} | σij ∈ L2(Ωc), i, j = 1, 2, 3; σij,j ∈ L3(Ωc), i = 1, 2, 3;

σijnj = 0, i = 1, 2, 3, on Γ; σijνj = 0, i = 1, 2, 3, on Γ±c }.
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The set K of admissible stresses is defined by

K = {σ = {σij} | σij ∈ L2(Ωc), i, j = 1, 2, 3, Φ(σ(x)) ≤ 0 a.e. in Ωc}.

We moreover assume that there exists a function σ0 = {σ0
ij} such that σ0 ∈ (1 + κ)−1K,

where κ > 0 is a constant, and

〈σ0
ij , εij(ū)〉c = 〈f, ū〉c ∀ū ∈ H1

N (Ωc). (6.111)

Here 〈·, ·〉c is the scalar product in L2(Ωc).
Consider next the scalar product in H1(Ωc),

(u, v)c = 〈u, v〉c + 〈εij(u), εij(v)〉c, u, v ∈ H1(Ωc).

Then the space H1(Ωc) can be written as a sum H1(Ωc) = R(Ωc)⊕H1
N (Ωc) of orthogonal

subspaces. We assume 〈f, ρ〉c = 0 for all ρ ∈ R(Ωc). Consequently, identity (6.111) holds
for all ū ∈ H1(Ωc). In particular, this means that σ0 satisfies all boundary conditions
on Γ and Γ±c in the definition of V (Ωc). Now we can present an existence theorem for
problem (6.105)–(6.109).

Theorem 6.15. Let f ∈ [L3(Ωc)]3 be such that 〈f, ρ〉c = 0 for all ρ ∈ R(Ωc), and σ0

have the properties stated above. Then there exist functions σ ∈ K and u ∈ BDN (Ωc)
such that

〈σij , εij(ū)〉c = 〈f, ū〉c ∀ū ∈ H1
N (Ωc), (6.112)

〈aijklσkl, σ̄ij − σij〉c + 〈ui, σ̄ij,j − σij,j〉c ≥ 0 ∀σ̄ ∈ K ∩ V (Ωc). (6.113)

Proof. The proof is based on an elliptic regularization of a penalized problem. Let p(σ) =
σ − πσ be the penalty operator, where π : [L2(Ωc)]6 → K is the orthogonal projection.
Consider the following auxiliary boundary value problem which includes two positive
parameters α and δ. In the domain Ωc we want to find functions u = (u1, u2, u3), σ =
{σij}, i, j = 1, 2, 3, such that

−α(bijklεkl(u)),j − σij,j = fi, i = 1, 2, 3, (6.114)

aijklσkl − εij(u) +
1
δ
p(σ)ij = 0, i, j = 1, 2, 3, (6.115)

σijnj + αbijklεkl(u)nj = 0, i = 1, 2, 3, on Γ, (6.116)

σijνj + αbijklεkl(u)νj = 0, i = 1, 2, 3, on Γ±c . (6.117)

The solvability of the problem (6.114)–(6.117) for fixed parameters α, δ will be proved
in the following sense:

u ∈ H1
N (Ωc), σij ∈ L2(Ωc), i, j = 1, 2, 3, (6.118)

α〈bijklεkl(u), εij(ū)〉c + 〈σij , εij(ū)〉c = 〈f, ū〉c ∀ū ∈ H1
N (Ωc), (6.119)

aijklσkl − εij(u) +
1
δ
p(σ)ij = 0, i, j = 1, 2, 3. (6.120)

To obtain an a priori estimate of the solution to (6.118)–(6.120) we first substitute ū = u

in (6.119) and multiply (6.120) by σij − σ0
ij . This gives the estimate

α

3∑
i,j=1

‖εij(u)‖20 + ‖σ‖20 ≤ c.
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Since u ∈ H1
N (Ωc) this inequality implies

α|u|2H1
N (Ωc)

+ ‖σ‖20 ≤ c. (6.121)

The constant c does not depend on α and δ. The estimate (6.121) allows us to prove the
solvability of (6.118)–(6.120) for any fixed parameters α, δ. To verify this, we write the
boundary value problem (6.118)–(6.120) in the form

B(w) = F, (6.122)

with an operator B which maps a Hilbert space V to its dual space V ′, and where F
is a given element of V ′. Here we choose V = H1

N (Ωc) × [L2(Ωc)]6 and define B by the
formula

B(w)(w̄) = 〈αbijklεkl(u) + σij , εij(ū)〉c +
〈
aijklσkl − εij(u) +

1
δ
p(σ)ij , σ̄ij

〉
c

,

where w = (u, σ), w̄ = (ū, σ̄), and we set F (w̄) = 〈f, ū〉c. The operator B is bounded,
monotone and semicontinuous; actually, the computations leading to the estimate (6.121)
also provide the coercivity of B in the sense

B(w)(w)/‖w‖V →∞, ‖w‖V →∞.

Thus, the solvability of the equation (6.122), or, equivalently, of the problem (6.118)–
(6.120) follows from classical results (see [88]). The boundary conditions (6.116)–(6.117)
are included in the identity (6.119).

In addition to the estimate (6.121) one can prove that the estimate

1
δ
‖p(σ)‖L1(Ωc) ≤ c

holds uniformly in α and δ. We omit the argument since a similar situation appears in
the next section when estimating a penalty term in L1(Ωc).

From (6.120) we can derive an additional estimate. Indeed, for any fixed δ > 0 there
exists a constant c(δ) depending on δ such that

3∑
i,j=1

‖εij(u)‖0 ≤ c(δ)

and hence

|u|H1
N (Ωc) ≤ c(δ). (6.123)

Now we can pass to the limit in (6.118)–(6.120) as α, δ → 0. Denote by uαδ, σαδ the
solution of (6.118)–(6.120) corresponding to given parameters α, δ. Due to the estimates
(6.121) and (6.123), we can choose a subsequence, still denoted by uαδ, σαδ, such that for
α→ 0 and any fixed δ,

uαδ → uδ weakly in H1
N (Ωc),

σαδij → σδij weakly in L2(Ωc), i, j = 1, 2, 3.
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On passing to the limit as α→ 0, the equations (6.118)–(6.120) become

uδ ∈ H1
N (Ωc), σδij ∈ L2(Ωc), i, j = 1, 2, 3,

〈σδij , εij(ū)〉c = 〈f, ū〉c ∀ū ∈ H1
N (Ωc), (6.124)

aijklσ
δ
kl − εij(uδ) +

1
δ
p(σδ)ij = 0, i, j = 1, 2, 3. (6.125)

Consequently, the equations (6.125) imply that
3∑

i,j=1

‖εij(uδ)‖L1(Ωc) ≤ c

and since uδ ∈ H1
N (Ωc), this inequality gives

|uδ|LDN (Ωc) ≤ c.

The imbeddings LD(Ωc) ⊂ L3/2(Ωc), L1(Ωc) ⊂ M1(Ωc) are continuous in the three-
dimensional case, hence

‖uδ‖L3/2(Ωc) ≤ c,
3∑

i,j=1

‖εij(uδ)‖M1(Ωc) ≤ c. (6.126)

Due to the estimates (6.121) and (6.126), we can assume that a subsequence uδ, σδ pos-
sesses the properties

uδ → u weakly in L3/2(Ωc),

εij(uδ)→ εij(u) weak∗ in M1(Ωc), i, j = 1, 2, 3,

σδij → σij weakly in L2(Ωc), i, j = 1, 2, 3.

The identity (6.124) easily yields (6.112). We can next derive from (6.124) that the
equations

−σδij,j = fi, i = 1, 2, 3,

hold in the sense of distributions in the domain Ωc, whence

〈σδij , εij(uδ)〉c = 〈f, uδ〉c = −〈σδij,j , uδi 〉c. (6.127)

Note that
〈εij(uδ), σ̄ij〉c = −〈uδi , σ̄ij,j〉c ∀σ̄ ∈ V (Ωc). (6.128)

Let us multiply (6.125) by σ̄ij − σδij , where σ̄ ∈ K ∩ V (Ωc). Taking into account (6.127),
(6.128) we have

〈aijklσδkl, σ̄ij − σδij〉c + 〈uδi , σ̄ij,j − σδij,j〉c ≥ 0 ∀σ̄ ∈ K ∩ V (Ωc). (6.129)

The values σδij,j can be replaced by −fi in (6.129). This allows us to pass to the limit as
δ → 0, and we arrive at (6.113).

