I. Classes of L^{1}-convergence of Fourier series

1.1. Classical and neoclassical results. Denote by $L^{1}(\mathbb{T})$ the Banach space of all complex, Lebesgue integrable functions on the unit circle \mathbb{T}. To every function $f \in L^{1}(\mathbb{T})$ corresponds the Fourier series of f,

$$
S(f) \sim \sum_{|n|<\infty} \widehat{f}(n) e^{i n t}, \quad \text { where } \quad \widehat{f}(n)=\frac{1}{2 \pi} \int_{\mathbb{T}} f(t) e^{-i n t} d t, \quad|n|<\infty
$$

are the Fourier coefficients of f.
The sequence of partial sums will be denoted by

$$
S_{n}(f)=S_{n}(f, t)=\sum_{|k| \leq n} \widehat{f}(k) e^{i k t}, \quad n=0,1, \ldots
$$

while the ($C, 1$)-means (Fejér sums) of the sequence of partial sums will be written as

$$
\sigma_{n}(f)=\sigma_{n}(f, t)=\frac{1}{n+1} \sum_{k=0}^{n} S_{k}(f, t), \quad n=0,1, \ldots
$$

The Dirichlet kernel is denoted by

$$
D_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos k t=\frac{\sin [(n+1 / 2) t]}{2 \sin (t / 2)}
$$

and the Fejér kernel by

$$
F_{n}=\frac{1}{n+1} \sum_{k=0}^{n} D_{k}(t)=\frac{1}{2(n+1)}\left[\frac{\sin [(n+1) t / 2]}{\sin (t / 2)}\right]^{2}
$$

Note that

$$
\begin{aligned}
\left\|D_{n}\right\|_{1} & =\frac{4}{\pi^{2}} \log n+O(1), \quad n \rightarrow \infty \\
\left\|F_{n}\right\|_{1} & =1 \quad \text { for every } n, \text { where }\left\|\|_{1} \text { denotes the } L^{1}(\mathbb{T})\right. \text {-norm. }
\end{aligned}
$$

Let

$$
\begin{aligned}
& \widetilde{D}_{n}(t)=\sum_{k=1}^{n} \sin k t=\frac{\cos (t / 2)-\cos [(n+1 / 2) t]}{2 \sin (t / 2)} \\
& \bar{D}_{n}(t)=-\frac{1}{2} \operatorname{ctg} \frac{t}{2}+\widetilde{D}_{n}(t)=-\frac{\cos [(n+1 / 2) t]}{2 \sin (t / 2)} \\
& \widetilde{K}_{n}(t)=\frac{1}{n+1} \sum_{k=0}^{n} \widetilde{D}_{k}(t)=\frac{1}{4 \sin ^{2}(t / 2)}\left[\sin t-\frac{\sin [(n+1) t]}{n+1}\right]
\end{aligned}
$$

denote the conjugate Dirichlet kernel, modified Dirichlet kernel and conjugate Fejér kernel, respectively.

Let $L^{1}(0, \pi)$ be the Banach space of all real, Lebesgue integrable functions on $(0, \pi)$. Let

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x \tag{C}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \sin n x \tag{S}
\end{equation*}
$$

be cosine and sine trigonometric series. The partial sums of real cosine and sine series will be denoted by $S_{n}(x)$ and $\widetilde{S}_{n}(x)$ respectively.

Let f be a 2π-periodic and even function in $L^{1}(0, \pi)$, and let $\left\{a_{k}\right\}$ be the sequence of its Fourier coefficients. Denote by \mathcal{F} the class of sequences of Fourier coefficients of all such functions. It is well known (see [73, Vol. 1, p. 67]) that, in general, it does not follow from $\left\{a_{k}\right\} \in \mathcal{F}$ that S_{n} converges to f in the $L^{1}(0, \pi)$-norm, i.e. it does not follow that $\left\|S_{n}-f\right\|=o(1), n \rightarrow \infty$, where $\|\cdot\|$ is the $L^{1}(0, \pi)$-norm. However, there are examples of subclasses of \mathcal{F} for which $a_{n} \log n=o(1), n \rightarrow \infty$ is a necessary and sufficient condition for $\left\|S_{n}-f\right\|=o(1), n \rightarrow \infty$.

A classical result concerning the integrability and L^{1}-convergence of a cosine series (C) is the following well known theorem of Young.

ThEOREM 1.1 (Young [71]). If $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a convex $\left(\Delta^{2} a_{n}=\Delta\left(\Delta a_{n}\right)=\Delta a_{n}-\Delta a_{n+1}=\right.$ $\left.a_{n}-2 a_{n+1}+a_{n+2} \geq 0, \forall n\right)$ null sequence, then the cosine series (C) is the Fourier series of its sum f, and

$$
\begin{equation*}
\left\|S_{n}(f)-f\right\|=o(1), n \rightarrow \infty \quad \text { iff } \quad a_{n} \log n=o(1), n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

The sequences $\left\{a_{n}\right\}$ that satisfy the condition $\sum_{n=1}^{\infty}(n+1)\left|\Delta^{2} a_{n}\right|<\infty$ are called quasi-convex. The next theorem of Kolmogorov extends Young's result, since every convex null sequence is also quasi-convex.

Theorem 1.2 (Kolmogorov [22]). If $\left\{a_{n}\right\}$ is a quasi-convex null sequence then the cosine series (C) is the Fourier series of its sum f and (1.1) holds.

We say that a sequence $\left\{a_{k}\right\}$ is of bounded variation and we write $\left\{a_{k}\right\} \in B V$ if $\sum_{k=0}^{\infty}\left|\Delta a_{k}\right|<\infty$. Several authors (Sidon, Telyakovskiŭ, Fomin, Stanojević and others) have extended these classical results by addressing one or both of the following two questions:
(i) If $\left\{a_{n}\right\}$ is a null sequence of bounded variation, is (C) the Fourier series of its sum f ?
(ii) If $\left\{a_{n}\right\} \in B V$, is (C) the Fourier series of some function $f \in L^{1}$ and does (1.1) hold?

Theorem 1.3 (Sidon [34]). Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{p_{n}\right\}_{n=1}^{\infty}$ be sequences such that $\left|\alpha_{n}\right| \leq 1$ for every n and $\sum_{n=1}^{\infty}\left|p_{n}\right|<\infty$. If

$$
a_{n}=\sum_{k=n}^{\infty} \frac{p_{k}}{k} \sum_{l=n}^{k} \alpha_{l}, \quad n=1,2, \ldots,
$$

then the cosine series (C) is the Fourier series of its sum f.
It is obvious that Sidon's conditions imply that $\left\{a_{n}\right\} \in B V$.
Telyakovskiĭ [45] defined an extension of the class of quasi-convex sequences, denoted by S, as follows: a null sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ belongs to S if there exists a decreasing sequence $\left\{A_{n}\right\}_{n=0}^{\infty}$ such that $\sum_{n=0}^{\infty} A_{n}<\infty$ and $\left|\Delta a_{n}\right| \leq A_{n}$ for all n. He proved that the Sidon class is equivalent to the class S. Therefore, the class S is usually called the SidonTelyakovskiŭ class.

Theorem 1.4 (Telyakovskiĭ [45]). Let $\left\{a_{n}\right\}_{n=0}^{\infty} \in S$. Then the cosine series (C) is the Fourier series of its sum f and (1.1) holds.

On the other hand, Kano extended the classical result of Kolmogorov by answering the first question (i).

Theorem 1.5 (Kano [19]). If $\left\{a_{n}\right\}$ is a null sequence such that

$$
\sum_{n=1}^{\infty} n^{2}\left|\Delta^{2}\left(\frac{a_{n}}{n}\right)\right|<\infty
$$

then (C) is a Fourier series, or equivalently it represents an integrable function.
The following lemma was proved by Telyakovskiĭ in [46].
Lemma 1.1 ([46]). The condition $\sum_{n=1}^{\infty} n^{2}\left|\Delta^{2}\left(a_{n} / n\right)\right|<\infty$ is equivalent to the simultaneous fulfillment of the conditions $\sum_{n=1}^{\infty}\left|a_{n}\right| / n<\infty$ and $\sum_{n=1}^{\infty}(n+1)\left|\Delta^{2} a_{n}\right|<\infty$.

Remark 1.1. In view of this lemma, Theorem 1.5 is a corollary of Theorem 1.2.
Later, Kumari and Ram proved the following theorem:
Theorem 1.6 (Kumari-Ram [23]). Suppose $(k+1)^{2}\left|\Delta^{2}\left(a_{k} / k\right)\right| \downarrow 0$. Then

$$
h(x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[\frac{1}{2}(k+1)^{2}\left|\Delta^{2}\left(\frac{a_{k}}{k}\right)\right|+\sum_{v=k}^{n}(v+1)^{2}\left|\Delta^{2}\left(\frac{a_{v}}{v}\right)\right| \cos k x\right]
$$

exists for $x \in(0, \pi]$, and $h \in L(0, \pi]$ iff $\sum_{k=1}^{\infty}(k+1)^{2}\left|\Delta^{2}\left(a_{k} / k\right)\right|<\infty$.
The difference of noninteger order $k \geq 0$ of the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is defined as follows:

$$
\begin{equation*}
\Delta^{k} a_{n}=\sum_{m=0}^{\infty}\binom{m-k-1}{m} a_{n+m} \quad(n=0,1,2, \ldots) \tag{*}
\end{equation*}
$$

where

$$
\binom{\alpha+m}{m}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+m)}{m!} .
$$

It is obvious that if $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ then the series $(*)$ is convergent and $\lim _{n \rightarrow \infty} \Delta^{k} a_{n}$ $=0$. In [29] C. N. Moore generalized quasi-convexity of null sequences in the following
way:

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k}\left|\Delta^{k+1} a_{n}\right|<\infty \quad \text { for } k>0 \tag{M}
\end{equation*}
$$

where the order of differences is fractional, and proved the corresponding integrability result. It is known [8] that if $\left\{a_{n}\right\}$ is a null sequence satisfying (M), then $\sum_{n=1}^{\infty} n^{r}\left|\Delta^{r+1} a_{n}\right|$ $<\infty$ for all $0 \leq r<k$. In particular $\left\{a_{n}\right\}$ is of bounded variation.

Singh and Sharma proved the following generalization of a theorem of Kolmogorov.
Theorem 1.7 (Singh-Sharma [36]). Let $k>0$. If
(i) $\lim _{n \rightarrow \infty} a_{n}=0$,
(ii) $\sum_{n=1}^{\infty} n^{k}\left|\Delta^{k+1} a_{n}\right|<\infty$,
then the series (C) converges in L^{1} if and only if $a_{n} \log n=o(1), n \rightarrow \infty$.
Remark 1.2. Theorem 1.7 is a corollary of Theorem 1.4. It suffices to show that the conditions (i) and (ii) of Theorem 1.7 imply the Sidon-Telyakovskiĭ type condition S. First, we suppose that for some $0<k \leq 1$ the series of (M) converges. For $0<k \leq 1$, we define the sequence

$$
A_{n}=\sum_{i=n}^{\infty}\binom{i-n+k-1}{i-n}\left|\Delta^{k+1} a_{i}\right| .
$$

Now, we need the following properties of the binomial coefficients $\binom{\alpha+n}{n}$ (see [2, p. 885]):
(a) $\alpha>-1 \Rightarrow\binom{\alpha+n}{n}>0$,
(b) $\binom{\alpha+n}{n}=\frac{n^{\alpha}}{\Gamma(\alpha+1)}+O(1), 0<\alpha \leq 1$,
(c) $\sum_{i=0}^{n}\binom{\alpha+i}{i}=\binom{n+\alpha+1}{n}, n \in \mathbb{N}, \alpha \in \mathbb{R}$.

We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{n} & =\sum_{n=0}^{\infty} \sum_{i=n}^{\infty}\binom{i-n+k-1}{i-n}\left|\Delta^{k+1} a_{i}\right| \\
& =\sum_{i=0}^{\infty}\left|\Delta^{k+1} a_{i}\right| \sum_{n=0}^{i}\binom{i-n+k-1}{i-n} \\
& =\sum_{i=0}^{\infty}\left|\Delta^{k+1} a_{i}\right| \sum_{n=0}^{i}\binom{n+k-1}{n}=\sum_{i=0}^{\infty}\binom{i+k}{k}\left|\Delta^{k+1} a_{i}\right| \\
& =\frac{1}{\Gamma(k+1)} \sum_{i=0}^{\infty} i^{k}\left|\Delta^{k+1} a_{i}\right|+O\left(\sum_{i=0}^{\infty}\left|\Delta^{k+1} a_{i}\right|\right)
\end{aligned}
$$

Since the series $(*)$ is convergent, by condition (M), we obtain

$$
\begin{aligned}
\sum_{i=0}^{\infty}\left|\Delta^{k+1} a_{i}\right| & =\left|\Delta^{k+1} a_{0}\right|+\sum_{i=1}^{\infty}\left|\Delta^{k+1} a_{i}\right| \\
& \leq \sum_{m=0}^{\infty}\binom{m-k-2}{m} a_{m}+\sum_{i=1}^{\infty} i^{k}\left|\Delta^{k+1} a_{i}\right|<\infty
\end{aligned}
$$

Thus, $\sum_{n=0}^{\infty} A_{n}<\infty$ and $A_{n} \downarrow 0$. Then for $0<k \leq 1$, we obtain

$$
\Delta a_{n}=\sum_{i=n}^{\infty}\binom{i-n+k-1}{i-n} \Delta^{k+1} a_{i}
$$

i.e.

$$
\left|\Delta a_{n}\right| \leq \sum_{i=n}^{\infty}\binom{i-n+k-1}{i-n}\left|\Delta^{k+1} a_{i}\right|=A_{n} \quad \text { for all } n
$$

If $k>1$, by Bosanquet's result [8], we obtain $\sum_{n=1}^{\infty} n\left|\Delta^{2} a_{n}\right|<\infty$, i.e. $\left\{a_{n}\right\} \in S$. Finally, $\left\{a_{n}\right\} \in S$ for all $k>0$.

In [38] Č. V. Stanojević and V. B. Stanojević generalized the Telyakovskiĭ theorem of [45].

They defined a stronger class $S_{p}, p>1$, as follows: a null sequence $\left\{a_{n}\right\}$ of real numbers belongs to S_{p} if for some monotone sequence $\left\{A_{n}\right\}$ such that $\sum_{n=1}^{\infty} A_{n}<\infty$ the following condition holds:

$$
\frac{1}{n} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}=O(1)
$$

There exists a null sequence $\left\{a_{n}\right\}$ such that $\left\{a_{n}\right\} \in S_{p}$ but $\left\{a_{n}\right\} \notin S$.
Example. Define a sequence $\left\{a_{n}\right\}$ as follows: let $\Delta a_{n}=1 / m^{2}$ for $n=m^{2}$ and $\Delta a_{n}=0$ for $n \neq m^{2}$. First, we shall show that $\left\{a_{n}\right\} \notin S$. We have

$$
\begin{aligned}
a_{m^{2}} & =\sum_{i=m^{2}}^{\infty} \Delta a_{i}=\Delta a_{m^{2}}+\Delta a_{m^{2}+1}+\ldots+\Delta a_{(m+1)^{2}}+\ldots=\sum_{i=m}^{\infty} \Delta a_{i^{2}} \\
& =\sum_{i=m}^{\infty} \frac{1}{i^{2}} \rightarrow 0, \quad m \rightarrow \infty
\end{aligned}
$$

i.e. $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Set $A_{n}^{*}=\max _{i \geq n}\left|\Delta a_{i}\right|$. Then $A_{n}^{*} \downarrow 0$ and $\sum_{n=1}^{\infty} A_{n}^{*}=\infty$. Indeed, $A_{n}^{*}=1 / m^{2}$ for $(m-1)^{2}+1 \leq n \leq m^{2}$ and

$$
\begin{aligned}
\sum_{k=1}^{\infty} A_{k}^{*} & =\sum_{m=1}^{\infty} \sum_{k=(m-1)^{2}+1}^{m^{2}} A_{k}^{*}=\sum_{m=1}^{\infty} \sum_{k=(m-1)^{2}+1}^{m^{2}} A_{m^{2}}^{*} \\
& =\sum_{m=1}^{\infty} \frac{1}{m^{2}}\left[m^{2}-(m-1)^{2}\right]=\sum_{m=1}^{\infty} \frac{2 m-1}{m^{2}}=\infty
\end{aligned}
$$

Therefore for every positive sequence $\left\{A_{n}\right\}$ such that $A_{n} \geq A_{n}^{*}$, we have $\sum_{n=1}^{\infty} A_{n}=\infty$, i.e. $\left\{a_{n}\right\} \notin S$.

Now, let $A_{n}=1 / n^{1+1 / 2 p}$ for all n. Then $A_{n} \downarrow 0, \sum_{n=1}^{\infty} A_{n}<\infty$, and for $n=m^{2}$ we have

$$
\begin{aligned}
\frac{1}{m^{2}} \sum_{i=1}^{m^{2}} \frac{\left|\Delta a_{i}\right|^{p}}{A_{i}^{p}} & =\frac{1}{m^{2}} \sum_{k=1}^{m}\left(\frac{\left|\Delta a_{k^{2}}\right|}{A_{k^{2}}}\right)^{p}=\frac{1}{m^{2}} \sum_{k=1}^{m}\left(\frac{1 / k^{2}}{1 / k^{2+1 / p}}\right)^{p} \\
& =\frac{1}{m^{2}} \sum_{k=1}^{m}\left(k^{1 / p}\right)^{p}=O(1)
\end{aligned}
$$

Theorem 1.8 (Č. V. Stanojević and V. B. Stanojević [38]). Let $\left\{a_{n}\right\} \in S_{p}$ for some $1<p \leq 2$. Then the cosine series (C) is the Fourier series of its sum f and (1.1) holds.

Fomin [13] also extended the Sidon-Telyakovskiĭ class. He defined a class $F_{p}, 1<p \leq 2$, of Fourier coefficients as follows: a sequence $\left\{a_{n}\right\}$ belongs to F_{p} if $a_{k} \rightarrow 0$ as $k \rightarrow \infty$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{i=k}^{\infty}\left|\Delta a_{i}\right|^{p}\right)^{1 / p}<\infty \tag{1.2}
\end{equation*}
$$

He also gave an equivalent form of the condition (1.2) by proving the following lemma.
Lemma 1.2 ([13]). Let $p>1$. Then a sequence $\left\{a_{n}\right\}$ is in F_{p} iff $\sum_{s=1}^{\infty} 2^{s} \Delta_{s}^{(p)}<\infty$, where

$$
\Delta_{s}^{(p)}=\left\{\frac{1}{2^{s-1}} \sum_{k=2^{s-1}+1}^{2^{s}}\left|\Delta a_{k}\right|^{p}\right\}^{1 / p}
$$

In [13], Fomin noted that the class F_{p} is wider when p is closer to 1 . Now we present the proof of this fact.

Corollary 1.1 ([61]). For any $1<r<p$ we have the embedding $F_{p} \subset F_{r}$.
Proof. Since $1 / r>1 / p$, we have $1 / r=1 / p+1 / q$ for some $q>0$. This implies that $1 / p^{\prime}+1 / q^{\prime}=1$, where $p^{\prime}=p / r$ and $q^{\prime}=q / r$. Applying the Hölder inequality, we have

$$
\begin{aligned}
\sum_{k=2^{s}+1}^{2^{s+1}}\left|\Delta a_{k}\right|^{r} & =\sum_{k=2^{s}+1}^{2^{s+1}}\left|\Delta a_{k}\right|^{r} \cdot 1 \leq\left(\sum_{k=2^{s}+1}^{2^{s+1}}\left|\Delta a_{k}\right|^{r p^{\prime}}\right)^{1 / p^{\prime}}\left(\sum_{k=2^{s}+1}^{2^{s+1}} 1^{q^{\prime}}\right)^{1 / q^{\prime}} \\
& =\left(2^{s}\right)^{1 / q^{\prime}}\left(\sum_{k=2^{s}+1}^{2^{s+1}}\left|\Delta a_{k}\right|^{p}\right)^{1 / p^{\prime}}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{s=1}^{\infty} 2^{s} \Delta_{s}^{(r)} & \leq \sum_{s=1}^{\infty} 2^{s} \cdot 2^{-s / r} \cdot 2^{s / q^{\prime} r}\left(\sum_{k=2^{s}+1}^{2^{s+1}}\left|\Delta a_{k}\right|^{p}\right)^{1 / r p^{\prime}} \\
& =\sum_{s=1}^{\infty} 2^{s}\left(\frac{1}{2^{s}}\right)^{1 / r-1 / q}\left(\sum_{k=2^{s}+1}^{2^{s+1}}\left|\Delta a_{k}\right|^{p}\right)^{1 / p}=\sum_{s=1}^{\infty} 2^{s} \Delta_{s}^{(p)}
\end{aligned}
$$

Applying Lemma 1.2, Fomin proved that for the class $F_{p}, 1<p \leq 2$, we have positive answers to both questions (i) and (ii).
Theorem 1.9 (Fomin [13]). Let $\left\{a_{n}\right\} \in F_{p}$ for some $1<p \leq 2$. Then the cosine series (C) is the Fourer series of its sum f and (1.1) holds.

Next we shall prove that S_{p} is a subclass of F_{p} for all $p>1$.
THEOREM 1.10 ([61]). For every $p>1$ we have the embedding $S_{p} \subset F_{p}$.
Proof. Applying the Abel transformation we have

$$
\begin{aligned}
\sum_{k=2^{s-1}+1}^{2^{s}}\left|\Delta a_{k}\right|^{p}= & \sum_{k=2^{s-1}+1}^{2^{s}} A_{k}^{p} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}} \\
= & \sum_{k=2^{s-1}+1}^{2^{s}-1} \Delta\left(A_{k}^{p}\right) \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}+A_{2^{s}}^{p} \sum_{j=1}^{2^{s}} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}-A_{2^{s-1}+1}^{p} \sum_{j=1}^{2^{s-1}} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}} \\
= & \sum_{k=2^{s-1}+1}^{2^{s}-1} k \Delta\left(A_{k}^{p}\right)\left(\frac{1}{k} \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)+2^{s} A_{2^{s}}^{p}\left(\frac{1}{2^{s}} \sum_{j=1}^{2^{s}} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right) \\
& -2^{s-1} A_{2^{s-1}+1}^{p}\left(\frac{1}{2^{s-1}} \sum_{j=1}^{2^{s-1}} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right) \\
= & O(1)\left[\sum_{k=2^{s-1}+1}^{2^{s}-1} k \Delta\left(A_{k}^{p}\right)+2^{s} A_{2^{s}}^{p}+2^{s-1} A_{2^{s-1}+1}^{p}\right] \\
= & O(1)\left(\sum_{k=2^{s-1}+1}^{2^{s}} A_{k}^{p}+2^{s-1} A_{2^{s-1}+1}^{p}-2^{s} A_{2^{s}}^{p}+2^{s} A_{2^{s}}^{p}+2^{s-1} A_{2^{s-1}+1}^{p}\right) \\
= & O(1)\left(\sum_{k=2^{s-1}+1}^{2^{s}} A_{k}^{p}+2^{s} A_{2^{s-1}+1}^{p}\right)=O\left(2^{s-1} A_{2^{s-1}}^{p}\right) .
\end{aligned}
$$

First applying the Fomin lemma, and then the Cauchy type theorem, we obtain

$$
\sum_{s=1}^{\infty} 2^{s} \Delta_{s}^{(p)} \leq O(1) \sum_{s=1}^{\infty} 2^{s}\left(\frac{1}{2^{s-1}} 2^{s-1} A_{2^{s-1}}^{p}\right)^{1 / p}=O\left(\sum_{s=1}^{\infty} 2^{s-1} A_{2^{s-1}}\right)<\infty
$$

Recently, Leindler proved the important result that, conversely, the Fomin class F_{p} is a subclass of S_{p}; he also gave another proof of Theorem 1.10. Precisely he proved the following theorem.
Theorem 1.11 (Leindler [24]). For all $p>1$, the classes F_{p} and S_{p} are identical.
A still larger class that answers both questions, but is expressed in terms of a condition difficult to apply, is the class $B V \cap C$, where C was defined by Garrett and Stanojević [17] as follows: a null sequence $\left\{a_{n}\right\}$ of real numbers satisfies the condition C if for every $\varepsilon>0$ there exists $\delta(\varepsilon)>0$, independent of n, such that

$$
\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}(x)\right| d x<\varepsilon \quad \text { for every } n
$$

Singh and Sharma [36] proved that the Garrett-Stanojević class C is stronger than the Moore class (M).
Theorem 1.12 (Garrett-Stanojević [17]). Let $\left\{a_{n}\right\} \in B V \cap C$. Then the series (C) is the Fourier series of its sum f and (1.1) holds.

