
1. IntrodutionThe main purpose of our study is to show some generalizations and appliations of theKantorovih�Rubinstein maximum priniple. First we prove this priniple for nonlinearfuntionals of Hammerstein type. This result is based on a series of lemmas onerningloal hanges of Lipshitzian funtions. Then we show that the Kantorovih�Rubinsteinmaximum priniple ombined with the LaSalle invariane priniple yields new su�ientonditions for the asymptoti stability of Markov semigroups. These riteria are appliedto the semigroups generated by disrete time stohastially perturbed dynamial sys-tems, Poisson driven stohasti di�erential equations and to the Tjon�Wu version of theBoltzmann equation.The outline of the paper is as follows. In Chapter 2 we onsider some properties ofontrative funtions whih satisfy the inequality(1) |f(x) − f(y)| < ̺(x, y) for x, y ∈ X, x 6= y,where (X, ̺) is a metri spae. It is shown that under some additional onditions onern-ing the spae X a funtion f satisfying (1) may be loally hanged (in a neighbourhoodof a ompat set) in suh a way that the inequality (1) is preserved. The proofs arepartially based on the MShane extension theorem (see [31, Theorem 1℄).In Chapter 3 we study nonlinear funtionals Φµ of the form
Φµ(f) =

\
X

k(x, f(x))µ(dx) for f ∈ L,where L is the spae of Lipshitzian funtions with Lipshitz onstant 1 and µ is a given�nite signed measure. We show that if a funtion f0 ∈ L maximizes Φµ, then there existtwo di�erent points x, y ∈ X suh that
|f0(x) − f0(y)| = ̺(x, y).This is a nonlinear version of the lassial Kantorovih�Rubinstein maximum priniple.In the same hapter we prove maximum priniples for funtionals de�ned on the subset

F of L of funtions satisfying the additional ondition |f | ≤ 1. The maximum priniplesallow us to establish interesting properties of the Huthinson and Fortet�Mourier metris.In Chapter 4 we use these properties to prove that some semigroups of Markov op-erators ating on the spae of signed measures are ontrative. In Chapter 5 we showa new version of the invariane priniple for dynamial systems ating on a topologialHausdor� spae. It generalizes the results of A. Lasota (see [20, Theorem 2.1℄) and A. La-sota and J. Traple (see [26, Theorem 1.1℄). We also give an appliation of the invariane[7℄



8 H. Gakipriniple in the theory of the Tjon�Wu equation
dψ

dt
+ ψ = Pψ,where the unknown funtion ψ takes values in the spae of signed measures and P is aollision operator. Similar results for ψ with values in L1(R+) were proved by A. Lasotaand J. Traple (see [26, Theorem 3.1℄).In Chapter 6 we show new su�ient onditions for the asymptoti stability for semi-groups of Markov operators. They are formulated in terms of adjoint operators. Thisapproah simpli�es further appliations. We use these riteria to study stohastiallyperturbed dynamial systems

xn+1 = S(xn, ξn) for n = 0, 1, . . . ,where ξn, n = 1, 2, . . . , are independent identially distributed random variables. Ourresults generalize theorems of A. Lasota and M. C. Makey (see [23, Theorem 2℄) andK. �oskot and R. Rudniki (see [29, Theorem 3℄), the latter in the ase of loally ompatseparable metri spaes.Further, we onsider stohasti di�erential equation of the form
dξ(t) = a(ξ(t))dt+

\
Θ

σ(ξ(t), θ)Np(dt, dθ) for t ≥ 0,where {ξ(t)}t≥0 is a stohasti proess with values in the d-dimensional real spae Rdand Np is a Poisson random measure with intensity λ. Our result intersets with thoseof Traple (see [37, Theorem 7.3℄) and Szarek (see [34, Theorem 8.3.1℄).We lose Chapter 6 by giving an appliation to the mathematial model of the ellyle introdued by A. Lasota and M. C. Makey [25℄.The present paper is based on the results ontained in [10�12℄. However, many the-orems are now stated in a more general form and some new results are inluded. Inpartiular in Setion 3.3 we prove a new nonlinear version of the maximum priniplefor the Fortet�Mourier norm (Theorem 3.3.1). Furthermore, the main result of Chap-ter 5, Theorem 5.1.2 onerning the invariane priniple, has never been published before.Also some results on the asymptoti stability of the Poisson driven stohasti di�erentialequation (Theorem 6.3.1) and the Tjon�Wu equation (Theorem 5.2.4) are new.
2. Loal hanges of Lipshitzian funtionsThe aim of this hapter is to show two lemmas onerning loal hanges of Lipshitzianfuntions. In Chapter 3 we will apply these results in the theory of nonlinear funtionalsof Hammerstein type (see [13, Theorem 4.4℄ and [12, Theorem 2℄).2.1. Loal hanges of ontrative bounded funtions. A funtion f : X → Rde�ned on a metri spae (X, ̺) will be alled ontrative if(2.1.1) |f(x) − f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.Reall that a separable metri spae X is loally ompat i� X is an inreasing unionof ompat sets. One an then de�ne an equivalent metri on X (ompatible with the



Appliations of the Kantorovih�Rubinstein maximum priniple 9topology) suh that every losed ball is ompat. In this paper, a �loally ompatseparable metri spae� will always mean a loally ompat separable metri spae suhthat every losed ball is ompat.Lemma 2.1.1. Let (X, ̺) be a loally ompat separable metri spae and let f : X → Rbe a ontrative funtion satisfying(2.1.2) inf f > −∞.Further let an open set G ⊂ X and a ompat set K ⊂ G be given. Then there exists an
ε0 > 0 suh that for every ε ∈ (0, ε0) there is a ontrative funtion f̃ : X → R satisfying(2.1.3) f̃(x) = f(x) for x ∈ X \G, f̃(x) = f(x) + ε for x ∈ K,and(2.1.4) f(x) ≤ f̃(x) ≤ f(x) + ε for x ∈ G \K.Proof. We may assume that K 6= ∅ and X \ G 6= ∅; otherwise the theorem is trivial.Replaing f by f − inf f we may assume that f(x) ≥ 0 for x ∈ X. Let(2.1.5) δ = inf{̺(x, y) : x ∈ K, y 6∈ G}.Sine K is ompat, this number is positive. For every a ∈ K we de�ne ha : X → R by

ha(x) = inf{f(u) + ̺(u, x) : ̺(u, a) ≥ δ} for x ∈ X.From the inequality f(x) − f(u) < ̺(x, u) it follows immediately that(2.1.6) ha(x) ≥ f(x) for x ∈ X.Moreover(2.1.7) ha(x) = f(x) for ̺(x, a) ≥ δ.It is also evident that(2.1.8) |ha(x) − ha(y)| ≤ ̺(x, y) for x, y ∈ X.We laim that(2.1.9) ha(a) > f(a) for a ∈ K.To prove this �x a ∈ K and de�ne
A = {u ∈ X : ̺(a, u) > r + 2δ}, B = {u ∈ X : δ ≤ ̺(a, u) ≤ r + 2δ},where r = maxx∈K f(x). Sine a ∈ K and f(u) ≥ 0, we have(2.1.10) f(u) + ̺(u, a) > f(a) + 2δ for u ∈ A.Aording to (2.1.1) the funtion u 7→ f(u)+̺(u, a)−f(a) is positive on B. Moreover,sine B is ompat, we have

f(u) + ̺(u, a) ≥ f(a) + σ for u ∈ B,where σ is a positive onstant. This and (2.1.10) imply (2.1.9).De�ne
f̄(x) = sup{ha(x) : a ∈ K}.



10 H. GakiFrom (2.1.5)�(2.1.7) it follows that
f(x) ≤ f̄(x) <∞ for x ∈ X and f̄(x) = f(x) for x ∈ X \G.Sine f̄(x) <∞, ondition (2.1.8) implies that

|f̄(x) − f̄(y)| ≤ ̺(x, y) for x, y ∈ X.Further from (2.1.9) it follows that f(x) < f̄(x) for x ∈ K.Let ε0 = 1
2 minx∈K(f̄(x) − f(x)). Then for every ε ∈ (0, ε0) the desired funtion f̃ isgiven by the formula(2.1.11) f̃(x) = 1

2 (f(x) + min{f̄(x), f(x) + 2ε}).The following example shows that in the statement of Lemma 2.1.1 assumption (2.1.2)is essential.Example 2.1.1. Consider the set X = N ∪ {0} of nonnegative integers with the metri
̺(n,m) =

{
n+m for n 6= m,
0 for n = m.Let f : X → R be given by the formula

f(n) =

{
0 for n = 0,
n−1 − n for n > 0.It is easy to verify that f is ontrative. In the spae (X, ̺) the one-point set {0} issimultaneously open and ompat. So we may take K = G = {0} and exept (2.1.2),all the assumptions of Lemma 2.1.1 are satis�ed. Now �x ε ∈ (0, ε0) and onsider thefuntion

f̃(n) =

{
f(0) + ε for n = 0,
f(n) for n > 0,as desribed in Lemma 2.1.1. For n > 1/ε we have

|f̃(n) − f̃(0)| = |−n+ n−1 − ε| > n = ̺(n, 0),whih shows that f̃ is not ontrative.Replaing f by −f we obtain from Lemma 2.1.1 the following result.Remark 2.1.1. If sup f < ∞ and f : X → R is a ontrative funtion then there existsan ε0 > 0 suh that for every ε ∈ (−ε0, 0) there is a ontrative funtion f̃ : X → Rsatisfying onditions (2.1.3) and the inequality(2.1.12) f(x) + ε ≤ f̃(x) ≤ f(x) for x ∈ G \K.2.2. Loal hanges of ontrative unbounded funtions. Assumption (2.1.2) anbe omitted if we assume that the spae X has some additional properties. We say thata metri spae (X, ̺) is metrially onvex if for any two di�erent points x, y ∈ X and
λ ∈ (0, ̺(x, y)) there exists a point z ∈ X suh that

̺(x, z) = λ and ̺(x, y) = ̺(x, z) + ̺(z, y).Lemma 2.2.1. Let (X, ̺) be a loally ompat separable, metrially onvex metri spaeand let f : X → R be a ontrative funtion. Moreover let an open set G ⊂ X and a



Appliations of the Kantorovih�Rubinstein maximum priniple 11ompat set K ⊂ G be given. Then there exists an ε0 > 0 suh that for every ε ∈ (0, ε0)there is a ontrative funtion f̃ : X → R satisfying onditions (2.1.3) and (2.1.4).Proof. Again we may assume that K 6= ∅ and X \G 6= ∅. Let δ be given by (2.1.5). Then
G0 = {x ∈ X : ̺(x,K) < δ} is a subset of G. We de�ne an auxiliary funtion f̄ : X → Rby

f̄(x) = inf{f(u) + ̺(x, u) : u ∈ X \G0}.It is easy to verify that
f̄(x) ≥ f(x) for x ∈ X,(2.2.1)

f̄(x) = f(x) for x ∈ X \G,(2.2.2)

|f̄(x) − f̄(y)| ≤ ̺(x, y) for x, y ∈ X.Let r = δ + diamK. We are going to show that(2.2.3) f̄(x) = ¯̄f(x) for x ∈ K,where(2.2.4) ¯̄f(x) = inf{f(u) + ̺(x, u) : u ∈ X \G0 and ̺(x, u) ≤ 2r}.It is obvious that f̄(x) ≤ ¯̄f(x) for every x ∈ X. To show the opposite inequality for
x ∈ K it is su�ient to prove the following laim. For every x ∈ K and u ∈ X \G0 thereexists v ∈ X \G0 suh that ̺(x, v) ≤ 2r and(2.2.5) f(v) + ̺(x, v) ≤ f(u) + ̺(x, u).If ̺(x, u) ≤ 2r we may hoose v = u and ondition (2.2.5) is satis�ed. Now assume that
x ∈ K and ̺(x, u) > 2r. Then due to the metri onvexity of X there exists a point
v ∈ X suh that ̺(x, v) = 2r and(2.2.6) ̺(x, u) = ̺(x, v) + ̺(v, u).Using the de�nition of r it is easy to verify that v ∈ X \G0. Moreover using (2.2.6)and the inequality f(v) − f(u) ≤ ̺(v, u) we obtain

f(v) + ̺(x, v) = f(v) + ̺(x, u) − ̺(v, u) ≤ f(v) + ̺(x, u) − [f(v) − f(u)],whih gives (2.2.5) and ompletes the proof of the laim. This in turn implies (2.2.3).Observe that for x ∈ K and u ∈ X \G0 we have x 6= u and onsequently
f(u) + ̺(x, u) > f(x).Moreover for every x ∈ K the set

{u ∈ X \G0 : ̺(x, u) ≤ 2r}is ompat. Consequently, ¯̄f(x) > f(x) for x ∈ K. From this and (2.2.3) it follows that
f̄(x) > f(x) for x ∈ K. Sine K is ompat, there exists a onstant ε0 > 0 suh that

f̄(x) ≥ f(x) + 2ε0 for x ∈ K.For ε ∈ (0, ε0) the desired funtion f̃ is again given by formula (2.1.11).The following example shows that in the statement of Lemma 2.2.1 the assumptionthat X is loally ompat separable is essential.



12 H. GakiExample 2.2.1. Let C be the omplex plane and let
An = {z ∈ C : |z| ≤ 4, arg z = π/n} for n = 1, 2 . . . .In the spae X =
⋃

n∈N
An we de�ne the metri ̺ by the formula

̺(z, w) =

{
|z − w| if z, w ∈ An for some n ∈ N,

|z| + |w| otherwise,so that (X, ̺) is a metrially onvex spae. Now onsider the funtion
f(z) = (n−1 − 1)|z| for z ∈ An, n = 1, 2, . . . .Let K = {0} and G = {z ∈ X : |z| < 2}. Evidently f is ontrative. Now �x an arbitrary

ε > 0 and assume that a funtion f̃ : X → R satis�es the onditions
f̃(0) = f(0) + ε = ε and f̃(z) = f(z) for z ∈ X \G.We have
|f̃(z) − f̃(0)| = |(n−1 − 1)|z| − ε| for z ∈ An, |z| ≥ 2.For |z| = 2 and n > 2/ε the right hand side is larger than 2 and the funtion f̃ is notontrative.Remark 2.2.1. Under onditions of Lemma 2.2.1 there exists an ε0 > 0 suh that forevery ε ∈ (−ε0, 0) there is a ontrative funtion f̃ : X → R satisfying (2.1.3) and

f(x) + ε ≤ f̃(x) ≤ f(x) for x ∈ G \K.

3. Maximum priniplesThe purpose of this hapter is to present maximum priniples for funtionals of Ham-merstein type de�ned on the spae of Lipshitzian funtions. Our proofs are based onthe lemmas onerning loal hanges of Lipshitzian funtions. Using this method weprove new versions of the maximum priniples for the Huthinson and Fortet�Mouriermetries.3.1. Metris and norms in the spae of measures. Let (X, ̺) be a Polish spae,i.e., a separable, omplete metri spae. We denote by BX the σ-algebra of Borel subsetsof X and by M the family of all �nite (nonnegative) Borel measures on X.Let M1 denote the subset of those µ ∈ M suh that µ(X) = 1. The elements of M1will be alled distributions. Further let
Msig = {µ1 − µ2 : µ1, µ2 ∈ M}be the spae of �nite signed measures. For arbitrary µ ∈ Msig we denote by µ

+
and µ

−the positive and negative parts of µ. Then we set(3.1.1) µ
+
− µ

−
= µ and µ

+
+ µ

−
= |µ|,where |µ| is alled the total variation of the measure µ.Let c be a �xed element of X. For every real number α ≥ 1 we de�ne the sets M1,αand Msig,α by setting

M1,α = {µ ∈ M1 : mα(µ) <∞} and Msig,α = {µ ∈ Msig : mα(µ) <∞}
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mα(µ) =

\
X

(̺(x, c))α |µ|(dx).Evidently Msig,α ⊂ Msig,β for α ≥ β. Moreover, we denote by M0
sig,α the subset ofthose µ ∈ Msig,α for whih µ(X) = 0. It is evident that these spaes do not depend onthe hoie of c.As usual, B(X) denotes the spae of all bounded Borel measurable funtions f : X →

R, and C(X) the subspae of all bounded ontinuous funtions. Both spaes are endowedwith the supremum norm
‖f‖ = sup

x∈X
|f(x)|.For every f : X → R and µ ∈ Msig we write(3.1.2) 〈f, µ〉 =

\
X

f(x)µ(dx),whenever this integral exists.In M1 we introdue the Fortet�Mourier metri (see [7, Proposition 8.2℄) by the for-mula(3.1.3) ‖µ1 − µ2‖F = sup{|〈f, µ1 − µ2〉| : f ∈ F},where F is the set of funtions f : X → R satisfying
‖f‖ ≤ 1 and |f(x) − f(y)| ≤ ̺(x, y) for x, y ∈ X.Remark 3.1.1. It is known thatM1 with the Fortet�Mourier metri is a omplete metrispae. Furthermore, if X has at least one aumulation point then Msig with this metriis not omplete (see [9, Theorem 3.1.7℄).We say that a sequene (µn) ⊂ M1 onverges weakly to a measure µ ∈ M1 if(3.1.4) lim

n→∞
〈f, µn〉 = 〈f, µ〉 for f ∈ C(X).Sine X is a Polish spae, ondition (3.1.4) is equivalent to

lim
n→∞

‖µn − µ‖F = 0(see [7, Theorem 8.3℄).In M1 we also introdue another metri alled the Huthinson metri (see [15, De�-nition 4.3.1℄) by the formula(3.1.5) ‖µ1 − µ2‖H = sup{|〈f, µ1 − µ2〉| : f ∈ H} for µ1, µ2 ∈ M1,where H is the set of funtions f : X → R whih satisfy the ondition
|f(x) − f(y)| ≤ ̺(x, y) for x, y ∈ X.Fix c ∈ X. It is easy to see that

‖µ1 − µ2‖H = sup{|〈f, µ1 − µ2〉| : f ∈ Hc} for µ1, µ2 ∈ M1,where Hc = {f ∈ H : f(c) = 0}.



