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Abstract

Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial mapping. By the multidegree of F we mean
mdegF = (degF1, . . . , degFn) ∈ Nn. The aim of this paper is to study the following problem
(especially for n = 3): for which sequence (d1, . . . , dn) ∈ Nn is there a tame automorphism F of
Cn such that mdegF = (d1, . . . , dn)? In other words we investigate the set mdeg(Tame(Cn)),
where Tame(Cn) denotes the group of tame automorphisms of Cn.

Since mdeg(Tame(Cn)) is invariant under permutations of coordinates, we may focus on the
set {(d1, . . . , dn) : d1 ≤ · · · ≤ dn} ∩mdeg(Tame(Cn)).

Obviously, we have {(1, d2, d3) : 1 ≤ d2 ≤ d3} ∩ mdeg(Tame(C3)) = {(1, d2, d3) : 1 ≤ d2
≤ d3}. Not obvious, but still easy to prove is the equality mdeg(Tame(C3))∩{(2, d2, d3) : 2 ≤ d2
≤ d3} = {(2, d2, d3) : 2 ≤ d2 ≤ d3}.

We give a complete description of the sets {(3, d2, d3) : 3 ≤ d2 ≤ d3}∩ mdeg(Tame(C3))
and {(5, d2, d3) : 5 ≤ d2 ≤ d3} ∩mdeg(Tame(C3)). In the examination of the last set the most
difficult part is to prove that (5, 6, 9) /∈ mdeg(Tame(C3)). To do this, we use the two-dimensional
Jacobian Conjecture (which is true for low degrees) and the Jung–van der Kulk Theorem.

As a surprising consequence of the method used in proving that (5, 6, 9) /∈ mdeg(Tame(C3)),
we show that the existence of a tame automorphism F of C3 with mdegF = (37, 70, 105) implies
that the two-dimensional Jacobian Conjecture is not true.

Also, we give a complete description of the following sets: {(p1, p2, d3) : 2 < p1 < p2 ≤
d3, p1, p2 prime numbers } ∩ mdeg(Tame(C3)), {(d1, d2, d3) : d1 ≤ d2 ≤ d3, d1, d2 ∈ 2N + 1,
gcd(d1, d2) = 1} ∩ mdeg(Tame(C3)). Using the description of the last set we show that
mdeg(Aut(C3)) \mdeg(Tame(C3)) is infinite.

We also obtain a (still incomplete) description of the set mdeg(Tame(C3))∩{(4, d2, d3) : 4 ≤
d2 ≤ d3} and we give complete information about mdegF−1 for F ∈ Aut(C2).

2010 Mathematics Subject Classification: Primary 14Rxx; Secondary 14R10.
Key words and phrases: polynomial automorphism, tame automorphism, wild automorphism,

multidegree.
Received 20.4.2010; revised version 5.6.2011.
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0. Introduction

The object of principal interest in this paper is the multidegree (i.e. the sequence of
the degrees of the coordinate functions) of a polynomial automorphism of the vector
space Cn. Let us mention that in the Scottish Book ([33, Problem 79]) Mazur and Orlicz
posed the following question: “If F = (F1, . . . , Fn) : Cn → Cn is a one-to-one polynomial
map whose inverse is also a polynomial map, is each Fi of degree one?” In other words,
they asked whether every polynomial automorphism of Cn has multidegree (1, . . . , 1).

The answer to this question is obviously “no”, and in the Scotish Book itself one can
find the following example: let 1 ≤ i ≤ n and a = a(X1, . . . , Xi−1, Xi+1, . . . , Xn) ∈
C[X1, . . . , Xi−1, Xi+1, . . . , Xn]. Then

E : Cn 3 (x1, . . . , xn) 7→ (x1, . . . , xi−1, xi + a, xi+1, . . . , xn) ∈ Cn

is a polynomial automorphism with multidegree (1, . . . , 1,deg a, 1, . . . , 1). A map as above
is called an elementary polynomial map. Taking finite compositions of such elementary
maps and elements of the affine subgroup Aff(Cn), i.e. the group of polynomial automor-
phisms F = (F1, . . . , Fn) : Cn → Cn such that degFi = 1 for all i, we get automorphisms
called tame.

In 1942 Jung [9] proved that each polynomial automorphism of k2, where k is a field of
characteristic zero, is tame. Later, in 1953, van der Kulk extended Jung’s result to fields
of arbitrary characteristic. Since then several authors have given other proofs of that
result: Gutwirth [12] in 1961, Shafarevich [46] in 1966, Rentschler [42] in 1968, Makar-
Limanov [32] in 1970, Nagata [36] in 1972, Abhyankar and Moh [1] in 1975, Dicks [6] in
1983, McKay and Wang [29] in 1988. The stronger statement, also called the Shafarevich–
Nagata–Kombayashi theorem, saying that the group of all polynomial automorphisms of
k2 is the amalgamated product of the affine subgroup and the subgroup of de Jonquières
automorphisms over their intersection, can be found in [23], [17], [36], [6], [2] and without
proof in [46].

From the result of Jung and van der Kulk it also follows that if (d1, d2) is the multi-
degree of an automorphism of C2, then d1 | d2 or d2 | d1 (see Subsection 1.4).

Tame automorphisms are closely related to the problem of embedding of affine alge-
braic varieties. For example, in the proof of the famous Abhyankar–Moh–Suzuki theorem,
saying that every embedding of a line in C2 is rectifiable (i.e. a composition of the standard
embedding C 3 x 7→ (x, 0) ∈ C2 and an automorphism of C2), tame automorphisms play
a prominent role. This result, formulated in algebraic terms as follows: if f(T ), g(T ) ∈ k[T ]

and k[f(T ), g(T )] = k[T ], then either deg f(T ) | deg g(T ) or deg g(T ) |deg f(T ), was used
by Segre [45] to “prove” the Jacobian Conjecture. The problem of embeddings of affine
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6 M. Karaś

algebraic varieties was also considered by Jelonek [13, 14, 15], Kaliman [16], Srinivas [52]
and Craighero [5].

Since Jung and van der Kulk proved their theorem, many authors have tried to prove
or disprove the similar result for dimension n ≥ 3, but without any results. The most
famous candidate for a so-called wild automorphism (i.e. one that is not tame) was
proposed by Nagata in 1972. It took more than thirty years to prove that the Nagata
automorphism

σ : C3 3 (x, y, z) 7→ (x+ 2y(y2 + zx)− z(y2 + zx)2, y − z(y2 + zx), z) ∈ C3

is indeed wild. This remarkable result was obtained by Shestakov and Umirbaev [49].
The two main ingredients in the proof of the above result are recalled as Theorems 2.6
and 2.14 (see Subsections 2.1 and 2.3). These two theorems are also basic tools in our
considerations concerning multidegrees of tame automorphisms of C3.

The paper is organized as follows. In Section 1 we fix notation, recall basic definitions,
and discuss the multidegree of polynomial automorphisms of C2 (see Subsection 1.4). The
discussion is based on the Jung–van der Kulk result. In Section 2 we recall the notion of
a Poisson bracket of two polynomials, and two theorems due to Shestakov and Umirbaev
(Theorems 2.6 and 2.14). They are the main tools used in the paper. We also prove that
the degree of the Poisson bracket is an invariant of a linear change of coordinates (Lemma
2.8). This is a new result. In this section we also explain in detail that an example of
a polynomial automorphism (Example 2.11) due to Shestakov and Umirbaev does not
admit an elementary reduction, and recall a theorem from number theory (Theorem 2.15)
that will be useful in some parts of the paper.

In Section 3 we collect some general results about multidegrees. Some of them were
already published by the author: Proposition 3.1, Proposition 3.2 and Corollary 1.3 [18].
The other results in that section (except Theorem 3.14 due to Kuroda) are new. The
most important results of that section are Proposition 3.2, Theorem 3.15 and Lemma
3.20.

In Section 4 we discuss tame automorphisms of C3 with multidegree of the form
(p1, p2, d3), 2 < p1 < p2 ≤ d3, where p1 and p2 are prime numbers, and more generally,
coprime odd numbers. In both cases we give a necessary and sufficient numerical condition
for (p1, p2, d3) to be the multidegree of a tame automorphism of C3. The results of that
section were already published by the author [19], and by the author and J. Zygadło [22].

Section 5 presents results due to the author [20]. They concern tame automorphisms
with multidegeree (3, d2, d3), 3 ≤ d2 ≤ d3.

The results of Sections 6 and 7 are new and concern tame automorphisms with mul-
tidegree (4, d2, d3), 4 ≤ d2 ≤ d3 (Section 6), and (p, d2, d3), 5 ≤ p ≤ d2 ≤ d3, where p is a
prime (Section 7). It is of interest that in showing that there is no tame automorphism of
C3 with multidegree (5, 6, 9), we use the Jacobian Conjecture (actually the Moh theorem).
On the other hand, it is very surprising that the existence of a tame automorphism of
C3 with multidegree (37, 70, 105) implies that the two-dimensional Jacobian Conjecture
is false (this is proved in Section 7).

In Section 8 we present a result due to J. Zygadło [54], and in the last section we give
new results on the multidegree of the inverse of a polynomial automorphism of C2.
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1. Notation, basic definitions and two-dimensional case

1.1. Notation. We assume that 0 ∈ N, and we denote by N∗, Z∗, C∗, respectively, N\{0},
Z \ {0}, C \ {0}. By C[X1, . . . , Xn] we denote the polynomial ring in n variables over C.
In particular, X1, . . . , Xn denote variables, and x1, . . . , xn denote coordinates in Cn. We
will work over the complex field C, but all results remain valid over any algebraically
closed field of characteristic zero.

For any f ∈ C[X1, . . . , Xn], deg f denotes the usual total degree of f.We say that f is
homogeneous if f is a sum of monomials of the same degree. We denote by f the leading
form of f , i.e. the homogeneous part of f of the maximal degree. Of course, deg f = deg f.

Moreover, gcd(d1, . . . , dn) and lcm(d1, . . . , dn) denote the greatest common divisor
and the least common multiple of d1, . . . , dn, respectively.

1.2. Examples of polynomial automorphisms. First of all, recall that a polyno-
mial mapping F : Cn → Cn is a mapping whose coordinate functions Fi, where F =

(F1, . . . , Fn), are polynomials. By a polynomial automorphism of Cn (later, just automor-
phism) we mean a polynomial mapping F : Cn → Cn such that there exists a polynomial
mapping G : Cn → Cn with F ◦G = G ◦F = idCn . We then also say that F is invertible.
The group of all polynomial automorphisms of Cn is denoted by Aut(Cn).

Polynomial automorphisms play a prominent role in affine algebraic geometry [33, 47].
Typical problems are the Jacobian Problem [3, 4, 9, 23, 36, 37, 38, 39, 40], existence of wild
automorphisms [8, 49, 50, 51], the inverse formula [28, 29, 30, 35] or stable tameness [48].

There are some special kinds of polynomial automorphisms of Cn:

• Affine polynomial automorphisms, i.e. polynomial automorphisms F = (F1, . . . , Fn)

such that degFi = 1 for i = 1, . . . , n. The set of all such automorphisms will be
denoted Aff(Cn); it is a subgroup of Aut(Cn).

• Linear automorphisms, i.e. affine automorphisms F : Cn → Cn such that F (0, . . . , 0) =

(0, . . . , 0). This is of course the same as the general linear group, denoted GLn(C).

• Elementary automorphisms, i.e. maps of the form

F : Cn 3 (x1, . . . , xn) 7→ (x1, . . . , xi + f(x1, . . . , xi−1, xi+1, . . . , xn), . . . , xn) ∈ Cn

for some i ∈ {1, . . . , n} and f ∈ C[X1, . . . , Xi−1, Xi+1, . . . , Xn]. One can easily see that

F−1(x1, . . . , xn) = (x1, . . . , xi − f(x1, . . . , xi−1, xi+1, . . . , xn), . . . , xn).

• Triangular automorphisms, i.e. maps of the form

F : Cn 3 (x1, . . . , xn) 7→ (x1, x2 + f1(x1), . . . , xn + fn−1(x1, . . . , xn−1)) ∈ Cn, (1.1)

where f1 ∈ C[X1], f2 ∈ C[X1, X2], . . . , fn−1 ∈ C[X1, . . . , Xn−1]. One can check that F
is invertible and

F−1



x1
x2
x3
...


 =


x1

x2 − f1(x1)

x3 − f2(x1, x2 − f1(x1))
...

 .
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We will also say that F is triangular if F is of the form (1.1) after some permutation
of variables.
• De Jonquières automorphisms, i.e. mappings of the form

F : Cn 3


x1
x2
...
xn

 7→

a1x1 + f1(x2, . . . , xn)

a2x2 + f2(x3, . . . , xn)
...

anxn + fn

 ∈ Cn, (1.2)

where ai ∈ C∗, fi ∈ C[Xi+1, . . . , Xn] for all 1 ≤ i ≤ n − 1 and fn ∈ C. We then write
F ∈ J(Cn). As for triangular mappings, one can check that if F ∈ J(Cn), then F is
invertible. Also, one can verify that J(Cn) is a subgroup of Aut(Cn).

• Tame automorphisms, i.e. compositions of a finite number of affine and triangular
automorphisms. Sometimes a tame automorphism is defined as a composition of a finite
number of affine and elementary automorphisms, or as a composition of a finite number
of affine and de Jonquières automorphisms. One can check that all these definitions
are equivalent.

To end this section, recall that for any polynomial mapping F : Cn → Cn we have
the C-homomorphism F ∗ : C[X1, . . . , Xn]→ C[X1, . . . , Xn] defined by

F ∗ : C[X1, . . . , Xn] 3 h 7→ h ◦ F ∈ C[X1, . . . , Xn],

and for any C-homomorphism Φ : C[X1, . . . , Xn] → C[X1, . . . , Xn] we have the polyno-
mial mapping Φ∗ : Cn → Cn defined as

Φ∗ : Cn 3 (x1, . . . , xn) 7→ (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)) ∈ Cn,

where Fi = Φ(Xi). Moreover, recall that (F ∗)∗ = F, (Φ∗)
∗ = Φ, and F , is an automor-

phism if and only if F ∗ is a C-automorphism of C[X1, . . . , Xn]. Thus one can translate
the notions of affine, linear, elementary, triangular and tame automorphisms of Cn into
the language of C-automorphisms of C[X1, . . . , Xn].

1.3. Degree, bidegree and multidegree. Let F = (F1, . . . , Fn) : Cn → Cn be any
polynomial map. By the degree of F , denoted degF , we mean the number

degF = max{degF1, . . . ,degFn},

and by the multidegree of F , denoted mdegF , we mean the sequence of natural numbers

mdegF = (degF1, . . . ,degFn).

For n = 2 the multidegree is called the bidegree, and denoted bideg (see e.g. [7]).
For a fixed n ∈ N, we will also consider the mappings

deg : End(Cn) 3 F 7→ degF ∈ N, mdeg : End(Cn) 3 F 7→ mdegF ∈ Nn,

where End(Cn) denotes the set of all polynomial mappings Cn → Cn.
One of the main goals of this paper is to obtain a description of the sets

mdeg(Aut(Cn)),mdeg(Tame(Cn)) ⊂ Nn.
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If n = 1 the answer is

mdeg(Aut(C1)) = mdeg(Tame(C1)) = {1}.

The description for n = 2, based on a theorem of Jung and van der Kulk, will be given
in the next subsection. The question for n ≥ 3 is much more complicated, and will be
investigated in the rest of the paper. The very first result in this direction says that
(3, 4, 5) /∈ mdeg(Tame(C3)) [18]. The next results obtained by the author [19, 20, 22] are
also included.

Since for any (F1, . . . , Fn) ∈ Aut(Cn) we have degFi ≥ 1, i = 1, . . . , n, and since for
any permutation σ of {1, . . . , n} and any sequence (d1, . . . , dn) ∈ Nn we have

(d1, . . . , dn) ∈ mdeg(Tame(Cn)) ⇔ (dσ(1), . . . , dσ(n)) ∈ mdeg(Tame(Cn))

and
(d1, . . . , dn) ∈ mdeg(Aut(Cn)) ⇔ (dσ(1), . . . , dσ(n)) ∈ mdeg(Aut(Cn)),

in our considerations we can always assume that 1 ≤ d1 ≤ · · · ≤ dn. In other words, we
will consider the sets

mdeg(Tame(Cn)) ∩ {(d1, . . . , dn) : 1 ≤ d1 ≤ · · · ≤ dn} ⊂ Nn

and
mdeg(Aut(Cn)) ∩ {(d1, . . . , dn) : 1 ≤ d1 ≤ · · · ≤ dn} ⊂ Nn.

1.4. Jung and van der Kulk result. Before giving a description of the set
mdeg(Tame(C2)), we recall the following two classical results.

Proposition 1.1 ([7, Cor. 5.1.3]). Tame(C2) is the amalgamated product of Aff(C2)

and J(C2) over their intersection, i.e. Tame(C2) is generated by these two groups and if
τi ∈ J(C2) \Aff(C2) and λi ∈ Aff(C2) \ J(C2), then τ1 ◦ λ1 ◦ · · · ◦ τn ◦ λn ◦ τn+1 does not
belong to Aff(C2).

Let us here recall the definition of an amalgamated product, following [43].

Definition 1.2. Let G be a group and let A,B be two subgroups with C = A ∩B. We
denote by Φ (resp. Ψ) a complete set of representatives of the left coset space A/C (resp.
B/C) subject only to the restriction that the representative of C itself is the neutral
element of G. We say that G is an amalgamated product of A and B over C if every
element g ∈ G can be written uniquely as g = ϕ0ψ1ϕ1ψ2 · · ·ϕn−1ψnϕnγ for suitable
n ∈ N, ϕ0, . . . , ϕn ∈ Φ, ψ1, . . . , ψn ∈ Ψ, γ ∈ C, where only ϕ0, ϕn and γ may be the
neutral element.

The second result is the following

Corollary 1.3 ([7, Cor. 5.1.6]). Let F = (F1, F2) ∈ Tame(C2) with bidegF = (d1, d2).

Let hi denote the homogeneous component of Fi of degree di. Then:

(a) d1|d2 or d2|d1.
(b) If degF > 1, then we have:

(i) if d1 < d2, then h2 = ch
d2/d1
1 for some c ∈ C,

(ii) if d2 < d1, then h1 = ch
d1/d2
2 for some c ∈ C,
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(iii) if d1 = d2, then there exists λ ∈ Aff(C2) such that deg F̃1 > deg F̃2, where
F̃ = (F̃1, F̃2) = λ ◦ F.

From the above corollary we obtain

mdeg(Tame(C2)) ∩ {(d1, d2) : 1 ≤ d1 ≤ d2} ⊂ {(d1, d2) ∈ (N∗)2 : d1 | d2}.

Since for d1 | d2 and

F1 : C2 3 (x, y) 7→ (x+ yd1 , y) ∈ C2, F2 : C2 3 (u, v) 7→ (u, v + ud2/d1) ∈ C2,

F2 ◦ F1 is a tame automorphism of C2 with mdeg(F2 ◦ F1) = (d1, d2), we see that

mdeg(Tame(C2)) ∩ {(d1, d2) : 1 ≤ d1 ≤ d2} = {(d1, d2) ∈ (N∗)2 : d1 | d2}.