The inclusion σ ∈ K is proved by the standard method. The boundary conditions
(6.108)–(6.109) are a consequence of (6.112).

Note that the specific choice of bijkl as the inverse of the aijkl for the elliptic regulariza-
tion appears to be natural, since in the pure elastic case (with K = [L2(Ω)]6, respectively
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p(σ) ≡ 0), the boundary conditions (6.116), (6.117) reduce to (6.108), (6.109), respec-
tively. However, the proof of Theorem 6.15 works with any other choice of bijkl as long
as the requirements of symmetry, boundedness and coercivity are met.

6.4.3. Smooth domain method. Since the identity (6.112) holds for all test functions
from H1(Ωc) the equilibrium equations (6.105) hold in Ωc in the sense of distributions,

−σij,j = fi in Ωc, i = 1, 2, 3. (6.130)

Also (6.112) implies the zero jump condition,

[σijνj ] = 0 on Γc, i = 1, 2, 3. (6.131)

This condition is understood in the following sense:

〈(σijνj)+ − (σijνj)−, ϕi〉1/2,Σ = 0 ∀ϕ = (ϕ1, ϕ2, ϕ3) ∈ H1/2(Σ),

which follows directly from (6.112). By (6.130), (6.131), we can show that

−σij,j = fi in Ω, i = 1, 2, 3,

in the sense of distributions. Indeed, for any ϕ ∈ C∞0 (Ω),

{σij,j + fi, ϕ} = −〈σij , ϕ,j〉Ω1 − 〈σij , ϕ,j〉Ω2 + 〈fi, ϕ〉
= 〈[σijνj ], ϕ〉1/2,Σ + 〈σij,j + fi, ϕ〉Ω1 + 〈σij,j + fi, ϕ〉Ω2 = 0, i = 1, 2, 3,

where {·, ϕ} is the value of a distribution on the element ϕ, and 〈·, ·〉Ωi are the scalar
products in L2(Ωi), respectively. These formulae prove the statement.

Now from Theorem 6.15 we derive existence of solutions to the elastoplastic crack
problem (6.105)–(6.109) defined in the smooth geometrical domain Ω. This means that
we can solve elastoplastic crack problems in the smooth domain Ω instead of non-smooth
domain Ωc. Set

V (Ω) = {σ = {σij} | σij ∈ L2(Ω), i, j = 1, 2, 3; σij,j ∈ L3(Ω), i = 1, 2, 3;

σijnj = 0, i = 1, 2, 3, on Γ; σijνj = 0, i = 1, 2, 3, on Γc}.
Notice that the condition σijνj = 0 on Γc in the definition of V (Ω) is imposed on the
smooth surface Γc located inside the domain Ω.

Theorem 6.16. Suppose the assumptions of Theorem 6.15 hold. Then there exist func-
tions u, σ such that

σ ∈ K ∩ V (Ω), u ∈ L3/2(Ω),

−σij,j = fi in Ω, i = 1, 2, 3,

〈aijklσkl, σ̄ij − σij〉+ 〈ui, σ̄ij,j − σij,j〉 ≥ 0 ∀σ̄ ∈ K ∩ V (Ω).

6.5. Elastoplastic problems for plates with cracks

6.5.1. Existence of solutions—Smooth domain method. We first prove an exis-
tence theorem for elastoplasic plates having cracks. Then we formulate the smooth domain
approach for this problem.

Let Ω ⊂ R2 be a bounded domain with a smooth boundary Γ, and Γc be a smooth
curve without self-intersections, Γc ⊂ Ω. We assume that Γc does not contain its end
points, i.e. Γc = Γ̄c\∂Γc.Denote by Ωc the mid-surface of the plate, Ωc = Ω\Γ̄c.We choose
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a unit normal vector ν = (ν1, ν2) to the curve Γc. The curve Γc corresponds to the crack
in the plate. The crack shape as a surface in R3 can be described as x ∈ Γc, −h ≤ z ≤ h,
where x = (x1, x2) ∈ Ω, 2h is the thickness of the plate, z is the distance to Ω. The domain
Ωc contains, therefore, three components of the boundary: Γ, Γ+

c , Γ−c . Here Γ±c correspond
to the positive and negative directions of the normal ν, respectively. Let n = (n1, n2) be
the external unit normal vector to Γ.

As in the previous section for the three-dimensional case, we assume that Γc can be
extended to a closed curve Σ of class C1,1, Σ ⊂ Ω, such that Ωc is divided into two
domains Ω1,Ω2 with boundaries Σ and Σ ∪ Γ, respectively. The normal ν is directed to
the domain Ω2.

The formulation of the elastoplastic problem for the plate having a crack is as follows.
In the domain Ωc we want to find functions w, m = {mij}, ξij , i, j = 1, 2, satisfying the
following equations and inequalities:

−mij,ij = f, (6.132)

−w,ij = aijklmkl + ξij , i, j = 1, 2, (6.133)

Ψ(mij) ≤ 0, ξij(m̄ij −mij) ≤ 0 ∀m̄, Ψ(m̄ij) ≤ 0, (6.134)

w = 0, mijnjni = 0 on Γ, (6.135)

mijνjνi = 0, Rν(mij) = 0 on Γ±c . (6.136)

Here Ψ : R3 → R is a convex and continuous function describing a plasticity yield
condition, Rν(mij) = mij,jνi − ∂

∂τ [(m11 −m22)ν1ν2 + m12(ν2
2 − ν2

1)] are the transverse
forces, where τ = (−ν2, ν1). The function w describes vertical displacements of the plate,
mij are bending moments; (6.132) is the equilibrium equation, and equations (6.133) give
a decomposition of the curvatures −w,ij as the sum of elastic and plastic parts aijklmkl,
ξij , respectively. Let aijkl(x) = ajikl(x) = aklij(x), i, j, k, l = 1, 2. There exist two positive
constants c1, c2 such that

c1|m|2 ≤ aijklmklmij ≤ c2|m|2 ∀m = {mij}.

As for the function Ψ, the main assumption is that the set

{m ∈ R3 | Ψ(mij) ≤ 0}

contains zero as its interior point.
The functions ξij can be eliminated from (6.133), (6.134), which gives

Ψ(mij) ≤ 0, (aijklmkl + w,ij)(m̄ij −mij) ≥ 0 ∀m̄, Ψ(m̄ij) ≤ 0.

These inequalities will be used to define solutions to the problem (6.132)–(6.136).
Denote by H1,0(Ωc) the Sobolev space of functions having the first square integrable

derivatives in Ωc and equal to zero on the external boundary Γ. The space H2(Ωc)
contains all functions having derivatives up to the second order square integrable in Ωc.
By M1(Ωc) we denote the space of bounded measures on Ωc.

Introduce the notation

U(Ωc) = {m = {mij} ∈ L2(Ωc) | mij,ij ∈ L2(Ωc),mijnjni = 0 on Γ;

mijνjνi = Rν(mij) = 0 on Γ±c }.
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In the domain Ω1, for m ∈ U(Ωc) we can define traces on the boundary Σ, in par-
ticular, mijνiν

−
j ∈ H−1/2(Σ), Rν(mij)− ∈ H−3/2(Σ), and the following Green formula

holds [67], [131]: ∫
Ω1

wmij,ij =
∫

Ω1

w,ijmij + 〈Rν(mij), w〉3/2,Σ

−
〈
mijνjνi,

∂w

∂ν

〉
1/2,Σ

∀w ∈ H2(Ω1), (6.137)

where 〈·, ·〉i/2,Σ stands for the duality pairing between H−i/2(Σ) and Hi/2(Σ), i = 1, 3.
The same formula is valid for the domain Ω2 with the boundary Σ ∪ Γ.

Define
Kc = {m = {mij} ∈ L2(Ωc) | Ψ(mij(x)) ≤ 0 a.e. in Ωc}.

Assume that there exists a function m0 = {m0
ij}, (1 + κ)m0 ∈ Kc, κ = const > 0,

such that equation (6.132) is satisfied in the following sense:

−〈m0
ij , w̄,ij〉c = 〈f, w̄〉c ∀w̄ ∈ H2(Ωc) ∩H1,0(Ωc).