14 H. GakiIt should be noted that the Huthinson metri is strongly related by a duality prinipleto the Kantorovih�Rubinstein norm (see [32, Corollary 6.1.1℄).Denote by B(x, r) the losed ball in X with entre x ∈ X and radius r. Let µ ∈ M1.We de�ne the support of µ by setting
suppµ = {x ∈ X : µ(B(x, ε)) > 0 for every ε > 0}.Remark 3.1.2. Every set M1,α for α ≥ 1 ontains the subset of all measures µ ∈ M1with ompat support. This subset is dense in M1 with respet to the Fortet�Mouriernorm (see [3, Theorem 4, p. 237℄).3.2. Nonlinear version of the Kantorovih�Rubinstein maximum priniple.The main result of this setion is stimulated by the following lassial Kantorovih�Rubinstein maximum priniple. Let (X, ̺) be a separable metri spae and let L be thespae of funtions f : X → R whih satisfy the Lipshitz ondition. The spae L isonsidered with the seminorm(3.2.1) ‖f‖L = sup

{
|f(x) − f(y)|

̺(x, y)
: x 6= y; x, y ∈ X

}
.If µ is a given �nite signed measure, then the linear funtional ϕµ : L → R de�ned bythe formula(3.2.2) ϕµ(f) =

\
X

f(x)µ(dx) for f ∈ Lhas the following properties (for details see [33, Corollary 6.2℄):Theorem 3.2.1 (Kantorovih�Rubinstein maximum priniple). For every µ1, µ2 ∈ M1,1,

µ1 6= µ2, there exists a funtion f ∈ H suh that
ϕµ1−µ2

(f) = ‖µ1 − µ2‖H.Moreover , every funtion f for whih the distane is attained (with µ1 6= µ2) satis�es
|f(x) − f(y)| = ̺(x, y)for some x, y ∈ X,x 6= y.The aim of this part is to prove analogous results for a nonlinear funtional Φµ : L→ Rgiven by the formula(3.2.3) Φµ(f) =
\
X

k(x, f(x))µ(dx), f ∈ L,where (see (3.1.1) for the de�nition of |µ|)(i) µ ∈ Msig,1, µ(X) = 0, |µ| > 0,(ii) the funtion k : X × R → R is ontinuous, has ontinuous derivative ky withrespet to the seond variable, and satis�es
(3.2.4) |k(x, y)| ≤ β0̺(x, c) + β1|y| + β2 for (x, y) ∈ X × R,where β0, β1, β2 are nonnegative onstants and c ∈ X is a given point.



Appliations of the Kantorovih�Rubinstein maximum priniple 15Remark 3.2.1. Conditions (i) and (ii) imply that for every f ∈ Hc the integral (3.2.3)exists and
sup

f∈Hc

|Φµ(f)| <∞.This is an immediate onsequene of the inequality(3.2.5) |k(x, f(x))| ≤ (β0 + β1)̺(x, c) + β2 for x ∈ X and f ∈ Hcand the assumption that µ ∈ Msig,1.Funtionals of this type are in general studied by methods of onvex analysis in thease when X is a vetor spae (see [8℄).Now we are ready to state the main theorem of this setion.Theorem 3.2.2. Assume that the spae (X, ̺) is loally ompat , separable, metriallyonvex and that µ and k satisfy onditions (i), (ii). Assume moreover that(3.2.6) ky(x, y) > 0 for (x, y) ∈ X × R.Then(3.2.7) Φµ(f) < sup
g∈Hc

Φµ(g)for every ontrative funtion f ∈ Hc.Proof. Suppose that there exists a ontrative f ∈ Hc suh that(3.2.8) Φµ(f) = sup
g∈Hc

Φµ(g).Let µ = µ
+
− µ

−
be the Jordan deomposition of µ and let X = X+ ∪ X− be theorresponding Hahn deomposition. We start from the ase when c /∈ X+. Sine µ is anontrivial measure and µ(X) = 0, aording to the Ulam theorem (see [3, Theorem 1.4℄)there is a ompat set K ⊂ X+ suh that(3.2.9) µ

+
(K) > 0 and µ

−
(K) = 0.De�ne

δ0 = inf{ky(x, f(x) + z) : x ∈ K, z ∈ [0, 1]},(3.2.10)
δ1 = sup{ky(x, f(x) + z) : (x, z) ∈ K × {0}}.(3.2.11)Using the ompatness of K we an �nd a δ > 0 suh that(3.2.12) ky(x, f(x) + z) ≤ δ1 + 1 for x ∈ Kδ, 0 ≤ z ≤ δ,where Kδ = {x ∈ X : ̺(x,K) < δ}. Changing δ if neessary, we may assume that(3.2.13) µ
−
(Kδ \K) ≤

1

2

δ0µ+
(K)

1 + δ1
and ̺(c,K) > δ.Sine K ⊂ Kδ and Kδ is an open set, by Lemma 2.2.1 there exists an ε ≤ min(δ, 1)and a ontrative funtion f̃ : X → R satisfying (2.1.3) and (2.1.4) with G = Kδ. By themean value theorem we have

Φµ(f̃) − Φµ(f) =
\
X

ky(x, f(x) + θ(x)(f̃(x) − f(x)))(f̃(x) − f(x))µ(dx),



16 H. Gakiwhere θ(x) ∈ (0, 1). From (2.1.3), (2.1.4) and the equality µ
−
(K) = 0 it follows that

Φµ(f̃) − Φµ(f) ≥ ε
\
K

ky(x, f(x) + θ(x)ε)µ
+
(dx)

− ε
\

Kδ\K

ky(x, f(x) + θ(x)(f̃(x) − f(x)))µ
−
(dx).Now using (3.2.10), (3.2.11) and (3.2.12) we obtain

Φµ(f̃) − Φµ(f) ≥ εδ0µ+
(K) − ε(δ1 + 1)µ

−
(Kδ \K),whih in virtue of (3.2.13) gives

Φµ(f̃) ≥ Φµ(f) +
εδ0
2
µ

+
(K).Sine f̃ ∈ Hc, this ontradits (3.2.8) and ompletes the proof in the ase when c /∈ X+.If c /∈ X− the argument is similar. It is based on Remark 2.2.1.Remark 3.2.2. Theorem 3.2.2 remains true if the spae Hc is replaed by H. The proofis similar. However, in this ase the value supg∈H Φµ(g) may be in�nite.We lose this setion with the following nonlinear version of the Kantorovih�Rubin-stein maximum priniple.Theorem 3.2.3. Assume that the spae (X, ̺) is omplete and separable and that µ and

k satisfy onditions (i), (ii) and (3.2.6). Then there exists an f0 ∈ Hc suh that(3.2.14) Φµ(f0) = sup
f∈Hc

Φµ(f).Moreover , if (X, ̺) is a loally ompat , separable and metrially onvex spae then everyfuntion f0 ∈ Hc satisfying (3.2.14) is not ontrative.Proof. From Remark 3.2.1 it follows immediately that there exists a sequene (fn) ⊂ Hcsatisfying(3.2.15) lim
n→∞

Φµ(fn) = sup
f∈Hc

Φµ(f) <∞.By the Ulam theorem we an hoose an inreasing sequene of ompat sets Ks ⊂ Xsuh that
|µ|(X \Ks) < 1/s for every s = 1, 2, . . . .We may also assume that c ∈ Ks for every s ∈ N. Using the Arzelà�Asoli theorem andthe diagonal Cantor proess we an �nd a subsequene (fαn

) whih onverges pointwiseon the set
K =

∞⋃

s=1

Ks,to a funtion f̂ : K → R. Evidently f̂ satis�es the Lipshitz ondition with onstant 1and f̂(c) = 0.Aording to the MShane theorem (see [31, Theorem 1℄) there exists an extension
f0 of f̂ de�ned on the spae X and satisfying the Lipshitz ondition with the sameonstant.



Appliations of the Kantorovih�Rubinstein maximum priniple 17From inequality (3.2.5) it follows that the funtions k(·, fαn
(·)) for n ∈ N are boundedby a |µ|-integrable funtion. As the sequene (fαn

) onverges to f0 on K and |µ|(X \K)

= 0, by the Lebesgue dominated onvergene theorem we have
lim

n→∞
Φµ(fαn

) = Φµ(f0).This and (3.2.15) imply (3.2.14). By Theorem 3.2.2 the funtion f0 is not ontrative.3.3. Maximum priniple for the Fortet�Mourier metri. In this setion we willprove a maximum priniple for funtionals ating on the spae of uniformly bounded anduniformly Lipshitzian funtions. In Setion 6.5 we will show appliations of this resultin the theory of the ell yle (see [12, Proposition 2℄). As before we onsider a nonlinearfuntional of the form(3.3.1) Φµ(f) =
\
X

k(x, f(x))µ(dx) for f ∈ F ,where (X, ̺) is a metri spae, k : X × [−1, 1] → R is a given funtion and µ ∈ Msig.We will assume that the funtion k : X × R → R and the signed measure µ satisfythe following onditions:(i) µ = µ1 − µ2, µ1, µ2 ∈ M1.(ii) The funtion k : X × [−1, 1] → R is ontinuous and has a ontinuous derivative
ky with respet to the seond variable. Moreover,

(3.3.2) −∞ <
\
X

k(x,−1) |µ|(dx) and \
X

k(x, 1) |µ|(dx) <∞,

(3.3.3) ky(x, y) > 0 for (x, y) ∈ X × [−1, 1].Theorem 3.3.1. Assume that the spae (X, ̺) is omplete and separable and that µ and
k satisfy onditions (i) and (ii). Then there exists a funtion f ∈ F suh that(3.3.4) Φµ(f) = sup

g∈F
Φµ(g).Moreover , if (X, ̺) is loally ompat separable spae, |µ| > 0 and a funtion f ∈ Fsatis�es (3.3.4) then it ful�lls at least one of the following two onditions :

1o There exist two points x, y ∈ X, x 6= y, suh that
(3.3.5) |f(x) − f(y)| = ̺(x, y).

2o The funtion f has the following properties :
(3.3.6) f(x) = 1 for x ∈ suppµ

+
,

(3.3.7) f(x) = −1 for x ∈ suppµ
−
.Proof. The proof of the existene of f ∈ F satisfying (3.3.4) is similar to that of Theorem3.2.3.To omplete the proof note that we have two possibilities: either f is not ontrativeand then (3.3.5) holds for some x and y, or f is ontrative. In the latter ase assumethat(3.3.8) f(x0) < 1 for some x0 ∈ suppµ

+
.



18 H. GakiThen there is a losed ball B(x0, r0) suh that
f(x) < 1 for x ∈ B(x0, r0).Moreover

µ
+
(B(x0, r0)) > 0.Let X = X+ ∪X− be the Hahn deomposition orresponding to µ. As before, aordingto the Ulam theorem there is a ompat set K ⊆ B(x0, r0) ∩X+ suh that(3.3.9) µ

+
(K) > 0, µ

−
(K) = 0.De�ne

Kδ = {x ∈ X : ̺(x,K) < δ}.Sine K is ompat, we an �nd a δ > 0 suh that(3.3.10) µ
−
(Kδ \K) ≤ µ

+
(K)

δ0
2δ1

and sup
x∈Kδ

f(x) < 1,where
δ0 = inf{ky(x, y) : (x, y) ∈ K × [−1, 1]},(3.3.11)
δ1 = sup{ky(x, y) : (x, y) ∈ Kδ × [−1, 1]}, δ1 <∞.(3.3.12)Sine K ⊂ Kδ and Kδ is open, by Lemma 2.1.1 there exists ε > 0 and a ontrativefuntion f̃ : X → R satisfying onditions (2.1.3), (2.1.4) with G = Kδ and the inequality(3.3.13) ε < 1 − sup

x∈Kδ

f(x).By the mean value theorem we have
Φµ(f̃) − Φµ(f) =

\
X

ky(x, f(x) + θ(x)(f̃(x) − f(x)))(f̃(x) − f(x))µ(dx),where θ(x) ∈ (0, 1). From (2.1.3), (2.1.4) and the equality µ
−
(K) = 0 it follows that

Φµ(f̃) − Φµ(f) ≥ ε
\
K

ky(x, f(x) + θ(x)ε)µ
+
(dx)

− ε
\

Kδ\K

ky(x, f(x) + θ(x)(f̃(x) − f(x)))µ
−
(dx).Now using (3.3.11) and (3.3.12) we obtain

Φµ(f̃) − Φµ(f) ≥ εδ0µ+
(K) − ε δ1µ−

(Kδ \K),whih in virtue of (3.3.10) gives
Φµ(f̃) − Φµ(f) ≥

εδ0
2
µ

+
(K).Further, from (3.3.13) it follows that f̃ ∈ F . Consequently, the last inequality ontradits(3.3.4) and �nishes the proof in this ase. If f(x0) > −1 for some x0 ∈ suppµ

−
, theargument is similar, based on Remark 2.1.1.Given two nonempty sets A,B ⊂ X we de�ne

dist(A,B) = inf{̺(x, y) : x ∈ A, y ∈ B}.



Appliations of the Kantorovih�Rubinstein maximum priniple 19Using Theorem 3.3.1 it is easy to prove the following orollary whih will be applied inSubsetions 4.3 and 6.4.Corollary 3.3.1. Let µ = µ2 − µ1, where µ2, µ1 ∈ M1, µ1 6= µ2 and(3.3.14) dist(suppµ
+
, suppµ

−
) < 2.Then every f0 ∈ F satisfying (3.3.4) with µ = µ2 − µ1 ful�lls ondition 1o.Proof. The proof is straightforward. Suppose, on the ontrary, that there exists a on-trative f0 ∈ F suh that(3.3.15) Φµ(f0) = sup

g∈F
Φµ(g).Using (3.3.14) we an �nd x0 ∈ suppµ

+
and y0 ∈ suppµ

−
suh that ̺(x0, y0) < 2. Onthe other hand, by ondition 2o of the maximum priniple we have f0(x0) − f0(y0) = 2,whih is impossible.Observe that the speial linear funtion k(x, y) = y for (x, y) ∈ X × [−1, 1] satis�esondition (ii) of Theorem 3.3.1. In this ase (3.3.1) redues to Φµ(f) = 〈f, µ〉. Using thisfat we obtainRemark 3.3.1. Assume that (X, ̺) is a loally ompat separable metri spae and µsatis�es ondition (i). Then there exists a funtion f0 ∈ F suh that(3.3.16) 〈f0, µ〉 = ‖µ‖F .Moreover, if |µ| > 0 and a funtion f0 ∈ F satis�es (3.3.16), then it ful�lls at least oneof the following two onditions:

1o There exist two points x, y ∈ X, x 6= y, suh that(3.3.17) |f0(x) − f0(y)| = ̺(x, y).