To obtain a description of the set mdeg(Aut(C2)), we also need the following result
due to Jung [9] and van der Kulk [23].

Theorem 1.4 (Jung–van der Kulk, see e.g. [7, Thm. 5.1.11]). We have Aut(C2) =

Tame(C2). More precisely, Aut(C2) is the amalgamated product of Aff(C2) and J(C2)

over their intersection.

Using Theorem 1.4, we of course obtain

mdeg(Aut(C2)) = mdeg(Tame(C2)),

and so

mdeg(Aut(C2)) ∩ {(d1, d2) : 1 ≤ d1 ≤ d2} = {(d1, d2) ∈ (N∗)2 : d1 | d2}.

A crucial result, used in the proof of the Jung–van der Kulk result, is the following
lemma and the notion of elementary reduction.

Lemma 1.5 (see e.g. [7, Lem. 10.2.4]). Let f, g ∈ C[X,Y ], f, g 6= 0, be homogeneous
polynomials such that Jac(f, g) = 0. Then there exists a homogeneous polynomial h such
that:

(i) f = c1h
n1 and g = c2h

n2 for some integers n1, n2 ≥ 0 and c1, c2 ∈ C∗.
(ii) h is not of the form chs0 for any c ∈ k∗, any h0 ∈ k[x, y] and any integer s > 1.

Recall that an automorphism F = (F1, . . . , Fn) admits an elementary reduction if
there exists an elementary automorphism τ : Cn → Cn such that for G = (G1, . . . , Gn) =

τ ◦ F we have
mdegG < mdegF,

i.e.
degGi ≤ degFi for all i = 1, . . . , n, degGi < degFi for some i.

We then say that G is an elementary reduction of F. One can easily notice that F
admits an elementary reduction if there exists i ∈ {1, . . . , n} and a polynomial g ∈
C[Y1, . . . , Yn−1] such that

deg(Fi − g(F1, . . . , Fi−1, Fi+1, . . . , Fn)) < degFi.

We will also need the following generalization of the above lemma.

Proposition 1.6. Let f, g ∈ C[X1, . . . , Xn] be homogeneous, algebraically dependent
polynomials. Then there exists a homogeneous polynomial h ∈ C[X1, . . . , Xn] such that:
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(i) f = c1h
n1 and g = c2h

n2 for some integers n1, n2 ≥ 0 and c1, c2 ∈ C∗.
(ii) h is not of the form chs0 for any c ∈ C∗, any h0 ∈ C[X1, . . . , Xn] and any integer

s > 1.

One can obtain the above result using Lemma 2 in [53].

2. Main tools

2.1. Poisson bracket and degree of polynomials. In this section we present the first
main tool which we will use in our considerations: the Poisson bracket of two polynomials
and a theorem that estimates from below the degree of a polynomial of the form h(f, g),
where f, g ∈ C[X1, . . . , Xn] and h ∈ C[X,Y ].

We start with the definition of a *-reduced pair.

Definition 2.1 ([49, Def. 1]). A pair f, g ∈ C[X1, . . . , Xn] is called *-reduced if

(i) f, g are algebraically independent;
(ii) f, g are algebraically dependent;
(iii) f /∈ C[g] and g /∈ C[f ].

Moreover, we say that f, g is a p-reduced pair if f, g is a *-reduced pair with deg f < deg g

and p = deg f/gcd(deg f, deg g).

One may ask whether p can be equal to 1 for a p-reduced pair f, g. The answer is
given by the following

Proposition 2.2. If f, g is a p-reduced pair, then p > 1.

Proof. If f, g is p-reduced, then f and g are algebraically dependent. This means, by
Proposition 1.6, that there is a homogeneous polynomial h such that

f = αhl and g = βhm

for some α, β ∈ C∗ and l,m ∈ N. Assume that p = deg f/gcd(deg f, deg g) = 1. Then
l |m, and so g = γf

r
for r = m/l and γ ∈ C∗. This contradicts condition (iii) of Definition

2.1.

For any f, g ∈ C[X1, . . . , Xn] we denote by [f, g] the Poisson bracket of f and g, i.e.
the formal sum ∑

1≤i<j≤n

(
∂f

∂Xi

∂g

∂Xj
− ∂f

∂Xj

∂g

∂Xi

)
[Xi, Xj ],

where [Xi, Xj ] are formal objects satisfying the condition

[Xi, Xj ] = −[Xj , Xi] for all i, j.

We also define
deg [Xi, Xj ] = 2 for all i 6= j,

deg 0 = −∞ and

deg [f, g] = max
1≤i<j≤n

deg

{(
∂f

∂Xi

∂g

∂Xj
− ∂f

∂Xj

∂g

∂Xi

)
[Xi, Xj ]

}
.
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Since 2−∞ = −∞, we have

deg [f, g] = 2 + max
1≤i<j≤n

deg

(
∂f

∂Xi

∂g

∂Xj
− ∂f

∂Xj

∂g

∂Xi

)
,

and hence
deg [f, g] ≤ deg f + deg g. (2.1)

Another inequality involving the degree of a Poisson bracket will be a consequence of
Proposition 2.3 below, in which ∂(F1,...,Fr)

∂(X1,...,Xn)
means the Jacobian matrix (not necessarily

quadratic) of the mapping (F1, . . . , Fr) : Cn → Cr.

Proposition 2.3. If F1, . . . , Fr ∈ C[X1, . . . , Xn], then

rank
∂(F1, . . . , Fr)

∂(X1, . . . , Xn)
= trdegC C(F1, . . . , Fr).

One can deduce the above result from [27, Chap. X, Prop. 10]. The version for r = n

can also be found in [7, Prop. 1.2.9].
By Proposition 2.3 and the definition of the degree of a Poisson bracket we obtain the

following remark.

Remark 2.4. f, g ∈ C[X1, . . . , Xn] are algebraically independent if and only if deg [f, g]

≥ 2.

We also have the following

Remark 2.5. For any f, g ∈ C[X1, . . . , Xn] the following conditions are equivalent:

(1) deg [f, g] = deg f + deg g,
(2) f, g are algebraically independent.

Proof. Let
f = f0 + · · ·+ fd, g = g0 + · · ·+ gm

be the homogeneous decompositions of f and g. Since

[f, g] =
∑
i,j

[fi, gj ] = [fd, gm] +
∑

i<d or j<m

[fi, gj ]

and
deg [fi, gj ] ≤ deg fi + deg gj = i+ j < d+m,

for i < d or j < m, it follows that

deg [f, g] = d+m ⇔ deg [fd, gm] = d+m.

But, since fd and gm are homogeneous polynomials of degrees d and m, respectively, by
the definition of Poisson bracket we have

deg [fd, gm] = d+m ⇔ [fd, gm] 6= 0.

The last condition, by Proposition 2.3, is equivalent to fd, gm being algebraically inde-
pendent.

Recall the following theorem due to Shestakov and Umirbaev.
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Theorem 2.6 ([49, Thm. 2]). Let f, g ∈ C[X1, . . . , Xn] be a p-reduced pair, and let
G(X,Y ) ∈ k[X,Y ] with degY G(X,Y ) = pq + r, 0 ≤ r < p. Then

degG(f, g) ≥ q(p deg g − deg g − deg f + deg [f, g]) + r deg g.

Notice that the estimate from Theorem 2.6 is true even if the condition (ii) of Defini-
tion 2.1 is not satisfied. Indeed, if G =

∑
i,j ai,jX

iY j , then, by the algebraic independence
of f and g,

degG(f, g) = max
i,j

deg(ai,jf
igj) ≥ degY G(X,Y ) · deg g

= (qp+ r) deg g ≥ q(p deg g − deg f − deg g + deg [f, g]) + r deg g.

The last inequality is a consequence of the fact that deg [f, g] ≤ deg f + deg g.

Notice that the above calculations are also valid for p = 1 (when the pair f, g does
not satisfy the condition (ii) of Definition 2.1, p may be equal to one).

Thus we have the following proposition.

Proposition 2.7. Let f, g ∈ C[X1, . . . , Xn] satisfy conditions (i) and (iii) of Definition
2.1. Assume that deg f < deg g, put

p =
deg f

gcd(deg f, deg g)
,

and let G(X,Y ) ∈ C[X,Y ] with degY G(X,Y ) = pq + r, 0 ≤ r < p. Then

degG(f, g) ≥ q(p deg g − deg g − deg f + deg [f, g]) + r deg g.

2.2. Degree of a Poisson bracket and a linear change of coordinates. This
section is devoted to showing the following lemma saying that the degree of a Poisson
bracket is invariant under a linear change of coordinates.

Lemma 2.8. If f, g ∈ C[X1, . . . , Xn] and L ∈ GLn(C), then

deg [L∗(f), L∗(g)] = deg [f, g],

where L∗(h) = h ◦ L for any h ∈ C[X1, . . . , Xn].

We first show

Proposition 2.9. If f, g ∈ C[X1, . . . , Xn] and L : Cn → Cn is any linear map, then

deg [L∗(f), L∗(g)] ≤ deg [f, g].

Proof. It is easy to see that for every h∈C[X1, . . . , Xn] we have (here we allow L∗(hd)=0

even if hd 6= 0)
[L∗(h)]d = L∗(hd),

where the subscript d denotes the homogeneous part of degree d. We also have

[Jacij(f, g)]d =
∑

k+l=d+2

Jacij(fk, gl),

where

Jacij(f, g) = JacXiXj (f, g) = det

[
∂f/∂Xi ∂f/∂Xj

∂g/∂Xi ∂g/∂Xj

]
.
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By the above equalities we have

[Jacij(L∗(f), L∗(g))]d =
∑

k+l=d+2

Jacij(L∗(f)k, L
∗(g)l)

=
∑

k+l=d+2

Jacij(L∗(fk), L∗(gl)). (2.2)

Since for any h ∈ C[X1, . . . , Xn] and r ∈ {1, . . . , n} we have

∂L∗(h)

∂Xr
=
∂(h ◦ L)

∂Xr
=

n∑
s=1

∂h

∂Xs
(L) · asr,

where (aij) is the matrix of the mapping L, it follows that

Jacij(L∗(fk), L∗(gl)) = det

[∑n
r=1

∂fk
∂Xr

(L) · ari
∑n
r=1

∂fk
∂Xr

(L) · arj∑n
s=1

∂gl
∂Xs

(L) · asi
∑n
s=1

∂gl
∂Xs (L) · asj

]

=

n∑
r,s=1

∂fk
∂Xr

(L) · ari ·
∂gl
∂Xs

(L) · asj −
n∑

r,s=1

∂fk
∂Xr

(L) · arj ·
∂gl
∂Xs

(L) · asi

=

n∑
r,s=1

[
∂fk
∂Xr

(L) · ari ·
∂gl
∂Xs

(L) · asj −
∂fk
∂Xs

(L) · asj ·
∂gl
∂Xr

(L) · ari
]

=

n∑
r,s=1

Jacrs(fk, gl)(L) · ariasj

=
∑

1≤r<s≤n

Jacrs(fk, gl)(L) · ariasj +
∑

1≤s<r≤n

Jacrs(fk, gl)(L) · ariasj

=
∑

1≤r<s≤n

Jacrs(fk, gl)(L) · ariasj −
∑

1≤r<s≤n

Jacrs(fk, gl)(L) · asiarj

=
∑

1≤r<s≤n

Jacrs(fk, gl)(L) det

[
ari arj
asi asj

]
. (2.3)

Now, by (2.2) and (2.3), we have

[Jacij(L∗(f), L∗(g))]d =
∑

k+l=d+2

∑
1≤r<s≤n

Jacrs(fk, gl)(L) det

[
ari arj
asi asj

]

=
∑

1≤r<s≤n

( ∑
k+l=d+2

Jacrs(fk, gl)
)

(L) det

[
ari arj
asi asj

]
. (2.4)

Take any d > deg [f, g]. Then ∑
k+l=d+2

Jacrs(fk, gl) = 0 (2.5)

for all pairs r, s satisfying 1 ≤ r < s ≤ n. Thus, by (2.4) and (2.5), we obtain

[Jacij(L∗(f), L∗(g))]d = 0 (2.6)

for all i, j. The above equalities (for all i, j) mean that deg [L∗(f), L∗(g)] < d. Since we
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can take d = deg [f, g] + 1,deg [f, g] + 2, . . . we obtain

deg [L∗(f), L∗(g)] ≤ deg [f, g]. (2.7)

Proof of Lemma 2.8. By the above proposition we only need to show that deg [L∗(f),

L∗(g)] ≥ deg [f, g]. But f = (L−1)∗(L∗(f)) and g = (L−1)∗(L∗(g)). So applying Proposi-
tion 2.9 to the polynomials L∗(f), L∗(g) and the mapping L−1 we obtain

deg [f, g] = deg [(L−1)∗(L∗(f)), (L−1)∗(L∗(g))] ≤ deg [L∗(f), L∗(g)].

2.3. Shestakov–Umirbaev reductions. In this section we present the most remark-
able result of Shestakov and Umirbaev, Theorem 2.6. The notions of reductions of types
I–IV are crucial in this theorem. Thus we start with the following definitions (see [49] or
[50]).

Definition 2.10. Let Θ = (f1, f2, f3) be an automorphism of A = C[X,Y, Z] such
that (for some n ∈ N∗) deg f1 = 2n, deg f2 = ns, where s ≥ 3 is an odd number,
2n < deg f3 ≤ ns and f3 /∈ C[f1, f2]. Suppose that there exists α ∈ C∗ such that the
elements g1 = f1, g2 = f2 − αf3 satisfy the following conditions:

(i) g1, g2 is a 2-reduced pair and deg g1 = deg f1, deg g2 = deg f2;

(ii) the automorphism (g1, g2, f3) admits an elementary reduction (g1, g2, g3) with
deg [g1, g3] < deg g2 + deg [g1, g2].

Then we will say that Θ admits a reduction (g1, g2, g3) of type I. We will also say that
a polynomial automorphism F = (F1, F2, F3) admits a reduction of type I if for some
permutation σ of {1, 2, 3}, the automorphism Θ = (Fσ(1), Fσ(2), Fσ(3)) admits a reduction
of type I.

Before proposing next definitions we present an example due to Shestakov and Umir-
baev of a tame automorphism of C3 which does not admit an elementary reduction but
admits a reduction of type I.

Example 2.11. Let

T1(x1, x2, x3) = (x1, x2 + x21, x3 + 2x1x2 + x31),

T2(y1, y2, y3) = (6y1 + 6y2y3 + y33 , 4y2 + y23 , y3),

T3(z1, z2, z3) = (z1, z2, z3 + z21 − z32),

L(u1, u2, u3) = (u1 + u3, u2, u3)

and

G = T3 ◦ T2 ◦ T1, F = L ◦G.

It is easy to see that
mdeg(T2 ◦ T1) = (9, 6, 3),

and because

(6y1 + 6y2y3 + y33)2 − (4y2 + y23)3 = 36y21 + 72y1y2y3 + 12y1y
3
3 − 12y22y

2
3 − 64y32
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and (provided that y1 = x1, y2 = x2 + x21 and y3 = x3 + 2x1x2 + x31)

12y1y
3
3 − 12y22y

2
3 = 12x1(x3 + 2x1x2 + x31)3 − 12(x2 + x21)2(x3 + 2x1x2 + x31)2

= 12x3x
7
1 − 12x61x

2
2 + lower degree monomials,

we have

mdeg(T3 ◦ T2 ◦ T1) = (9, 6, 8) and so mdegF = mdeg(L ◦G) = (9, 6, 8).

From the construction of F it is clear that F is a tame automorphism. Moreover,
it does not admit an elementary reduction. Indeed, if we put F = (F1, F2, F3) and as-
sume that (F1 − g(F2, F3), F2, F3), for some g ∈ C[X,Y ], is an elementary reduction of
(F1, F2, F3) then we must have

deg g(F2, F3) = 9. (2.8)

But by Proposition 2.7, we have

deg g(F2, F3) ≥ q(p · 8− 6− 8 + deg [F2, F3]) + 8r, (2.9)

where degY g(X,Y ) = qp + r, 0 ≤ r < p, p = 6/gcd(6, 8) = 3. Thus by (2.8) and (2.9)
and because p · 8− 6− 8 + deg [F2, F3] = 10 + deg [F2, F3] ≥ 12 > 9, we must have q = 0

and r ≤ 1. Thus g must be of the form

g(X,Y ) = g0(X) + g1(X)Y. (2.10)

Since 8N∩(6+8N) = ∅, from (2.8) and (2.10) we obtain 9 = deg g(F2, F3) ∈ 8N∪(6+8N),
a contradiction.

Next, if we assume that (F1, F2−g(F3, F1), F3), for some g ∈ C[X,Y ], is an elementary
reduction of (F1, F2, F3) then we must have

deg g(F3, F1) = 6. (2.11)

But by Proposition 2.7,

deg g(F3, F1) ≥ q(p · 9− 9− 8 + deg [F3, F1]) + 9r, (2.12)

where degY g(X,Y ) = qp + r, 0 ≤ r < p, p = 8/gcd(8, 9) = 8. Because p · 9 − 9 − 8 +

deg [F3, F1] = 55 + deg [F3, F1] ≥ 57 > 8, from (2.11) and (2.12) we obtain q = r = 0.

This means that g(X,Y ) = g(X) and deg g(F3, F1) = deg g(F3) ∈ 8N. However, 6 /∈ 8N.
Finally, if we assume that (F1, F2, F3 − g(F2, F1)), for some g ∈ C[X,Y ], is an ele-

mentary reduction of (F1, F2, F3) then

deg g(F2, F1) = 8. (2.13)

As before, by Proposition 2.7,

deg g(F2, F1) ≥ q(p · 9− 9− 6 + deg [F2, F1]) + 9r, (2.14)

where degY g(X,Y ) = qp+ r, 0 ≤ r < p, p = 6/gcd(6, 9) = 2. In this case p ·9−9−6 = 3

is not large enough for our purpose but deg [F2, F1] is. Indeed,
∂F1

∂xi
=
∂u1
∂xi

+
∂u3
∂xi

=
∂z1
∂xi

+
∂z3
∂xi

+ 2z1
∂z1
∂xi
− 3z22

∂z2
∂xi

,

∂F2

∂xi
=
∂u2
∂xi

=
∂z2
∂xi

.
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Thus, for 1 ≤ i < j ≤ 3,
∂F1

∂xi

∂F2

∂xj
− ∂F1

∂xj

∂F2

∂xi
=

(
∂z1
∂xi

+
∂z3
∂xi

+ 2z1
∂z1
∂xi
− 3z22

∂z2
∂xi

)
∂z2
∂xj

−
(
∂z1
∂xj

+
∂z3
∂xj

+ 2z1
∂z1
∂xj
− 3z22

∂z2
∂xj

)
∂z2
∂xi

=

(
∂z1
∂xi

∂z2
∂xj
− ∂z1
∂xj

∂z2
∂xi

)
+

(
∂z3
∂xi

∂z2
∂xj
− ∂z3
∂xj

∂z2
∂xi

)
+ 2z1

(
∂z1
∂xi

∂z2
∂xj
− ∂z1
∂xj

∂z2
∂xi

)
. (2.15)

Since z1, z2, z3 are algebraically independent, by Corollary 2.3 for at least one pair i, j,
1 ≤ i < j ≤ 3, we have

∂z1
∂xi

∂z2
∂xj
− ∂z1
∂xj

∂z2
∂xi
6= 0.