In [16] Garrett, Rees and Stanojevic proved the following theorem.
Theorem 1.13. We have the embedding

$$
S \subset B V \cap C
$$

Now, we shall prove an extension of this theorem.
Theorem 1.14 ([50]). For all $p>1$, we have the embedding

$$
S_{p} \subset B V \cap C
$$

For the proof we need the following lemma.
Lemma 1.3 (Hausdorff-Young [73]). Let $1<p \leq 2$ and let $\left\{c_{n}\right\} \in l^{p}$ be a sequence of complex numbers. Then $\left\{c_{n}\right\}$ is the sequence of Fourier coefficients of some $\varphi \in L^{q}$ $(1 / p+1 / q=1)$ and

$$
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|\varphi(x)|^{q} d x\right)^{1 / q} \leq\left(\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{p}\right)^{1 / p}
$$

Proof of Theorem 1.14. It suffices to show that

$$
T_{n}=\int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}(x)\right| d x=o(1), \quad n \rightarrow \infty
$$

For each n, let k_{n} be the least natural number such that $n \leq 2^{k_{n}}-1$. Then T_{n} can be majorized by

$$
T_{n} \leq \int_{0}^{\pi}\left|\sum_{j=n}^{2^{k_{n}}-1} \Delta a_{j} D_{j}(x)\right| d x+\sum_{l=k_{n}}^{\infty} \int_{0}^{\pi}\left|\sum_{j=2^{l}}^{2^{l+1}-1} \Delta a_{j} D_{j}(x)\right| d x=I_{1}+I_{2}
$$

The second term is written as follows:

$$
I_{2}=\sum_{l=k_{n}}^{\infty}\left\{\int_{0}^{1 / 2^{l+1}}+\int_{1 / 2^{l+1}}^{\pi}\right\}\left|\sum_{j=2^{l}}^{2^{l+1}-1} \Delta a_{j} D_{j}(x)\right| d x=\Sigma_{1}+\Sigma_{2}
$$

For the first term, the uniform estimate $\left|D_{n}(x)\right| \leq n+1 / 2$ can be applied, i.e.

$$
\begin{aligned}
\Sigma_{1} & \leq \sum_{l=k_{n}}^{\infty} \frac{1}{2^{l+1}} \sum_{j=2^{l}}^{2^{l+1}-1}\left|\Delta a_{j}\right|(j+1 / 2) \leq \sum_{l=k_{n}}^{\infty} \frac{1}{2^{l+1}} \sum_{j=2^{l}}^{2^{l+1}-1}\left|\Delta a_{j}\right| 2^{l+1} \\
& =\sum_{l=k_{n}}^{\infty} \sum_{j=2^{l}}^{2^{l+1}-1}\left|\Delta a_{j}\right|=\sum_{j=2^{k_{n}}}^{\infty}\left|\Delta a_{j}\right| .
\end{aligned}
$$

By summation by parts, and by Hölder's inequality, we have

$$
\sum_{i=2^{k_{n}}}^{\infty}\left|\Delta a_{i}\right|=\sum_{i=2^{k_{n}}}^{\infty} \frac{\left|\Delta a_{i}\right|}{A_{i}} A_{i}=\sum_{i=2^{k_{n}}}^{\infty} \Delta A_{i} \sum_{j=1}^{i} \frac{\left|\Delta a_{j}\right|}{A_{j}}-A_{2^{k_{n}}}^{2^{k_{n}}-1} \frac{\left|\Delta a_{j}\right|}{A_{j}}
$$

$$
\begin{aligned}
& \leq \sum_{i=2^{k_{n}}}^{\infty} i\left(\Delta A_{i}\right)\left(\frac{1}{i} \sum_{j=1}^{i} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p}+2^{k_{n}} A_{2^{k_{n}}}\left(\frac{1}{2^{k_{n}}} \sum_{j=1}^{2^{k_{n}}} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p} \\
& =O(1)\left[\sum_{i=2^{k_{n}}}^{\infty} i\left(\Delta A_{i}\right)+2^{k_{n}} A_{2^{k_{n}}}\right]
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} A_{n}<\infty$ and $A_{n} \downarrow 0$, both terms on the right-hand side of the above inequality are $o(1)$ as $n \rightarrow \infty$. Thus $\Sigma_{1}=o(1), n \rightarrow \infty$.

Let

$$
\Sigma_{2}=\sum_{l=k_{n}}^{\infty} \int_{1 / 2^{l+1}}^{\pi}\left|\sum_{j=2^{l}}^{2^{l+1}-1} \frac{\Delta a_{j}}{A_{j}} A_{j} D_{j}(x)\right| d x
$$

Applying the Abel transformation, we get

$$
\begin{aligned}
\int_{1 / 2^{l+1}}^{\pi}\left|\sum_{j=2^{l}}^{2^{l+1}-1} \frac{\Delta a_{j}}{A_{j}} A_{j} D_{j}(x)\right| \leq \sum_{j=2^{l}}^{2^{l+1}-2} \Delta A_{j} \int_{1 / 2^{l+1}}^{\pi}\left|\sum_{r=1}^{j} \frac{\Delta a_{r}}{A_{r}} D_{r}(x)\right| d x \\
+A_{2^{l}} \int_{1 / 2^{l+1}}^{\pi}\left|\sum_{r=1}^{2^{l}-1} \frac{\Delta a_{r}}{A_{r}} D_{r}(x)\right| d x+A_{2^{l+1}-1} \int_{1 / 2^{l+1}}^{\pi}\left|\sum_{r=1}^{2^{l+1}-1} \frac{\Delta a_{r}}{A_{r}} D_{r}(x)\right| d x
\end{aligned}
$$

Applying the Hölder type inequality, we get

$$
\begin{aligned}
V_{l} & =\int_{1 / 2^{l+1}}^{\pi}\left|\sum_{r=1}^{2^{l}-1} \frac{\Delta a_{r}}{A_{r}} D_{r}(x)\right| d x=\int_{1 / 2^{l+1}}^{\pi} \frac{1}{2 \sin (x / 2)}\left|\sum_{r=1}^{2^{l}-1} \frac{\Delta a_{r}}{A_{r}} \sin [(r+1 / 2) x]\right| d x \\
& \leq\left[\int_{1 / 2^{l+1}}^{\pi} \frac{d x}{[2 \sin (x / 2)]^{p}}\right]^{1 / p}\left[\int_{1 / 2^{l+1}}^{\pi}\left|\sum_{r=1}^{2^{l}-1} \frac{\Delta a_{r}}{A_{r}} \sin [(r+1 / 2) x]\right|^{q} d x\right]^{1 / q},
\end{aligned}
$$

where $1 / p+1 / q=1$. Since

$$
\int_{1 / 2^{l+1}}^{\pi} \frac{d x}{[2 \sin (x / 2)]^{p}} \leq \frac{\pi^{p}}{2^{p}} \int_{1 / 2^{l+1}}^{\pi} \frac{d x}{x^{p}} \leq M_{p}\left(2^{l+1}\right)^{p-1}
$$

where M_{p} is an absolute constant depending on p, it follows that

$$
V_{l} \leq\left(2^{l+1}\right)^{1 / q}\left(M_{p}\right)^{1 / p}\left[\int_{0}^{\pi}\left|\sum_{r=1}^{2^{l}} \frac{\Delta a_{r}}{A_{r}} \sin [(r+1 / 2) x]\right|^{q} d x\right]^{1 / q}
$$

Applying the Hausdorff-Young inequality to the last integral, we get

$$
\left[\int_{0}^{\pi}\left|\sum_{r=1}^{2^{l}} \frac{\Delta a_{r}}{A_{r}} \sin [(r+1 / 2) x]\right|^{q} d x\right]^{1 / q} \leq B_{p}\left(\sum_{r=1}^{2^{l}-1} \frac{\left|\Delta a_{r}\right|^{p}}{A_{r}^{p}}\right)^{1 / p}
$$

Thus

$$
V_{l} \leq 2^{l+1} C_{p}\left(\frac{1}{2^{l+1}} \sum_{r=1}^{2^{l+1}} \frac{\left|\Delta a_{r}\right|^{p}}{A_{r}^{p}}\right)^{1 / p}, \quad C_{p}>0
$$

Then

$$
\begin{aligned}
\Sigma_{2} \leq & \sum_{l=k_{n}}^{\infty} \sum_{j=2^{l}}^{2^{l+1}-2} \Delta A_{j} \int_{1 / 2^{l+1}}^{\pi}\left|\sum_{r=1}^{j} \frac{\Delta a_{r}}{A_{r}} D_{r}(x)\right| d x \\
& +\sum_{l=k_{n}}^{\infty} A_{2^{l}} \int_{1 / 2^{l+1}}^{\pi}\left|\sum_{r=1}^{2^{l}-1} \frac{\Delta a_{r}}{A_{r}} D_{r}(x)\right| d x \\
& +\sum_{l=k_{n}}^{\infty} A_{2^{l+1}-1} \int_{1 / 2^{l+1}}^{\pi}\left|\sum_{r=1}^{2^{l+1}-1} \frac{\Delta a_{r}}{A_{r}} D_{r}(x)\right| d x \\
= & O_{p}(1)\left[\sum_{l=k_{n}}^{\infty} \sum_{j=2^{l}}^{2^{l+1}-2} j \Delta A_{j}+4 \sum_{l=k_{n}}^{\infty} 2^{l} A_{2^{l}}\right]
\end{aligned}
$$

Now, applying the Cauchy condensation test, we get

$$
\sum_{l=k_{n}}^{\infty} 2^{l} A_{2^{l}}=o(1), \quad n \rightarrow \infty
$$

But

$$
\sum_{j=2^{l}}^{2^{l+1}-2} j \Delta A_{j}=\sum_{j=2^{l}+1}^{2^{l+1}-1} A_{j}-2^{l+1} A_{2^{l+1}-1}+2^{l} A_{2^{l}}+A_{2^{l+1}-1} \leq 2^{l} A_{2^{l}}+2^{l} A_{2^{l}}+A_{2^{l}} .
$$

Thus

$$
\sum_{l=k_{n}}^{\infty} \sum_{j=2^{l}}^{2^{l+1}-2} j \Delta A_{j} \leq 2 \sum_{l=k_{n}}^{\infty} 2^{l} A_{2^{l}}+\sum_{l=k_{n}}^{\infty} A_{2^{l}}=o(1), \quad n \rightarrow \infty
$$

i.e. $\Sigma_{2}=o(1), n \rightarrow \infty$. Finally, $I_{2}=o(1), n \rightarrow \infty$.

The same method applied to I_{1} yields the estimate

$$
I_{1} \leq O(1) \sum_{l=2^{k_{n}-1}}^{2^{k_{n}}-1}\left|\Delta a_{j}\right|+O_{p}(1)\left(\sum_{j=2^{k_{n}-1}}^{2^{k_{n}}-2} j \Delta A_{j}+4\left(2^{k_{n}-1} A_{2^{k_{n}-1}}\right)\right) .
$$

Letting $n \rightarrow \infty$ completes the proof of the theorem.
Remark 1.3. Theorem 1.8 is a corollary of Theorems 1.14 and 1.12 . Thus by proving Theorem 1.14 we obtained a new proof of Theorem 1.8.

On the other hand, Stanojevic [37] proved the following inclusion connecting the classes F_{p}, C and $B V$.

Theorem 1.15. For all $1<p \leq 2$ we have the embedding

$$
F_{p} \subset B V \cap C .
$$

In [16] Garrett, Rees and Stanojević defined an extension of the class of null sequences of bounded variation. Namely, a null sequence $\left\{a_{k}\right\}$ belongs to the class $(B V)^{(m)}, m \geq 1$, if $\sum_{k=1}^{\infty}\left|\Delta^{m} a_{k}\right|<\infty$, where $\Delta^{m} a_{k}=\Delta\left(\Delta^{m-1} a_{k}\right)=\Delta^{m-1} a_{k}-\Delta^{m-1} a_{k+1}$. For $m=1$, $(B V)^{1}=B V$.

Theorem 1.16 (Garrett-Rees-Stanojević [16]). Let $\left\{a_{n}\right\} \in(B V)^{(m)}$ for some $m \geq 1$ and $a_{n} \log n=o(1), n \rightarrow \infty$. Then $\left\|S_{n}-f\right\|=o(1), n \rightarrow \infty$ iff $\left\{a_{n}\right\} \in C$.

Both Fomin [12] and Stanojević [37] considered the following natural extension of the class F_{p}. Let $p \geq 1$. A sequence $\left\{a_{k}\right\}$ belongs to C_{p} if $a_{k} \rightarrow 0$ as $k \rightarrow \infty$ and

$$
\begin{equation*}
n^{p-1} \sum_{k=n}^{\infty}\left|\Delta a_{k}\right|^{p}=o(1) \quad \text { as } n \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

Answering question (ii) Fomin and Stanojević proved the following result:
Theorem 1.17 (Fomin [12], Stanojević [37]). If (C) is a Fourier series of $f \in L^{1}$ and $\left\{a_{n}\right\} \in C_{p} \cap B V$ for some $1<p \leq 2$ then (1.1) holds.

Later, Fomin extended the above result by considering a still larger class:
Theorem 1.18 (Fomin [14]). If (C) is the Fourier series of $f \in L^{1}$ and for each sequence $\left\{m_{n}\right\}$ of natural numbers such that $m_{n} / n \rightarrow 0$ as $n \rightarrow \infty$ there exists $p, 1<p \leq 2$, independent of $\left\{m_{n}\right\}$ such that

$$
\begin{equation*}
m_{n}^{p-1} \sum_{k=n}^{n+m_{n}}\left|\Delta a_{k}\right|^{p}=o(1), \quad n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

then (1.1) holds.
The same statement holds for the sine series (S), i.e. the Fourier series of odd functions. Remark 1.4. It is trivial to see that Theorem 1.17 is a corollary of Theorem 1.18, that is, that (1.3) implies (1.4) for each sequence $\left\{m_{n}\right\}$ of natural numbers such that $m_{n} / n \rightarrow 0$, $n \rightarrow \infty$.

The class C_{p} has an interesting subclass C_{p}^{*}. A null sequence $\left\{a_{k}\right\}$ belongs to C_{p}^{*}, $1<p \leq 2$, if

$$
\sum_{k=1}^{\infty} k^{p-1}\left|\Delta a_{k}\right|^{p}<\infty
$$

The next theorem is a corollary to Theorem 1.17.
Theorem 1.19 (Fomin [12], Stanojević [37]). Let (C) be the Fourier series of some $f \in$ $L^{1}(0, \pi)$, let $1<p \leq 2$ and let $\left\{a_{n}\right\} \in C_{p}^{*} \cap B V$. Then (1.1) holds.

A natural extension of $B V$ is the following class: a null sequence $\left\{a_{k}\right\}$ belongs to the class P if

$$
\frac{1}{n} \sum_{k=1}^{n} k\left|\Delta a_{k}\right|=o(1), \quad n \rightarrow \infty
$$

Combining the class P with the condition $n \Delta a_{n}=O(1)$, Stanojević obtained a theorem on L^{1}-convergence of Fourier-Stieltjes series.

Theorem 1.20 (Stanojević [37]). Let (C) be a Fourier-Stieltjes seris with $\left\{a_{k}\right\} \in P$ and suppose that $n \Delta a_{n}=O(1)$. Then (C) converges in L^{1} iff $a_{n} \log n=o(1), n \rightarrow \infty$.

Bojanić and Stanojević [5] defined a subclass of P as follows: a null sequence $\left\{a_{k}\right\}$ belongs to the class $V_{p}, p>1$, if

$$
\frac{1}{n} \sum_{k=1}^{n} k^{p}\left|\Delta a_{k}\right|^{p}=o(1), \quad n \rightarrow \infty
$$

They proved the following theorems.
Theorem 1.21 (Bojanić-Stanojević [5]). If (C) is the Fourier series of $f \in L^{1}$ and $\left\{a_{k}\right\} \in V_{p}$ for some $1<p \leq 2$ then (1.1) holds.
Theorem 1.22 (Bojanić-Stanojević [5]). If $\left\{a_{k}\right\} \in V_{p} \cap B V$ for some $1<p \leq 2$, then (C) is the Fourier series iff $\left\{a_{k}\right\} \in C$.

Tanović-Miller considered the problem of integrability of the series (C) with regard to the classes $C_{p}, p>1$, and $C_{1}=B V$.
Theorem 1.23 (Tanović-Miller [40]). (i) If $\left\{a_{k}\right\} \in \bigcup\left\{C_{p}: p \geq 1\right\}$ then (C) converges a.e. to the function

$$
f(x)=\sum_{k=0}^{\infty} \Delta a_{k} D_{k}(x)
$$

moreover, in that case (C) is a Fourier series iff for some $\delta>0$,

$$
\int_{0}^{\delta}\left|\sum_{k=0}^{\infty} \Delta a_{k} D_{k}(x)\right| d x<\infty
$$

in which case (C) is the Fourier series of f.
(ii) If $\left\{a_{k}\right\} \in \bigcup\left\{C_{p}: p>1\right\}$ then (C) is a Fourier series iff $\left\{a_{k}\right\} \in C$.

These results extend Theorem 1.22 and show that the classical question of integrability of the series (C) need not be restricted to series with coefficients of bounded variation.

Garrett and Stanojević obtained a theorem on L^{1}-convergence of Fourier series with monotone coefficients.

Theorem 1.24 (Garrett-Stanojević [17]). Let

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{CS}
\end{equation*}
$$

be a Fourier series with monotone coefficients. Then (1.1) holds, where S_{n} is the partial sums of this series.

Telyakovskiĭ and Fomin obtained a similar result for Fourier series with quasi-monotone coefficients. A null sequence $\left\{a_{n}\right\}$ of positive numbers is called quasi-monotone if for some $\alpha \geq 0, a_{n} / n^{\alpha} \downarrow 0, n \rightarrow \infty$ or equivalently $a_{n+1} \leq a_{n}(1+\alpha / n)$.
Theorem 1.25 (Fomin-Telyakovskiǐ [48]). Let $\left\{a_{n}\right\}$ be a quasi-monotone sequence. If (C) is the Fourier series of its sum f, then (1.1) holds.

The proof of sufficiency of the theorem of Fomin-Telyakovskiǐ was simplified by Garrett-Rees-Stanojević [15] using a more refined estimate of $\left\|S_{n}-\sigma_{n}\right\|$. Telyakovskiĭ and Fomin [48] also proved a corresponding result for the sine series, namely if $\left\{a_{k}\right\}$
is a quasi-monotone sequence and (S) is the Fourier series of its sum g then the same conclusion holds for the sine series.

Theorem 1.26 (Garrett-Rees-Stanojević [15]). Let (CS) be a Fourier series with quasimonotone coefficients. Then $\left\|S_{n}-\sigma_{n}\right\|=o(1), n \rightarrow \infty$ iff $\left(a_{n}+b_{n}\right) \log n=o(1), n \rightarrow \infty$.

The class P extends not only $B V$, but also the class of quasi-monotone sequences. The next theorem is a slightly weaker form of a theorem of Telyakovskiĭ and Fomin.

Theorem 1.27 (Stanojević [37]). Let (C) be a Fourier series with quasi-monotone coefficients and suppose that $n \Delta a_{n}=O(1)$. Then (1.1) holds.

Later, Bray and Stanojević [9] considered the question of L^{1}-convergence for more general Fourier series of so called asymptotically even functions. Concerning the Fourier series of even functions one of the results in [9] can be stated as follows:

Theorem 1.28 (Bray-Stanojević). If (C) is the Fourier series of $f \in L^{1}$ and for some $1<p \leq 2$,

$$
\lim _{\lambda \rightarrow 1^{+}} \limsup _{n \rightarrow \infty} \sum_{k=n}^{[\lambda n]} k^{p-1}\left|\Delta a_{k}\right|^{p}=0
$$

then (1.1) holds.
Remark 1.5. Theorem 1.28 is corollary of Theorem 1.18.
1.2. Generalizations of the Sidon-Fomin lemma. Sidon [34] proved the inequality named after him in 1939. It is an upper estimate for the integral norm of a linear combination of trigonometric Dirichlet kernels expressed in terms of the coefficients. Since the estimate has many applications, for instance in L^{1}-convergence problems and summation methods for trigonometric series, newer and newer improvements of the original inequality has been proved by several authors. Fomin [10] gave another proof of this inequality by applying the linear method for summing Fourier series. Therefore the inequality is known as the Sidon-Fomin inequality.

Also, Telyakovskiî [45] gave an elegant proof of the Sidon-Fomin inequality.
Lemma 1.4 (Sidon-Fomin). Let $\left\{\alpha_{k}\right\}_{k=0}^{n}$ be a sequence of real numbers such that $\left|\alpha_{k}\right| \leq 1$ for all k. Then there exists a positive constant C such that for any $n \geq 0$,

$$
\left\|\sum_{k=0}^{n} \alpha_{k} D_{k}(x)\right\| \leq C(n+1)
$$

For the proof of our new result we need the following lemma.
LEmma 1.5. If $T_{n}(x)$ is a trigonometric polynomial of order n, then

$$
\left\|T_{n}^{(r)}\right\| \leq n^{r}\left\|T_{n}\right\|
$$

This is S. Bernstein's inequality in the $L^{1}(0, \pi)$-metric (see $[73$, Vol. 2, p. 11]).

Lemma 1.6 ([52]). Let $\left\{\alpha_{k}\right\}_{k=0}^{n}$ be a sequence of real numbers such that $\left|\alpha_{k}\right| \leq 1$ for all k. Then there exists a constant $C>0$ such that for any $n \geq 0$,

$$
\left\|\sum_{k=0}^{n} \alpha_{k} D_{k}^{(r)}(x)\right\| \leq C(n+1)^{r+1}
$$

where $D_{k}^{(r)}(x), k=0,1, \ldots, n$, is the rth derivative of the Dirichlet kernel.
Proof. Since

$$
\sum_{k=0}^{n} \alpha_{k} D_{k}(x)=\frac{1}{2} \sum_{i=0}^{n} \alpha_{i}+\sum_{k=1}^{n}\left(\sum_{i=k}^{n} \alpha_{i}\right) \cos k x
$$

we see that $\sum_{k=0}^{n} \alpha_{k} D_{k}(x)$ is a cosine trigonometric polynomial of order n. Applying first the Bernstein inequality, and then the Sidon-Fomin lemma yields

$$
\left\|\sum_{k=0}^{n} \alpha_{k} D_{k}^{(r)}(x)\right\| \leq(n+1)^{r}\left\|\sum_{k=0}^{n} \alpha_{k} D_{k}(x)\right\| \leq C(n+1)^{r+1}, \quad C>0
$$

Lemma 1.7 (Fomin-Stečkin [11]). Let $1<p \leq 2$ and $\left\{\alpha_{k}\right\}_{k=0}^{n}$ be a sequence of real numbers such that $\sum_{k=0}^{n} \alpha_{k}^{p} \leq A^{p}(n+1)$. Then there exists a positive constant C_{p} depending only on p such that

$$
\left\|\sum_{i=0}^{n} \alpha_{i} D_{i}(x)\right\| \leq C_{p} A(n+1)
$$

Lemma 1.8 (Bojanić-Stanojević [5]). Let $\left\{\alpha_{k}\right\}_{k=0}^{n}$ be a sequence of real numbers. Then for any $1<p \leq 2$ and $n \geq 0$,

$$
\begin{equation*}
\left\|\sum_{k=0}^{n} \alpha_{k} D_{k}(x)\right\| \leq C_{p}(n+1)\left(\frac{1}{n+1} \sum_{k=0}^{n}\left|\alpha_{k}\right|^{p}\right)^{1 / p} \tag{1.5}
\end{equation*}
$$

where the constant C_{p} depends only on p.
Remark 1.6. We note that this estimate is essentially contained (case $p=2$) in Fomin [10].

