
PART I

1. Introduction

The present paper is devoted to certain Markov operators which occur in diverse branches
of pure and applied mathematics. Processes described by these operators arise in math-
ematical theory of learning [27, 29, 49], population dynamics [45], theory of stochastic
differential equations [22, 26] and many others. Recently such processes have been ex-
tensively studied because of the close connection to fractals and their generalization,
semifractals [2, 4, 10, 13, 14, 16–18, 25, 36, 56]. They are also used in computer graphics.
If (Zn)n≥1 is a homogeneous Markov chain taking values in some metric space X and π

is its transition kernel, i.e.,

prob{Zn+1 ∈ A |Zn = xn, . . . , Z0 = x0} = π(xn, A)

for n ∈ N and all Borel sets A, the corresponding Markov operator P is given by

Pµ(A) =
�
X

π(x,A)µ(dx).

It is of interest to find criteria for the existence of an invariant measure for P (see [3, 8,
11, 24, 25, 28, 41, 42, 44, 51, 55, 57, 58]). Having these criteria we may study the mul-
tifractal properties of invariant measures (for details see [1, 5, 7, 9, 43, 46, 47, 50, 52,
53, 60]).

The paper is divided into two parts. The main objective of our study in Part I is
the theory of general Markov operators acting on measures. It should be noted that
all theorems are stated under quite general assumptions concerning the phase space X.
Namely, we assume that X is a Polish space. In this case the crucial difficulty is to as-
sure the existence of an invariant measure. The first results concerning the existence
of invariant measures were proved for compact spaces (see [29]). The proofs usually
go as follows. First we construct a positive invariant functional defined on the space
of all continuous functions. From the Riesz theorem we deduce that it may be repre-
sented by a measure. Finally, since this functional is invariant, we conclude that the
measure is also invariant. This scheme works smoothly only when the phase space X

is compact. However Lasota and Yorke managed to extend it to the case when X

is locally compact and σ-compact (for details see [39]). Their approach was partially
based on the idea of the lower bound function technique developed for Markov oper-
ators acting on L1-space (see [34]). They introduced the class of so-called concentrat-
ing Markov operators and showed that every operator from this class admits an in-
variant measure. The above mentioned result is similar in spirit to Komorowski’s the-

[5]
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orem [31]. Komorowski however considered Markov operators acting on absolutely con-
tinuous measures. Further, if we assume that a concentrating Markov operator does not
increase some distance between two measures, this operator must be asymptotically stable
(see [39]).

The main aim of Part I is to prove similar results for Polish spaces. In Polish spaces
almost all methods developed for locally compact and σ-compact spaces break down.
Therefore in our considerations we base on the concept of tightness and the well known
Prokhorov theorem (see [59]).

In Part II we apply the results from Part I to some special Markov operators. We
consider Markov operators generated by iterated function systems, stochastically per-
turbed dynamical systems and Poisson driven stochastic differential equations. We start
with iterated function systems. This class of processes under the name “systems with a
complete connection” was already introduced by Mihoc and Onicescu in 1935 [45]. These
systems were also intensively studied as mathematical models of learning [27, 29, 49].
Today iterated function systems are considered because of their close connection with
the theory of fractals. The explosion of interest in fractal sets started after the observa-
tion that some of them can be constructed by using an iteration process. More precisely,
having N contractive transformations, say S1, . . . , SN , we construct the fractal set A∗ as
the limit of the sequence (Fn(A))n≥1, where F (A) =

⋃
Si(A) and A is a compact set. It

is known that if all Si’s are contractive maps, then the set A∗ exists and does not depend
on the starting set A (see [25]). On the other hand, a fractal set may be obtained in the
following way. Assume that every transformation Si is associated with the probability pi
determining the frequency with which the map Si can be chosen. Then for such system,
known under the name of iterated function system, we obtain the Markov operator P ,
given by (6.1.2), describing the evolution of measures due to the action of the above pro-
cess. It can be proved that the support of its invariant measure is equal to the fractal set
for S1, . . . , SN (see [25]). Recently Lasota nad Myjak generalized the concept of fractal
sets. Namely, the class of sets which can be defined as supports of invariant measures
of asymptotically stable Markov operators contains not only fractals. This leads to the
notion of a semifractal (see [36]). All sets which are equal to the support of the invari-
ant measure corresponding to an asymptotically stable Markov operator generated by an
iterated function system are called semifractals.

Our next concern will be the behaviour of stochastically perturbed dynamical systems
which are a natural extension of iterated function systems. They are defined in the fol-
lowing way. Consider an uncountable family (St)t∈P of transformations and assume that
every transformation is chosen according to some density on P . Then, analogously to the
case of iterated function systems, for this process we may find criteria for the existence of
an invariant measure. Such systems were considered by Lasota and Mackey and turned
out a very useful tool in the theory of mathematical models of cell cycles (for details
see [35]).

Finally, we will consider stochastic differential equations of the form

dξ(t) = a(ξ(t))dt+
�
Θ

σ(ξ(t), θ)Np(dt, dθ),
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where Np is the Poisson random measure. It is well known that such equations define
a semigroup of Markov operators (see [22, 38, 63]). We present a criterion for the exis-
tence of an invariant measure for this semigroup. A similar result in Rd was proved by
J. Traple [65].

Secondly, we will study dimensions of measures. The idea of dimension of a measure is
a basic tool in the study of fractals and measures generated by iterated function systems,
or more generally, measures generated by Markov chains (see [53]). Various definitions of
dimension have been proposed: Hausdorff dimension, box dimension, entropy dimension,
correlation dimension. Closely related to the Hausdorff dimension is capacity, introduced
by Kolmogorov (see [30]). This capacity however does not distinguish between a set and
its closure. Ledrappier [40] has made some modification to correct this insensitivity but
his version of capacity has not been completely analysed. In the present paper we give a
contribution to this subject. But the results are far from being conclusive.

The outline of the paper is as follows. Chapter 2 is divided into four parts. Sec-
tions 2.1–2.3 present some preliminaries. In Section 2.1 we set up notation and termi-
nology. Section 2.2 contains some basic facts from the theory of Markov operators. In
Section 2.3 we discuss different properties of Markov operators as globally concentrating,
locally concentrating, concentrating and semi-concentrating, and in Section 2.4 we look
at them more closely when proving technical lemmas.

The main concept taken from Lasota and Yorke is nonexpansiveness. Chapter 3 pro-
vides a detailed exposition of it. It is worth pointing out that this assumption is essential
to our proofs of the existence of an invariant measure. Nonexpansiveness may be omitted
if we assume that Markov processes satisfy some ergodic conditions on compact sets (see
for instance [57]).

Chapter 4 is devoted to the study of tightness. It is worth pointing out that every
tight sequence of measures contains a weakly convergent subsequence. This fact, in turn,
gives us a tool for proving the existence of an invariant measure.

In Chapter 5 criteria for the existence of an invariant measure are stated and proved.
The main result, Theorem 5.5, ensures the existence of an invariant measure for a non-
expansive operator satisfying the semi-concentrating condition.

The second part of the paper is devoted to applications of results in Part I to some
special Markov operators. The strategy for all chapters is the same. First we discuss non-
expansiveness. Next we study the existence of an invariant measure. Finally we estimate
the capacity.

In Chapter 6 we are concerned with iterated function systems. Chapter 7 is devoted
to stochastically perturbed dynamical systems and Chapter 8 deals with Poisson driven
differential equations.
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tific Research (Poland) Grant No. 2 P03A 010 16 and Foundation for Polish Science.
It was also supported by a Marie Curie Fellowship of the European Community program
“Improving the Human Research Potential and the Socio-Economic Knowledge Base”
under contract number HPMF-CT-20000-00824.
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2. Preliminaries

2.1. Basic definitions and notation. Let (X, %) be a Polish space, i.e., a separable,
complete metric space. Throughout this paper B(x, r) stands for the closed ball in X

with centre at x and radius r. For every set C ⊂ X and number r > 0 we denote by
N 0(C, r) the open r-neighbourhood of the set C, i.e.,

N 0(C, r) = {x ∈ X : %(C, x) < r}
and by N (C, r) the closed r-neighbourhood of C, i.e.,

N (C, r) = {x ∈ X : %(C, x) ≤ r},
where %(C, x) = inf{%(x, y) : y ∈ C}. For C,C0 ⊂ X we denote by dist(C,C0) the
distance of the sets C,C0, i.e.,

dist(C,C0) = min{ inf
x∈C

%(C0, x), inf
x∈C0

%(C, x)}.

For C ⊂ X we denote by diamC the diameter of C, i.e.,

diamC = sup{%(x, y) : x, y ∈ C}.
By B(X) and Bb(X) we denote the families of all Borel sets and all bounded Borel

sets, respectively.
By Cε, ε > 0, we denote the family of all closed sets C for which there exists a finite

set {x1, . . . , xn} ⊂ X such that C ⊂ ⋃ni=1B(xi, ε). By Ckε , ε > 0, k ∈ N, we denote the
family of all C ∈ Cε such that C ⊂ ⋃ki=1B(xi, ε) for some {x1, x2, . . . , xk} ⊂ X.

ByMfin andM1 we denote the sets of Borel measures (nonnegative, σ-additive) on X
such that µ(X) < ∞ for µ ∈ Mfin and µ(X) = 1 for µ ∈ M1. The elements of M1 are
called distributions . By Msig we denote the family of all signed measures:

Msig = {µ1 − µ2 : µ1, µ2 ∈Mfin}.
We say that µ ∈ Mfin is concentrated on A ∈ B(X) if µ(X \ A) = 0. By MA

1 we
denote the set of all distributions concentrated on A ∈ B(X).

By B(X) we denote the space of all bounded Borel measurable functions f : X → R.
Further, by C(X) we denote the subspace of all bounded continuous functions. These
spaces are equipped with the supremum norm.

For X unbounded, a continuous function V : X → [0,∞) is called a Lyapunov func-
tion if

(2.1.1) lim
%(x,x0)→∞

V (x) =∞

for some x0 ∈ X.
To simplify the notation we will write

〈f, ν〉 =
�
X

f(x) ν(dx) for f ∈ B(X), ν ∈Msig.

In the space Msig we introduce the Fortet–Mourier norm (see [12, 15, 20])

(2.1.2) ‖ν‖FM = sup{|〈f, ν〉 : f ∈ F},



Invariant measures for nonexpansive Markov operators 9

where F ⊂ C(X) consists of all functions such that |f(x)| ≤ 1 and |f(x)−f(y)| ≤ %(x, y)
for arbitrary x, y ∈ X. It is known (see [12, 15]) that the convergence

lim
n→∞

‖µn − µ‖FM = 0 for µn, µ ∈M1

is equivalent to the weak convergence of (µn)n≥1 to µ .
Let Θ0 ⊂ M1. We call Θ0 tight if for every ε > 0 there exists a compact set K ⊂ X

such that µ(K) ≥ 1− ε for all µ ∈ Θ0.
It is well known (see [6, 12, 15]) that if the family {µn}n≥1 of distributions is tight,

then there exists a subsequence (mn)n≥1 of integers and a measure µ∗ ∈M1 such that

lim
n→∞

‖µmn − µ∗‖FM = 0.

Let µ ∈ M1. For given ε > 0 and C ⊂ X we denote by NC(ε) the minimal number
of balls with radius ε needed to cover the set C. Further, for ε, η > 0 we define

N(ε, η) = inf{NC(ε) : C ⊂ X and µ(C) > 1− η}.
Then the quantities

CapL(µ) = sup
η>0

lim inf
ε→0

logN(ε, η)
− log ε

and

CapL(µ) = sup
η>0

lim sup
ε→0

logN(ε, η)
− log ε

are called the lower and upper capacity of µ, respectively.
If the lower capacity is equal to the upper capacity we call this common value the

capacity and denote it by CapL(µ).
The above definitions were introduced by Ledrappier (see [40, 66]) and are closely

related to the Kolmogorov dimension (see also [30]).

Remark 2.1.1. In the definitions of the lower and upper capacity we can replace the
continuous variable ε by a decreasing sequence (εn)n≥1 with log εn+1/log εn → 1 as
n→∞.

2.2. Markov operators and semigroups of Markov operators. An operator
P :Mfin →Mfin is called a Markov operator if it satisfies the following two conditions:

(i) positive linearity :

P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2

for λ1, λ2 ≥ 0 and µ1, µ2 ∈Mfin,
(ii) preservation of measures :

Pµ(X) = µ(X) for µ ∈Mfin.

It is easy to prove that every Markov operator can be extended to the space of
all signed measures Msig = {µ1 − µ2 : µ1, µ2 ∈ Mfin}. Namely for every ν ∈ Msig,
ν = µ1 − µ2, we set Pν = Pµ1 − Pµ2.

A linear operator U : B(X)→ B(X) is called dual to P if

(2.2.1) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈Mfin.
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Setting µ = δx in (2.2.1) we obtain

(2.2.2) Uf(x) = 〈f, Pδx〉 for f ∈ B(X), x ∈ X,
where δx ∈M1 is the point (Dirac) measure supported at x.

From (2.2.2) it follows immediately that U is a linear operator satisfying

(2.2.3) Uf ≥ 0 for f ≥ 0, f ∈ B(X),

(2.2.4) U1X = 1X ,

(2.2.5) Ufn ↓ 0 for fn ↓ 0, fn ∈ B(X).

Conditions (2.2.3)–(2.2.5) allow one to reverse the roles of P and U (for details see [33]).
Namely we may define a Markov operator P :Mfin →Mfin by setting

(2.2.6) Pµ(A) = 〈U1A, µ〉 for µ ∈Mfin, A ∈ B(X).

Assume now that P and U are given. If f : X → R+ is a Borel measurable function,
not necessarily bounded, we may assume that

Uf(x) = lim
n→∞

Ufn(x),

where (fn)n≥1 is an increasing sequence of bounded Borel measurable functions converg-
ing pointwise to f . From the Lebesgue monotone convergence theorem it follows that Uf
satisfies (2.2.1).

A Markov operator P is called a Feller operator if there exists a dual operator U :
B(X)→ B(X) satisfying (2.2.1) such that

(2.2.7) Uf ∈ C(X) for f ∈ C(X).

A family {P t}t≥0 of Markov operators is called a semigroup if P t+s = P tP s for all
t, s ∈ R+ and P 0 is the identity operator on Mfin.

2.3. Properties of Markov operators. A Markov operator P is called nonexpansive if

(2.3.1) ‖Pµ1 − Pµ2‖FM ≤ ‖µ1 − µ2‖FM for µ1, µ2 ∈M1.

Let P be a Markov operator. A measure µ ∈Mfin is called stationary or invariant if
Pµ = µ, and P is called asymptotically stable if there exists a stationary distribution µ?
such that

(2.3.2) lim
n→∞

‖Pnµ− µ?‖FM = 0 for µ ∈M1.

Clearly the distribution µ? satisfying (2.3.2) is unique.

Let {P t}t≥0 be a Markov semigroup. The Markov semigroup {P t}t≥0 is called non-
expansive if every Markov operator P t, t ≥ 0, is nonexpansive. A measure µ ∈ Mfin is
called stationary or invariant for the Markov semigroup {P t}t≥0 if P tµ = µ for all t ≥ 0.
The Markov semigroup {P t}t≥0 is called asymptotically stable if there exists a stationary
distribution µ? such that

(2.3.3) lim
t→∞

‖P tµ− µ?‖FM = 0 for µ ∈M1.
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An operator P is called globally concentrating if for every ε > 0 and every A ∈ Bb(X)
there exist B ∈ Bb(X) and n0 ∈ N such that

(2.3.4) Pnµ(B) ≥ 1− ε for n ≥ n0, µ ∈MA
1 .

An operator P is called locally concentrating if for every ε > 0 there is α > 0 such
that for every A ∈ Bb(X) there exist C ∈ Bb(X) with diamC ≤ ε and n0 ∈ N satisfying

(2.3.5) Pn0µ(C) > α for µ ∈MA
1 .

Remark 2.3.1. One can construct a Markov operator which is locally concentrating but
not globally concentrating.

An operator P is called concentrating if for every ε > 0 there exist C ∈ Bb(X) with
diamC ≤ ε and α > 0 such that

(2.3.6) lim inf
n→∞

Pnµ(C) > α for µ ∈M1.

An operator P is called semi-concentrating if for every ε > 0 there exist C ∈ Cε and
α > 0 such that

(2.3.7) lim inf
n→∞

Pnµ(C) > α for µ ∈M1.

We finish this section by introducing the following notation:

(2.3.8) Ω(µ) = {ν ∈M1 : ∃(mn)n≥1
,mn →∞ and ‖Pmnµ− ν‖FM → 0}

for µ ∈M1.

2.4. Technical lemmas. We start with an easy lemma.

Lemma 2.4.1. If ‖µ1 − µ2‖FM ≤ ε2 for µ1, µ2 ∈M1 and some ε > 0, then

µ1(N 0(C, ε)) ≥ µ2(C)− ε for C ∈ B(X).

Proof. Fix C ∈ B(X). Define f(x) = max(ε − %(C, x), 0). Since f ∈ F and f(x) = 0 for
x 6∈ N 0(C, ε), while f(x) = ε for x ∈ C, we have

εµ2(C)− εµ1(N 0(C, ε)) ≤ |〈f, µ1〉 − 〈f, µ2〉| ≤ ‖µ1 − µ2‖FM ≤ ε2

and the assertion follows.

Lemma 2.4.2. Let P be a Markov operator and U its dual. Assume that there exists a
Lyapunov function V , bounded on bounded sets , such that

(2.4.1) UV (x) ≤ aV (x) + b for x ∈ X,

where a,b are nonnegative constants and a < 1. Then P is globally concentrating.

Proof. From (2.4.1) it follows that

(2.4.2) UnV (x) ≤ anV (x) +
b

1− a for n ∈ N.
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Fix ε > 0. LetA ∈ Bb(X) and µ ∈MA
1 . SetB = {x : V (x) ≤ q}, where q > 2b(ε(1−a))−1.

From (2.4.2) and the Chebyshev inequality we obtain

Pnµ(B) ≥ 1− 1
q

�
X

V (x)Pn µ(dx) = 1− 1
q

�
X

UnV (x)µ(dx)

≥ 1− 1
q

(
an

�
X

V (x)µ(dx) +
b

1− a

)

≥ 1− ε

2
− an

q

�
X

V (x)µ(dx) ≥ 1− ε

2
− an

q
sup
x∈A

V (x).

Consequently, there exists an integer n0 such that Pnµ(B) ≥ 1− ε for n ≥ n0, µ ∈MA
1 ,

and the assertion follows.

The proof above gives more.