2o The funtion f0 has the following properties:
f0(x) = 1 for x ∈ suppµ

+
,(3.3.18)

f0(x) = −1 for x ∈ suppµ
−
.(3.3.19)

4. Asymptotially ontrative semigroups of Markov operatorsIn this hapter we study a lass of asymptotially ontrative loally Lipshitzian Markovsemigroups ating on the spae of signed measures. Our results are based on maximumpriniples. In Chapter 6 we will apply these riteria to the stability theory of Markov�Feller semigroups.4.1. Markov operators. An operator P : M → M is alled a Markov operator if itsatis�es the following onditions:(i) P is positively linear:
P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2µ2for λ1, λ2 ≥ 0 and µ1, µ2 ∈ M,



20 H. Gaki(ii) P preserves the measure of the spae:(4.1.1) Pµ(X) = µ(X) for µ ∈ M.Remark 4.1.1. Every Markov operator P an be uniquely extended as a linear operatorto the spae of signed measures. Namely for every µ ∈ Msig we de�ne
Pµ = Pµ1 − Pµ2, where µ = µ1 − µ2, µ1, µ2 ∈ M.It is easy to verify that this de�nition does not depend on the hoie of µ1, µ2.A Markov operator P is alled regular if there exists an operator U : B(X) → B(X)on the spae of bounded Borel measurable funtions suh that(4.1.2) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈ M.The operator U is alled dual to P . If in addition Uf ∈ C(X) for f ∈ C(X), then theregular operator P is alled a Markov�Feller operator.Setting µ = δx in (4.1.2) we obtain(4.1.3) (Uf)(x) = 〈f, Pδx〉 for f ∈ B(X), x ∈ X,where δx ∈ M1 is the point (Dira) measure supported at x.From formula (4.1.3) it follows immediately that U is linear and

Uf ≥ 0 for f ≥ 0, f ∈ B(X),(4.1.4)
U1X = 1X ,(4.1.5)
Ufn ↓ 0 for fn ↓ 0, fn ∈ B(X).(4.1.6)Here fn ↓ 0 means that the sequene (fn) is dereasing and pointwise onverges to 0.Conditions (4.1.4)�(4.1.6) allow one to reverse the roles of P and U . Namely, if alinear operator U satisfying (4.1.4)�(4.1.6) is given we may de�ne a Markov operator

P : M → M by setting(4.1.7) Pµ(A) = 〈U1A, µ〉 for µ ∈ M, A ∈ BX .A mapping π : X×BX → [0, 1] is alled a transition funtion if π(x, ·) is a probabilitymeasure for every x ∈ X and π(·, A) is a measurable funtion for every A ∈ BX .Having a transition funtion π we may de�ne the orresponding Markov operator
P : Msig → Msig by the formula(4.1.8) Pµ(A) =

\
X

π(x,A)µ(dx) for µ ∈ Msig, A ∈ BXand its dual operator U : B(X) → B(X) by(4.1.9) Uf(x) =
\
X

f(u) π(x, du).Conversely, having a regular Markov operator P we may de�ne π : X × BX → [0, 1] bysetting(4.1.10) π(x,A) = Pδx(A).Clearly π is a transition funtion suh that onditions (4.1.8) and (4.1.9) are satis�ed.



Appliations of the Kantorovih�Rubinstein maximum priniple 21Thus, onditions (4.1.8), (4.1.10) yield a one-to-one orrespondene between the reg-ular Markov operators and transition funtions.Note that a Markov operator P is Markov�Feller if and only if its transition funtionhas the following property:
xn → x implies π(xn, ·) → π(x, ·) (weakly).If this ondition is satis�ed the transition funtion π is alled Feller.Remark 4.1.2. Observe that a Markov�Feller operator is ontinuous with respet toweak onvergene. Namely, the weak onvergene of (µn) to a measure µ implies theweak onvergene of (Pµn) to Pµ. This is a straightforward onsequene of (4.1.2).The dual operator U has a unique extension to the set of all Borel measurable nonneg-ative (not neessarily bounded) funtions on X, suh that formula (4.1.2) holds. Namelyfor a Borel measurable funtion f : X → R+ we write

Uf(x) = lim
n→∞

Ufn(x),where (fn) ⊂ B(X) is an inreasing sequene of bounded Borel measurable funtionsonverging pointwise to f . Sine the sequene (Ufn) is inreasing the limit Uf exists.Further from the Lebesgue monotone onvergene theorem it follows that Uf satis�es(4.1.2). This formula shows that the limit is de�ned in a unique way and does notdepend on the hoie of the sequene (fn). Evidently this extension is positively linearand monotoni.For given c ∈ X de�ne
̺c(x) := ̺(x, c) for x ∈ X.An important role in the study of the asymptoti behaviour of a Markov�Feller operator

P is played by the funtion U̺c, where U denotes the dual operator to P . Sine ̺c isontinuous and nonnegative the funtion U̺c is well de�ned.If in addition U̺c is �nite, i.e.(4.1.11) U̺c(x) <∞ for x ∈ X,then the operator U an be extended to a linear spae of funtions satisfying an ap-propriate growth ondition. To formulate this fat preisely we introdue the followingnotion:A funtion f : X → R will be alled linearly bounded if there exist nonnegativeonstants A,B suh that(4.1.12) |f(x)| ≤ A̺c(x) +B for x ∈ X.The family of linearly bounded funtions will be denoted by L(X).Remark 4.1.3. If ondition (4.1.11) is satis�ed then for every f ∈ L(X) the funtions
Uf+, Uf− also belong to L(X). Therefore the funtion(4.1.13) Uf(x) := Uf+(x) − Uf−(x)is well de�ned and belongs to L(X). Elementary alulations show that U de�ned by(4.1.13) has the following properties:



22 H. Gaki1. U maps L(X) into itself.2. U is linear and nondereasing.3. |Uf | ≤ U |f | for f ∈ L(X).Using the above remark it is easy to prove the following proposition:Proposition 4.1. Let P : Msig → Msig be a Markov�Feller operator and let U be itsdual. Assume that U̺c is a linearly bounded funtion. Then(4.1.14) P (Msig,1) ⊂ Msig,1.Moreover , for every f ∈ L(X) and µ ∈ Msig,1 the integrals 〈Uf, µ〉, 〈f, Pµ〉 are �niteand(4.1.15) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ L(X), µ ∈ Msig,1.Proof. Conditions (4.1.14) and (4.1.15) follow immediately from the fat that for f ∈

L(X) and µ ∈ Msig,1 the eight integrals 〈f+, Pµ+〉, . . . 〈Uf−, µ−〉 exist and are �nite.Let d be an arbitrary metri on Msig. A Markov operator P : Msig → Msig is alledLipshitzian with respet to d with onstant k > 0 if(4.1.16) d(Pµ1, Pµ2) ≤ k d(µ1, µ2) for µ1, µ2 ∈ Msig.If k ≤ 1 then P is nonexpansive.A Markov operator P : Msig → Msig is alled ontrative in the lass M̃ ⊂ Msigwith respet to d if(4.1.17) d(Pµ1, Pµ2) < d(µ1, µ2) for µ1, µ2 ∈ M̃.Remark 4.1.4. Note that a regular operator P : Msig → Msig is nonexpensive withrespet to the Fortet�Mourier metri if and only if U(F) ⊂ F . This is an immediateonsequene of formula (4.1.2).Let T be a nontrivial semigroup of nonnegative real numbers. More preisely weassume that {0}  T ⊂ R+ and(4.1.18) t1 + t2 ∈ T, t1 − t2 ∈ T for t1, t2 ∈ T, t1 ≥ t2.A family of Markov operators (P t)t∈T is alled a semigroup if
P t+s = P t P s for t, s ∈ Tand P 0 = I where I is the identity operator.If the Markov operators P t are Markov�Feller for t ∈ T , we say that (P t)t∈T is aMarkov�Feller semigroup. We denote by (U t)t∈T the semigroup of the dual operators to

(P t)t∈T .A Markov semigroup (P t)t∈T is alled loally Lipshitzian with respet to d in thelass M̃ ⊂ Msig if there exists a loally bounded funtion k : T → R+ suh that forevery t ∈ T and µ1, µ2 ∈ M̃,(4.1.19) d(P tµ1, P
tµ2) ≤ k(t)d(µ1, µ2).If k(t) ≤ 1 for t ∈ T , then (P t)t∈T is a nonexpansive semigroup.



Appliations of the Kantorovih�Rubinstein maximum priniple 23A nonexpansive semigroup (P t)t∈T is alled asymptotially ontrative with respet to
d in the lass M̃ ⊂ Msig if for every µ1, µ2 ∈ M̃, µ1 6= µ2, there is t0 ∈ T suh that

d(P t0µ1, P
t0µ2) < d(µ1, µ2).4.2. Asymptotially ontrative semigroups with respet to the Huthinsonmetri. In this setion we study Markov�Feller semigroups whih are asymptotiallyontrative in the lass M1,α with respet to the Huthinson metri. To verify thatsome semigroups have the desired asymptoti properties we use the maximum prinipleformulated in Theorem 3.2.3.Theorem 4.2.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that there is t0 ∈ T suh that for every f ∈ H,

|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T,(4.2.1)

|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(4.2.2)Moreover , assume that there exists a onstant α > 1 suh that(4.2.3) P t(M1,α) ⊂ M1,α for t ≥ 0.Then (P t)t∈T is asymptotially ontrative with respet to the Huthinson metri in thelass M1,α.Proof. From (4.2.1)�(4.2.3), it follows immediately that (P t)t∈T is nonexpansive onM1,αwith respet to the Huthinson metri. Indeed, for µ1, µ2 ∈ M1,α and t ∈ T we have
‖P tµ1 − P tµ2‖H = sup{|〈f, P tµ1 − P tµ2〉| : f ∈ H}(4.2.4)

= sup{|〈U tf, µ1 − µ2〉| : f ∈ H} ≤ ‖µ1 − µ2‖H.Note that M1,α ⊂ M1,1 for α > 1 and �x µ1, µ2 ∈ M1,α, µ1 6= µ2. By Theorem3.2.1 there exists f ∈ H suh that(4.2.5) 〈f, P t0µ1 − P t0µ2〉 = ‖P t0µ1 − P t0µ2‖H.This may be rewritten in the form
〈U t0f, µ1 − µ2〉 = ‖P t0µ1 − P t0µ2‖H.As U t0f satis�es (4.2.1), by the seond part of Theorem 3.2.1 we obtain(4.2.6) 〈U t0f, µ1 − µ2〉 < ‖µ1 − µ2‖H.This inequality and (4.2.4) show that (P t)t∈T is asymptotially ontrative with respetto the Huthinson metri in M1,α.Remark 4.2.1. Sometimes (4.2.3) an be veri�ed using amore expliit ondition. Namely,let c be a �xed element of X and ̺α

c (x) := (̺(x, c))α for x ∈ X, α > 0. If there existonstants A,B ≥ 0 and α > 1 suh that(4.2.7) (U t̺α
c )(x) ≤ A̺α

c (x) +B for x ∈ X and t ∈ T,then the ondition (4.2.3) is satis�ed.As a onsequene of Theorem 4.2.1 we obtain the following



24 H. GakiCorollary 4.2.1. Let P : Msig → Msig be a Markov�Feller operator and let U be itsdual operator. Assume that for every f ∈ H,(4.2.8) |Uf(x) − Uf(y)| < ̺(x, y) for x, y ∈ X, x 6= y.Moreover , assume that there exists a onstant α > 1 suh that P (M1,α) ⊂ M1,α. Then
(Pn)n∈N is asymptotially ontrative with respet to the Huthinson metri in the lass
M1,α.4.3. Asymptotially ontrative semigroups with respet to the Fortet�Mou-rier metri. In this setion we study Markov�Feller semigroups whih are asymptoti-ally ontrative in the lass M1 with respet to the Fortet�Mourier metri. The proofsare based on the maximum priniple formulated in Remark 3.3.1.Theorem 4.3.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that the following onditions are satis�ed :(i) For every t ∈ T ,
(4.3.1) |U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X.There is t0 ∈ T suh that for every f ∈ F ,
(4.3.2) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(ii) For every µ1, µ2 ∈ M1, µ1 6= µ2, there exists t1 ∈ T suh that either P t1(µ1) =

P t1(µ2) or
(4.3.3) dist(supp(P t1(µ1 − µ2))+

, supp(P t1(µ1 − µ2))−) < 2.Then (P t)t∈T is asymptotially ontrative with respet to the Fortet�Mourier metri inthe lass M1.Proof. From (4.3.1), it follows immediately that U t(F) ⊂ F for t ∈ T, and that (P t)t∈Tis nonexpansive. Indeed, for µ1, µ2 ∈ M1 and t ∈ R+ we have
‖P tµ1 − P tµ2‖F = sup{|〈U tf, µ1 − µ2〉| : f ∈ F}(4.3.4)

≤ sup{|〈f, µ1 − µ2〉| : f ∈ F} = ‖µ1 − µ2‖F .Fix µ1, µ2 ∈ M1, µ1 6= µ2. By Remark 3.3.1 there exists f0 ∈ F suh that(4.3.5) 〈f0, P
t0+t1µ1 − P t0+t1µ2〉 = ‖P t0+t1µ1 − P t0+t1µ2‖F .This may be rewritten in the form(4.3.6) 〈U t0f0, P

t1µ1 − P t1µ2〉 = ‖P t0+t1µ1 − P t0+t1µ2‖F .If P t1µ1 = P t2µ2 then automatially(4.3.7) ‖P t0+t1µ1 − P t0+t1µ2‖F < ‖µ1 − µ2‖F .If not, we an apply Remark 3.3.1 to the measure P t1µ1 − P t1µ2 and the ontrativefuntion U t0f0. By Corollary 3.3.1 this gives(4.3.8) 〈U t0f0, P
t1µ1 − P t1µ2〉 < ‖P t1µ1 − P t1µ2‖F .The last inequality and (4.3.4) again imply (4.3.7).



Appliations of the Kantorovih�Rubinstein maximum priniple 25Theorem 4.3.2. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that the following onditions are satis�ed :(i) For every t ∈ T ,
(4.3.9) |U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T.There is t0 ∈ R+ suh that for every f ∈ F

(4.3.10) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(ii) There exist onstants t0, t1, t2 ∈ T suh that for every f ∈ F we have either
U t0+t1f(x) ∈ (−1, 1] for x ∈ Xor
U t0+t2f(x) ∈ [−1, 1) for x ∈ X.Then (P t)t∈T is asymptotially ontrative in the lass M1 with respet to the Fortet�Mourier metri.Proof. We may repeat the argument used in the proof of Theorem 4.3.1. However, inthis ase for µ1, µ2 ∈ M1, µ1 6= µ2, equality (4.3.5) should be replaed by(4.3.11) 〈f0, P

t0+t̃µ1 − P t0+t̃µ2〉 = ‖P t0+t̃µ1 − P t0+t̃µ2‖F ,where t̃ = min(t1, t2) and f0 ∈ F . This equality may be rewritten in the form(4.3.12) 〈U t0+t̃f0, µ1 − µ2〉 = ‖P t0+t̃µ1 − P t0+t̃µ2‖F .From (4.3.10), (4.3.9) it follows that(4.3.13) |U t0+t̃f0(x) − U t0+t̃f0(y)| < ̺(x, y) for x, y ∈ X, x 6= y.Aording to Remark 3.3.1 onditions (ii), (4.3.13) and (4.3.12) imply
‖P t0+t̃µ1 − P t0+t̃µ2‖ < ‖µ1 − µ2‖.This inequality and (4.3.9) show that the semigroup (P t)t∈T is asymptotially ontrativein M1 with respet to the Fortet�Mourier metri.We may simplify the veri�ation of ondition (ii). Namely we have the followingProposition 4.3.1. Let π : X × BX → [0, 1] be a transition funtion and let U be theorresponding dual operator. Assume that(4.3.14) supp π(x, ·) = X for x ∈ X.Then for every f ∈ C(X), ‖f‖ ≤ 1 either

Uf(x) = 1 for x ∈ Xor
Uf(x) = −1 for x ∈ Xor
Uf(x) ∈ (−1, 1) for x ∈ X.