Remark 1.7. It is easy to see that a Bojanić-Stanojević type inequality is not valid for $p=1$. Indeed, if $\alpha_{n}=1$ and $\alpha_{k}=0(k \neq n, k \in \mathbb{N})$ then the left side of (1.5) is of order $(\log n) / n$ while the right side is of order $1 / n$ as $n \rightarrow \infty$.

Remark 1.8. The Sidon-Fomin inequality is a special case of the Bojanić-Stanojević inequality, i.e. it can easily be deduced from Lemma 1.8.

Now, we will prove a counterpart of inequality (1.5) for $D_{k}^{(r)}$ in place of $D_{k}(x)$.
Lemma 1.9 ([58]). Let $\left\{\alpha_{k}\right\}_{k=0}^{n}$ be a sequence of real numbers. Then for any $1<p \leq 2$, $r \in \mathbb{N} \cup\{0\}$ and $n \geq 0$,

$$
\left\|\sum_{k=0}^{n} \alpha_{k} D_{k}^{(r)}(x)\right\| \leq C_{p}(n+1)^{r+1}\left(\frac{1}{n+1} \sum_{k=0}^{n}\left|\alpha_{k}\right|^{p}\right)^{1 / p}
$$

where the constant C_{p} depends only on p.

Proof. Applying first the Bernstein inequality, and then the Bojanić-Stanojević inequality yields

$$
\left\|\sum_{k=0}^{n} \alpha_{k} D_{k}^{(r)}(x)\right\| \leq(n+1)^{r}\left\|\sum_{k=0}^{n} \alpha_{k} D_{k}(x)\right\| \leq C_{p}(n+1)^{r+1}\left(\frac{1}{n+1} \sum_{k=0}^{n}\left|\alpha_{k}\right|^{p}\right)^{1 / p}
$$

1.3. Extensions of some classes of Fourier coefficients. In this section we shall give the extensions of the Garrett-Stanojević class C, Sidon-Telyakovskiĭ class S and the class $S_{p}, p>1$, defined by V. B. Stanojević and Č. V. Stanojević.

A null sequence $\left\{a_{k}\right\}$ belongs to the class $C_{r}, r \in \mathbb{N} \cup\{0\}$, if for every $\varepsilon>0$ there is a $\delta>0$ such that

$$
\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x<\varepsilon \quad \text { for all } n
$$

where $D_{k}^{(r)}(x)$ is the r th derivative of the Dirichlet kernel. When $r=0$, we set $C_{r}=C$.
A null sequence $\left\{a_{k}\right\}$ belongs to the class $\Im_{r}, r \in \mathbb{N} \cup\{0\}$, if there exists a decreasing sequence $\left\{A_{k}\right\}$ such that $\sum_{k=0}^{\infty} k^{r} A_{k}<\infty$ and $\left|\Delta a_{k}\right| \leq A_{k}$ for all k. When $r=0$ it is clear that $\Im_{r}=S$.

A null sequence $\left\{a_{k}\right\}$ belongs to the class $S_{p r}, 1<p \leq 2, r \in \mathbb{N} \cup\{0\}$, if there exists a decreasing sequence $\left\{A_{k}\right\}$ such that $\sum_{k=1}^{\infty} k^{r} A_{k}<\infty$ and

$$
\frac{1}{n} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}=O(1)
$$

When $r=0$, we define $S_{p}=S_{p r}$. The following lemma was proved by Ch. J. de la Vallée Poussin (see [69]), but we shall present two other proofs.

Lemma 1.10. If $A_{n} \downarrow 0$ with $\sum_{n=1}^{\infty} n^{r} A_{n}<\infty$ for some $r \geq 0$ then $n^{r+1} A_{n}=o(1)$, $n \rightarrow \infty$.

Proof 1. Let $0<m<n$. Adding the inequalities

$$
\begin{aligned}
& n^{r+1} \Delta A_{n-1} \geq 0, \\
&(n-1)^{r+1} \Delta A_{n-2} \geq 0, \\
&(n-2)^{r+1} \Delta A_{n-3} \geq 0, \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots
\end{aligned},
$$

we obtain

$$
-A_{n} n^{r+1}+\sum_{k=m+1}^{n-1} A_{k}\left[(k+1)^{r+1}-k^{r+1}\right]+A_{m}(m+1)^{r+1} \geq 0
$$

The sum on the left is $o(1)$ because $\sum_{n=1}^{\infty} n^{r} A_{n}<\infty$. Hence,

$$
A_{m}(m+1)^{r+1}-A_{n} n^{r+1} \geq o(1), \quad m, n \rightarrow \infty
$$

Since $m^{r} A_{m} \rightarrow 0$, this means that

$$
\begin{equation*}
A_{m} m^{r+1}-A_{n} n^{r+1} \geq o(1), \quad m, n \rightarrow \infty \tag{1.6}
\end{equation*}
$$

We cannot have $\liminf _{n \rightarrow \infty} n^{r+1} A_{n}>0$, since otherwise $\sum_{n=1}^{\infty} n^{r} A_{n}$ could not converge. Hence, in particular, for each $\varepsilon>0$ there is an infinite sequence of indices m for which

$$
\begin{equation*}
m^{r+1} A_{m}<\varepsilon \tag{1.7}
\end{equation*}
$$

Now suppose that $\lim \sup _{n \rightarrow \infty} n^{r+1} A_{n}>0$. Then there exists $\varepsilon>0$ and an infinite sequence of indices n such that

$$
\begin{equation*}
n^{r+1} A_{n}>2 \varepsilon>0 \tag{1.8}
\end{equation*}
$$

For each m satisfying (1.7) take a larger n satisfying (1.8); then we get a contradiction to (1.6). Hence $\lim \sup _{n \rightarrow \infty} n^{r+1} A_{n}=0$, i.e. $n^{r+1} A_{n}=o(1), n \rightarrow \infty$.
Proof 2. By the inequalities

$$
n^{r+1} A_{2 n} \leq n^{r}\left(A_{n+1}+A_{n+2}+\ldots+A_{2 n}\right) \leq \sum_{i=n+1}^{\infty} i^{r} A_{i}
$$

we obtain

$$
(2 n)^{r+1} A_{2 n} \leq 2^{r+1} \sum_{i=n+1}^{\infty} i^{r} A_{i}=o(1), \quad n \rightarrow \infty
$$

Similarly, we can get

$$
(2 n+1)^{r+1} A_{2 n+1} \leq\left(2+\frac{1}{n}\right)^{r+1} \sum_{i=n+1}^{\infty} i^{r} A_{i}=o(1), \quad n \rightarrow \infty
$$

Finally $n^{r+1} A_{n}=o(1), n \rightarrow \infty$.
Lemma 1.11. If $A_{n} \downarrow 0$ with $\sum_{n=1}^{\infty} n^{r} A_{n}<\infty$ for some $r \geq 0$, then $\sum_{n=1}^{\infty} n^{r+1}\left(\Delta A_{n}\right)<\infty$.
Proof. By partial summation,

$$
\sum_{k=1}^{n-1} k^{r+1}\left(\Delta A_{k}\right)=\sum_{k=1}^{n}\left[k^{r+1}-(k-1)^{r+1}\right] A_{k}-n^{r+1} A_{n}=O\left(\sum_{k=1}^{n} k^{r} A_{k}\right)-n^{r+1} A_{n}
$$

The series on the right converges; $n^{r+1} A_{n}=o(1), n \rightarrow \infty$, by Lemma 1.10; so the partial sums on the left converge as $n \rightarrow \infty$.

It is trivial to see that $\Im_{r+1} \subset \Im_{r}$ for all $r=1,2,3, \ldots$ Now, let $\left\{a_{n}\right\}_{n=1}^{\infty} \in \Im_{1}$. For any real number a_{0}, we shall prove that the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ belongs to S. We define $A_{0}=\max \left(\left|\Delta a_{0}\right|, A_{1}\right)$. Then $\left|\Delta a_{0}\right| \leq A_{0}$, i.e. $\left|\Delta a_{n}\right| \leq A_{n}$ for all $n \in\{0,1,2, \ldots\}$ and $\left\{A_{n}\right\}_{n=0}^{\infty}$ is decreasing sequence. On the other hand,

$$
\sum_{n=0}^{\infty} A_{n} \leq A_{0}+\sum_{n=1}^{\infty} n A_{n}<\infty
$$

Thus, $\left\{a_{n}\right\}_{n=0}^{\infty} \in S$, i.e. $\Im_{r+1} \subset \Im_{r}$ for all $r \in \mathbb{N} \cup\{0\}$. The next example shows that the implication

$$
\left\{a_{n}\right\} \in \Im_{r+1} \Rightarrow\left\{a_{n}\right\} \in \Im_{r}, \quad r \in \mathbb{N} \cup\{0\}
$$

is not reversible.
$\operatorname{Example}([55])$. For $n \in \mathbb{N} \cup\{0\}$ define $a_{n}=\sum_{k=n+1}^{\infty} 1 / k^{2}$. Then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\Delta a_{n}=1 /(n+1)^{2}$ for $n \in \mathbb{N} \cup\{0\}$. First we shall show that $\left\{a_{n}\right\} \notin \Im_{1}$. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$
be an arbitrary positive sequence such that $A \downarrow 0$ and $\Delta a_{n} \leq A_{n}$. Then $\sum_{n=1}^{\infty} n A_{n} \geq$ $\sum_{n=1}^{\infty} n /(n+1)^{2}$ is divergent, i.e. $\left\{a_{n}\right\} \notin \Im_{1}$.

Now, for all $n \in \mathbb{N} \cup\{0\}$ let $A_{n}=1 /(n+1)^{2}$. Then $A_{n} \downarrow 0,\left|\Delta a_{n}\right| \leq A_{n}$ and $\sum_{n=0}^{\infty} A_{n}=\sum_{n=1}^{\infty} 1 / n^{2}<\infty$, i.e. $\left\{a_{n}\right\} \in S$.

Our next example will show that there exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\left\{a_{n}\right\}_{n=1}^{\infty}$ $\in \Im_{r}$ but $\left\{a_{n}\right\}_{n=1}^{\infty} \notin \Im_{r+1}$, for all $r \in \mathbb{N}$. Namely, for all $n \in \mathbb{N}$ let $a_{n}=\sum_{k=n}^{\infty} 1 / k^{r+2}$. Then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, and $\Delta a_{n}=1 / n^{r+2}$ for $n \in \mathbb{N}$. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be an arbitrary positive sequence such that $A_{n} \downarrow 0$ and $\Delta a_{n} \leq A_{n}$. Then

$$
\sum_{n=1}^{\infty} n^{r+1} A_{n} \geq \sum_{n=1}^{\infty} n^{r+1} \frac{1}{n^{r+2}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

is divergent, i.e. $\left\{a_{n}\right\} \notin \Im_{r+1}$. On the other hand, for all $n \in \mathbb{N}$ let $A_{n}=1 / n^{r+2}$. Then $A_{n} \downarrow 0,\left|\Delta a_{n}\right| \leq A_{n}$ and $\sum_{n=1}^{\infty} n^{r} A_{n}=\sum_{n=1}^{\infty} 1 / n^{2}<\infty$, i.e. $\left\{a_{n}\right\} \in \Im_{r}$.
THEOREM 1.29 ([52]). For all $r \in \mathbb{N} \cup\{0\}$ we have the embedding

$$
\Im_{r} \subset B V \cap C_{r}
$$

Proof. It is clear that $\left\{a_{n}\right\} \in \Im_{r}$ implies $\left\{a_{n}\right\} \in B V$. Now for $x \neq 0$ we consider the identity

$$
\sum_{k=n}^{\infty} \Delta a_{k} D_{k}(x)=\sum_{k=n}^{\infty}\left(\Delta A_{k}\right) \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x)-A_{n} \sum_{j=0}^{n-1} \frac{\Delta a_{j}}{A_{j}} D_{j}(x)
$$

Later (see proof of Theorem 3.8) we shall prove that the series $\sum_{k=1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)$ is uniformly convergent on any compact subset of $(0, \pi)$. This implies that
$\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x \leq \sum_{k=n}^{\infty}\left(\Delta A_{k}\right) \int_{0}^{\pi}\left|\sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x+A_{n} \int_{0}^{\pi}\left|\sum_{j=0}^{n-1} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x$.
Since $\left|\left(\Delta a_{j}\right) / A_{j}\right| \leq 1$, applying Lemmas 1.6 and 1.10 , we get

$$
\begin{aligned}
& \int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x \leq O(1)\left[\lim _{N \rightarrow \infty} \sum_{k=n}^{N-1}\left(\Delta A_{k}\right)(k+1)^{r+1}+A_{n} n^{r+1}\right] \\
& \quad=O(1) \lim _{N \rightarrow \infty}\left[\sum_{k=n}^{N}\left[(k+1)^{r+1}-k^{r+1}\right] A_{k}-(N+1)^{r+1} A_{N}\right]+O\left(n^{r+1} A_{n}\right) \\
& \quad=O\left(\sum_{k=n}^{\infty} k^{r} A_{k}\right)+o(1)=o(1), \quad n \rightarrow \infty
\end{aligned}
$$

Next for $r \in \mathbb{N} \cup\{0\}$ we define a new class \Im_{r}^{2} as follows: a null sequence $\left\{a_{k}\right\}$ belongs to \Im_{r}^{2} if there exists a decreasing null sequence $\left\{A_{k}\right\}$ of nonnegative numbers such that $\sum_{k=1}^{\infty} k^{r+1}\left(\Delta A_{k}\right)<\infty$ and $\left|\Delta a_{k}\right| \leq A_{k}$ for all k.

Theorem 1.30. The class \Im_{r} is equivalent to \Im_{r}^{2} for all $r \in \mathbb{N} \cup\{0\}$.
Proof. Let $\left\{a_{n}\right\} \in \Im_{r}$. Applying Lemma 1.11, we get $\sum_{n=1}^{\infty} n^{r+1}\left(\Delta A_{n}\right)<\infty$.

Now, if $\left\{a_{n}\right\} \in \Im_{r}^{2}$, we have

$$
n^{r+1} A_{n}=n^{r+1} \sum_{k=n}^{\infty} \Delta A_{k} \leq \sum_{k=n}^{\infty} k^{r+1}\left(\Delta A_{k}\right)=o(1), \quad n \rightarrow \infty
$$

i.e. $n^{r+1} A_{n}=o(1), n \rightarrow \infty$. Then

$$
\sum_{k=1}^{n} k^{r} A_{k}=\sum_{k=1}^{n-1}\left(\Delta A_{k}\right) \sum_{j=1}^{k} j^{r}+A_{n} \sum_{j=1}^{n} j^{r}=O\left(\sum_{k=1}^{n-1} k^{r+1}\left(\Delta A_{k}\right)\right)+O\left(n^{r+1} A_{n}\right)
$$

Letting $n \rightarrow \infty$, we obtain $\sum_{k=1}^{\infty} k^{r} A_{k}<\infty$, i.e. $\left\{a_{n}\right\} \in \Im_{r}$.
Lemma 1.12 ([51]). Let $\left\{\alpha_{j}\right\}_{j=1}^{k}$ be a sequence of real numbers. Then for $1<p \leq 2$, $v \in\{0,1, \ldots, r\}$ and $r \in \mathbb{N} \cup\{0\}$,

$$
\begin{aligned}
V_{k} & =\int_{\pi / k}^{\pi}\left|\sum_{j=1}^{k} \alpha_{j} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]}{(\sin (x / 2))^{r+1-v}}\right| d x \\
& =O_{p}\left[k^{r+1}\left(\frac{1}{k} \sum_{j=1}^{k}\left|\alpha_{j}\right|^{p}\right)^{1 / p}\right]
\end{aligned}
$$

where O_{p} depends only on p.
Proof. Applying first the Hölder inequality yields

$$
\begin{aligned}
V_{k}= & \int_{\pi / k}^{\pi} \frac{1}{(\sin (x / 2))^{r+1-v}}\left|\sum_{j=1}^{k} \alpha_{j}(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]\right| d x \\
\leq & {\left[\int_{\pi / k}^{\pi} \frac{d x}{(\sin (x / 2))^{(r+1-v) p}}\right]^{1 / p} } \\
& \times\left\{\int_{0}^{\pi}\left|\sum_{j=1}^{k} \alpha_{j}(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]\right|^{q} d x\right\}^{1 / q}
\end{aligned}
$$

Since

$$
\int_{\pi / k}^{\pi} \frac{d x}{(\sin (x / 2))^{(r+1-v) p}} \leq \frac{\pi k^{(r+1-v) p-1}}{(r+1-v) p-1} \leq \frac{\pi}{p-1} k^{(r+1-v) p-1}
$$

we have

$$
\begin{aligned}
V_{k} \leq & \left(\frac{\pi}{p-1}\right)^{1 / p}\left(k^{(r+1-v) p-1}\right)^{1 / p} \\
& \times\left\{\int_{0}^{\pi}\left|\sum_{j=1}^{k} \alpha_{j}(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]\right|^{q} d x\right\}^{1 / q}
\end{aligned}
$$

Then using the Hausdorff-Young inequality we get

$$
\left\{\int_{0}^{\pi}\left|\sum_{j=1}^{k} \alpha_{j}(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]\right|^{q} d x\right\}^{1 / q}=O_{p}\left[\left(\sum_{j=1}^{k}\left|\alpha_{j}\right|^{p} j^{v p}\right)^{1 / p}\right]
$$

Finally,

$$
\begin{aligned}
V_{k} & =O_{p}\left[\left(k^{(r+1-v) p-1}\right)^{1 / p}\left(\sum_{j=1}^{k}\left|\alpha_{j}\right|^{p} j^{v p}\right)^{1 / p}\right] \\
& =O_{p}\left[\left(k^{(r+1) p-1}\right)^{1 / p}\left(\sum_{j=1}^{k}\left|\alpha_{j}\right|^{p}\right)^{1 / p}\right]=O_{p}\left[k^{r+1}\left(\frac{1}{k} \sum_{j=1}^{k}\left|\alpha_{j}\right|^{p}\right)^{1 / p}\right]
\end{aligned}
$$

where O_{p} depends only on p.
Lemma 1.13 ([32]). Let r be a nonnegative integer and $x \in(0, \pi]$. Then

$$
\begin{aligned}
D_{n}^{(r)}(x)= & \sum_{k=0}^{r-1} \frac{(n+1 / 2)^{k} \sin [(n+1 / 2) x+k \pi / 2]}{(\sin (x / 2))^{r+1-k}} \varphi_{k}(x) \\
& +\frac{(n+1 / 2)^{r} \sin [(n+1 / 2) x+r \pi / 2]}{2 \sin (x / 2)}
\end{aligned}
$$

where the φ_{k} are analytic functions of x, independent of n.
Lemma 1.14. Let $1<p \leq 2, r \in \mathbb{N} \cup\{0\}$ and let the coefficients $\left\{a_{j}\right\}_{j=0}^{k}$ belong to the class $S_{p r}$. Then

$$
\int_{0}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=O_{p}\left(k^{r+1}\right)
$$

Proof. We have

$$
\int_{0}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=\int_{0}^{\pi / k}+\int_{\pi / k}^{\pi}=I_{k}+J_{k}
$$

Applying the inequality $D_{n}^{(r)}(x)=O\left(n^{r+1}\right)$, we have

$$
\begin{aligned}
I_{k} & \leq \alpha \sum_{j=1}^{k} j^{r} \frac{\left|\Delta a_{j}\right|}{A_{j}} \leq \alpha k^{r} \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|}{A_{j}} \\
& \leq \alpha k^{r+1}\left(\frac{1}{k} \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p}=O\left(k^{r+1}\right)
\end{aligned}
$$

where α is a positive constant.
Applying Lemma 1.13, we estimate the second integral:

$$
\begin{aligned}
J_{k}= & \int_{\pi / k}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x \\
\leq & \int_{\pi / k}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}}\left(\sum_{v=0}^{r-1} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]}{(\sin (x / 2))^{r+1-v}} \varphi_{v}(x)\right)\right| d x \\
& +\int_{\pi / k}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} \frac{(j+1 / 2)^{r} \sin [(j+1 / 2) x+r \pi / 2]}{2 \sin (x / 2)}\right| d x=\lambda_{k}+\mu_{k}
\end{aligned}
$$

Since φ_{v} are bounded, we have

$$
\begin{aligned}
& \int_{\pi / k}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]}{(\sin (x / 2))^{r+1-v}} \varphi_{v}\right| d x \\
& \leq B \int_{\pi / k}^{\pi}\left|\sum_{j=1}^{k} \alpha_{j} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]}{(\sin (x / 2))^{r+1-v}}\right| d x
\end{aligned}
$$

where B is a positive constant and $\alpha_{j}=\left(\Delta a_{j}\right) / A_{j}, j=1, \ldots, k$. Applying Lemma 1.12 to the last integral, we get

$$
\begin{aligned}
& \int_{\pi / k}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]}{(\sin (x / 2))^{r+1-v}} \varphi_{v}(x)\right| d x \\
& =O_{p}\left(k^{r+1}\left(\frac{1}{k} \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p}\right)=O_{p}\left(k^{r+1}\right)
\end{aligned}
$$

Since r is a finite value, we have $\lambda_{k}=O_{p}\left(k^{r+1}\right)$. Similarly, $\mu_{k}=O_{p}\left(k^{r+1}\right)$. Hence

$$
\int_{0}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=O\left(k^{r+1}\right)+O_{p}\left(k^{r+1}\right)=O_{p}\left(k^{r+1}\right)
$$

Lemma 1.15. Let $1<p \leq 2, r \in \mathbb{N} \cup\{0\}$ and let the coefficients $\left\{a_{j}\right\}_{j=0}^{k}$ belong to the class $S_{p r}$. Then

$$
A_{n} \int_{0}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=o(1), \quad n \rightarrow \infty
$$

Proof. Applying first Lemma 1,14, and then Lemma 1.10, we obtain

$$
A_{n} \int_{0}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=O_{p}\left(n^{r+1} A_{n}\right)=o(1), \quad n \rightarrow \infty
$$

Theorem 1.31 ([51]). For each $1<p \leq 2$ and $r \in \mathbb{N} \cup\{0\}$ we have the embedding

$$
S_{p r} \subset B V \cap C_{r}
$$

Proof. We have

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta a_{k}\right| & \leq \sum_{k=1}^{n} k^{r}\left|\Delta a_{k}\right|=\sum_{k=1}^{n-1}\left(\Delta A_{k}\right) \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|}{A_{j}} j^{r}+A_{n} \sum_{j=1}^{n} \frac{\left|\Delta a_{j}\right|}{A_{j}} j^{r} \\
& \leq \sum_{k=1}^{n-1} k^{r}\left(\Delta A_{k}\right)\left(\sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|}{A_{j}}\right)+n^{r} A_{n} \sum_{j=1}^{n} \frac{\left|\Delta a_{j}\right|}{A_{j}} \\
& \leq \sum_{k=1}^{n-1} k^{r+1}\left(\Delta A_{k}\right)\left(\frac{1}{k} \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p}+n^{r+1} A_{n}\left(\frac{1}{n} \sum_{j=1}^{n} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p} \\
& =O(1)\left[\sum_{k=1}^{n-1} k^{r+1}\left(\Delta A_{k}\right)+n^{r+1} A_{n}\right]=O\left(\sum_{k=1}^{n} k^{r} A_{k}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get $\left\{a_{n}\right\} \in B V$.