Corollary 2.4.1. Let P be a Markov operator and U its dual. Assume that there exists
a Lyapunov function V , bounded on bounded sets , such that condition (2.4.1) holds. Then
for every ε > 0 there exists B ∈ Bb(X) such that

lim inf
n→∞

Pnµ(B) ≥ 1− ε for µ ∈M1.

Proof. Fix ε > 0. In Lemma 2.4.1 we have proved that there exists B ∈ Bb(X) such that

lim inf
n→∞

Pnµ(B) ≥ 1− ε/2 for µ ∈MA
1 , A ∈ Bb(X).

Fix µ ∈ M1. Let A ∈ Bb(X) be such that µ(A) ≥ 1− ε/2. Define the measure µ∗ ∈ M1

by

µ∗(C) = µ(C ∩A)/µ(A) for C ∈ B(X).

Observe that µ∗ ∈MA
1 and µ ≥ (1− ε/2)µ∗. By the linearity of P we obtain

lim inf
n→∞

Pnµ(B) ≥ (1− ε/2) lim inf
n→∞

Pnµ∗(B) ≥ 1− ε.

Let P be a Markov operator. Now for every A ∈ Bb(X) and η ∈ [0, 1] we set

MA,η
1 = {µ ∈M1 : Pnµ(A) ≥ 1− η for n ∈ N}.

Define the function ϕ : Bb(X)× [0, 1]→ [0, 2] ∪ {−∞} by

ϕ(A, η) = lim sup
n→∞

sup{‖Pnµ1 − Pnµ2‖FM : µ1, µ2 ∈MA,η
1 }.

As usual, the supremum of an empty set is taken to be −∞.

Lemma 2.4.3. Let P be a nonexpansive and locally concentrating Markov operator. Let
ε > 0 and α > 0 be such that , for ε, the locally concentrating property holds. If η < 1/2,
then

(2.4.3) ϕ(A, η(1− α/2)) ≤ (1− α/2)ϕ(A, η) + αε/2

for A ∈ Bb(X).

Proof. Fix ε > 0, A ∈ Bb(X) and η < 1/2. Let α > 0, n0 ∈ N and C ∈ Bb(X) be such that,
for ε, the locally concentrating property holds. We see at once that if MA,η(1−α/2)

1 = ∅,
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then (2.4.3) is satisfied. Fix µ1, µ2 ∈MA,η(1−α/2)
1 . As η < 1/2 we have µi ≥ µAi /2, where

µAi ∈MA
1 is of the form

µAi (B) = µi(A ∩B)/µi(A) for B ∈ B(X), i = 1, 2.

By the linearity of P we obtain

Pn0µi(C) ≥ 1
2 · Pn0µAi (C) > α/2 for i = 1, 2.

Hence for i = 1, 2 we have

(2.4.4) Pn0µi = (1− α/2)µi + (α/2)νi,

where νi ∈MC
1 is defined by

νi(B) = Pn0µi(B ∩ C)/Pn0µi(C) for B ∈ B(X)

and µi is defined by (2.4.4). Since ν1, ν2 ∈ MC
1 and diamC ≤ ε, we check at once that

‖ν1 − ν2‖FM ≤ ε. From (2.4.4) we conclude that

Pnµi(A) ≥ 1
1− α/2{P

n0+nµi(A)− α/2}

≥ 1
1− α/2{1− η(1− α/2)− α/2}

= 1− η for n ∈ N and i = 1, 2.

This gives µ1, µ2 ∈MA,η
1 and consequently, since P is nonexpansive, we have

‖Pn0+nµ1−Pn0+nµ2‖FM ≤ (1−α/2)‖Pnµ1−Pnµ2‖FM + (α/2)‖Pnν1−Pnν2‖FM

≤ (1−α/2) sup{‖Pnµ1−Pnµ2‖FM : µ1, µ2 ∈MA,η
1 }+αε/2.

By the above we obtain ϕ(A, η(1− α/2)) ≤ (1− α/2)ϕ(A, η) + αε/2.

We denote by Tε, ε > 0, the family of all C ∈ Cε such that there exists a positive
number α satisfying

lim inf
n→∞

Pnµ(C) > α for µ ∈M1.

Remark 2.4.1. It is easy to see that if P is a semi-concentrating Markov operator, then
Tε 6= ∅ for every ε > 0.

For ε > 0 and k ∈ N, set

T kε = Ckε ∩ Tε.
We are now in a position to formulate the following technical lemma.

Lemma 2.4.4. Let P be a nonexpansive and semi-concentrating Markov operator. Then
for every ε> 0 there exist an integer k, a sequence (A1, . . . , Ak), Ai ∈Bb(X), diamAi≤ ε
for i = 1, . . . , k, and a measure µ0 ∈M1 such that

⋃k
i=1Ai ∈ T kε and

lim inf
n→∞

Pnµ0(Ai) > 0 for i = 1, . . . , k.

Proof. Fix ε > 0. Set

k = min{m ∈ N : ∃σ ∈ (0, ε/2) T mσ 6= ∅}.
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Choose η ∈ (0, ε/2) such that T kη 6= ∅. Choose C =
⋃k
i=1 Ãi where Ãi are closed balls

with radius η and α > 0 such that

(2.4.5) lim inf
n→∞

Pnµ(C) > α for µ ∈M1.

Let γ > 0 be such that

(2.4.6) η + γ < ε/2 and k · γ < α.

Set ε̃ = γ2. Let α̃ > 0, p ∈ N and C̃ =
⋃p
i=1Di, where Di are closed balls with radius

ε̃ chosen according to the semi-concentrating property of P for ε̃. For every µ ∈ M1

we define the set S(µ) of all j ∈ {1, . . . , p} such that there exists n ∈ N satisfying
Pnµ(Dj) ≥ α̃/p. Obviously S(µ) 6= ∅. Further, it follows easily that j ∈ S(µ) iff there
exists n ∈ N and ν ∈MDj

1 such that

(2.4.7) Pnµ ≥ (α̃/p)ν.

Namely, it is enough to define ν ∈M1 by the formula

ν(A) = Pnµ(A ∩Dj)/Pnµ(Dj) for A ∈ B(X), j ∈ S(µ).

We proceed to show that for every i ∈ {1, . . . , k} there exists µ ∈ M1 such that for
every j ∈ S(µ) and x ∈ Dj we have

(2.4.8) Pnδx(Ãi) ≥ α/k for some n ∈ N.
We can assume that i = 1. Suppose, contrary to our claim, that for every µ ∈M1 there
exist j ∈ S(µ) and x ∈ Dj such that

Pnδx(Ã1) < α/k for n ∈ N.

From (2.4.5) we conclude that P nδx(Ãin) ≥ α/k for all sufficiently large n ∈ N, where
in ∈ {1, . . . , k} and in 6= 1. Since ‖δx−ν‖FM ≤ diamDj ≤ γ2 for ν ∈MDj

1 , Lemma 2.4.1
now shows that

Pnν(N (Ãin , γ)) ≥ α/k − γ
for ν ∈MDj

1 and all sufficiently large n ∈ N. Since in 6= 1, we then obtain

Pnν
( k⋃

i=2

N (Ãi, γ)
)
≥ α/k − γ for ν ∈MDj

1 .

From (2.4.7) we conclude that P n0µ ≥ (α̃/p)ν for some ν ∈ MDj
1 and n0 ∈ N. Conse-

quently, by the linearity of P we have P n0+nµ ≥ (α̃/p)Pnν for n ∈ N and

Pn0+nµ
( k⋃

i=2

N (Ãi, γ)
)
≥ (α̃/p)(α/k − γ) for all sufficiently large n ∈ N.

Thus

lim inf
n→∞

Pnµ
( k⋃

i=2

N (Ãi, γ)
)
≥ (α̃/p)(α/k − γ) for µ ∈M1.

By the above we conclude that
⋃k
i=2N (Ãi, γ) ∈ Ck−1

η+γ , hence T k−1
η+γ 6= ∅, contrary to the

definition of k.
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Let µi ∈M1, 1 ≤ i ≤ k, be such that for every j ∈ S(µi) and x ∈ Dj we have

Pnδx(Ãi) ≥ α/k for some n ∈ N.

Fix i ∈ {1, . . . , k}. For every j ∈ S(µi) choose a point xj ∈ Dj and an integer nj such
that Pnjδxj (Ãi) ≥ α/k. By Lemma 2.4.1 we obtain

Pnjν(N (Ãi, γ)) ≥ α/k − γ for ν ∈MDj
1 .

Set Ni = maxj∈S(µi) nj and Ai = N (Ãi, γ). From (2.4.6) it follows that diamAi ≤ ε.
Obviously

⋃k
i=1Ai ∈ T kε . Define µi ∈M1 by the formula

µi =
µi + Pµi + . . .+ PNiµi

Ni + 1
.

It is easy to check that

(2.4.9) lim inf
n→∞

Pnµi(Ai) ≥ (α/k − γ)α̃/(p(Ni + 1)) > 0

for i ∈ {1, . . . , k}. Write

µ0 =
µ1 + . . .+ µk

k
.

From (2.4.9) and the linearity of P we have lim infn→∞ Pnµ0(Ai) > 0 for i = 1, . . . , k.

Lemma 2.4.5. Let P be a nonexpansive Markov operator and let A ∈ B(X). Given any
ε > 0 suppose that diamA ≤ ε2/16. Moreover , assume that there exists µ ∈ M1 such
that

(2.4.10) lim inf
n→∞

Pnµ(A) > 0.

Then there exists C ∈ Cε such that

Pnν(C) ≥ 1− ε/2 for n ∈ N and ν ∈MA
1 .

Proof. Choose α > 0 such that lim infn→∞ Pnµ(A) ≥ α. If Pnµ(A) ≥ α/2, then

(2.4.11) Pnµ ≥ (α/2)νn,

where νn ∈MA
1 is of the form

(2.4.12) νn(B) = Pnµ(B ∩A)/Pnµ(A) for B ∈ B(X).

Define

(2.4.13) δ = sup{γ ≥ 0 : ∃Cε/2 ∈ Cε/2 lim inf
n→∞

Pnµ(Cε/2) ≥ γ}.

Choose γ ≥ 0 and Cε/2 ∈ Cε/2 such that 0 ≤ δ − γ < αε/8 and

lim inf
n→∞

Pnµ(Cε/2) ≥ γ.

We are now in a position to show that

(2.4.14) Pnν(N 0(Cε/2, ε/2)) ≥ 1− ε/2 for n ∈ N and ν ∈MA
1 .

Suppose that, on the contrary, for some n0 ∈ N and ν0 ∈MA
1 ,

(2.4.15) Pn0ν0(N 0(Cε/2, ε/2)) < 1− ε/2.
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By the Ulam theorem (see [12, 15]), there exists a compact set K ⊂ X \ N 0(Cε/2, ε/2)
such that Pn0ν0(K) ≥ ε/2. Since P is nonexpansive, we have

‖Pn0ν0 − Pn0ν‖FM ≤ ‖ν0 − ν‖FM ≤ diamA ≤ ε2/16

for every ν ∈ MA
1 . Lemma 2.4.1 now shows that P n0ν(N 0(K, ε/4)) ≥ ε/4. Putting

B = N (K, ε/4) we obtain B ∈ Cε/2 and consequently B∪Cε/2 ∈ Cε/2. Applying (2.4.11),
the linearity of P and the fact that νn ∈MA

1 we have

Pn+n0µ(B) ≥ (α/2)Pn0νn(B) ≥ αε/8
for every sufficiently large n. Since B ∩ Cε/2 = ∅, we see that

lim inf
n→∞

Pnµ(B ∪ Cε/2) ≥ lim inf
n→∞

Pnµ(B) + lim inf
n→∞

Pnµ(Cε/2) ≥ αε/8 + γ > δ,

which contradicts the definition of δ. Thus (2.4.14) holds. Put C = N (Cε/2, ε/2) and
note that C ∈ Cε.

3. Nonexpansiveness

We start with the following definitions. We say that a metric %′ is equivalent to % if the
classes of bounded sets and convergent sequences in the spaces (X, %) and (X, %′) coincide.
Obviously, if (X, %) is a Polish space and %, %′ are equivalent, then the space (X, %′) is
still a Polish space.

We say that a Markov operator P is essentially nonexpansive if there exists a metric
%′ equivalent to % such that P is nonexpansive in (X, %′).

Theorem 3.1. Let P be a Markov operator. Assume that P is continuous in the weak
topology. Then P is a Feller operator. Moreover , if the operator U : B(X)→ B(X) given
by (2.2.2) satisfies U(F) ⊂ F , then P is nonexpansive.

Proof. Obviously U is linear. Since P is continuous in the weak topology, we see that
U(B(X)) ⊂ B(X). Further, for an arbitrary sequence xn → x0, xn, x0 ∈ X, we have
δxn → δx0 in the weak topology, and hence Pδxn → Pδx0 . Consequently, by the definition
of U we have Uf(xn) → Uf(x0) for f ∈ C(X). Thus we have verified that U(C(X)) ⊂
C(X). According to the definition of U we have

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ C(X) and µ = δx.

Since the linear combinations of point measures are dense inMfin (in the weak topology)
and P is continuous, equality (2.2.1) holds for every µ ∈Mfin. Since U(F) ⊂ F , we have

‖Pµ1 − Pµ2‖FM = sup{|〈f, Pµ1 − Pµ2〉| : f ∈ F} = sup{|〈Uf, µ1 − µ2〉| : f ∈ F}
≤ sup{|〈f, µ1 − µ2〉| : f ∈ F} = ‖µ1 − µ2‖FM

for all µ1, µ2 ∈M1, which finishes the proof.

Theorem 3.2. Let P be an essentially nonexpansive Markov operator. Then P is a Feller
operator.

Proof. It suffices to make the following observation. If P is essentially nonexpansive,
then there exists a metric %′ such that P is nonexpansive in (X, %′). Consequently,
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P is continuous in the weak topology generated by %′. Since the metric %′ is equivalent
to %, the weak topologies generated by % and %′ coincide. An application of Theorem 3.1
finishes the proof.

4. Tightness criteria

The main aim of this chapter is to present tightness criteria for Markov operators. The
tightness property gives us a tool for proving the existence of an invariant measure.

We start with the following lemma.

Lemma 4.1. If Θ0 ⊂ M1 is such that for every ε > 0 there is a set C ∈ Cε satisfying
µ(C) ≥ 1− ε for µ ∈ Θ0, then Θ0 is tight.

Proof. Fix ε > 0. Let Ck ∈ Cε/2k , k ∈ N, be such that µ(Ck) ≥ 1 − ε/2k for µ ∈ Θ0.
Define K =

⋂∞
k=1Ck. Observe that K is compact and

µ(X \K) = µ
(
X \

∞⋂

k=1

Ck

)
= µ

( ∞⋃

k=1

(X \ Ck)
)

≤
∞∑

k=1

µ(X \ Ck) ≤
∞∑

k=1

ε/2k = ε for µ ∈ Θ0.

For the convenience of the reader we present the following lemma.

Lemma 4.2. If (µn)n≥1, µn ∈ M1, n ∈ N, satisfies the Cauchy condition, then {µn}n≥1

is tight.

Proof. Fix ε > 0. Since (µn)n≥1 satisfies the Cauchy condition, there exists n0 ∈ N such
that

(4.1) ‖µp − µq‖FM ≤ ε2/4 for p, q ≥ n0.

By the Ulam theorem (see [12, 15]) we may choose a compact set K ⊂ X such that

(4.2) µn(K) ≥ 1− ε/2 for n = 1, . . . , n0.

From Lemma 2.4.1 and conditions (4.1), (4.2) it follows that for n ≥ n0 we have

µn(N (K, ε/2)) ≥ µn0(K)− ε/2 ≥ 1− ε.
Observe that N (K, ε/2) ∈ Cε and

µn(N (K, ε/2)) ≥ 1− ε for n ∈ N.

An application of Lemma 4.1 finishes the proof.

We say that a Markov operator P : Mfin → Mfin is tight if for every µ ∈ M1 the
family {Pnµ}n≥1 of distributions is tight.

Theorem 4.1. Let P be a nonexpansive and locally concentrating Markov operator. If
for every µ ∈M1 and every ε > 0 there is A ∈ Bb(X) such that

(4.3) lim inf
n→∞

Pnµ(A) ≥ 1− ε,
then P is tight.
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Proof. By Lemma 4.2 it is enough to show that (P nµ)n≥1, µ ∈M1, satisfies the Cauchy
condition. Fix ε > 0 and µ ∈ M1. Let α > 0 be such that, for ε/2, the locally concen-
trating property holds. Let k ∈ N be such that 4(1 − α/2)k < ε. Choose A ∈ Bb(X)
satisfying

Pnµ(A) ≥ 1− 1
3 (1− α/2)k for n ∈ N.

Lemma 2.4.3 and an induction argument give

ϕ(A, 1
3 (1− α/2)k) ≤ (1− α/2)kϕ(A, 1/3) + αε/4(4.4)

+ αε(1− α/2)/4 + . . .+ αε(1− α/2)k−1/4

≤ 2(1− α/2)k + ε/2 < ε.

It is clear that Pmµ, Pnµ ∈MA,(1/3)·(1−α/2)k

1 for m,n ∈ N and from (4.4) it follows that
there exists n0 ∈ N such that

‖Pn0Pnµ− Pn0Pmµ‖FM < ε.

Therefore ‖P pµ− P qµ‖FM < ε for p, q ≥ n0.

Theorem 4.2. Let P be a Markov operator. If for every measure µ ∈ M1 and every
ε > 0 there is a set C ∈ Cε satisfying Pnµ(C) ≥ 1− ε for n ∈ N, then P is tight.

Proof. This is an immediate consequence of Lemma 4.1.

Theorem 4.3. Let P be a nonexpansive and concentrating Markov operator. Then P is
tight.

Proof. By Theorem 4.2 it is enough to show that for every ε > 0 and µ ∈ M1 there
exists C ∈ Cε such that Pnµ(C) ≥ 1 − ε for n ∈ N. Fix ε > 0. Set ε̃ = ε2/16. Let α > 0
and A ∈ Bb(X) with diamA ≤ ε2/16 be chosen according to the concentrating property
for ε̃. It is easy to see that the assumptions of Lemma 2.4.5 are satisfied. Thus there
exists C ∈ Cε such that

(4.5) Pnν(C) ≥ 1− ε/2
for n ∈ N and ν ∈MA

1 .
We define by induction a sequence (nk)k≥0 of integers and two sequences (µk)k≥0,

(νk)k≥0 of distributions. If k = 0 we set n0 = 0 and µ0 = ν0 = µ. If k ≥ 1 and nk−1,
µk−1, νk−1 are given we choose, according to the concentrating property, nk such that
Pnkµk−1(A) ≥ α/2 and we define

νk(B) =
Pnkµk−1(B ∩A)
Pnkµk−1(A)

,

µk(B) =
1

1− α/2 (Pnkµk−1(B)− (α/2)νk(B)) for B ∈ B(X).(4.6)

Observe that νk ∈MA
1 . Using (4.6) it is easy to verify by induction that

Pn1+...+nkµ = (α/2)Pn2+...+nkν1 + (α/2)(1− α/2)Pn3+...+nkν2(4.7)

+ . . .+ (α/2)(1− α/2)k−1νk + (1− α/2)kµk.