The brackets 〈 · , · 〉c denote the scalar product in L2(Ωc).
The theorem of existence of solutions to the problem (6.132)–(6.136) can be formulated

as follows.

Theorem 6.17. Assume that f ∈ L2(Ωc) and the above assumption on m0 holds. Then
there exist functions w,m = {mij} such that

w ∈ H1,0(Ωc), w,ij ∈M1(Ωc), i, j = 1, 2, m ∈ Kc,

−〈mij , w̄,ij〉c = 〈f, w̄〉c ∀w̄ ∈ H2(Ωc) ∩H1,0(Ωc),

〈aijklmkl, m̄ij −mij〉c + 〈w, m̄ij,ij −mij,ij〉c ≥ 0 ∀m̄ ∈ U(Ωc) ∩Kc. (6.138)

Proof. The idea of the proof is to use an elliptic regularization for the penalty equations
approximating (6.132)–(6.136). Solutions of the auxiliary problem will depend on two
positive parameters ε, δ. The first parameter is responsible for the elliptic regularization
and the second one characterizes the penalty approach. More precisely, in the domain Ωc
we want to find functions w,m = {mij} such that

εw,ijij −mij,ij = f, (6.139)

aijklmkl + w,ij +
1
δ
p(m)ij = 0, i, j = 1, 2, (6.140)

w = 0, (mij − εw,ij)njni = 0 on Γ, (6.141)

(mij − εw,ij)νjνi = 0 on Γ±c , (6.142)

Rν(mij)− εRν(w,ij) = 0 on Γ±c . (6.143)

Here p(m) = m− π(m) is the penalty operator, where π : [L2(Ωc)]3 → Kc is the orthog-
onal projection operator. Note that p is monotone, continuous and bounded.

We do not show the dependence of the solution to (6.139)–(6.143) on the parameters
to simplify the notation. Our aim is first to prove the existence of solution of the problem
(6.139)–(6.143) and second to pass to the limit as ε→ 0, δ → 0.
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Let us derive a priori estimates for solutions of (6.139)–(6.143) assuming that the
solutions are sufficiently smooth. Multiply (6.139), (6.140) by w, mij − m0

ij , sum and
integrate over Ωc. This gives

ε〈w,ij , w,ij〉c + 〈aijklmkl,mij〉c + 〈w,ij ,mij〉c +
1
δ
〈p(m)ij ,mij −m0

ij〉c

− 〈mij,ij , w〉c − 〈w,ij ,m0
ij〉c − 〈f, w〉c = 〈aijklmkl,m

0
ij〉c. (6.144)

Integrate by parts in the fifth and sixth terms of the left-hand side of (6.144) taking
into account the boundary conditions (6.141)–(6.143) and the Green formula like (6.137)
for the domains Ω1,Ω2. The penalty term is non-negative and m0

ij satisfy the equation
(6.5.1). Hence the uniform (in ε, δ) estimate follows:

ε〈w,ij , w,ij〉c + 〈aijklmkl,mij〉c ≤ c,
and consequently

ε‖w‖22 + ‖m‖20 ≤ c. (6.145)

Here ‖ · ‖s stands for the norm in Hs(Ωc). The estimate (6.145) allows us to prove the
solvability of the problem (6.139)–(6.143) for the fixed parameters ε, δ in the following
sense:

w ∈ H2(Ωc) ∩H1,0(Ωc), mij ∈ L2(Ωc), i, j = 1, 2, (6.146)

ε〈w,ij , w̄,ij〉c − 〈mij , w̄,ij〉c = 〈f, w̄〉c ∀w̄ ∈ H2(Ωc) ∩H1,0(Ωc), (6.147)〈
aijklmkl + w,ij +

1
δ
p(m)ij , m̄ij

〉
c

= 0 ∀m̄ij ∈ L2(Ωc). (6.148)

Now we can pass to the limit as ε→ 0, δ → 0. Denote the solution of (6.146)–(6.148)
by wεδ,mεδ. The estimate (6.145) provides the inequality

‖mεδ‖0 ≤ c.
From (6.148) the following equations are obtained:

−wεδ,ij = aijklm
εδ
kl +

1
δ
p(mεδ)ij , i, j = 1, 2. (6.149)

Hence, in view of zero boundary conditions for wεδ, these equations imply

‖wεδ‖2 ≤ c(δ), (6.150)

where the constant c(δ) depends on δ, in general.
By (6.149), (6.150), we choose a subsequence, still denoted by wεδ,mεδ, such that for

any fixed δ, as ε→ 0,

mεδ
ij → mδ

ij weakly in L2(Ωc), i, j = 1, 2,

wεδ → wδ weakly in H2(Ωc) ∩H1,0(Ωc).

Passing to the limit as ε→ 0 in (6.146)–(6.148) we have

−〈mδ
ij , w̄,ij〉c = 〈f, w̄〉c ∀w̄ ∈ H2(Ωc) ∩H1,0(Ωc), (6.151)〈

aijklm
δ
kl + wδ,ij +

1
δ
p(mδ)ij , m̄ij

〉
c

= 0 ∀m̄ij ∈ L2(Ωc). (6.152)

The convergence p(mεδ)→ p(mδ) can be justified by monotonicity arguments.
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Let us prove that, uniformly in δ,
2∑

i,j=1

‖wδ,ij‖L1(Ωc) ≤ c. (6.153)

First we notice from (6.151), (6.152) that, uniformly in δ,
1
δ
〈p(mδ)ij ,mδ

ij −m0
ij〉c ≤ c. (6.154)

Consider the convex functional P on [L2(Ωc)]3,

P (m) =
1
2δ
‖p(m)‖20.

The Gateaux derivative P ′ of the functional P can be found by the formula P ′(m) =
δ−1p(m). Hence, by the convexity of P , we have

P (m0 + q)− P (mδ) ≥ P ′(mδ)(m0 + q −mδ), q = {qij} ∈ [L2(Ωc)]3. (6.155)

Let ‖q‖L∞(Ωc) ≤ α, where α is chosen to be small enough so that m0 + q ∈ Kc. Here
we use the conditions imposed on m0 and the set {m = {mij} | Ψ(mij) ≤ 0}. Since
P (m0 + q) = 0, from (6.155) it follows that

1
δ
〈p(mδ), q〉c ≤

1
δ
〈p(mδ),mδ −m0〉c.

In view of the inequality (6.154) we have
1
δ
〈p(mδ), q〉c ≤ c ∀q, ‖q‖L∞(Ωc) ≤ α,

which completes the proof of (6.153).
Taking into account the inequality

2∑
i,j=1

‖w,ij‖L1(Ωc) ≥ c‖w‖W 2
1 (Ωc) ∀w ∈W 2

1 (Ωc), w = 0 on Γ,

with a constant c independent of w we conclude from (6.153) that

‖wδ‖W 2
1 (Ωc) ≤ c. (6.156)

Here, W 2
1 (Ωc) is the Sobolev space of functions having derivatives in Ωc up to the second

order belonging to L1(Ωc).
Now we can use the inequality

‖w‖1 ≤ c‖w‖W 2
1 (Ωc) ∀w ∈W 2

1 (Ωc). (6.157)

Hence, from (6.156), (6.157) the boundedness of wδ follows, i.e.

‖wδ‖1 ≤ c.

The imbedding L1(Ωc) ⊂ M1(Ωc) is continuous, and consequently, by (6.153), from
equations (6.152) it is clear that

2∑
i,j=1

‖wδ,ij‖M1(Ωc) ≤ c.
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As a result we derive the following uniform (in δ) estimate for the solution wδ,mδ of the
problem (6.151), (6.152):

‖mδ‖0 + ‖mδ
ij,ij‖0 + ‖wδ‖1 +

2∑
i,j=1

‖wδ,ij‖M1(Ωc) ≤ c.

Now we can pass to the limit as δ → 0. Choosing a subsequence wδ,mδ we can assume
that as δ → 0,

mδ
ij → mij weakly in L2(Ωc), i, j = 1, 2,

mδ
ij,ij → mij,ij weakly in L2(Ωc),

wδ → w weakly in H1,0(Ωc),

wδ,ij → w,ij weak∗ in M1(Ωc), i, j = 1, 2.