Then applying the Abel transformation and Lemmas 1.15, 1.14 and 1.11 we obtain

$$
\begin{aligned}
\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x & \leq \sum_{k=n}^{\infty}\left(\Delta A_{k}\right) \int_{0}^{\pi}\left|\sum_{j=1}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x+o(1) \\
& =O_{p}(1)\left[\sum_{k=n}^{\infty} k^{r+1}\left(\Delta A_{k}\right)\right]=o(1), \quad n \rightarrow \infty .
\end{aligned}
$$

II. Classification of quasi-monotone sequences and its applications to L^{1}-convergence of trigonometric series

2.1. Remarks on trigonometric series with quasi-monotone coefficients. Quasimonotone sequences are known to share many properties with decreasing sequences: for example the de la Vallée Poussin theorem [69]: $\sum_{n=1}^{\infty} a_{n}<\infty \Rightarrow n a_{n} \rightarrow 0$ (see also [39]), the Cauchy condensation test for convergence, and a number of theorems about trigonometric series.

Some proofs of convergence theorems for trigonometric series are based on the use of modified cosine sums defined by Rees-Stanojević [31] as follows:

$$
g_{n}(x)=\frac{1}{2} \sum_{k=0}^{n} \Delta a_{k}+\sum_{k=1}^{n}\left[\left(\sum_{i=k}^{n} \Delta a_{i}\right) \cos k x\right]=S_{n}(x)-a_{n+1} D_{n}(x) .
$$

Marzuq proved the following theorem on L^{1}-convergence of trigonometric series with quasi-monotone coefficients.

THEOREM 2.1 (Marzuq [27]). Let $\left\{a_{k}\right\}$ be a nonnegative quasi-monotone sequence tending to zero, with

$$
\sum_{k=1}^{\infty} \frac{a_{k}}{k}<\infty, \quad \sum_{k=1}^{\infty}(k+1)\left[\left|\Delta a_{k}\right|-\Delta a_{k}\right]<\infty
$$

Then $\lim _{n \rightarrow \infty} g_{n}(x)=g(x) \in L^{1}[-\pi, \pi]$ iff $\sum_{n=1}^{\infty} a_{n}<\infty$.
Singh and Sharma [35] defined a class of L^{1}-convergence as follows. Namely, a sequence $\left\{a_{k}\right\}$ belongs to the class S^{\prime} if $a_{k} \rightarrow 0$ as $k \rightarrow \infty$ and there exists a sequence $\left\{A_{k}\right\}$ such that $\left\{A_{k}\right\}$ is quasi-monotone, $\sum_{k=1}^{\infty} A_{k}<\infty$, and $\left|\Delta a_{k}\right| \leq A_{k}$ for all k. They proved the following theorem.
Theorem 2.2 ([35]). If $\left\{a_{k}\right\} \in S^{\prime}$, then g_{n} converges to g in L^{1}.
Let $A_{n} \Downarrow 0$ mean that $\left\{A_{n}\right\}$ is a quasi-monotone null sequence. For convenience the following notations are used for $\alpha \geq 0, p>1$ and $r \in\{0,1, \ldots,[\alpha]\}$:

$$
\begin{aligned}
& M_{\alpha}=\left\{A_{n}: A_{n} \downarrow 0 \text { and } \sum_{n=1}^{\infty} n^{\alpha} A_{n}<\infty\right\}, \\
& M_{\alpha}^{\prime}=\left\{A_{n}: A_{n} \Downarrow 0 \text { and } \sum_{n=1}^{\infty} n^{\alpha} A_{n}<\infty\right\},
\end{aligned}
$$

$$
\begin{aligned}
& S_{p \alpha r}=\left\{a_{n}: a_{n} \rightarrow 0 \text { as } n \rightarrow \infty,\right. \text { and } \\
& \left.\quad \frac{1}{n^{p(\alpha-r)+1}} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}=O(1) \text { for some } A_{n} \in M_{\alpha}\right\}, \\
& S_{p \alpha r}^{\prime}=\left\{a_{n}: a_{n} \rightarrow 0 \text { as } n \rightarrow \infty,\right. \text { and } \\
& \left.\quad \frac{1}{n^{p(\alpha-r)+1}} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}=O(1) \text { for some } A_{n} \in M_{\alpha}^{\prime}\right\}
\end{aligned}
$$

We note that the classes M_{α}^{\prime} and $S_{p \alpha r}^{\prime}$ were defined by Sheng [32].
Theorem 2.3 ($[62,64])$. The classes M_{α} and M_{α}^{\prime} are identical.
Proof. It is obvious that $M_{\alpha} \subset M_{\alpha}^{\prime}$. To prove $M_{\alpha}^{\prime} \subset M_{\alpha}$, we use an idea of Telyakovskiĭ [47], i.e. we define the sequence

$$
\begin{equation*}
B_{k}=A_{k}+\beta \sum_{m=k}^{\infty} \frac{A_{m}}{m} \quad \text { for some } \beta \geq 0, \text { where } A_{n} \in M_{\alpha}^{\prime} \tag{2.1}
\end{equation*}
$$

We have

$$
B_{k}-B_{k+1}=\Delta B_{k}=\Delta A_{k}+\beta \frac{A_{k}}{k} \geq 0
$$

i.e. $B_{k} \downarrow 0$ as $k \rightarrow \infty$ and

$$
\begin{aligned}
\sum_{k=1}^{\infty} k^{\alpha} B_{k} & =\sum_{k=1}^{\infty} k^{\alpha} A_{k}+\sum_{k=1}^{\infty} \beta k^{\alpha} \sum_{m=k}^{\infty} \frac{A_{m}}{m} \leq \sum_{k=1}^{\infty} k^{\alpha} A_{k}+\beta \sum_{k=1}^{\infty} \sum_{m=k}^{\infty} m^{\alpha-1} A_{m} \\
& =\sum_{k=1}^{\infty} k^{\alpha} A_{k}+\beta \sum_{m=1}^{\infty} \sum_{n=1}^{m} m^{\alpha-1} A_{m}=\sum_{k=1}^{\infty} k^{\alpha} A_{k}+\beta \sum_{m=1}^{\infty} m^{\alpha} A_{m}<\infty
\end{aligned}
$$

Thus $M_{\alpha} \equiv M_{\alpha}^{\prime}$.
THEOREM 2.4 ([62, 64]). The classes $S_{p \alpha r}$ and $S_{p \alpha r}^{\prime}$ are identical.
Proof. It is obvious that $S_{p \alpha r} \subset S_{p \alpha r}^{\prime}$. Let $\left\{a_{n}\right\} \in S_{p \alpha r}^{\prime}$. It suffices to show that the sequence (2.1) satisfies the condition

$$
\frac{1}{n^{p(\alpha-r)+1}} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{B_{k}^{p}}=O(1)
$$

Clearly,

$$
\frac{1}{n^{p(\alpha-r)+1}} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{B_{k}^{p}} \leq \frac{1}{n^{p(\alpha-r)+1}} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}=O(1)
$$

Fomin [14], applying the following two theorems, gave a new proof of Theorem 1.25. Theorem 2.5 ([13]). If (C) is mean convergent, then

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{m_{n}} \frac{a_{n+k}}{k}=0
$$

for any sequence $\left\{m_{n}\right\}$ of natural numbers such that $m_{n} \leq n$ for all $n \in \mathbb{N}$.

THEOREM $2.6([14])$. Let $\left\{m_{n}\right\}$ be a sequence of natural numbers such that $\lim _{n \rightarrow \infty} m_{n} / n$ $=0$. If

$$
\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{m_{n}-1}\left|\Delta a_{n+k}\right| \log (k+1)+\left|a_{n+m_{n}}\right| \log \left(m_{n}+1\right)\right]=0
$$

then the series (C) is mean convergent.
2.2. Trigonometric series with δ-quasi-monotone coefficients. As an extension of quasi-monotone sequences, Boas [4] defined δ-quasi-monotone sequence as follows. A sequence $\left\{a_{n}\right\}$ is called δ-quasi-monotone if $a_{n} \rightarrow 0, a_{n}>0$ ultimately and $\Delta a_{n} \geq-\delta_{n}$, where δ_{n} is sequence of positive numbers. A quasi-monotone sequence with $a_{n} \rightarrow 0$ is one that is δ-quasi-monotone with $\delta_{n}=\alpha a_{n} / n$.

Boas [4] proved the following lemmas about δ-quasi-monotone sequences.
Lemma 2.1. If $\left\{a_{n}\right\}$ is δ-quasi-monotone with $\sum_{n=1}^{\infty} n \delta_{n}<\infty$ then the convergence of $\sum_{n=1}^{\infty} a_{n}$ implies that $n a_{n}=o(1), n \rightarrow \infty$.
REmark 2.1. This lemma includes the corresponding result for classical quasi-monotone sequences; indeed, if $\left\{a_{n}\right\}$ is quasi-monotone we have $\sum_{n=1}^{\infty} n \delta_{n}=\sum_{n=1}^{\infty} n \alpha \frac{a_{n}}{n}=\alpha \sum_{n=1}^{\infty} a_{n}$ $<\infty$ by hypothesis.

LEmma 2.2. Let $\left\{a_{n}\right\}$ be δ-quasi-monotone with $\sum_{n=1}^{\infty} n \delta_{n}<\infty$. If $\sum_{n=1}^{\infty} a_{n}<\infty$, then $\sum_{n=1}^{\infty}(n+1)\left|\Delta a_{n}\right|<\infty$.

Ahmad and Zahid Ali Zaini proved the following theorem.
Theorem 2.7 ([1]). Let (CS) be a Fourier series with δ-quasi-monotone coefficients with $\sum_{n=1}^{\infty} n \delta_{n}<\infty$. Then $\left\|S_{n}-\sigma_{n}\right\|=o(1), n \rightarrow \infty$ iff $\left(a_{n}+b_{n}\right) \log n=o(1), n \rightarrow \infty$.

Applying Theorems 2.5 and 2.6 to the series (C) we shall present a new proof of this theorem, rewritten as follows:
Theorem 2.8. Let (C) be a Fourier series with δ-quasi-monotone coefficients with $\sum_{n=1}^{\infty} n \delta_{n}<\infty$. Then (C) is mean convergent iff $a_{n} \log n=o(1), n \rightarrow \infty$.
Proof. Suppose $\left\|S_{n}-f\right\|=o(1), n \rightarrow \infty$. We have

$$
\begin{gathered}
\frac{a_{2 n-1}}{n} \geq \frac{a_{2 n}}{n}-\frac{\delta_{2 n-1}}{n} \\
\frac{a_{2 n-2}}{n-1} \geq \frac{a_{2 n-1}}{n-1}-\frac{\delta_{2 n-2}}{n-1} \geq \frac{a_{2 n}}{n-1}-\frac{\delta_{2 n-1}}{n-1}-\frac{\delta_{2 n-2}}{n-1} \\
\frac{a_{2 n-3}}{n-2} \geq \frac{a_{2 n-2}}{n-2}-\frac{\delta_{2 n-3}}{n-2} \geq \frac{a_{2 n}}{n-2}-\frac{\delta_{2 n-1}}{n-2}-\frac{\delta_{2 n-2}}{n-2}-\frac{\delta_{2 n-3}}{n-2}
\end{gathered}
$$

$$
\frac{a_{n}}{1} \geq \frac{a_{n+1}}{1}-\frac{\delta_{n}}{1} \geq \frac{a_{2 n}}{1}-\frac{\delta_{2 n-1}}{1}-\frac{\delta_{2 n-2}}{1}-\ldots-\frac{\delta_{n}}{1}
$$

Adding these inequalities, we obtain

$$
\sum_{k=1}^{n} \frac{a_{n+k-1}}{k} \geq\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) a_{2 n}-\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) \delta_{2 n-1}
$$

$$
\begin{aligned}
& -\left(1+\frac{1}{2}+\ldots+\frac{1}{n-1}\right) \delta_{2 n-2}-\ldots-\left(1+\frac{1}{2}\right) \delta_{n+1}-\frac{\delta_{n}}{1} \\
> & \left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) a_{2 n}-\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) \sum_{k=n}^{2 n-1} \delta_{k} .
\end{aligned}
$$

From the inequalities $\log n<1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \leq n$ for $n \in \mathbb{N}$, we obtain

$$
a_{n}+\sum_{k=2}^{n} \frac{a_{n+k}}{k}>a_{2 n} \log n-\sum_{k=n}^{2 n-1} k \delta_{k}
$$

i.e.

$$
a_{2 n} \log n<a_{n}+\sum_{k=1}^{n} \frac{a_{n+k}}{k}+\sum_{k=n}^{\infty} k \delta_{k} .
$$

Letting $n \rightarrow \infty$ and applying Theorem 2.5 we get $a_{n} \log n=o(1), n \rightarrow \infty$.
Conversely, assume $a_{n} \log n=o(1), n \rightarrow \infty$. Applying Theorem 2.6, it suffices to show that

$$
A_{n}=\sum_{k=1}^{m_{n}-1}\left|\Delta a_{k+n}\right| \log (k+1)=o(1), \quad n \rightarrow \infty
$$

Indeed,

$$
\begin{aligned}
A_{n} & \leq\left(\log m_{n}\right) \sum_{k=1}^{m_{n}-1}\left|\Delta a_{k+n}\right| \\
& \leq\left(\log m_{n}\right)\left(\sum_{k=1}^{m_{n}-1} \Delta a_{k+n}+2 \sum_{k=1}^{m_{n}-1} \delta_{k+n}\right) \\
& =\left(\log m_{n}\right)\left(a_{n+1}-a_{n+m_{n}-1}\right)+2\left(\log m_{n}\right) \sum_{k=1}^{m_{n}-1} \delta_{k+n} \\
& =O\left(a_{n+1} \log n\right)+O\left(\sum_{i=n+1}^{\infty} i \delta_{i}\right)=o(1), \quad n \rightarrow \infty
\end{aligned}
$$

This generalizes a theorem of Garrett, Rees and Stanojević [15], where quasi-monotonicity is assumed.

On the other hand, Mazhar [28] defined a class $S(\delta)$ as follows: A null sequence $\left\{a_{n}\right\}$ belongs to $S(\delta)$ if there exists a sequence $\left\{A_{n}\right\}$ such that $\left\{A_{n}\right\}$ is δ-quasi-monotone, $\sum_{n=1}^{\infty} n \delta_{n}<\infty, \sum_{n=1}^{\infty} A_{n}<\infty$ and $\left|\Delta a_{n}\right| \leq A_{n}$ for all n.

Later, Bor showed that the condition $\left\{a_{n}\right\} \in S(\delta)$ is sufficient for the integrability of the limit $g(x)=\lim _{n \rightarrow \infty} g_{n}(x)$.

Theorem 2.9 (Bor [7]). Let $\left\{a_{n}\right\} \in S(\delta)$. Then

$$
\frac{1}{x} \sum_{k=1}^{\infty} \Delta a_{k} \sin [(k+1 / 2) x]=\frac{h(x)}{x}
$$

converges for $x \in(0, \pi]$ and $h(x) / x \in L(0, \pi]$.

In [49] we defined a new class of positive sequences. Namely, we say that a null sequence $\left\{a_{k}\right\}$ belongs to the class $S_{p}(\delta), p>1$, if there exists a sequence $\left\{A_{k}\right\}$ of numbers such that
(a) $\left\{A_{k}\right\}$ is δ-quasi-monotone and $\sum_{k=1}^{\infty} k \delta_{k}<\infty$.
(b) $\sum_{k=1}^{\infty} A_{k}<\infty$,
(c) $\frac{1}{n+1} \sum_{k=0}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}=O(1)$.

In view of the above definitions it is obvious that $S(\delta) \subset S_{p}(\delta)$. Applying the Hölder-Hausdorff-Young technique (as in the proof of Theorem 1.14) we can get the following lemma.

Lemma 2.3 ([56]). Let $1<p \leq 2$ and $\left\{a_{j}\right\} \in S_{p}(\delta)$. Then

$$
\int_{0}^{\pi}\left|\sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x)\right| d x=O_{p}(k+1), \quad k \rightarrow \infty
$$

where O_{p} depends only on p.
Lemma 2.4 ([56]). Let $1<p \leq 2$ and $\left\{a_{j}\right\} \in S_{p}(\delta)$. Then

$$
A_{n} \int_{0}^{\pi}\left|\sum_{j=0}^{n} \frac{\Delta a_{j}}{A_{j}} D_{j}(x)\right| d x=o(1), \quad n \rightarrow \infty
$$

Proof. Applying first Lemma 2.3, and then Lemma 2.1, yields

$$
A_{n} \int_{0}^{\pi}\left|\sum_{j=0}^{n} \frac{\Delta a_{j}}{A_{j}} D_{j}(x)\right| d x=O_{p}\left((n+1) A_{n}\right)=o(1), \quad n \rightarrow \infty
$$

Theorem $2.10([56])$. Let $\left\{a_{k}\right\} \in S_{p}(\delta)$ for some $1<p \leq 2$. Then (C) is the Fourier series of some $f \in L^{1}(0, \pi)$ and $\left\|S_{n}-f\right\|=o(1), n \rightarrow \infty$ if and only if $a_{n} \log n=o(1)$, $n \rightarrow \infty$.

Proof. By summation by parts, and by Hölder's inequality, we have

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta a_{k}\right| & =\sum_{k=1}^{n} A_{k} \frac{\left|\Delta a_{k}\right|}{A_{k}} \\
& \leq \sum_{k=1}^{n-1}(k+1)\left|\Delta A_{k}\right|\left(\frac{1}{k+1} \sum_{j=0}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p}+(n+1) A_{n}\left(\frac{1}{n+1} \sum_{j=0}^{n} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p} \\
& =O(1)\left[\sum_{k=1}^{n-1}(k+1)\left|\Delta A_{k}\right|+(n+1) A_{n}\right]
\end{aligned}
$$

Application of Lemmas 2.1 and 2.2 yields $\sum_{n=1}^{\infty}\left|\Delta a_{n}\right|<\infty$, i.e. $S_{n}(x)$ converges to $f(x)$
for $x \neq 0$. Using the Abel transformation, we obtain

$$
f(x)=\sum_{k=0}^{\infty} \Delta a_{k} D_{k}(x)
$$

since $\lim _{n \rightarrow \infty} a_{n} D_{n}(x)=0$ if $x \neq 0$. Then

$$
\left\|S_{n}-f\right\|=\left\|g_{n}-f+a_{n+1} D_{n}\right\|
$$

where g_{n} is the Rees-Stanojević sum. Using the Abel transformation, we have

$$
g_{n}(x)=S_{n}(x)-a_{n+1} D_{n}(x)=\sum_{k=0}^{n} \Delta a_{k} D_{k}(x)
$$

Since $\sum_{n=1}^{\infty}\left|\Delta a_{n}\right|<\infty$, the series $\sum_{k=0}^{\infty} \Delta a_{k} D_{k}(x)$ converges. Hence $\lim _{n \rightarrow \infty} g_{n}(x)$ exists for $x \neq 0$. Then

$$
\left\|f-g_{n}\right\|=\left\|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}\right\|=\frac{1}{\pi} \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)\right| d x
$$

Application of the Abel transformation and of Lemmas 2.4, 2.3 and 2.2 yields
$\int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} A_{k} \frac{\Delta a_{k}}{A_{k}} D_{k}(x)\right| d x \leq \sum_{k=n+1}^{\infty}\left|\Delta A_{k}\right| \int_{0}^{\pi}\left|\sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x)\right| d x+o(1)=o(1), \quad n \rightarrow \infty$.
Hence, $\left\|f-g_{n}\right\|=o(1), n \rightarrow \infty$.
"If": Assume $\left\|S_{n}-f\right\|=o(1), n \rightarrow \infty$. Since $\left\|D_{n}\right\|=O(\log n)$, by the estimate

$$
\left\|a_{n+1} D_{n}\right\|=\left\|S_{n}-g_{n}\right\| \leq\left\|S_{n}-f\right\|+\left\|f-g_{n}\right\|=o(1)+o(1), \quad n \rightarrow \infty
$$

we have $a_{n} \log n=o(1), n \rightarrow \infty$.
"Only if": Assume $a_{n} \log n=o(1), n \rightarrow \infty$. Then

$$
\left\|S_{n}-f\right\| \leq\left\|g_{n}-f\right\|+\left\|a_{n+1} D_{n}(x)\right\|=o(1)+a_{n+1} O(\log n)=o(1), \quad n \rightarrow \infty
$$

Corollary $2.1([57])$. Let $\left\{a_{n}\right\} \in S_{p}(\delta)$ for some $1<p \leq 2$. Then

$$
\frac{1}{x} \sum_{k=1}^{\infty} \Delta a_{k} \sin [(k+1 / 2) x]=\frac{h(x)}{x}
$$

converges for $x \in(0, \pi]$ and $h(x) / x \in L(0, \pi]$.
Proof. Since

$$
\begin{aligned}
2 \sin (x / 2) f(x) & =a_{0} \sin (x / 2)+\sum_{k=1}^{\infty} a_{k}(2 \sin (x / 2) \cos k x) \\
& \left.=a_{0} \sin (x / 2)+\sum_{k=1}^{\infty} a_{k} \sin [(k+1 / 2)] x-(k-1 / 2) x\right] \\
& =\left(a_{0}-a_{1}\right) \sin (x / 2)+\left(a_{1}-a_{2}\right) \sin (3 x / 2)+\left(a_{2}-a_{3}\right) \sin (5 x / 2)+\ldots \\
& =\sum_{k=1}^{\infty} \Delta a_{k} \sin [(2 k+1) x / 2]=h(x)
\end{aligned}
$$

by Theorem 2.10, the proof is obvious.
2.3. On the equivalence of classes of Fourier coefficients. In [6] Bor considered the following class $S^{2}(\delta)$. A sequence $\left\{a_{k}\right\}$ belongs to $S^{2}(\delta)$ if $a_{k} \rightarrow 0$ as $k \rightarrow \infty$, and there exists a sequence $\left\{A_{k}\right\}$ of numbers which is δ-quasi-monotone, $\sum_{k=1}^{\infty} k \delta_{k}<\infty$, $\sum_{k=1}^{\infty} k\left|\Delta A_{k}\right|<\infty$ and $\left|\Delta a_{k}\right| \leq A_{k}$ for all k. Also, he proved Theorems 2.2 and 2.9 with $S^{2}(\delta)$ in place of S^{\prime} and $S(\delta)$.

Recently, Telyakovskiĭ [47] and Leindler [25] proved that these classes and the SidonTelyakovskiĭ class S are all equivalent. Now, we shall present the proof of S. A. Telyakovskiĭ.

Theorem 2.11. The classes $S, S^{\prime}, S(\delta)$ and $S^{2}(\delta)$ are all equivalent.
Proof. First we prove that $S(\delta)$ and $S^{2}(\delta)$ are equivalent.
Let $\left\{a_{n}\right\} \in S(\delta)$. It suffices to show that $\sum_{n=1}^{\infty} n\left|\Delta A_{n}\right|<\infty$, but this holds by Lemma 2.2.

If $\left\{a_{n}\right\} \in S^{2}(\delta)$, then

$$
n A_{n}=n \sum_{k=n}^{\infty} \Delta A_{k} \leq \sum_{k=n}^{\infty} k\left|\Delta A_{k}\right|=o(1), \quad n \rightarrow \infty
$$

But

$$
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n-1} k \Delta A_{k}+n A_{n} \leq \sum_{k=1}^{n-1} k\left|\Delta A_{k}\right|+n A_{n}
$$

and this implies that $\sum_{n=1}^{\infty} A_{n}<\infty$, i.e. $\left\{a_{n}\right\} \in S(\delta)$.
Next we prove that S and $S(\delta)$ are equivalent. It is obvious that $S \subset S(\delta)$. If $\left\{a_{n}\right\} \in$ $S(\delta)$, we define

$$
B_{k}=A_{k}+\sum_{m=k}^{\infty} \delta_{m}
$$

Then $B_{k}-B_{k+1}=\Delta A_{k}+\delta_{k} \geq 0$, i.e. $B_{k} \downarrow 0$ as $k \rightarrow \infty$. On the other hand,

$$
\sum_{k=1}^{\infty} B_{k}=\sum_{k=1}^{\infty} A_{k}+\sum_{k=1}^{\infty} \sum_{m=k}^{\infty} \delta_{m}=\sum_{k=1}^{\infty} A_{k}+\sum_{m=1}^{\infty} \sum_{k=1}^{m} \delta_{m}=\sum_{k=1}^{\infty} A_{k}+\sum_{m=1}^{\infty} m \delta_{m}<\infty
$$

and $\left|\Delta a_{n}\right| \leq A_{n}<B_{n}$ for all n, i.e. $\left\{a_{n}\right\} \in S$. Now we have

$$
S \subset S^{\prime} \subset S(\delta) \subset S
$$

Consequently, $S \equiv S^{\prime} \equiv S(\delta) \equiv S^{2}(\delta)$.
Applying this result, the inequality

$$
\frac{1}{n} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{B_{k}^{p}} \leq \frac{1}{n} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}=O(1)
$$

and also Theorem 2.4, we obtain the following corollary.
Corollary $2.2([62])$. For all $p>1$, the classes $S_{p}, S_{p}^{\prime}($ case $\alpha=r=0)$ and $S_{p}(\delta)$ are equivalent.