Let k ∈ N be such that

(1− (1− α/2)k)(1− ε/2) ≥ 1− ε.
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Since νi ∈MA
1 , i = 1, . . . , k, and (4.5) holds, we have

Pnµ(C) ≥ (α/2)Pn−n1ν1(C) + (α/2)(1− α/2)P n−n1−n2ν2(C)

+ . . .+ (α/2)(1− α/2)k−1Pn−n1−...−nkνk(C)

≥ (1− (1− α/2)k)(1− ε/2) ≥ 1− ε
for n ≥ n1 + . . . + nk. By the Ulam theorem (see [12, 15]), we can find a compact set
K ⊂ X such that Pnµ(K ∪ C) ≥ 1− ε for n ∈ N. Since K ∪C ∈ Cε, Theorem 4.2 shows
that P is tight.

Lemma 4.3. Let P be a nonexpansive and semi-concentrating Markov operator. Then for
every ε > 0 there exists C ∈ Cε satisfying

lim inf
n→∞

Pnµ(C) ≥ 1− ε for µ ∈M1.

Proof. Fix ε > 0. By Lemma 2.4.4 there exist an integer k, a sequence (A1, . . . , Ak),
Ai ∈ B(X) and diamAi ≤ ε2/16 for i = 1, . . . , k, and a measure µ0 ∈ M1 such that⋃k
i=1 Ai ∈ T kε2/16 and

lim inf
n→∞

Pnµ0(Ai) > 0 for i = 1, . . . , k.

Lemma 2.4.5 now shows that there exists a sequence (C1, . . . , Ck), Ci ∈ Cε for i = 1, . . . , k,
satisfying Pnν(Ci) ≥ 1− ε/2 for n ∈ N, ν ∈MAi

1 and i = 1, . . . , k.
Set C =

⋃k
i=1 Ci and observe that C ∈ Cε. Moreover, we have

(4.8) Pnν(C) ≥ 1− ε/2 for n ∈ N and ν ∈ ⋃ki=1MAi
1 .

Since
⋃k
i=1Ai ∈ T kε2/16, it follows that there exists α̃ > 0 such that

lim inf
n→∞

Pnµ
( k⋃

i=1

Ai

)
> α̃

for every µ ∈M1. Set α = α̃/k and define

η = sup{γ ≥ 0 : lim inf
n→∞

Pnµ(C) ≥ γ for all µ ∈M1}.

It is obvious that η > 0. It remains to prove that η ≥ 1− ε/2. Suppose, contrary to our
claim, that η < 1− ε/2. Hence

(4.9) η >
η

1− α −
α

1− α (1− ε/2).

Choose γ > 0 such that

η > γ >
η

1− α −
α

1− α (1− ε/2).

Therefore

lim inf
n→∞

Pnµ(C) ≥ γ for µ ∈M1.

Fix µ ∈M1. Analysis similar to that in the proof of Theorem 4.3 shows that there exist
n0 ∈ N, µ̃ ∈M1 and ν ∈ ⋃ki=1MAi

1 such that

Pn0µ = (1− α)µ̃+ αν.
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By (4.8), (4.9) and the linearity of P we obtain

lim inf
n→∞

Pn0+nµ(C) ≥ (1− α) lim inf
n→∞

Pnµ̃(C) + α lim inf
n→∞

Pnν(C)

≥ (1− α)γ + α(1− ε/2) > η.

Since µ ∈M1 is arbitrary, we see that

lim inf
n→∞

Pnµ(C) ≥ (1− α)γ + α(1− ε) > η for µ ∈M1,

which contradicts the definition of η and finishes the proof.

Consequently, Theorem 4.2 and Lemma 4.3 yield the following theorem.

Theorem 4.4. Let P be a nonexpansive and semi-concentrating Markov operator. Then
P is tight.

We finish this chapter with an easy observation.

Remark 4.1. Theorems 4.1, 4.3 and 4.4 still hold if it is only assumed that P is essentially
nonexpansive.

Proof. It is enough to observe that if %′ is equivalent to %, then every locally concen-
trating, concentrating and semi-concentrating Markov operator P in (X, %) is locally
concentrating, concentrating and semi-concentrating in (X, %′), respectively.

5. Invariant measures for Markov operators

The crucial fact is that tightness may be used in proving the existence of an invariant
measure for Markov operators. Namely, we have the following theorem.

Theorem 5.1. Let P be a Markov operator. Assume that P is continuous in the weak
topology. If P is tight , then P admits an invariant distribution.

Proof. Fix µ ∈M1 and set

(5.1) µn =
µ+ Pµ+ . . .+ Pn−1µ

n
for n ∈ N.

Since P is tight, the family {µn}n≥1 is tight. From the Prokhorov theorem (see [6]) it
follows that there exists a subsequence (mn)n≥1 of integers and a distribution µ such
that µmn → µ in the weak topology. Since P is continuous, Pµmn → Pµ in the weak
topology. From (5.1) it follows that ‖Pµmn − µmn‖FM → 0 as n→∞ and consequently
Pµ = µ.

Theorem 5.2. Let P be a nonexpansive and locally concentrating Markov operator. As-
sume that for every µ ∈ M1 and every ε > 0 there is A ∈ Bb(X) such that (4.3) holds.
Then P admits a unique invariant distribution.

Proof. From Theorems 4.1, 5.1 and a simple observation that every nonexpansive Markov
operator is continuous in the weak topology it follows that P admits an invariant distri-
bution.
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To prove uniqueness suppose, contrary to our claim, that µ1, µ2 ∈M1 are two different
invariant measures. Set

(5.2) ε = ‖µ1 − µ2‖FM > 0.

As in the proof of Theorem 4.1 let α > 0 be such that, for ε/2, the locally concentrating
property holds. Choose k ∈ N such that 4(1−α/2)k < ε. Since Pnµi = µi, i = 1, 2, n ∈ N,

we conclude that µ1, µ2 ∈ MA,(1/3)(1−α/2)k

1 for some A ∈ Bb(X). From (4.4) it follows
that

‖µ1 − µ2‖FM = lim
n→∞

‖Pnµ1 − Pnµ2‖FM ≤ ϕ
(
A, 1

3 (1− α/2)k
)
< ε,

contrary to (5.2).

Theorem 5.3. Let P be a nonexpansive and concentrating Markov operator. Then P

admits a unique invariant distribution. Moreover , P is asymptotically stable.

Proof. Theorems 4.3 and 5.1 show that P admits an invariant distribution, say µ∗. To
finish the proof of asymptotic stability it remains to verify (2.3.2). When an invariant
distribution exists this condition is equivalent to a more symmetric relation

(5.3) lim
n→∞

‖Pnµ1 − Pnµ2‖FM = 0 for µ1, µ2 ∈M1.

Fix µ1, µ2 ∈ M1 and ε > 0. According to the concentrating property of P we may
choose A ∈ Bb(X) with diamA ≤ ε and α > 0 such that (2.3.6) holds. As in the proof
of Theorem 4.3 we define by induction a sequence (nk)k≥1 of integers and four sequences
of distributions (µki )k≥0, (νki )k≥0, i = 1, 2. If k = 0 we set n0 = 0 and ν0

i = µ0
i = µi.

If k ≥ 1 and nk−1, µ
k−1
i , νk−1

i are given we choose, according to (2.3.6), nk such that
Pnkµk−1

i (A) ≥ α for i = 1, 2 and we define

νki (B) =
Pnkµk−1

i (B ∩A)

Pnkµk−1
i (A)

,

µki (B) =
1

1− α (Pnkµk−1
i (B)− ανki (B)) for B ∈ B(X).(5.4)

Since νki ∈MA
1 , we obtain

(5.5) ‖νk1 − νk2 ‖FM ≤ diamA ≤ ε.
Using (5.4) it is easy to verify by induction that

Pn1+...+nkµi = αPn2+...+nkν1
i + α(1− α)Pn3+...+nkν2

i

+ . . .+ α(1− α)k−1νki + (1− α)kµki for k ∈ N.
Since P is nonexpansive this implies

‖Pn1+...+nkµ1 − Pn1+...+nkµ2‖FM ≤ α‖ν1
1 − ν1

2‖FM + α(1− α)‖ν2
1 − ν2

2‖FM

+ . . .+ α(1− α)k−1‖νk1 − νk2 ‖FM

+ (1− α)k‖µk1 − µk2‖FM.

From this, (5.5) and the obvious inequality ‖µk1 − µk2‖FM ≤ 2 it follows that

‖Pn1+...+nkµ1 − Pn1+...+nkµ2‖FM ≤ ε+ 2(1− α)k.
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Since ε > 0, k ∈ N, µ1, µ2 ∈ M1 are arbitrary and P is nonexpansive, this implies (5.3)
and finishes the proof.

Above we have proved in fact the following result.

Theorem 5.4. Let P be a nonexpansive Markov operator. Assume that for every ε > 0
there is a number α > 0 having the following property : for every µ1, µ2 ∈M1 there exists
A ∈ Bb(X) with diamA ≤ ε and n0 ∈ N such that

Pn0µi(A) > α for i = 1, 2.

Then P satisfies (5.3).

Theorem 5.5. Let P :Mfin →Mfin be a nonexpansive and semi-concentrating Markov
operator. Then

(i) P admits an invariant distribution,
(ii) Ω(µ) 6= ∅, µ ∈M1, where Ω(µ) is given by (2.3.8),

(iii) Ω̂ =
⋃
µ∈M1

Ω(µ) is tight.

Proof. (i) Theorems 4.4 and 5.1 show that P admits an invariant distribution.
(ii) Fix µ ∈M1. From Lemma 4.3 it follows that {P nµ}n≥1 is tight. By the Prokhorov

theorem (see [6]) we see that Ω(µ) 6= ∅.
(iii) To prove the tightness of Ω̂ fix ε > 0. Again, by Lemma 4.3 there exists a sequence

(Ck)k≥1 of subsets of X such that

Ck ∈ Cε/2k and lim inf
n→∞

Pnµ(Ck) ≥ 1− ε/2k for k ∈ N.

Define K =
⋂∞
k=1N (Ck, ε/2k) and observe that K is compact. We are going to show

that µ̃(K) ≥ 1 − ε for µ̃ ∈ Ω̂. Fix µ̃ ∈ Ω̂ and choose µ ∈ M1 such that µ̃ ∈ Ω(µ). Let
(nm)m≥1 be a sequence of integers such that ‖P nmµ − µ̃‖FM → 0 as m → ∞. Then by
the Aleksandrov theorem (see [6]) we have

µ̃(N (Ck, ε/2k)) ≥ µ̃(N 0(Ck, ε/2k)) ≥ lim sup
m→∞

Pnmµ(N 0(Ck, ε/2k))

≥ lim sup
m→∞

Pnmµ(Ck) ≥ 1− ε/2k for k ∈ N.

Hence

µ̃(X \K) ≤
∞∑

k=1

µ̃(X \ N (Ck, ε/2k)) ≤
∞∑

k=1

ε/2k = ε,

which finishes the proof of (iii).

The same conclusion as in Remark 4.1 can be drawn for theorems proved in this
chapter.

Remark 5.1. Theorems 5.2, 5.3, 5.4 and 5.5 still hold if it is only assumed that P is
essentially nonexpansive.



PART II

In the second part of our paper we will consider some special Markov operators. We will
apply to them our main criteria for the existence of invariant measures. Further, it is of
interest to describe the properties of these invariant measures. We will only touch this
problem by estimating their capacity.

6. Iterated function systems

6.1. Introduction. We are given a sequence of continuous transformations Si : X → X

for i = 1, . . . , N and a probabilistic vector (p1(x), . . . , pN (x)), x ∈ X, i.e.,

pi(x) ≥ 0 and
N∑

i=1

pi(x) = 1 for x ∈ X.

We assume that pi, i = 1, . . . , N , are continuous functions. The pair of sequences (S, p)N
= (S1, . . . , SN ; p1, . . . , pN ) is called an iterated function system.

Now we present an imprecise description of the process considered in this section.
Choose x0 ∈ X. If an initial point x0 is chosen, we randomly select from the set {1, . . . , N}
an integer in such a way that the probability of choosing k is pk(x0), k = 1, . . . , N . When
a number k0 is drawn we define x1 = Sk0(x0). Having x1 we select k1 according to the
distribution p1(x1), . . . , pN (x1) and we define x2 = Sk1(x1) and so on. Denoting by µn,
n = 0, 1, . . . , the distribution of xn, i.e., µn(A) = prob(xn ∈ A) for A ∈ B(X), we define
P as the transition operator such that µn = Pµn−1 for n ∈ N.

The above procedure can be easily formalized. Fix x ∈ X and set µ0 = δx. According
to the definition of the dual operator U (see (2.2.1)) we have

Uf(x) = 〈Uf, δx〉 = 〈f, Pδx〉 = 〈f, µ1〉 for f ∈ B(X).

This means that Uf(x) is the mathematical expectation of f(x1) if x0 = x is fixed. On
the other hand, according to our description, the expectation of f(x1) is equal to

N∑

i=1

pi(x)f(Si(x)).

Since x is arbitrary, we have

(6.1.1) Uf(x) =
N∑

i=1

pi(x)f(Si(x)) for x ∈ X.

[23]
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We take this formula as the precise formal definition of our process. We check at once
that U satisfies conditions (2.2.3)–(2.2.5). Hence we may define a Markov operator P :
Mfin →Mfin by setting

Pµ(A) = 〈U1A, µ〉 for A ∈ B(X).

Therefore

(6.1.2) Pµ(A) =
N∑

i=1

�
S−1
i (A)

pi(x)µ(dx) for A ∈ B(X).

Since Uf ∈ C(X) for f ∈ C(X), the operator P is a Feller operator.
In what follows we will study the asymptotic behaviour of P . To simplify the language

we will say that the iterated function system (S, p)N is nonexpansive, essentially non-
expansive, tight, has an invariant distribution or is asymptotically stable if the Markov
operator P given by (6.1.2) has the corresponding property.

6.2. Nonexpansiveness. We start with a simple lemma ensuring the nonexpansiveness
of (S, p)N under rather strong assumptions on the functions Si, pi for i = 1, . . . , N .

Lemma 6.2.1. Let pi : X → R+, i = 1, . . . , N , be constants. If Si : X → X, i = 1, . . . , N ,
satisfy

(6.2.1)
N∑

i=1

pi%(Si(x), Si(y)) ≤ %(x, y) for x, y ∈ X,

then the iterated function system (S, p)N is nonexpansive.

Proof. Let U be the corresponding dual operator given by (6.1.1). Fix f ∈ F . We have

|Uf(x)| =
∣∣∣
N∑

i=1

pif(Si(x))
∣∣∣ ≤

N∑

i=1

pi = 1 for x ∈ X.

Further, from (6.2.1) it follows that

|Uf(x)− Uf(y)| =
∣∣∣
N∑

i=1

pif(Si(x))−
N∑

i=1

pif(Si(y))
∣∣∣

≤
N∑

i=1

pi|f(Si(x))− f(Si(y))| ≤
N∑

i=1

pi%(Si(x), Si(y))

≤ %(x, y) for x, y ∈ X.
Therefore U(F) ⊂ F and an application of Theorem 3.1 finishes the proof.

The nonexpansiveness of iterated function systems is especially difficult to obtain. But
we already know that in proving the existence of an invariant measure and its stability
the nonexpansiveness can be replaced by essential nonexpansiveness (see Remarks 4.1
and 5.1). In this part of our paper we will discuss this property.

We introduce the class Φ of functions ϕ : R+ → R+ satisfying the following conditions:

1o ϕ is continuous and ϕ(0) = 0;
2o ϕ is nondecreasing and concave, i.e., 1

2ϕ(t1) + 1
2ϕ(t2) ≤ ϕ

(
t1+t2

2

)
for t1, t2 ∈ R+;

3o ϕ(t) > 0 for t > 0 and limt→∞ ϕ(t) =∞.
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We denote by Φ0 the family of functions satisfying 1o, 2o. It is easy to see that for
every ϕ ∈ Φ the function

%ϕ(x, y) = ϕ(%(x, y)) for x, y ∈ X
is again a metric on X. Moreover %ϕ is equivalent to %.

In our considerations an important role is played by the inequality

(6.2.2) ω(t) + ϕ(r(t)) ≤ ϕ(t),

where r, ω ∈ Φ0 are given functions. This inequality may be studied by classical methods
of the theory of functional equations (see [32]). Here we will discuss only three special
cases for which inequality (6.2.2) has a solution belonging to Φ.

Case I: Dini condition. Assume that ω satisfies the Dini condition, i.e.,

(6.2.3)
ε�
0

ω(t)
t

dt <∞ for some ε > 0.

This condition is equivalent to
∞∑

n=1

ω(cnt) <∞

for every 0 ≤ c < 1 and t ≥ 0. If r(t) = ct, 0 ≤ c < 1, then the function

ϕ(t) = t+
∞∑

n=0

ω(cnt)

is a solution of inequality (6.2.2) and belongs to Φ.

Case II: Hölder condition. Assume that

(6.2.4) ω(t) ≤ atυ,
where a > 0 and υ > 0 are constants. Clearly (6.2.4) implies Dini’s condition (6.2.3). But
this stronger assumption allows us to replace r(t) = ct where c < 1 by some functions
tangent to the diagonal at t = 0. Assume namely that r ∈ Φ0, r(t) < t and

(6.2.5) 0 ≤ r(t) ≤ t− tε+1b for 0 ≤ t ≤ ε,
where ε > 0, b > 0 and ε > 0 are constants. From the result of W. J. Thron [64] these
assumptions imply that for every c > 0 there is n0 = n0(c) such that the iterates rn of
the function r satisfy

rn(t) ≤ (εbn/2)−1/ε for 0 ≤ t ≤ c, n ≥ n0.

From this and (6.2.4) it follows immediately that

ω(rn(t)) ≤ k

nυ/ε
for 0 ≤ t ≤ c, n ≥ n0,

where k is a constant. Thus for υ > ε the series

(6.2.6) ϕ(t) = t+
∞∑

n=0

ω(rn(t))

is convergent and defines a solution of inequality (6.2.2). Since r and ω belong to Φ0 this
solution is a function from Φ.
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Case III: Lipschitz condition. Assume that

(6.2.7) ω(t) ≤ at,
where a > 0 is a constant. This is, in fact, a special case of (6.2.4) with υ = 1. However,
in this case the existence result for solutions of inequality (6.2.2) may be sharpened a
little. Namely, Schwartzman [54] has shown that any continuous function r : R+ → R
satisfying

(6.2.8) 0 < r(t) < t for t > 0,
ε�
0

t dt

t− r(t) <∞

also has the property that
∞∑

n=0

rn(t) <∞.