26 H. GakiProof. Fix f ∈ C(X), ‖f‖ ≤ 1, and suppose that there exists an x1 ∈ X suh that
Uf(x1) = 1. By the properties of the dual operator we have

U 1X(x1) − U f(x1) =
\
X

[1X(y) − f(y)]π(x1, dy) = 0.From this and the inequality f ≤ 1X it follows that(4.3.15) f(x) = 1 π(x1, ·)-almost everywhere.This and ondition (4.3.14) imply that f(x) = 1 for x ∈ X. Sine U is the dual operator,we �nally obtain Uf(x) = 1 for x ∈ X. If there exists an x2 ∈ X suh that Uf(x2) = −1the argument is similar.The following example shows that in the statement of Proposition 4.3.1 the assumption(4.3.14) is essential.Example 4.3.1. Let X = R with the Eulidean metri. Further, let P : Msig → Msigbe the Markov�Feller operator de�ned by the formula(4.3.16) Pµ(A) = µ(−A).It is easy to verify that π(x,A) = δx(−A) and onsequently
supp π(1, ·) = {−1} 6= X and supp π(−1, ·) = {1} 6= XFurther let f0 ∈ F be given by the formula

f0(x) =





1 for x ≥ 1,

x for x ∈ (−1, 1),

−1 for x ≤ −1.From the de�nition of the dual operator it follows immediately that
Uf0(−1) = 〈f0, P δ−1〉 = 〈f0, δ1〉 = 1 and Uf0(1) = 〈f0, P δ1〉 = 〈f0, δ−1〉 = −1.

5. Invariane prinipleIn 1976 J. P. LaSalle (see [19, Chapter 1, Theorem 10.7℄) proved that every ompattrajetory of a dynamial system (St)t∈T onverges to the largest invariant subset of theset {x : V̇ (x) = 0}, where V is a Lyapunov�LaSalle funtion and V̇ its derivative withrespet to the system. This result is alled the invariane priniple. Various versions ofthe invariane priniple were studied and used in the proofs of the asymptoti stabilityof dynamial systems (see for example [20, Theorem 2.1℄, [26, Theorem 1.1℄ and [38,Chapter IV Theorem 4.2℄). We show a new version of this priniple whih generalizesthe results of A. Lasota (see [20℄, Theorem 2.1) and A. Lasota and J. Traple (see [26,Theorem 1.1℄).5.1. Criteria for the asymptoti stability of trajetories. For the onveniene ofthe reader we reall a few de�nitions from the theory of dynamial systems. (For detailssee [20℄.)



Appliations of the Kantorovih�Rubinstein maximum priniple 27Let X be a Hausdor� topologial spae. Further, let T be a nontrivial semigroupof nonnegative real numbers as in Chapter 4, i.e., we assume that T satis�es ondition(4.1.18).A semigroup (St)t∈T of maps X → X is alled a semidynamial system if X ∋ x 7→

Stx ∈ X is ontinuous for every t ∈ T .If a semidynamial system (St)t∈T is given, then for every �xed x ∈ X the funtion
T ∋ t 7→ Stx ∈ X will be alled the trajetory starting from x and denoted (Stx). Apoint y ∈ X is alled the limiting point of the trajetory (Stx) if there exists a sequene
(tn) ⊂ T suh that tn → ∞ and

lim
n→∞

Stnx = y.The set of all limiting points of the trajetory (Stx) will be denoted Ω(x). Further, wewrite
γ(x) = {Stx : t ∈ T} and Γ(x) = γ(x) ∪ Ω(x).A set C ⊂ X is alled invariant with respet to (St)t∈T if St(C) ⊂ C for t ∈ T .Remark 5.1.1. Let (St)t∈T be a semidynamial system and let {Cλ}λ∈Λ be a family ofinvariant sets. It is easy to see that their union and intersetion are also invariant withrespet to (St)t∈T .From Remark 5.1.1 it follows immediately that every set C ⊂ X ontains the maximalinvariant subset M whih is the union of all invariant subsets of C. The set M may ofourse be empty.We say that a funtion ϕ : T → X onverges to a set A ⊂ X if for every open G ⊃ Athere exists t0 ∈ T suh that(5.1.1) ϕ(t) ∈ G for t ≥ t0, t ∈ T.From this de�nition it follows that A 6= ∅. Observe that if A ⊂ B ⊂ X and ϕ onvergesto A then it also onverges to B.If A = {a} is a singleton then ϕ onverges to {a} if and only if limt→∞ ϕ(t) = a.Remark 5.1.2. If (St)t∈T is a semidynamial system then the sets γ(x),Ω(x) and Γ(x)are invariant for every x ∈ X. It is easy to verify that Γ(x) is the minimal invariantsubset of X whih ontains x and Ω(x).Let (St)t∈T be a semidynamial system and let x ∈ X. We say that a trajetory

(Stx) is sequentially ompat if for every sequene (tn) ⊂ T with tn → ∞, there exists asubsequene (tkn
) suh that (Stknx) onverges to a point y ∈ X.Remark 5.1.3. If the trajetory (Stx) is sequentially ompat, then Ω(x) is a nonempty,sequentially ompat set and Stx onverges to Ω(x). Moreover in this ase Ω(x) is stritlyinvariant , i.e.

St(Ω(x)) = Ω(x) for t ∈ T.A point x∗ ∈ X is alled stationary (or invariant) with respet to a semidynamialsystem (St)t∈T if(5.1.2) Stx∗ = x∗ for t ∈ T.



28 H. GakiA semidynamial system (St)t∈T is alled asymptotially stable if there exists a sta-tionary point x∗ ∈ X suh that(5.1.3) lim
t→∞

Stx = x∗ for x ∈ X.Remark 5.1.4. Sine X is a Hausdor� spae, an asymptotially stable dynamial systemhas exatly one stationary point.Let a nonempty invariant set A ⊂ X be given. A funtion V : A → R is alled aLyapunov�LaSalle funtion for a semidynamial system (St)t∈T if V is ontinuous and(5.1.4) V (St1(x)) ≥ V (St2(x)) for x ∈ A and t1 ≤ t2, t1, t2 ∈ T(see [19, Chapter I, De�nition 6.1 and De�nition 8.2℄).A funtion d : X ×X → R+ is alled a distane if d is ontinuous and(5.1.5) d(x, y) = 0 ⇔ x = y for x, y ∈ X.In the proof of our main result Theorem 5.1.2 we will use the following properties ofLyapunov�LaSalle funtions:Theorem 5.1.1. Let (St)t∈T be a semidynamial system and let x0 ∈ X. Assume that
V : Γ(x0) → R is a Lyapunov�LaSalle funtion. Then there exists β ∈ R+ suh that(5.1.6) Ω(x0) ⊂ V −1(β).Further , if the trajetory (Stx0) is sequentially ompat , then(5.1.7) β = lim

t→∞
V (St(x0))satis�es (5.1.6) and the trajetory (Stx0) onverges to the largest invariant subset M(x0)of V −1(β). In this ase Ω(x0) ⊂M(x0).The proof of Theorem 5.1.1 an be found in [20, pp. 113�114℄ and [38, pp. 168�170℄.In order to formulate our theorem we onsider a semidynamial system (St)t∈T whihhas at least one sequentially ompat trajetory. Further, let d be an arbitrary distaneon X. We denote by Z the set of all z ∈ X suh that the trajetory (Stz) is sequentiallyompat. Sine Z 6= ∅ we have

Ω =
⋃

z∈Z

Ω(z) 6= ∅.The main result of this hapter is the following.Theorem 5.1.2. Let x∗ ∈ Ω be �xed. Assume that for every x ∈ Ω, x 6= x∗, there is
t(x) ∈ T suh that(5.1.8) d(St(x)x, St(x)x∗) < d(x, x∗).Further assume that the semidynamial system (St)t∈T is nonexpansive with respet to d,i.e.,(5.1.9) d(Stx, Sty) ≤ d(x, y) for x, y ∈ X and t ∈ T.Then x∗ is a stationary point of (St)t∈T and(5.1.10) lim

t→∞
d(Stz, x∗) = 0 for z ∈ Z.



Appliations of the Kantorovih�Rubinstein maximum priniple 29Proof. We break up the proof of Theorem 5.1.2 into three steps.Step I. Choose x0 ∈ Z suh that x∗ ∈ Ω(x0). We laim that every point y ∈ Ω(x0)is stationary with respet to (St)t∈T . To prove this �x r ∈ T and onsider the funtion
Vr : Γ(x0) → R+ given by the formula

Vr(x) = d(Srx, x) for x ∈ Γ(x0).Using (5.1.9) it is easy to verify that Vr is a Lyapunov�LaSalle funtion. In fat, for every
x ∈ Γ(x0) and t1 ≥ t2 (t1, t2 ∈ T ) we have

Vr(S
t1x) = d(St1+rx, St1x) = d(St1−t2(St2+rx), St1−t2(St2x))

≤ d(St2+r(x), St2x) = Vr(S
t2x).Sine x0 ∈ Z, the trajetory (Stx0) is sequentially ompat and onverges to Ω(x0) whihis an invariant subset of the set

{x : Vr(x) = β} where β = lim
t→∞

Vr(S
tx0).Further, sine x∗ ∈ Ω(x0) and Vr is ontinuous, we have Vr(x∗) = β. Now we are goingto show that β = 0. Suppose not. Then d(Srx∗, x∗) > 0 and Srx∗ 6= x∗. Using theinvariane of Ω(x0), the inlusion Ω(x0) ⊂ V −1

r (β) and the ondition (5.1.8) we obtain
β = Vr(S

t(Srx∗)x∗) = d(St(Srx∗)(Srx∗), S
t(Srx∗)x∗) < d(Srx∗, x∗) = Vr(x∗) = β,whih is impossible. Thus we get β = 0. Let y ∈ Ω(x0) be given and let tn → ∞ be suhthat y = limn→∞ Stnx0. We have limn→∞ V (Stnx0) = 0 and onsequently

d(Sry, y) = lim
n→∞

d(Stn+rx0, S
tnx0) = 0.This shows that Sry = y for y ∈ Ω(x0). Sine r ∈ T was arbitrary, the proof of the laimis omplete.Step II. Sine x∗ ∈ Ω(x0), we have St(x∗) = x∗ and so (5.1.9) yields(5.1.11) d(Stx, x∗) ≤ d(x, x∗) for x ∈ X.Now we are going to prove that for every z ∈ Z and ε > 0 for whih the set Kz(ε) =

Ω(z) ∩ {x ∈ X : d(x, x∗) ≥ ε} 6= ∅ there exists a onstant t0 > 0 suh that(5.1.12) d(St0x, x∗) < d(x, x∗) for x ∈ Kz(ε) and t ≥ t0, t ∈ T.Suppose not. Then for some z ∈ Z and ε > 0 there exists a sequene (xn) ⊂ Kz(ε) anda sequene (tn) ⊂ T suh that
d(Stxn, x∗) = d(xn, x∗) for n ≥ 1 and lim

n→∞
tn = ∞.Passing to a subsequene if neessary, we may assume that (xn) onverges to a point

x̄ ∈ Kz(ε). Fix t ∈ T and hoose n̄ ∈ N suh that tn > t for n ≥ n̄. It is evident that
d(Stxn, x∗) = d(xn, x∗) for n ≥ n̄.From the ontinuity of d and St it follows immediately that(5.1.13) d(Stx̄, x∗) = d(x̄, x∗) for t ∈ T.



30 H. GakiMoreover, from the de�nition of Kz(ε) and the ontinuity of d it follows that d(x̄, x∗) ≥ εand x̄ 6= x∗. Thus aording to (5.1.8) and (5.1.13) we have
d(x̄, x∗) = d(St(x̄)x̄, x∗) < d(x̄, x∗),whih is impossible. The proof of the inequality (5.1.12) is omplete.Step III. Now we are going to prove that all the sets Ω(z) are idential singletons:(5.1.14) Ω(z) = {x∗} for z ∈ Z.Fix z ∈ Z and suppose, on the ontrary, that(5.1.15) ε = sup{d(v, x∗) : v ∈ Ω(z)} > 0.Sine the funtion v 7→ d(v, x∗) ∈ R+ is ontinuous and Ω(z) is sequentially ompat,there exists a point ṽ ∈ Ω(z) suh that(5.1.16) ε = d(ṽ, x∗).Evidently ṽ ∈ Kz(ε). Thus aording to Step II there exists t0 ∈ T suh that(5.1.17) d(St0x, x∗) < d(x, x∗) for x ∈ Kz(ε).Fix t̃ > t0 > 0, t̃ ∈ T . Sine Ω(z) is stritly invariant, there exists ũ ∈ Ω(z) suh that

S t̃ũ = ṽ. Further, by (5.1.11) and (5.1.16) we have
ε = d(ṽ, x∗) = d(S t̃ũ, x∗) ≤ d(ũ, x∗).Sine ũ ∈ Ω(z) the last inequality and (5.1.15) imply that d(ũ, x∗) = ε. Consequently,

ũ ∈ Kz(ε) and we an apply inequality (5.1.17) to the point ũ. This and (5.1.11) give
ε = d(ũ, x∗) > d(St0 ũ, x∗) ≥ d(S t̃−t0(St0 ũ), x∗) = d(S t̃ũ, x∗) = ε,whih is impossible. Therefore ondition (5.1.14) is satis�ed.Sine the trajetory (Stz) onverges to Ω(z) = {x∗} for every z ∈ Z, this ompletesthe proof.5.2. Asymptoti stability of a nonlinear Boltzmann-type equation. To illustratethe appliation of the results developed in Setion 5.1 we will disuss an example drawnfrom the kineti theory of gases. This example was stimulated by the problem of stabilityof solutions of the following version of the Boltzmann equation:(5.2.1) ∂u(t, x)

∂t
+ u(t, x) =

∞\
x

dy

y

y\
0

u(t, y − z)u(t, z) dz, t ≥ 0, x ≥ 0.Due to the physial interpretation equation (5.2.1) is onsidered with the additionalonditions(5.2.2) ∞\
0

u(t, x) dx =

∞\
0

xu(t, x) dx = 1.Equation (5.2.1) was derived by J. A. Tjon and T. T. Wu from the Boltzmann equation(see [36℄). Following Barnsley and Cornille [1℄ we all it the Tjon�Wu equation. It iseasy to see that the funtion u∗(t, x) := exp(−x) is a (stationary) solution of (5.2.1).



Appliations of the Kantorovih�Rubinstein maximum priniple 31M. F. Barnsley and G. Turhetti (see [2, p. 369℄) proved that this solution is stable inthe lass of all initial funtions u0 := u(0, ·) satisfying the ondition(5.2.3) ∞\
0

u0(x)e
x/2 dx <∞.This ondition was replaed by T. Dªotko and A. Lasota (see [6℄, Theorem 3) by a lessrestritive(5.2.4) ∞\

0

xnu0(x) dx <∞ for n = 2, 3, . . . .In 1990 Z. Kieªek (see [18, Theorem 1.1℄) sueeded in proving that the stationary solution
u∗ is asymptotially stable if (5.2.4) is satis�ed for n = 2.Equation (5.2.1) has a simple interpretation. For �xed t ≥ 0 the funtion u(t, ·)denotes the density distribution funtion of the energy of the partile in an ideal gas. Inthe time interval (t, t+∆t) the partile hanges its energy with the probability ∆t+o(∆t)and the hange is equal to [−u(t, x)+P (u(t, x))]∆t+o(∆t), where the operator P is givenby the formula(5.2.5) (Pv)(x) =

∞\
x

dy

y

y\
0

v(y − z)v(z) dz.In order to understand the ation of P onsider three independent random variables ξ1, ξ2and η suh that ξ1, ξ2 have the same density distribution funtion v and η is uniformlydistributed on the interval [0, 1]. Then Pv is the density distribution funtion of therandom variable(5.2.6) η(ξ1 + ξ2).Physially this means that the energies of the partiles before a ollision are independentand that a partile after ollision takes the η part of the sum of the energies of theolliding partiles.The assumption that η has a density distribution funtion of the form 1[0,1] is quiterestritive. In general, if η has the density distribution h, then the random variable(5.2.6) has the density distribution funtion(5.2.7) (Pv)(x) =

∞\
0

h

(
x

y

)
dy

y

y\
0

v(y − z) v(z) dz.In 1999 A. Lasota and J. Traple (see [26, Theorem 1.1℄) studied the asymptoti behaviourof solutions of the equation(5.2.8) u′ + u = Pu,where u : R → L1(R) is an unknown funtion and P is the operator given by (5.2.7).Equation (5.2.8) was studied in the spaes Lp(R+) with p = 1, 2 and di�erent weights.