REMARK 2.2. If $c_{n} \equiv a_{n}$ is a real even sequence ($c_{n}=c_{-n}=a_{n}, n=0,1,2, \ldots$) then Theorem 1.8 of Č. V. Stanojević and V. B. Stanojević, the Sheng theorem (see Chapter III, 3.3, Theorem 3.17) and Theorem 2.10 are equivalent.
2.4. Trigonometric series with regularly quasi-monotone coefficients. A positive measurable function $L(u)$ is said to be slowly varying in the sense of Karamata [20] if $\lim _{u \rightarrow \infty} L(\lambda u) / L(u)=1$ for every $\lambda>0$. A basic property of slowly varying functions is the asymptotic relation [20]:

$$
u^{\alpha} \max _{u \leq s<\infty} s^{-\alpha} L(s) \sim L(u), \quad u \rightarrow \infty, \quad \text { for any } \quad \alpha>0
$$

Slowly varying sequences are defined analogously: a positive sequence $\left\{l_{n}\right\}$ is said to be slowly varying if $\lim _{n \rightarrow \infty} l_{[\lambda n]} / l_{n}=1$ for every $\lambda>0$. The class of slowly varying sequences is denoted by $S V(\mathbb{N})$.

A nondecreasing sequence $\left\{r_{n}\right\}$ of positive numbers is regularly varying, i.e. $\left\{r_{n}\right\} \in$ $(R V)(\mathbb{N})$ in the sense of J. Karamata [21], if for some $\alpha \geq 0$,

$$
\lim _{n \rightarrow \infty} \frac{r_{[\lambda n]}}{r_{n}}=\lambda^{\alpha}, \quad \lambda>1
$$

Regularly varying sequences are characterized [20] as follows: $\left\{r_{n}\right\} \in(R V)(\mathbb{N})$ if and only if $r_{n}=n^{\alpha} l_{n}$ for some $\alpha>0$ and some $\left\{l_{n}\right\} \in(S V)(\mathbb{N})$. On the other hand, a sequence $\left\{a_{n}\right\}$ is called regularly quasi-monotone, written $\left\{a_{n}\right\} \in R Q M$, if $a_{n} / r_{n} \downarrow 0$ for some $\left\{r_{n}\right\} \in(R V)(\mathbb{N})$. It is obvious that the class of quasi-monotone sequences is a subclass of $R Q M$. The next theorem is a generalization of the de la Vallée Poussin theorem (see Chapter II, 2.1).
THEOREM 2.12 ([65]). If $\left\{a_{n}\right\} \in R Q M$ and $\sum_{n=1}^{\infty} a_{n}<\infty$ then $n a_{n}=o(1), n \rightarrow \infty$.
Proof. We have

$$
\begin{aligned}
& a_{2 n-1} \geq\left(1+\frac{\alpha}{2 n-1}\right)^{-1} a_{2 n} \frac{l_{2 n-1}}{l_{2 n}} \\
& a_{2 n-2} \geq\left(1+\frac{\alpha}{2 n-2}\right)^{-1} a_{2 n-1} \frac{l_{2 n-2}}{l_{2 n-1}} \geq\left(1+\frac{\alpha}{2 n-2}\right)^{-2} a_{2 n} \frac{l_{2 n-2}}{l_{2 n}} \\
& \ldots \\
& a_{n} \geq\left(1+\frac{\alpha}{n}\right)^{-n} a_{2 n} \frac{l_{n}}{l_{2 n}}
\end{aligned}
$$

Adding these inequalities, we obtain

$$
\sum_{v=n}^{2 n-1} a_{v} \geq \frac{a_{2 n}}{l_{2 n}} \sum_{v=n}^{2 n-1} l_{v}\left(1+\frac{\alpha}{v}\right)^{-(2 n-v)}
$$

But

$$
\left(1+\frac{\alpha}{v}\right)^{2 n-v} \leq\left(1+\frac{\alpha}{n}\right)^{2 n-v} \leq\left(1+\frac{\alpha}{n}\right)^{n}
$$

implies that

$$
\sum_{v=n}^{2 n-1} a_{v} \geq \frac{a_{2 n}}{l_{2 n}} \sum_{v=n}^{2 n-1} l_{v}\left(1+\frac{\alpha}{n}\right)^{-n}
$$

Thus

$$
a_{2 n} \frac{\sum_{v=n}^{2 n-1} l_{v}}{l_{2 n}} \leq\left(1+\frac{\alpha}{n}\right)^{n} \sum_{v=n}^{2 n-1} a_{v} \leq e^{\alpha} \sum_{v=n}^{2 n-1} a_{v}
$$

The asymptotic relation

$$
\begin{equation*}
l_{k} \sim k^{\beta} \sup _{n \geq k} n^{-\beta} l_{n}, \quad k \rightarrow \infty \tag{2.2}
\end{equation*}
$$

gives for large n,

$$
\begin{aligned}
\sum_{v=n}^{2 n-1} l_{v} & \approx \sum_{v=n}^{2 n-1} v^{\beta} \sup _{m \geq v} m^{-\beta} l_{m} \geq \sup _{m \geq 2 n-1} m^{-\beta} l_{m} \geq \sum_{v=n}^{2 n-1} v^{\beta} \\
& \geq n^{\beta}\left[\sup _{m \geq 2 n-1} m^{-\beta} l_{m}\right] \sum_{v=n}^{2 n-1} 1 \\
& =\left(\frac{n}{2 n-1}\right)^{\beta}(2 n-1)^{\beta}\left[\sup _{m \geq 2 n-1} m^{-\beta} l_{m}\right] n \sim \frac{1}{2^{\beta}} n l_{2 n-1}
\end{aligned}
$$

for some $\beta>0$. Consequently,

$$
n a_{2 n} \frac{l_{2 n-1}}{l_{2 n}} \leq e^{\alpha} 2^{\beta} \sum_{v=n}^{\infty} a_{v} .
$$

Letting $n \rightarrow \infty$, we obtain $n a_{n}=o(1), n \rightarrow \infty$.
Sheng proved the following results on L^{1}-approximation of trigonometric series with regularly quasi-monotone coefficients.

Theorem 2.13 ([33]). Let (CS) be a Fourier series with $\left\{a_{n}\right\},\left\{b_{n}\right\} \in R Q M$. Then there exist positive constants C_{1} and C_{2} such that

$$
\begin{aligned}
C_{1} \sum_{v=n+1}^{2 n-1} \frac{a_{v}+b_{v}}{v-n} \leq & \left\|S_{n}-\tau_{n}\right\| \\
\left\|S_{n}-\tau_{n}\right\| \leq & C_{2}\left\{\sum_{v=n+1}^{2 n-1}\left(a_{v}+b_{v}\right)\left(\frac{l_{v+1}}{(v-n) l_{v}}+\varepsilon_{v}\right)\right. \\
& \left.+\frac{1}{n} \sum_{v=n+1}^{2 n-1}\left(a_{v}+b_{v}\right) \log (v-n+1)\right\}
\end{aligned}
$$

where $\tau_{n}(x)=n^{-1} \sum_{k=n}^{2 n-1} S_{k}(x)$ and $\varepsilon_{v}=l_{v+1} / l_{v}-1$.
The next theorem generalizes Theorem 1.25.
Theorem 2.14 ([65]). Let (C) be a Fourier series with $\left\{a_{n}\right\} \in R Q M$. Then (C) is mean convergent iff $a_{n} \log n=o(1), n \rightarrow \infty$.
Proof. For the necessity we apply Theorem 2.5, i.e. $\sum_{k=1}^{n} a_{n+k} / k=o(1), n \rightarrow \infty$. Since $\left\{a_{n}\right\} \in R Q M$ we obtain the inequalities

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{a_{n+k}}{k} & =\sum_{k=1}^{n} \frac{a_{n+k}}{(n+k)^{\alpha} l_{n+k}} \frac{(n+k)^{\alpha} l_{n+k}}{k} \\
& \geq \frac{a_{2 n}}{(2 n)^{\alpha} l_{2 n}} \sum_{k=1}^{n} \frac{(n+k)^{\alpha} l_{n+k}}{k} \\
& \geq\left(\frac{n+1}{2 n}\right)^{\alpha} \frac{a_{2 n}}{l_{2 n}} \sum_{k=1}^{n} \frac{l_{n+k}}{k}
\end{aligned}
$$

Applying the asymptotic relation (2.2) for large n, we have

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{l_{n+k}}{k} & =\sum_{k=n+1}^{2 n} \frac{l_{k}}{k-n} \approx \sum_{k=n+1}^{2 n} \frac{k^{\beta} \sup _{m \geq k} m^{-\beta} l_{m}}{k-n} \\
& \geq\left(\sup _{m \geq 2 n} m^{-\beta} l_{m}\right) \sum_{k=n+1}^{2 n} \frac{k^{\beta}}{k-n} \\
& \geq(n+1)^{\beta}\left(\sup _{m \geq 2 n} m^{-\beta} l_{m}\right) \sum_{k=1}^{n} \frac{1}{k} \\
& =\left(\frac{n+1}{2 n}\right)^{\beta}\left[(2 n)^{\beta} \sup _{m \geq 2 n} m^{-\beta} l_{m}\right] \sum_{k=1}^{n} \frac{1}{k} \approx \frac{1}{2^{\beta}} l_{2 n} \log n .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the inequality

$$
a_{2 n} \log n<2^{\beta}\left(\frac{2 n}{n+1}\right)^{\alpha} \sum_{k=1}^{n} \frac{a_{n+k}}{k}
$$

completes the proof of the necessity.
For the sufficiency, we apply Theorem 2.6. From the monotonicity of the sequence a_{n} / r_{n}, we get

$$
\begin{aligned}
A_{n}= & \sum_{k=1}^{m_{n}-1}\left|\Delta a_{k+n}\right| \log (k+1)=\sum_{i=n+1}^{n+m_{n}-1}\left|\Delta a_{i}\right| \log (i-n+1) \\
& \sum_{i=n+1}^{n+m_{n}-1}\left|r_{i} \Delta\left(\frac{a_{i}}{r_{i}}\right)+\frac{a_{i+1}}{r_{i+1}}\left(r_{i}-r_{i+1}\right)\right| \log (i-n+1) \\
\leq & r_{n+m_{n}-1} \log m_{n} \sum_{i=n+1}^{n+m_{n}-1} \Delta\left(\frac{a_{i}}{r_{i}}\right)+\sum_{i=n+1}^{n+m_{n}-1} \frac{a_{i+1}}{r_{i+1}}\left(r_{i+1}-r_{i}\right) \log (i+1) \\
= & r_{n+m_{n}-1} \log m_{n}\left(\frac{a_{n+1}}{r_{n+1}}-\frac{a_{n+m_{n}-1}}{r_{n+m_{n}-1}}\right) \\
& +\max _{n+1 \leq i \leq n+m_{n}-1}\left(a_{i+1} \log (i+1)\right) \sum_{i=n+1}^{n+m_{n}-1}\left(1-\frac{r_{i}}{r_{i+1}}\right) .
\end{aligned}
$$

Since

$$
\sum_{i=n+1}^{n+m_{n}-1}\left(1-\frac{r_{i}}{r_{i+1}}\right) \leq \log \prod_{i=n+1}^{n+m_{n}-1} \frac{r_{i+1}}{r_{i}}=\log \frac{r_{n+m_{n}}}{r_{n+1}} \leq \frac{r_{n+m_{n}}}{r_{n}}
$$

we obtain

$$
A_{n} \leq \frac{r_{n+m_{n}-1}}{r_{n}} \frac{\log m_{n}}{\log n}\left(a_{n+1} \log (n+1)\right)+\frac{r_{n+m_{n}}}{r_{n}} \max _{n+1 \leq i \leq n+m_{n}-1}\left[a_{i+1} \log (i+1)\right]
$$

The hypothesis $a_{n} \log n=o(1), n \rightarrow \infty$ and $\left\{r_{n}\right\} \in(R V)(\mathbb{N})$ imply that the first and second terms on the right side are $o(1), n \rightarrow \infty$. Finally, $A_{n}=o(1), n \rightarrow \infty$, i.e. the series (C) is mean convergent.

Remark 2.3. The proof of the necessity of this theorem can be simplified by using the monotonicity of the sequence $\left\{r_{n}\right\}$ and the fact that $\left\{a_{n} / r_{n}\right\} \downarrow$. We have

$$
\sum_{k=1}^{n} \frac{a_{n+k}}{k}=\sum_{k=1}^{n} \frac{a_{n+k}}{r_{n+k}} \frac{r_{n+k}}{k} \geq \frac{a_{2 n}}{r_{2 n}} r_{n} \sum_{k=1}^{n} \frac{1}{k} \approx\left(a_{2 n} \log n\right) \frac{r_{n}}{r_{2 n}} .
$$

Taking $n \rightarrow \infty$ in the inequality

$$
a_{2 n} \log n \leq \frac{r_{2 n}}{r_{n}} \sum_{k=1}^{n} \frac{a_{n+k}}{k}
$$

completes the proof.

III. Estimates of trigonometric series, useful in problems of approximation theory

3.1. Some L^{1}-estimates for trigonometric series with the Fomin coefficient condition. Let $f(x)$ and $g(x)$ be the sums of the series (C) and (S) respectively. It is well known (see [2], [22], [73]) that if $\left\{a_{n}\right\}$ is a quasi-convex null sequence of real numbers, then the series (C) is the Fourier series of some $f \in L^{1}$ and

$$
\begin{equation*}
\int_{0}^{\pi}|f(x)| d x \leq \frac{\pi}{2} \sum_{k=1}^{\infty} k\left|\Delta^{2} a_{k-1}\right| \tag{3.1}
\end{equation*}
$$

The following two theorems were proved by Telyakovskiĭ [42], [43].
Theorem 3.1 ([42]). Let $\left\{a_{n}\right\} \in B V, a_{n} \rightarrow 0$ and

$$
\sum_{i=2}^{\infty}\left|\sum_{k=1}^{[i / 2]} \frac{\Delta a_{i-k}-\Delta a_{i+k}}{k}\right|<\infty
$$

Then

$$
\int_{0}^{\pi}|f(x)| d x \leq C\left(\sum_{k=0}^{\infty}\left|\Delta a_{k}\right|+\sum_{i=2}^{\infty}\left|\sum_{k=1}^{[i / 2]} \frac{\Delta a_{i-k}-\Delta a_{i+k}}{k}\right|\right)
$$

where C is some absolute constant.
Theorem $3.2([43])$. Let $\left\{a_{n}\right\} \in B V, a_{n} \rightarrow 0, a_{0}=0$, and

$$
\sum_{i=2}^{\infty}\left|\sum_{k=1}^{[i / 2]} \frac{\Delta a_{i-k}-\Delta a_{i+k}}{k}\right|<\infty
$$

Then the following estimate holds uniformly with respect to $s \in \mathbb{N}$:

$$
\left|\int_{\pi /(2 s+1)}^{\pi}\right| g(x)\left|d x-\sum_{k=1}^{s} \frac{\left|a_{k}\right|}{k}\right| \leq C\left(\sum_{k=0}^{\infty}\left|\Delta a_{k}\right|+\sum_{i=2}^{\infty}\left|\sum_{k=1}^{[i / 2]} \frac{\Delta a_{i-k}-\Delta a_{i+k}}{k}\right|\right)
$$

where C is some absolute constant.

Also, Telyakovskiĭ [42], [44] proved the following inequality:

$$
\begin{equation*}
\sum_{i=2}^{\infty}\left|\sum_{k=1}^{[i / 2]} \frac{\Delta a_{i-k}-\Delta a_{i+k}}{k}\right| \leq C \sum_{k=1}^{\infty} k\left|\Delta^{2} a_{k-1}\right| \tag{3.2}
\end{equation*}
$$

Remark 3.1. If $\left\{a_{k}\right\}$ is a quasi-convex null sequence then $\sum_{k=0}^{\infty}\left|\Delta a_{k}\right| \leq \sum_{k=1}^{\infty} k\left|\Delta^{2} a_{k}\right|$. Thus the estimate (3.1) follows from Theorem 3.1 and the estimate (3.2) with some absolute constant C instead of $\pi / 2$.

Theorem 3.3. If $\left\{a_{k}\right\}$ is a quasi-convex null sequence with $a_{0}=0$, then (S) is a Fourier series iff $\sum_{n=1}^{\infty}\left|a_{n}\right| / n<\infty$. Moreover, if $\sum_{n=1}^{\infty}\left|a_{n}\right| / n<\infty$, then

$$
\int_{0}^{\pi}\left|\sum_{k=1}^{\infty} a_{k} \sin k x\right| d x \leq \sum_{k=1}^{\infty} \frac{\left|a_{k}\right|}{k}+C \sum_{k=1}^{\infty} k\left|\Delta^{2} a_{k-1}\right|
$$

REmark 3.2. If $\left\{a_{n}\right\}$ is a quasi-convex null sequence then the estimate of Theorem 3.3 is a consequence of Theorem 3.2 and of the estimate (3.2).

Also, Telyakovskiĭ [41] gave a direct proof of Theorem 3.3, by proving the following estimate:

$$
\left|\int_{1 /(s+1)}^{\pi}\right| \sum_{k=1}^{\infty} a_{k} \sin k x\left|d x-\sum_{k=1}^{s} \frac{\left|a_{k}\right|}{k}\right| \leq C \sum_{k=1}^{\infty} k\left|\Delta^{2} a_{k-1}\right|, \quad C>0
$$

In [45] the indicated results on series with quasi-convex coefficients were extended to the more general case when the coefficients $\left\{a_{k}\right\}$ satisfy the Sidon-Telyakovskiĭ class S. Namely, Telyakovskiĭ proved the following theorems.

Theorem 3.4 ([45]). Let the coefficients of the series (C) belong to the class S. Then (C) is the Fourier series of some $f \in L^{1}(0, \pi)$ and

$$
\int_{0}^{\pi}|f(x)| d x \leq M \sum_{n=0}^{\infty} A_{n}, \quad M>0
$$

Theorem 3.5 ([45]). Let the coefficients of the series (S) belong to the class S. Then

$$
\int_{\pi /(p+1)}^{\pi}|g(x)| d x=\sum_{n=1}^{p} \frac{\left|a_{n}\right|}{n}+O\left(\sum_{n=1}^{\infty} A_{n}\right)
$$

for $p \in \mathbb{N}$. In particular $g(x)$ is a Fourier series iff $\sum_{n=1}^{\infty}\left|a_{n}\right| / n<\infty$.
Corollary 3.1 ([66]). Let the coefficients of the series (C) belong to the class $S(\delta)$. Then (C) is the Fourier series of some $f \in L^{1}(0, \pi)$ and

$$
\int_{0}^{\pi}|f(x)| d x \leq M\left(\sum_{n=0}^{\infty} A_{n}+\sum_{n=1}^{\infty} n \delta_{n}\right), \quad M>0
$$

Proof. Applying Theorems 2.11 and 3.4, we obtain

$$
\begin{aligned}
\int_{0}^{\pi}|f(x)| d x & \leq M \sum_{n=0}^{\infty} B_{n}=M\left(\sum_{n=0}^{\infty} A_{n}+\sum_{n=0}^{\infty} \sum_{m=n}^{\infty} \delta_{m}\right) \\
& =M\left(\sum_{n=0}^{\infty} A_{n}+\sum_{n=1}^{\infty} n \delta_{n}\right), \quad M>0
\end{aligned}
$$

Analogously, applying Theorems 2.11 and 3.5 , we obtain
Corollary 3.2 ([66]). Let the coefficients of the series (S) belong to the class $S(\delta)$. Then

$$
\int_{\pi /(p+1)}^{\pi}|g(x)| d x=\sum_{n=1}^{p} \frac{\left|a_{n}\right|}{n}+O\left(\sum_{n=1}^{\infty} A_{n}\right)+O\left(\sum_{n=1}^{\infty} n \delta_{n}\right)
$$

for $p \in \mathbb{N}$.
On the other hand, Fomin [13] proved the following estimate:

$$
\begin{equation*}
\sum_{i=2}^{\infty}\left|\sum_{k=1}^{[i / 2]} \frac{\Delta a_{i-k}-\Delta a_{i+k}}{k}\right| \leq C_{p} \sum_{s=0}^{\infty} 2^{s} \Delta_{s}^{(p)} \tag{3.3}
\end{equation*}
$$

for any $1<p \leq 2$, where the positive constant C_{p} depends only on p.
Lemma 3.1 (Elliot [18]). If $0<q<1, b_{n} \geq 0$ and $\sum_{n=1}^{\infty} b_{n}^{q}<\infty$ then

$$
\left(\frac{q}{1-q}\right)^{q} \sum_{n=1}^{\infty} b_{n}^{q}<\sum_{n=1}^{\infty}\left(\frac{b_{n}+b_{n+1}+\ldots}{n}\right)^{q}
$$

unless all the b_{n} are zero.
Theorem 3.6 ([59], [60]). Let $\left\{a_{n}\right\} \in F_{p}$ for some $1<p \leq 2$. Then the series (C) is the Fourier series of some $f \in L^{1}(0, \pi)$ and

$$
\int_{0}^{\pi}|f(x)| d x \leq C_{p} \sum_{n=1}^{\infty}\left(\frac{\sum_{k=n}^{\infty}\left|\Delta a_{k}\right|^{p}}{n}\right)^{1 / p}
$$

Proof. Putting $b_{n}=\left|\Delta a_{n}\right|^{p}$ in Lemma 3.1, where $q=1 / p$, we get

$$
\left(\frac{1}{p-1}\right)^{1 / p} \sum_{n=1}^{\infty}\left|\Delta a_{n}\right|<\sum_{n=1}^{\infty}\left(\frac{\left|\Delta a_{n}\right|^{p}+\left|\Delta a_{n+1}\right|^{p}+\ldots}{n}\right)^{1 / p}
$$

i.e.

$$
\sum_{n=1}^{\infty}\left|\Delta a_{n}\right|<(p-1)^{1 / p} \sum_{n=1}^{\infty}\left(\frac{\sum_{k=n}^{\infty}\left|\Delta a_{k}\right|^{p}}{n}\right)^{1 / p}
$$

On the other hand, since $U_{s}=s^{-1} \sum_{k=s}^{\infty}\left|\Delta a_{k}\right|^{p}$ is a decreasing sequence,

$$
\begin{aligned}
\sum_{s=1}^{n} 2^{s} \Delta_{s}^{(p)} & \leq 2 \sum_{s=1}^{n}\left[2^{(s-1)(p-1)} \sum_{k=2^{s-1}+1}^{2^{s}}\left|\Delta a_{k}\right|^{p}\right]^{1 / p} \\
& \leq 2 \sum_{s=1}^{n} 2^{s-1}\left(\frac{1}{2^{s-1}} \sum_{k=2^{s-1}}^{\infty}\left|\Delta a_{k}\right|^{p}\right)^{1 / p}=O\left(\sum_{s=1}^{2^{n-1}}\left(U_{s}\right)^{1 / p}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
\sum_{s=1}^{\infty} 2^{s} \Delta_{s}^{(p)}=O\left(\sum_{s=1}^{\infty}\left(\frac{1}{s} \sum_{k=s}^{\infty}\left|\Delta a_{k}\right|^{p}\right)^{1 / p}\right)
$$

Then applying Theorem 3.1 and inequality (3.3) completes the proof.
Similarly, applying Theorem 3.2, we can get

Theorem 3.7 ([59], [60]). Let $1<p \leq 2,\left\{a_{n}\right\} \in F_{p}$ and $a_{0}=0$. Then (S) is a Fourier series iff $\sum_{n=1}^{\infty}\left|a_{n}\right| / n<\infty$. Moreover if $\sum_{n=1}^{\infty}\left|a_{n}\right| / n<\infty$, then

$$
\int_{0}^{\pi}\left|\sum_{k=1}^{\infty} a_{k} \sin k x\right| d x \leq \sum_{k=1}^{\infty} \frac{\left|a_{k}\right|}{k}+C_{p} \sum_{n=1}^{\infty}\left(\frac{\sum_{k=n}^{\infty}\left|\Delta a_{k}\right|^{p}}{n}\right)^{1 / p} .
$$

3.2. Some results on L^{1}-approximation of the r th derivative of Fourier series. In this section we obtain L^{1}-inequalities for r th derivatives of the series (C) and (S).