It follows from (6.151) that −mδ
ij,ij = f in Ωc in the sense of distributions, whence

−mij,ij = f in Ωc. (6.158)

Moreover, from (6.151) we obtain the identity (6.17). Next, by the monotonicity of p,
from (6.152) the following inequality is derived:

〈aijklmδ
kl, m̄ij −mδ

ij〉c + 〈wδ,ij , m̄ij −mδ
ij〉c ≥ 0 ∀m̄ ∈ U(Ωc) ∩Kc.

We see that for m̄ ∈ U(Ωc) the relation

〈wδ,ij , m̄ij〉c = 〈wδ, m̄ij,ij〉c

holds. Furthermore, by (6.151), (6.158) the equalities

−〈mδ
ij , w

δ
,ij〉c = 〈f, wδ〉c = −〈mij,ij , w

δ〉c

are valid. Consequently, (6.5.1) implies

〈aijklmδ
kl, m̄ij −mδ

ij〉c + 〈wδ, m̄ij,ij −mij,ij〉c ≥ 0 ∀m̄ ∈ U(Ωc) ∩Kc.

Passing to the limit as δ → 0 in (6.5.1) we arrive at (6.138).
The inclusionm ∈ Kc can be proved by standard arguments. The theorem is proved.

Now we aim at formulating an existence theorem for the elastoplastic crack problem
(6.132)–(6.136) in the smooth domain Ω.

From (6.17) it follows that

−mij,ij = f in Ωc (6.159)

in the sense of distributions. Let us show that equation (6.159) holds also in Ω in the
sense of distributions. In fact, identity (6.17) implies the zero jump condition [mijνjνi]
= 0, [Rν(mij)] = 0 on Γc in the following sense:

〈mijνjν
+
i −mijνjν

−
i , ϕ〉1/2,Σ = 0 ∀ϕ ∈ H1/2(Σ), (6.160)

〈Rν(mij)+ −Rν(mij)−, ϕ〉3/2,Σ = 0 ∀ϕ ∈ H3/2(Σ). (6.161)
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Hence, by (6.160), (6.161), we have

{mij,ij + f, ϕ} = 〈mij , ϕ,ij〉Ω1 + 〈mij , ϕ,ij〉Ω2 + 〈f, ϕ〉
= 〈mij,ij + f, ϕ〉Ω1 + 〈mij,ij + f, ϕ〉Ω2

+ 〈[Rν(mij)], ϕ〉3/2,Σ − 〈[mijνiνj ], ∂ϕ/∂ν〉1/2,Σ = 0,

which proves the statement. Here 〈·, ·〉Ωi , 〈·, ·〉 mean the scalar products in L2(Ωi), L2(Ω),
respectively. Now we are able to formulate the existence theorem for the elastoplastic
crack problem (6.132)–(6.136) in which the functions are defined in the smooth domain Ω.
Introduce the space

U(Ω) = {m = {mij} ∈ L2(Ω) | mij,ij ∈ L2(Ω), mijnjni = 0 on Γ;

mijνjνi = Rν(mij) = 0 on Γc}.

Note that the conditions mijνjνi = Rν(mij) = 0 on Γc in the definition of U(Ω) are
imposed on the smooth curve Γc located inside the domain Ω. The following statement
holds.

Theorem 6.18. Let the conditions of Theorem 6.17 be satisfied. Then there exist func-
tions w, m = {mij} such that

w ∈ L2(Ω), m ∈ U(Ω) ∪Kc,

−mij,ij = f in Ω,

〈aijklmkl, m̄ij −mij〉+ 〈w, m̄ij,ij −mij,ij〉 ≥ 0 ∀m̄ ∈ U(Ω) ∩Kc.

7. Bridged crack models and singular integral equations

Finally, we present a model of a bridged crack, with complete mathematical analysis which
seems to be new. The mathematical techniques applied to the analysis are very simple,
but rather different from the theory used before. Since the model is one-dimensional, the
numerical results can be obtained in an elementary way.

7.1. Introduction and derivation of the model. Fully or partially bridged cracks
can be modeled using singular integral equations. This is well-documented in the liter-
ature and we refer the reader to [45, 46, 53, 54, 78, 135] for examples of derivation of
these models and their treatment using classical asymptotic methods. In this chapter we
investigate two such models and their mathematical treatment. Both models will contain
integro-differential equations with Hilbert transform like kernels.

To derive the model for a bridged crack we consider the elastic half plane S− =
{(x, y) ∈ R2 | y < 0} with boundary ∂S− = {(x, 0) | x ∈ R}.

The classical results [93, 127] on isotropic elasticity in the half plane S− state that if
the forces (X,Y ) are applied on ∂S− then the displacement field (u, v) in S− is determined
from the following relation due to G. V. Kolosov:

2µ(ux + ivx) = κΦ(z) + Φ(z)− (z − z)Φ′(z) (7.1)
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with the complex potential derived by Muskhelishvili [93]

Φ(z) = − 1
2πz

(X + iY ) +O

(
1
z2

)
where z = x+ iy ∈ C, u = u(x, y), v = (x, y), ux = ∂u/∂x, µ, κ are given constants.

In this section we apply the result in the particular case of the point force (O, δ(x))
at the origin, where δ(x) is the Dirac mass supported at x = 0.
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Fig. 7.1. Elastic halfplane

In this case the solution for the unknown displacement v is obtained in closed form
as follows.

The potential Φ(z) is given by

Φ(z) = − i

2πz
, Φ′(z) =

i

2πz2
,

Φ(z) = − i

2πz
, Φ′(z) = − i

2πz2 .

Therefore, the equation (7.1) takes the form

2µ
(
∂u

∂x
+ i

∂u

∂x

)
= κΦ(z) + Φ(z)− (z − z)Φ′(z)

= − i

2π

{
z

|z|2
κ+

z

|z|2
− (z − z)z2

|z|4

}
= − i

2π

{
(κ+ 1)x− i(κ− 1)y

|z|2
+

4xy2

|z|4
− izy(x2 − y2)

|z|4

}
.

The imaginary part is

2µ
∂v

∂x
= − 1

2π

{
(κ+ 1)x
|z|2

+
4xy2

|z|4

}
, |z|2 = x2 + y2.

On the boundary S− for y = 0,

2µ
∂v

∂x

∣∣∣∣
y=0

= − 1
2π

(κ+ 1)x
x2

= − 1
2π

(κ+ 1)
1
x
,

hence

v|y=0 = −κ+ 1
4πµ

ln
|x|
d

+ const
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where d (in length dimensions) is a constant. From [93] we have the values of κ:

κ =

3− 4ν, plane deformation, 1 < κ < 3,
3− 4ν
1 + ν

, mean tension plane, 5
3κ < 3.

Since we are interested in crack modeling, the next step concerns the superposition
of the point force applied at the origin and the symmetric distributed force supported on
the intervals (−∞,−a] and [a,+∞) for some a > 0.
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Fig. 7.2. Elastic halfplane loaded on the boundary

In this case, the following solution is obtained for unknown distribution of the force
p(ζ), ζ ∈ (−∞,−a) ∪ (a,+∞):

p−(−ζ) = p+(ζ), ζ ∈ [a,+∞),∫ −a
∞

p−(ζ) ln
|x− ζ|
d

dζ =
∫ +∞

a

p−(−t) ln
|x+ t|
d

dt,

4πµ
κ+ 1

v

∣∣∣∣
y=0

= P0 ln
|x|
d
−
∫ +∞

a

p(ζ) ln
(
|x− ζ|
d

)
dζ −

∫ +∞

a

p(ζ) ln
(
|x+ ζ|
d

)
dζ.

We can model the problem under consideration here. We have two elastic half planes
S− and S+ with a thin elastic layer {y = 0} between S− and S+. Assuming symme-
try, we can restrict the analysis to the displacement field in S−, and we impose the
relation

−p(x) = kv−|y=0

between the reaction p(x), x ∈ (−∞,−a]∪[a,+∞), and the displacement v−|y=0 on ∂S−,
where k is a coefficient which characterizes the layer {y = 0}. In particular, the Poisson
coefficient of the layer is assumed to be zero, ν = 0.