32 H. GakiIn the proof the following onditions on h were used:
∞\
0

h(x) dx = 2

∞\
0

xh(x) dx = 1, 2

∞\
0

xph(x) dx < 1,(5.2.9)
sup

x
{xh(x) : x ≥ 0} <∞,(5.2.10)

h(x) > 0 for 0 < x < x0,(5.2.11)where p > 1 and x0 > 0.Now, we will onsider a generalized version of (5.2.8) in the spae Msig(R+) of allsigned measures on R+. Set(5.2.12) D := {µ ∈ M1 : m1(µ) = 1}, where m1(µ) =

∞\
0

xµ(dx).We study the asymptoti behaviour of solutions of the equation(5.2.13) dψ

dt
+ ψ = Pψ for t ≥ 0with the initial ondition(5.2.14) ψ(0) = ψ0,where P : D → D is a nonlinear operator on measures analogous to (5.2.7) and ψ0 ∈ D.In order to de�ne preisely P we will introdue several notations.Reall that the onvolution of measures µ, ν ∈ Msig is a unique measure µ∗ν satisfying(5.2.15) (µ ∗ ν)(A) :=

\
R+

\
R+

1A(x+ y)µ(dx) ν(dy) for A ∈ BX .It is easy to verify that(5.2.16) 〈f, µ ∗ ν〉 =
\

R+

\
R+

f(x+ y)µ(dx) ν(dy),for every Borel measurable f : R+ → R suh that (x, y) 7→ f(x + y) is integrable withrespet to the produt of the measures |µ| and |ν|. For every n ∈ N we de�ne theonvolution operator of order n, P∗n : Msig → Msig, by the formula(5.2.17) P∗1 µ := µ, P∗(n+1) µ := µ ∗ P∗n µ for µ ∈ Msig.Remark 5.2.1. Observe that P∗n is not the nth power of P∗1 but P∗nµ is the nthonvolution power of µ.It is easy to verify that P∗n(M1) ⊂ M1 for every n ∈ N. Moreover, P∗n|M1
has asimple probabilisti interpretation. Namely, if ξ1, . . . , ξn are independent random vari-ables with the same distribution µ, then P∗nµ is the distribution of ξ1 + . . .+ ξn.Another lass of operators we are going to study is related to multipliation of randomvariables (see [22, p. 302℄). The formal de�nition is as follows. Given µ, ν ∈ Msig, wede�ne their elementary produt µ ◦ ν by(5.2.18) (µ ◦ ν)(A) :=

\
R+

\
R+

1A(xy)µ(dx) ν(dy) for A ∈ BR+
.



Appliations of the Kantorovih�Rubinstein maximum priniple 33It follows that(5.2.19) 〈f, µ ◦ ν〉 =
\

R+

\
R+

f(xy)µ(dx) ν(dy)for every Borel measurable f : R+ → R suh that (x, y) 7→ f(xy) is integrable withrespet to the produt of |µ| and |ν|. For �xed ϕ ∈ M1 we de�ne a linear operator
Pϕ : Msig → Msig by(5.2.20) Pϕ µ := ϕ ◦ µ for µ ∈ Msig.Again, as in the ase of onvolution, Pϕ(M1) ⊂ M1. For µ ∈ M1 the measure Pϕ µ hasan immediate probabilisti interpretation. If ϕ and µ are the distributions of randomvariables ξ and η respetively, then Pϕ µ is the distribution of the produt ξη.Now we return to equation (5.2.13) and give a preise de�nition of P :(5.2.21) P := Pϕ P∗2,where ϕ ∈ M1 and m1(ϕ) = 1/2. From (5.2.21) it follows that P (M1) ⊂ M1. Furtherusing (5.2.17) and (5.2.20) it is easy to verify that for µ ∈ D,(5.2.22) m1(P∗2µ) = 2 and m1(Pϕµ) = 1/2.Remark 5.2.2. Evidently every �xed point of the operator P is a stationary solution ofequation (5.2.13).We will show that if equation (5.2.13) has a stationary measure u∗ suh that supp u∗
= R+ (that is, u∗(B(x, ε)) > 0 for every ε > 0 and x ≥ 0), then this measure isasymptotially stable.A similar problem for (5.2.1) was studied by A. Lasota and J. Traple (see [26, Theorem3.3℄). The positivity of u∗ plays an important role in the proof of the stability. Namely, itallows one to apply the maximum and invariane priniple to show that the Huthinsondistane between u∗ and an arbitrary solution u dereases in time. We start with twosimple lemmas onerning the support of Pµ.Lemma 5.2.1. Assume that ϕ ∈ M1 satis�es

ϕ 6= δ1/2,(5.2.23)
m1(ϕ) = 1/2.(5.2.24)Then there exists β > 1 suh thatif v ∈ D and supp v ⊃ (a, b), then suppPv ⊃ (β a, β b).Proof. First we reall a well-known property of the support of onvolution of measures.If v ∈ D satis�es supp v ⊃ (a, b) then the support of P∗2 v = v ∗ v ontains the interval

(2a, 2b). In fat, �x c ∈ (2a, 2b) and hoose x, y ∈ (a, b) suh that c = x + y. Let ε > 0.An elementary alulation show that(5.2.25) P∗2 v((c− ε, c+ ε)) ≥ v((x− ε/2, x+ ε/2))v((y − ε/2, y + ε/2)) > 0,and onsequently c ∈ suppP∗2 v.From (5.2.23) and (5.2.24), it follows immediately that there exists β > 1 suh that(5.2.26) ϕ((β/2 − ε, β/2 + ε)) > 0 for ε > 0.



34 H. GakiFix z ∈ (βa, βb) and ε > 0. Setting x = 2z/β we an hoose positive numbers ε1 < xand ε2 < β/2 suh that(5.2.27) ε1 β/2 + xε2 + ε1 ε2 < ε.Now using (5.2.25) and (5.2.26) we obtain(5.2.28) Pv((z − ε, z + ε)) ≥ ϕ((β/2 − ε2, β/2 + ε2))P∗2 v((x− ε1, x+ ε1)) > 0.This �nally gives Pv((z − ε, z + ε)) > 0, whih shows that z ∈ suppPv and ompletesthe proof.The following result may be proved in muh the same way as Lemma 5.2.1.Lemma 5.2.2. Assume that there is σ0 > 0 suh that (0, σ0) ⊂ suppϕ. Then for every
v ∈ M there exists σ > 0 suh that(5.2.29) suppPv ⊃ (0, σ) whenever v 6= δ0.Proof. Fix v ∈ M and assume that v 6= δ0. Then there exists x1 > 0 suh that x1 ∈

suppP∗2 v. Set σ = x1 σ0. Fix z ∈ (0, σ) and ε > 0. Now we may repeat the onstrutionused in the proof of Lemma 5.2.1. Let x2 = z/x1 and(5.2.30) ε1 x2 + ε2 x1 + ε1 ε2 < ε,where ε1, ε2 > 0 with ε1 < x1 and ε2 < x2. Then(5.2.31) Pv((z − ε, z + ε)) ≥ ϕ((x2 − ε2, x2 + ε2))P∗2 v((x1 − ε1, x1 + ε1)) > 0.Consequently, z ∈ suppPv, whih �nishes the proof.We are in a position to formulate the following theorem.Theorem 5.2.1. Let ϕ be a probability measure and let m1(ϕ) = 1/2. Assume that :(i) There is σ0 > 0 suh that(5.2.32) (0, σ0) ⊂ suppϕ.(ii) The operator P has a �xed point v ∈ M suh that v 6= δ0.Then(5.2.33) supp v = R+.Proof. From Lemmas 5.2.2 and 5.2.1 it follows that supp v ⊃ (0, βnσ) for n ∈ N. Sine
β > 1, this ompletes the proof.Remark 5.2.3. If ϕ ∈ M1 and m1(ϕ) = 1/2, then the operator P given by (5.2.21) isnonexpansive on D with respet to the Huthinson norm, i.e.(5.2.34) ‖Pv − P w‖H ≤ ‖v − w‖H for v, w ∈ D.In fat, using the onditions m1(ϕ) = 1/2, m1(v + w) = 2 it is easy to show that thefuntion f̃ : R+ → R given by

f̃(x) =
\

R+

\
R+

f((x+ y)z)ϕ(dz) (w(dy) + v(dy)) for x ∈ R+



Appliations of the Kantorovih�Rubinstein maximum priniple 35belongs to H for f ∈ H. Furthermore,
〈f, Pv − Pw〉 = 〈f̃ , v − w〉 for f ∈ H, v, w ∈ D.Finally

‖Pv − Pw‖H = sup{|〈f, Pv − Pw〉| : f ∈ H} ≤ sup{|〈g, v − w〉| : g ∈ H} = ‖v − w‖H.Now we are ready to state the main theorem of this hapter.Theorem 5.2.2. Let ϕ be a probability measure with m1(ϕ) = 1/2 and let 0 be anaumulation point of suppϕ. Further let v, w ∈ D be suh that v 6= w and(5.2.35) supp(v + w) = R+.Then inequality (5.2.34) is strit , i.e.(5.2.36) ‖Pv − Pw‖H < ‖v − w‖H.Proof. Suppose not. Then there exist two di�erent measures v, w ∈ D suh that
supp(v + w) = R+ and(5.2.37) ‖Pv − Pw‖H = ‖v − w‖H.By Theorem 3.2.1 applied to the measure Pv − Pw there exists f0 ∈ H suh that(5.2.38) ‖Pv − Pw‖H = 〈f0, Pv − Pw〉.Using the last equality and (5.2.37) we obtain
‖v − w‖H = 〈f0, Pv〉 − 〈f0, Pw〉

=
\

R+

\
R+

\
R+

f0((x+ y)z)ϕ(dz) v(dx) v(dy) −
\

R+

\
R+

\
R+

f0((x+ y)z)ϕ(dz)w(dx)w(dy).This may be rewritten in the form(5.2.39) ‖v − w‖H =
\

R+

\
R+

g(x+ y) (v(dy) + w(dy)) (v(dx) − w(dx)).where
g(r) =

\
R+

f0(rz)ϕ(dz) for r ∈ R+.Introduing the funtion f1 : R+ → R by the formula(5.2.40) f1(x) =
\

R+

\
R+

f0((x+ y)z)ϕ(dz)(v(dy) + w(dy)) for x ∈ R+,it is easy to verify that(5.2.41) ‖v − w‖H = 〈f1, v − w〉.The funtion f1 is again an element of H. By the maximum priniple applied to theequality (5.2.41) there exist x1, x2 ∈ R+, x1 < x2 and onstants θ, σ (θ2 = 1) suh that
f1(x) = θx+ σ for x ∈ (x1, x2).It follows that

|f1(x1 + ε) − f1(x1)| = ε for ε ∈ (0, x2 − x1).



36 H. GakiReplaing f0 by −f0 if neessary we may assume that(5.2.42) f1(x1 + ε) − f1(x1) = ε.Now we are going to show that(5.2.43) f0(x) = x+ c for x ∈ R+,where c ∈ R. Observe that f0 ∈ H and so to prove (5.2.43) it su�es to show that
f0(u2) − f0(u1) ≥ u2 − u1 for 0 ≤ u1 < u2.To prove this let u1, u2 ∈ R+ with u1 < u2 and suppose that(5.2.44) f0(u2) − f0(u1) < u2 − u1.Hene, we an �nd a point ū ∈ (u1, u2) suh that the upper right Dini derivative (see [35,p. 9℄) of f0 at ū satis�es(5.2.45) D+f0(ū) < 1.Aording to the de�nition of the Dini derivative there is a δ0 > 0 suh that(5.2.46) f0(ū+ δ) − f0(ū)

δ
< 1 for δ ∈ (0, δ0).Now onsider the funtion

(5.2.47) h(y, z, ε)

=
f0((x1 + ε+ y)z) − f0((x1 + y)z)

ε z
for (y, z, ε) ∈ R+ × (0,∞) × (0,∞).By (5.2.42) and the de�nition of f1 for all ε ∈ (0, x2 − x1) we have(5.2.48) 1 =

f1(x1 + ε) − f1(x1)

ε
=
\

R+

\
R+

h(y, z, ε)z ϕ(dz) (v(dy) + w(dy)).Let A×B ∈ BR+×R+
. We de�ne a measure q on BR+×R+

by the formula
q(A×B) =

\\
A×B

z ϕ(dz) (v(dy) + w(dy)).Evidently q is a probability measure. Sine 0 is an aumulation point of suppϕ, there is a
z̄ ∈ suppϕ suh that x1z̄ < ū. On the other hand, by (5.2.35) there exists ȳ ∈ supp(v+w)suh that

ū− x1 z̄ = ȳ z̄.Finally, observe that for every ε̄ ∈ (0, x2 − x1) suh that ε̄ z̄ ≤ δ0 we have
h(ȳ, z̄, ε̄) < 1.From this and ontinuity of h it follows that there are two losed balls B(ȳ, rȳ) and

B(z̄, rz̄) suh that for (y, z) ∈ B(ȳ, rȳ) ×B(z̄, rz̄) we obtain(5.2.49) h(y, z, ε̄) < 1.Moreover, it is easy to see that q(B(ȳ, rȳ) ×B(z̄, rz̄)) > 0. Consequently,\
R+

\
R+

h(y, z, ε̄) q(dy, dz) < 1.



Appliations of the Kantorovih�Rubinstein maximum priniple 37This ontradits (5.2.48). Therefore f0(x) = x + c for x ∈ R+, where c is a onstant.Sine Pv and Pw belong to D we have 〈f0, Pv − Pw〉 = 0. Aording to (5.2.37) thisimplies v = w, whih is a ontradition.We �nish this hapter with a new su�ient ondition for the asymptoti stability ofsolutions of a generalized version of the Tjon�Wu equation of the form (5.2.13). We showthat this equation may by onsidered in a onvex losed subset of a vetor spae of signedmeasures. This approah seems to be quite natural and it is related to the lassial resultsonerning semigroups and di�erential equations on onvex subsets of Banah spaes (see[4, 5℄).Before formulating the main result we reall some known results onerning existeneand uniqueness of solutions of ordinary di�erential equations in Banah spaes.Let (E, ‖ · ‖) be a Banah spae and let D̃ be a losed, onvex, nonempty subset of E.In the spae E we onsider an evolutionary di�erential equation(5.2.50) du

dt
= −u+ P̃ u for t ∈ R+with the initial ondition(5.2.51) u(0) = u0, u0 ∈ D̃,where P̃ : D̃ → D̃ is a given operator.A funtion u : R+ → E is alled a solution of problem (5.2.50), (5.2.51) if it is stronglydi�erentiable on R+, u(t) ∈ D̃ for all t ∈ R+ and u satis�es relations (5.2.50), (5.2.51).We start from the following theorem whih is usually stated in the ase E = D̃.Theorem 5.2.3. Assume that the operator P̃ : D̃ → D̃ satis�es the Lipshitz ondition(5.2.52) ‖P̃ v − P̃w‖ ≤ l ‖v − w‖ for u,w ∈ D̃,where l is a nonnegative onstant. Then for every u0 ∈ D̃ there exists a unique solution

u of problem (5.2.50), (5.2.51).The standard proof of Theorem 5.2.3 is based on the fat that a funtion u : R+ → D̃is a solution of (5.2.50), (5.2.51) i� it is ontinuous and satis�es the integral equation(5.2.53) u(t) = e−t u0 +

t\
0

e−(t−s)P̃ u(s) ds for t ∈ R+.By ompleteness of D̃ the integral on the right hand side is well de�ned and equation(5.2.53) may be solved by the method of suessive approximations.Observe that thanks to the properties of D̃ for every u0 ∈ D̃ and every ontinuousfuntion u : R+ → D̃ the right hand side of (5.2.53) is also a funtion with values in D̃.The solutions of (5.2.53) generate a semigroup of operators (P̃ t)t≥0 on D̃ given by(5.2.54) P̃ t u0 = u(t) for t ∈ R+, u0 ∈ D̃.Now we are going to apply Theorem 5.2.3 to problem (5.2.13), (5.2.14).We start with the following observations:1. From (5.2.12) it follows immediately that D is a onvex subset of Msig,1.