Generalizations of the Telyakovskiĭ inequalities [52], [53], [55] are obtained by considering the condition $\Im_{r}, r \in \mathbb{N} \cup\{0\}$, and $S_{p \alpha r}, 1<p \leq 2, \alpha \geq 0, r \in\{0,1, \ldots,[\alpha]\}$, instead of S. An equivalent form of the condition $\Im_{r}, r \in \mathbb{N} \cup\{0\}$, and an extension of Sidon's Theorem 1.3 are given.

Theorem 3.8 ([52]). Let $r \in \mathbb{N} \cup\{0\}$ and let the coefficients of the series (C) belong to the class \Im_{r}. Then the rth derivative of (C) is the Fourier series of some $f^{(r)} \in L^{1}(0, \pi)$ and

$$
\int_{0}^{\pi}\left|f^{(r)}(x)\right| d x \leq M \sum_{n=1}^{\infty} n^{r} A_{n}, \quad \text { where } \quad 0<M=M(r)<\infty
$$

Proof 1. We have

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta\left(k^{r} a_{k}\right)\right| & \leq \sum_{k=1}^{n}\left|(k+1)^{r+1} a_{k+1}-k^{r} a_{k+1}\right|+\sum_{k=1}^{n}\left|k^{r} a_{k+1}-k^{r} a_{k}\right| \\
& =\sum_{k=1}^{n}\left|\Delta\left(k^{r}\right) a_{k+1}\right|+\sum_{k=1}^{n} k^{r}\left|\Delta a_{k}\right| \\
& =O_{r}\left(\sum_{k=1}^{n} k^{r-1}\left|a_{k+1}\right|\right)+O\left(\sum_{k=1}^{n} k^{r} A_{k}\right) .
\end{aligned}
$$

Applying the Abel transformation, we have

$$
\begin{aligned}
\sum_{k=1}^{n} k^{r-1}\left|a_{k+1}\right| & =\sum_{k=1}^{n-1} \Delta\left|a_{k+1}\right| \sum_{j=1}^{k} j^{r-1}+\left|a_{n+1}\right| \sum_{j=1}^{n} j^{r-1} \\
& \leq \sum_{k=1}^{n-1}\left|\Delta a_{k+1}\right| k^{r}+\left|a_{n+1}\right| n^{r} \\
& \leq \sum_{k=1}^{n-1}\left|\Delta a_{k+1}\right| k^{r}+\sum_{k=n+1}^{\infty} k^{r}\left|\Delta a_{k}\right| \\
& \leq \sum_{k=1}^{n-1} k^{r} A_{k}+\sum_{k=n+1}^{\infty} k^{r} A_{k} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get $\sum_{k=1}^{\infty}\left|\Delta\left(k^{r} a_{k}\right)\right|<\infty$, i.e. $\lim _{n \rightarrow \infty} S_{n}^{(r)}(x)=f^{(r)}(x)$.
Since $\left|D_{n}^{(r)}(x)\right|=O\left(n^{r} / x\right)($ see $[32])$, the series $\sum_{k=1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)$ is uniformly convergent on any compact subset of $(0, \pi)$. Thus the representation $f(x)=\sum_{k=0}^{\infty} \Delta a_{k} D_{k}(x)$
implies that

$$
f^{(r)}(x)=\sum_{k=1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)
$$

From Lemmas 1.6 and 1.10, we obtain

$$
\begin{equation*}
A_{N} \int_{0}^{\pi}\left|\sum_{j=0}^{N} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=O\left((N+1)^{r+1} A_{N}\right)=o(1), \quad N \rightarrow \infty \tag{3.4}
\end{equation*}
$$

Again applying the Abel transformation, (3.4) and Lemma 1.6, we get

$$
\begin{aligned}
\int_{0}^{\pi}\left|f^{(r)}(x)\right| d x & \leq \lim _{N \rightarrow \infty} \sum_{k=0}^{N-1}\left(\Delta A_{k}\right) \int_{0}^{\pi}\left|\sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x \\
& =O(1) \lim _{N \rightarrow \infty} \sum_{k=0}^{N-1}\left(\Delta A_{k}\right)(k+1)^{r+1} \\
& =O(1) \lim _{N \rightarrow \infty}\left\{\sum_{k=0}^{N}\left[(k+1)^{r+1}-k^{r+1}\right] A_{k}-(N+1)^{r+1} A_{N}\right\} \\
& =O_{r}\left(\sum_{k=0}^{\infty} k^{r} A_{k}\right)
\end{aligned}
$$

where O_{r} depends on r.
Proof $2([63])$. First we prove that if $\left\{a_{n}\right\} \in \Im_{r}$, then $\left\{n^{r} a_{n}\right\} \in S$. We define the sequence $\left\{B_{k}\right\}$ as follows:

$$
B_{k}=k^{r} A_{k}+\sum_{i=k+1}^{\infty}\left[i^{r}-(i-1)^{r}\right] A_{i}
$$

We have

$$
B_{k}-B_{k+1}=k^{r} A_{k}-(k+1)^{r} A_{k+1}+(k+1)^{r} A_{k+1}-k^{r} A_{k+1}=k^{r} \Delta A_{k} \geq 0
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{\infty} B_{k} & =\sum_{k=1}^{\infty} k^{r} A_{k}+\sum_{k=1}^{\infty} \sum_{i=k}^{\infty}\left[(i+1)^{r}-i^{r}\right] A_{i+1} \\
& =\sum_{k=1}^{\infty} k^{r} A_{k}+\sum_{i=1}^{\infty} \sum_{k=1}^{i}\left[(i+1)^{r}-i^{r}\right] A_{i+1} \\
& =\sum_{k=1}^{\infty} k^{r} A_{k}+\sum_{i=1}^{\infty} i\left[(i+1)^{r}-i^{r}\right] A_{i+1} \\
& <\sum_{k=1}^{\infty} k^{r} A_{k}+\sum_{i=1}^{\infty}\left[(i+1)^{r+1}-i^{r+1}\right] A_{i+1} \\
& =\sum_{k=1}^{\infty} k^{r} A_{k}+O_{r}\left(\sum_{i=1}^{\infty} i^{r} A_{i}\right)<\infty
\end{aligned}
$$

Then $\Delta\left(k^{r} a_{k}\right)=k^{r} a_{k}-(k+1)^{r} a_{k+1}=k^{r} \Delta a_{k}-\left((k+1)^{r}-k^{r}\right) a_{k+1}$. The function $h(x)=(x+1)^{r}-x^{r}$ is increasing on $[0, \infty)$, since $h^{\prime}(x)=r\left[(x+1)^{r-1}-x^{r-1}\right] \geq 0$ for $x \geq 0$. This implies that

$$
\begin{aligned}
\left|\Delta\left(k^{r} a_{k}\right)\right| & \leq k^{r}\left|\Delta a_{k}\right|+\left((k+1)^{r}-k^{r}\right)\left|a_{k+1}\right| \\
& \leq k^{r} A_{k}+\left((k+1)^{r}-k^{r}\right) \sum_{i=k+1}^{\infty}\left|\Delta a_{i}\right| \\
& \leq k^{r} A_{k}+\sum_{i=k+1}^{\infty}\left(i^{r}-(i-1)^{r}\right)\left|\Delta a_{i}\right| \\
& \leq k^{r} A_{k}+\sum_{i=k+1}^{\infty}\left(i^{r}-(i-1)^{r}\right) A_{i}=B_{k} .
\end{aligned}
$$

Thus $\left\{n^{r} a_{n}\right\} \in S$. Now, applying Theorem 3.4, we obtain

$$
\begin{aligned}
\int_{0}^{\pi}\left|f^{(r)}(x)\right| d x & \leq M \sum_{n=0}^{\infty} B_{n}<M\left[\sum_{k=1}^{\infty} k^{r} A_{k}+O_{r}\left(\sum_{i=1}^{\infty} i^{r} A_{i}\right)\right] \\
& =O_{r}\left(\sum_{k=1}^{\infty} k^{r} A_{k}\right)
\end{aligned}
$$

where O_{r} depends on r.
Theorem 3.9 ([55]). Let $r \in \mathbb{N} \cup\{0\}$. A null sequence $\left\{a_{n}\right\}$ belongs to the class \Im_{r} if and only if it can be represented as

$$
a_{n}=\sum_{k=n}^{\infty} \frac{p_{k}}{k} \sum_{l=n}^{k} \alpha_{l}, \quad n \in \mathbb{N},
$$

where $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{p_{n}\right\}_{n=1}^{\infty}$ are sequences such that $\left|\alpha_{n}\right| \leq 1$ for all n and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{r}\left|p_{n}\right|<\infty \tag{3.5}
\end{equation*}
$$

Proof. Let (3.5) hold. Then

$$
\Delta a_{k}=\alpha_{k} \sum_{m=k}^{\infty} \frac{p_{m}}{m}
$$

and we define

$$
A_{k}=\sum_{m=k}^{\infty} \frac{\left|p_{m}\right|}{m}
$$

Since $\left|\alpha_{k}\right| \leq 1$, we get

$$
\left|\Delta a_{k}\right| \leq\left|\alpha_{k}\right| \sum_{m=k}^{\infty} \frac{\left|p_{m}\right|}{m} \leq A_{k} \quad \text { for all } k
$$

However,

$$
\sum_{k=1}^{\infty} k^{r} A_{k}=\sum_{k=1}^{\infty} k^{r} \sum_{m=k}^{\infty} \frac{\left|p_{m}\right|}{m}=\sum_{m=1}^{\infty} \frac{\left|p_{m}\right|}{m} \sum_{k=1}^{m} k^{r} \leq \sum_{m=1}^{\infty} m^{r}\left|p_{m}\right|<\infty
$$

and $A_{k} \downarrow 0$, i.e. $\left\{a_{k}\right\} \in \Im_{r}$.

Conversely, if $\left\{a_{k}\right\} \in \Im_{r}$, we put $\alpha_{k}=\left(\Delta a_{k}\right) / A_{k}$ and $p_{k}=k\left(A_{k}-A_{k+1}\right)$. Hence $\left|\alpha_{k}\right| \leq 1$, and by Lemma 1.10 we get

$$
\sum_{k=1}^{\infty} k^{r}\left|p_{k}\right|=\sum_{k=1}^{\infty} k^{r+1}\left(A_{k}-A_{k+1}\right)=O\left(\sum_{k=1}^{\infty} k^{r} A_{k}\right)<\infty
$$

Finally,

$$
a_{k}=\sum_{i=k}^{\infty} \Delta a_{i}=\sum_{i=k}^{\infty} \alpha_{i} A_{i}=\sum_{i=k}^{\infty} \alpha_{i} \sum_{m=i}^{\infty} \Delta A_{m}=\sum_{i=k}^{\infty} \alpha_{i} \sum_{m=i}^{\infty} \frac{p_{m}}{m}=\sum_{m=k}^{\infty} \frac{p_{m}}{m} \sum_{i=k}^{m} \alpha_{i}
$$

i.e. (3.5) holds.

Corollary 3.3 ([55]). Let $r \in \mathbb{N} \cup\{0\}$ and let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ and $\left\{p_{n}\right\}_{n=1}^{\infty}$ be sequences such that $\left|\alpha_{n}\right| \leq 1$ for every n and let $\sum_{n=1}^{\infty} n^{r}\left|p_{n}\right|<\infty$. If

$$
a_{n}=\sum_{k=n}^{\infty} \frac{p_{k}}{k} \sum_{l=n}^{k} \alpha_{l}, \quad n \in \mathbb{N},
$$

then the rth derivative of the series (C) is the Fourier series of some $f^{(r)} \in L^{1}$.
Proof. This follows from Theorems 3.8 and 3.9.
Lemma 3.2 ([52]). Let $\left\{\alpha_{j}\right\}_{j=0}^{k}$ be a sequence of real numbers. Then

$$
\begin{aligned}
U_{k} & =\int_{\pi /(k+1)}^{\pi}\left|\sum_{j=0}^{k} \alpha_{j} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+(v+3) \pi / 2]}{(\sin (x / 2))^{r+1-v}}\right| d x \\
& =O\left((k+1)^{r-v+1 / 2}\left(\sum_{j=0}^{k} \alpha_{j}^{2}(j+1)^{2 v}\right)^{1 / 2}\right)
\end{aligned}
$$

for $v \in\{0,1, \ldots, r\}$ and $r \in \mathbb{N} \cup\{0\}$.
Proof. Applying first the Cauchy-Bunyakovskiĭ inequality yields

$$
\begin{aligned}
U_{k} \leq & {\left[\int_{\pi /(k+1)}^{\pi} \frac{d x}{(\sin (x / 2))^{2(r+1-v)}}\right]^{1 / 2} } \\
& \times\left\{\int_{\pi /(k+1)}^{\pi}\left[\sum_{j=0}^{k} \alpha_{j}(j+1 / 2)^{v} \sin [(j+1 / 2) x+(v+3) \pi / 2]\right]^{2} d x\right\}^{1 / 2} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\int_{\pi /(k+1)}^{\pi} \frac{d x}{(\sin (x / 2))^{2(r+1-v)}} & \leq \pi^{2(r+1-v)} \int_{\pi /(k+1)}^{\pi} \frac{d x}{x^{2(r+1-v)}} \\
& \leq \frac{\pi(k+1)^{2(r+1-v)-1}}{2(r+1-v)-1} \leq \pi(k+1)^{2(r+1-v)-1}
\end{aligned}
$$

we have

$$
\begin{aligned}
& U_{k} \leq \sqrt{\pi}\left[(k+1)^{2(r+1-v)-1}\right]^{1 / 2} \\
& \quad \times\left\{\int_{0}^{\pi}\left[\sum_{j=0}^{k} \alpha_{j}(j+1 / 2)^{v} \sin [(j+1 / 2) x+(v+3) \pi / 2]\right]^{2} d x\right\}^{1 / 2} \\
& \leq \sqrt{2 \pi}\left[(k+1)^{2(r+1-v)-1}\right]^{1 / 2}\left\{\int_{0}^{2 \pi}\left[\sum_{j=0}^{k} \alpha_{j}(j+1 / 2)^{v} \sin [(2 j+1) t+(v+3) \pi / 2]\right]^{2} d t\right\}^{1 / 2}
\end{aligned}
$$

Then applying the Parseval equality, we get

$$
U_{k} \leq \sqrt{2 \pi}\left[(k+1)^{2(r+1-v)-1}\right]^{1 / 2}\left[\sum_{j=0}^{k} \alpha_{j}^{2}(j+1)^{2 v}\right]^{1 / 2}
$$

Finally,

$$
U_{k}=O\left((k+1)^{r-v+1 / 2}\left(\sum_{j=0}^{k} \alpha_{j}^{2}(j+1)^{2 v}\right)^{1 / 2}\right)
$$

Lemma 3.3 ([55]). Let $r \in \mathbb{N} \cup\{0\}$ and let $\left\{\alpha_{k}\right\}$ be a sequence of real numbers such that $\left|\alpha_{k}\right| \leq 1$ for all k. Then there exists a finite constant $M=M(r)>0$ such that

$$
\int_{\pi /(n+1)}^{\pi}\left|\sum_{k=0}^{n} \alpha_{k} \bar{D}_{k}^{(r)}(x)\right| d x \leq M(n+1)^{r+1}
$$

for any $n \geq 0$.
Proof. Since $-\cos [(n+1 / 2) x]=\sin [(n+1 / 2) x+3 \pi / 2]$, by Lemma 1.13 , we get

$$
\begin{aligned}
\bar{D}_{n}^{(r)}(x)= & \sum_{k=0}^{r-1} \frac{(n+1 / 2)^{k} \sin [(n+1 / 2) x+(k+3) \pi / 2]}{(\sin (x / 2))^{r+1-k}} \varphi_{k}(x) \\
& +\frac{(n+1 / 2)^{r} \sin [(n+1 / 2) x+(r+3) \pi / 2]}{2 \sin (x / 2)}
\end{aligned}
$$

where the φ_{k} are analytic functions of x, independent of n. Then

$$
\begin{aligned}
\int_{\pi /(n+1)}^{\pi} & \left|\sum_{k=0}^{n} \alpha_{k} \bar{D}_{k}^{(r)}(x)\right| d x \\
\leq & \int_{\pi /(n+1)}^{\pi}\left|\sum_{j=0}^{n} \alpha_{j}\left(\sum_{v=0}^{r-1} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+(v+3) \pi / 2]}{(\sin (x / 2))^{r+1-v}} \varphi_{v}(x)\right)\right| d x \\
& +\int_{\pi /(n+1)}^{\pi}\left|\sum_{j=0}^{n} \alpha_{j} \frac{(j+1 / 2)^{r} \sin [(j+1 / 2) x+(r+3) \pi / 2]}{2 \sin (x / 2)}\right| d x=\lambda_{n}+\mu_{n}
\end{aligned}
$$

Since φ_{v} are bounded functions, we have

$$
\int_{\pi /(n+1)}^{\pi}\left|\sum_{j=0}^{n} \alpha_{j} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+(v+3) \pi / 2]}{(\sin (x / 2))^{r+1-v}} \varphi_{v}\right| d x \leq K U_{n}
$$

where U_{n} is the integral as in Lemma 3.2 and K is a positive constant. Applying Lemma 3.2 to the last integral, we get

$$
\begin{aligned}
& \int_{\pi /(n+1)}^{\pi}\left|\sum_{j=0}^{n} \alpha_{j} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+(v+3) \pi / 2]}{(\sin (x / 2))^{r+1-v}} \varphi_{v}(x)\right| d x \\
&= O\left((n+1)^{r-v+1 / 2}\left(\sum_{j=0}^{n} \alpha_{j}^{2}(j+1)^{2 v}\right)^{1 / 2}\right) \\
&= O\left((n+1)^{r-v+1 / 2}(n+1)^{v+1 / 2}\right)=O\left((n+1)^{r+1}\right)
\end{aligned}
$$

Since r is a finite value, we have $\lambda_{n}=O\left((n+1)^{r+1}\right)$. Similarly, $\mu_{n}=O\left((n+1)^{r+1}\right)$. Thus, the inequality is proved.
Remark 3.3. For $r=0$, we get the Telyakovskiĭ inequality, proved in [45].
Theorem $3.10([55])$. Let $r \in \mathbb{N} \cup\{0\}$ and let the coefficients of the series $g(x)$ belong to the class \Im_{r}. Then the rth derivative of the series (S) converges to a function and

$$
\begin{equation*}
\int_{\pi /(m+1)}^{\pi}\left|g^{(r)}(x)\right| d x \leq M\left(\sum_{n=1}^{m}\left|a_{n}\right| n^{r-1}+\sum_{n=1}^{\infty} n^{r} A_{n}\right) \tag{*}
\end{equation*}
$$

for $m \in \mathbb{N}$, where $0<M=M(r)<\infty$. Moreover, if $\sum_{n=1}^{\infty} n^{r-1}\left|a_{n}\right|<\infty$, then the r th derivative of (S) is the Fourier series of some $g^{(r)} \in L^{1}(0, \pi)$ and

$$
\int_{0}^{\pi}\left|g^{(r)}(x)\right| d x \leq M\left(\sum_{n=1}^{\infty}\left|a_{n}\right| n^{r-1}+\sum_{n=1}^{\infty} n^{r} A_{n}\right)
$$

Proof. We suppose that $a_{0}=0$ and $A_{0}=\max \left(\left|a_{1}\right|, A_{1}\right)$. Applying the Abel transformation, we have

$$
\begin{equation*}
g(x)=\sum_{k=0}^{\infty} \Delta a_{k} \bar{D}_{k}(x), \quad x \in(0, \pi] . \tag{3.6}
\end{equation*}
$$

Applying the inequality of Lemma $4.3(\mathrm{iii})$, we see that the series $\sum_{k=0}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)$ is uniformly convergent on any compact subset of $[\varepsilon, \pi]$, where $\varepsilon>0$. Thus representation (3.6) implies that

$$
g^{(r)}(x)=\sum_{k=0}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x), \quad x \in(0, \pi] .
$$

Then

$$
\begin{aligned}
\int_{\pi /(m+1)}^{\pi}\left|g^{(r)}(x)\right| d x= & \int_{\pi /(m+1)}^{\pi}\left|\sum_{k=0}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x \\
\leq & \sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=0}^{j-1} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x \\
& +O\left(\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=j}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x\right)
\end{aligned}
$$

Let

$$
I_{1}=\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=0}^{j-1} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x, \quad I_{2}=\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=j}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x
$$

Applying the well known expansion

$$
\operatorname{ctg}\left(\frac{x}{2}\right)=\frac{2}{x}+\sum_{n=1}^{\infty} \frac{4 x}{x^{2}-4 n^{2} \pi^{2}}
$$

it is not difficult to prove the following estimate:

$$
\left(\operatorname{ctg}\left(\frac{x}{2}\right)\right)^{(r)}=\frac{2(-1)^{r} r!}{x^{r+1}}+O(1), \quad x \in(0, \pi]
$$

Thus

$$
\bar{D}_{n}^{(r)}(x)=\frac{(-1)^{r+1} r!}{x^{r+1}}+O\left((n+1)^{r+1}\right), \quad x \in(0, \pi] .
$$

Hence,

$$
\begin{aligned}
I_{1} & =r!\sum_{j=1}^{m}\left|\sum_{k=0}^{j-1} \Delta a_{k}\right| \int_{\pi /(j+1)}^{\pi / j} \frac{d x}{x^{r+1}}+O\left(\sum_{j=1}^{m}\left[\sum_{k=0}^{j-1}\left|\Delta a_{k}\right|(k+1)^{r+1}\right] \int_{\pi /(j+1)}^{\pi / j} d x\right) \\
& =O_{r}\left(\sum_{j=1}^{m}\left|a_{j}\right| j^{r-1}\right)+O\left(\sum_{j=1}^{m} \sum_{k=0}^{j-1} \frac{(k+1)^{r+1}\left|\Delta a_{k}\right|}{j(j+1)}\right)
\end{aligned}
$$

where O_{r} depends on r. But

$$
\begin{aligned}
\sum_{j=1}^{m} \sum_{k=0}^{j-1} \frac{(k+1)^{r+1}\left|\Delta a_{k}\right|}{j(j+1)} & =\sum_{j=1}^{m} \frac{1}{j(j+1)} \sum_{k=0}^{j-1}(k+1)^{r+1}\left|\Delta a_{k}\right| \\
& \leq \sum_{k=0}^{\infty}(k+1)^{r+1}\left|\Delta a_{k}\right| \sum_{j=k+1}^{\infty} \frac{1}{j(j+1)}=\sum_{k=0}^{\infty}(k+1)^{r}\left|\Delta a_{k}\right| \\
& =\left|\Delta a_{0}\right|+\sum_{k=1}^{\infty}(k+1)^{r}\left|\Delta a_{k}\right| \leq\left|a_{1}\right|+2^{r} \sum_{k=1}^{\infty} k^{r}\left|\Delta a_{k}\right| \\
& \leq \sum_{k=1}^{\infty}\left|\Delta a_{k}\right|+2^{r} \sum_{k=1}^{\infty} k^{r} A_{k} \leq\left(1+2^{r}\right) \sum_{k=1}^{\infty} k^{r} A_{k}
\end{aligned}
$$