This is the limit case, as indicated for example in [93].
We consider the crack problem (see Figure 7.3) described for |x| > a by the equation

−1
k

4πµ
κ+ 1

p(x) = P0 ln
|x|
d
−
∫ +∞

a

p(ζ)
[

ln
|x− ζ|
d

+ ln
|x+ ζ|
d

]
dζ.



128 G. Frémiot et al.

Rysunek 1 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Rysunek 2 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Rysunek 3 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

y 

x 

Y 

x 
a -a 0 

a -a 

Fig. 7.3. Bridged crack

So by differentiation

−A dp(x)
dx

=
P0

x
−
∫ +∞

a

p(ζ)
[

1
x− ζ

+
1

x+ ζ

]
dζ,

where

P0 = 2
∫ +∞

a

p(ζ) dζ, A =
1
k

4πµ
κ+ 1

.

We will prove that there exists a unique solution p for the above model.

7.2. Mathematical problems

7.2.1. Existence and uniqueness using semigroup methods. We consider the fol-
lowing model with unknown function p(x), x ∈ R.

Find p(x) such that

∫ +∞

−∞

p(ζ)
x− ζ

dζ − P

x
= A

dp

dx
, |x| > a,

p = 0, |x| < a,∫ +∞

−∞
pζ dζ = P.

(7.2)

Assume P , A and a are given. This is an integro-differential equation. The integral
is a singular integral, the famous Hilbert transform. The integral itself is defined as a
principal value:

Hf =
1
π

∫ +∞

−∞

f(ζ)
x− ζ

dζ = lim
ε→0

1
π

∫
|x−ζ|≥ε

f(ζ)
x− ζ

dζ. (7.3)

It is non-trivial that for each f ∈ L1 the limit exists almost everywhere. It is known
that H : Lp → Lp, p > 1 and H2 = −I. The Hilbert transform is related to the Fourier
transform by

Ĥf(ω) = −i(signω)f̂(ω), f ∈ L2.

Also the sine and cosine transforms of a function on [0,∞) are the Hilbert transforms of
each other: ∫ ∞

0

f(x) cosωxdx = H

[ ∫ ∞
0

f(x) sinωxdx
]
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An alternative method of defining the Hilbert transform is as follows: The function
t 7→ log |1 − x/t| is in Lq for all q > 1, and its Lq norm remains bounded for x in a
compact set.

For any f ∈ Lp, the integral∫ +∞

−∞
f(t) log |1− x/t| dt

is absolutely convergent. It can be shown that the function

x 7→
∫ +∞

−∞
f(t) log |1− x/t| dt

is absolutely continuous. One defines

Hf(x) = − d

dx

{∫ +∞

−∞
f(t) log |1− x/t| dt

}
.

Now we can reformulate (7.2) as

d

dx

{
Ap(x) +

∫ +∞

−∞
p(t) log |1− x/t| dt+

(∫ +∞

−∞
p(t)dt

)
log+ |x/a|

}
= 0, |x| > a.

So that apparently we need to solve

Ap(x) +
∫ +∞

−∞
p(t) log |1− x/t| dt+ P log+ |x/a| = const, |x| > a,

p ≡ 0 in |x| < a,∫ +∞

−∞
p(t) dt = P.

(7.4)

This does not involve any singular integral; however, the function log+ |x/a| is not in any
Lp, and neither is the integral. We do not know any standard procedure for the solution.

Returning to (7.2) we write it as

Hp+ f = A
dp

dx
, |x| > a,

p = 0, |x| < a.
(7.5)

Observe that since p is required to vanish in (−a, a) the values of f cannot be prescribed in
this interval. We note that there is yet another connection between the Hilbert transform
and d/dx, provided by the Cauchy–Poisson semigroup: For any fixed p > 1, define Vt :
Lp → Lp by

Vtf =
t

π

∫ +∞

−∞

f(y)
(x− y)2 + t2

dy. (7.6)

Then Vt is a C0-semigroup of contractions on Lp:

‖Vt‖ ≤ 1, VtVs = Vt+s, lim
t→0
‖ |Vt − I|(f)‖ = 0.

The infinitesimal generator M of the semigroup is defined by

Mf = lim
t→0

Vtf − f
t
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whenever the limit exists and the linear space where this limit exists is the domain of M.
One can show that this domain is the range of the resolvent:

D(M) = {Rλf : f ∈ Lp} (7.7)

where

Rλf =
∫ ∞

0

e−λtVtf dt,

and we have
λRλf −M(Rλf) = f, f ∈ Lp. (7.8)

For the Cauchy–Poisson semigroup the infinitesimal generator has the following charac-
terization:

D(M) = {f ∈ Lp : (Hf)′ ∈ Lp} (7.9)

(see [24]), and for f ∈ D(M),
Mf = −(Hf)′. (7.10)

Combining (7.7)–(7.10) we see that for each f ∈ Lp and each λ > 0,

λRλf +
d

dx
(H(Rλf)) = f. (7.11)

Recall that H2 = −I; writing v = H(Rλf) we deduce from (7.11) that for each f ∈
Lp, v = H(Rλf) solves

−λHv +
d

dx
v = f,

i.e.,
λ

π

∫ +∞

−∞

v(y) dy
x− y

+ f =
dv

dx
. (7.12)

After some computation we find that if

f(x) =

{
1/x, |x| > a,

0, |x| < a,

the solution of (7.12) is given by

v(x) =
∫ +∞

−∞
K(x− y)

1
πy

log
∣∣∣∣y − ay + a

∣∣∣∣ dy
where

K(x) =
1
π

∫ ∞
0

e−λt
t

x2 + t2
dt =

1
π

∫ ∞
0

cosxζ
x+ ζ

dζ.

This is not a complete solution of the problem since we require v = 0 on (−a, a), where f
cannot be prescribed. Hence, we still have to determine f in (−a, a) and the solution v.
We formulate the problem:

Let f0 ∈ L2. Find f and v so that f(x) = f0(x), |x| > a, v(x) = constant in |x| < a

and such that
λ

π

∫ +∞

−∞

v(y)
x− y

dy + f(x) =
dv

dx
(x). (7.13)
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To solve this we proceed as follows: Let v0 solve (7.13) with f = f0. Then v0 = H(Rλf0) =
Rλ(Hf0). Let

f1 =

{
f0, |x| > a,

−λHv0, |x| < a,
v1 = H(Rλf1).

Then v1 solves (7.13) with f = f1. If f1, . . . , fn, v1, . . . , vn have been defined we define

fn+1 =

{
f0, |x| > a,

−λHvn, |x| < a,
vn+1 = H(Rλfn+1). (7.14)

We have
vn+1 − vn = H[Rλ(fn+1 − fn)],

so that, H being an isometry,

‖vn+1 − vn‖2 = ‖Rλ(fn+1 − fn)‖2 = ‖λRλ[H(vn − vn−1)]1{|x|<a}‖2 (7.15)

because by definition (7.14) of fn

fn+1 − fn =

{
0, |x| > a,

λH(vn − vn−1), |x| < a.

To estimate the norm in (7.15) we use the following result.

Proposition 7.1. Let 0 < ϕ ∈ L1. Let f ∈ Lp with support in (−a, a). Then ϕ ? f ∈ Lp
and

‖ϕ ? f‖p ≤ α‖f‖p
where αq = supI µ(I), I is any interval of length 2a and µ has density ϕ.

Proof. This follows by direct computation:∫
ϕ(x− y)f(y) dy =

∫
ϕ(x− y)f(y)1{|y|≤a} dy

≤
(∫

ϕ(x− y)fp(y) dy
)1/p(∫

ϕ(x− y)1{|y|≤a} dy
)1/q

= α

(∫
ϕ(x− y)fp(y) dy

)1/p

.

Now raise both sides to the power p, integrate and use Fubini’s Theorem.
Since λRλ has strictly positive density, the proposition can be used to estimate (7.15):

There is α < 1 such that

‖vn+1 − vn‖2 ≤ α‖H(vn − vn−1)1{|x|<a}‖2
≤ α‖H(vn − vn−1)‖2 = α‖vn − vn−1‖2.

This implies that vn converge to v in L2, and Hvn converges to Hv in L2. Then fn
converges to f in L2, where f is defined by

f =

{
f0, |x| > a,

−λHv, |x| < a.