And since deg z1 = 9, for that pair i, j we have

deg 2z1

(
∂z1
∂xi

∂z2
∂xj
− ∂z1
∂xj

∂z2
∂xi

)
≥ 9. (2.16)

Of course we also have

deg 2z1

(
∂z1
∂xi

∂z2
∂xj
− ∂z1
∂xj

∂z2
∂xi

)
> deg

(
∂z1
∂xi

∂z2
∂xj
− ∂z1
∂xj

∂z2
∂xi

)
. (2.17)

Since moreover
∂z2
∂xi

= 4
∂y2
∂xi

+ 2y3
∂y3
∂xi

,
∂z3
∂xi

=
∂y3
∂xi

and

deg y2 = deg(x2 + x21) = 2, deg y3 = deg(x3 + 2x1x2 + x31) = 3,

it follows that
∂z2
∂xi

∂z3
∂xj
− ∂z2
∂xj

∂z3
∂xi

=

(
4
∂y2
∂xi

+ 2y3
∂y3
∂xi

)
∂y3
∂xj
−
(

4
∂y2
∂xj

+ 2y3
∂y3
∂xj

)
∂y3
∂xi

= 4

(
∂y2
∂xi

∂y3
∂xj
− ∂y2
∂xj

∂y3
∂xi

)
,

and so

deg

(
∂z2
∂xi

∂z3
∂xj
− ∂z2
∂xj

∂z3
∂xi

)
= deg

(
∂y2
∂xi

∂y3
∂xj
− ∂y2
∂xj

∂y3
∂xi

)
≤ 3. (2.18)

Finally, by (2.15)–(2.18),
deg [F1, F2] ≥ 11. (2.19)

Now, using (2.19) and (2.14) we find that

deg g(F2, F1) ≥ q · 14 + 9r. (2.20)

Thus, by (2.20) and (2.13), we have q = r = 0. This means that g(X,Y ) = g(X) and
deg g(F2, F1) = deg g(F2) ∈ 6N, contrary to 8 /∈ 6N.

For more information about polynomial automorphisms which admit reductions of
type I see [25].
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Definition 2.12. Let Θ = (f1, f2, f3) be an automorphism of A = C[X,Y, Z] such that
(for some n ∈ N∗) deg f1 = 2n, deg f2 = 3n, 3

2n < deg f3 ≤ 2n and f1, f3 are linearly
independent. Suppose that there exist α, β ∈ C with (α, β) 6= (0, 0) such that the elements
g1 = f1 − αf3, g2 = f2 − βf3 satisfy the following conditions:

(i) g1, g2 is a 2-reduced pair and deg g1 = deg f1, deg g2 = deg f2;

(ii) the automorphism (g1, g2, f3) admits an elementary reduction (g1, g2, g3) with
deg [g1, g3] < deg g2 + deg [g1, g2].

Then we will say that Θ admits a reduction (g1, g2, g3) of type II. We will also say that
a polynomial automorphism F = (F1, F2, F3) admits a reduction of type II if for some
permutation σ of {1, 2, 3}, the automorphism Θ = (Fσ(1), Fσ(2), Fσ(3)) admits a reduction
of type II.

Definition 2.13. Let Θ = (f1, f2, f3) be an automorphism of A = C[X,Y, Z] such that
(for some n ∈ N∗) deg f1 = 2n, and either

deg f2 = 3n, n < deg f3 ≤ 3n/2,

or
5n/2 < deg f2 ≤ 3n, deg f3 = 3n/2.

Suppose that there exist α, β, γ ∈ C such that the elements g1 = f1 − βf3, g2 = f2 −
γf3 − αf23 satisfy the following conditions:

(i) g1, g2 is a 2-reduced pair and deg g1 = 2n, deg g2 = 3n;

(ii) there exists g3 of the form g3 = σf3 + g, where σ ∈ C∗, g ∈ C[g1, g2], such that
deg g3 ≤ 3

2n, deg [g1, g3] < 3n+ deg [g1, g2].

If (α, β, γ) 6= (0, 0, 0) and deg g3 < n + deg [g1, g2], then we will say that Θ admits a
reduction (g1, g2, g3) of type III. On the other hand, if there exists µ ∈ C∗ such that
deg(g2 − µg23) ≤ 2n, then we will say that Θ admits a reduction (g1, g2 − µg23 , g3) of
type IV.

We will also say that a polynomial automorphism F = (F1, F2, F3) admits a reduction
of type III (resp. IV) if for some permutation σ of {1, 2, 3}, the automorphism Θ =

(Fσ(1), Fσ(2), Fσ(3)) admits a reduction of type III (resp. IV).

Now, we can present the above mentioned theorem.

Theorem 2.14 ([49, Thm. 3]). Let F = (F1, F2, F3) be a tame automorphism of C3. If
degF1 + degF2 + degF3 > 3 (in other words, if F is not an affine automorphism), then
F admits either an elementary reduction or a reduction of one of types I–IV.

2.4. Some number theory. We will use the following result from number theory,
connected with the so-called coin problem or Frobenius problem.

Theorem 2.15 (see e.g. [10]). If d1, d2 are positive integers such that gcd(d1, d2) = 1,
then for every integer k ≥ (d1 − 1)(d2 − 1) there are k1, k2 ∈ N such that

k = k1d1 + k2d2.

Moreover (d1 − 1)(d2 − 1)− 1 /∈ d1N + d2N.
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The proof of the above theorem can be found in the number theory literature, but for
the convenience of the reader we give it here. In the proof we will write M(d1, d2) for the
minimal s ∈ N such that {s, s + 1, . . .} ⊂ d1N + d2N. Let us mention that the so-called
Frobenius number (the maximal s ∈ N such that s /∈ d1N+d2N) is equal toM(d1, d2)−1.

Proof. Without loss of generality we can assume that 1 < d1 ≤ d2. Indeed, if d1 = 1,
then d1N+d2N = N and (d1 − 1)(d2 − 1) = 0. Thus for any r = 1, . . . , d1 − 1 there are
integers k1,r, k2,r ∈ Z such that

k1,rd1 + k2,rd2 = r.

Since d1, d2, r > 0 and r < d1 ≤ d2, we have k1,rk2,r < 0. Moreover, since (k1,r − d2)d1 +

(k2,r+d1)d2 = k1,rd1+k2,rd2 = r, we can assume that k2,r > 0. Notice that we can assume
even more, namely that k2,r > 0 and k1,r ≥ 1− d2. Indeed, let k1,r, k2,r ∈ Z be such that
k1,rd1 + k2,rd2 = r, k2,r > 0 and there are no k′1,r, k′2,r ∈ Z such that k′1,rd1 + k′2,rd2 = r,
k′2,r > 0 and k′2,r < k2,r. Then, since (k1,r+d2)d1 +(k2,r−d1)d2 = k1,rd1 +k2,rd2 = r, we
have k2,r− d1 ≤ 0 (since r < d1 ≤ d2 we actually have k2,r− d1 < 0). Thus k1,r + d2 > 0,
and so k1,r ≥ 1− d2.

It is easy to see that to show that any natural number k ≥ (d1 − 1)(d2 − 1) is in
d1N + d2N, we only need to show that

(d1 − 1)(d2 − 1), (d1 − 1)(d2 − 1) + 1, . . . , (d1 − 1)(d2 − 1) + d1 − 1 ∈ d1N + d2N.

First,

(d1 − 1)(d2 − 1) = (d2 − 1)d1 − d2 + 1 = (d2 − 1)d1 − d2 + k1,1d1 + k2,1d2

= (d2 − 1 + k1,1)d1 + (k2,1 − 1)d2 ∈ d1N + d2N,

because k1,1 ≥ 1 − d2 and k2,1 > 0. Similarly, we show that (d1 − 1)(d2 − 1) + 1 =

(d2− 1)d1−d2 + 2, . . . , (d1− 1)(d2− 1) +d1− 2 = (d2− 1)d1−d2 + (d1− 1) ∈ d1N+d2N.
To see that (d1 − 1)(d2 − 1) + d1 − 1 ∈ d1N + d2N we write

(d1 − 1)(d2 − 1) + d1 − 1 = d1d2 − d1 − d2 + 1 + d1 − 1 = (d1 − 1)d2.

Thus we have shown that M(d1, d2) ≤ (d1 − 1)(d2 − 1).

To prove thatM(d1, d2) = (d1−1)(d2−1) it is enough to show that (d1−1)(d2−1)−1 /∈
d1N+ d2N. Since (d2− 1)d1− d2 = (d1− 1)(d2− 1)− 1 and lcm(d1, d2) = d1d2, it follows
that

{(k1, k2) ∈ Z2 : k1d1 + k2d2 = (d1 − 1)(d2 − 1)− 1} = {(d2 − 1− ld2, ld1 − 1) : l ∈ Z}.

But {(d2 − 1− ld2, ld1 − 1) : l ∈ Z} ∩ N2 = ∅. This ends the proof.

3. Some useful results

3.1. Some simple remarks. In this section we make some simple but useful remarks
about existence of automorphisms and tame automorphisms with given multidegree.

Proposition 3.1 ([18, Prop. 2.1]). If for 1 ≤ d1 ≤ · · · ≤ dn there is a sequence of
integers 1 ≤ i1 < · · · < im ≤ n such that there exists an automorphism G of Cm with
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mdegG = (di1 , . . . , dim), then there exists an automorphism F of Cn with mdegF =

(d1, . . . , dn). Moreover, if G is tame, then F can also be found tame.

Proof. Without loss of generality we can assume that m < n. Let 1 ≤ j1 < · · · <
jn−m ≤ n be such that {i1, . . . , im} ∪ {j1, . . . , jn−m} = {1, . . . , n}. Then, of course,
{i1, . . . , im} ∩ {j1, . . . , jn−m} = ∅. Consider the mapping h = (h1, . . . , hn) : Cn → Cn
given by

hk(x1, . . . , xn) =

{
xk for k ∈ {i1, . . . , im},
xk + (xi1)dk for k ∈ {j1, . . . , jn−m}.

Of course h is an automorphism of Cn and deg hk = dk for k ∈ {j1, . . . , jn−m}.
Consider also the mapping g = (g1, . . . , gn) : Cn → Cn given by

gk(u1, . . . , un) =

{
Gl(ui1 , . . . , uim) for k = il,
uk for k ∈ {j1, . . . , jn−m}.

Then g is an automorphism of Cn and deg gk = dk for k ∈ {i1, . . . , im}.
Now F = g ◦ h is an automorphism of Cn (tame when G is tame) with mdegF =

(d1, . . . , dn).

Proposition 3.2 ([18, Prop. 2.2]). If for a sequence of integers 1 ≤ d1 ≤ · · · ≤ dn there
is i ∈ {1, . . . , n} such that

di =

i−1∑
j=1

kjdj with kj ∈ N,

then there exists a tame automorphism F of Cn with mdegF = (d1, . . . , dn).

Proof. Define h = (h1, . . . , hn) : Cn → Cn and g = (g1, . . . , gn) : Cn → Cn by

hk(x1, . . . , xn) =

{
xk for k = i,

xk + xdki for k 6= i,

and

gk(u1, . . . , un) =

{
uk + uk11 · · ·u

ki−1

i−1 for k = i,

uk for k 6= i.

It is easy to see that F = g ◦ h is a tame automorphism with mdegF = (d1, . . . , dn).

The above proposition implies the following result.

Corollary 3.3 ([18, Cor. 2.3]). If 1 ≤ d1 ≤ · · · ≤ dn is a sequence of integers with
d1 ≤ n− 1, then there exists a tame automorphism F of Cn with mdegF = (d1, . . . , dn).

Proof. Let ri ∈ {0, 1, . . . , d1− 1}, for i = 2, . . . , n, be such that di ≡ ri (mod d1). If there
is an i ∈ {2, . . . , n} such that ri = 0, then di = kd1 for some k ∈ N∗ and by Proposition
3.2, there exists a tame automorphism F of Cn with the desired properties.

Thus assume that ri 6= 0 for all i = 2, . . . , n. Since d1 − 1 < n − 1, there are i, j ∈
{2, . . . , n}, i 6= j, such that ri = rj . Without loss of generality we can assume that
i < j. Then dj = di + kd1 for some k ∈ N, and by Proposition 3.2 there exists a tame
automorphism F of Cn with the desired properties.
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The above corollary can be improved as follows.

Theorem 3.4. If 1 ≤ d1 ≤ · · · ≤ dn is a sequence of integers with
d1

gcd(d1, . . . , dn)
≤ n− 1,

then there exists a tame automorphism F of Cn with mdegF = (d1, . . . , dn).

Proof. Let d = gcd(d1, . . . , dn). Then the numbers r2, . . . , rn defined as in the proof of
Corollary 3.3 satisfy ri ∈ {0, d, 2d, . . . , d1 − d} for i = 2, . . . , n. Since the number of
elements of the set {0, d, 2d, . . . , d1 − d} is equal to

d1
gcd(d1, . . . , dn)

≤ n− 1,

we can use the same arguments as in the proof of Corollary 3.3.

Combining Theorem 3.4 and Proposition 3.1 we obtain the following result.

Corollary 3.5. If for 1 ≤ d1 ≤ · · · ≤ dn there is a sequence of integers 1 ≤ i1 < · · · <
im ≤ n such that

di1
gcd(di1 , . . . , dim)

≤ m− 1,

then there exists a tame automorphism F of Cn with mdegF = (d1, . . . , dn).

3.2. Reducibility of type I and II. Now we will show that in our considerations we
do not need to pay attention to reducibility of type I and II.

Lemma 3.6. Let (d1, d2, d3) 6= (1, 1, 1), d1 ≤ d2 ≤ d3, be a sequence of positive integers. If
there is an automorphism (resp. a tame automorphism) F : C3 → C3 such that F admits
a reduction of type I or II and mdegF = (d1, d2, d3), then there is also an automorphism
(resp. a tame automorphism) F̃ : C3 → C3 such that F̃ admits an elementary reduction
and mdeg F̃ = (d1, d2, d3). Moreover, if F (0, 0, 0) = (0, 0, 0), then F̃ can also be found
such that F̃ (0, 0, 0) = (0, 0, 0).

Proof. Assume that F = (F1, F2, F3) admits a reduction of type I. By Definition 2.10
there is a permutation σ of {1, 2, 3} and α ∈ C∗ such that the elements g1 = Fσ(1),
g2 = Fσ(2) − αFσ(3) satisfy the following conditions:

(i) g1, g2 is a 2-reduced pair and deg g1 = degFσ(1), deg g2 = degFσ(2);

(ii) the automorphism (g1, g2, Fσ(3)) admits an elementary reduction of the form (g1, g2,

g3).

For simplicity of notation (and without loss of generality) we assume that σ = id{1,2,3}.
Thus we can take F̃ = (g1, g2, F3).

If F admits a reduction of type II we can use a similar construction to obtain an
automorphism F̃ .

Since F̃ = G ◦ F , where

G : C3 3


x

y

z

 7→


x

y − αz
z

 ∈ C3 (for type I)
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or

G : C3 3


x

y

z

 7→

x− αz
y − βz
z

 ∈ C3 (for type II)

F̃ is tame if and only if F is tame. It is also clear that F̃ (0, 0, 0) = (0, 0, 0) when
F (0, 0, 0) = (0, 0, 0).

The above lemma also implies the following

Proposition 3.7. Let (d1, d2, d3) 6= (1, 1, 1), d1 ≤ d2 ≤ d3, be a sequence of positive
integers. If there is a tame automorphism F : C3 → C3 with mdegF = (d1, d2, d3), then
there is also a tame automorphism F̃ : C3 → C3 such that mdeg F̃ = (d1, d2, d3) and F̃
admits either an elementary reduction or a reduction of type III or IV. Moreover we can
require that F̃ (0, 0, 0) = (0, 0, 0).

Proof. Let F = (F1, F2, F3) : C3 → C3 be any tame automorphism with mdegF =

(d1, d2, d3) and let T : C3 → C3 be the translation given by

T : C3 3 (x, y, z) 7→ (x− F1(0), y − F2(0), z − F3(0)) ∈ C3.

Then obviously T ◦F is a tame automorphism of C3 such that mdeg(T ◦F ) = mdegF =

(d1, d2, d3) and (T ◦F )(0, 0, 0) = (0, 0, 0). If T ◦F admits either an elementary reduction
or a reduction of type III or IV, then we take F̃ = T ◦F. And if T ◦F admits a reduction
of type I or II, then we can use Lemma 3.6.

In particular Proposition 3.7 says that reductions of type I and II are irrelevant for
our considerations. To be precise we formulate the following

Theorem 3.8. Let (d1, d2, d3) 6= (1, 1, 1), d1 ≤ d2 ≤ d3, be a sequence of positive integers.
To prove that there is no tame automorphism of C3 with multidegree (d1, d2, d3) it is
enough to show that a (hypothetical) automorphism F of C3 with mdegF = (d1, d2, d3)

admits neither an elementary reduction nor a reduction of type III or IV. Moreover, we
can restrict our attention to automorphisms F with F (0, 0, 0) = (0, 0, 0).

To end this section, let us look again at Example 2.11. If F is the automorphism from
that example, then mdegF = (9, 6, 8) or (6, 8, 9) after permutation of coordinates. This
automorphism does not admit an elementary reduction and admits a reduction of type I.
One can easily see that (in the notation of Example 2.11)

T2 ◦ T1 = T−13 ◦ L−1 ◦ F

is a reduction of type I of F. Moreover for F̃ = L−1 ◦ F we have

mdeg F̃ = mdegF

and T−13 ◦ F̃ is an elementary reduction of F̃ .

3.3. Reducibility of type III. First of all notice that if 1 ≤ d1 ≤ d2 ≤ d3 are such
that mdegF = (d1, d2, d3) for some automorphism F that admits a reduction of type III,
then by Definition 2.13 there is n ∈ N∗ such that

dσ(1) = 2n
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and either
dσ(2) = 3n, n < dσ(3) ≤ 3n/2,

or
5n/2 < dσ(2) ≤ 3n, dσ(3) = 3n/2

for some permutation σ, of {1, 2, 3}. Since 3
2n < 2n < min{ 52n, 3n}, we must actually

have
d2 = 2n

and either
d3 = 3n, n < d1 ≤ 3n/2,

or
5n/2 < d3 ≤ 3n, d1 = 3n/2.

Thus we have the following remark.

Remark 3.9. If an automorphism F of C3 with mdegF = (d1, d2, d3), 1 ≤ d1 ≤ d2 ≤ d3,
admits a reduction of type III, then

(1) 2 | d2,
(2) 3 | d1 or d3/d2 = 3/2.

Because of the remark above it is natural to consider the situation of the following
lemma.

Lemma 3.10. Let (d1, d2, d3) 6= (1, 1, 1), d1 ≤ d2 ≤ d3, be a sequence of positive integers
such that d3/d2 = 3/2. If there is an automorphism (resp. a tame automorphism) F :

C3 → C3 such that F admits a reduction of type III and mdegF = (d1, d2, d3), then there
is also an automorphism (resp. a tame automorphism) F̃ : C3 → C3 such that F̃ admits
an elementary reduction and mdeg F̃ = (d1, d2, d3). Moreover, if F (0, 0, 0) = (0, 0, 0),
then F̃ can also be found such that F̃ (0, 0, 0) = (0, 0, 0).