Thus, for r, ω ∈ Φ0 satisfying (6.2.7), (6.2.8) the series (6.2.6) is convergent and it gives
a solution ϕ ∈ Φ of (6.2.2). Clearly condition (6.2.8) is less restrictive than (6.2.5) with
0 < ε < υ = 1.

We are now in a position to formulate the following lemma.

Lemma 6.2.2. Let an iterated function system (S, p)N satisfy

(6.2.9)
N∑

i=1

|pi(x)− pi(y)| ≤ ω(%(x, y)) for x, y ∈ X,

(6.2.10)
N∑

i=1

pi(x)%(Si(x), Si(y)) ≤ r(%(x, y)) for x, y ∈ X.

If the pair (ω, r) satisfies the conditions formulated in one of cases I–III, then the system
(S, p)N is essentially nonexpansive.

Proof. Since the conditions required in cases I–III are satisfied, there exists a solution
ϕ ∈ Φ of (6.2.2). According to Theorem 3.1 it is enough to show that U(Fϕ) ⊂ Fϕ,
where Fϕ denotes the family of all continuous functions f such that |f(x)| ≤ 1 and
|f(x)− f(y)| ≤ ϕ(%(x, y)) for all x, y ∈ X. Fix f ∈ Fϕ. We have

|Uf(x)| =
∣∣∣
N∑

i=1

pi(x)f(Si(x))
∣∣∣ ≤

N∑

i=1

pi(x) = 1 for x ∈ X.

Further, from (6.2.9) it follows that

|Uf(x)− Uf(y)| =
∣∣∣
N∑

i=1

pi(x)f(Si(x))−
N∑

i=1

pi(y)f(Si(y))
∣∣∣

≤
N∑

i=1

|pi(x)− pi(y)|+
N∑

i=1

pi(x)|f(Si(x))− f(Si(y))|

≤ ω(%(x, y)) +
N∑

i=1

pi(x)ϕ(%(Si(x), Si(y))) for x, y ∈ X.
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Since ϕ is concave and nondecreasing, (6.2.2) and (6.2.10) imply

|Uf(x)− Uf(y)| ≤ ω(%(x, y)) + ϕ
( N∑

i=1

pi(x)%(Si(x), Si(y))
)

≤ ω(%(x, y)) + ϕ(r(%(x, y)) ≤ ϕ(%(x, y)) for x, y ∈ X.

6.3. Invariant measures. The following theorem was proved by A. Lasota (see [33]).
In his proof he used the double contraction principle. We show that this is a simple
application of our criterion for the existence of an invariant measure.

Theorem 6.3.1. Let pi : X → R+, i = 1, . . . , N , be constants. If Si : X → X are
Lipschitzean with Lipschitz constants Li, i = 1, . . . , N , and

(6.3.1)
N∑

i=1

piLi < 1,

then the corresponding Markov operator P given by (6.1.2) admits a unique invariant
distribution. Moreover , P is asymptotically stable.

Proof. Fix x0 ∈ X and define V (x) = %(x, x0) for x ∈ X. Obviously V is a Lyapunov
function, bounded on bounded sets. Then by (6.1.1) we have

UV (x) =
N∑

i=1

pi%(Si(x), x0) ≤
N∑

i=1

pi(%(Si(x), Si(x0)) + %(Si(x0), x0))

≤ %(x, x0)
N∑

i=1

piLi + max
1≤i≤N

%(Si(x0), x0) for x ∈ X.

From Corollary 2.4.1 and condition (6.3.1) it follows that there exists B ∈ Bb(X) such
that

(6.3.2) lim inf
n→∞

Pnµ(B) ≥ 1/2 for µ ∈M1.

We are going to show that P is concentrating. Fix ε > 0. Since (6.3.1) holds, there
exists i ∈ {1, . . . , N} such that Li < 1. Let m ∈ N be such that Lmi diamB ≤ ε. Define
A = clSmi (B) and observe that diamA ≤ ε. By induction we check at once that

Pmµ(A) =
N∑

i1,...,im=1

pi1 · . . . · pimµ(S−1
i1
◦ . . . ◦ S−1

im
(A)) for µ ∈M1.

By the linearity of P we have

Pn+mµ(A) ≥ pmi µ(S−mi (A)) for µ ∈M1

and by (6.3.2) we obtain

lim inf
n→∞

Pnµ(A) ≥ pmi /2 for µ ∈M1.

Further, from Lemma 6.2.1 it follows that P is nonexpansive. An application of Theo-
rem 5.3 finishes the proof.

Lemma 6.3.1. If the assumptions of Lemma 6.2.2 are satisfied , then the operator P given
by (6.1.2) is semi-concentrating.
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Proof. Let P be the Markov operator corresponding to (S, p)N and given by (6.1.2) and
let U be its dual. Fix x0 ∈ X and define V (x) = %(x, x0) for x ∈ X. Then by (6.2.10) we
have

UV (x) =
N∑

i=1

pi(x)%(Si(x), x0) ≤
N∑

i=1

pi(x)(%(Si(x), Si(x0)) + %(Si(x0), x0))

≤ r(%(x, x0)) + max
1≤i≤N

%(Si(x0), x0) for x ∈ X.

Since r is concave and r(0) = 0, we obtain

UV (x) ≤ r(1)V (x) + r(1) + max
1≤i≤N

%(Si(x0), x0) for x ∈ X.

Obviously r(1) < 1. Corollary 2.4.1 now shows that there exists B ∈ Bb(X) such that

(6.3.3) lim inf
n→∞

Pnµ(B) > 1/2 for µ ∈M1.

Fix ε > 0. Choose an integer m such that rm(diamB) < ε. Further, let η > 0 be such
that

(6.3.4) (1 + η)mrm(diamB) ≤ ε.
Fix x ∈ B and define C ∈ Cε by

(6.3.5) C =
N⋃

i1,...,im=1

B(Sim ◦ . . . ◦ Si1(x), ε).

By induction we may show that for every y ∈ B and n ∈ N there exists In(y) ⊂
{1, . . . , N}n such that

(6.3.6) %(Skn ◦ . . . ◦ Sk1(x), Skn ◦ . . . ◦ Sk1(y)) ≤ (1 + η)nrn(%(x, y))

for (k1, . . . , kn) ∈ In(y) and

(6.3.7)
∑

(k1,...,kn)∈In(y)

pk1(y) · . . . · pkn(Skn−1 ◦ . . . ◦ Sk1(y)) ≥
(

η

1 + η

)n
.

Fix y ∈ B. We may assume that y 6= x. If n = 1 from (6.2.10) it follows that

(6.3.8)
∑

pi(y) ≤ 1
1 + η

,

where the sum is taken over all i ∈ {1, . . . , N} such that %(Si(x), Si(y)) > (1+η)r(%(x, y)).
Hence (6.3.6) and (6.3.7) follow. Assuming (6.3.6) and (6.3.7) to hold for n, we will prove
them for n + 1. Let In(y) ⊂ {1, . . . , N}n be such that (6.3.6) and (6.3.7) hold. Fix
(k1, . . . , kn) ∈ In(y). Then

N∑

i=1

pi(Skn ◦ . . . ◦ Sk1(y))%(Si ◦ Skn ◦ . . . ◦ Sk1(x), Si ◦ Skn ◦ . . . ◦ Sk1(y))

≤ r(%(Skn ◦ . . . ◦ Sk1(x), Skn ◦ . . . ◦ Sk1(y))) ≤ r((1 + η)nrn(%(x, y)))

≤ (1 + η)nrn+1(%(x, y)),

which is due to the fact that r is concave. Hence
∑

pi(Skn ◦ . . . ◦ Sk1(y))(1 + η)n+1rn+1(%(x, y)) ≤ (1 + η)nrn+1(%(x, y)),
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where the sum is taken over all i ∈ {1, . . . , N} such that

%(Si ◦ Skn ◦ . . . ◦ Sk1(x), Si ◦ Skn ◦ . . . ◦ Sk1(y)) > (1 + η)n+1rn+1(%(x, y))

and consequently
∑

pi(Skn ◦ . . . ◦ Sk1(y)) ≥ η

1 + η
,

where the sum is taken over all i ∈ {1, . . . , N} such that

%(Si ◦ Skn ◦ . . . ◦ Sk1(x), Si ◦ Skn ◦ . . . ◦ Sk1(y)) ≤ (1 + η)n+1rn+1(%(x, y)).

From this and the assumption
∑

(k1,...,kn)∈In(y)

pk1(y) · . . . · pkn(Skn−1 ◦ . . . ◦ Sk1(y)) ≥
(

η

1 + η

)n

our assertion follows.
Set α = (η/(1 + η))m/2. By induction, the definition of Im(y) and the definition of C

we obtain

Pn+mµ(C) = 〈1C , Pn+mµ〉 = 〈Um1C , Pnµ〉

=
N∑

i1,...,im=1

�
X

pi1(y) · . . . · pim(Sim−1 ◦ . . . ◦ Si1(y))1C(Sim ◦ . . . ◦ Si1(y))Pnµ(dy)

≥
�
B

∑

(k1,...,km)∈Im(y)

pk1(y) · . . . · pkm(Skm−1 ◦ . . . ◦ Sk1(y))Pnµ(dy) for µ ∈M1.

From (6.3.3) we conclude that lim infn→∞ Pnµ(C) > α for µ ∈ M1. Since ε > 0 and
µ ∈M1 are arbitrary, P is semi-concentrating.

Theorem 6.3.2. Let an iterated function system (S, p)N satisfy conditions (6.2.9) and
(6.2.10). If the pair (ω, r) satisfies the conditions formulated in one of cases I–III and

(6.3.9)
∑

pi(x)pi(y) > 0 for x, y ∈ X,

where the summation is taken over all i ∈ {1, . . . , N} such that %(Si(x), Si(y)) ≤
r(%(x, y)), then the system (S, p)N is asymptotically stable.

Proof. Let P be the Markov operator corresponding to (S, p)N and given by (6.1.2). Since
the assumptions of Lemmas 6.2.2 and 6.3.1 are satisfied, P is essentially nonexpansive
and semi-concentrating. From Theorem 5.5 and Remark 5.1 it follows that P admits an
invariant distribution. Therefore it remains to verify (2.3.2). When an invariant distribu-
tion exists this condition is equivalent to a more symmetric relation:

lim
n→∞

‖Pnµ1 − Pnµ2‖FM = 0 for µ1, µ2 ∈M1.

Theorem 5.4 and Remark 5.1 imply that to finish the proof it is enough to show that for
every ε > 0 there is α > 0 with the following property: for every µ1, µ2 ∈M1 there exist
A ∈ Bb(X) with diamA ≤ ε and n0 ∈ N such that

(6.3.10) Pn0µi(A) > α for i = 1, 2.
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Fix ε > 0. According to Theorem 5.5(iii) and Remark 5.1 there is a compact set
K ⊂ X such that

(6.3.11) µ̃(K) ≥ 4/5 for µ̃ ∈ Ω̂ =
⋃

µ∈M1

Ω(µ).

Choose an integer m such that

(6.3.12) rm(diamK) ≤ ε/3
and define for every x ∈ K and (j1, . . . , jm) ∈ {1, . . . , N} the value

Π(j1,...,jm)(x) = pj1(x) · . . . · pjm(Sjm−1 ◦ . . . ◦ Sj1(x)).

Observe that for every x ∈ K there exists at least one sequence (j1, . . . , jm) ∈ {1, . . . , N}m
such that Π(j1,...,jm)(x) > 0. For (j1, . . . , jm) ∈ {1, . . . , N}m and x ∈ K satisfying
Π(j1,...,jm)(x) > 0 we define the open neighbourhood O(j1,...,jm)(x) of x by the formula

O(j1,...,jm)(x)

= {y ∈ X : %(Sjm,...,j1(x), Sjm,...,j1(y)) < ε/3, Π(j1,...,jm)(y) > Π(j1,...,jm)(x)/2},
where Sjm,...,j1(y) = Sjm ◦ . . . ◦ Sj1(y) for y ∈ X. Define

(6.3.13) Ox =
⋂
O(j1,...,jm)(x) for x ∈ X,

where the intersection is taken over all (j1, . . . , jm) ∈ {1, . . . , N}m such that Π(j1,...,jm)(x)
> 0. Since K is a compact set there is a finite covering

(6.3.14) K ⊂
q⋃

i=1

Oxi .

Set G =
⋃q
i=1Oxi and define for i ∈ {1, . . . , q},

δi = min{Π(j1,...,jm)(xi)/2 : Π(j1,...,jm)(xi) > 0 for (j1, . . . , jm) ∈ {1, . . . , N}m}.
Set δ = min1≤i≤q δi. We are going to show that (6.3.10) holds with α = δ/(2q). In fact,
let µ1, µ2 ∈ M1. Set µ0 = (µ1 + µ2)/2. According to Theorem 5.5(i) and Remark 5.1
there exists µ̃ ∈M1 such that µ̃ ∈ Ω(µ0). Consequently, there exists a sequence (mn)n≥1

such that

(6.3.15) lim
n→∞

‖Pmnµ0 − µ̃‖FM = 0.

Since (6.3.15) is equivalent to the weak convergence of (Pmnµ0)n≥1 to µ̃ and G is open,
the Aleksandrov theorem (see [6]) implies

lim inf
n→∞

Pmnµ0(G) ≥ µ̃(G).

From this, (6.3.11) and (6.3.14) it follows that there exists an integer n such that

Pnµ0(G) = (Pnµ1(G) + Pnµ2(G))/2 > 3/4.

Hence

Pnµi(G) > 1/2 for i = 1, 2.

From this and (6.3.14) it follows that there exist s, t ∈ {1, . . . , q} such that

Pnµ1(Oxs) > 1/(2q) and Pnµ2(Oxt) > 1/(2q).
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Write for simplicity O1 = Oxs and O2 = Oxt . From (6.2.10) and (6.3.12) it may be
concluded that there is (i1, . . . , im) ∈ {1, . . . , N}m such that

(6.3.16) %(Sim ◦ . . . ◦ Si1(xs), Sim ◦ . . . ◦ Si1(xt)) ≤ rm(%(xs, xt)) ≤ ε/3
and

Π(i1,...,im)(xs) ·Π(i1,...,im)(xt) > 0.
Define

A = A1 ∪A2 where Ai = clSim ◦ . . . ◦ Si1(Oi), i = 1, 2.

According to (6.3.13) and (6.3.16) we have diamA ≤ ε. Obviously Π(i1,...,im)(y) ≥ δ for
y ∈ O1 ∪O2. On the other hand, by induction we check that

Pm+nµi(A) = 〈Um+n1A, µi〉 = 〈Um1A, Pnµi〉

≥
N∑

j1,...,jm=1

�
X

Π(j1,...,jm)(y)1Ak(Sjm ◦ . . . ◦ Sj1(y))Pnµi(dy)

≥ δPnµi(Oi) > δ/(2q) for i = 1, 2,

which finishes the proof.

We finish this section with the observation that our last theorem extends the well
known result due to Barnsley et al. (see [3]) to Polish spaces.

Theorem 6.3.3. Let an iterated function system (S, p)N satisfy

(6.3.17)
N∑

i=1

|pi(x)− pi(y)| ≤ ω(%(x, y)) for x, y ∈ X,

(6.3.18)
N∏

i=1

[%(Si(x), Si(y))]pi(x) ≤ r(%(x, y)) for x, y ∈ X.

Assume that the pair (ω, r) satisfies the Dini condition. Moreover , assume that Si, i =
1, . . . , N , are Lipschitzean and pi(x) ≥ δ, x ∈ X, i = 1, . . . , N , for some δ > 0. Then the
system (S, p)N is asymptotically stable.

Proof. We begin by recalling a standard fact. Namely, let ν be a probability measure on
a Borel space I and let f : I → (0,∞) be a bounded Borel measurable function bounded
away from 0. Then

(6.3.19) lim
q→0

( �
I

fq dν
)1/q

= exp
( �
I

log f dν
)
.

Moreover, if 0 < a < b the above convergence is uniform over all functions f such that
a ≤ f ≤ b and all probability Borel measures ν. The proof is left to the reader (see
also [3]).

Let (S, p)N be as in the statement of our theorem. We may assume that all Si’s are
Lipschitzean with Lipschitz constant L > 1. Further, since the pair (ω, r) satisfies the
Dini condition, r(t) = ct with c < 1. Let δ > 0 be a lower bound of all pi’s and let
I = {1, . . . , N}. For x, y ∈ X and i ∈ I define

fx,y(i) = max
{
%(Si(x), Si(y))

%(x, y)
,

(
c

L

)1/δ}
.
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(Here we assume that 0/0 = 0.) Thus (c/L)1/δ ≤ fx,y(i) ≤ L for x, y ∈ X and i ∈ I. We
show that

(6.3.20)
N∑

i=1

pi(x) log fx,y(i) ≤ log c for x, y ∈ X.

First observe that if fx,y(i) = %(Si(x), Si(y))/%(x, y) for all i ∈ I, then (6.3.20) follows
from (6.3.18). On the other hand, if fx,y(i0) = (c/L)1/δ for any i0 ∈ I, then

pi0(x) log fx,y(i0) ≤ log c− logL

and consequently
N∑

i=1

pi(x) log fx,y(i) ≤ log c− logL+ logL = log c.

Choose c0 ∈ (c, 1) and set η = c0/c. By (6.3.19) there exists q0 ∈ (0, 1) such that

(6.3.21)
( �
I

fq0 dν
)1/q0

≤ η exp
( �
I

log f dν
)

for all functions f satisfying (c/L)1/δ ≤ f ≤ L and all probability Borel measures ν.
Fix x ∈ X. Let ν({i}) = pi(x) for i ∈ I. Then (6.3.21) may be rewritten as

N∑

i=1

pi(x)[fx,y(i)]q0 ≤ ηq0
[

exp
( N∑

i=1

pi(x) log fx,y(i)
)]q0

for y ∈ X.

Hence
N∑

i=1

pi(x)[fx,y(i)]q0 ≤ ηq0 · cq0 = cq00 for y ∈ X

and since x ∈ X is arbitrary we finally obtain

(6.3.22)
N∑

i=1

pi(x)[%(Si(x), Si(y))]q0 ≤ cq00 [%(x, y)]q0 for x, y ∈ X.

Define the new metric % by

%(x, y) = [%(x, y)]q0 for x, y ∈ X.