Since vn = HRλfn we see that v = HRλf = RλHf , i.e., v satisfies (7.13).
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Using (7.16) in (7.13) we see that dv/dx = 0 for |x| < a or v is a constant. Thus (v, f)
is a solution of our problem. Note that since v = RλHf , v is absolutely continuous.

Finally, we prove the uniqueness of the solution. Suppose u and v are solutions of the
above problem. In other words,

λHu + f1 =
d

dx
u,

u′ = 0, |x| < a,

f1 = f0, |x| > a,

λHv + f2 =
d

dx
v,

v′ = 0, |x| < a,

f2 = f0, |x| > a.

Then w = u− v satisfies 
λHw + f =

d

dx
w,

w′ = 0, |x| < a,

f = 0, |x| > a.

Since d
dx w = 0, |x| < a, we must have f = −λHw, |x| < a.

From what we have said, the unique solution w is given by w = HRλf. Hence

‖w‖2 = ‖Rλf‖2 = ‖Rλ[(−λHw)1{|x|<a}]‖2 = ‖λRλ(1{|x|<a}Hw)‖2 ≤ α‖Hw‖2 = α‖w‖2
where α < 1, so we must have w = 0. This shows that the solution is unique.

Now suppose the given function f0 is odd in |x| > a, i.e. f0(x) = −f0(−x) for |x| > a.
Extend f0 to be odd. Now Rλ is a function of |x| so Rλ takes odd functions into odd
functions. The same is true of the Hilbert transform. It follows that v0 is odd. The
definition of f1 shows that f1 is also odd, etc. All vn and hence the limit v are odd. But
v is constant in (−a, a). So it must be zero.

Thus we have:

Proposition 7.2. Let f0 ∈ L2(|x| > a) and be odd. Then there exists a unique pair
v, f ∈ L2 such that f is odd, f = f0 in |x| > a, v = 0 in |x| < a and

λ

π

∫ +∞

−∞

v − (y)
x− y

dy + f =
dy

dx
. (7.16)

7.2.2. Numerical example. Numerical solutions to the model can be computed using
Matlab. To this end, the equation

−Adp
dx

(x) =
P0

x
−
∫ ∞
a

p(ζ)
(

1
x− ζ

+
1

x+ ζ

)
dζ, x > a,

is transported to the interval s ∈ (0, 1] using the change of variable s = a/x, x > a,

dp

ds
=
dp

dx

(
− a

s2

)
, so

dp

dx
= −s

2

a

dp

dx
.

So, the equation becomes

A
s2

a

dp

ds
=
sP0

a
−
∫ 0

1

p(t)
(

1
a
s −

a
t

+
1

a
s + a

t

)(
− a
t2

)
dt =

sP0

a
−
∫ 1

0

2p(t)
t2 − s2

dt,

i.e.,

As
dp

ds
+ 2a

∫ 1

0

p(t)
t2 − s2

dt = P0.
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This equation is now discretized. We use the standard two-point discretization for the
derivative, and a somewhat modified mid-point rule for the singular integral. The sam-
pling points for the integration variable t are chosen to be the midpoints between the
sampling points for s. In this way, the singularity does not introduce an added difficulty.
However, we cannot evaluate p at these points and replace p(tj) by the average of the
two closest points (p(sj) + p(sj+1))/2.
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Fig. 7.4. Solution to the integral equation with a = 3 and p = 4 and 500 subintervals
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Fig. 7.5. Solution to the integral equation with a = 3 and p = 4 and 1000 subintervals
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Numerical results are shown in the figures. Figures 7.4 and 7.5 contain the solution
to the integral equation when a = 3 and p = 4. The upper graph in both figures shows
the solution in the re-scaled finite domain, the lower graph shows the solution in the
domain [a,∞). In Figure 7.4 we used a discretization with 500 subintervals, Figure 7.5
uses a discretization with 1000 subintervals. One can see that the value of p(x) at x = a

is independent of the discretization.

7.3. Methods from the theory of pseudo-differential operators

7.3.1. Introduction and statement of the result. In this section we use asymptotic
analysis derived from the theory of pseudo-differential operators to examine a bridged
crack in R2 which is located along the x1 axis. We will present a condensed version of an
earlier paper [55]. We assume that the crack is symmetric about x1 = 0 with end points at
x1 = ±c. Its opening is described by a function U(x1). The crack is fully bridged by fibers
which are perpendicular to it (i.e. in the x2-direction). We assume a linear relationship
between the opening of the crack U(x1) and the bridging force P (x1), i.e. the force in
the x2-direction at the point x1,

P (x1) = g(x1)U(x1) with g(x1) > 0.

The balance of forces acting on the crack is given by

T (x1) = σ(x1) + P (x1), −c < x1 < c,

where T (x1) denotes the outside forces and σ denotes the normal stress in the x2-direction.
σ satisfies

σ = CP

∫ c

−c

b(y1)
x1 − y1

dy1,

where we understand the integral to be the Cauchy principal value. b denotes the dis-
location density along the crack. The constant C depends on the elastic moduli of the
material. This dependence is non-trivial and an explicit expression can be found in the
paper of M. Hori and S. Nemat-Nasser [53]. This equation is obtained by solving the ba-
sic field equations for a transversely isotropic linear elastic solid in plane stress or plane
strain. The plane of isotropy is given by x1, x3, the axis of symmetry is given by x2.
The complete derivation is carried out in more generality in [53]. The crack-opening
displacement U(x1) is related to the dislocation density b via

U(x1) = −
∫ x1

−c
b(y1) dy1, U(±c) = 0.

We combine these quantities and get

CP

∫ c

−c

b(y1)
x1 − y1

dy1 − g(x1)
∫ x1

−c
b(y1) dy1 = T (x1).

To continue we use the following normalizations:

x = x1/c, u(x) = U(x1)/c, b̂(x) = b(x1),

ε = C/c, λ(x) = g(x1)/C, −cf(x) = T (x1)/C.
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We arrive at

εP

∫ 1

−1

b̂(y)
x− y

dy − λ
∫ x

−1

b̂(y) dy = −f(x).

We substitute b̂(x) = −u′(x) to get the following singularly perturbed integral equation:

λ(x)u(x)− ε d
dx

P

∫ 1

−1

u(y)
x− y

dy = f(x), −1 < x < 1. (7.17)

Equation (7.17) is an example of a strongly singular integral equation. This formulation
of the bridged crack problem can be found in [53, 54]. Equation (7.17) also appears in
other applications, most notably in the theory of airfoils of finite span where it is known
as Prandtl’s integro-differential equation [93, 120].

The existence and uniqueness of an L2-solution to (7.17) is a classical result (see,
e.g., [93, 120], and the works cited in those papers). A solution to this equation was for-
mally computed in [45, 54, 135]. In [45] a more general class of strongly singular integral
equations with constant coefficient λ is investigated. In [39], Wiener–Hopf techniques are
used to analyze the problem. The Wiener–Hopf factorization procedure is appropriate
for solving constant coefficient elliptic boundary value problems. This method was gen-
eralized by Eskin (see [39]) to solve variable coefficient elliptic boundary value problems
using pseudo-differential calculus. Indeed, [39, Chapter 27] gives a general treatment of
singularly perturbed elliptic pseudo-differential boundary value problems on manifolds.
[39] is formulated in much greater generality than needed to solve (7.17).

7.3.2. Notations and statement of the main results. In this section we will refor-
mulate (7.17) using the notations of pseudo-differential operators. Let v̂ denote the usual
Fourier transform of v:

v̂(ξ) =
∫ ∞
−∞

v(x)eiξx dx.

A pseudo-differential operator A(x,D), where D = −i ddx , is defined by

A(x,D)v(x) =
1

2π

∫ ∞
−∞

A(x, ξ)v̂(ξ)e−ixξ dξ.