In the proof of this lemma we will use the following result.

Lemma 3.11 ([50, Cor. 4]). If an automorphism (g1, g2, g3) is a reduction of type III of
an automorphism (f1, f2, f3), then

deg g1 + deg g2 + deg g3 < deg f1 + deg f2 + deg f3.

Proof of Lemma 3.10. Assume that F = (F1, F2, F3) admits a reduction of type III.
By the above considerations, the conditions of Definition 2.13 must be satisfied for the
automorphism θ = (f1, f2, f3) = (F2, F3, F1). Also by Definition 2.13 there are n ∈ N∗ and
α, β, γ ∈ C, (α, β, γ) 6= (0, 0, 0), such that the elements g1 = f1−βf3, g2 = f2−γf3−αf23
satisfy the following conditions:

(i) g1, g2 is a 2-reduced pair and deg g1 = 2n, deg g2 = 3n;

(ii) there exists g3 of the form g3 = σf3 + g, where σ ∈ C∗, g ∈ C[g1, g2], such that
deg g3 ≤ 3

2n, deg [g1, g3] < 3n+ deg [g1, g2];

(iii) deg g3 < n+ deg [g1, g2].
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Let us notice that apart from g3 = σf3 + g, we can also take g̃3 = f3 + 1
σ g = f3 + g̃,

with g̃ = 1
σ g ∈ C[g1, g2].

Since in our situation, i.e. d3/d2 = 3/2, we have d2 = 2n, d3 = 3n and hence degF2 =

deg f1 = 2n = deg g1 and degF3 = deg f2 = 3n = deg g2, the lemma above yields
deg g3 < deg f3 = degF1 = d1. This means that the automorphism (g1, g2, f3), and
hence F̃ = (F1, g1, g2), admits an elementary reduction. Of course mdeg(F1, g1, g2) =

mdeg(F1, F2, F3).

Since F̃ = T2 ◦ T1 ◦ F , where the mappings

T1 : C3 3


x

y

z

 7→


x

y − βx
z − γx− αx2

 ∈ C3

and

T2 : C3 3


x

y

z

 7→

x+ g̃(y, z)

y

z

 ∈ C3

are triangular automorphisms, F̃ is tame if and only if F is tame.
Since degF1 > 0, also deg g̃ > 0, and hence g̃ = g̃ − a for all a ∈ C. Thus we can

assume that g̃(0, 0) = 0. Then F̃ (0, 0, 0) = (0, 0, 0) when F (0, 0, 0) = (0, 0, 0).

By Lemma 3.10 we also have the following result.

Proposition 3.12. Let (d1, d2, d3) 6= (1, 1, 1), d1 ≤ d2 ≤ d3, be a sequence of positive
integers such that d3/d2 = 3/2. If there is a tame automorphism F : C3 → C3 such that
mdegF = (d1, d2, d3), then there is also a tame automorphism F̃ : C3 → C3 such that F̃
admits either a reduction of type IV or an elementary reduction and mdeg F̃ = (d1, d2, d3).

Moreover we can require that F̃ (0, 0, 0) = (0, 0, 0).

Proof. As in the proof of Proposition 3.7, we consider the automorphism T ◦F. Then we
have three cases: (I) T ◦ F admits a reduction of type IV or an elementary reduction;
(II) T ◦ F admits reduction of type III; (III) T ◦ F admits a reduction of type I or II. In
the first case we put F̃ = T ◦ F , in the second case we use Lemma 3.10 and in the third
case we use Lemma 3.6.

The above proposition means that whenever d3/d2 = 3/2, reductions of type I, II and
III are irrelevant for our considerations. More precisely, we have the following

Theorem 3.13. Let (d1, d2, d3) 6= (1, 1, 1), d1 ≤ d2 ≤ d3, be a sequence of positive
integers such that d3/d2 = 3/2 or 3 - d1. To prove that there is no tame automorphism of
C3 with multidegree (d1, d2, d3) it is enough to show that a (hypothetical) automorphism F

of C3 with mdegF = (d1, d2, d3) admits neither a reduction of type IV nor an elementary
reduction. Moreover, we can restrict our attention to automorphisms F : C3 → C3 such
that F (0, 0, 0) = (0, 0, 0).

Proof. Take any F̃ ∈ Tame(C3) with mdeg F̃ = (d1, d2, d3). By Theorem 3.8 we can
assume that F̃ admits either an elementary reduction or a reduction of type III or IV.

If F̃ admits a reduction of type III, then by Remark 3.9 and by the assumptions we
have d3/d2 = 3/2. Thus we can use Proposition 3.12.
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3.4. Reducibility of type IV and Kuroda’s result. In the previous sections we have
proved that from our point of view reductions of type I and II are irrelevant. The same
is true for reductions of type III under an additional assumption (see Theorem 3.13).

The following result due to Kuroda says that reduction of type IV is also irrelevant
for our aim.

Theorem 3.14 ([26, Thm. 7.1]). No tame automorphism of C3 admits a reduction of
type IV.

Thus we have the following

Theorem 3.15. Let (d1, d2, d3) 6= (1, 1, 1), d1 ≤ d2 ≤ d3, be a sequence of positive inte-
gers. To prove that there is no tame automorphism F of C3 with mdegF = (d1, d2, d3) it
is enough to show that a (hypothetical) automorphism F of C3 with mdegF = (d1, d2, d3)

admits neither a reduction of type III nor an elementary reduction. Moreover, if we ad-
ditionally assume that d3/d2 = 3/2 or 3 - d1, then it is enough to show that no (hypothet-
ical) automorphism of C3 with multidegree (d1, d2, d3) admits an elementary reduction.
In both cases we can restrict our attention to automorphisms F : C3 → C3 such that
F (0, 0, 0) = (0, 0, 0).

Proof. The proof is similar to the proof of Theorem 3.13.

3.5. Reducibility and linear change of coordinates. Now we make some remarks
that will be useful in considerations of some special cases. The main result of this section
says that we can restrict our attention to automorphisms whose linear part is the identity
map.

Lemma 3.16. If an automorphism (F1, F2, F3) admits an elementary reduction, then so
does (F1, F2, F3) ◦ L for every L ∈ GL3(C).

Proof. Without loss of generality we can assume that (F1, F2, F3) admits an elementary
reduction of the form (F1 − G(F2, F3), F2, F3). It is easy to see that (F1 ◦ L − G(F2 ◦
L,F3 ◦ L), F2 ◦ L,F3 ◦ L) = (F1 − G(F2, F3), F2, F3) ◦ L is an elementary reduction of
(F1, F2, F3) ◦ L = (F1 ◦ L,F2 ◦ L,F3 ◦ L).

We also have the following obvious lemma.

Lemma 3.17. For every mapping F : Cn → Cn and every L ∈ GLn(C) we have

mdeg(F ◦ L) = mdegF.

Combining the above two lemmas we obtain the following result.

Theorem 3.18. For every sequence of positive integers (d1, . . . , dn) 6= (1, . . . , 1), if there
is a tame automorphism F : Cn → Cn such that F admits an elementary reduction,
F (0, . . . , 0) = (0, . . . , 0) and mdegF = (d1, . . . , dn), then there is also a tame automor-
phism F̃ : Cn → Cn such that F̃ admits an elementary reduction, mdeg F̃ = (d1, . . . , dn),
F̃ (0, . . . , 0) = (0, . . . , 0) and the linear part of F̃ , is equal to idCn .

Proof. Let L be the linear part of F. Since F ∈ Aut(Cn), we have L ∈ GLn(C). The
linear part of F ◦L−1 is equal to idCn . We also have (F ◦L−1)(0, . . . , 0) = F (0, . . . , 0) =

(0, . . . , 0).
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3.6. Relationship between the degree of the Poisson bracket and the number
of variables. The main result of this section is Lemma 3.20 below. We start with the
following

Lemma 3.19. Let f, g ∈ C[X1, . . . , Xn] be such that

f = X1 + f2 + · · ·+ fl, g = X2 + g2 + · · ·+ gm,

where fi, gi are homogeneous forms of degree i. If deg [f, g] = 2 and f does not involve Xi,
where i > 2, then g does not involve Xi either.

Proof. The assumption deg [f, g] = 2 implies that for all 1 ≤ k < l ≤ n we have

deg JacXkXl(f, g) ≤ 0.

In particular,
deg JacX1Xi(f, g) ≤ 0,

but

JacX1Xi(f, g) =
∂f

∂X1

∂g

∂Xi
− ∂f

∂Xi

∂g

∂X1
=

∂f

∂X1

∂g

∂Xi
.

Thus deg ∂g
∂Xi
≤ 0. In other words if g involves Xi then Xi occurs in the linear part of g.

But this contradicts the assumptions.

Now we are in a position to prove the following lemma that is one of the main ingre-
dients in proving, for instance, that (5, 6, 9) /∈ mdeg(Tame(C3)).

Lemma 3.20. Let f, g ∈ C[X1, . . . , Xn] be such that

f = X1 + f2 + · · ·+ fl, g = X2 + g2 + · · ·+ gm,

where fi, gi are homogeneous forms of degree i. If deg [f, g] = 2, then f, g ∈ C[X1, X2].

Proof. Without loss of generality we can assume that l ≤ m. Let i > 2 be arbitrary. Let
us notice that

[JacX1Xi(f, g)]1 = JacX1Xi(X1, g2) + JacX1Xi(f2, X2) =
∂g2
∂Xi

and

[JacX2Xi(f, g)]1 = JacX2Xi(X1, g2) + JacX2Xi(f2, X2) = − ∂f2
∂Xi

,

where [JacXkXl(f, g)]d is the homogeneous part of degree d of JacXkXl(f, g). But the as-
sumption deg [f, g] = 2 means in particular that [JacX1Xi(f, g)]1 = 0 and [JacX2Xi(f, g)]1
= 0. Thus we obtain

∂g2
∂Xi

= 0,
∂f2
∂Xi

= 0,

and so f2, g2 do not involve Xi. It follows that

[JacX1Xi(f, g)]2 = JacX1Xi(X1, g3) + JacX1Xi(f2, g2) + JacX1Xi(f3, X2)

= JacX1Xi(X1, g3) =
∂g3
∂Xi



Multidegrees of tame automorphisms of Cn 27

and

[JacX2Xi(f, g)]2 = JacX2Xi(X1, g3) + JacX2xi(f2, g2) + JacX2Xi(f3, X2)

= JacX2Xi(f3, X2) = − ∂f3
∂Xi

.

Since deg [f, g] = 2 implies [Jacx1xi(f, g)]2 = 0 and [Jacx2xi(f, g)]2 = 0, we see that
∂g3
∂Xi

= 0,
∂f3
∂Xi

= 0,

and so f3, g3 do not involve Xi.

Proceeding inductively, when we know that f2, . . . , fl−1, g2, . . . , gl−1 do not involveXi,
we obtain

[JacX1Xi(f, g)]n−1 = JacX1Xi(X1, gn) + · · ·+ JacX1Xi(fn, X2)

= JacX1Xi(X1, gn) =
∂gn
∂Xi

and

[JacX2Xi(f, g)]n−1 = JacX2Xi(X1, gn) + · · ·+ JacX2Xi(fn, X2)

= JacX2Xi(fn, X2) = − ∂fn
∂Xi

.

By the assumption deg [f, g] = 2, as before we find that fn and gn do not involve Xi.

Therefore f does not involve Xi. To deduce that g does not involve Xi either, we can use
Lemma 3.19.

By similar arguments one can prove the following

Theorem 3.21. Let f, g ∈ C[X1, . . . , Xn] be such that

f = X1 + f2 + · · ·+ fl, g = X2 + g2 + · · ·+ gm,

where fi, gi are homogeneous forms of degree i. If deg [f, g] = d ≤ min{l,m}, d ≥ 2, and
fi, gi, for i = 1, . . . , d − 1, do not involve Xr, where r > 2, then f and g do not involve
Xr.

The results of Lemma 3.20 and Theorem 3.21 can be generalized as follows.

Theorem 3.22. Let f, g ∈ C[X1, . . . , Xn] be such that

f = f1 + f2 + · · ·+ fl, g = g1 + g2 + · · · gm,
where fi, gi are homogeneous forms of degree i. If f1, g1 are linearly independent, deg [f, g]

= d ≤ min{l,m}, d ≥ 2, and fi, gi, for i = 1, . . . , d− 1, do not involve Xr, where r > 2,
then f and g do not involve Xr.

Proof. Let l3, . . . , ln−1 ∈ C[X1, . . . , Xr−1, Xr+1, . . . , Xn] be linear forms such that f1, g1,
l3, . . . , ln−1 are linearly independent. Then f1, g1, l3, . . . , ln−1, Xr are also linearly inde-
pendent. Let L = (f1, g1, l3, . . . , ln−1, Xr) : Cn → Cn. Of course L,L−1 ∈ GLn(C),
and by Lemma 2.8, deg [f ◦ L−1, g ◦ L−1] = deg [f, g] = d. One can also check that
(f ◦ L−1)1 = X1, (g ◦ L−1)1 = X2 and that (f ◦ L−1)i, (g ◦ L−1)i, for i = 1, . . . , d− 1, do
not involve Xr. Thus by Theorem 3.21, f ◦ L−1, g ◦ L−1 do not involve Xr either. And
one can easily check that the same is true for f = (f ◦ L−1) ◦ L and g = (g ◦ L−1) ◦ L.
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4. The case (p1, p2, d3) and its generalization

4.1. The case (p1, p2, d3). Here we investigate the set

{(p1, p2, d3) : 3 ≤ p1 < p2 ≤ d3, p1, p2 prime numbers } ∩mdeg(Tame(C3)).

The complete description of this set is given in the following theorem.

Theorem 4.1 ([19, Thm. 1.1]). Let d3 ≥ p2 > p1 ≥ 3 be integers. If p1 and p2 are
primes, then (p1, p2, d3) ∈ mdeg(Tame(C3)) if and only if d3 ∈ p1N + p2N.

Proof. If d3 ∈ p1N+p2N, then by Proposition 3.2, there exists a tame automorphism F ∈
Tame(C3) such that mdegF = (p1, p2, d3). Conversely, let d3 /∈ p1N+p2N and assume, to
the contrary, that there are tame automorphisms F of C3 such that mdegF = (p1, p2, d3).

By Theorem 3.15, we only need to show that such automorphisms do not admit an elemen-
tary reduction or a reduction of type III. Since p2 > 3 is a prime, 2 - p2. Hence by Remark
3.9, no automorphism F of C3 with mdegF = (p1, p2, d3) admits a reduction of type III.

Assume, to the contrary, that there is an automorphism F = (F1, F2, F3) of C3 with
mdegF = (p1, p2, d3) that admits an elementary reduction. Notice that, by Theorem 2.15,

d3 < (p1 − 1)(p2 − 1). (4.1)

Assume that
(F1, F2, F3 − g(F1, F2)),

where g ∈ C[X,Y ], is an elementary reduction of (F1, F2, F3). Then we have deg g(F1, F2)

= degF3 = d3. But, by Proposition 2.7,

deg g(F1, F2) ≥ q(p1p2 − p1 − p2 + deg [F1, F2]) + rp2,

where degY g(X,Y ) = qp1+r with 0 ≤ r < p1. Since F1, F2 are algebraically independent,
deg [F1, F2] ≥ 2 and so

p1p2 − p1 − p2 + deg [F1, F2] ≥ p1p2 − p1 − p2 + 2 > (p1 − 1)(p2 − 1).

This and (4.1) imply that q = 0, and that

g(X,Y ) =

p1−1∑
i=0

gi(X)Y i.

Since lcm(p1, p2) = p1p2, the sets

p1N, p2 + p1N, . . . , (p1 − 1)p2 + p1N

are pairwise disjoint. This yields

deg
( p1−1∑
i=0

gi(F1)F i2

)
= max
i=0,...,p1−1

(degF1 deg gi + i degF2),

and so

d3 = deg g(F1, F2) ∈
p1−1⋃
r=0

(rp2 + p1N) ⊂ p1N + p2N,

a contradiction.
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Now, assume that
(F1, F2 − g(F1, F3), F3)

is an elementary reduction of F = (F1, F2, F3). Since d3 /∈ p1N + p2N, we have p1 - d3
and gcd(p1, d3) = 1. This means, by Proposition 2.7, that

deg g(F1, F3) ≥ q(p1d3 − d3 − p1 + deg [F1, F3]) + rd3,

where degY g(X,Y ) = qp1+r with 0 ≤ r < p1. Since p1d3−d3−p1+deg [F1, F3] ≥ p1d3−
2d3 ≥ d3 > p2 and since we want to have deg g(F1, F3) = p2, we conclude that q = r = 0.

This means that g(X,Y ) = g(X), and so p2 = deg g(F1) ∈ p1N, a contradiction.
Finally, if we assume that (F1 − g(F2, F3), F2, F3) is an elementary reduction of

(F1, F2, F3), then we obtain a contradiction in the same way as in the previous case.

Corollary 4.2. We have

{(p1, p2, d3) : 3 ≤ p1 < p2 ≤ d3, p1, p2 primes } ∩mdeg(Tame(C3))

= {(p1, p2, d3) : 3 ≤ p1 < p2 ≤ d3, p1, p2 primes, d3 ∈ p1N + p2N}.

4.2. Some consequences

Theorem 4.3 ([19, Thm. 3.1]). Let p2 > 3 be a prime and d3 ≥ p2 be an integer. Then
(3, p2, d3) ∈ mdeg(Tame(C3)) if and only if d3 /∈ {2p2 − 3k : k = 1, . . . , [p2/3]}.

Proof. Since p2 > 3 is a prime, p2 ≡ r (mod 3) for some r ∈ {1, 2}. It is easy to see that
if d3 ≥ p2 and d3 ≡ 0 (mod 3) or d3 ≡ r (mod 3), then d3 ∈ 3N+p2N. Thus, by Theorem
2.15,

2(p2 − 1)− 1 6= 0, r (mod 3).

Take any d3 such that p2 ≤ d3 ≤ 2p2 − 3 and d3 6= 0, r (mod 3). Since d3 ≤ 2p2 − 3

and d3 ≡ 2p2 − 3 (mod 3), we see that d3 /∈ 3N + p2N, because otherwise we would have
2p2 − 3 ∈ 3N + p2N, contrary to Theorem 2.15. Thus

{d3∈N | d3 ≥ p2, d3 /∈3N + p2N} = {d3 ∈ N | p2 ≤ d3≤2p2 − 3, d3≡2p2 − 3 (mod 3)}
= {2p2 − 3k | k=1, . . . , [p2/3]}.

Theorem 4.4 ([19, Thm. 3.2]).

(a) If d3 ≥ 7, then (5, 7, d3) ∈ mdeg(Tame(C3)) if and only if

d3 6= 8, 9, 11, 13, 16, 18, 23.

(b) If d3 ≥ 11, then (5, 11, d3) ∈ mdeg(Tame(C3)) if and only if

d3 6= 12, 13, 14, 17, 18, 19, 23, 24, 28, 29, 34, 39.

(c) If d3 ≥ 13, then (5, 13, d3) ∈ mdeg(Tame(C3)) if and only if

d3 6= 14, 16, 17, 19, 21, 22, 24, 27, 29, 32, 34, 37, 42, 47.