Thus,

$$
\sum_{j=1}^{m} \sum_{k=0}^{j-1} \frac{\left|\Delta a_{k}\right|(k+1)^{r+1}}{j(j+1)}=O_{r}\left(\sum_{k=1}^{\infty} k^{r} A_{k}\right)
$$

where O_{r} depends on r. Therefore,

$$
I_{1}=O_{r}\left(\sum_{j=1}^{m}\left|a_{j}\right| j^{r-1}\right)+O_{r}\left(\sum_{k=1}^{\infty} k^{r} A_{k}\right)
$$

where O_{r} depends on r. Applying the Abel transformation yields

$$
\sum_{k=j}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)=\sum_{k=j}^{\infty} \Delta A_{k} \sum_{i=0}^{k} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)-A_{j} \sum_{i=0}^{j-1} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)
$$

Let us estimate the second integral:

$$
I_{2} \leq \sum_{j=1}^{m}\left[\sum_{k=j}^{\infty}\left(\Delta A_{k}\right) \int_{\pi /(j+1)}^{\pi}\left|\sum_{i=0}^{k} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{k}^{(r)}(x)\right|+A_{j} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{i=0}^{j-1} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)\right| d x\right]
$$

Applying Lemma 3.3, we have

$$
\begin{equation*}
J_{k}=\int_{\pi /(j+1)}^{\pi}\left|\sum_{i=0}^{k} \frac{\left|\Delta a_{i}\right|}{A_{i}} \bar{D}_{i}^{(r)}(x)\right| d x=O_{r}\left((k+1)^{r+1}\right) \tag{3.7}
\end{equation*}
$$

where O_{r} depends on r. Then by Lemma 4.3(iii),

$$
\begin{align*}
\int_{\pi /(j+1)}^{\pi / j} \left\lvert\, \sum_{i=0}^{j-1} \frac{\Delta a_{i}}{A_{i}}\right. & \bar{D}_{i}^{(r)}(x) \mid d x \tag{3.8}\\
& =O\left(\int_{\pi /(j+1)}^{\pi / j} j^{r}\left(\sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|}{A_{i}}\right) \frac{d x}{x}\right)+O\left(\sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|}{A_{i}} \int_{\pi /(j+1)}^{\pi / j} \frac{d x}{x^{r+1}}\right) \\
& =O\left(j^{r}\right)+O_{r}\left(j^{r}\right)=O_{r}\left(j^{r}\right)
\end{align*}
$$

where O_{r} depends on r.
However, by (3.7), (3.8), Lemma 1.10, we have

$$
\begin{aligned}
I_{2} & \leq \sum_{k=1}^{\infty}\left(\Delta A_{k}\right) J_{k}+O_{r}\left(\sum_{j=1}^{\infty} j^{r} A_{j}\right) \\
& =O_{r}(1) \sum_{k=1}^{\infty}\left(\Delta A_{k}\right)(k+1)^{r+1}+O_{r}\left(\sum_{j=1}^{\infty} j^{r} A_{j}\right)=O_{r}\left(\sum_{j=1}^{\infty} j^{r} A_{j}\right) .
\end{aligned}
$$

Corollary 3.4. Let $r \in \mathbb{N} \cup\{0\}$ and let the coefficients of the series $g(x)$ satisfy the condition \Im_{r}. Then

$$
\int_{0}^{\pi}\left|g^{(r)}(x)\right| d x=O_{r}\left(\sum_{n=1}^{\infty} n^{r} A_{n}\right)
$$

where O_{r} depends on r.
Proof. By the inequalities

$$
\begin{aligned}
\sum_{n=1}^{m}\left|a_{n}\right| n^{r-1} & \leq \sum_{n=1}^{\infty} n^{r-1} \sum_{k=n}^{\infty}\left|\Delta a_{k}\right| \leq \sum_{n=1}^{\infty} n^{r-1} \sum_{k=n}^{\infty} A_{k} \\
& =\sum_{k=1}^{\infty} A_{k} \sum_{n=1}^{k} n^{r-1} \leq \sum_{k=1}^{\infty} k^{r} A_{k}
\end{aligned}
$$

and by Theorem 3.10, we obtain

$$
\int_{\pi /(m+1)}^{\pi}\left|g^{(r)}(x)\right| d x=O_{r}\left(\sum_{n=1}^{\infty} n^{r} A_{n}\right)
$$

Letting $m \rightarrow \infty$ completes the proof.
Lemma 3.4. Let $\left\{\alpha_{j}\right\}_{j=0}^{k}$ be a sequence of real numbers. Then

$$
\begin{aligned}
V_{k} & =\int_{\pi /(k+1)}^{\pi}\left|\sum_{j=0}^{k} \alpha_{j} \frac{(j+1 / 2)^{v} \sin [(j+1 / 2) x+v \pi / 2]}{(\sin (x / 2))^{r+1-v}}\right| d x \\
& =O_{p}\left((k+1)^{1+\alpha}\left[(k+1)^{p(r-\alpha)-1} \sum_{j=0}^{k}\left|\alpha_{j}\right|^{p}\right]^{1 / p}\right)
\end{aligned}
$$

for $v \in\{0,1, \ldots, r\}, \alpha \geq 0$ and $r \in\{0,1, \ldots,[\alpha]\}$, where O_{p} depends only on p.
Proof. Applying Lemma 1.12, we get

$$
\begin{aligned}
V_{k} & =O_{p}\left[(k+1)^{r+1}\left(\frac{1}{k+1} \sum_{j=0}^{k}\left|\alpha_{j}\right|^{p}\right)^{1 / p}\right] \\
& =O_{p}\left((k+1)^{1+\alpha}\left[(k+1)^{p(r-\alpha)-1} \sum_{j=0}^{k}\left|\alpha_{j}\right|^{p}\right]^{1 / p}\right)
\end{aligned}
$$

where O_{p} depends only on p.
Lemma 3.5. Let $1<p \leq 2, \alpha \geq 0, r \in\{0,1, \ldots,[\alpha]\}$, and let the sequence $\left\{a_{n}\right\}$ of real numbers belong to the class $S_{p \alpha r}$. Then

$$
\int_{0}^{\pi}\left|\sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=O_{p}\left((k+1)^{\alpha+1}\right)
$$

where O_{p} depends only on p.
Proof. We have

$$
\int_{0}^{\pi}\left|\sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=\int_{0}^{\pi /(k+1)}+\int_{\pi /(k+1)}^{\pi}=I_{k}+J_{k}
$$

Applying the inequality $D_{n}^{(r)}(x)=O\left(n^{r+1}\right)$, we obtain

$$
\begin{aligned}
I_{k} & \leq \gamma k^{r} \sum_{j=0}^{k} \frac{\left|\Delta a_{j}\right|}{A_{j}} \leq \gamma(k+1)^{r+1}\left(\frac{1}{k+1} \sum_{j=0}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right)^{1 / p} \\
& =\gamma(k+1)^{1+\alpha}\left[(k+1)^{p(r-\alpha)-1} \sum_{j=0}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right]=O\left((k+1)^{\alpha+1}\right)
\end{aligned}
$$

For the second integral we apply Lemmas 1.13 and 3.4 to get

$$
J_{k}=O_{p}\left((k+1)^{1+\alpha}\right)
$$

Thus, the inequality is satisfied.

Lemma 3.6. Let $1<p \leq 2, \alpha \geq 0, r \in\{0,1, \ldots,[\alpha]\}$ and $\left\{a_{n}\right\} \in S_{p \alpha r}$. Then

$$
A_{N} \int_{0}^{\pi}\left|\sum_{j=0}^{N} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=o(1), \quad N \rightarrow \infty
$$

Proof. Applying first Lemma 3.5, then Lemma 1.10, we obtain

$$
A_{N} \int_{0}^{\pi}\left|\sum_{j=0}^{N} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x=O_{p}\left(A_{N}(N+1)^{1+\alpha}\right)=o(1), \quad N \rightarrow \infty
$$

Theorem 3.11 ([53]). Let $1<p \leq 2, \alpha \geq 0, r \in\{0,1, \ldots,[\alpha]\}$, and let the coefficients of the series (C) belong to the class $S_{p \alpha r}$. Then the rth derivative of (C) is the Fourier series of some $f^{(r)} \in L^{1}(0, \pi)$ and

$$
\int_{0}^{\pi}\left|f^{(r)}(x)\right| d x \leq M_{p, \alpha} \sum_{n=0}^{\infty} n^{\alpha} A_{n}
$$

where $M_{p, \alpha}$ is a positive constant depending on p and α.
Proof. Since

$$
\begin{align*}
\sum_{k=1}^{n} k^{r}\left|\Delta a_{k}\right|= & \sum_{k=1}^{n-1}\left(\Delta A_{k}\right) \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|}{A_{j}} j^{r}+A_{n} \sum_{j=1}^{n} \frac{\left|\Delta a_{j}\right|}{A_{j}} j^{r} \\
\leq & \sum_{k=1}^{n-1}\left(\Delta A_{k}\right) k^{1+\alpha}\left[k^{p(r-\alpha)-1} \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right]^{1 / p} \\
& +n^{1+\alpha} A_{n}\left[n^{p(r-\alpha)-1} \sum_{j=1}^{n} \frac{\left|\Delta a_{j}\right|^{p}}{A_{j}^{p}}\right] \\
= & O(1)\left[\sum_{k=1}^{n-1}\left(\Delta A_{k}\right) k^{1+\alpha}+n^{1+\alpha} A_{n}\right]=O\left(\sum_{k=1}^{n} k^{\alpha} A_{k}\right)
\end{align*}
$$

Applying the same estimates of the proof of Theorem 3.8, we obtain

$$
\sum_{k=1}^{n}\left|\Delta\left(k^{r} a_{k}\right)\right| \leq O_{r}\left(\sum_{k=1}^{n} k^{r-1}\left|a_{k+1}\right|\right)+O\left(\sum_{k=1}^{n} k^{r}\left|\Delta a_{k}\right|\right)
$$

But

$$
\sum_{k=1}^{n} k^{r-1}\left|a_{k+1}\right| \leq \sum_{k=1}^{n-1}\left|\Delta a_{k+1}\right| k^{r}+\sum_{k=n+1}^{\infty} k^{r}\left|\Delta a_{k}\right|
$$

implies that

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta\left(k^{r} a_{k}\right)\right| & \leq O_{r}\left(\sum_{k=1}^{n-1}\left|\Delta a_{k+1}\right| k^{r}\right)+O_{r}\left(\sum_{k=n+1}^{\infty} k^{r}\left|\Delta a_{k}\right|\right)+O\left(\sum_{k=1}^{n} k^{r}\left|\Delta a_{k}\right|\right) \\
& =O_{r}\left(\sum_{k=1}^{n} k^{\alpha} A_{k}\right)+o(1), \quad n \rightarrow \infty
\end{aligned}
$$

Thus

$$
\sum_{k=1}^{\infty}\left|\Delta\left(k^{r} a_{k}\right)\right| \leq O_{r}\left(\sum_{k=1}^{\infty} k^{\alpha} A_{k}\right)<\infty, \quad \text { i.e. } \quad \lim _{n \rightarrow \infty} S_{n}^{(r)}(x)=f^{(r)}(x)
$$

Since $f^{(r)}(x)=\sum_{k=0}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)$, applying the Abel transformation and Lemmas 3.6 and 3.5 we obtain

$$
\begin{aligned}
\int_{0}^{\pi}\left|f^{(r)}(x)\right| d x & =\int_{0}^{\pi}\left|\sum_{k=0}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x \leq \lim _{N \rightarrow \infty} \sum_{k=0}^{N-1}\left(\Delta A_{k}\right) \int_{0}^{\pi}\left|\sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}^{(r)}(x)\right| d x \\
& =O_{p}(1) \lim _{N \rightarrow \infty} \sum_{k=0}^{N-1}\left(\Delta A_{k}\right)(k+1)^{\alpha+1} \\
& =O_{p}(1) \lim _{N \rightarrow \infty}\left\{\sum_{k=0}^{N}\left[(k+1)^{\alpha+1}-k^{\alpha+1}\right] A_{k}-(N+1)^{\alpha+1} A_{n}\right\} \\
& =O_{p, \alpha}\left(\sum_{k=0}^{\infty} k^{\alpha} A_{k}\right) .
\end{aligned}
$$

Finally,

$$
\int_{0}^{\pi}\left|f^{(r)}(x)\right| d x \leq M_{p, \alpha} \sum_{n=0}^{\infty} n^{\alpha} A_{n}
$$

where $M_{p, \alpha}$ depends on p and α.
THEOREM 3.12 ([53]). Let $1<p \leq 2, \alpha \geq 0, r \in\{0,1, \ldots,[\alpha]\}$, and let the coefficients of the series (S) belong to the class $S_{p \alpha r}$. Then the rth derivative of (S) converges to a function and

$$
\begin{equation*}
\int_{\pi /(m+1)}^{\pi}\left|g^{(r)}(x)\right| d x \leq M \sum_{j=1}^{m}\left|a_{j}\right| j^{r-1}+O_{p, \alpha, r}\left(\sum_{k=1}^{\infty} k^{\alpha} A_{k}\right) \tag{*}
\end{equation*}
$$

for all $m \in \mathbb{N}$, where $0<M=M(r)<\infty$ and $O_{p, \alpha, r}$ depends on p, r and α. Moreover, if $\sum_{n=1}^{\infty} n^{r-1}\left|a_{n}\right|<\infty$, then the rth derivative of (S) is the Fourier series of some $g^{(r)} \in$ $L^{1}(0, \pi)$ and

$$
\begin{equation*}
\int_{0}^{\pi}\left|g^{(r)}(x)\right| d x=O_{r}\left(\sum_{j=1}^{\infty}\left|a_{j}\right| j^{r-1}\right)+O_{p, \alpha, r}\left(\sum_{j=1}^{\infty} j^{\alpha} A_{j}\right) \tag{**}
\end{equation*}
$$

Proof. We suppose that $a_{0}=0$ and $A_{0}=\max \left(\left|a_{1}\right|, A_{1}\right)$. Applying Lemma 4.3(iii) and the inequality (\triangle) (proved in Th. 3.11):

$$
\sum_{k=1}^{n} k^{r}\left|\Delta a_{k}\right|=O\left(\sum_{k=1}^{n} k^{\alpha} A_{k}\right)
$$

we see that the series $\sum_{k=0}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)$ is uniformly convergent on any compact subset of $[\varepsilon, \pi]$, where $\varepsilon>0$. Thus representation (3.6) implies that

$$
g^{(r)}(x)=\sum_{k=0}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)
$$

Then

$$
\begin{align*}
\int_{\pi /(m+1)}^{\pi}\left|g^{(r)}(x)\right| d x \leq & \sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=0}^{j-1} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x \tag{3.9}\\
& +O\left(\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=j}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x\right) .
\end{align*}
$$

Applying the same technique as in the proof of Theorem 3.10, we obtain

$$
\begin{aligned}
T & =\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=0}^{j-1} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x \\
& =O_{r}\left(\sum_{j=1}^{m}\left|a_{j}\right| j^{r-1}\right)+O\left(\sum_{k=0}^{\infty}(k+1)^{r}\left|\Delta a_{k}\right|\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{k=0}^{\infty}(k+1)^{r}\left|\Delta a_{k}\right| & \leq\left|a_{1}\right|+2^{r} \sum_{k=1}^{\infty} k^{r}\left|\Delta a_{k}\right| \\
& \leq\left(1+2^{r}\right) \sum_{k=1}^{\infty} k^{r}\left|\Delta a_{k}\right|=O_{r}\left(\sum_{k=1}^{\infty} k^{\alpha} A_{k}\right)
\end{aligned}
$$

i.e.

$$
\begin{equation*}
T=O_{r}\left(\sum_{j=1}^{m}\left|a_{j}\right| j^{r-1}\right)+O_{r}\left(\sum_{k=1}^{\infty} k^{\alpha} A_{k}\right) \tag{3.10}
\end{equation*}
$$

Let

$$
U=\sum_{j=1}^{m} \int_{\pi /(j+1)}^{\pi / j}\left|\sum_{k=j}^{\infty} \Delta a_{k} \bar{D}_{k}^{(r)}(x)\right| d x
$$

Applying the Abel transformation, we have

$$
U \leq \sum_{j=1}^{m}\left[\sum_{k=j}^{\infty}\left(\Delta A_{k}\right) J_{k}+A_{j} I_{j}\right]
$$

where

$$
J_{k}=\int_{\pi /(j+1)}^{\pi}\left|\sum_{i=0}^{k} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)\right| d x, \quad I_{j}=\int_{\pi /(j+1)}^{\pi / j}\left|\sum_{i=0}^{j-1} \frac{\Delta a_{i}}{A_{i}} \bar{D}_{i}^{(r)}(x)\right| d x
$$

Applying the Hölder-Hausdorff-Young technique (see the proof of Lemma 3.5), we obtain $J_{k}=O_{p, r}\left((k+1)^{\alpha+1}\right)$, where $O_{p, r}$ depends on r and p. Then by Lemma 4(iii),

$$
\begin{aligned}
I_{j} & =O\left(j^{r} \ln \left(1+\frac{1}{j}\right)\left(\sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|}{A_{i}}\right)\right)+O\left(\sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|}{A_{i}} \int_{\pi /(j+1)}^{\pi / j} \frac{d x}{x^{r+1}}\right) \\
& =O\left(j^{\alpha}\left(j^{p(r-\alpha)-1} \sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|^{p}}{A_{i}^{p}}\right)^{1 / p}\right)+O_{r}\left(j^{r-1} \sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|}{A_{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =O\left(j^{\alpha}\right)+O_{r}\left(j^{\alpha}\left(j^{p(r-\alpha)-1} \sum_{i=0}^{j-1} \frac{\left|\Delta a_{i}\right|^{p}}{A_{i}^{p}}\right)^{1 / p}\right) \\
& =O\left(j^{\alpha}\right)+O_{r}\left(j^{\alpha}\right)=O_{r}\left(j^{\alpha}\right)
\end{aligned}
$$

Thus

$$
\begin{align*}
U & \leq O_{p, r}(1) \sum_{k=1}^{\infty}(k+1)^{\alpha+1}\left(\Delta A_{k}\right)+O_{r}(1) \sum_{j=1}^{\infty} j^{\alpha} A_{j} \tag{3.11}\\
& =O_{p, \alpha, r}(1) \sum_{k=1}^{\infty} k^{\alpha} A_{k}+O_{r}(1) \sum_{j=1}^{\infty} j^{\alpha} A_{j} \\
& =O_{p, \alpha, r}\left(\sum_{k=1}^{\infty} k^{\alpha} A_{k}\right),
\end{align*}
$$

since $n^{\alpha+1} A_{n}=o(1), n \rightarrow \infty$.
Combining the inequalities (3.9), (3.10) and (3.11) yields the inequality (*).
If $\sum_{n=1}^{\infty} n^{r-1}\left|a_{n}\right|<\infty$, then by letting $m \rightarrow \infty$ in inequality ($*$), we find that the r th derivative of the series (S) is the Fourier series of some $g^{(r)} \in L^{1}(0, \pi)$ and the inequality $(* *)$ is satisfied.

Now we consider the case $r=\alpha=0$. Since S_{p} and $S_{p}(\delta), p>1$, are identical classes of Fourier coefficients we obtain the following corollaries.
Corollary 3.5 ([49], [62]). Let $1<p \leq 2$ and let the coefficients of the series (C) belong to the class $S_{p}(\delta)$. Then (C) is the Fourier series of some $f \in L^{1}(0, \pi)$ and

$$
\int_{0}^{\pi}|f(x)| d x \leq M_{p}\left(\sum_{n=0}^{\infty} A_{n}+\sum_{n=1}^{\infty} n \delta_{n}\right)
$$

where M_{p} is a positive constant depending only on p.
Corollary 3.6 ([57]). Let $1<p \leq 2$ and let the coefficients of the series (S) belong to the class $S_{p}(\delta)$. Then the series converges to a function $g(x)$ and

$$
\int_{\pi /(m+1)}^{\pi}|g(x)| d x \leq \sum_{n=1}^{m} \frac{\left|a_{n}\right|}{n}+O_{p}\left(\sum_{n=1}^{\infty} A_{n}+\sum_{n=1}^{\infty} n \delta_{n}\right)
$$

for $m \in \mathbb{N}$, where O_{p} depends only on p.
3.3. Necessary and sufficient conditions for L^{1}-convergence of the r th derivative of Fourier series. Van and Telyakovskiĭ [70] considered the following class of sequences. A null sequence $\left\{a_{k}\right\}$ belongs to the class $(B V)_{r}^{\sigma}, r \in \mathbb{N} \cup\{0\}, \sigma \geq 0$, if $\sum_{k=1}^{\infty} k^{r}\left|\Delta^{\sigma} a_{k}\right|<\infty$. In the same paper, they proved the following theorem.
Theorem 3.13 ([70]). Let $\varrho, \sigma \geq 0$. Then for all $\gamma>\sigma$ we have the embedding

$$
(B V)_{\varrho}^{\sigma} \subset(B V)_{\varrho}^{\gamma} .
$$

For $r=0$ and $\sigma=m \in \mathbb{N} \cup\{0\}$ we have the well known class $(B V)^{m}$.
Corollary 3.7. Let $\left\{a_{n}\right\} \in(B V)^{\sigma}$ for some $\sigma \geq 0$ and $a_{n} \log n=o(1), n \rightarrow \infty$. Then $\left\|S_{n}-f\right\|=o(1), n \rightarrow \infty$ iff $\left\{a_{n}\right\} \in C$.

Proof. Let m be an integer such that $m \geq \sigma$. Then by Theorem 3.13 (case $\varrho=0$), we have $\left\{a_{n}\right\} \in(B V)^{m}$. Applying Theorem 1.16 completes the proof.

If $\sigma=1$, we define $(B V)_{r}=(B V)_{r}^{\sigma}$.
Van and Telyakovskiǐ [70] by considering the complex form of trigonometric series

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} e^{i k x}
$$

proved the following theorem.
Theorem 3.14 ([70]). If $r \in \mathbb{N} \cup\{0\}, \sigma \geq 0$ and $\left\{a_{n}\right\} \in(B V)_{r}^{\sigma}$, then the series (C) and (S) have continuous derivatives of order r on $(0, \pi]$.

Lemma 3.7 ([32]). $\left\|D_{n}^{(r)}\right\|_{1}=(4 / \pi) n^{r} \log n+O\left(n^{r}\right)$ for all $r \in \mathbb{N} \cup\{0\}$.
Next we shall give necessary and sufficient conditions for L^{1}-convergence of the r th derivative of the series (C).
ThEOREM $3.15([54])$. Let $r \in \mathbb{N} \cup\{0\},\left\{a_{n}\right\} \in(B V)_{r}$, and $a_{n} n^{r} \log n=o(1), n \rightarrow \infty$. Then $\left\|S_{n}^{(r)}-f^{(r)}\right\|=o(1), n \rightarrow \infty$ iff $\left\{a_{n}\right\} \in C_{r}$.
Proof. Since $\left\{a_{n}\right\} \in(B V)_{r}$, the series $\sum_{k=0}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)$ is uniformly convergent on any segment $[\xi, \pi]$ where $\xi>0$. Thus, $f^{(r)}(x)=\sum_{k=0}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)$.

For the "if" part let $\varepsilon>0$. Then there exists $\delta>0$ such that

$$
\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right|<\frac{\varepsilon}{3} \quad \text { for all } n
$$

Then

$$
\begin{aligned}
\int_{0}^{\pi}\left|f^{(r)}(x)-S_{n}^{(r)}(x)\right| d x & =\int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)-a_{n+1} D_{n}^{(r)}(x)\right| d x \\
& \leq \int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x+\left|a_{n+1}\right| \int_{0}^{\pi}\left|D_{n}^{(r)}(x)\right| d x \\
& =\left(\int_{0}^{\delta}+\int_{\delta}^{\pi}\right)\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x+\left|a_{n+1}\right|\left\|D_{n}^{(r)}\right\| \\
& <\frac{\varepsilon}{3}+\int_{\delta}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x+\frac{\varepsilon}{3}
\end{aligned}
$$

Applying the estimate for the r th derivative of the Dirichlet kernel (see [32]), we obtain

$$
\int_{\delta}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x=O\left(\sum_{k=n}^{\infty} k^{r}\left|\Delta a_{k}\right|\right)
$$

Hence,

$$
\int_{\delta}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x<\frac{\varepsilon}{3} .
$$

Thus for sufficiently large $n,\left\|S_{n}^{(r)}-f^{(r)}\right\|<\varepsilon$.