The function A(x, ξ) is called the symbol of the pseudo-differential operator. To begin,
let lλ > 0 and lf be arbitrary extensions of λ and f in L2(R), i.e. lf ∈ L2(R) and
lf |[−1,1] = f and analogously for lλ. Note that we do not make any further requirements
on these extensions. Consider the equation

lλ(x)u(x)− ε d

dx

∫ ∞
−∞

u(y)
x− y

dy = lf(x). (7.18)

Taking the Fourier transform of

−ε d

dx

∫ ∞
−∞

u(y)
x− y

dy,

we obtain
ε
√
π/2 |ξ|û(ξ).
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To simplify notation let ε = ε
√
π/2. The equation (7.18) can therefore be rewritten as a

pseudo-differential equation

A(x,D, ε)u(x) =
1

2π

∫ ∞
−∞

A(x, ξ, ε)û(ξ)e−ixξ dξ = lf(x), (7.19)

with symbol
A(x, ξ, ε) = lλ(x) + ε|ξ|.

Observe that
A(x, ξ, ε) > 0, ∀ξ ∈ R.

In particular, this means that the equation

A(x, ξ, ε) = 0

has no real solutions and the corresponding pseudo-differential operator is called elliptic.
Our main concern is the computation of leading order asymptotics of the solution of

(7.17). To this end we have the following theorem.

Proposition 7.3. Let f ∈ C∞[−1, 1] and λ ∈ C∞[−1, 1]. Then the solution u has an
asymptotic expansion u = uε + wε, where the leading term uε is given by:

uε(x) =



(
1 + x

ε

)1/2
f(x)
λ(x)

as (1 + x)/ε→ 0+,

f(x)
λ(x)

as ε→ 0,(
1− x
ε

)1/2
f(x)
λ(x)

as (1− x)/ε→ 0+,

x ∈ (−1, 1).

Moreover, wε ∈ C∞[−1, 1] and satisfies

‖wε‖L∞([−1,1]) ≤ Cδε1−δ

for all δ > 0. Here Cδ only depends on f and δ.

Remark. Note that this result is independent of the particular extensions of f and λ.

7.3.3. Proof of Proposition 7.3. The equation is a variable coefficient singular Wiener–
Hopf-type equation. Constant coefficient equations of this type are commonly solved using
the Wiener–Hopf factorization method. In [39] this procedure is extended to symbols with
non-constant coefficients. This requires the use of pseudo-differential calculus. Our proof
follows this approach.

Step 1: The operator (7.19) is strongly elliptic, i.e. it satisfies∫ ∞
−∞

A(x, ξ, ε)û(ξ)û(ξ) dξ ≥ C‖u‖2,

for a suitable positive constant C. In this equation û denotes the usual complex conjugate
and ‖ · ‖ denotes the L2-norm. It is well known that strongly elliptic equations admit
unique solutions (see, e.g., ([39]). Moreover, the solution satisfies

‖u‖ ≤ C‖f‖.
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Indeed, this estimate is not sharp, but follows from

‖u‖H1/2 ≤ ‖f‖H−1/2 ,

since in our case f ∈ L2 (cf. [39]).

Step 2: Let
A0(x, ξ) = lλ(x)

be the unperturbed (reduced) symbol, i.e. the symbol of (7.18) with ε = 0. The reduced
equation

A0(x, ξ)u0(x) = lλ(x)u0(x) = lf(x)

has a unique solution u0 ∈ L2(−1, 1), indeed u0(x) = lf(x)/lλ(x). In [−1, 1] this becomes
u0(x) = f(x)/λ(x). We can write

A(x, ξ, ε) = A0(x, ξ)A1(x, εξ),

where

A1(x, εξ) = 1 +
|εξ|
lλ(x)

carries all the ε-dependence of A. Moreover, A1(x, εξ) converges to 1 as ε→ 0.
Using this normalization, we see that A(x, ξ, ε) satisfies the hypotheses of [39, Theorem

27.1, p. 346] (with A2 = 0).

Step 3: To obtain the asymptotic expansions we first expand A1(x, εξ). To shorter nota-
tion we will omit the x-dependence of lλ and use η = εξ. Observe that

A1(x, η) =
1
lλ

(lλ+ |η|) =
1
lλ

√
lλ2 + η2 + 2lλ|η| = 1

lλ

√
lλ2 + η2

√
1 +

2lλ|η|
lλ2 + η2

.

By the arithmetic-geometric means inequality we have

0 ≤ 2lλ|η|
lλ2 + η2

≤ 1,

and therefore the series√
1 +

2lλ|η|
lλ2 + η2

= 1 +
1
2

2lλ|η|
lλ2 + η2

− 1
8

(
2lλ|η|
lλ2 + η2

)2

+
1
16

(
2lλ|η|
lλ2 + η2

)3

+ · · ·

converges for all η ∈ R and all lλ > 0. Combining this with (6) we obtain

A1(x, η) =
1
lλ

√
lλ2 + η2 +

1
2lλ

2lλ|η|√
lλ2 + η2

− 1
8lλ

(
lλ|η|

lλ2 + η2

)2√
lλ2 + η2

+
1

16lλ

(
2lλ|η|
lλ2 + η2

)3√
lλ2 + η2 + · · · .

We can write

A1(x, η) =
1
lλ

√
lλ2 + η2 +

1
2lλ

2lλ|η|√
lλ2 + η2

+O(|η|−1/2)

= Ap1(x, η) +
1

2lλ
2lλ|η|√
lλ2 + η2

+O(|η|−1/2) = Ap1(x, η) +Q(x, η).
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Observe that the term R(x, η) is of lower order, which has a smoothing effect when taking
the inverse Fourier transform. Ap1 is called the principal part of A1. The function A

p
1(x, η)

can be analytically continued to a domain in the complex plane which contains the entire
real line. To do this we have to choose a branch cut starting at η = +ilλ which stays
entirely in the upper half plane, and a second branch cut starting at η = −ilλ which
stays entirely in the lower half plane.

Step 4: The principal part Ap1(x, η) as an analytic function of η can be factored into a
plus function A+

1 (x, η) and a minus function A−1 (x, η) as follows:

Ap1(x, η) =
1
lλ

√
lλ2 + η2 =

1√
ilλ

√
η + ilλ

1√
−ilλ

√
η − ilλ = A+

1 (x, η)A−1 (x, η),

where
A+

1 (x, η) =
1√
ilλ

√
η + ilλ and A−1 (x, η) =

1√
−ilλ

√
η − ilλ.

This factorization is consistent with the choice of branches above, i.e. the branch cut for
A+

1 starts at η = −ilλ and stays in the lower half plane, and therefore A+
1 is analytic in

the upper half plane, and analogously for A−1 .
To continue let 0 < δ < ε, and let α(x) be a smooth function with α(x) = 1 for

−1 < x < −1 + 2δ and α(x) = 0 for 1− 2δ < x < 1. Then we get a new factorization for
Ap1 via

A+
3 (x, η) = (A+

1 (x, η))α(x)(A−1 (x, η))1−α(x), (7.20)

A−3 (x, η) = (A−1 (x, η))α(x)(A+
1 (x, η))1−α(x).

Observe that
Ap1(x, η) = A+

3 (x, η)A−3 (x, η)

for all x ∈ [−1, 1] and that

A+
3 (−1, η) = A+

1 (−1, η), A−3 (−1, η) = A−1 (−1, η),

A+
3 (1, η) = A−1 (1, η), A−3 (1, η) = A+

1 (1, η).

This process is an extension of the process found in [39].
The purpose of such a factorization is to change the singular perturbation problem,

which has the small parameter ε in the highest order term, into a regular perturbation
problem where ε is only in lower order terms.

Now let us consider the extended differential equation

A(x,D, ε)uε = lf + f−ε ,

where f−ε is supported outside [−1, 1]. Following the steps of [39] we write uε = (A+
3 )−1vε

and apply the operator
p(A−3 )−1

to the equation. Here p denotes the restriction to [−1, 1]. We get

p(A−3 )−1A(A+
3 )−1vε = p(A−3 )−1lf,

p(A−3 )−1(A0A
1
p +A0Q)(A+

3 )−1vε = p(A−3 )−1lf,

p(A0 +Q1)vε = p(A−3 )−1lf.



Boundary value problems in nonsmooth domains 139

In the last expression Q1 consists of the term p(A−3 )−1A0Q(A+
3 )−1 and of lower order

terms which arise from the rules of composition for pseudo-differential operators. The
principal part of p(A−3 )−1A0Q(A+

3 )−1 is given by

p

(
|η|

lλ2 + η2
− lλ

4

(
|η|

lλ2 + η2

)2

+ · · ·
)
.