(d) If d3 ≥ 11, then (7, 11, d3) ∈ mdeg(Tame(C3)) if and only if

d3 6= 12, 13, 15, 16, 17, 19, 20, 23, 24, 26, 27, 30, 31, 34, 37, 38, 41, 45, 48, 52, 59.
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Proof. This is a consequence of Theorems 2.15 and 4.1. For example to prove (a), by
Theorems 2.15 and 4.1 we only have to check which numbers among 7, 8, . . . , 23 =

(5− 1)(7− 1)− 1 are elements of the set 5N + 7N.

4.3. Generalization. Here we generalize Theorem 4.1.

Theorem 4.5 ([22, Thm. 2.1]). Let d3 ≥ d2 > d1 ≥ 3 be integers. If d1 and d2 are odd
and gcd(d1, d2) = 1, then (d1, d2, d3) ∈ mdeg(Tame(C3)) if and only if d3 ∈ d1N + d2N.

Proof. The proof is a modification of the proof of Theorem 4.1. As before, if d3 ∈ d1N +

d2N, then by Proposition 3.2, there is a tame automorphism F of C3 such that mdegF =

(d1, d2, d3).

Moreover, as in the proof of Theorem 4.1, we only need to show that no automorphism
F of C3 with mdegF = (d1, d2, d3) admits an elementary reduction when d3 /∈ d1N+d2N.
As before, suppose otherwise.

If we assume that (F1, F2, F3 − g(F1, F2)), where g ∈ C[X,Y ], is an elementary re-
duction of (F1, F2, F3), then we can proceed exactly in the same way as in the proof of
Theorem 4.1.

Assume that (F1, F2 − g(F1, F3), F3) is an elementary reduction of (F1, F2, F3). Since
d3 /∈ d1N + d2N, we have d1 - d3, so

p =
d1

gcd(d1, d3)
> 1.

Since d1, is odd, we also have p 6= 2. Thus by Proposition 2.7,

deg g(F1, F3) ≥ q(pd3 − d3 − d1 + deg [F1, F3]) + rd3,

where degY g(X,Y ) = qp + r with 0 ≤ r < p. Since p ≥ 3, we see that pd3 − d3 − d1 +

deg [F1, F3] ≥ 2d3 − d1 + 2 > d3. Since we want to have deg g(F1, F3) = d2, it follows
that q = r = 0, and hence g(X,Y ) = g(X). This means that d2 = deg g(F1) ∈ d1N,
contradicting gcd(d1, d2) = 1 and 1 < d1.

Finally, if we assume that (F1 − g(F2, F3), F2, F3) is an elementary reduction of
(F1, F2, F3), then we obtain a contradiction as in the previous case.

Corollary 4.6. We have

{(d1, d2, d3) : d1 ≤ d2 ≤ d3, d1, d2 odd and gcd(d1, d2) = 1} ∩mdeg(Tame(C3))

= {(d1, d2, d3) : d1 ≤ d2 ≤ d3, d1, d2 odd and gcd(d1, d2) = 1, d3 ∈ d1N + d2N}.

4.4. The set mdeg(Aut(C3)) \mdeg(Tame(C3)). In this subsection we say a few words
about relations between mdeg(Tame(C3)) and mdeg(Aut(C3)). Obviously,

mdeg(Tame(C3)) ⊂ mdeg(Aut(C3))

and, more generally,
mdeg(Tame(Cn)) ⊂ mdeg(Aut(Cn)).

The question is whether the inclusion is strict. In dimension two the answer is negative
due to Jung [9] and van der Kulk [23]. Namely we have

mdeg(Tame(C2)) = mdeg(Aut(C2)) = {(d1, d2) : d1 | d2 or d2 | d1}.
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Let us notice that the result of Shestakov and Umirbaev [50] about wildness of Nagata’s
example does not imply a positive answer in dimension three. The problem is that Na-
gata’s example is of multidegree (5, 3, 1) ∈ mdeg(Tame(C3)). In spite of that, the answer
is positive. Actually we will show that mdeg(Aut(C3)) \mdeg(Tame(C3)) has infinitely
many elements.

Let

N : C3 3 (x, y, z) 7→ (x+ 2y(y2 + zx)− z(y2 + zx)2, y − z(y2 + zx), z) ∈ C3

be Nagata’s example and let

T : C3 3 (x, y, z) 7→ (z, y, x) ∈ C3.

We start with the following lemma.

Lemma 4.7 ([22, Lem. 3.1]). For all n∈N we have mdeg((T ◦N)n)=(4n−3, 4n−1, 4n+1).

Proof. We have T ◦ N(x, y, z) = (z, y − z(y2 + zx), x + 2y(y2 + zx) − z(y2 + zx)2), so
the assertion is true for n = 1. Let (fn, gn, hn) = (T ◦ N)n for fn, gn, hn ∈ C[X,Y, Z].

One can see that g21 + h1f1 = Y 2 +ZX, and by induction g2n + hnfn = Y 2 +ZX for any
n ∈ N∗.Thus

(fn+1, gn+1, hn+1) = (T ◦N) ◦ (fn, gn, hn)

= (hn, gn − hn(g2n + hnfn), fn + 2gn(g2n + hnfn)− hn(g2n + hnfn)2)

= (hn, gn − hn(Y 2 + ZX), fn + 2gn(Y 2 + ZX)− hn(Y 2 + ZX)2).

So if we assume that mdeg(fn, gn, hn) = (4n− 3, 4n− 1, 4n+ 1), we obtain

mdeg(fn+1, gn+1, hn+1) = (4n+ 1, (4n+ 1) + 2, (4n+ 1) + 2 · 2)

= (4(n+ 1)− 3, 4(n+ 1)− 1, 4(n+ 1) + 1).

By the above lemma and Theorem 4.5 we obtain the following

Theorem 4.8 ([22, Thm. 3.2]). For every n ∈ N the automorphism (T ◦N)n is wild.

Proof. For n = 1 this is the result of Shestakov and Umirbaev [49, 50]. So assume that
n ≥ 2. The numbers 4n− 3, 4n− 1 are odd and gcd(4n− 3, 4n− 1) = gcd(4n− 3, 2) = 1.

Since 4n − 3 > 2, we see that 4n + 1 /∈ (4n − 3)N + (4n − 1)N. Hence, by Theorem 4.5,
(4n− 3, 4n− 1, 4n+ 1) /∈ mdeg(Tame(C3)) for n > 1. This proves that (T ◦N)n is not a
tame automorphism.

Let us notice that we have also proved that

{(4n− 3, 4n− 1, 4n+ 1) : n ∈ N, n ≥ 2} ⊂ mdeg(Aut(C3)) \mdeg(Tame(C3)).

This gives the following result.

Theorem 4.9 ([22, Thm. 1.1]). The set mdeg(Aut(C3)) \mdeg(Tame(C3)) is infinite.
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5. The case (3, d2, d3)

In this section we give a complete description of the set

{(3, d2, d3) : 3 ≤ d2 ≤ d3} ∩mdeg(Tame(C3)).

This description is given by the following

Theorem 5.1 ([20, Thm. 1.1]). If 3 ≤ d2 ≤ d3, then (3, d2, d3) ∈ mdeg(Tame(C3)) if
and only if 3 | d2 or d3 ∈ 3N + d2N.

Proof. By Corollary 3.2, if 3 | d2 or d3 ∈ 3N + d2N, there exists a tame automorphism
F : C3 → C3 such that mdegF = (3, d2, d3). Conversely, assume that 3 - d2 and d3 /∈
3N + d2N.

Since 3 - d2, we have gcd(3, d2) = 1. Hence Theorem 2.15 implies that for all k ≥
(3− 1)(d2 − 1) = 2d2 − 2 we have k ∈ 3N + d2N. Thus, since d3 /∈ 3N + d2N, we have

d3 < 2d2 − 2. (5.1)

By Theorem 3.15 it is enough to show that automorphisms F of C3 with mdegF =

(3, d2, d3) do not admit an elementary reduction or a reduction of type III. Notice also
that, since d1 = 3 and d2 can be even, we cannot use Remark 3.9 to infer that automor-
phisms F of C3 with mdegF = (3, d2, d3) do not admit a reduction of type III.

Assume that an automorphism F = (F1, F2, F3) : C3 → C3 with mdegF = (3, d2, d3)

admits a reduction of type III. Then by Definition 2.13 there is a permutation σ of {1, 2, 3}
and n ∈ N∗ such that degFσ(1) = 2n, and either

degFσ(2) = 3n, n < degFσ(3) ≤ 3n/2, (5.2)

or
5n/2 < degFσ(2) ≤ 3n, degFσ(3) = 3n/2. (5.3)

Since 3
2n < 2n < min{ 52n, 3n}, we have d2 = 2n and either

d3 = 3n, n < 3 ≤ 3n/2,

or
5n/2 < d3 ≤ 3n, 3 = 3n/2.

Thus n = 2 and so 5 < d3 ≤ 6, that is, d3 = 6. This contradicts d3 /∈ 3N + d2N.
Now, assume that (F1, F2, F3 − g(F1, F2)), where g ∈ C[X,Y ], is an elementary re-

duction of (F1, F2, F3). Then deg g(F1, F2) = degF3 = d3. Since gcd(3, d2) = 1, by
Proposition 2.7 we have

deg g(F1, F2) ≥ q(3d2 − d2 − 3 + deg [F1, F2]) + rd2,

where degY g(X,Y ) = 3q+ r with 0 ≤ r < 3. Since F1, F2 are algebraically independent,
deg [F1, F2] ≥ 2 and so 3d2−d2−3+deg [F1, F2] ≥ 2d2−1. Then (5.1) implies q = 0. Also
by (5.1) we must have r < 2. Thus g(X,Y ) = g0(X) + g1(X)Y. Since 3N ∩ (d2 + 3N) = ∅,
we deduce that deg g(F1, F2) ∈ 3N ∪ (d2 + 3N) ⊂ 3N + d2N, contrary to assumption.

Now, assume that (F1, F2 − g(F1, F3), F3) is an elementary reduction of (F1, F2, F3).

Then deg g(F1, F3) = d2. Since d3 /∈ 3N + d2N, it follows that gcd(3, d3) = 1. Then by
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Proposition 2.7 we have

deg g(F1, F3) ≥ q(3d3 − d3 − 3 + deg [F1, F3]) + rd3,

where degY g(X,Y ) = 3q+r with 0 ≤ r < 3. Since 3d3−d3−3+deg [F1, F3] ≥ 2d3−1 > d2,
we infer that q = 0. Since also d3 > d2 (because d3 ≥ d2 and d3 /∈ 3N+ d2N), we see that
r = 0. Thus g(X,Y ) = g(X), and deg g(F1, F3) = deg g(F1) ∈ 3N, a contradiction.

Finally, assume that (F1−g(F2, F3), F2, F3) is an elementary reduction of (F1, F2, F3).

Then deg g(F2, F3) = 3. Let

p =
d2

gcd(d2, d3)
.

Since d3 /∈ 3N + d2N, we obtain d2 - d3, and hence p > 1. By Proposition 2.7,

deg g(F2, F3) ≥ q(pd3 − d2 − d3 + deg [F1, F3]) + rd3,

where degY g(X,Y ) = qp+r with 0 ≤ r < p. Since d3 > 3, it follows that r = 0. Consider
the case p ≥ 3. Then pd3 − d2 − d3 + deg [F1, F3] ≥ d3 + deg [F1, F3] > 3. Thus we must
have q = 0. Hence g(X,Y ) = g(X), and 3 = deg g(F2, F3) = deg g(F2) ∈ d2N. This
contradicts d2 6= 3 (we have assumed that 3 - d2).

Consider now the case p = 2. Since p = 2, we have, for some n ∈ N, d2 = 2n and
d3 = ns, where s ≥ 3 is odd. Since also d2 > 3, it follows that n ≥ 2. This means that
d3 − d2 ≥ 2, and 2d3 − d3 − d2 + deg [F1, F3] = d3 − d2 + deg [F1, F3] ≥ 4 > 3. Thus, also
in this case we have q = 0. As before this leads to a contradiction.

Corollary 5.2. We have

{(3, d2, d3) : 3 ≤ d2 ≤ d3} ∩mdeg(Tame(C3))

= {(3, d2, d3) : 3 ≤ d2 ≤ d3, 3 | d2 or d3 ∈ 3N + d2N}.

6. The case (4, d2, d3)

In this section we give a partial description of the set

{(4, d2, d3) : 4 ≤ d2 ≤ d3} ∩mdeg(Tame(C3)).

This description will be given separately for four cases: (I) d2, d3 both even, (II) d2, d3
both odd, (III) d2 even and d3 odd, (IV) d2 odd and d3 even.

6.1. The case (4, even, even). This is the easiest case, summarised as follows.

Theorem 6.1. For all even numbers d3 ≥ d2 ≥ 4, (4, d2, d3) ∈ mdeg(Tame(C3)).

Proof. Since all numbers 4, d2, d3 are even, we have gcd(4, d2, d3) ∈ {2, 4}. Thus
4/gcd(4, d2, d3) ≤ 2 and we can use Theorem 3.4.

6.2. The case (4, odd, odd). In this subsection we give a complete description of the set

{(4, d2, d3) : 4 ≤ d2 ≤ d3, d2, d3 ∈ 2N + 1} ∩mdeg(Tame(C3)).

We will show the following
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Theorem 6.2. Let d3 ≥ d2 ≥ 4 be odd numbers. Then (4, d2, d3) ∈ mdeg(Tame(C3)) if
and only if d3 ∈ 4N + d2N.

Proof. By Proposition 3.2 it is enough to show the “only if” part. Thus, assume that
d3 /∈ 4N + d2N. Since d2 is odd, we have gcd(4, d2) = 1, and so, by Theorem 2.15,

d3 < (4− 1)(d2 − 1) = 3d2 − 3. (6.1)

By Remark 3.9 and Theorem 3.15, it is enough to show that no automorphism F =

(F1, F2, F3) of C3 with mdegF = (4, d2, d3) admits an elementary reduction.
Assume, to the contrary, that (F1, F2, F3 − g(F1, F2)), where g ∈ C[X,Y ], is an ele-

mentary reduction of such an F. Then

deg g(F1, F2) = d3. (6.2)

By Proposition 2.7,

deg g(F1, F2) ≥ q(pd2 − d2 − 4 + deg [F1, F2]) + rd2, (6.3)

where degY g(X,Y ) = pq + r, 0 ≤ r < p and p = 4/gcd(4, d2) = 4. Since pd2 − d2 − 4 +

deg [F1, F2] = 3d2 − 4 + deg [F1, F2] ≥ 3d2 − 2, by (6.1)–(6.3) we have q = 0 and r ≤ 2.

This means that g(X,Y ) is of the form

g(X,Y ) = g0(X) + g1(X)Y + g2(X)Y 2.

Since the sets 4N, d2 + 4N and 2d2 + 4N are pairwise disjoint (because lcm(4, d2) = 4d2),
it follows that

d3 = deg g(F1, F2) ∈ 4N ∪ (d2 + 4N) ∪ (2d2 + 4N).

This contradicts d3 /∈ 4N + d2N.
Now, assume that (F1, F2 − g(F1, F3), F3) is an elementary reduction of F. Then

deg g(F1, F3) = d2. (6.4)

But, by Proposition 2.7 we have

deg g(F1, F3) ≥ q(pd3 − d3 − 4 + deg [F1, F3]) + rd3, (6.5)

where degY g(X,Y ) = pq + r, 0 ≤ r < p and p = 4/gcd(4, d2) = 4. Since d3 > d2 > 4,
we see that pd3 − d3 − 4 + deg [F1, F3] > 2d3 > d2. Hence by (6.4) and (6.5), q = r = 0.

This means that g(X,Y ) = g(X) and so d2 = deg g(F1, F3) = deg g(F1) ∈ 4N. This
contradicts the assumption that d2 is odd.

Finally, assume that (F1 − g(F2, F3), F2, F3) is an elementary reduction of F. Then

deg g(F2, F3) = 4. (6.6)

By Proposition 2.7,

deg g(F1, F3) ≥ q(pd3 − d3 − d2 + deg [F2, F3]) + rd3, (6.7)

where degY g(X,Y ) = pq + r, 0 ≤ r < p and p = d2/gcd(d2, d3). Since d3 > 4, by (6.6)
and (6.7) we have r = 0. Since also 2 - d2 and d2 - d3 (because d3 /∈ 4N + d2N), we
conclude that p = d2/gcd(d2, d3) ≥ 3 and pd3 − d3 − d2 + deg [F2, F3] > d3 > 4. Thus
q = 0. Then we obtain a contradiction as in the previous case.
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Corollary 6.3. We have

{(4, d2, d3) : 4 ≤ d2 ≤ d3, d2, d3 ∈ 2N + 1} ∩mdeg(Tame(C3))

= {(4, d2, d3) : 4 ≤ d2 ≤ d3, d2, d3 ∈ 2N + 1, d3 ∈ 4N + d2N}.

6.3. The case (4, even, odd). We start with two examples (or rather two series of ex-
amples).

Example 6.4. Since

(X + Z4)3 = Z12 + 3XZ8 + 3X2Z4 +X3, (Y + Z6)2 = Z12 + 2Y Z6 + Y 2,

we see that
deg [(Y + Z6)2 − (X + Z4)3] = 9.

Thus, for any k ∈ N,

deg [(Y + Z6)2 − (X + Z4)3](X + Z4)k = 9 + 4k.

This means that
mdeg(F2 ◦ F1) = (4, 6, 9 + 4k),

where

F1(x, y, z) = (x+ z4, y + z6, z), F2(u, v, w) = (u, v, w + (v2 − u3)uk).

Example 6.5. Since

(X + Z4)3 = Z12 + 3XZ8 + 3X2Z4 +X3,

(Y + 3
2XZ

2 + Z6)2 = Z12 + 3XZ8 + 2Y Z6 + 9
4X

2Z4 + 3Y XZ2 + Y 2,

it follows that
deg [(Y + 3

2XZ
2 + Z6)2 − (X + Z4)3] = 7,

and
deg [(Y + 3

2XZ
2 + Z6)2 − (X + Z4)3](X + Z4)k = 7 + 4k.

Thus we have
mdeg(F2 ◦ F1) = (4, 6, 7 + 4k),

where

F1(x, y, z) = (x+ z4, y + 3
2xz

2 + z6, z), F2(u, v, w) = (u, v, w + (v2 − u3)uk).

Combining the above examples and Theorem 6.1 we obtain the following

Proposition 6.6. For any integer d3 ≥ 6 we have (4, 6, d3) ∈ mdeg(Tame(C3)).

In the same manner one can prove

Proposition 6.7. For any integer d3 ≥ 10 we have (4, 10, d3) ∈ mdeg(Tame(C3)).

Using Corollary 3.3 we obtain

Proposition 6.8. For k = 1, 2, . . . and any integer d3 ≥ 4k we have (4, 4k, d3) ∈
mdeg(Tame(C3)).

The next proposition gives partial information about multidegrees of the form (4, 4k+

2, d3), where k = 3, 4, . . . and d3 ≥ 4k + 2.
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Proposition 6.9. For any integers k ≥ 3 and d3 ≥ 5k + 1 we have (4, 4k + 2, d3) ∈
mdeg(Tame(C3)).