Multiplying ω by a constant if necessary, (6.2.9) may be verified only for x, y ∈ X such
that %(x, y) ≤ 1. Then

(6.3.23)
N∑

i=1

|pi(x)− pi(y)| ≤ ω(%(x, y)) ≤ ω(%(x, y)).

Since (6.3.22) and (6.3.23) hold, the iterated function system (S, p)N defined on (X, %)
satisfies the assumptions of Theorem 6.3.2. Hence it is asymptotically stable. Since %

is equivalent to %, the iterated function system (S, p)N on (X, %) is also asymptotically
stable.

6.4. Capacity of invariant measures. Let Ω = {1, . . . , N}∞ = {(i1, i2, . . .) :
ik ∈ {1, . . . , N} for every k ∈ N} and Ω∗ =

⋃∞
n=1 Ωn, where Ωn = {1, . . . , N}n.

Observe that Ω∗ (resp. Ω) is the space of all finite (resp. infinite) sequences of ele-
ments ik ∈ {1, . . . , N}. For k ∈ N we set Ω≤k =

⋃k
n=1Ωn and Ω≥k =

⋃∞
n=kΩn. For

i = (i1, . . . , in) ∈ Ω∗ let |i| = n denote the length of i. If i ∈ Ω we assume that |i| = ∞.
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For i ∈ Ω ∪ Ω∗ and m ∈ N, m ≤ |i|, we set i|m = (i1, . . . , im). We say that i < j with
i ∈ Ω∗ and j ∈ Ω∪Ω∗ if |j| > n and j|n = i, where n = |i|. Finally, for i = (i1, . . . , in) ∈ Ω∗
we write i−1 = (in, . . . , i1).

A subset Λ ⊂ Ω is called a cylinder if there exists i = (i1, . . . , in) ∈ Ω∗ such that

Λ = Λ(i) = {j ∈ Ω : j|n = i}.
We denote by A the σ-algebra in Ω generated by such cylinders.

Given an iterated function system (S, p)N and a point x ∈ X we denote by Px the
probability measure on A defined on the cylinder Λ(i), i = (i1, . . . , in) ∈ Ω∗, by

(6.4.1) Px(Λ(i)) = pi1(x)pi2(Si1(x)) · . . . · pin(Sin−1 ◦ . . . ◦ Si1(x)).

It is clear that the above formula defines the unique probability measure for realization
of the Markov process starting from x for given (S, p)N .

For convenience, in what follows we will write Px(i) for Px(Λ(i)) and Px(A) for
Px(Λ(A)), where A ⊂ Ω∗ and Λ(A) =

⋃
i∈A Λ(i). Moreover, for i = (i1, . . . , in) ∈ Ωn

we write

Si = Sin ◦ . . . ◦ Si1 .
Lemma 6.4.1. For every i = (i1, . . . , in) ∈ Ω∗, we have

(6.4.2) Px(i) = pi1(x)PSi1 (x)((i2, . . . , in)),

(6.4.3) Px(i) = pin(Sin−1 ◦ . . . ◦ S1(x))Px((i1, . . . , in−1)),

(6.4.4)
N∑

i=1

Px((i, i)) = Px(i),

(6.4.5) Px(i|k) ≥ Px(i|m) if k ≤ m ≤ n.
Proof. This follows immediately from the definition of Px.

Using a standard martingale argument one can prove the following lemma.

Lemma 6.4.2. Let an iterated function system (S, p)N satisfy the hypotheses of Theo-
rem 6.3.3 and let fi : X → R+, i = 1, . . . , N , be bounded continuous functions such
that

inf
x∈X

fi(x) > 0 for i = 1 . . . , N.

Then for every x ∈ X there exists a measurable set Ωx ⊂ Ω with Px(Ωx) = 1 such that

lim sup
n→∞

1
n

log(fi1(x)fi2(Si1(x)) . . . fin(Sin−1 ◦ . . . ◦ Si1(x))) ≤ log∆,(6.4.6)

lim inf
n→∞

1
n

log(fi1(x)fi2(Si1(x)) . . . fin(Sin−1 ◦ . . . ◦ Si1(x))) ≥ logΓ(6.4.7)

for all (i1, i2, . . .) ∈ Ωx, where

∆ = sup
x∈X

N∏

i=1

fi(x)pi(x),(6.4.8)

Γ = inf
x∈X

N∏

i=1

fi(x)pi(x).(6.4.9)
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Proof. We prove (6.4.6). Fix x ∈ X and for arbitrary n ∈ N define the random variable
Xn : Ω → R by

Xn(i) = log(fin(Sin−1 ◦ . . . ◦ Si1(x))).

For i = (i1, . . . , in) ∈ Ω∗ we denote by A(i) the σ-algebra generated by the cylinders
{Λ(j) : j ∈ Ω∗, j > i}. Moreover, let Ex denote the expectation with respect to the
probability measure Px on Ω.

Fix i = (i1, i2, . . .) ∈ Ω. We have

Ex(Xn | A(i1, . . . , in−1)) =
N∑

i=1

pi(Sin−1 ◦ . . . ◦ Si1(x))Xn((i1, . . . , in−1, i, i, . . .)).

By (6.4.8) we have

N∑

i=1

pi(Sin−1 ◦ . . . ◦ Si1(x)) log(fi(Sin−1 ◦ . . . ◦ Si1(x))) ≤ log∆.

Now let Yn = Xn − Ex(Xn | A(i1, . . . , in−1)). Then

sup
i∈Ω
|Yn(i)| ≤ 2 sup

i∈Ω
|Xn(i)| Px-a.s.

Set

M = 2 sup
i∈Ω
|Xn(i)| <∞, Zn =

n∑

k=1

Yk
k

for n ∈ N.

It is easy to see that (Zn)n≥1 is a martingale. Since Yk and Yl for k 6= l are mutually
orthogonal, we have

Ex(Z2
n) ≤M2

∞∑

k=1

1
k2 .

Hence (Zn)n≥1 is an L2-bounded martingale, and so (Zn)n≥1 is convergent a.s. (see [19]).
Then by Kronecker’s lemma (see [13])

lim
n→∞

1
n

n∑

k=1

Yk = 0 Px-a.s.

Thus

lim sup
n→∞

1
n

n∑

k=1

Xk − log∆ ≤ 0 Px-a.s.,

whence (6.4.6) follows immediately.
Replacing fi with 1/fi and using the same argument one can prove (6.4.7).

The following result may be proved in much the same way as Lemma 6.4.2.

Lemma 6.4.3. Let an iterated function system (S, p)N satisfy the hypotheses of Theo-
rem 6.3.3 and let r(t), t ≥ 0, given by (6.2.10) be equal to ct with c < 1. Let x0 ∈ X.
Then for every x ∈ X there exists a measurable set Ωx ⊂ Ω with Px(Ωx) = 1 such that

(6.4.10) lim sup
n→∞

1
n

log %(Si|n(x), Si|n(x0)) ≤ log c for all i ∈ Ωx.
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Proof. Fix x0 ∈ X. Let δ > 0 be such that pi(x) ≥ δ for i = 1, . . . , N . We may assume
that Si’s are Lipschitzean with Lipschitz constant L > 1. For every n ∈ N define the
random variable Xn : Ω → R by

Xn(i) =





max
{

log
%(Si|n(x), Si|n(x0))

%(Si|n−1(x), Si|n−1(x0))
,

(
c

L

)1/δ}
if %(Si|n−1(x), Si|n−1(x0)) 6= 0,

log c if %(Si|n−1(x), Si|n−1(x0)) = 0.

As in the proof of Lemma 6.4.2 for i = (i1, . . . , in) ∈ Ω∗ we denote by A(i) the σ-algebra
generated by the cylinders {Λ(j) : j ∈ Ω∗, j > i}. Moreover, let Ex denote the expectation
with respect to the probability measure Px on Ω.

Fix i = (i1, i2, . . .) ∈ Ω. We have

Ex(Xn | A(i1, . . . , in−1)) =
N∑

i=1

pi(Sin−1 ◦ . . . ◦ Si1(x))Xn((i1, . . . , in−1, i, i, . . .)).

Using a similar argument to (6.3.20) we can show that

Ex(Xn | A(i1, . . . , in−1)) ≤ log c.

The remaining part of the proof runs as in Lemma 6.4.2. We leave the details to the
reader. Finally we obtain

lim sup
n→∞

1
n

∞∑

k=1

Xk − log c ≤ 0 Px-a.s.,

whence (6.4.10) follows immediately.

Now for c > 0, x0, x ∈ X and n0, n ∈ N, n ≥ n0, we define

Qnn0
(c;x0, x) = {i ∈ Ωn : %(Si|k(x), Si|k(x0)) ≤ ck%(x, x0) for n0 ≤ k ≤ n},(6.4.11)

Qn0(c;x0, x) = {i ∈ Ω : %(Si|k(x), Si|k(x0)) ≤ ck%(x, x0) for k ≥ n0}.(6.4.12)

Lemma 6.4.4. For every c > 0, x0 ∈ X and n ∈ N the functions

X 3 x 7→ Px(Qn(c;x0, x)),(6.4.13)

X 3 x 7→ Px0(Qn(c;x0, x))(6.4.14)

are Borel measurable.

Proof. Fix c > 0, x0 ∈ X and n ∈ N. First observe that Qn(c;x0, x) is measurable with
respect to the σ-algebra A generated by all cylinders in Ω. For all x ∈ X we have

Px(Qn(c;x0, x)) = 1− Px({i ∈ Ω : %(Si|m(x), Si|m(x0)) > cm%(x, x0) for some m ≥ n})

= 1−
∞∑

m=n

∑

i∈Ωm
Px(i)1Xi(x),

where Xi, i ∈ Ωm, stands for the set of all y ∈ X such that %(Si(y), Si(x0)) > cm%(y, x0))
and %(Si|k(y), Si|k(x0)) ≤ ck%(y, x0)) for k = 1, . . . ,m− 1. Since the sets Xi, i ∈ Ω∗, are
Borel measurable, the function (6.4.13) is Borel measurable.

In the same manner we can see that the function (6.4.14) is Borel measurable.

We are in a position to formulate the following lemma.
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Lemma 6.4.5. Let an iterated function system (S, p)N satisfy the hypotheses of Theo-
rem 6.3.3 and let a bounded set F ⊂ X and a number n0 ∈ N be given. Let r(t), t > 0,
given by (6.2.10) be equal to ct with c < 1. Then for every c0 ∈ (c, 1) there exists β > 0
such that for every x, x0 ∈ F and n ≥ n0 we have

Px(i) ≥ βPx0(i) for i ∈ Qnn0
(c0;x0, x).

Proof. Fix a bounded set F ⊂ X and c0 ∈ (c, 1). Since the pair (ω, r) with r(t) = ct for
t > 0 satisfies the Dini condition, we have

ω0 =
∞∑

k=1

ω(ck0 diamF ) <∞.

Fix n0 ∈ N and let n ≥ n0. For x, x0 ∈ F and i ∈ Qnn0
(c0;x0, x) we have

Px0(i) = pi1(x0)pi2(Si1(x0)) · . . . · pin(Sin−1 ◦ . . . ◦ Si1(x0))

=
pi1(x0) · . . . · pin0

(Sin0−1 ◦ . . . ◦ Si1(x0))

pi1(x) · . . . · pin0
(Sin0−1 ◦ . . . ◦ Si1(x))

· pi1(x) · . . . · pin0
(Sin0−1 ◦ . . . ◦ Si1(x))

·
n∏

k=n0+1

((
1 +

pik(Sik−1 ◦ . . . ◦ Si1(x0))− pik(Sik−1 ◦ . . . ◦ Si1(x))
pik(Sik−1 ◦ . . . ◦ Si1(x))

)

· pik(Sik−1 ◦ . . . ◦ Si1(x))
)

Let δ > 0 be such that pi(x) ≥ δ for x ∈ X, i = 1, . . . , N . From (6.2.9) and (6.4.11) we
obtain

Px0(i) ≤ (1− δ)n0

δn0

·
n∏

k=n0+1

(
1 +

ω(%(Sik−1 ◦ . . . ◦ Si1(x0), Sik−1 ◦ . . . ◦ Si1(x)))
δ

)
Px(i)

≤
(

1− δ
δ

)n0 n∏

k=n0+1

(
1 +

ω(ck−1
0 diamF )

δ

)
Px(i).

Consequently,

Px0(i) ≤
(

1− δ
δ

)n0 ∞∏

k=n0+1

eω(ck−1
0 diamF )/δPx(i) =

(
1− δ
δ

)n0

eω0/δPx(i).

Setting β = δn0(1− δ)−n0e−ω0/δ we finish the proof.

Theorem 6.4.1 (Upper estimate). Let an iterated function system (S, p)N satisfy the
hypotheses of Theorem 6.3.3 and let r(t), t ≥ 0, given by (6.2.10) be equal to ct with
c < 1. Let µ∗ ∈M1 be the unique invariant measure for (S, p)N . Then

(6.4.15) CapL(µ∗) ≤
log p
log c

,

where

(6.4.16) p = inf
x∈X

N∏

i=1

pi(x)pi(x).
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Proof. Fix η > 0. Let µ∗ be the unique invariant distribution for (S, p)N and let K be
a compact subset of X such that µ∗(K) ≥ 1 − η/4. Choose p0 ∈ (0, p), c0 ∈ (c, 1) and
x0 ∈ K. For n ∈ N define

Dn =
⋃
B(Si(x0), εn),

where the union is taken over all i ∈ Ωn such that Px0(i) ≥ pn0 and εn = cn0 diamK. We
check at once that NDn(εn) ≤ p−n0 for n ∈ N.

We are going to show that

lim inf
n→∞

µ∗(Dn) ≥ 1− η.

Since Qn(c0;x0, x) ⊂ Qn+1(c0;x0, x) for n ∈ N and x ∈ X, Lemma 6.4.3 shows that

lim
n→∞

Px(Qn(c0;x0, x)) = 1 for x ∈ X.
From the above and Lemma 6.4.4 there exists n0 ∈ N such that

(6.4.17) µ∗({x ∈ K : Px(Qn0(c;x0, x)) ≥ 1− η/4}) ≥ 1− η/2.
Set

K0 = {x ∈ K : Px(Qn0(c;x0, x)) ≥ 1− η/4}.
Lemma 6.4.5 now shows that there exists β > 0 such that

(6.4.18) Px0(i) ≥ βPx(i) for i ∈ Qnn0
(c0;x0, x), n ≥ n0.

By Lemma 6.4.2 (with pi(x) in place of fi(x) and p0 in place of Γ ) there exists a mea-
surable set Ω0 ⊂ Ω with Px0(Ω0) = 1 and

lim inf
n→∞

1
n

logPx0(i|n) ≥ log p for i ∈ Ω0.

Hence there exists n1 ≥ n0 such that

Px0({i ∈ Ω : Px0(i|n) ≤ pn0 for some n ≥ n1}) ≤ βη/4
and consequently, for n ≥ n1,

Px0({i ∈ Ωn : Px0(i) ≤ pn0}) ≤ βη/4.
From (6.4.18) it follows that for x ∈ K0,

Px({i ∈ Qnn0
(c0;x0, x) : Px0(i) ≤ pn0}) ≤ η/4 for n ≥ n1

and consequently by the definition of K0 we obtain

(6.4.19) Px({i ∈ Qnn0
(c0;x0, x) : Px0(i) ≥ pn0}) ≥ 1− η/2

for x ∈ K0 and n ≥ n1. Set

Ωn,x = {i ∈ Qnn0
(c0;x0, x) : Px0(i) ≥ pn0}.

By the invariance property of µ∗ and the definitions of Dn and Ωn,x for all n ∈ N we
have

µ∗(Dn) =
�
X

∑

i∈Ωn
Px(i)1Dn(Si(x))µ∗(dx)

≥
�
K0

∑

i∈Ωn,x
Px(i)1Dn(Si(x))µ∗(dx).
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By (6.4.19) we obtain

µ∗(Dn) ≥ (1− η/2)(1− η/2) > 1− η for n ≥ n1.

Since NDn(εn) ≤ p−n0 for n ∈ N, it follows that N(εn, η) ≤ p−n0 for n ≥ n1. Hence

lim sup
ε→0

logN(ε, η)
− log ε

= lim sup
n→∞

logN(εn, η)
− log εn

≤ lim sup
n→∞

log p−n0

− log(cn0d)
=

log p0

log c0
.

Letting p0 → p and c0 → c we conclude that

lim sup
ε→0

logN(ε, η)
− log ε

≤ log p
log c

.

Since η > 0 is arbitrary, the statement of our theorem follows.

To obtain a lower estimate we will assume that Si : X → X, i = 1, . . . , N , are
bi-lipschitzean transformations, i.e., there exist constants li, Li > 0 such that

(6.4.20) li%(x, y) ≤ %(Si(x), Si(y)) ≤ Li%(x, y) for x, y ∈ X.
Further

(6.4.21) r = sup
x∈X

N∏

i=1

L
pi(x)
i < 1,

(6.4.22)
n∑

i=1

|pi(x)− pi(y)| ≤ ω(%(x, y)) for x, y ∈ X,

where ω : R+ → R+ satisfies condition (6.2.3). Finally, we assume that there exists δ > 0
such that

(6.4.23) pi(x) ≥ δ for x ∈ X and i = 1, . . . , N .

Theorem 6.4.2. Let an iterated function system (S, p)N satisfy (6.4.20)–(6.4.23). Then
the system (S, p)N is asymptotically stable.

Proof. It is easy to check that the assumptions of Theorem 6.3.3 are satisfied.

Let an iterated function system (S, p)N be given. A finite set L ⊂ Ω∗ is called funda-
mental for (S, p)N if

(6.4.24)
∑

i∈L
Px(i) = 1 for every x ∈ X

and there are no i, j ∈ L such that i < j.
Set

|L| = max{|i| : i ∈ L}.
Lemma 6.4.6. Let L ⊂ Ω∗ be a fundamental set for given (S, p)N . If i = (i1, . . . , in) ∈ L
and n = |L|, then (i1, . . . , in−1, i) ∈ L for every i ∈ {1, . . . , N}.
Proof. First observe that Λ(i) ∩ Λ(j) = ∅ for every i, j ∈ L, i 6= j. Suppose, contrary
to our claim, that there is i = (i1, . . . , in) ∈ L such that (i1, . . . , in−1, i) 6∈ L for some
i ∈ {1, . . . , N}. It is easy to verify that Λ(i1, . . . , in−1, i)∩Λ(j) = ∅ for every j ∈ L. Since
Px is a probability measure and Px(i) > 0 for every i ∈ Ω∗, we have
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∑

i∈L
Px(i) ≤ 1− Px((i1, . . . , in−1, i)) < 1,

which contradicts (6.4.24).

Remark 6.4.1. Note that for every n ∈ N there exists a fundamental set L for (S, p)N
such that L ⊂ Ω≤n.