38 H. Gaki2. It is known that D with the Huthinson metri is a omplete metri spae (see [22,Theorem 2.1℄).3. If ϕ ∈ M1 and m1(ϕ) = 1/2, then the operator P maps the set D into itself.Note that the last ondition orresponds to the ondition (5.2.9) in the model ofLasota�Traple (see [26, Theorem 1.1℄). In the lassial Tjon�Wu equation ϕ has thedensity distribution funtion of the form 1[0,1].We may summarize this disussion with the followingCorollary 5.2.1. If ϕ ∈ M1 and m1(ϕ) = 1/2 then for every ψ0 ∈ D there exists aunique solution u of problem (5.2.13), (5.2.14).Denote by (P t)t≥0 the unique semigroup on D orresponding to (5.2.13), (5.2.14).We have the following result onerning the asymptoti stability of (P t)t≥0.Theorem 5.2.4. Let P be an operator given by (5.2.21). Moreover , let ϕ be a probabilitymeasure with m1(ϕ) = 1/2 and let 0 be an aumulation point of suppϕ. If P has a �xedpoint ψ∗ ∈ D suh that(5.2.55) suppψ∗ = R+,then(5.2.56) lim
t→∞

‖ψ(t) − ψ∗‖H = 0for every ompat solution ψ of (5.2.13), (5.2.14).Proof. First we show that (P t)t≥0 is nonexpansive on D with respet to the Huthinsonmetri. In fat, let η0, ϑ0 ∈ D. For t ∈ R+ de�ne υ(t) = P t η0−P t ϑ0. Condition (5.2.53)implies that
υ(t) = e−tυ(0) +

t\
0

e−(t−s)(P (P sη0) − P (P sϑ0)) ds for t ∈ R+.From this and (5.2.34), it follows immediately that
‖υ(t)‖H ≤ e−t ‖υ(0)‖H +

t\
0

e−(t−s) ‖υ(s)‖H ds for t ∈ R+.This may be rewritten in the form
f(t) ≤ ‖υ(0)‖H +

t\
0

f(s) ds for t ∈ R+,where f(t) = et ‖υ(t)‖H. From the Gronwall inequality it follows that
f(t) ≤ et‖υ(0)‖H.This is equivalent to the fat that (P t)t≥0 is nonexpansive on D with respet to theHuthinson metri. Furthermore, from Theorem 5.2.2 we have

‖P tη0 − ψ∗‖H < e−t‖η0 − ψ∗‖H +

t\
0

e−(t−s)‖P sη0 − ψ∗‖H ds for η0 ∈ D and t > 0.



Appliations of the Kantorovih�Rubinstein maximum priniple 39Consequently, from the nonexpansiveness of (P t)t≥0 we obtain
‖P tη0−ψ∗‖H < e−t‖η0−ψ∗‖H+(1−e−t)‖η0−ψ∗‖H = ‖η0−ψ∗‖H for η0 ∈ D and t > 0.An appliation of Theorem 5.1.2 ompletes the proof.Remark 5.2.4. By virtue of Theorem 5.2.1 assumption (5.2.55) an be replaed by themore e�etive ondition (5.2.32). Observe that in the ase of the lassial Tjon�Wuequation (5.2.1) the measure ϕ is absolutely ontinuous with density 1[0,1]. Moreover,
u∗(t, x) := exp(−x) is the density funtion of the stationary solution of (5.2.1). This is asimple illustration of the situation desribed by Theorems 5.2.1 and 5.2.4.For a general model inluding (5.2.13) existene of a stationary solution has beenstudied in [22℄.Remark 5.2.5. It is interesting to note that if there exists a onstant r > 1 suh that(5.2.57) 2mr(ϕ) < 1,then for every ψ0 ∈ D the solution ψ(t) = P tψ0 of (5.2.13), (5.2.14) is ompat (see [22,Theorem 4.2℄, [26, Theorem 3.3℄ and [27, Theorem 6℄).

6. Maximum priniples in the stability theoryof Markov semigroupsIn this last hapter we present new su�ient onditions for the asymptoti stability ofMarkov�Feller operators on the spae of signed measures Msig. Our proofs are basedon the invariane priniple and the maximum priniple. We will also show appliationsof these riteria in the proofs of the asymptoti stability of a stohastially perturbeddynamial system with disrete time and a semigroup generated by a Poisson drivenstohasti di�erential equation (see [10, Proposition 4.1℄ and [11, Theorem 3℄). Moreover,we will disuss the problem of the asymptoti stability of a Markov operator appearingin the theory of the ell yle (see [12, Proposition 2℄, [17, Theorem 4℄ and [25, Theorem3.2℄). We use the notation of Chapter 4.6.1. Appliations of the Kantorovih�Rubinstein maximum priniple. In thissetion we study the problem of the asymptoti stability of semigroups asymptotiallyontrative with respet to the Huthinson metri in the lass M1,α. In partiular we willdisuss the problem of the asymptoti stability of loally Lipshitzian Markov semigroups.As before (X, ̺) denotes a loally ompat separable metri spae.We start with a simple method of proving the Prokhorov property. It is based on thenotion of Lyapunov funtion and the Chebyshev inequality.A ontinuous V : X → [0,∞) is alled a Lyapunov funtion if(6.1.1) lim
̺(x,x0)→∞

V (x) = ∞for some x0 ∈ X. Of ourse this de�nition is meaningful only in the ase when X is anunbounded spae. It is evident that the validity of (6.1.1) does not depend on the hoieof x0.



40 H. GakiA family Π of probability measures on X is said to be tight if for every positive εthere exists a ompat set K suh that(6.1.2) µ(K) ≥ 1 − ε for all µ ∈ Π.Using the Lyapunov funtion, it is easy to give a su�ient ondition for the tightnessof trajetories of a Markov semigroup. Again assume that T ⊂ R+ satis�es ondition(4.1.18).Lemma 6.1.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semigroup.Assume that there exists a Lyapunov funtion V suh that(6.1.3) U t V (x) ≤ AV (x) +B for x ∈ X and t ∈ T,where A,B are nonnegative onstants. Then for every µ ∈ M1 the family of distributions
{P tµ}t∈T is tight.Proof. Fix ε > 0 and µ ∈ M1. By the Ulam theorem we may hoose a ompat set
K ⊂ X suh that µ(K) ≥ 1 − ε/2. Set VK = supx∈K V (x). We de�ne a new measure
µ̄ by the formula µ̄(E) = µ(E ∩K), where E ∈ BX . Let Y = V −1([0, q]), where q is apositive number satisfying(6.1.4) q ≥

2

ε
(AVK +B).Using the Chebyshev inequality and the de�nition of µ̄ we have

P tµ(Y ) ≥ P tµ̄(Y ) ≥ 1 −
ε

2
−

1

q

\
X

V (x)P t µ̄(dx) = 1 −
ε

2
−

1

q

\
X

U t V (x) µ̄(dx).Now using inequality (6.1.3) we obtain
P tµ(Y ) ≥ 1 −

ε

2
−

1

q

[
A
\
X

V (x) µ̄(dx) +Bµ̄(K)
]
.From this and (6.1.4) it follows that

P tµ(Y ) ≥ 1 −
ε

2
−

1

q
[AVK +B] ≥ 1 − ε for t ∈ T.Sine the set Y is bounded and losed, it is ompat.As before let c be a �xed element of X and let ̺α

c (x) := (̺(x, c))α for x ∈ X and
α > 0.Theorem 6.1.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that there is t0 ∈ T suh that for every f ∈ H the following two onditionsare satis�ed :

|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T,(6.1.5)
|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(6.1.6)Moreover , assume that there exist onstants A,B ≥ 0 and α > 1 suh that(6.1.7) (U t̺α

c )(x) ≤ A̺α
c (x) +B for x ∈ X and t ∈ T.Then (P t)t∈T is asymptotially stable with respet to the Huthinson metri.



Appliations of the Kantorovih�Rubinstein maximum priniple 41Proof. From Remark 4.2.1 it follows that P t(M1,α) ⊂ M1,α for t ≥ 0, and, by Theorem4.2.1, the semigroup (P t)t∈T is asymptotially ontrative with respet to the Huthinsonmetri in the lass M1,α.Now we are going to verify that for every µ ∈ M1,α the trajetory {P tµ}t∈T isrelatively ompat in M1,α. Fix µ ∈ M1,α. Let (tn) denote a sequene of integers suhthat tn → ∞ and tn ∈ T for n = 1, 2, . . . .From Lemma 6.1.1 and ondition (6.1.7) it follows that the family of distributions
{P tnµ}n∈N is tight. So from the Prokhorov theorem (see [3, Chapter 1, �6℄) it followsimmediately that there exists a subsequene (P tknµ) whih onverges weakly to a measure
µ0 ∈ M1. Now we are going to show that µ0 ∈ M1,α and (P tknµ) is onvergent to µ0with respet to the Huthinson metri. For given r > 0 de�ne

gr(x) =

{
̺α

c (x) for x ∈ K(c, r),

rα for x 6∈ K(c, r).Condition (6.1.7) implies that(6.1.8) 〈gr, P
tknµ〉 = 〈U tkn gr, µ〉 ≤ l, where l = A〈̺α

c , µ〉 +B.The funtion gr is ontinuous and bounded. Consequently,
lim

n→∞
〈gr, P

tknµ〉 = 〈gr, µ0〉.Sine r > 0 was arbitrary, the last equality and (6.1.8) imply that µ0 ∈ M1,α. So itsu�es to verify that
lim

n→∞
‖P tknµ− µ0‖H = 0.Sine P tknµ and µ0 belong to M1,α, an elementary alulation shows that(6.1.9) \

X\K(c,r)

̺c(x)P
tknµ(dx) ≤

l

rα−1
and \

X\K(c,r)

̺c(x)µ0(dx) ≤
l

rα−1
.Fix ε > 0 and hoose r > 0 suh that 4l

/
rα−1 ≤ ε. De�ne

△ = [−r, r] and F△,1 = {f ∈ C(X) : |f(x)| ≤ r and |f(x) − f(y)| ≤ ̺(x, y)}.On the set M1 the metri
‖µ1 − µ2‖F△,1

= sup{〈f, µ1 − µ2〉; f ∈ F△,1},is equivalent to the Fortet�Mourier metri. For f ∈ H de�ne
fr(x) = max{min[f(x), r],−r}.Evidently fr ∈ F△,1. Furthermore for f ∈ Hc the funtion fr has the following properties:(a) fr(x) = f(x) for x ∈ K(r, c),(b) |f(x) − fr(x)| ≤ 2̺c(x) for x ∈ X.From this and (6.1.9), it follows immediately that

〈f, P tknµ− µ0〉 ≤ ‖P tknµ− µ0‖F△,1
+

4l

rα−1
≤ ‖P tknµ− µ0‖F△,1

+ εfor f ∈ Hc. This shows that (P tknµ) onverges to µ0 with respet to the Huthinsonnorm. Thus the trajetory {P tµ}t∈T is ompat on M1,α. Therefore, aording to



42 H. GakiTheorem 5.1.2 the measure µ0 is a stationary point of (P t)t∈T and
lim

t→∞
‖P tµ− µ0‖H = 0 for µ ∈ M1,α.To omplete the proof it is su�ient to observe that the set M1,α is dense in M1 andby (6.1.5) the Markov�Feller semigroup (P t)t∈T is nonexpansive on M1 with respet tothe Fortet�Mourier norm.It is not di�ult to verify that in the ase of loally Lipshitzian Markov semigroups(see (4.1.19)) Theorem 6.1.1 may be replaed by the followingTheorem 6.1.2. Let (P t)t∈T be a loally Lipshitzian Markov semigroup on Msig andlet (U t)t∈T denote the semigroup dual to (P t)t∈T . Assume that there is t0 ∈ T suh thatfor every f ∈ H,(6.1.10) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.Moreover , assume that there exist onstants A,B ≥ 0 and α > 1 suh that(6.1.11) (Unt0̺α

c )(x) ≤ A̺α
c (x) +B for x ∈ X and n = 0, 1, 2, . . . .Then (P t)t∈T is asymptotially stable with respet to the Huthinson metri.6.2. Disrete time stohastially perturbed dynamial systems. Let (Ω,Σ, prob)be a probability spae, E the expetation on (Ω,Σ, prob) and (Y,A) a measurable spae.We onsider a disrete time stohastially perturbed dynamial system on a loally om-pat separable spae (X, ̺) given by the reurrene formula(6.2.1) xn+1 = S(xn, ξn) for n = 0, 1, . . . ,where ξn : Ω → Y is a sequene of random elements and S : X × Y → X is a givendeterministi transformation. In our study of the asymptoti behaviour of (6.2.1) weassume that the following onditions are satis�ed:(i) The funtion S is measurable on the produt spae X × Y and for every �xed

y ∈ Y the funtion S(·, y) is ontinuous.(ii) The random elements ξ0, ξ1, . . . are independent and have the same distribution,i.e., the measure
ϕ(A) = prob(ξn ∈ A) for A ∈ Ais the same for all n.(iii) The initial value x0 : Ω → X is independent of the sequene (ξn).It is easy to derive a reurrene formula for the measures

µn(A) = prob(xn ∈ A), A ∈ B(X),orresponding to the dynamial system (6.2.1). Namely µn+1 = Pµn, n = 0, 1, . . . ,where the operator P : M1 → M1 is given by the formula(6.2.2) Pµ(A) =
\
X

(\
Y

1A(S(x, y))ϕ(dy)
)
µ(dx).



Appliations of the Kantorovih�Rubinstein maximum priniple 43The operator P is a Markov�Feller operator and its dual U has the form(6.2.3) Uf(x) =
\
Y

f(S(x, y))ϕ(dy) for f ∈ C(X).Now de�ne a sequene of funtions Sn by setting
S1(x, y1) = S(x, y1), Sn(x, y1, . . . , yn) = S(Sn−1(x, y1, . . . , yn−1), yn).Using this notation we have

Unf(x) =
\
Y

· · ·
\
Y

f(Sn(x, y1, . . . , yn))ϕ(dy1) · · ·ϕ(dyn).Proposition 6.2.1. Assume that the mapping S : X × Y → X and the sequene ofrandom elements (ξn) satisfy onditions (i)�(iii). Assume moreover that there is n ∈ Nsuh that(6.2.4) E(̺(S(x, ξn), S(x, ξn)) < ̺(x, x) for x, x ∈ X, x 6= x,and there exist onstants α > 1 and A,B ∈ R+ suh that(6.2.5) Un̺α
c (x) ≤ A̺α

c (x) +B, for x ∈ X, n = 0, 1, 2, . . .Then the operator P de�ned by (6.2.2) is asymptotially stable with respet to the Huthin-son metri.Proof. It is su�ient to verify ondition (6.1.10). Aording to (6.2.4), for f ∈ H and
x 6= x we have

|Uf(x) − Uf(x)| ≤
\
Y

|f(S(x, y) − f(S(x, y)|ϕ(dy)

≤
\
Y

̺(S(x, y), S(x, y))ϕ(dy) < ̺(x, x).Using Proposition 6.2.1 it is easy to obtain a few known results onerning the stabilityof Markov operators.In fat from Proposition 6.2.1 we immediately obtain as a speial ase the stabilitytheorem of Lasota�Makey (see [23, Theorem 2℄) where the onditions
E(|S(x, ξn) − S(z, ξn)|) < |x− z| for x, z ∈ X ⊂ Rd, x 6= zand

E(|S(x, ξn)|2) ≤ A|x|2 +B for x ∈ X ⊂ Rd,were assumed. The symbol | · | denotes an arbitrary, not neessarily Eulidean, norm in
Rd and A and B are nonnegative onstants with A < 1.Furthermore, in the ase when X is a loally ompat separable metri spae, Propo-sition 6.2.1 ontains a result of �oskot and Rudniki (see [29, Theorem 3℄). Namely, theyproved the asymptoti stability of P if

̺(S(x, y), S(x, y)) ≤ λ(y)̺(x, x) for x, x ∈ Xand
E̺c(S(c, ξ1)) <∞,where λ : Y → R+ and Eλ(ξ1) < 1.