Proof. Let us notice that

(X + Z4)2k+1 =

2k+1∑
l=0

(
2k + 1

l

)
X lZ8k+4−4l

and (
Y + Zr +

k∑
l=0

alX
lZ4k+2−4l

)2
= Y 2 + 2Y Zr + Z2r + 2Y

k∑
l=0

alX
lZ4k+2−4l

+ 2Zr
k∑
l=0

alX
lZ4k+2−4l

+

2k∑
s=0

( ∑
l+m=s, l,m∈{0,...,k}

alam

)
XsZ8k+4−4s.

We will consider the cases r = k − 1, k, k + 1 and k + 2. Thus we have:

deg 2Y Zr ≤ k + 3 < 5k + 1,

degZ2r ≤ 2k + 4 < 5k + 1,

deg 2Y

k∑
l=0

alX
lZ4k+2−4l ≤ 4k + 3 < 5k + 1,

deg 2Zr
k∑
l=2

alX
lZ4k+2−4l ≤ 5k − 2 < 5k + 1.

This means that the only summands of the polynomial

(X + Z4)2k+1 −
(
Y + Zr +

k∑
l=0

alX
lZ4k+2−4l

)2
(6.8)

of degree greater than or equal to 5k + 1 are:

(1− a20)Z8k+4,[(
2k + 1

1

)
− 2a0a1

]
XZ8k,[(

2k + 1

2

)
− (2a0a2 + a21)

]
X2Z8k−4,

...[(
2k + 1

k

)
− (a0ak + a1ak−1 + · · ·+ ak−1a1 + aka0)

]
XkZ4k+4,

2a0z
4k+2+r

and (only in the case r = k + 2)
2a1XZ

4k−2+r.
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Since we can recursively solve the following system of equations (notice that we can take
a0 = 1):

1− a20 = 0,(
2k + 1

1

)
− 2a0a1 = 0,(

2k + 1

2

)
− (2a0a2 + a21) = 0,

...(
2k + 1

k

)
− (a0ak + a1ak−1 + · · ·+ ak−1a1 + aka0) = 0,

it follows that we can choose a0, a1, . . . , ak so that the degree of the polynomial (6.8) is
equal to

deg(2a0Z
4k+2+r) = 4k + 2 + r.

Taking r = k − 1, k, k + 1 and k + 2 we obtain polynomials of degree equal to 5k + 1,
5k + 2, 5k + 3 and 5k + 4, respectively.

Now, it is easy to see that taking

F (x, y, z) =
(
x+ z4, y + zr +

k∑
l=0

alx
lz4k+2−4l, z

)
,

G(u, v, w) = (u, v, w + (u4k+1 − v2)uq),

where q = 0, 1, . . ., we obtain

mdeg(G ◦ F ) = (4, 4k + 2, 4k + 2 + r + 4q).

Since for any d3 ≥ 5k + 1 we can find r ∈ {k − 1, k, k + 1, k + 2} and q ∈ N such that
4k + 2 + r + 4q = d3, the result follows.

6.4. The case (4, odd, even). In this subsection we give an almost complete description
of the set

{(4, d2, d3) : 4 ≤ d2 ≤ d3, d2 ∈ 2N + 1, d3 ∈ 2N} ∩mdeg(Tame(C3)).

Namely we have the following result.

Theorem 6.10. If d2 ≥ 5 is odd and d3 ≥ d2 is even such that d3 − d2 6= 1, then
(4, d2, d3) ∈ mdeg(Tame(C3)) if and only if d3 ∈ 4N + d2N.

Proof. If d3 ∈ 4N + d2N, then by Proposition 3.2, (4, d2, d3) ∈ mdeg(Tame(C3)). Con-
versely, assume that d3 /∈ 4N + d2N. Since d2 is odd, by Remark 3.9 and Theorem
3.15 it is enough to show that no automorphism F = (F1, F2, F3) : C3 → C3 with
mdegF = (4, d2, d3) admits an elementary reduction.

Assume that (F1, F2, F3 − g(F1, F2)), where g ∈ C[X,Y ], is such a reduction. Thus

deg g(F1, F2) = d3,



38 M. Karaś

and by Proposition 2.7,

deg g(F1, F2) ≥ q(pd2 − d2 − 4 + deg [F1, F2]) + rd2,

where degY g(X,Y ) = pq + r, 0 ≤ r < p and p = 4/gcd(4, d2) = 4. Since d3 /∈ 4N + d2N
and gcd(4, d2) = 1, we have (as in the proof of Theorem 6.2)

d3 < 3d2 − 3. (6.9)

Thus we can repeat the arguments from the corresponding case in the proof of Theorem
6.2 to obtain a contradiction.

Now, assume that (F1, F2 − g(F1, F3), F3) is an elementary reduction of F. Then

deg g(F1, F3) = d2, (6.10)

and by Proposition 2.7,

deg g(F1, F3) ≥ q(pd3 − d3 − 4 + deg [F1, F2]) + rd3, (6.11)

where degY g(X,Y ) = pq+ r, 0 ≤ r < p and p = 4/gcd(4, d3) = 2 (because d3 is even and
d3 /∈ 4N+d2N). Thus pd3−d3−4+deg [F1, F2] ≥ d3−2. But by the assumptions d3−d2 ≥ 0

is an odd number different from 1. So d2 ≤ d3−3, and then pd2−d2−4+deg [F1, F2] > d2.

Consequently, by (6.10) and (6.11), q = 0. Since also r = 0 (because d3 > d2), we see
that g(X,Y ) = g(X), and so

d2 = deg g(F1, F3) = deg g(F1) ∈ 4N.

This contradicts the assumption that d2 is odd.
In the last case we can repeat the arguments from the corresponding case in the proof

of Theorem 6.2.

Corollary 6.11. If d2 ≥ 5 is odd and d2 ≡ 3 (mod 4), and d3 ≥ d2 is even, then
(4, d2, d3) ∈ mdeg(Tame(C3)) if and only if d3 ∈ 4N + d2N.

Proof. Notice that if d3 − d2 = 1, then 4 | d3. Thus d3 ∈ 4N + d2N and by Proposition
3.2, (4, d2, d3) ∈ mdeg(Tame(C3)). In the case d3 − d2 > 1, we can use Theorem 6.10.

By the above corollary, to complete the description of the set

{(4, d2, d3) : 4 ≤ d2 ≤ d3, d2 ∈ 2N + 1, d3 ∈ 2N} ∩mdeg(Tame(C3))

it is enough to consider the triples of the form (1)

(4, 4k + 1, 4k + 2) for k = 1, 2, . . .

Moreover, using the arguments from the proof of Theorem 6.10, one can show

Proposition 6.12. Let k ∈ N∗. If there exists a tame automorphism F̃ of C3 with
mdeg F̃ = (4, 4k + 1, 4k + 2), then there is also a tame automorphism F = (F1, F2, F3)

of C3 with mdegF = (4, 4k + 1, 4k + 2) that admits an elementary reduction (F1, F2 −
g(F1, F3), F3) for some g ∈ C[X,Y ]. Moreover, for such F we have deg [F1, F3] ≤ 3.

(1) Recently, the author proved that (4, 5, 6) /∈ mdeg(Tame(C3)) [21]. The method developed
in [21] seems to be useful in other cases. For example, the author believes that, for k = 1, 2, . . . ,
we have (4, 4k + 1, 4k + 2) /∈ mdeg(Tame(C3)). He also believes that this can be proved by the
above mentioned method.
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Using arguments from the proof of Theorem 7.3 one can also show that deg [F1, F3] = 3

when k < 25.

7. The cases (p, d2, d3) and (5, d2, d3)

7.1. The general case. Now we generalize, in a sense, the results of the section ‘The
case (3, d2, d3)’. This generalization is not complete. The first, general result is

Theorem 7.1. Let 2 ≤ p ≤ d2 ≤ d3 be integers, and let p be a prime. If

(1) d3/d2 6= 3/2, or
(2) d3/d2 = 3/2 and d2/2 > p− 2,

then (p, d2, d3) ∈ mdeg(Tame(C3)) if and only if p | d2 or d3 ∈ pN + d2N.

Proof. By Corollary 3.2, if p | d2 or d3 ∈ pN+d2N, then there exists a tame automorphism
F : C3 → C3 such that mdegF = (p, d2, d3). Conversely, assume that p - d2 and d3 /∈
pN + d2N and (1) or (2) holds.

In particular p < d2 < d3. By Theorems 5.1 and 3.3, we can assume that p > 3.

Indeed, for p = 2, by Corollary 3.3 we have (2, d2, d3) ∈ mdeg(Tame(C3)) for all integers
2 ≤ d2 ≤ d3. Also the condition 2 | d2 or d3 ∈ 2N + d2N is satisfied for all integers
2 ≤ d2 ≤ d3. For p = 3 we simply use Theorem 5.1. So assume that p > 3. By Theorem
3.15 it is enough to show that no automorphism F = (F1, F2, F3) : C3 → C3 with
mdegF = (p, d2, d3) admits an elementary reduction (notice that 3 - p).

Assume, to the contrary, that there is such a reduction. Since p - d2, we have
gcd(p, d2) = 1. So by Theorem 2.15 we have k ∈ pN + d2N for all k ≥ (p− 1)(d2 − 1) =

pd2 − d2 − p+ 1. Thus
d3 < pd2 − d2 − p+ 1, (7.1)

since d3 /∈ pN + d2N.
Assume that (F1, F2, F3−g(F1, F2)) is an elementary reduction of (F1, F2, F3). Hence

deg g(F1, F2) = degF3 = d3. Since gcd(p, d2) = 1, we see that p/gcd(p, d2) = p, and so
by Proposition 2.7,

deg g(F1, F2) ≥ q(pd2 − d2 − p+ deg [F1, F2]) + rd2,

where degY g(X,Y ) = pq+ r with 0 ≤ r < p. Since F1, F2 are algebraically independent,
deg [F1, F2] ≥ 2 and pd2−d2−p+deg [F1, F2] ≥ pd2−d2−p+2. Then by (7.1) it follows
that q = 0. Thus

g(X,Y ) =

p−1∑
i=0

gi(X)Y i.

Since lcm(p, d2) = pd2, the sets

pN, d2 + pN, . . . , (p− 1)d2 + pN

are pairwise disjoint. So

deg
( p−1∑
i=0

gi(F1)F i2

)
= max
i=0,...,p−1

(degF1 deg gi + i degF2)
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and

d3 = deg g(F1, F2) = deg
(p−1∑
i=0

gi(F1)F i2

)
∈
p−1⋃
r=0

(rd2 + pN) ⊂ pN + d2N,

a contradiction.
Now assume that (F1, F2 − g(F1, F3), F3) is an elementary reduction of (F1, F2, F3).

Since d3 /∈ pN + d2N, we have p - d3 and gcd(p, d3) = 1. Hence by Proposition 2.7,

deg g(F1, F3) ≥ q(pd3 − d3 − p+ deg [F1, F3]) + rd3,

where degY g(X,Y ) = qp+r with 0 ≤ r < p. Since pd3−d3−p+deg [F1, F3] ≥ pd3−2d3 ≥
3d3 > d2 and since we want to have deg g(F1, F3) = p2, we conclude that q = r = 0. This
means that g(X,Y ) = g(X), and so

d2 = deg g(F1, F2) = deg g(F1) ∈ pN ⊂ pN + d2N,

a contradiction.
Finally, assume that (F1−g(F2, F3), F2, F3) is an elementary reduction of (F1, F2, F3).

Thus we have deg g(F2, F3) = p. Let

p̃ =
d2

gcd(d2, d3)
.

Since d3 /∈ pN + d2N, we see that d2 - d3, and so p̃ > 1. By Proposition 2.7,

deg g(F2, F3) ≥ q(p̃d3 − d2 − d3 + deg [F1, F3]) + rd3,

where degY g(X,Y ) = qp̃+ r with 0 ≤ r < p̃. Since d3 > p (because d3 > d2 > p), we see
that r = 0. Consider the case p̃ ≥ 3. Then p̃d3−d2−d3+deg [F1, F3] ≥ d3+deg [F1, F3] >

p. Thus we must have q = 0. Hence g(X,Y ) = g(X) and

p = deg g(F2, F3) = deg g(F2) ∈ d2N.

This contradicts d2 6= p (we have assumed that p - d2).
Now, consider the case p̃ = 2. Then, for some n ∈ N∗, d2 = 2n and d3 = ns, where

s ≥ 3 is odd. Consider first the case s > 3. Then

2d3 − d3 − d2 + deg [F1, F3] = d3 − d2 + deg [F1, F3]

= (s− 2)n+ deg [F1, F3] > d2 > p.

Thus we have q = 0. As before this leads to a contradiction.
Now, consider the case s = 3. This is the case when we use the second statement of

the assumption (2). Since d2 = 2n and d3 = 3n, we see that d3/d2 = 3/2. Hence (1) is
not satisfied. Thus, the assumption (2) is satisfied and so n = d2/2 > p− 2. Hence

2d3 − d3 − d2 + deg [F1, F3] = d3 − d2 + deg [F1, F3]

≥ n+ 2 > p.

So, also in this case we have q = 0. As before this leads to a contradiction.

For small prime numbers p the above theorem gives, for example, the following results.
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Corollary 7.2.

(a) If (5, d2, d3) 6= (5, 6, 9) and 5 ≤ d2 ≤ d3, then (5, d2, d3) ∈ mdeg(Tame(C3)) if and
only if 5 | d2 or d3 ∈ 5N + d2N.

(b) If (7, d2, d3) /∈ {(7, 8, 12), (7, 10, 15)} and 7 ≤ d2 ≤ d3, then we have (7, d2, d3) ∈
mdeg(Tame(C3)) if and only if 7 | d2 or d3 ∈ 7N + d2N.

(c) If (11, d2, d3) /∈ {(11, 12, 18), (11, 14, 21), (11, 16, 24), (11, 18, 27)} and 11 ≤ d2 ≤ d3,
then (11, d2, d3) ∈ mdeg(Tame(C3)) if and only if 11 | d2 or d3 ∈ 11N + d2N.

(d) If (13, d2, d3) /∈ {(13, 14, 21), (13, 16, 24), (13, 18, 27), (13, 20, 30), (13, 22, 33)} and
13 ≤ d2 ≤ d3, then (13, d2, d3) ∈ mdeg(Tame(C3)) if and only if 13 | d2 or d3 ∈
13N + d2N.

Proof. One can easily check that, for example, for p = 11 the only triples of the form
(11, d2, d3) with 11 ≤ d2 ≤ d3 that satisfy neither condition (1) nor (2) of the above
theorem are (11, 12, 18), (11, 14, 21), (11, 16, 24) and (11, 18, 27).

The point (a) of the above corollary yields an almost complete description of the set

{(5, d2, d3) : 5 ≤ d2 ≤ d3} ∩mdeg(Tame(C3)). (7.2)

The only thing that we do not know yet is whether (5, 6, 9) is an element of this set.
One can, of course, notice that 9 /∈ 5N + 6N. In the next section we show that (5, 6, 9) /∈
mdeg(Tame(C3)), completing the description of the set (7.2).

7.2. Tame automorphism of C3 with multidegree equal (5, 6, 9) and the Jacobian
Conjecture. Our main purpose in this section is to prove the following result.

Theorem 7.3. There is no tame automorphism of C3 with multidegree (5, 6, 9).

Before we give the proof of the above theorem we recall some positive results about
the Jacobian Conjecture in dimension two. In the proof of the theorem we use one of
such results but for completeness we recall a little more.

The first one is the following result due to Magnus [31].

Theorem 7.4 (Magnus, see also [7, Thm. 10.2.24]). Let F = (P,Q) be a Keller map
(i.e. such that JacF = 1). If gcd(degP,degQ) = 1 then F is invertible and degP = 1 or
degQ = 1.

The next, also due to Magnus, is the following corollary of the above theorem.

Corollary 7.5 (Magnus, see e.g. [7]). If F = (P,Q) is a Keller map and degP or degQ

is a prime number, then F is invertible.

Later Applegate, Onishi and Nagata improved the result of Magnus.

Theorem 7.6 (Applegate, Onishi, Nagata, see e.g. [3, 4] or [7]). Let F = (P,Q) be a
Keller map and d = gcd(degP,degQ). If d ≤ 8 or d is a prime, then F is invertible.

The last result we recall here is due to Moh [34].

Theorem 7.7 (see also [7]). Let F : C2 → C2 be a Keller map with degF ≤ 101. Then
F is invertible.
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Now we can give the proof of Theorem 7.3.

Proof of Theorem 7.3. By Theorem 3.15, it is enough to show that no (hypothetical)
automorphism F of C3 with mdegF = (5, 6, 9) admits an elementary reduction. Moreover,
it is enough to show this for automorphisms F = (F1, F2, F3) : C3 → C3 such that
F (0, 0, 0) = (0, 0, 0).

Assume that (F1, F2, F3 − g(F1, F2)), where g ∈ C[X,Y ], is an elementary reduction
of F. Then

deg g(F1, F2) = degF3 = 9. (7.3)

By Proposition 2.7,

deg g(F1, F2) ≥ q(5 · 6− 6− 5 + deg [F1, F2]) + 6r, (7.4)

where degY g(X,Y ) = 5q + r, with 0 ≤ r < 5. Since 5 · 6 − 6 − 5 + deg [F1, F2] ≥
19 + deg [F1, F2] > 9, by (7.3) and (7.4) we have q = 0. Also by (7.3) and (7.4) we have
r < 2. Thus g(X,Y ) = g0(X) + Y g0(X), and since 5N ∩ (6 + 5N) = ∅, it follows that

9 = deg g(F1, F2) ∈ 5N ∪ (6 + 5N),

a contradiction.
Now, assume that (F1, F2 − g(F1, F3), F3) is an elementary reduction of (F1, F2, F3).

Then
deg g(F1, F3) = degF2 = 6. (7.5)

By Proposition 2.7,

deg g(F1, F3) ≥ q(5 · 9− 9− 5 + deg [F1, F3]) + 9r, (7.6)

where degY g(X,Y ) = 5q + r, with 0 ≤ r < 5. Since 5 · 9 − 9 − 5 + deg [F1, F3] ≥
31 + deg [F1, F3] > 6, we have q = r = 0. This means that g(X,Y ) = g(X), and so

deg g(F1, F2) = deg g(F1) ∈ 5N,

a contradiction.
Finally, assume that (F1−g(F2, F3), F2, F3) is an elementary reduction of (F1, F2, F3).

By Theorem 3.15, we can also assume that F (0, 0, 0) = (0, 0, 0). We have

deg g(F2, F3) = degF1 = 5 (7.7)

and by Proposition 2.7,

deg g(F2, F3) ≥ q(p · 9− 9− 6 + deg [F2, F3]) + 9r, (7.8)

where degY g(X,Y ) = qp + r, with 0 ≤ r < p and p = 6/gcd(6, 9) = 2. By (7.7) and
(7.8), r = 0.

Consider the case deg [F2, F3] > 2. Then p·9−9−6+deg [F2, F3] = 3+deg [F2, F3] > 5,
and then by (7.7) and (7.8) we see that q = 0. Thus in this case, we have g(X,Y ) = g(X),
and so deg g(F2, F3) = deg g(F2) ∈ 6N. This contradicts (7.7).

Now, consider the case deg [F2, F3] = 2 (since F2, F3 are algebraically independent, we
have deg [F2, F3] ≥ 2). Let L be the linear part of the automorphism F. Since F (0, 0, 0) =
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(0, 0, 0), the linear part of F ◦ L−1 is the identity map idC3 . Thus

F2 ◦ L−1 = X2 + higher degree summands, (7.9)

F3 ◦ L−1 = X3 + higher degree summands.