Lemma 6.4.7. Let an iterated function system (S, p)N satisfy conditions (6.4.20)–(6.4.23)
and let µ∗ be its unique invariant distribution. Then for every fundamental set L ⊂ Ω∗
we have

(6.4.25) µ∗(A) =
∑

i∈L

�
X

Px(i−1)1A(Si−1(x))µ∗(dx) for A ∈ B(X).

Proof. The proof is by induction on n, where n is the smallest integer such that L ⊂ Ω≤n.
Suppose first that L ⊂ Ω1. Since pi(x) > 0 for x ∈ X and i = 1, . . . , N , it follows
immediately that L = {1, . . . , N} and (6.4.25) holds.

Now suppose that (6.4.25) holds for every L ⊂ Ω≤n. We will prove that (6.4.25) holds
for every L ⊂ Ω≤n+1. By the invariance property of µ∗ we have

(6.4.26)
�
X

f(x)µ∗(dx) =
N∑

i=1

�
X

pi(x)f(Si(x))µ∗(dx) for f ∈ B(X).

Set

(6.4.27) Ln+1 = {i ∈ L : |i| = n+ 1} and Lnn+1 = {i|n : i ∈ Ln+1}.
We assume that Ln+1 6= ∅ (otherwise there is nothing to prove). Fix A ∈ B(X). By
Lemma 6.4.6, formulae (6.4.2) and (6.4.26) we have

(6.4.28)
∑

i∈Ln+1

�
X

Px(i−1)1A(Si−1(x))µ∗(dx)

=
∑

j∈Lnn+1

N∑

i=1

�
X

Px((j, i)−1)1A(S(j,i)−1(x))µ∗(dx)

=
∑

j∈Lnn+1

N∑

i=1

�
X

pi(x)PSi(x)(j
−1)1A(Sj−1(Si(x)))µ∗(dx)

=
∑

j∈Lnn+1

�
X

Px(j−1)1A(Sj−1(x))µ∗(dx).

Now setting L∗ = (L \ Ln+1) ∪ Lnn+1 and using (6.4.28) we obtain
∑

i∈L

�
X

Px(i−1)1A(Si−1(x))µ∗(dx) =
∑

i∈Ln+1

�
X

Px(i−1)1A(Si−1(x))µ∗(dx)(6.4.29)

+
∑

i∈L\Ln+1

�
X

Px(i−1)1A(Si−1(x))µ∗(dx)

=
∑

i∈L∗

�
X

Px(i−1)1A(Si−1(x))µ∗(dx).
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Clearly L∗ is fundamental and L∗ ⊂ Ω≤n. Hence the last term in (6.4.29) is equal to
µ∗(A). Thus (6.4.25) holds for every L ⊂ Ω≤n+1. Consequently, by induction, (6.4.25)
holds for every fundamental set L.

For i = (i1, . . . , ik) ∈ Ω∗ we write

(6.4.30) Li = Li1 · . . . · Lik and li = li1 · . . . · lik .

Let r be given by (6.4.21). For r0 > r and n0, n ∈ N, n ≥ n0, we define

(6.4.31) Qnn0
(r0) = {i ∈ Ω≥n : Li|k ≤ rk0 for n0 ≤ k ≤ n}.

We can now rephrase Lemma 6.4.5 as follows.

Lemma 6.4.8. Let an iterated function system (S, p)N satisfy the hypotheses of Theo-
rem 6.4.2 and let a bounded set F ⊂ X and a number n0 ∈ N be given. Then for every
r0 ∈ (r, 1) there exists β > 0 such that for every x, x0 ∈ F and n ≥ n0 we have

Px(i) ≥ βPx0(i) for i ∈ Qnn0
(r0) ∩Ωn.

Set

q = sup
x∈X

N∏

i=1

pi(x)pi(x),(6.4.32)

d = inf
x∈X

N∏

i=1

l
pi(x)
i .(6.4.33)

For d0 ∈ (0, d) and n ∈ N define

Jn(d0) = {(i) : li > dn0 } ∪ {i ∈ Ω∗ : |i| > 1 and li ≤ dn0 < li||i|−1}.

Lemma 6.4.9. Let an iterated function system (S, p)N satisfy condition (6.4.20). If li ∈
(0, 1), i = 1, . . . , N , then for every d0 ∈ (0, d) and n ∈ N the set Jn(d0) is fundamental
for (S, p)N .

Proof. Fix d0 ∈ (0, d) and n ∈ N. It is easy to verify that Jn(d0) ⊂ Ω≤m, where m is
the least integer such that (max1≤i≤N li)m ≤ dn0 . Consequently, Jn(d0) is a finite set.
Moreover, from the definition of Jn(d0) it follows that if i ∈ Jn(d0), j ∈ Ω∗ and j > i,
then j 6∈ Jn(d0). This implies that

(6.4.34) Λ(i) ∩ Λ(j) = ∅ for i, j ∈ Jn(d0), i 6= j.

Finally, observe that for every i ∈ Ω there is k ∈ N such that i|k ∈ Jn(d0). Consequently,

(6.4.35) Ω =
⋃

i∈Jn(d)

Λ(i).

By (6.4.34) and (6.4.35) for all x ∈ X we have
∑

i∈Jn(d)

Px(i) = Px
( ⋃

i∈Jn(d)

Λ(i)
)

= Px(Ω) = 1.
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In what follows we will assume that S1, . . . , SN satisfy the strong Moran condition,
i.e., there exists a bounded closed subset F ⊂ X and a constant σ > 0 such that

(6.4.36)
N⋃

i=1

Si(F ) ⊂ F,

(6.4.37) dist(Si(F ), Sj(F )) ≥ σ for i 6= j.

Lemma 6.4.10. Let S1, . . . , SN satisfy the strong Moran condition. Then for every d0 ∈
(0, d), n ∈ N and i, j ∈ Jn(d0), i 6= j, we have

(6.4.38) dist(Si−1(F ), Sj−1(F )) ≥ dn0σ,
where the set F and the constant σ are given by conditions (6.4.36), (6.4.37).

Proof. Fix d0 ∈ (0, d), n ∈ N and i, j ∈ Jn(d0), i 6= j. Let i = (i1, . . . , ip) and j =
(j1, . . . , jq). Since Jn(d0) is fundamental, there exists an integer m ≤ min{p, q} such that
im 6= jm, but ik = jk for k < m. From the strong Moran condition it follows immediately
that Si−1(F )⊂Si1◦. . .◦Sim(F ), Sj−1(F )⊂Sj1◦. . .◦Sjm(F ) and dist(Sim(F ), Sjm(F ))≥ σ.
Consequently,

dist(Si−1(F ), Sj−1(F )) ≥ dist(Si1 ◦ . . . ◦ Sim(F ), Sj1 ◦ . . . ◦ Sjm(F ))

≥ li1 · . . . · lim−1 · σ ≥ dn0σ.
Lemma 6.4.11. Let an iterated function system (S, p)N satisfy (6.4.20)–(6.4.23) and let
d be given by (6.4.33). Then for every d0 ∈ (0, d) there is γ > 0 such that

∑

i∈J∗n(d0)

Px(i) ≥ γ for every x ∈ X,

where

(6.4.39) J∗n(d0) = {i ∈ Jn(d0) : i−1 ∈ Jn(d0)}.
Proof. We can assume that li, i = 1, . . . , N , given by (6.4.20) satisfy l1 ≤ . . . ≤ lN−1 ≤
lN . Fix d0 ∈ (0, d) and observe that if i = (i1, . . . , ik) ∈ Jn(d0) and ik = N , then
i−1 ∈ Jn(d0). Moreover, for every i = (i1, . . . , ik) ∈ Jn(d0) there exists a unique

(6.4.40) τ(i) = (i1, . . . , ik−1, N, . . . , N)

which belongs to Jn(d0). In this way (6.4.40) defines a one-to-one map from Jn(d0) into
Jn(d0). Note also that

(6.4.41) (τ(i))−1 ∈ Jn(d0) for every i ∈ Jn(d0).

Fix i = (i1, . . . , ik) ∈ Jn(d0) and choose m0 such that lm0
N ≤ l1. Since li ≤ dn0 and

l1 ≤ li for i = 1, . . . , N , we have

|τ(i)| ≤ |i| − 1 +m0,

which means that in (6.4.40) the number N appears at most m0 times. Now it is easy to
see that for every i ∈ Jn(d0),

(6.4.42) card{j ∈ Jn(d0) : τ(j) = τ(i)} ≤ Nm0 .

(Here card stands for cardinality.) By (6.4.40), (6.4.3) and (6.4.5) for all x ∈ X we have

(6.4.43) Px(τ(i)) = Px((i1, . . . , ik−1, N, . . . , N)) ≥ Px((i1, . . . , ik−1))δm0 ≥ Px(i)δm0 ,
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where δ is given by (6.4.23). By Lemma 6.4.9 and (6.4.24), (6.4.43) and (6.4.42) we have

1 =
∑

i∈Jn(d0)

Px(i) ≤ δ−m0
∑

i∈Jn(d0)

Px(τ(i)) ≤ Nm0δ−m0
∑

i∈J∗n(d0)

Px(i).

From this, setting γ = (δ/N)m0 , we finish the proof.

Theorem 6.4.3 (Lower estimate). Let an iterated function system (S, p)N satisfy con-
ditions (6.4.20)–(6.4.23) and let µ∗ be its unique invariant distribution. If the functions
S1, . . . , SN satisfy the strong Moran condition, then

(6.4.44) CapL(µ∗) ≥
log q
log d

,

where q and d are given by (6.4.32) and (6.4.33), respectively.

Proof. Consider first the case li < 1, i = 1, . . . , N , where li satisfy (6.4.20). Let F be a
closed set satisfying (6.4.36) and (6.4.37). Since F is invariant for S1, . . . , SN , we have
µ∗ ∈MF

1 . Choose x0 ∈ F . By Lemma 6.4.2 (with pi and q or Li and r in place of fi and
∆ and li and d in place of fi and Γ , respectively) we have

lim sup
n→∞

1
n

log(Px0(i|n)) ≤ log q Px0 -a.s.,(6.4.45)

lim sup
n→∞

1
n

log(Li|n) ≤ log r Px0 -a.s.,(6.4.46)

lim inf
n→∞

1
n

log(li|n) ≥ log d Px0 -a.s.(6.4.47)

Fix d0 ∈ (0, d), r0 ∈ (r, 1) and q0 ∈ (q, 1). Let n0 ∈ N and β > 0 be chosen according
to Lemma 6.4.8. By (6.4.45)–(6.4.47) there exists n1 ≥ n0 such that

Px0({i ∈ Ω : Px0(i|n) ≤ qn0 for n ≥ n1}) ≥ 1− γ/6,(6.4.48)

Px0({i ∈ Ω : Li|n ≤ rn0 for n ≥ n1}) ≥ 1− γ/6,(6.4.49)

Px0({i ∈ Ω : li|n ≥ dn0 for n ≥ n1}) ≥ 1− γ/6,(6.4.50)

where γ is chosen according to Lemma 6.4.11. Now choose n∗ ∈ N such that

(6.4.51) min{|i| : i ∈ Jn(d0)} ≥ n1 for n ≥ n∗.

Define for n ≥ n∗,

J0
n(d0) = {i ∈ Jn(d0) : Px0(i−1|k) ≤ qk0 , Li−1|k ≤ rk0

and li−1|k ≥ dk0 for k ∈ N, n1 ≤ k ≤ |i|}.

By (6.4.48)–(6.4.50) and Lemma 6.4.11 we have

(6.4.52)
∑

i∈J0
n(d0)

Px0(i−1) ≥ γ/2 for n ≥ n1.

Since i−1 ∈ Q|i|n1(r0) for i ∈ J0
n(d0), by Lemma 6.4.8 we have

(6.4.53) β−1Px0(i−1) ≥ Px(i−1) ≥ βPx0(i−1) for i ∈ J0
n(d0) and x ∈ F.



Invariant measures for nonexpansive Markov operators 43

From (6.4.52) and (6.4.53) it follows that

(6.4.54)
∑

i∈J0
n(d0)

Px(i−1) ≥ βγ

2

and

(6.4.55) Px(i−1) ≤ β−1q
|i|
0

for every n ≥ n∗, x ∈ F and i ∈ J0
n(d0). Since for i ∈ J0

n(d0) we have li ≤ dn0 and
li−1|k ≥ dk0 for n1 ≤ k ≤ |i|, it follows that |i| ≥ n. Hence

(6.4.56) Px(i−1) ≤ β−1qn0 for i ∈ J0
n(d0).

For n ≥ n∗ define

(6.4.57) Dn =
⋃

i∈J0
n(d0)

Si−1(F ).

Since by Lemma 6.4.9 the set Jn(d0) is fundamental, Lemma 6.4.7 and inequality (6.4.54)
yield

µ∗(Dn) =
∑

i∈Jn(d0)

�
X

Px(i−1)1Dn(Si−1(x))µ∗(dx)(6.4.58)

≥
�
F

∑

i∈J0
n(d0)

Px(i−1)1Dn(Si−1(x))µ∗(dx)

=
�
F

∑

i∈J0
n(d0)

Px(i−1)µ∗(dx) ≥ βγ

2

for n ≥ n∗. Since µ∗ ∈MF
1 , from Lemmas 6.4.7, 6.4.9 and 6.4.10, and inequality (6.4.56),

for every j ∈ J0
n(d0) and n ≥ n∗, we have

µ∗(Sj−1(F )) =
∑

i∈Jn(d0)

�
X

Px(i−1)1Sj−1 (F )(Si−1(x))µ∗(dx)

=
∑

i∈J0
n(d0)

�
F

Px(i−1)1Sj−1 (F )(Si−1(x))µ∗(dx)

=
�
F

Px(j−1)µ∗(dx) ≤ qn0
β
,

because Si−1(F ) ∩ Sj−1(F ) = ∅ for i 6= j, i, j ∈ J0
n(d0). Define εn = dn0σ/2 for n ≥ n∗,

where σ > 0 is given by (6.4.37). By (6.4.38) every ball B with radius εn meets at most
one set Si−1(F ) for i ∈ J0

n(d0). Since µ∗(
⋃

i∈Jn(d0) Si−1(F )) = 1 it follows that to cover
a set of µ∗-measure greater than or equal to 1 − η (with η ≤ βγ/4) we need at least
β2γq−n0 /4 balls with radius εn. Thus N(εn, η) ≥ β2γq−n0 /4 for n ≥ n∗. Consequently,

lim inf
ε→0

logN(ε, η)
− log ε

≥ lim inf
n→∞

log(β2γq−n0 /4)
− log εn

=
log q0

log d0
.

Thus

CapL(µ∗) ≥
log q0

log d0
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and letting q0 → q and d0 → d we conclude that

CapL(µ∗) ≥
log q
log d

.

Suppose now that some of the li’s are equal to 1. Choose li < li, i = 1, . . . , N . Since

sup
x∈X

N∏

i=1

l
pi(x)
i → sup

x∈X

N∏

i=1

l
pi(x)
i

as li → li for i ∈ {1, . . . , N}, our assertion follows.

In the case when Si : X → X are similarities and pi : X → R+, i = 1, . . . , N ,
are constants, Theorems 6.4.1 and 6.4.3 may be summarized in the following way (see
also [21]).

Theorem 6.4.4. Let pi : X → R+, i = 1, . . . , N , be constants. Assume that

%(Si(x), Si(y)) = Li%(x, y) for x, y ∈ X and i = 1, . . . , N.

Moreover , assume that S1, . . . , SN satisfy the strong Moran condition. If
N∏

i=1

Lpii < 1,

then the unique invariant distribution µ∗ for (S, p)N satisfies

CapL(µ∗) =
∑N
i=1 pi log pi∑N
i=1 pi logLi

.

Proof. The upper estimate of capacity follows immediately from Theorem 6.4.1 and the
lower estimate follows from Theorem 6.4.3.

7. Stochastically perturbed dynamical systems

7.1. Introduction. In this section we study the stochastically perturbed dynamical
system

xn+1 = S(xn, tn) for n = 1, 2, . . .

Assume that the function S : X× [0, T ]→ X is Borel measurable and the tn are random
variables with values in [0, T ] such that

prob(tn < t |xn = x) =
t�
0

p(x, u) du for 0 ≤ t ≤ T ,

where p : X × [0, T ]→ R+ is a Borel measurable and normalized function. We are going
to derive a recurrence relation between µn+1 and µn, where µn is the distribution of xn.
Let h : X → R be an arbitrary bounded Borel measurable function. The mathematical
expectation of h(xn+1) is given by

E(h(xn+1)) =
�
X

h(x)µn+1(dx).

On the other hand, we have
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E(h(xn+1)) = E(h(S(xn, tn))) =
�
X

{ T�
0

h(S(x, t))p(x, t) dt
}
µn(dx).

Thus if we set h = 1A, A ∈ B(X), we obtain

µn+1(A) =
�
X

{ T�
0

1A(S(x, t))p(x, t) dt
}
µn(dx),

which is the desired recurrence relation between µn+1 and µn. If we define an operator
P by

(7.1.1) Pµ(A) =
�
X

{ T�
0

1A(S(x, t))p(x, t) dt
}
µ(dx) for A ∈ B(X),

the above equation may be rewritten as

µn+1 = Pµn.

A straightforward calculation shows that P is a Feller operator and its adjoint is of the
form

(7.1.2) Uf(x) =
T�
0

f(S(x, t))p(x, t) dt for f ∈ B(X).

We make the following assumptions which we assume to hold throughout this section:

(i) The function S : X × [0, T ]→ X is continuous.
(ii) The function p : X× [0, T ]→ R+ is a lower semi-continuous, normalized function,

i.e.,

(7.1.3)
T�
0

p(x, t) dt = 1 for x ∈ X.

(iii) The continuity condition, i.e.,

(7.1.4)
T�
0

|p(x, t)− p(y, t)| dt ≤ ω(%(x, y)) for x, y ∈ X,

where ω ∈ Φ0.
(iv) The average contractivity condition, i.e.,

(7.1.5)
T�
0

%(S(x, t), S(y, t))p(x, t) dt ≤ r(%(x, y)) for x, y ∈ X,

where r ∈ Φ0.

7.2. Nonexpansiveness. We start with an easy lemma.

Lemma 7.2.1. Let S : X × [0, T ] → X and p : X × [0, T ] → R+ satisfy conditions
(7.1.4) and (7.1.5) with ω, r such that the conditions formulated in one of cases I–III of
Section 6.2 hold. Then the operator P given by (7.1.1) is essentially nonexpansive.