It follows that there exist constants Cs such that

‖p(A−3 )−1A0Q(A+
3 )−1vε‖Hs−1(R) ≤ Csε‖vε‖Hs(R) ∀ε > 0, ∀s.

In particular this statement holds for s = 1, which gives an L2-error bound for u. The case
s = 2 gives an L∞ bound for the higher order terms of the asymptotic expansion. Theorem
18.3 (composition of pseudo-differential operators) of [39] implies a similar estimate for
the remaining parts of Q1 (cf. [39, p. 348, equation (27.54)].

Following the computations of [39, p. 248] the explicit solution uε is given by

uε = (A+
3 )−1(I +R0pA

p
1)−1R0p(A−3 )−1lf, (7.21)

where I is the identity operator, and R0 is the inverse of A0. In our specific case R0 is
just multiplication by 1/lλ.

Step 5: We next obtain an explicit expression near x = −1 the expression near x = 1
follows from an analogous computation. Near x = −1, we can use A−1 and A+

1 directly.
For sufficiently smooth functions f , (7.21) can be rewritten as

uε = (A+
3 )−1vε + u(0)

ε ,

where vε is the solution to
pA0vε = p(A−3 )−1lf,

and u(0)
ε is smooth. Following the steps in [39] we see that

vε = u0 + u(1)
ε ,

where u0 = f/lλ, the solution to the reduced equation, and u(1)
ε is smooth. Thus we get

uε = (A+
3 )−1u0 + u(3)

ε . (7.22)

Next observe that near x = −1, we can localize the symbol for (A3+)−1 as follows:

A+
3 (x, η)−1 =

√
iλ(−1)√
η + iλ

+B+(x, η) = A+
1 (−1, η)−1 +B+(x, η)

where B+ is a lower order term. Computing the inverse Fourier transform of A+
1 (−1, η)−1

we get

a(x/ε) =
1

2π

∫ ∞
−∞

√
iλ(−1)√
η + iλ

eixξ dξ =
1

2πε

∫ ∞
−∞

√
iλ(−1)√
η + iλ

eiηx/ε dη

=
1√
πε

(
x

ε

)−1/2

e−λ(−1)x/εΘ(x)

where Θ(x) denotes the usual Heaviside function. Observe that a(x/ε)→ δ(x) as ε→ 0.
On the other hand, we may represent the leading term in the pseudo-differential equation
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(7.22) as a convolution:

uε(y) =
∫ ∞
−∞

a(x/ε)u0(y − x) dx+ u(4)
ε . (7.23)

Observe that a(x/ε) = 0 for x < 0 and that u0(y−x) = 0 for y−x < −1, i.e. for x > 1+y.
Thus we can replace the limits of integration in (7.23) to get

uε(y) =
∫ 1+y

0

a(x/ε)u0(y − x) dx+ u(4)
ε .

Finally, we expand u0(y − x) into a Taylor series around y to get

u0(y − x) = u0(y) + u′0(y)x+ · · · .

Omitting the higher order terms we obtain

uε(y) =
∫ 1+y

0

a(x/ε)u0(y) dx+ u(5)
ε =

∫ 1+y

0

1√
πε

(
x

ε

)−1/2

e−λ(−1)x/εu0(y) dx+ u(5)
ε

=
∫ 1+y

0

1
ε

(
x

ε

)−1/2

u0(y) dx+ u(6)
ε = u0(y)

(
1 + y

ε

)1/2

+ u(6)
ε .

In this computation we used the fact that e−λ(−1)x/ε is rapidly decreasing for x/ε > 0
with leading term 1.

In the preceding computations the terms of the form u
(k)
ε for k = 1, . . . , 6 all satisfy

the estimates given in (27.60–27.80) of [39]. We combine this estimate with the Sobolev
imbedding theorem to get

‖u(k)
ε ‖L∞([−1,1]) ≤ Cδ,kε1−δ,

where Cδ,k depends only on f and k. These terms are combined to make up the error
term wε in Theorem 7.3, which therefore satisfies the same estimates.
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Fig. 7.6. The graph of S(y, ε) for ε = 1
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Fig. 7.7. The graph of S(y, ε) for ε = 0.1

The graphs of

S(y, ε) =
∫ 1+y

0

1
ε

(
x

ε

)−1/2

e−λ(−1)x/ε dx

are shown in Figure 7.6 and 7.7. In both cases we used λ(−1) = 1. In Figure 7.6 we used
ε = 1 and in Figure 7.7 we used ε = 0.1. One can see that this function approaches a step
function as ε→ 0 in a rather rapid way.



Boundary value problems in nonsmooth domains 141

The leading terms of the asymptotic expansion near x = 1 are computed in an anal-
ogous way. The only difference is that we use A−1 (+1, η). For x in the interior of (−1, 1),
uε converges pointwise to u0 as ε→ 0. This completes the proof of the theorem.

7.3.4. Concluding remarks. 1. There are other ways to obtain the leading order terms
for the solution to (1). Indeed, we can explicitly compute the inverse Fourier transform
of (Ap1(x, η))(−1) = λ/

√
λ2 + η2 as follows:

ã(x/ε) =
1

2π

∫ ∞
∞

λ√
λ2 + η2

e−ixξ dξ =
1

2πε
λ(x)

∫ ∞
−∞

e−i
x
ε η√

λ2 + η2
dη

=
λ(x)
επ

K0(|x/ε|λ(x)).

Here K0(·) denotes the modified Bessel function (see, for example, [14], for the definition
of this function).

As in the previous section, we can write the solution as a convolution. First observe
that u0(y − x) = 0 except when −1 ≤ x− y ≤ 1. Then write u0(y − x) = u0(y)− u′0(y)x
+ · · · . Using the leading term we get

uε(y) = u0(y)
∫ y+1

y−1

λ(x)
επ

K0(|x/ε|λ(x)) dx = u0(y)S(y, ε).

Then we make a change of variables in the integral and let s = x/ε to arrive at

S(y, ε) =
∫ (y+1)/ε

(y−1)/ε

λ(εs)
π

K0(|s|λ(εs)) ds

=
∫ (y+1)/ε

(y−1)/ε

λ(0)
π

K0(|s|λ(0)) ds+O(ε) = S̃(y, ε) +O(ε).
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Fig. 7.8. The graph of S̃(y, ε) for ε = 1
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Fig. 7.9. The graph of S̃(y, ε) for ε = 0.1

Using the properties of the modified Bessel function, S̃(y, ε) can be explicitly computed
and its graph is shown in Figures 7.8 and 7.9.

This method appears to be easier and more straightforward. However, the method
does not guarantee that the solution is supported in [−1, 1], but only that the solution
will decrease rapidly outside this interval. This makes the solutions depend on the specific
extensions lf of f and lλ of λ. Furthermore, the asymptotics are not correct near the
boundary. The factoring of Ap1(x, η) into a + and a − symbol as done in the previous
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section will guarantee that the support of the solution is contained in [−1, 1], and that
the leading terms of the asymptotics will be independent of the extension of the solution.
The method of this section will yield good results in the interior of [−1, 1], but it is not
very useful near the endpoints.

2. For constant values of λ asymptotic expansions of the solution to equation (7.17) were
obtained by Gautesen [45] and Willis and Nemat-Nasser [135]. These works also include
higher order terms. In [45] a Wiener–Hopf factorization is used to obtain a solution up
to O(ε3 log ε). [135] uses the asymptotic matching methods to obtain solutions correct to
order ε.

In principle the method introduced in this paper can also be used to find solutions to
higher order. One has to use more terms in the Taylor expansion of the symbol A1(x, η).
Furthermore, the expression

(I +R0pA
p
1)−1

of (7.21) can be expanded into a Neumann series. One must then collect terms of equal
order and can proceed to compute higher order approximations. However, this process is
rather arduous.

3. Equation (7.17) could also be considered on the positive real axis instead of a compact
interval. Our method can be directly modified for this situation. To do this one has to
change the exponent α(x) to a fixed exponent α = 1. The whole process becomes easier
since only the factorization (7.20) in the form

A+
3 (x, η) = A+

1 (x, η)

remains near x = 0. This will produce an asymptotic expansion near x = 0. Alternately,
one could follow the path of [136] and use the change of variable suggested there to
transform the equation into a problem on the interval (0, 1) and apply the present method
to this new problem.
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