Since, by Lemma 2.8,

deg [F2 ◦ L−1, F3 ◦ L−1] = deg [F2, F3] = 2,

it follows, by Lemma 3.20, that

F2 ◦ L−1, F3 ◦ L−1 ∈ C[X2, X3].

But deg [F2 ◦ L−1, F3 ◦ L−1] = 2 means that

Jac(F2 ◦ L−1, F3 ◦ L−1) ∈ C∗

(of course we consider here F2 ◦ L−1, F3 ◦ L−1 as functions of two variables X2, X3). By
Lemma 3.17 we have deg(F2 ◦ L−1) = 6,deg(F3 ◦ L−1) = 9. Then, by Theorem 7.7, the
map (F2 ◦ L−1, F3 ◦ L−1) : C2 → C2 is an automorphism. But 6 - 9 contradicts the
Jung–van der Kulk theorem (see Theorem 1.4 and Corollary 1.3).

By Theorem 7.3 and Corollary 7.2(a) we obtain the following result.

Corollary 7.8. We have

{(5, d2, d3) : 5 ≤ d2 ≤ d3} ∩mdeg(Tame(C3))

= {(5, d2, d3) : 5 ≤ d2 ≤ d3, 5 | d2 or d3 ∈ 5N + d2N}.

7.3. The case (p, 2(p−2), 3(p−2)). In the same manner as we proved Theorem 7.3 one
can show the following

Theorem 7.9. Let p ≥ 5 be a prime such that p ≤ 35. Then (p, 2(p − 2), 3(p − 3)) /∈
mdeg(Tame(C3)).

Proof. Since 3(p − 2) ≤ 101, one can use Theorem 7.7 and repeat the arguments from
the proof of Theorem 7.3.

By the above theorem and Corollary 7.2 we obtain

Corollary 7.10. We have

[{(7, d2, d3) : 7 ≤ d2 ≤ d3} ∩mdeg(Tame(C3))] \ {(7, 8, 12)}
= {(7, d2, d3) : 7 ≤ d2 ≤ d3, 7 | d2 or d3 ∈ 7N + d2N}.

The above corollary means that in order to obtain a complete description of the set
{(7, d2, d3) : 7 ≤ d2 ≤ d3} ∩mdeg(Tame(C3)) we “only” need to know whether (7, 8, 12)

∈ mdeg(Tame(C3)).

To end this subsection notice the following result.

Theorem 7.11. The Jacobian Conjecture for dimension two implies that for every prime
p ≥ 5 we have (p, 2(p− 2), 3(p− 2)) /∈ mdeg(Tame(C3)).

Proof. If we assume that the Jacobian Conjecture for dimension two holds true, then one
can repeat the arguments from the proof of Theorem 7.3.
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Corollary 7.12. If there is a tame automorphism F of C3 with mdegF = (p, 2(p− 2),

3(p − 2)), where p > 35 is a prime, then the Jacobian Conjecture for dimension two is
false.

Proof. This is a consequence of Theorems 7.9 and 7.11.

In particular we have

Theorem 7.13. If there is a tame automorphism F of C3 with mdegF = (37, 70, 105),
then the two-dimensional Jacobian Conjecture is false.

8. Finiteness results

Let us consider the set

T
(n)
a,b = {(d1, . . . , dn) ∈ (N∗)n : d1 ≤ · · · ≤ dn, d1 = a, d2 = b} \mdeg(Tame(Cn)).

Of course, by Jung–van der Kulk’s result, T (2)
a,b = {(a, b)} if a - b, and T

(2)
a,b = ∅ if a | b.

Thus #T
(2)
a,b ≤ 1 < +∞ for all 1 ≤ a ≤ b. We will show that also for n ≥ 3 the set T (n)

a,b

is finite. For n = 3 this result is due to Zygadło [54].

Theorem 8.1. For all integers 1 ≤ a ≤ b the set T (3)
a,b is finite. Moreover,

T
(3)
a,b ⊂ {(a, b, d3) : d3 < lcm(a, b)− r},

where r = min{b− 1, (a− 1)(bb/ac+ 1)}.

The original proof of the above theorem due to Zygadło can be found in [54], but we
give here another, simpler proof. It is based on the proof of Proposition 6.9, but there
are also similarities to the proof in [54].

Proof. First of all notice that without loss of generality we can assume that 1 < a < b.
Indeed, if a = 1, or a = b, then by Proposition 3.2 we have T (3)

a,b = ∅. Thus up to the end
of the proof we assume that 1 < a < b.

Let d = gcd(a, b). Then a = dã, b = db̃, where ã, b̃ ∈ N∗ are coprime. We have
lcm(a, b) = ab/gcd(a, b) = ab̃ = bã. Let us notice that

(X + Za)b̃ =

b̃∑
l=0

(
b̃

l

)
X lZab̃−la (8.1)

and(
Y + Zp +

bb/ac∑
l=0

alX
lZb−la

)ã
=

ã∑
s=1

(
ã

s

)
(Y + Zp)s

( bb/ac∑
l=0

alX
lZb−la

)ã−s
+
( bb/ac∑

l=0

alX
lZb−la

)ã
. (8.2)
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If we take p < b, then

deg

[ ã∑
s=1

(
ã

s

)
(Y + Zp)s

( bb/ac∑
l=0

alX
lZb−la

)ã−s]
≤ p+ b(ã− 1),

and since Zp+b(ã−1) can be obtained in the above polynomial in only one way, we actually
have (provided that a0 6= 0)

deg

[ ã∑
s=1

(
ã

s

)
(Y + Zp)s

( bb/ac∑
l=0

alX
lZb−la

)ã−s]
= p+ b(ã− 1). (8.3)

In the following, we will take p ∈ {1, . . . , b− 1} such that p+ b(ã− 1) ∈ {lcm(a, b)− r,
. . . , lcm(a, b) − r + (a − 1)}. This is possible, because b(ã − 1) + 1 ≤ lcm(a, b) − r and
lcm(a, b)− r + (a− 1) < lcm(a, b) = bã.

Now, using (8.1)–(8.3) we find that the summands of degree greater than p+ b(ã−1),
in the polynomial

(X + Za)b̃ −
(
Y + Zp +

bb/ac∑
l=0

alX
lZb−la

)ã
are

(1− aã0)Zab̃,[(
b̃

1

)
−
(
ã

1

)
aã−10 a1

]
XZa(̃b−1),[(

b̃

2

)
−
(
ã

2

)
aã−20 a21 −

(
ã

1

)
aã−10 a2

]
X2Za(̃b−2),

and for k = 3, . . . , bb/ac,[(
b̃

k

)
−
( ∑
l1+···+lã=k, li<k

al1 · · · alã
)
−
(
ã

1

)
aã−10 ak

]
XkZa(̃b−k).

Thus we can recursively choose coefficients a0, . . . , abb/ac so that all expressions in the
brackets above are equal to zero. Since also in the polynomial

(X + Za)b̃ −
( bb/ac∑

l=0

alX
lZb−la

)ã
there are no summands belonging to C[Z] \ C (provided that a0 = 1), we have

deg
[
(X + Za)b̃ −

(
Y + Zp +

bb/ac∑
l=0

alX
lZb−la

)ã]
= p+ b(ã− 1).

Now, let d3 ≥ lcm(a, b)− r be arbitrary. Then there are p ∈ {1, . . . , b− 1} and q ∈ N
such that p+b(ã−1) ∈ {lcm(a, b)−r, . . . , lcm(a, b)−r+(a−1)} and d3 = p+b(ã−1)+qa.

By the above considerations we obtain

mdeg(G ◦ F ) = (a, b, d3),
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where

F (x, y, z) =
(
x+ za, y + zp +

bb/ac∑
l=0

alx
lzb−la, z

)
,

G(u, v, w) = (u, v, w + (ub̃ − vã)uq).

Corollary 8.2. For n ∈ N, n ≥ 3, and all integers 1 ≤ a ≤ b the set T (n)
a,b is finite.

Moreover,

T
(3)
a,b ⊂ {(a, b, d3, . . . , dn) ∈ (N∗)n : d3, . . . , dn < lcm(a, b)− r},

where r is defined as in Theorem 8.1.

Proof. If for some i ∈ {3, . . . , n} we have di ≥ lcm(a, b) − r (actually we can think that
i = n, because d3 ≤ · · · ≤ dn) then by Theorem 8.1, there exists a tame automorphism
F : C3 → C3 such that mdegF = (a, b, di). Now we use Proposition 3.2.

9. Multidegree of the inverse of a polynomial automorphism of C2

In [44] Rusek and Winiarski proved that degF−1 ≤ (degF )n−1 for all automorphisms F
of Cn and hence degF−1 = degF for n = 2. Here we give complete information about
mdegF−1 for F ∈ Aut(C2).

9.1. Multidegree and length of automorphisms of C2. Here we establish the rela-
tions between the multidegree of a given automorphism of C2 and its length (Theorem
9.5). We start with the following technical (cf. [11, Lem. 2])

Lemma 9.1. If (P,Q) ∈ Aut(C2) is such that degP < degQ, then there is a polynomial
f ∈ C[T ] with deg f > 1 such that:

(1) deg(Q− f(P )) < degP if degP > 1,
(2) deg(Q− f(P )) = 1 if degP = 1.

Proof. Since degQ > degP ≥ 1, we have degQ+ degP > 2 and Jac(P ,Q) = 0 (because
Jac(P,Q) ∈ C∗). By Lemma 1.5,

P = αhn1 , Q = βhn2

for some α, β ∈ C∗, n1, n2 ∈ N∗ and some homogeneous polynomial h ∈ C[X,Y ]. Since
degP | degQ, we have n1 |n2 and so Q = c1P

k1 for some c1 ∈ C∗ and k1 = n2/n1. Now
deg(Q− c1P k1) < degQ, and if deg(Q− c1P k1) < degP or deg(Q− c1P k1) = degP = 1,
then we are done. And, if deg(Q− c1P k1) > degP or deg(Q− c1P k1) = degP > 1, then
we can repeat the above arguments for Q− c1P k1 and P to obtain c2 ∈ C∗ and k2 < k1

such that Q− c1P k1 = c2P
k2
. Then

deg(Q− c1P k1 − c2P k2) < deg(Q− c1P k1)

and we can proceed inductively.

Now we can prove the following (cf. [11, Thm. 1])
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Proposition 9.2. If F ∈ Aut(C2), then there is a number l ∈ N (possibly zero), affine
automorphisms L1, L2 of C2 and triangular automorphisms T1, . . . , Tl of the forms

Ti : C2 3 (x, y) 7→ (x, y + fi(x)) ∈ C2 for i = 1, 3, . . . , (9.1)

Ti : C2 3 (x, y) 7→ (x+ fi(y), y) ∈ C2 for i = 2, 4, . . . , (9.2)

with deg fi > 1, such that
F = L2 ◦ Tl ◦ · · · ◦ T1 ◦ L1.

Moreover, the number l is unique, and one can require that Ti, i = 1, . . . , l, are of the
form (9.1) for even i and of the form (9.2) for odd i.

Proof. Let F = (F1, F2). If degF1 = degF2 = 1, then F is an affine mapping and we
have F = L2 ◦ L1 for L2 = idC2 and L1 = F.

If degF1 = degF2 > 1, then Jac(F1, F2) = 0 (because Jac(F1, F2) ∈ C∗). Thus, by
Lemma 1.5,

F1 = αhn, F2 = βhn

for some α, β ∈ C∗, n ∈ N∗ and some homogeneous polynomial h ∈ C[X,Y ]. Let
L2(x, y) = (x+ (α/β)y, y) and

(G1, G2) = L−12 ◦ F.

Then degG2 = degF2 (actually G2 = F2) and degG1 < degG2. Hence we can assume
that degF1 6= degF2, and without loss of generality that degF1 < degF2 (if degF1 >

degF2, then for (G1, G2) = L−12 ◦ F , where L2(x, y) = (y, x), we have degG1 < degG2).
By Lemma 9.1, we obtain a polynomial f ∈ C[T ], deg f > 1, such that for T1(x, y) =

(x, y + f(x)) and (G1, G2) = T−11 ◦ F we have degG2 < degG1 or degG2 = degG1 = 1.

In the second case (G1, G2) is an affine map and for L1 = (G1, G2) we have F = T1 ◦L1,
so we are done. And in the first case we can use Lemma 9.1 once again and proceed
inductively.

Thus we can assume that F = L̃2 ◦ T̃1 ◦ · · · ◦ T̃l ◦ L̃1, where L̃1, L̃2 ∈ Aff(C2) and T̃i
are of the forms (9.1), (9.2). Let us set

Ti =

{
T̃l+1−i for odd l,
L ◦ T̃l+1−i ◦ L for even l,

L1 =

{
L̃1 for odd l,
L ◦ L̃1 for even l,

L2 =

{
L̃2 for odd l,
L̃2 ◦ L for even l,

where L(x, y) = (y, x). Then one can check that F = L2 ◦ Tl ◦ · · · ◦ T1 ◦ L1.

To see that l is unique it is enough to notice that L ◦ Tj ◦ L ∈ J(C2) \ Aff(C2),
j = 1, 3, . . . , and Tj ∈ J(C2) \Aff(C2), j = 2, 4, . . . , and so

F = L̂2 ◦ · · · ◦ L ◦ (L ◦ T3 ◦ L) ◦ L ◦ T2 ◦ L ◦ (L ◦ T1 ◦ L) ◦ (L ◦ L1)

is the amalgamated representation of F for suitable sets Φ and Ψ (see Definition 1.2,
Proposition 1.1 and [7, Cor. 5.1.3]), where

L̂2 =

{
L̃2 for even l,
L̃2 ◦ L for odd l.
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To see that the last statement holds true, one can write

F = (L2 ◦ L) ◦ (L ◦ Tl ◦ L) ◦ · · · ◦ (L ◦ T1 ◦ L) ◦ (L ◦ L1).

Definition 9.3 (see e.g. [11, p. 612]). Let F ∈ Aut(C2) be a polynomial automorphism.
The number l from Proposition 9.2 is called the length of F and denoted lengthF.

In what follows we will use the following numerical object.

Definition 9.4. Let k ∈ N∗ and let k = pα1
1 · · · pαr

r be its prime decomposition. Then
we denote by l(k) the number α1 + · · ·+ αr.

Obviously, l(k1k2) = l(k1) + l(k2) for all k1, k2 ∈ N∗, and l(k) ≥ 1 for k > 1.

Theorem 9.5. Let F ∈ Aut(C2). Then:

(1) if lengthF = 1, then mdegF ∈ {(1, d), (d, 1), (d, d)}, where 1 < d,
(2) if lengthF = 2, then either mdegF ∈ {(d1, d2), (d2, d1)} with 1 < d1 < d2, d1 | d2, or

mdegF = (d, d) with l(d) ≥ 2 (in particular d > 1 is a composite number),
(3) if lengthF ≥ 3, then either mdegF ∈ {(d1, d2), (d2, d1)} with 1 < d1 < d2, d1 | d2,

l(d1) ≥ lengthF − 1, or mdegF = (d, d) with l(d) ≥ lengthF.

Proof. (1) Since lengthF = 1, we have F = L2 ◦ T ◦ L1, where L1, L2 ∈ Aff(C2) and
T is of the form T : C2 3 (x, y) 7→ (x, y + f(x)) ∈ C2 with deg f > 1. Thus mdeg(T ◦
L1) = (1, d), where d = deg f , and then one can easily check that mdeg(L2 ◦ T ◦ L1) ∈
{(1, d), (d, 1), (d, d)}.

(2) Since lengthF = 2, we have F = L2 ◦ T2 ◦ T1 ◦ L1, where L1, L2 ∈ Aff(C2) and
T1, T2 are of the form

T1 : C2 3 (x, y) 7→ (x, y + f1(x)) ∈ C2, T2 : C2 3 (x, y) 7→ (x+ f2(y), y) ∈ C2,

with deg f1,deg f2 > 1. Thus mdeg(T1 ◦ L1) = (1,deg f1), and then mdeg(T2 ◦ T1 ◦ L1)

= (d2, d1), where d1 = deg f1, d2 = deg f2 ·deg f1. Since deg f1,deg f2 > 1, it follows that
l(d2) = l(deg f1) + l(deg f2) ≥ 2. Now, one can easily see that mdeg(L2 ◦ T2 ◦ T1 ◦ L1) ∈
{(d1, d2), (d2, d1), (d2, d2)}.

(3) Since l = lengthF ≥ 3, we have F = L2 ◦Tl ◦ · · · ◦T1 ◦L1, where L1, L2 ∈ Aff(C2)

and T1, . . . , Tl are of the form

Ti : C2 3 (x, y) 7→ (x+ fi(y), y) ∈ C2

for even i, and
Ti : C2 3 (x, y) 7→ (x, y + fi(x)) ∈ C2

for odd i, with deg fi > 1 for i = 1, . . . , l. Now, one can easily check that (see also [7,
Lem. 5.1.2])

mdeg(Tl ◦ · · · ◦ T1 ◦ L1) =

{
(
∏l
j=1 deg fj ,

∏l−1
j=1 deg fj) for even l,

(
∏l−1
j=1 deg fj ,

∏l
j=1 deg fj) for odd l.

Let

d2 =

l∏
j=1

deg fj and d1 =

l−1∏
j=1

deg fj .
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Then mdeg(Tl ◦ · · · ◦ T1 ◦ L1) = (d1, d2) for odd l, and mdeg(Tl ◦ · · · ◦ T1 ◦ L1) = (d2, d1)

for even l.
Since deg fi > 1 for i = 1, . . . , l, we have

l(d1) ≥ l(deg f1) + · · ·+ l(deg fl−1) ≥ l − 1,

and
l(d2) ≥ l(deg f1) + · · ·+ l(deg fl) ≥ l.

Of course, as in the previous case, we have

mdeg(L2 ◦ Tl ◦ · · · ◦ T1 ◦ L1) ∈ {(d1, d2), (d2, d1), (d2, d2)}.

Theorem 9.6. Let F ∈ Aut(C2) be a polynomial automorphism with mdegF = (d1, d2),
d1 ≤ d2. Then lengthF ≤ min{l(d2), l(d1) + 1}.

Proof. This is a consequence of Theorem 9.5.

9.2. The case of length 1. Here we consider the situation when lengthF = 1. Because
of Theorem 9.5, this simple situation is described by the following result.

Theorem 9.7. Let F ∈ Aut(C2), where lengthF = 1 and mdegF ∈ {(1, d), (d, d)} with
1 < d. Then

mdegF−1 ∈ {(1, d), (d, 1), (d, d)}.

Proof. Since lengthF = 1, we have F = L2◦T ◦L1, where T is a triangular automorphism
of the form T : C2 3 (x, y) 7→ (x, y + f(x)) ∈ C2 with deg f > 1, and L1, L2 ∈ Aff(C2).

Notice that deg f = deg T = degF = d. Thus mdeg(T−1 ◦ L−12 ) = (1, d). Now, it is easy
to see that

mdegF−1 = mdeg(L−11 ◦ T−1 ◦ L−12 ) ∈ {(1, d), (d, 1), (d, d)}.

The following two examples show that all possibilities described in the above theorem
are realized.