Proof. By Theorem 3.1 it is enough to show that there exists a function ϕ ∈ Φ such
that U(Fϕ) ⊂ Fϕ, where Fϕ denotes the family of all continuous functions f such that
|f(x)| ≤ 1 and |f(x)− f(y)| ≤ ϕ(%(x, y)) for all x, y ∈ X.
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Since ω and r satisfy the conditions in one of cases I–III, there exists ϕ ∈ Φ such that

(7.2.1) ω(t) + ϕ(r(t)) ≤ ϕ(t) for t ≥ 0.

Fix f ∈ Fϕ. Since |f(x)| ≤ 1 for x ∈ X and p is a normalized function, we have

|Uf(x)| ≤
T�
0

|f(S(x, t))|p(x, t) dt ≤
T�
0

p(x, t) dt = 1 for x ∈ X.

Further, for all x, y ∈ X we have

|Uf(x)− Uf(y)| ≤
T�
0

|f(S(x, t))p(x, t)− f(S(y, t))p(y, t)| dt

≤
T�
0

|f(S(y, t))| |p(x, t)− p(y, t)| dt+
T�
0

|f(S(x, t))− f(S(y, t))|p(y, t) dt

and consequently by (7.1.4) we obtain

|Uf(x)− Uf(y)| ≤ ω(%(x, y)) +
T�
0

ϕ(%(S(x, t), S(y, t)))p(y, t) dt.

By Jensen’s inequality and (7.1.5) we finally obtain

|Uf(x)− Uf(y)| ≤ ω(%(x, y)) + ϕ(r(%(x, y))) for x, y ∈ X.
Therefore Uf ∈ Fϕ by (7.2.1).

7.3. Invariant measures. We start with the following lemma.

Lemma 7.3.1. Let the assumptions of Lemma 7.2.1 hold. Then

(7.3.1) {ε > 0 : inf
µ∈M1

lim inf
n→∞

Pnµ(B) > 0 for some B ∈ Cε} 6= ∅.

Proof. Fix x0 ∈ X and define V (x) = %(x, x0) for x ∈ X. Obviously V is a Lyapunov
function, bounded on bounded sets. Then by (7.1.5) we have

UV (x) =
T�
0

V (S(x, t))p(x, t) dt =
T�
0

%(S(x, t), x0)p(x, t) dt

≤
T�
0

%(S(x, t), S(x0, t))p(x, t) dt+
T�
0

%(S(x0, t), x0)p(x, t) dt

≤ r(%(x, x0)) + sup
t∈[0,T ]

%(S(x0, t), x0) for x ∈ X.

Since r is a concave function and r(0) = 0, we obtain

UV (x) ≤ r(1)%(x, x0) + r(1) + sup
t∈[0,T ]

%(S(x0, t), x0).

If the function r satisfies the conditions in one of cases I–III of Section 6.2, then r(1) < 1.
Finally from Lemma 2.4.2 and Corollary 2.4.1 it follows that there exists B ∈ Bb(X) such
that

(7.3.2) lim inf
n→∞

Pnµ(B) ≥ 1/2 for µ ∈M1.
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Lemma 7.3.2. Let the assumptions of Lemma 7.2.1 hold. Then

(7.3.3) inf{ε > 0 : inf
µ∈M1

lim inf
n→∞

Pnµ(B) > 0 for some B ∈ Cε} = 0

and consequently P is semi-concentrating.

Proof. From Lemma 7.3.1 it follows that (7.3.1) holds. Set

d = inf{ε > 0 : inf
µ∈M1

lim inf
n→∞

Pnµ(B) > 0 for some B ∈ Cε}.

Suppose, contrary to our claim, that d > 0. Since the function r satisfies the conditions
in one of cases I–III, we may choose ε > d such that r(ε) < d. Choose η ∈ (r(ε), d). Since
ε > d, we may find {x1, . . . , xm} ⊂ X and α > 0 such that

(7.3.4) lim inf
n→∞

Pnµ
( m⋃

i=1

B(xi, ε)
)
> α for µ ∈M1.

Set

Bε =
m⋃

i=1

B(xi, ε), Cη =
⋃

0≤t≤T

m⋃

i=1

B(S(xi, t), η).

Fix µ ∈M1 and n0 ∈ N such that Pnµ(Bε) ≥ α for n ≥ n0. Fix i ∈ {1, . . . ,m}. For every
x ∈ B(xi, ε), we estimate �

Tx,i
p(x, t) dt, where Tx,i = {t ∈ [0, T ] : %(S(x, t), S(xi, t))≤ η}.

We have
�

[0,T ]\Tx,i

η · p(x, t) dt ≤
T�
0

%(S(x, t), S(xi, t))p(x, t) dt ≤ r(%(x, xi)) ≤ r(ε).

Hence �
[0,T ]\Tx,i

p(x, t) dt ≤ r(ε)
η

and from (7.1.3) it follows that
�

Tx,i

p(x, t) dt ≥ η − r(ε)
η

.

Therefore for n ≥ n0 we have

Pn+1µ(Cη) =
�
X

{ T�
0

1Cη (S(x, t))p(x, t) dt
}
Pn µ(dx)

≥
�
Bε

{ T�
0

1Cη (S(x, t))p(x, t) dt
}
Pn µ(dx)

≥ η − r(ε)
η

· Pnµ(Bε) ≥
η − r(ε)

η
α.

Since µ ∈M1 is arbitrary, we finally obtain

inf
µ∈M1

lim inf
n→∞

Pnµ(Cη) ≥ η − r(ε)
η

α.

Observe that Cη ∈ Cγ for every γ > η, which, since η < d, contradicts the definition
of d.
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As a consequence of Lemmas 7.2.1, 7.3.1 and 7.3.2 we obtain the following theorem.

Theorem 7.3.1. Let S : X × [0, T ] → X and p : X × [0, T ] → R+ satisfy conditions
(7.1.4) and (7.1.5) with ω, r such that the conditions formulated in one of cases I–III
of Section 6.2 hold. Then the operator P given by (7.1.1) has an invariant distribution.
Moreover , the operator P and the set

(7.3.5) Ω̂ =
⋃

µ∈M1

Ω(µ),

where Ω(µ) is given by (2.3.8), are tight.

Proof. From Lemmas 7.2.1, 7.3.1 and 7.3.2 it follows that P is essentially nonexpan-
sive and semi-concentrating. A simple application of Theorem 5.5 (see also Remark 5.1)
finishes the proof.

Theorem 7.3.2. Let S : X × [0, T ] → X and p : X × [0, T ] → R+ satisfy conditions
(7.1.4) and (7.1.5) with ω, r such that the conditions formulated in one of cases I–III of
Section 6.2 hold. Assume that for every x ∈ X there exists τx ∈ [0, T ) such that

p(x, t) = 0 for 0 ≤ t ≤ τx, p(x, t) > 0 for τx < t ≤ T .
Then the operator P given by (7.1.1) is asymptotically stable.

Proof. By Theorem 7.3.1, P has an invariant distribution. Therefore it remains to verify
that

(7.3.6) lim
n→∞

‖Pnµ1 − Pnµ2‖FM = 0 for µ1, µ2 ∈M1.

Since P is essentially nonexpansive, it is enough to show that for every ε > 0 there is
α > 0 having the following property: for every µ1, µ2 ∈ M1 there exist A ∈ Bb(X) with
diamA ≤ ε and n0 ∈ N such that

(7.3.7) Pn0µi(A) > α for i = 1, 2.

Fix ε > 0. According to Theorem 7.3.1 there is a compact set K ⊂ X such that

(7.3.8) µ̃(K) ≥ 4/5 for µ̃ ∈ Ω̂.

Choose m ∈ N such that rm(diamK) ≤ ε/3. For every pair (x, y), x, y ∈ K, we define
open neighbourhoods Ux,y and Vx,y of x and y, respectively. Suppose first that τx ≥ τy.
From (7.1.5) it follows that there exists t1 ∈ (τx, T ] such that

%(S(x, t1), S(y, t1)) ≤ r(%(x, y)).

Moreover, since t1 ∈ (τx, T ] ⊂ (τy, T ] we have

p(x, t1) > 0, p(y, t1) > 0.

If τy ≥ τx we may obtain the same result by first choosing an appropriate number t1 ∈
(τy, T ]. Thus by induction for every pair (x, y) we may construct a sequence (t1, . . . , tm),
ti = ti(x, y), i = 1, . . . ,m, such that

%(Sm(x, t1, . . . , tm), Sm(y, t1, . . . , tm)) ≤ rm(%(x, y))

and

pm(x, t1, . . . , tm) > 0, pm(y, t1, . . . , tm) > 0,
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where the functions Si, i = 1, 2, . . . , are defined by the recurrence relations

S1(x, t1) = S(x, t1),

Si+1(x, t1, . . . , ti+1) = S(Si(x, t1, . . . , ti), ti+1),

pi(x, t1, . . . , ti) = p(x, t1) . . . p(Si−1(x, t1, . . . , ti−1))

for x ∈ X, t1, . . . , ti+1 ∈ [0, T ], i = 1, 2, . . . Fix x ∈ X. By the continuity of S and the
lower semi-continuity of p for every y ∈ K there exist neighbourhoods Ux,y of x, Vx,y of
y and positive numbers δ = δ(x, y), σ = σ(x, y) such that

(7.3.9) %(Sm(x, t1, . . . , tm), Sm(u, t1, . . . , tm)) ≤ ε/3,
(7.3.10) pm(u, t1, . . . , tm) ≥ σ(x, y)

for u ∈ Ux,y , |ti − ti| ≤ δ(x, y), i = 1, . . . ,m, and analogously

(7.3.11) %(Sm(y, t1, . . . , tm), Sm(v, t1, . . . , tm)) ≤ ε/3,
(7.3.12) pm(v, t1, . . . , tm) ≥ σ(x, y)

for v ∈ Vx,y , |ti − ti| ≤ δ(x, y), i = 1, . . . ,m. Since K is compact and K ⊂ ⋃y∈K Vx,y,
there exists {y1, . . . , yq(x)} ⊂ K such that

(7.3.13) K ⊂
q(x)⋃

i=1

Vx,yi .

Set Ux =
⋂q(x)
i=1 Ux,yi and observe that Ux is an open neighbourhood of x. Therefore there

exists a subset {x1, . . . , xp} ⊂ K such that

(7.3.14) K ⊂
p⋃

i=1

Uxi .

From (7.3.13) and (7.3.14) it follows that

G = {Uxi ∩ Vx1,yj1
∩ . . . ∩ Vxp,yjp : 1 ≤ i ≤ p, 1 ≤ jk ≤ q(xk) for k = 1, . . . , p}

covers K. Denote by M its cardinality and let G =
⋃G. Set

δ = min
1≤i≤p

( min
1≤j≤q(xi)

δ(xi, yj)), σ = min
1≤i≤p

( min
1≤j≤q(xj)

σ(xi, yj)).

We are going to show that P satisfies (7.3.7) with α = σδm/(2M). In fact, let µ1, µ2 ∈
M1. Set µ0 = (µ1 +µ2)/2. According to Theorem 7.3.1 there exists a measure µ ∈ Ω(µ0)
and a sequence (mn)n≥1 such that

(7.3.15) lim
n→∞

‖Pmnµ0 − µ‖FM = 0.

Since (7.3.15) is equivalent to the weak convergence of (Pmnµ0)n≥1 to µ and G is open,
the Aleksandrov theorem (see [6]) implies

lim inf
n→∞

Pmnµ0(G) ≥ µ(G).

From this and (7.3.8) it follows that there exists an integer n0 such that

Pn0µ0(G) = (Pn0µ1(G) + Pn0µ2(G))/2 > 3/4.
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Hence

Pn0µi(G) > 1/2 for i = 1, 2.

Consequently, there exist U1, U2 ∈ G such that

Pn0µi(Ui) > 1/(2M) for i = 1, 2.

From the definition of G it follows that U1 ⊂ Uxi and U2 ⊂ Vxi,yji for some i ∈ {1, . . . , q}
and ji ∈ {1, . . . , q(xi)}. The definition of Ux and Vx,y implies that there exists a sequence
(t1, . . . , tm) such that

%(Sm(xi, t1, . . . , tm), Sm(u, t1, . . . , tm)) ≤ ε/3,
pm(u, t1, . . . , tm) ≥ σ

for u ∈ Uxi and |ti − ti| ≤ δ,
%(Sm(yji , t1, . . . , tm), Sm(v, t1, . . . , tm)) ≤ ε/3,

pm(v, t1, . . . , tm) ≥ σ
for v ∈ Vxi,yji and |ti − ti| ≤ δ, and

%(Sm(xi, t1, . . . , tm), Sm(yji , t1, . . . , tm)) ≤ ε/3.
Now define A = A1 ∪A2, where

A1 = cl{Sm(u, t1, . . . , tm) : u ∈ Uxi , |ti − ti| ≤ δ, i = 1, . . . ,m},
A2 = cl{Sm(v, t1, . . . , tm) : v ∈ Vxi,yji , |ti − ti| ≤ δ, i = 1, . . . ,m}

and observe that diamA ≤ ε. Set n = n0 +m. By induction we have

Pnµi(A) ≥
�
X

{ T�
0

. . .

T�
0

1Ai(Sm(u, t1, . . . , tm))pm(u, t1, . . . , tm) dt1 . . . dtm
}
Pn0µi(du)

for i= 1, 2. Therefore, by the definition of A1 and A2 we obtain Pn0µi(A) > σδm/(2M)
= α for i = 1, 2.

Studying Ważewska’s equation (see [37]) we obtain a stochastically perturbed dynam-
ical system such that

(7.3.16) S : X × [0, 1]→ X is continuous,

(7.3.17) p(x, t) = 1 for x ∈ X, t ∈ [0, 1].

Moreover, there exist constants l, L ∈ (0, 1) and a > 0 such that

(7.3.18) l%(x, y) ≤ %(S(x, t), S(y, t)) ≤ L%(x, y) for x, y ∈ X, t ∈ [0, 1],

(7.3.19) a|t− t′| ≤ %(S(x, t), S(y, t′)) for x, y ∈ X and t, t′ ∈ [0, 1].

Theorem 7.3.3. Let S : X × [0, 1] → X and p : X × [0, 1] → R+ satisfy conditions
(7.3.16)–(7.3.19). Then the Markov operator P given by (7.1.1) is asymptotically stable.

Proof. We easily check that the assumptions of Theorem 7.3.2 are satisfied.

7.4. Capacity of invariant measures. We end this chapter with the following result
concerning the capacity of an invariant measure.
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Theorem 7.4.1. Let S : X × [0, 1] → X and p : X × [0, 1] → R+ satisfy conditions
(7.3.16)–(7.3.19) and let µ∗ be the unique invariant distribution for the Markov operator
P given by (7.1.1). Then

CapL(µ∗) =∞.
Proof. Fix x ∈ X. We are going to estimate µ∗(B(x, alm/2)), m ∈ N, where the constants
l, a are given by (7.3.18), (7.3.19), respectively. Fix m ∈ N. By the invariance property
of µ∗ we obtain

µ∗(B(x, alm/2)) = Pmµ∗(B(x, alm/2))(7.4.1)

=
�
X

{ 1�
0

. . .

1�
0

1B(x,alm/2)(Sm(u, t1, . . . , tm)) dt1 . . . dtm
}
µ∗(du),

where Sm is defined in the proof of Theorem 7.3.2. Let (t1, . . . , tm), t1, . . . , tm ∈ [0, 1], be
such that there exists y ∈ X such that

(7.4.2) Sm(y, t1, . . . , tm) ∩B(x, alm/2) 6= ∅.
If

(7.4.3) Sk(z, t1, . . . , tk−1, tk) ∩B(x, alm/2) 6= ∅
for some z ∈ X and 1 ≤ k ≤ m, then |tk − tk| ≤ lm−k+1. Suppose, contrary to our claim,
that |tk − tk| > lm−k+1 for some k, 1 ≤ k ≤ m. Then by (7.3.19) we obtain

%(Sk(u, t1, . . . , tk−1, tk), Sk(z, t1, . . . , tk−1, tk)) > alk−1 · lm−k+1 = alm

for u ∈ X. Therefore

%(Sm(y, t1, . . . , tm), Sk(z, t1, . . . , tk−1, tk)) > alm,

which contradicts (7.4.2) and (7.4.3). From the above and (7.4.1) it follows that

µ∗(B(x, alm/2)) ≤ 2m
m∏

k=1

lm−k+1 = (2 · l(m+1)/2)m.

Fix η > 0 and observe that

N(alm/2, η) = inf{NC(alm/2) : C ⊂ X, µ∗(C) ≥ 1− η} ≥ [(1− η)(2 · l(m+1)/2)−m].

(We use [a] to denote the integer part of a.) Hence

CapL(µ∗) ≥ lim inf
m→∞

logN(alm/2, η)
− log(alm/2)

=∞

and consequently CapL(µ∗) =∞.

8. Poisson driven stochastic differential equations

8.1. Introduction. In the last chapter we consider a stochastic differential equation of
the form

(8.1.1) dξ(t) = a(ξ(t))dt+
�
Θ

σ(ξ(t), θ)Np(dt, dθ)



52 T. Szarek

for t ≥ 0 with the initial condition

(8.1.2) ξ(0) = ξ0,

where (ξ(t))t≥0 is a stochastic process with values in a separable Banach space (X, ‖ · ‖).
We make the following five assumptions:

(i) The coefficient a : X → X is Lipschitzian:

‖a(x)− a(y)‖ ≤ la‖x− y‖ for x, y ∈ X.

(ii) (Θ,G, p̃) is a finite measure space with p̃(Θ) = 1.
(iii) The perturbation coefficient σ : X × Θ → X is a B(X) × G/B(X)-measurable

function such that

‖σ(x, ·)− σ(y, ·)‖L2(p̃) ≤ lσ‖x− y‖ for x, y ∈ X.

(iv) There are given a probability space (Ω̃, Ã, P̃), a sequence (tn)n≥0 of nonnegative
random variables and a sequence (θn)n≥1 of random elements with values in Θ. The
variables ∆tn = tn − tn−1 (t0 = 0) are nonnegative, independent and equally distributed
with density λe−λt for t ≥ 0. The elements θn are independent, equally distributed
with distribution p̃. The sequences (tn)n≥0 and (θn)n≥1 are also independent. Under this
condition the mapping

Ω̃ 3 ω̃ 7→ p(ω̃) = (tn(ω̃), θn(ω̃))n≥1

defines a stationary Poisson point process.
(v) For every µ ∈M1 there is an X-valued random vector ξµ defined on Ω̃, indepen-

dent of p and having the distribution µ.

Condition (iv) implies that for every measurable set Z ⊂ (0,∞)×Θ the variable

Np(Z) = card{n : (tn, θn) ∈ Z}
is Poisson distributed. It is called the Poisson random counting measure.