44 H. GakiIn the speial ase when Y = {1, . . . , N}, the stohasti dynamial system (6.2.1)redues to an iterated funtion system
(S1, . . . , SN ; p1, . . . , pN ) where Sk(x) = S(x, k) and pk = prob(ξn = k).Now the operators (6.2.2) and (6.2.3) have the form(6.2.6) Pµ(A) =

N∑

k=1

pkµ(S−1
k (A)) and Uf(x) =

N∑

k=1

pkf(Sk(x)).We will assume the following onditions:
N∑

k=1

pk̺(Sk(x), Sk(x)) < ̺(x, x) for x, x ∈ X, x 6= x,(6.2.7)
̺(Sk(x), c) ≤ Lk̺(x, c) for x ∈ X, k = 1, . . . , N,(6.2.8)where c is a given point in X and the Lk are nonnegative onstants.In this ase Proposition 6.2.1 implies the following resultCorollary 6.2.1. If the IFS (S1, . . . , SN ; p1, . . . , pN ) satis�es onditions (6.2.7), (6.2.8)and there exists a onstant α > 1 suh that(6.2.9) N∑

k=1

pkL
α
k < 1,then this system is asymptotially stable.In the ase when there exist i, j ∈ {1, . . . , N} suh that(6.2.10) ̺(Si(x), Si(y)) 6= ̺(Sj(x), Sj(y)) for x, y ∈ X, x 6= y,the strit inequality (6.2.7) may be replaed by(6.2.11) N∑

k=1

pk̺(Sk(x), Sk(y)) ≤ ̺(x, y).In fat, for every d ∈ (0, 1) the funtion ̺d : X ×X → R+ given by
̺d(x, y) = [̺(x, y)]dis again a metri on X and onditions (6.2.10), (6.2.11) imply

N∑

k=1

pk̺
d(Sk(x), Sk(y)) < ̺d(x, y) for x, y ∈ X, x 6= y.These observations generalize the su�ient onditions of the asymptoti stability ofMarkov operators generated by iterated funtion systems given in [21, Theorem 3.2℄.6.3. Semigroups generated by Poisson driven di�erential equations. In this se-tion we will apply Theorem 6.1.2 to the semigroup (P t)t≥0 of Markov operators generatedby a Poisson driven stohasti di�erential equation. This equation has the form(6.3.1) dξ(t) = a(ξ(t))dt+

\
Θ

σ(ξ(t), θ)Np(dt, dθ) for t ≥ 0



Appliations of the Kantorovih�Rubinstein maximum priniple 45and will be onsidered with the initial ondition(6.3.2) ξ(0) = ξ0,where {ξ(t)}t≥0 is a stohasti proess with values in Rd. In the speial ase ξ(0) = xa.s. this solution will be denoted by ξx.In order to formulate preise onditions onerning equation (6.3.1) and the formalde�nitions of the semigroup (P t)t≥0 we denote by ‖·‖, (·|·) the Eulidean norm and salarprodut in Rd. As before, B(Rd) denotes the spae of all bounded Borel measurablefuntions de�ned on Rd, and C(Rd) the subspae of all bounded ontinuous funtions.Both spaes are endowed with the supremum norm. Further C1
0 (Rd) denotes the spaeof all funtions with ompat support and ontinuous �rst derivatives.In our study of solutions of (6.3.1), (6.3.2) we make the following assumptions:(i) The oe�ient a : Rd → Rd is Lipshitzian with Lipshitz onstant la, i.e.,

‖a(x) − a(y)‖ ≤ la‖x− y‖ for x, y ∈ Rd.(ii) (Θ,G, ñ) is a �nite measure spae with ñ(Θ) = 1.(iii) The perturbation oe�ient σ : Rd×Θ → Rd is BRd×G/BRd -measurable. Further
σ(z, ·) ∈ L2(ñ) for eah z ∈ Rd and there exists lσ > 0 suh that

(6.3.3) ‖σ(x, ·) − σ(y, ·)‖L2(ñ) ≤ lσ‖x− y‖ for x, y ∈ Rd.(iv) The mapping q : Rd × Θ → Rd given by
(6.3.4) q(z, θ) = z + σ(z, θ) for z ∈ Rd, θ ∈ Θis suh that q(z, ·) ∈ L1( ñ) for z ∈ Rd. Moreover there exists a positive onstant

lq suh that
(6.3.5) |q(x, ·) − q(y, ·)|L1(ñ) ≤ lq‖x− y‖ for x, y ∈ Rd.(v) There is a probability spae (Ω,F , prob), a sequene (ti)i∈N0

of nonnegative ran-dom variables and a sequene (θi)i∈N of random elements with values in Θ. Thevariables ∆ti = ti − ti−1 (t0 = 0) are nonnegative, independent and identiallydistributed with probability density funtion λe−λt for t ≥ 0. The elements θiare independent identially distributed with distribution ñ. The sequenes (ti)and (θi) are also independent. Under this ondition the mapping
Ω ∋ ω 7→ p(ω) = (ti(ω), θi(ω))i∈Nde�nes a stationary Poisson point proess (see [16, Chapter I, �9℄).(vi) For every µ ∈ M1 there is an Rd-valued random vetor ξµ de�ned on Ω, inde-pendent of p and having the distribution µ.Condition (v) implies that for every measurable set Z ⊂ (0,∞) × Θ the variable

Np(Z) = #{i : (ti, θi) ∈ Z}is Poisson distributed. It is alled the Poisson random ounting measure.Denote by E the expetation on the probability spae (Ω,F , prob). It an be provedthat
E(Np((0, t] ×K)) = λtñ(K)for t ∈ (0,∞),K ∈ G.



46 H. GakiBy a solution of (6.3.1), (6.3.2) we mean a stohasti proess (ξ(t))t≥0 with values in
Rd suh that with probability one the following two onditions are satis�ed:(a) The sample paths are right-ontinuous funtions suh that for t > 0 the limit

ξ(t−) = lim
s→t−0

ξ(s)exists and(b)
ξ(t) = ξ0 +

t\
0

a(ξ(s))ds+

t\
0

\
Θ

σ(ξ(s−), θ)Np(ds, dθ) for t ≥ 0,where
t\
0

\
Θ

σ(ξ(s−), θ)Np(ds, dθ) =
∑

tn≤t

σ(ξ(tn−), θn) for t ≥ 0 and p = (ti, θi)i∈N,(see [16, Chapter II, �3℄). It is easy to write expliitly the formula for the solutionof (6.3.1), (6.3.2). Denote by πt the dynamial system de�ned by
(6.3.6) πt(x) = y(t) for t ∈ R+,where y is the solution of the ordinary di�erential equation
(6.3.7) y′(t) = a(y(t)) for t ∈ R+,with the initial ondition
(6.3.8) y(0) = x.Then for every �xed value of p = (ti, θi)i∈N the solution of (6.3.1), (6.3.2) is givenby

ξ(t) = πt−ti(ξ(ti)) for t ∈ [ti, ti+1), i ∈ N0,where
ξ(0) = ξ0, ξ(ti) = ξ(ti−) + σ(ξ(ti−), θi) for i ∈ N.For x ∈ Rd denote by (ξx(t))t≥0 the solution of the initial value problem (6.3.1),(6.3.2) with ξ0 = x. For every t ≥ 0 and f ∈ C(Rd) de�ne(6.3.9) U tf(x) = E(f(ξx(t))) for t ≥ 0.Remark 6.3.1. The lassial theory of equation (6.3.1) ensures that under onditions(i)�(vi), (ξx(t))t≥0 is a homogeneous-in-time Markov proess and (U t)t≥0 is a ontinuoussemigroup of bounded linear operators ating on the spae C(Rd).Analogously for given µ ∈ M1 we an �nd a solution ξµ(t), t ≥ 0, of (6.3.1), (6.3.2)suh that ξµ(0) has the distribution µ. For every t ≥ 0 we de�ne P tµ as the distributionof ξµ(t), i.e.,(6.3.10) P tµ(A) = prob(ξµ(t) ∈ A) for t ≥ 0, A ∈ BRd .The operators P t and U t satisfy the duality ondition(6.3.11) 〈f, P tµ〉 = 〈U tf, µ〉 for t ≥ 0, f ∈ C, µ ∈ M1.



Appliations of the Kantorovih�Rubinstein maximum priniple 47Using (6.3.11) the semigroup (P t)t≥0 an be easily extended to the vetor spae
Msig. It is loally Lipshitzian and weakly ontinuous. Moreover, using the Phillipsperturbation theorem it is easy to �nd a formula for (U t)t≥0.In fat, let G0 be a linear operator given by the formula(6.3.12) G0f(x) =

\
Θ

f(q(x, θ)) ñ(dθ) for f ∈ C(Rd), x ∈ Rd,and let (T t)t≥0 be the semigroup orresponding to the unperturbed system (6.3.7), i.e.(6.3.13) T tf(x) = f(πt(x)) for f ∈ C(Rd), x ∈ Rd.Then (see [37, p. 170℄)(6.3.14) U tf = e−λt
∞∑

n=0

U t
nf for f ∈ C(Rd),where

U t
n+1f = λ

t\
0

T t−sG0 U
s
nf ds, n = 0, 1, . . . ,(6.3.15)

U t
0f = T tf for t ≥ 0.Many di�erent riteria for the asymptoti stability of the �ow of measures generatedby equation (6.3.1) are known. Here we mention only a few of them whih are relatedto our methods. J. Malzak (see [30, Proposition 7.1℄) studied the asymptoti stabilityof the �ow of the densities of the measures {P tµ}. His results were based on the lowerbound tehnique. Using a double ontration priniple A. Lasota (see [21, Proposition5.1℄) proved the asymptoti stability of the semigroup (P t)t≥0 ating on the spae ofsigned measures. His result were generalized by J. Traple (see [37, Theorem 7.3℄) whoonsidered the ase when the intensity λ of the Poisson proess depends on the positionof the solution. Another generalization was given by T. Szarek (see [34, Theorem 7.8.3℄)who studied equation (6.3.1) in a Banah spae. In all these results an important rolewas played by the following two onditions:

‖πtx− πty‖ ≤ eγt‖x− y‖ for x, y ∈ Rd, t ≥ 0,(6.3.16)
lq < exp{−γ/λ}.(6.3.17)Using (6.3.16) and (6.3.17) it is possible to prove the asymptoti stability of (P t)t≥0by the invariane priniple. However, this priniple an also be useful in some ases wheninequality (6.3.17) is not satis�ed. We illustrate this fat by the followingTheorem 6.3.1. Assume that assumptions (i)�(vi) are satis�ed with a given λ > 0 and

lq = 1. Further , assume that(6.3.18) ‖πtx− πty‖ < ‖x− y‖ for x, y ∈ Rd, x 6= y and t > 0.Assume moreover that there exist onstants α0, β0 ∈ R suh that(6.3.19) (a(x)|2x) + λ
\
Θ

(σ(x, θ)|x) ñ(dθ) ≤ α0‖x‖
2 + β0 for x ∈ Rd,



48 H. Gakiand(6.3.20) 2α0 < −λl2σ.Then the semigroup (P t)t≥0 de�ned by (6.3.10) is asymptotially stable with respet tothe Huthinson metri.Proof. We are going show that the semigroup (U t)t≥0 satis�es the assumptions of The-orem 6.1.2. First we prove by indution that for every f ∈ H,(6.3.21) |(U t
nf)(x) − (U t

nf)(y)| <
(λt)n

n!
‖x− y‖ for x, y ∈ Rd, n ∈ N ∪ {0}, t > 0.For n = 0 from (6.3.13) and (6.3.15) we obtain

|(U t
0f)(x) − (U t

0f)(y)| ≤ |f(πtx) − f(πty)|

≤ ‖πtx− πty‖ < ‖x− y‖ for x, y ∈ Rd, t > 0.Now let (6.3.21) be satis�ed for some integer n ≥ 0. From (6.3.12), (6.3.13) and (6.3.15)it follows immediately that
|(G0U

s
n f)(x) − (G0U

s
nf)(y)| ≤

\
Θ

|(Us
nf)(q(x, θ))− (Us

nf)(q(y, θ))| ñ(dθ)

<
(λs)n

n!

\
Θ

‖q(x, θ) − q(y, θ)‖ ñ(dθ)

≤
(λs)n

n!
‖x− y‖ for x, y ∈ Rd and s ∈ (0, t].For s ∈ (0, t] and f ∈ H we also have

T t−sG0U
s
nf(x) − T t−sG0U

s
nf(y)| <

(λs)n

n!
‖x− y‖ for x, y ∈ Rd.This and (6.3.15) omplete the indution argument.From (6.3.14) and (6.3.21) we obtain(6.3.22) |U tf(x) − U tf(y)| < ‖x− y‖, x, y ∈ Rd, f ∈ H.Therefore ondition (6.1.10) of Theorem 6.1.2 is satis�ed.To prove (6.1.11) onsider the funtion V (x) = ‖x‖2. Following the proof of Theorem3 in [14℄ (see p. 236) it is easy to dedue that for every t > 0 there exists a onstant ktsuh that

E‖ξx(s)‖2 ≤ ekt sV (x) + 1 for x ∈ Rd and s ≤ t.The last inequality may be rewritten in the form
UsV (x) ≤ ekt sV (x) + 1 for x ∈ Rd and s ≤ t.(6.3.23)Hene, the mapping t 7→ U tV (x) is loally bounded for all x ∈ Rd.Now for the semigroup (U t)t≥0 we an write the formula(6.3.24) U tf(x) = f(x) +

t\
0

UsAUf(x) ds for x ∈ Rd, f ∈ C1(Rd)



Appliations of the Kantorovih�Rubinstein maximum priniple 49using its in�nitesimal operator(6.3.25) AUf(x) = (a(x)|fx(x)) − λf(x) + λ
\
Θ

f(x+ σ(x, θ)) ñ(dθ).Consequently,(6.3.26) U tV (x) = V (x) +

t\
0

Us ψ(x) ds for x ∈ Rd,where(6.3.27) ψ(x) = (a(x)|2x) + λ
\
Θ

(‖x+ σ(x, θ)‖2 − ‖x‖2) ñ(dθ).By (6.3.20) there exists a onstant c > 0 suh that(6.3.28) α = 2α0 + λl2σ + λclσ‖σ(0, ·)‖L2(ñ) < 0.Now, we will verify that(6.3.29) ψ(x) ≤ αV (x) + β for x ∈ Rd,where
β = λ(1 + 1/c)(1 + ‖σ(0, ·)‖L2(ñ)) + λclσ + β0.In fat, by the de�nition of ψ for every x ∈ Rd we have

ψ(x) = 2
(
(a(x)|x) + λ

\
Θ

(σ(x, θ)|x) ñ(dθ)
)

+ λ
\
Θ

‖σ(x, θ)‖2 ñ(dθ).(6.3.30)Further, from inequality (6.3.3) it follows immediately that\
Θ

‖σ(x, θ)‖2 ñ(dθ) ≤ lσ‖x‖ + 2
\
Θ

‖σ(0, θ)‖ ‖σ(x, θ)− σ(0, θ)‖ ñ(dθ)

+
\
Θ

‖σ(0, θ)‖2 ñ(dθ) for x ∈ Rd.Sine b ≤ c
2 · b2 + 1

2c for every b ∈ R, the last inequality implies that\
Θ

‖σ(x, θ)‖2 ñ(dθ)

≤ (l2σ + clσ‖σ(0, ·)‖L2(ñ))‖x‖
2 + ((1 + 1/c)(1 + ‖σ(0, ·)‖L2(ñ)) + clσ)This inequality and onditions (6.3.19), (6.3.30) imply (6.3.29).Now using (6.3.26) and (6.3.29) we obtain the inequality(6.3.31) d

dt
U t V (x) ≤ αU t V (x) + β.From (6.3.31) we onlude that(6.3.32) U t V (x) ≤ V (x)eαt +

β

α
(eαt − 1) for x ∈ R, t ≥ 0.Sine α < 0, this implies (6.1.11) with c = 0 and ̺2

0(x) = V (x). Thus by Theorem 6.1.2the semigroup (P t)t≥0 is asymptotially stable.



50 H. Gaki6.4. Appliations of the maximum priniple for the Fortet�Mourier metri.Again let (X, ̺) be a loally ompat separable spae. The relationship between themaximum priniple for the Fortet�Mourier metri and the stability theory of the Markov�Feller semigroups is given in the followingTheorem 6.4.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that there is t0 ∈ T suh that for every f ∈ F :(i)
|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T,(6.4.1)

|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(6.4.2)(ii) For every µ1, µ2 ∈ M1, µ1 6= µ2, there exists t1 ∈ T that
(6.4.3) dist(supp(P t1(µ1 − µ2))+

, supp(P t1(µ1 − µ2))−) < 2.(iii) There exists a Lyapunov funtion V suh that
(6.4.4) U t V (x) ≤ AV (x) +B for x ∈ X and t ∈ T,where A,B are nonnegative onstants.Then (P t)t∈T is asymptotially stable with respet to the Fortet�Mourier metri.Proof. From (6.4.1), it follows immediately that U t(F) ⊂ F for t ∈ T and, by Theorem4.3.1, the semigroup (P t)t∈T is asymptotially ontrative with respet to the Fortet�Mourier metri in the lass M1.To omplete the proof it is su�ient to verify that for every µ ∈ M1 the trajetory
{P tµ}t≥0 is ompat with respet to the Fortet�Mourier metri. Let (tn) be a sequeneof numbers suh that tn → ∞ and tn ∈ T for n ∈ N. From Lemma 6.1.1 and on-dition (6.4.4) it follows that the family of distributions {P tnµ}n∈N is tight. From theProkhorov theorem it follows immediately that there exists a subsequene (P tknµ)n∈Nwhih onverges weakly to a measure µ0 ∈ M1.We have veri�ed that (P t)t≥0 is asymptotially ontrative with respet to the Fortet�Mourier metri in the lass M1 and that the orbits are ompat. Aording to theinvariane priniple the semigroup (P t)t≥0 is asymptotially stable.For loally Lipshitzian Markov semigroups the following version of Theorem 6.4.1an be proved similarly:Theorem 6.4.2. Let (P t)t∈T be a loally Lipshitzian Markov semigroup on Msig andlet (U t)t∈T denote the semigroup dual to (P t)t∈T . Assume that :(i) There exists t0 ∈ T suh that for every f ∈ F ,
(6.4.5) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(ii) For every µ1, µ2 ∈ M1, µ1 6= µ2, there exists n0 ∈ N suh that
(6.4.6) dist(supp(Pn0t0(µ1 − µ2))+

, supp(Pn0t0(µ1 − µ2))−) < 2.