Example 9.8. Let d ∈ N \ {0, 1}. Put

Fa = T, Fb = T ◦ Lb, Fc = T ◦ Lc,

where T (x, y) = (x, y + xd), Lb(x, y) = (y, x) and Lc(x, y) = (x + y, y). One can check
that

mdegFa = mdegFb = mdegFc = (1, d),

mdegF−1a = (1, d), mdegF−1b = (d, 1), mdegF−1c = (d, d).

Example 9.9. Let d ∈ N \ {0, 1} and put

Fa = Lc ◦ T, Fb = Lc ◦ T ◦ Lb, Fc = Lc ◦ T ◦ Lc,

where T, Lb and Lc are as in the previous example. One can check that

mdegFa = mdegFb = mdegFc = (d, d),

mdegF−1a = (1, d), mdegF−1b = (d, 1), mdegF−1c = (d, d).
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9.3. The case (d1, d2). Here we investigate the situation when mdegF = (d1, d2), d1 6=
d2 and lengthF > 1. Of course, without loss of generality, we can assume that d1 < d2.

Because of Theorem 9.5, the situation is described by the following two theorems.

Theorem 9.10. Let F ∈ Aut(C2), where lengthF = 2 and mdegF = (d1, d2) with
1 < d1 < d2, d1 | d2. Then

mdegF−1 ∈ {(d2, d2/d1), (d2/d1, d2), (d2, d2)}.

Proof. Since lengthF = 2, we have F = L2 ◦ T2 ◦ T1 ◦ L1, where T1, T2 are triangular
(and non-affine) automorphisms and L1, L2 ∈ Aff(C2). We can assume that T1 and T2
are of the form

T1 : C2 3 (x, y) 7→ (x+ f1(y), y) ∈ C2, T2 : C2 3 (x, y) 7→ (x, y + f2(x)) ∈ C2.

Then mdeg(T1 ◦L1) = (deg f1, 1) and mdeg(T2 ◦T1 ◦L1) = (deg f1,deg f2 ·deg f1). Thus,
we have deg f1 = d1 and deg f2 = d2/d1. Now one can easily check that

mdeg(T−12 ◦ L−12 ) = (1,deg f2) = (1, d2/d1),

mdeg(T−11 ◦ T−12 ◦ L−12 ) = (deg f2 · deg f1,deg f2) = (d2, d2/d1).

Since F−1 = L−11 ◦ T
−1
1 ◦ T−12 ◦ L−12 , the result follows.

The following example shows that all possibilities described in the above theorem are
realized.

Example 9.11. Let d1, d2 ∈ N be such that 1 < d1 < d2, d1 | d2. Put

T1 : C2 3 (x, y) 7→ (x+ yd1 , y) ∈ C2, T2 : C2 3 (x, y) 7→ (x, y + xδ) ∈ C2,

where δ = d2/d1, and

Fa = T2 ◦ T1, Fb = T2 ◦ T1 ◦ Lb, Fc = T2 ◦ T1 ◦ Lc,

where Lb(x, y) = (y, x) and Lc(x, y) = (x, y + x). One can check that

mdegFa = mdegFb = mdegFc = (d1, d2),

mdegF−1a = (d2, d2/d1), mdegF−1b = (d2/d1, d2), mdegF−1c = (d2, d2).

Theorem 9.12. Let F ∈ Aut(C2), where lengthF ≥ 3 and mdegF = (d1, d2) with
1 < d1 < d2, d1 | d2. Then

mdegF−1 ∈ {(d2, d2/a), (d2/a, d2), (d2, d2) : a ∈ AF },

where AF = {a : 1 < a < d1, a | d1, l(d1/a) ≥ lengthF − 2}.

Proof. Let l = lengthF. Then F can be written in the form

F = L2 ◦ Tl ◦ · · · ◦ T1 ◦ L1,

where T1, . . . , Tl are triangular (and non-affine) automorphisms and L1, L2 ∈ Aff(C2).

We can assume that Ti are of the form

Ti : C2 3 (x, y) 7→ (x+ fi(y), y) ∈ C2 for odd i,

Ti : C2 3 (x, y) 7→ (x, y + fi(x)) ∈ C2 for even i.
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Now, one can check that

mdeg(Tl ◦ · · · ◦ T1 ◦ L1) =

{
(
∏l
j=1 deg fj ,

∏l−1
j=1 deg fj) for odd l,

(
∏l−1
j=1 deg fj ,

∏l
j=1 deg fj) for even l.

In both cases we have
l∏

j=1

deg fj = d2 and
l−1∏
j=1

deg fj = d1.

Let a = deg f1. Since Ti are not affine, deg fi > 1. Since also l ≥ 3 (in other words,
l − 1 > 1), a is a proper divisor of d1 and l(d1/a) = l(deg f2 · · · deg fl−1) ≥ l − 2.

Now, one can check that

mdeg(T−11 ◦ · · · ◦ T−1l ◦ L−12 ) =
( l∏
j=1

deg fj ,

l∏
j=2

deg fj

)
= (d2, d2/a).

Since F−1 = L−11 ◦ T
−1
1 ◦ · · · ◦ T−1l ◦ L−12 , the result follows.

Also in this case all possibilities are realized, as the following example shows.

Example 9.13. Let d1, d2 ∈ N be such that 1 < d1 < d2, d1 | d2, and let l ≤ l(d1) + 1 be
an even number. Assume also that a is a proper divisor of d1 such that l(d1/a) ≥ l − 2.

Take positive integers a2, . . . , al−1 such that

d1 = a · a2 · · · al−1.

Such integers exist, because l(d1/a) ≥ l − 2. Now put:

T1 : C2 3 (x, y) 7→ (x+ ya, y) ∈ C2,

T2 : C2 3 (x, y) 7→ (x, y + xa2) ∈ C2,

T3 : C2 3 (x, y) 7→ (x+ ya3 , y) ∈ C2,

...

Tl−1 : C2 3 (x, y) 7→ (x+ yal−1 , y) ∈ C2,

Tl : C2 3 (x, y) 7→ (x, y + xδ) ∈ C2,

where δ = d2/d1. Also set

Fa = Tl ◦ · · · ◦ T1, Fb = Tl ◦ · · · ◦ T1 ◦ Lb, Fc = Tl ◦ · · · ◦ T1 ◦ Lc,

where Lb and Lc are defined as in the previous example. One can check that

mdegFa = mdegFb = mdegFc = (d1, d2), lengthF = l.

It is also easy to see that

mdegF−1a = (d2, d2/a), mdegF−1b = (d2/a, d2), mdegF−1c = (d2, d2).

In a similar way one can obtain an example when l is odd.

The following example shows an application of Theorem 9.12.

Example 9.14. Let F ∈ Aut(C2) be such that mdegF = (60, 120). Since l(60) =

l(22 · 3 · 5) = 4, we have lengthF ≤ 5.
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If lengthF = 3, then

AF = {2, 3, 5, 4, 6, 10, 15, 12, 20, 30},

and so, by Theorem 9.12,

mdegF−1 ∈ {(120, 60), (120, 40), (120, 24), (120, 30), (120, 20),

(120, 12), (120, 8), (120, 10), (120, 6), (120, 4), (60, 120),

(40, 120), (24, 120), (30, 120), (20, 120), (12, 120).

(8, 120), (10, 120), (6, 120), (4, 120), (120, 120)}.

If lengthF = 4, then
AF = {2, 3, 5, 4, 6, 10, 15},

and so, by Theorem 9.12,

mdegF−1 ∈ {(120, 60), (120, 40), (120, 24), (120, 30), (120, 20),

(120, 12), (120, 8), (60, 120), (40, 120), (24, 120),

(30, 120), (20, 120), (12, 120), (8, 120), (120, 120)}.

If lengthF = 5, then
AF = {2, 3, 5},

and so, by Theorem 9.12,

mdegF−1 ∈ {(120, 60), (120, 40), (120, 24), (60, 120), (40, 120), (24, 120), (120, 120)}.

Moreover, by the previous example, all the listed possibilities are realized.

9.4. The case (d, d). Using similar arguments to those in the proof of Theorem 9.12
one can prove the following

Theorem 9.15. Let F ∈ Aut(C2), where lengthF ≥ 2 and mdegF = (d, d) with 1 < d.

Then
mdegF−1 ∈ {(d, d/a), (d/a, d), (d, d) : a ∈ AF },

where AF = {a : 1 < a < d, a | d, l(d/a) ≥ lengthF − 1}.

Also in this case all the possibilities are realized, as the following example shows (this
example is a modification of the example given after Theorem 9.12).

Example 9.16. Let d ∈ N and l ≥ 2 be an even number such that l ≤ l(d). Assume also
that a is a proper divisor of d such that l(d/a) ≥ l − 1. Take positive integers a2, . . . , al
such that

d = a · a2 · · · al.

Such integers exist, because l(d/a) ≥ l − 1. Let T1, . . . , Tl−1 be defined as in Example
9.13 and put

Tl : C2 3 (x, y) 7→ (x, y + xal) ∈ C2.

Also set

Fa = L ◦ Tl ◦ · · · ◦ T1, Fb = L ◦ Tl ◦ . . . ◦ T1 ◦ Lb, Fc = L ◦ Tl ◦ · · · ◦ T1 ◦ Lc,
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where Lb(x, y) = (y, x), Lc(x, y) = (x, y+x) and L(x, y) = (x+y, y). Then one can check
that

mdegFa = mdegFb = mdegFc = (d, d), lengthF = l,

mdegF−1a = (d, d/a), mdegF−1b = (d/a, d), mdegF−1c = (d, d).

References

[1] S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math.
276 (1975), 148–166.

[2] R. Alperin, Homology of the group of automorphisms of k[X,Y ], J. Pure Appl. Algebra
15 (1979), 105–115.

[3] H. Applegate and H. Onishi, The Jacobian Conjecture in two variables, ibid. 37 (1985),
215–227.

[4] K. Baba and Y. Nakai, A generalization of Magnus’ theorem, Osaka J. Math. 14 (1977),
403–409.

[5] P. Craighero, A result on m-flats in An
k , Rend. Sem. Mat. Univ. Padova 75 (1986), 39–46.

[6] W. Dicks, Automorphisms of the polynomial ring in two variabless, Publ. Sec. Math. Univ.
Autónoma Barcelona 27 (1983), 135–153.

[7] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Birkhäuser,
Basel, 2000.

[8] A. van den Essen, L. Makar-Limanov and R. Willems, Remarks on Shestakov–Umirbaev ,
Report 0414, Radboud University of Nijmegen, 2004.

[9] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew.
Math. 184 (1942), 161–174.

[10] A. Brauer, On a problem on partitions, Amer. J. Math. 64 (1942), 299–312.
[11] J-P. Furter, On the variety of automorphisms of the affine plane, J. Algebra 195 (1997),

604–623.
[12] A. Gutwirth, An inequality for certain pencils of plane curves, Proc. Amer. Math. Soc. 12

(1961), 631–638.
[13] Z. Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987),

113–120.
[14] —, A note about the extension of polynomial embeddings, Bull. Polish Acad. Sci. Math.

43 (1995), 239–244.
[15] —, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1–35.
[16] S. Kaliman, Extension of isomorphisms between affine algebraic subverieties of kn to au-

tomorphisms of kn, Proc. Amer. Math. Soc. 113 (1991), 325–334.
[17] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on

an affine space, J. Pure Appl. Algebra 60 (1979), 439–451.
[18] M. Karaś, There is no tame automorphism of C3 with multidegree (3, 4, 5), Proc. Amer.

Math. Soc. 139 (2011), 769–775.
[19] —, Tame automorphisms of C3 with multidegree of the form (p1, p2, d3), Bull. Polish Acad.

Sci. Math. 59 (2011), 27–32.
[20] —, Tame automorphisms of C3 with multidegree of the form (3, d2, d3), J. Pure Appl.

Algebra 214 (2010), 2144–2147.

http://dx.doi.org/10.1016/0022-4049(85)90099-4
http://dx.doi.org/10.2307/2371684
http://dx.doi.org/10.1006/jabr.1997.7054
http://dx.doi.org/10.1090/S0002-9939-1961-0126759-4
http://dx.doi.org/10.1007/BF01457281
http://dx.doi.org/10.1007/s002080050316
http://dx.doi.org/10.1090/S0002-9939-2010-10779-7
http://dx.doi.org/10.4064/ba59-1-4
http://dx.doi.org/10.1016/j.jpaa.2010.02.017


54 M. Karaś

[21] M. Karaś, There is no tame automorphism of C3 with multidegree (4, 5, 6), arXiv:1104.
1061v1 [math.AG], 2011.

[22] M. Karaś and J. Zygadło, On multidegree of tame and wild automorphisms of C3, J. Pure
Appl. Algebra 215 (2011), 2843–2846.

[23] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wiskunde (3) 1
(1953), 33–41.

[24] S. Kuroda, A generalization of the Shestakov–Umirbaev inequality , Tokyo J. Math. 32
(2009), 247–251.

[25] —, Automorphisms of a polynomial ring which admit reductions of type I , Publ. Res. Inst.
Math. Sci. 45 (2009), 907–917.

[26] —, Shestakov–Umirbaev reductions and Nagata’s conjecture on a polynomial automor-
phism, Tohoku Math. J. 62 (2010), 75–115.

[27] S. Lang, Algebra, Addison-Wesley, 1984.
[28] J. McKay and S. S. S. Wang, An inversion formula for two polynomials in two variables,

J. Pure Appl. Algebra 40 (1986), 245–257.
[29] —, —, An elementary proof of the automorphism theorem for the polynomial ring in two

variables, ibid. 52 (1988), 91–102.
[30] —, —, On the inversion formula for two polynomials in two variables, ibid. 52 (1988),

103–119.
[31] A. Magnus, On polynomial solutions of a differential equation, Math. Scand. 3 (1955),

255–260.
[32] L. Makar-Limanov, On automorphisms of certain algebras, Ph.D. thesis, Moscow State

Univ., 1970.
[33] R. Mauldin (ed.), The Scottish Book: Mathematics from the Scottish Café, Birkhäuser,

Boston, 1979.
[34] T. Moh, On the Jacobian Conjecture and the configurations of roots, J. Reine Angew.

Math. 340 (1983), 140–212.
[35] T. Moh, J. McKay and S. S. S. Wang, On face polynomials, J. Pure Appl. Algebra 52

(1988), 121–125.
[36] M. Nagata, On Automorphism Group of k[x, y], Lectures in Math. 5, Dept. Math., Kyoto

Univ., Kinokuniya, Tokyo, 1972.
[37] —, Two dimensional Jacobian Conjecture, in: Algebra and Topology 1988 (Taejon, 1988),

M. H. Kim and K. H. Ko (eds.), Korea Inst. Tech., 1988, 77–98.
[38] —, Some remarks on the two-dimensional Jacobian Conjecture, Chinese J. Math. 17

(1989), 1–7.
[39] —, Revised version of both [37] and [38].
[40] S. Pinchuk, A counterexample to the real Jacobian Conjecture, Math. Z. 217 (1994), 1–4.
[41] A. Płoski, Algebraic dependence of polynomial automorphisms, Bull. Polish Acad. Sci.

Math. 34 (1986), 653–659.
[42] R. Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris 267

(1968), 384–387.
[43] K. Rusek, Polynomial automorphisms, Preprint 456, Inst. Math., Polish Acad. Sci., 1989.
[44] K. Rusek and T. Winiarski, Polynomial automorphisms of Cn, Univ. Iagell. Acta Math.

24 (1984), 143–149.
[45] B. Segre, Forme differenziali e loro integrali , Vol. II, Docet, Roma, 1957.
[46] I. R. Shafarevich, On some infinite dimensional groups, Rend. Mat. Appl. 25 (1966),

208–212.

http://dx.doi.org/10.1016/j.jpaa.2011.04.003
http://dx.doi.org/10.3836/tjm/1249648420
http://dx.doi.org/10.2977/prims/1249478968
http://dx.doi.org/10.2748/tmj/1270041028
http://dx.doi.org/10.1016/0022-4049(86)90044-7
http://dx.doi.org/10.1016/0022-4049(88)90137-5
http://dx.doi.org/10.1016/0022-4049(88)90138-7
http://dx.doi.org/10.1016/0022-4049(88)90139-9
http://dx.doi.org/10.1007/BF02571929


Multidegrees of tame automorphisms of Cn 55

[47] S. Smale, Mathematical problems for the next century, Math. Intelligencer 20 (1998), no. 2,
7–15.

[48] M. K. Smith, Stably tame automorphisms, J. Pure Appl. Algebra 58 (1989), 209–212.
[49] I. P. Shestakov and U. U. Umirbaev, The Nagata automorphism is wild , Proc. Nat. Acad.

Sci. USA 100 (2003), 12561–12563.
[50] —, —, The tame and the wild automorphisms of polynomial rings in three variables,

J. Amer. Math. Soc. 17 (2004), 197–227.
[51] —, —, Poisson brackets and two-generated subalgebras of rings of polynomials, ibid. 17

(2004), 181–196.
[52] V. Srinivas, On the embedding dimension of the affine variety, Math. Ann. 289 (1991),

125–132.
[53] U. U. Umirbaev and J.-T. Yu, The strong Nagata conjecture, Proc. Nat. Acad. Sci. USA

101 (2004), 4352–4355.
[54] J. Zygadło, On multidegrees of polynomial automorphisms of C3, arXiv:0903.5512v1

[math.AC], 2009.

http://dx.doi.org/10.1007/BF03025291
http://dx.doi.org/10.1016/0022-4049(89)90158-8
http://dx.doi.org/10.1073/pnas.1735483100
http://dx.doi.org/10.1090/S0894-0347-03-00440-5
http://dx.doi.org/10.1090/S0894-0347-03-00438-7
http://dx.doi.org/10.1007/BF01446563
http://dx.doi.org/10.1073/pnas.0308157101

	Introduction
	Notation, basic definitions and two-dimensional case
	Notation
	Examples of polynomial automorphisms
	Degree, bidegree and multidegree
	Jung and van der Kulk result

	Main tools
	Poisson bracket and degree of polynomials
	Degree of a Poisson bracket and a linear change of coordinates
	Shestakov–Umirbaev reductions
	Some number theory

	Some useful results
	Some simple remarks
	Reducibility of type I and II
	Reducibility of type III
	Reducibility of type IV and Kuroda's result
	Reducibility and linear change of coordinates
	Relationship between the degree of the Poisson bracket and the number of variables

	The case (p1,p2,d3)  and its generalization
	The case (p1,p2,d3) 
	Some consequences
	Generalization
	The set `39`42`"613A``45`47`"603Amdeg(`39`42`"613A``45`47`"603AAut(C3)) `39`42`"613A``45`47`"603Amdeg(Tame ( C3)) 

	The case (3,d2,d3) 
	The case (4,d2,d3) 
	The case (4,even,even) 
	The case (4,odd,odd) 
	The case (4,even,odd) 
	The case (4,odd,even) 

	The cases (p,d2,d3)  and ( 5,d2,d3) 
	The general case
	Tame automorphism of C3 with multidegree equal (5,6,9)  and the Jacobian Conjecture
	The case (p,2(p-2),3(p-2) ) 

	Finiteness results
	Multidegree of the inverse of a polynomial automorphism of C2
	Multidegree and length of automorphisms of C2
	The case of length 1
	The case (d1,d2) 
	The case (d,d) 

	References