It is easy to show that

E(Np((0, t]×K)) = λtp̃(K) for t ∈ (0,∞), K ∈ G,

where E denotes the expectaction on the probability space (Ω̃, Ã, P̃).
By a solution of (8.1.1), (8.1.2) we mean a process (ξ(t))t≥0 with values in X such

that with probability one the following two conditions hold:

(a) The sample path is a right-continuous function such that for t > 0 the limit
ξ(t−) = lims→t, s<t ξ(s) exists and

(b) ξ(t) = ξ0 +
t�
0

a(ξ(s))ds+
t�
0

�
Θ

σ(ξ(s−), θ)Np(ds, dθ) for t ≥ 0.

It is easy to write the explicit formula for the solution of (8.1.1), (8.1.2). Consider the
ordinary differential equation

(8.1.3) y′(t) = a(y(t)) for t ≥ 0
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and denote by y(t) = S(t, x), t ∈ R+, the solution of (8.1.3) satisfying the initial condition
y(0) = x. Then for every fixed value of p = (tn, θn)n≥1 the solution is given by

(8.1.4)
ξ(0) = ξ0, ξ(tn) = ξ(tn−) + σ(ξ(tn−), θn),

ξ(t) = S(t− tn, ξ(tn)) for t ∈ [tn, tn+1), n ∈ N ∪ {0}.
For x ∈ X denote by ξx(t) the solution of the initial value problem (8.1.1), (8.1.2)

with ξ0 = x. Then for every t ≥ 0 and f ∈ C(X) define

(8.1.5) U tf(x) = E(f(ξx(t))).

The classical theory of equation (8.1.1) (see [22, 26]) ensures that (ξx(t))t≥0 is a Markov
process homogeneous in time and (U t)t≥0 is a continuous semigroup of bounded linear
operators acting on C(X). Obviously, this semigroup may be extended to all bounded
Borel measurable functions. We check at once that the operator U t for t ≥ 0 satisfies
conditions (2.2.3)–(2.2.5). Thus for every t ≥ 0 there exists an operator P t :Mfin →Mfin

satisfying the duality condition

〈f, P tµ〉 = 〈U tf, µ〉 for f ∈ B(X), µ ∈Mfin.

Since (U t)t≥0 is a semigroup on B(X), the duality condition shows that (P t)t≥0 is a
semigroup on Mfin.

8.2. Nonexpansiveness. For every q ∈ (0, 1] we introduce in the Banach space (X, ‖·‖)
the new metric

%q(x, y) = ‖x− y‖q for x, y ∈ X.

Obviously, %q is equivalent to %q′ for every q′, q ∈ (0, 1]. Further, for every q ∈ (0, 1] we
introduce the Fortet–Mourier norm

‖ν‖q,FM = sup{|〈f, ν〉| : f ∈ Fq} for ν ∈Msig,

where Fq consists of all functions f such that |f(x)| ≤ 1 and |f(x)− f(y)| ≤ %q(x, y) for
all x, y ∈ X. The following theorem provides conditions for essential nonexpansiveness of
the operator P t for t ≥ 0.

Theorem 8.2.1. Let (X, ‖ · ‖) be a separable Banach space. Assume that

‖S(t, x)− S(t, y)‖ ≤ eαt‖x− y‖ for x, y ∈ X, t ≥ 0,(8.2.1)

‖τ(x, ·)− τ(y, ·)‖L1(p̃) ≤ lτ‖x− y‖ for x, y ∈ X,(8.2.2)

where τ(x, θ) = x+ σ(x, θ). Moreover , assume that

(8.2.3) lτ < exp(−α/λ).

Then there exists q ∈ (0, 1] such that P t, t ≥ 0, is nonexpansive with respect to ‖ · ‖q,FM

and

(8.2.4) lim
t→∞

‖P tµ1 − P tµ2‖q,FM = 0 for µ1, µ2 ∈M1.

Moreover , for every A ∈ Bb(X) the above convergence is uniform over all µ1, µ2 ∈MA
1 .

Proof. By inequality (8.2.3) there exists q ∈ (0, 1] such that

(8.2.5) qα− λ+ λlqτ < 0.
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From Theorem 3.1 it follows that to finish the proof of nonexpansiveness it is enough
to show that U tf ∈ Fq for f ∈ Fq and t > 0. Further, when we show that for every
A ∈ Bb(X),

(8.2.6) sup
x,y∈A

sup
f∈Fγ

|U tf(x)− U tf(y)| → 0

as t →∞, the proof will be finished. Indeed, if (8.2.6) holds, then (8.2.4) is satisfied for
µ1 = δx, µ2 = δy. Since the linear combinations of point measures are dense in M1 (in
the weak topology and also in the Fortet–Mourier distance ‖ · ‖q,FM) and P t for t ≥ 0 is
nonexpansive with respect to ‖ · ‖q,FM, (8.2.4) will hold for all µ1, µ2 ∈ M1. Obviously,
this convergence will be uniform over all measures supported in the same bounded set.

Define Ω̃n(t) = {ω̃ ∈ Ω̃ : tn(ω̃) ≤ t and tn+1(ω̃) > t} for n ∈ N ∪ {0} and t > 0.
Obviously P̃(

⋃∞
n=0 Ω̃n(t)) = 1. Fix f ∈ Fq, t > 0 and A ∈ Bb(X). Since the sequences

(tn)n≥0, (θn)n≥1 are independent, for x, y ∈ A we obtain

|U tf(x)− U tf(y)| = |Ef(ξx(t))− Ef(ξy(t))| ≤
∞∑

n=0

�
Ω̃n(t)

‖ξx(t)(ω̃)− ξy(t)(ω̃)‖q P̃(dω̃)

≤
∞∑

n=0

exp(qαt)lnqτ ‖x− y‖q P̃(Ω̃n(t))

= exp(qαt)‖x− y‖q
∞∑

n=0

lqnτ
λntn

n!
exp(−λt)

= exp((qα− λ+ λlqτ )t)‖x− y‖q.
From this and (8.2.5) we obtain (8.2.6). Moreover, for every f ∈ Fq and t ≥ 0 we have

|U tf(x)− U tf(y)| ≤ ‖x− y‖q for x, y ∈ X.

Since |U tf(x)| ≤ 1 for f ∈ Fq and x ∈ X, we obtain U tf ∈ Fq.

8.3. Invariant measures. This section is devoted to the proof of the existence of an
invariant measure.

Lemma 8.3.1. Let the assumptions of Theorem 8.2.1 hold. Then there exists A ∈ Bb(X)
such that

(8.3.1) inf
µ∈M1

lim inf
t→∞

P tµ(A) > 0.

Proof. Choose q ∈ (0, 1] such that

qα− λ+ λlqτ < 0.

Set V (x) = ‖x‖q for x ∈ X. Following the proof of inequality (17) in [22, p. 239] it is
easy to conclude that E‖ξx(t)‖2 <∞ for all x ∈ X and t ≥ 0. Thus

U tV (0) = E‖ξ0(t)‖q <∞ for all t ≥ 0.

Using a similar argument to that in the proof of Theorem 8.2.1 can show that

(8.3.2) |U tV (x)− U tV (0)| ≤ exp((qα− λ+ λlqτ )t)V (x) for x ∈ X and t > 0.
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Fix s0 > 0. From (8.3.2) it follows that

(8.3.3) Us0V (x) ≤ aV (x) + b for x ∈ X,
where

a = exp((qα− λ+ λlqτ )s0) < 1, b = Us0V (0).

Therefore, from Corollary 2.4.1 it follows that there exists A0 ∈ Bb(X) such that

lim inf
n→∞

(P s0)nµ(A0) > 1/2 for µ ∈M1.

Set A = N (A0, 1). We will show that

lim inf
t→∞

P tµ(A) ≥ 1/2 for µ ∈M1.

Suppose, contrary to our claim, that

lim inf
t→∞

P tµ(A) < 1/2 for some µ ∈M1.

Choose a measure µ ∈M1 and a sequence (sn)n≥1, sn →∞ as n→∞, such that

(8.3.4) lim inf
n→∞

P snµ(A) < 1/2.

Define mn = [sn/s0] and rn = sn −mns0 for n ∈ N. Since rn ∈ [0, s0], we may assume
that limn→∞ rn = r for some r ∈ [0, s0]. Further, by (8.2.4) we have

lim
n→∞

‖Pmns0+rµ− Pmns0µ‖q,FM = 0.

Since P t, t ≥ 0, is nonexpansive with respect to ‖ · ‖q,FM, we obtain

lim
n→∞

‖Pmns0+rnµ− Pmns0+rµ‖q,FM ≤ lim
n→∞

‖P rnµ− P rµ‖q,FM = 0.

Therefore we have

lim
n→∞

‖Pmns0+rnµ− (P s0)mnµ‖q,FM = 0

and by Lemma 2.4.1 we obtain lim infn→∞ Pmns0+rnµ(A) ≥ 1/2 contrary to (8.3.4).

Lemma 8.3.2. If the assumptions of Theorem 8.2.1 hold , then the operator P s0 is semi-
concentrating for s0 > 0.

Proof. Fix ε > 0 and choose ε < ε. From Lemma 8.3.1 it follows that there exists
A ∈ Bb(X) such that (8.3.1) holds. Set

(8.3.5) β0 = inf
µ∈M1

lim inf
t→∞

P tµ(A)

and choose β ∈ (0, β0). According to Theorem 8.2.1 there exists q ∈ (0, 1] such that
(P t)t≥0 is nonexpansive with respect to ‖ · ‖q,FM and (8.2.4) holds. Fix s0 > 0. Since
convergence (8.2.4) is uniform over all µ1, µ2 ∈MA

1 , there exists m ∈ N such that

(8.3.6) ‖P s0mµ1 − P s0mµ2‖q,FM ≤ ε2q for µ1, µ2 ∈MA
1 .

Choose x ∈ A. By the Ulam theorem (see [6, 15]) there exists a compact set K ⊂ X such
that

P s0mδx(K) ≥ 1− ε.
From (8.3.6) and Lemma 2.4.1 it follows that

P s0mµ(Nq(K, εq)) ≥ P s0mδx(K)− εq for µ ∈MA
1 ,
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where Nq(K, εq) denotes the closed εq-neighbourhood of K in the metric %q. Therefore

P s0mµ(N (K, ε)) ≥ 1− 2εq for µ ∈M1.

Set C = N (K, ε) and observe that C ∈ Cε. Further, from (8.3.5) it follows that for every
µ ∈M1 there exists n0 ∈ N such that

P s0nµ(A) ≥ β for n ≥ n0.

Fix µ ∈M1. For n ≥ n0 define

µn(B) =
P s0nµ(A ∩B)
P s0nµ(A)

for B ∈ B(X)

and observe that

P s0nµ ≥ βµn for n ≥ n0.

From the linearity of P we have

P s0(n+m)µ ≥ βP s0mµn for n ≥ n0

and since µn ∈MA
1 we obtain

P s0(n+m)µ(C) ≥ βP s0mµn(C) ≥ β(1− 2εq) for n ≥ n0.

Therefore lim infn→∞ P s0nµ(C) ≥ β(1− 2εq) for µ ∈M1.

Combining Theorem 8.2.1 and Lemma 8.3.2 we obtain the following theorem.

Theorem 8.3.1. Let (X, ‖ · ‖) be a separable Banach space. Assume that the functions S
and τ satisfy conditions (8.2.1), (8.2.2). If inequality (8.2.3) holds , then the semigroup
(P t)t≥0 has a unique invariant distribution. Moreover , (P t)t≥0 is asymptotically stable.

Proof. Fix s0 > 0. By Lemma 8.3.2 the operator P s0 is semi-concentrating. Further, from
Theorem 8.2.1 it follows that there exists q ∈ (0, 1] such that P t, t ≥ 0, is nonexpansive
with respect to ‖ · ‖q,FM. Then by Theorem 5.5 and Remark 5.1, P s0 has an invariant
distribution µ∗. From (8.2.4) it follows that it is unique. Then for t ≥ 0 we have

P s0(P tµ∗) = P t(P s0µ∗) = P tµ∗.

Since µ∗ is unique, it follows that P tµ∗ = µ∗. On the other hand, by (8.2.4) we obtain

lim
t→∞

‖P tµ− µ∗‖q,FM = lim
t→∞

‖P tµ− P tµ∗‖q,FM = 0 for µ ∈M1.

8.4. Capacity of invariant measures. Let µ ∈ M. Given a point x ∈ X, we call the
quantity

dµ(x) = lim inf
r→0

log µ(B(x, r))
log r

the lower pointwise dimension of µ at x. (Here we assume that log 0 = −∞.) We start
with the following lemma, whose idea is due to A. Lasota and J. Myjak (see [37]).

Lemma 8.4.1. Let µ ∈ M1. If for every η ∈ (0, 1) and x ∈ X there exists r0 > 0 such
that

(8.4.1) µ(B(x, (3 + η)r) ≥ (2− η)µ(B(x, r)) for r ≤ r0,

then dµ(x) ≥ log 2/log 3 for all x ∈ X.
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Proof. Fix η ∈ (0, 1) and x ∈ X. Let r0 be such that (8.4.1) holds. Define

M =
1

3 + η
, l =

1
2− η , s =

log l
logM

, C = r−s0 .

We claim that

(8.4.2) µ(B(x, r)) ≤ Crs for r ∈ [Mnr0, r0], n ∈ N.

Indeed, for r = r0 we have µ(B(x, r0)) ≤ Crs0 = r−s0 rs0 = 1. Suppose now that (8.4.2)
holds for some n ∈ N. Let r ∈ [Mn+1r0,M

nr0). Then r/M ∈ [Mnr0, r0] and consequently
by (8.4.1) we obtain

µ(B(x, r)) ≤ lµ(B(x, r/M)) ≤ lCrs/Ms = Crs.

Thus, by induction (8.4.2) holds for every n ∈ N. Since M < 1, this implies in turn that

(8.4.3) µ(B(x, r)) ≤ Crs for r ∈ (0, r0].

Further, we obtain

dµ(x) = lim inf
r→0

log µ(B(x, r))
log r

≥ lim
r→0

log(Crs)
log r

= s.

Letting η → 0 we finish the proof.

Lemma 8.4.2. Let the assumptions of Theorem 8.2.1 hold. If a(x) 6= 0 for x ∈ X, then
the unique invariant distribution µ∗ for the semigroup (P t)t≥0 satisfies

dµ∗(x) ≥ log 2/log 3 for x ∈ X.
Proof. Fix x ∈ X. From the definition of S(t, ·) it follows that t−1[S(t, x)− x]→ a(x) as
t→ 0 and consequently

‖S(t, x)− x‖ = ‖a(x)‖ · t+ o(t),

where o(t)/t→ 0 as t→ 0. Since a(x) 6= 0, we may choose for small r a positive number
tr such that

‖S(tr, x)− x‖ = r + r exp(αtr),(8.4.4)

‖S(t, x)− x‖ < r + r exp(αt) for t < tr.(8.4.5)

As ‖a(x)‖ > 0 we have limr→0 tr = 0. Consider the ball B(x, r(1 + 2 exp(αtr))) and
observe that from (8.2.1) and (8.4.5) it follows that for every y ∈ B(x, r) we have

S(tr, y) ∈ B(x, r(1 + 2 exp(αtr))).

Further, from the equality P tµ∗ = µ∗ for t ≥ 0 and the definition of (P t)t≥0 we obtain

µ∗(B(S(tr, x), r exp(αtr)) = (P trµ∗)(B(S(tr, x), r exp(αtr)) ≥ exp(−λtr)µ∗(B(x, r)).

From (8.4.4) and (8.4.5) it follows that B(S(tr, x), r exp(αtr)) ∩B(x, r) = ∅. Hence

µ∗(B(x, r(1 + 2 exp(αtr)))) ≥ (1 + exp(−λtr))µ∗(B(x, r)).

Consequently, for every η ∈ (0, 1) there exists r0 > 0 such that

µ∗(B(x, (3 + η)r)) ≥ (2− η)µ∗(B(x, r)) for r ≤ r0.

From Lemma 8.4.1 it follows that dµ∗(x) ≥ log 2/log 3 for x ∈ X.
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Theorem 8.4.1. Let the assumptions of Theorem 8.2.1 hold. If a(x) 6= 0 for x ∈ X, then
the unique invariant distribution µ∗ for the semigroup (P t)t≥0 satisfies

CapL(µ∗) ≥ log 2/log 3.

Proof. Fix d ∈ (0, log 2/log 3) and define

Xn = {x ∈ X : µ∗(B(x, r)) ≤ rd for r ≤ 1/n}.
From Lemma 8.4.2 it follows that

⋃∞
n=1Xn = X. Moreover, Xn is Borel measurable

and Xn ⊂ Xn+1 for n ∈ N. Therefore limn→∞ µ∗(Xn) = µ∗(X) = 1 and consequently
there exists n0 ∈ N such that µ∗(Xn0) > 1/2. Let η < 1/4 and let C ⊂ X be such that
µ∗(C) > 1− η. Then µ∗(C ∩Xn0) > 1/4. Set C0 = C ∩Xn0 . Fix ε < 1/(2n0). Note that
every ball Bε with radius ε such that Bε ∩C0 6= ∅ satisfies Bε ⊂ B′2ε, where B′2ε is some
ball with radius 2ε and centre in C0. Since 2ε < 1/n0 and C0 ⊂ Xn0 , we have

µ∗(Bε) ≤ µ∗(B
′
2ε) ≤ (2ε)d

and consequently

NC0(ε) · (2ε)d ≥ 1/4.

Since C ⊂ X with µ∗(C) > 1− η and η < 1/4 are arbitrary, we obtain

N(ε, η) = inf{NC(ε) : C ⊂ X and µ(C) > 1− η} ≥ (2ε)−d/4

and

CapL(µ∗) ≥ lim
ε→0

log((2ε)−d/4)
− log ε

= d.

Letting d→ log 2/log 3 we finish the proof.

9. Final remarks

We finish the paper with some information concerning references to the literature. All
definitions of Section 2.3 can be found in [58, 59, 62]. Lemmas 2.4.1–2.4.5 have also
been proved there. Nonexpansiveness has been examined in [59]. However, Theorems 3.1
and 3.2 are an extension of our former results. Further, Theorems 4.1–4.4 are a refor-
mulation of results proved in [59, 62]. Criteria for the existence of an invariant measure
(Theorems 4.1–4.4) have been formulated in [58, 59, 62]. Results presented in Section 6.2
have been proved in [58, 62]. Estimates of capacity of self-similar measures (Theorem 6.4.1
and 6.4.3) have been given in [48]. All results devoted to stochastically perturbed dynam-
ical systems are new. In particular Theorem 7.3.2 is an extension of the main theorem
of [23]. Finally, Poisson driven differential equations have been studied in [61]. In the
proof of the existence of an invariant measure we used the double contraction principle.
Here we show that the invariant measure can also be obtained by a simple application of
our criterion.
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