Appliations of the Kantorovih�Rubinstein maximum priniple 51(iii) There exists a Lyapunov funtion V suh that
(6.4.7) Unt0 V (x) ≤ AV (x) +B for x ∈ X, n ≥ 0,where A,B are nonnegative onstants.Then (P t)t∈T is asymptotially stable with respet to the Fortet�Mourier metri.We omplete this series of su�ient onditions for the asymptoti stability of Markovsemigroups with the followingTheorem 6.4.3. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that there is t0 ∈ T suh that for every f ∈ F :(i)

|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T,(6.4.8)
|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(6.4.9)(ii) There exist onstants t0, t1, t2 ∈ T suh that for every f ∈ F either

U t0+t1f(x) ∈ (−1, 1] for x ∈ Xor
U t0+t2f(x) ∈ [−1, 1) for x ∈ X.(iii) There exists a Lyapunov funtion V suh that

(6.4.10) U t V (x) ≤ AV (x) +B for x ∈ X, t ∈ T,where A,B are nonnegative onstants.Then (P t)t∈T is asymptotially stable with respet to the Fortet�Mourier metri.Proof. Again the proof is similar to that of Theorem 6.4.1. In this ase we an useTheorem 4.3.2 to verify that the semigroup (P t)t∈T is asymptotially ontrative withrespet to the Fortet�Mourier metri in the lass M1.As a onsequene of Proposition 4.3.1 and Theorem 6.4.3 we obtain the followingCorollary 6.4.1. Let P : Msig → Msig be a Markov�Feller operator and let U be itsdual. Assume that :(i) For every f ∈ F ,
(6.4.11) |Uf(x) − Uf(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(ii) The transition π : X×BX → [0, 1] orresponding to P , given by (4.1.10), satis�es
(6.4.12) supp π(x, ·) = X for x ∈ X.(iii) There exists a Lyapunov funtion V suh that
(6.4.13) Un V (x) ≤ AV (x) +B for x ∈ X, n ≥ 0,where A,B are nonnegative onstants.Then (Pn)n∈N is asymptotially stable with respet to the Fortet�Mourier metri.



52 H. Gaki6.5. Appliations in a mathematial model of the ell yle. In order to illustratethe utility of Theorem 6.4.3 we show a su�ient ondition for the asymptoti stabilityof a speial Markov operator introdued by A. Lasota and M. C. Makey in the theorydesribing the division and stability of ellular populations (see [25, Theorem 3.2℄). Again,let (X, ̺) be a loally ompat separable metri spae. Further, let (I, κ) be anothermetri spae, whih will be onsidered as the spae of indies. We onsider a ontinuoustransformation
S : X × I → Xand a funtion

F : X × BI → [0, 1].where BI denotes the σ-algebra of Borel subsets of I. We assume that:(1) For every x ∈ X the mapping F (x, ·) : BI → [0, 1] is a probability measure.(2) For every A ∈ BI the funtion F (·, A) : X → X is measurable.Now we present an impreise desription of the proess onsidered in this example.Choose an arbitrary point x0 ∈ X and randomly selet a point i0 ∈ I aording tothe distribution F (x0, ·). When the point t0 is drawn we de�ne x1 = S(x0, i0). Having
x1 we selet i1 ∈ I aording to the distribution F (x1, ·) and we de�ne x2 = S(x1, i1) andso on. Denoting by µn, n = 0, 1, . . . , the distribution of xn, i.e. µn(A) = prob(xn ∈ A),we de�ne P as the transition operator suh that µn+1 = Pµn.The above proedure an be easily formalized. To do this �x x ∈ X and set µ0 = δx.Aording to the desription of our proess and from the de�nition of the dual operator
U we have

Uf(x) = 〈Uf, δx〉 = 〈f, P δx〉 = 〈f, µ1〉 for f ∈ B(X).This means that Uf(x) is the expetation of f(x1) if x0 = x is �xed. On the other hand,aording to our desription, the expetation of f(x1) is equal to\
I

f(S(x, i))F (x, di).Sine x was arbitrary this implies(6.5.1) Uf(x) =
\
I

f(S(x, i))F (x, di) for x ∈ X.We admit formula (6.5.1) as the preise formal de�nition of the operator U . It is easyto verify that the operator given by (6.5.1) satis�es onditions (4.1.5) and (4.1.7). Thuswe an de�ne P to be the Markov operator orresponding to U . It is the unique operatorsatisfying(6.5.2) 〈f, Pµ〉 = 〈Uf, µ〉.The transition funtion π : X × BX → [0, 1] orresponding to P is de�ned by(6.5.3) π(x,A) = Pδx(A) =
\
I

1A(S(x, i))F (x, di) for (x,A) ∈ X × BX .To formulate su�ient onditions of the asymptoti stability of P we introdue thefollowing notations.



Appliations of the Kantorovih�Rubinstein maximum priniple 53Consider the lass Φ of funtions ϕ : [0,∞) → [0,∞) satisfying the following threeonditions:(a) ϕ is ontinuous and ϕ(0) = 0;(b) ϕ is nondereasing and onave;() ϕ(x) > 0 for x > 0 and limx→∞ ϕ(x) = ∞.We denote by Φ0 the family of funtions satisfying onditions (a), (b).An important role in the study of the asymptoti behaviour of Markov operator P isplayed by the inequality(6.5.4) ω(t) + ϕ(r(t)) ≤ ϕ(t) for t ≥ 0,where r, ω ∈ Φ0 are given funtions. In [28, pp. 58�60℄ Lasota and Yorke disussed theases when the funtional inequality (6.5.4) has a solution belonging to Φ.We are not going to reall all these results. However, it is worthwhile to note that ifthe funtion ω satis�es the Dini ondition:
ε\
0

ω(t)

t
dt <∞ for some ε > 0and r(t) = λt (0 ≤ λ < 1) then (6.5.4) has a solution ϕ ∈ Φ.Finally, denote by ‖ · ‖T the total variation norm in the spae Msig(I). Following [24,Subsetion 12.2℄, if {A1, . . . , An} is a measurable partition of X, that is,

X =
n⋃

i=1

Ai, Ai ∩Aj = ∅ for i 6= j, Ai ∈ BX ,then for µ ∈ Msig we set(6.5.5) ‖µ‖T = sup
{ n∑

i=1

|µ(Ai)|
}
,where the supremum is taken over all possible measurable partitions of X (with arbi-trary n). In the speial ase where µ ∈ M1 we have ‖µ‖T = 1. The value ‖µ‖T is alledthe total variation norm of the measure µ, and the onvergene with respet to this normis alled the strong onvergene of measures.Theorem 6.5.1. Let ω, r ∈ Φ0 and let 0 ≤ r(x) < x. Assume that the funtionalinequality (6.5.4) has a solution in the lass Φ. Moreover , assume that :\

I

̺(S(x, i), S(y, i))F (x, di) ≤ r(̺(x, y)) for x, y ∈ X,(6.5.6)
‖F (x, ·) − F (y, ·)‖T ≤ ω(̺(x, y)) for x, y ∈ X,(6.5.7)

sup
x∈X

\
I

̺(x0, S(x0, i)) F (x, di) <∞(6.5.8)for some x0 ∈ X and(6.5.9) supp π(x, ·) = X for x ∈ X,where π is the transition funtion given by (6.5.3). Then the operator P given by (6.5.1)and (6.5.2) is asymptotially stable with respet to the Fortet�Mourier metri.



54 H. GakiProof. Consider a solution ϕ̃ ∈ Φ of (6.5.4) orresponding to the pair (ω, r). Sine r(t) < tthe funtion ϕ(t) = ϕ̃(t) + t satis�es(6.5.10) ω(t) + ϕ(r(t)) < ϕ(t) for t ≥ 0.Now using properties (a)�() it is easy to verify that the funtion ̺ϕ given by the formula(6.5.11) ̺ϕ(x, y) = ϕ(̺(x, y)) for x, y ∈ Xis again a metri on X. Denote by ‖ · ‖ϕ the Fortet�Mourier norm generated by ̺ϕ, i.e.
‖µ‖Fϕ

= sup{|〈f, µ〉| : f ∈ Fϕ} for µ ∈ Msig,where Fϕ ⊂ C(X) is the set of all f suh that |f | ≤ 1 and
|f(x) − f(y)| ≤ ̺ϕ(x, y) for x, y ∈ X.Now �x f ∈ Fϕ. We are going to show that Uf is a ontrative funtion with respetto the metri ̺ϕ. Using (6.5.1), (6.5.7) and the ontinuity of S it is easy to verify that

Uf ∈ C(X) and that |Uf | ≤ 1. Moreover for x, y ∈ X, x 6= y we have
|Uf(x) − Uf(y)| =

∣∣∣
\
I

f(S(x, i))F (x, di)−
\
I

f(S(y, i))F (y, di)
∣∣∣

≤ ‖F (x, ·) − F (y, ·)‖T +
\
I

|f(S(x, i)) − f(S(y, i))|F (x, di).From this and (i) it follows that
|Uf(x) − Uf(y)| ≤ ω(̺(x, y)) +

\
I

ϕ(̺(S(x, i), S(y, i)))F (x, di)

≤ ω(̺(x, y)) + ϕ
(\

I

̺(S(x, i), S(y, i))F (x, di)
)

≤ ω(̺(x, y)) + ϕ(r(̺(x, y))).Aording to (6.5.10), the last inequality implies(6.5.12) |Uf(x) − Uf(y)| < ̺ϕ(x, y).Now, we will verify that(6.5.13) Un V (x) ≤ r(1)V (x) +B for x ∈ X and n ∈ N,where V (x) = ̺(x, x0) and
B = (1 − r(1))−1

(
r(1) + sup

x∈X

\
I

̺(x0, S(x0, i))F (x, di)
)
.In fat from (6.5.6) it follows that(6.5.14) \

I

̺(S(x, i), x0)F (x, di) ≤ r(̺(x, x0)) +
\
I

̺(x0, S(x0, i))F (x, di).Moreover, sine r is nondereasing, onave and r(0) = 0, we have
r(x) ≤ r(1)x+ r(1).The last inequality and onditions (6.5.1) and (6.5.14) imply (6.5.13).



Appliations of the Kantorovih�Rubinstein maximum priniple 55By virtue of Corollary 6.4.1 the operator P is asymptotially stable with respet tothe Fortet�Mourier metri ‖ · ‖Fϕ
generated by the metri ̺ϕ.Finally, sine the lasses of onvergent sequenes in both spaes (Msig, ‖ · ‖Fϕ

) and
(Msig, ‖ · ‖F ) are the same, the operator P is asymptotially stable with respet to theFortet�Mourier metri ‖ · ‖F . This ompletes the proof.Aknowledgements. I am grateful to the anonymous referees for their ontribution toimproving this manusript.
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Notation and symbolsLet (X, ̺) be a metri spae. Given c ∈ X and α > 0 we denote by ̺c and ̺α
c , respetively,

̺c(x) := ̺(x, c) and ̺α
c (x) := (̺(x, c))α for x ∈ X. The notation fn ↓ 0 means that thesequene (fn) of real-valued funtions is dereasing and pointwise onverges to 0.The following is a list of the most ommonly used symbols and their meaning:

a.e. almost everywhere
BX σ-algebra of Borel subsets of the spae X
B(X) spae of bounded Borel measurable funtions f : X → R

B(x, r) losed ball in X with entre x ∈ X and radius r
C(X) spae of bounded ontinuous funtions f : X → R

C1
0 (Rd) spae of funtions f : Rd → R with ompat supportsand ontinuous �rst derivatives

dist(A,B) distane between sets A and B, 18
D+ upper right Dini derivative
δx point (Dira) measure supported at x
Eξ expetation of the random variable ξ
〈f, µ〉 Lebesgue integral of f : X → R with respet to the measure µ
F set of test funtions f : X → R for the Fortet�Mourier metri, 13
H set of test funtions f : X → R for the Huthinson metri, 13
Hc subset of f ∈ H for whih f(c) = 0, 13
1A harateristi funtion of the set A
L spae of Lipshitzian funtions f : X → R

L(X) set of linearly bounded funtions, 21
µ ∗ ν onvolution of the measures µ, ν ∈ Msig, 32
µ ◦ ν elementary produt of the measures µ, ν ∈ Msig, 32
‖µ‖F Fortet�Mourier norm of the measure µ, 13
‖µ‖Fϕ

Fortet�Mourier norm of the measure µ generated by the metri ̺ϕ, 54
‖µ‖H Huthinson norm of the measure µ, 13
‖µ‖T total variation norm of the measure µ, 53
µ

+
, µ

−
positive part and negative part of the measure µ

|µ| total variation of the measure µ
M family of �nite (nonnegative) Borel measures
M1 spae of probability measures, 12
Msig spae of �nite signed measures, 12
mα(µ) αth moment of the measure µ ∈ M1, 13[57℄



58 H. Gaki
mα(|µ|) αth moment of the measure µ ∈ Msig, 13
M1,α subset of measures µ ∈ M1 suh that mα(µ) <∞, 12
Msig,α subset of measures µ ∈ Msig suh that mα(|µ|) <∞, 12
N positive integers
Np Poisson random ounting measure, 45
(Ω,Σ, prob) probability spae
Ω(x) set of limiting points of the trajetory (Stx), 27
P Markov operator, 19
P∗n onvolution operator of order n, 32
(P t)t∈T semigroup of Markov operators, 22
π transition funtion, 20
̺ϕ Fortet�Mourier metri orresponding to the pair (̺, ϕ), 54
R real numbers
R+ nonnegative real numbers
Rd d-dimensional real spae
‖ · ‖ Eulidean norm in Rd

(·|·) salar produt in Rd

(St)t∈T semidynamial system, 27
(Stx) trajetory starting from x, 27
suppµ support of measure µ, 14
(S1, . . . , SN ; p1, . . . , pN ) iterated funtion system, 44
T nontrivial semigroup of nonnegative real numbers
U dual operator to P , 20
(U t)t∈T dual semigroup orresponding to (P t)t∈T , 22



Indexasymptotially ontrative semigroup, 23ontrative funtion, 8ontrative operator, 22onvolutionof measures, 32operator, 32power, 32distane, 28distributions, 12dual operator, 20elementary produtof measures, 32evolutionary di�erential equation, 37Fortet�Mourier metri, 13Huthinson metri, 13invariane priniple, 26invariantpoint, 27set, 27iterated funtion system, 44limiting point, 27linearly bounded funtion, 21Lyapunov funtion, 39Lyapunov�LaSalle funtion, 28Markov operator, 19Markov�Feller operator, 20Markov�Feller semigroup, 22

maximum prinipleKantorovih�Rubinstein, 16nonlinear version, 16nonexpansive semigroup, 22nonexpensive operator, 22Poisson driven stohasti di�erentialequation, 44Poisson random ounting measure, 45regular operator, 20semidynamial system, 27asymptotially stable, 28signed measures, 12spaeloally ompat separable, 9metrially onvex, 10stationarypoint, 27Poisson point proess, 45solution, 30stohasti dynamial system, 42, 44strong onvergene, 53support of a measure, 14tight family of distributions, 40Tjon�Wu equation, 30total variation norm, 53trajetory, 27sequentially ompat, 27transition funtion, 20weak onvergene of measures, 13

[59℄