For the "only if" part let $\varepsilon>0$. Then there exists an integer N such that

$$
\int_{0}^{\pi}\left|f^{(r)}-S_{n}^{(r)}\right| d x<\frac{\varepsilon}{4} \quad \text { if } n \geq N
$$

That is,

$$
\int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)-a_{n+1} D_{n}^{(r)}(x)\right| d x<\frac{\varepsilon}{4} \quad \text { if } n \geq N
$$

Since $a_{n} n^{r} \log n \rightarrow 0$, by Lemma 3.7 there exists an integer M such that

$$
\int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x<\frac{\varepsilon}{2} \quad \text { if } n \geq M
$$

Now if $\sum_{k=0}^{M} k^{r}\left|\Delta a_{k}\right|=0$, then for $n<M$,

$$
\int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x=\int_{0}^{\pi}\left|\sum_{k=M+1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x<\frac{\varepsilon}{2}<\varepsilon
$$

If $\sum_{k=0}^{M} k^{r}\left|\Delta a_{k}\right| \neq 0$, let

$$
\delta=\frac{\varepsilon}{2 M \sum_{k=0}^{M} k^{r}\left|\Delta a_{k}\right|}
$$

For $n \geq M$, we have

$$
\int_{0}^{\delta}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x \leq \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x<\frac{\varepsilon}{2}<\varepsilon .
$$

For $0 \leq n<M$, we get

$$
\begin{aligned}
\int_{0}^{\delta}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x & \leq \int_{0}^{\delta}\left|\sum_{k=n+1}^{M} \Delta a_{k} D_{k}^{(r)}(x)\right| d x+\int_{0}^{\delta}\left|\sum_{k=M+1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x \\
& \leq \int_{0}^{\delta}\left(\sum_{k=n+1}^{M} k^{r+1}\left|\Delta a_{k}\right|\right) d x+\int_{0}^{\pi}\left|\sum_{k=M+1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right| d x \\
& <\delta M \sum_{k=0}^{M} k^{r}\left|\Delta a_{k}\right|+\frac{\varepsilon}{2}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Finally, $\left\{a_{n}\right\} \in C_{r}$.
This is an extension theorem of the Garrett-Stanojević Theorem 1.12. Applying Theorem 1.29 and this theorem we obtain

Corollary 3.8. Let $r \in \mathbb{N} \cup\{0\}$ and $\left\{a_{n}\right\} \in \Im_{r}$. Then $\left\|S_{n}^{(r)}-f^{(r)}\right\|=o(1), n \rightarrow \infty$ iff $a_{n} n^{r} \log n=o(1), n \rightarrow \infty$.

On the other hand by Theorem 1.31, we get $S_{p r} \subset(B V)_{r} \cap C_{r}$ for any $1<p \leq 2$ and $r \in \mathbb{N} \cup\{0\}$. Again, applying the Theorem 3.15, we obtain:
Corollary 3.9. Let $1<p \leq 2$ and $r \in \mathbb{N} \cup\{0\}$. If $\left\{a_{n}\right\} \in S_{p r}$, then $\left\|S_{n}^{(r)}-f^{(r)}\right\|=o(1)$, $n \rightarrow \infty$ iff $a_{n} n^{r} \log n=o(1), n \rightarrow \infty$.

Now using Lemmas 3.5, 3.6 and applying the same technique as in the proof of Theorem 1.31, we obtain
Theorem 3.16 ([64]). For any $1<p \leq 2, \alpha \geq 0$ and $r \in\{0,1, \ldots,[\alpha]\}$ we have the embeddings

$$
S_{p \alpha r} \subset(B V)_{r} \cap C_{r} \subset B V \cap C_{r}
$$

Combining this with Theorem 3.15 we obtain
Theorem 3.17. Let $1<p \leq 2, \alpha \geq 0$ and $r \in\{0,1, \ldots,[\alpha]\}$. If $\left\{a_{n}\right\} \in S_{p \alpha r}$, then $\left\|S_{n}^{(r)}-f^{(r)}\right\|=o(1), n \rightarrow \infty$ iff $a_{n} n^{r} \log n=o(1), n \rightarrow \infty$.
Remark 3.4. This theorem was obtained by Sheng [32], but we have given a new proof.
Denote by I_{m} the dyadic interval $\left[2^{m-1}, 2^{m}\right)$ for $m \geq 1$. A null sequence $\left\{a_{n}\right\}$ belongs to the class $F_{p r}, p>1, r \in \mathbb{N} \cup\{0\}$, if

$$
\sum_{m=1}^{\infty} 2^{m(1 / q+r)}\left(\sum_{k \in I_{m}}\left|\Delta a_{k}\right|^{p}\right)^{1 / p}<\infty, \quad \text { where } \quad \frac{1}{p}+\frac{1}{q}=1
$$

It is obvious that for $r=0$, we obtain the Fomin class F_{p}.
THEOREM 3.18. For any $p>1, \alpha \geq 0$ and $r \in\{0,1, \ldots,[\alpha]\}$ we have the embedding $S_{p \alpha r} \subset F_{p r}$.
Proof. From the condition

$$
\frac{1}{n^{p(\alpha-r)+1}} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}=O(1)
$$

and the monotonicity of $\left\{A_{k}\right\}$, we obtain

$$
\begin{aligned}
\left(\sum_{k \in I_{m}}\left|\Delta a_{k}\right|^{p}\right)^{1 / p} & \leq 2^{(m-1) / p}\left(\frac{1}{2^{m-1}} \sum_{k \in I_{m}} \frac{\left|\Delta a_{k}\right|^{p}}{A_{k}^{p}}\right)^{1 / p} A_{2^{m-1}} \\
& \leq K \cdot 2^{m / p} 2^{m(\alpha-r)} A_{2^{m-1}}
\end{aligned}
$$

where K is an absolute constant. Hence,

$$
\begin{aligned}
\sum_{m=1}^{\infty} 2^{m(1 / q+r)}\left(\sum_{k \in I_{m}}\left|\Delta a_{k}\right|^{p}\right)^{1 / p} & \leq K \sum_{m=1}^{\infty} 2^{m(1 / p+1 / q)} 2^{m \alpha} A_{2^{m-1}} \\
& =K \sum_{m=1}^{\infty} 2^{m(1+\alpha)} A_{2^{m-1}} \\
& =K \cdot 2^{1+\alpha} \sum_{m=1}^{\infty} 2^{(m-1)(1+\alpha)} A_{2^{m-1}}<\infty
\end{aligned}
$$

Theorem 3.19. Let $1<p \leq 2$ and $r \in \mathbb{N} \cup\{0\}$. If $\left\{a_{n}\right\} \in F_{p r}$, then $\left\|S_{n}^{(r)}-f^{(r)}\right\|=o(1)$ iff $a_{n} n^{r} \log n=o(1), n \rightarrow \infty$.
Proof. Using the Abel transformation we obtain

$$
S_{n}^{(r)}(x)=\sum_{k=0}^{n} \Delta a_{k} D_{k}^{(r)}(x)+a_{n+1} D_{n}^{(r)}(x)
$$

Since

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|\Delta a_{k} D_{k}^{(r)}(x)\right| & \leq \lim _{n \rightarrow \infty} \frac{M}{x} \sum_{k=1}^{n} k^{r}\left|\Delta a_{k}\right| \\
& =\lim _{n \rightarrow \infty} \frac{M}{x} \sum_{j=1}^{m}\left(\sum_{k=2^{j-1}}^{2^{j}-1} k^{r}\left|\Delta a_{k}\right|\right) \quad\left(\text { for } n=2^{m}-1 \text { and } M>0\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{M}{x} \sum_{j=1}^{m} 2^{j(1 / q+r)}\left(\sum_{k \in I_{j}}\left|\Delta a_{k}\right|^{p}\right)^{1 / p}<\infty
\end{aligned}
$$

and

$$
\left|a_{n+1} D_{n}^{(r)}(x)\right| \leq M\left|a_{n+1}\right| \frac{n^{r}}{x} \leq \frac{M}{x} \sum_{k=n+1}^{\infty} k^{r}\left|\Delta a_{k}\right| \rightarrow 0, \quad n \rightarrow \infty
$$

we get

$$
\lim _{n \rightarrow \infty} S_{n}^{(r)}(x)=f^{(r)}(x)=\sum_{k=0}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)
$$

This implies that

$$
\left\|f^{(r)}-g_{n}^{(r)}\right\|=\left\|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}^{(r)}(x)\right\| .
$$

By Lemma 1.9, we obtain

$$
\left\|f^{(r)}-g_{n}^{(r)}\right\| \leq A_{p} \sum_{m=j}^{\infty} 2^{m(1 / q+r)}\left(\sum_{k \in I_{j}}\left|\Delta a_{k}\right|^{p}\right)^{1 / p}=o(1), \quad n \rightarrow \infty
$$

by the hypothesis of the theorem; here $j=j(n)$ denotes the integer for which $2^{j-1} \leq$ $n \leq 2^{j}$. Since $g_{n}^{(r)}$ is a polynomial, it follows that $f^{(r)} \in L^{1}$.

Since

$$
\left|\left\|f^{(r)}-S_{n}^{(r)}\right\|-\left\|a_{n+1} D_{n}^{(r)}\right\|\right| \leq\left\|f^{(r)}-g_{n}^{(r)}\right\|=o(1), \quad n \rightarrow \infty
$$

by Lemma 3.7, we obtain $\left\|S_{n}^{(r)}-f^{(r)}\right\|=o(1), n \rightarrow \infty$ iff $a_{n+1} n^{r} \log n=o(1), n \rightarrow \infty$.
Similarly, we can get an analogous theorem for sine series (S).
Theorem 3.20. Let $1<p \leq 2, r \in \mathbb{N} \cup\{0\}$ and $\left\{a_{n}\right\} \in F_{p r}$. If $\sum_{n=1}^{\infty} n^{r-1}\left|a_{n}\right|<\infty$ then the rth derivative of the series (S) is the Fourier series of some $g^{(r)} \in L^{1}$ and $\left\|\widetilde{S}_{n}^{(r)}-g^{(r)}\right\|=o(1), n \rightarrow \infty$ iff $a_{n+1} n^{r} \log n=o(1), n \rightarrow \infty$.

IV. Convergence and integrability of the r th derivative of complex trigonometric series

4.1. On a theorem of Bhatia and Ram. Let $\left\{c_{k}: k=0, \pm 1, \pm 2, \ldots\right\}$ be a sequence of complex numbers and denote the partial sums of the complex trigonometric series $\sum_{k=-\infty}^{\infty} c_{k} e^{i k t}$ by

$$
\begin{equation*}
S_{n}(c, t)=\sum_{k=-n}^{n} c_{k} e^{i k t}, \quad t \in T=\mathbb{R} / 2 \pi \mathbb{Z} \tag{4.1}
\end{equation*}
$$

If the trigonometric series is the Fourier series of some $f \in L^{1}$, we shall write $c_{n}=\widehat{f}(n)$ for all n and $S_{n}(c, t)=S_{n}(f, t)=S_{n}(f)$.

Bhatia and Ram [3] introduced the following class \Re^{*} of complex sequences: a null sequence $\left\{c_{n}\right\}$ of complex numbers belongs to \Re^{*} if

$$
\sum_{k=1}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right| k \log k<\infty, \quad \sum_{k=1}^{\infty} k^{2}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right|<\infty
$$

Let

$$
E_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{i k t}, \quad E_{-n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{-i k t}
$$

Then the r th derivatives $D_{n}^{(r)}(t)$ and $\widetilde{D}_{n}^{(r)}(t)$ can be written as

$$
\begin{align*}
2 D_{n}^{(r)}(t) & =E_{n}^{(r)}(t)+E_{-n}^{(r)}(t), \\
2 i \widetilde{D}_{n}^{(r)}(t) & =E_{n}^{(r)}(t)-E_{-n}^{(r)}(t), \tag{4.2}
\end{align*}
$$

where $E_{n}^{(r)}(t)$ denotes the r th derivative of $E_{n}(t)$.
Bhatia and Ram [3] introduced the following modified sums:

$$
g_{n}(c, t)=S_{n}(c, t)+\frac{i}{n+1}\left[c_{n+1} E_{n}^{\prime}(t)-c_{-(n+1)} E_{-n}^{\prime}(t)\right]
$$

and proved the following result.
Theorem $4.1([3])$. Let $\left\{c_{n}\right\} \in \Re^{*}$. Then there exists $f(t)$ such that
(i) $\lim _{n \rightarrow \infty} g_{n}(c, t)=f(t)$ for all $0<|t| \leq \pi$.
(ii) $f(t) \in L^{1}(T)$ and $\left\|g_{n}(c, t)-f(t)\right\|_{1}=o(1), n \rightarrow \infty$.
(iii) $\left\|S_{n}(f, t)-f(t)\right\|_{1}=o(1)$ iff $\widehat{f}(n) \log |n|=o(1),|n| \rightarrow \infty$.

Now we define a new class $\Re^{*}(r), r \in \mathbb{N} \cup\{0\}$, of complex sequences as follows: a null sequence $\left\{c_{k}\right\}$ of complex numbers belongs to the class $\Re^{*}(r)$ if

$$
\sum_{k=1}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right| k^{r+1} \log k<\infty, \quad \sum_{k=1}^{\infty} k^{r+2}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right|<\infty
$$

We write $\Re^{*}(0)=\Re^{*}$.
Č. V. Stanojević and V. B. Stanojević [38] introduced the following modified complex trigonometric sums:

$$
U_{n}(c, t)=S_{n}(c, t)-\left(c_{n} E_{n}(t)+c_{-n} E_{-n}(t)\right)
$$

The complex form of the r th derivative of these sums, obtained by Sheng [32], is

$$
U_{n}^{(r)}(c, t)=S_{n}^{(r)}(c, t)-\left(c_{n} E_{n}^{(r)}(t)+c_{-n} E_{-n}^{(r)}(t)\right)
$$

Ram and Kumari [30] introduced another set of modified cosine and sine sums

$$
\begin{aligned}
& f_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j}\right) k \cos k x \\
& h_{n}(x)=\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j}\right) k \sin k x
\end{aligned}
$$

The complex form of the r th derivative of these modified sums is

$$
G_{n}^{(r)}(c, t)=S_{n}^{(r)}(c, t)+\frac{i}{n+1}\left[c_{n+1} E_{n}^{(r+1)}(t)-c_{-(n+1)} E_{-n}^{(r+1)}(t)\right]
$$

REMARK 4.1. If $|n|^{r} c_{n} \rightarrow 0,|n| \rightarrow \infty$, then $\left\|G_{n}^{(r)}-U_{n}^{(r)}\right\| \rightarrow 0$. Observe that by partial summation, we have

$$
E_{n}^{(r+1)}(t)=-i \sum_{k=1}^{n} E_{k}^{(r)}(t)+i(n+1) E_{n}^{(r)}(t)
$$

and similarly for $E_{-n}^{(r+1)}(t)$. Then by the formulae

$$
U_{n+1}^{(r)}(c, t)=S_{n}^{(r)}(c, t)-c_{n+1} E_{n}^{(r)}(t)-c_{-(n+1)} E_{-n}^{(r)}(t)
$$

we obtain

$$
U_{n+1}^{(r)}(c, t)-G_{n}^{(r)}(c, t)=-c_{n+1} \frac{1}{n+1} \sum_{k=1}^{n} E_{k}^{(r)}(t)-c_{-(n+1)} \frac{1}{n+1} \sum_{k=1}^{n} E_{-k}^{(r)}(t)
$$

Then by the well known properties of Fejér kernels, it follows that

$$
\left\|G_{n}^{(r)}-U_{n}^{(r)}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

Using the modified complex sums $G_{n}^{(r)}$ we shall prove the following theorem:
Theorem 4.2. Let $r \in \mathbb{N} \cup\{0\}$ and $\left\{c_{n}\right\} \in \Re^{*}(r)$. Then
(i) $\lim _{n \rightarrow \infty} G_{n}^{(r)}(c, t)=f^{(r)}(t)$ for all $0<|t| \leq \pi$.
(ii) $f^{(r)} \in L^{1}(T)$ and $\left\|G_{n}^{(r)}(c, t)-f^{(r)}(t)\right\|_{1}=o(1), n \rightarrow \infty$.
(iii) $\left\|S_{n}^{(r)}(f, t)-f^{(r)}(t)\right\|_{1}=o(1), n \rightarrow \infty$ iff $|n|^{r} \widehat{f}(n) \log |n|=o(1),|n| \rightarrow \infty$.

Lemma 4.1. $\left\|\widetilde{D}_{n}^{(r)}\right\|_{1}=O\left(n^{r} \log n\right)$ for all $r \in \mathbb{N} \cup\{0\}$.
Lemma 4.2 ([32]). For each nonnegative integer n and each complex sequence $\left\{c_{n}\right\}$, $\left\|c_{n} E_{n}^{(r)}+c_{-n} E_{-n}^{(r)}\right\|_{1}=o(1),|n| \rightarrow \infty$ iff $|n|^{r} c_{n} \log |n|=o(1),|n| \rightarrow \infty$.

We note that for $r=0$ this lemma was obtained by Bray and Stanojević in [9].
Lemma 4.3 ([55]). Let r be a nonnegative integer. Then for all $0<|t| \leq \pi$ and all $n \geq 1$ the following estimates hold:
(i) $\left|E_{-n}^{(r)}(t)\right| \leq 4 n^{r} \pi /|t|$.
(ii) $\left|\widetilde{D}_{n}^{(r)}(t)\right| \leq 4 n^{r} \pi /|t|$.
(iii) $\left|\bar{D}_{n}^{(r)}(t)\right| \leq 4 n^{r} \pi /|t|+O\left(1 /|t|^{r+1}\right)$.

Proof. (i) The case $r=0$ is trivial. Indeed, since $E_{n}(t)=D_{n}(t)+i \widetilde{D}_{n}(t)$, we have

$$
\begin{aligned}
\left|E_{n}(t)\right| & \leq\left|D_{n}(t)\right|+\left|\widetilde{D}_{n}(t)\right| \leq \frac{\pi}{2|t|}+\frac{\pi}{|t|}=\frac{3 \pi}{2|t|}<\frac{4 \pi}{|t|} \\
\left|E_{-n}(t)\right| & =\left|E_{n}(-t)\right|<\frac{4 \pi}{|t|}
\end{aligned}
$$

Let $r \geq 1$. Applying the Abel transformation, we have

$$
E_{n}^{(r)}(t)=i^{r} \sum_{k=1}^{n} k^{r} e^{i k t}=i^{r}\left[\sum_{k=1}^{n-1} \Delta\left(k^{r}\right)\left(E_{k}(t)-\frac{1}{2}\right)+n^{r}\left(E_{n}(t)-\frac{1}{2}\right)\right],
$$

and so

$$
\begin{align*}
\left|E_{n}^{(r)}(t)\right| & \leq \sum_{k=1}^{n-1}\left[(k+1)^{r}-k^{r}\right]\left(\frac{1}{2}+\left|E_{k}(t)\right|\right)+n^{r}\left(\left|E_{n}(t)\right|+\frac{1}{2}\right) \tag{4.3}\\
& \leq\left(\frac{\pi}{2|t|}+\frac{3 \pi}{2|t|}\right)\left\{\sum_{k=1}^{n-1}\left[(k+1)^{r}-k^{r}\right]+n^{r}\right\}=\frac{4 \pi n^{r}}{|t|}
\end{align*}
$$

Since $E_{-n}^{(r)}(t)=E_{n}^{(r)}(-t)$, we obtain $\left|E_{-n}^{(r)}(t)\right| \leq 4 \pi n^{r} /|t|$.
(ii) Applying (i) and (4.2) we obtain

$$
\left|\widetilde{D}_{n}^{(r)}(t)\right|=\left|i \widetilde{D}_{n}^{(r)}(t)\right| \leq \frac{1}{2}\left|E_{n}^{(r)}(t)\right|+\frac{1}{2}\left|E_{-n}^{(r)}(t)\right| \leq \frac{4 n^{r} \pi}{|t|}
$$

(iii) We note that $\left|(\operatorname{ctg}(t / 2))^{(r)}\right|=O\left(1 /|t|^{r+1}\right)$. Applying (ii), we obtain

$$
\left|\bar{D}_{n}^{(r)}(t)\right| \leq\left|\widetilde{D}_{n}^{(r)}(t)\right|+\frac{1}{2}\left|\left(\operatorname{ctg} \frac{t}{2}\right)^{(r)}\right| \leq \frac{4 n^{r} \pi}{|t|}+O\left(\frac{1}{|t|^{r+1}}\right)
$$

Lemma $4.4([3]) .\left\|\widetilde{K}_{n}^{\prime}(t)\right\|_{1}=O(n)$.
Lemma 4.5. $\left\|\widetilde{K}_{n}^{(r)}\right\|_{1}=O\left(n^{r}\right)$ for all $r \in \mathbb{N} \cup\{0\}$.
Proof. Since

$$
\widetilde{K}_{n}(x)=\sum_{k=1}^{n} \frac{n+1-k}{n+1} \sin k x
$$

we see that

$$
T_{n}(x)=\widetilde{K}_{n}^{\prime}(x)=\sum_{k=1}^{n} \frac{k(n+1-k)}{n+1} \cos k x
$$

is a cosine trigonometric polynomial of order n. Applying first the Bernstein inequality, and then Lemma 4.4, yields

$$
\left\|\widetilde{K}_{n}^{(r)}\right\|_{1}=\left\|T_{n}^{(r-1)}\right\|_{1} \leq n^{r-1}\left\|T_{n}\right\|_{1}=O\left(n^{r}\right)
$$

Proof of Theorem 4.2. Applying the Abel transformation, we have

$$
\begin{aligned}
G_{n}^{(r)}(c, t) & =S_{n}^{(r)}(c, t)+\frac{i}{n+1}\left[c_{n+1} E_{n}^{(r+1)}(t)-c_{-(n+1)} E_{-n}^{(r+1)}(t)\right] \\
& =2 \sum_{k=1}^{n} \Delta\left(\frac{c_{k}}{k}\right) \widetilde{D}_{k}^{(r+1)}(t)+\sum_{k=1}^{n} \Delta\left(\frac{c_{-k}-c_{k}}{k}\right) i E_{-k}^{(r+1)}(t) .
\end{aligned}
$$

By Lemma 4.3, we get

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|\Delta\left(\frac{c_{k}}{k}\right) \widetilde{D}_{k}^{(r+1)}\right| & \leq \frac{4 \pi}{|t|} \sum_{k=1}^{\infty} k^{r+1}\left|\Delta\left(\frac{c_{k}}{k}\right)\right| \leq \frac{4 \pi}{|t|}\left\{\sum_{k=1}^{\infty} \sum_{j=k}^{\infty} k^{r+1}\left|\Delta^{2}\left(\frac{c_{j}}{j}\right)\right|\right\} \\
& =\frac{4 \pi}{|t|}\left\{\sum_{j=1}^{\infty}\left(\sum_{k=1}^{j} k^{r+1}\right)\left|\Delta^{2}\left(\frac{c_{j}}{j}\right)\right|\right\} \\
& =O\left(\frac{1}{|t|} \sum_{j=1}^{\infty} j^{r+2}\left|\Delta^{2}\left(\frac{c_{j}}{j}\right)\right|\right)<\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=3}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right) E_{-k}^{(r+1)}(t)\right| & \leq \frac{4 \pi}{|t|}\left\{\sum_{k=3}^{\infty} k^{r+1}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right|\right\} \\
& =O\left(\frac{1}{|t|} \sum_{k=3}^{\infty} k^{r+1} \log k\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right|\right)<\infty
\end{aligned}
$$

Consequently,

$$
f^{(r)}(t)=2 \sum_{k=1}^{\infty} \Delta\left(\frac{c_{k}}{k}\right) \widetilde{D}_{k}^{(r+1)}(t)+\sum_{k=1}^{\infty} \Delta\left(\frac{c_{-k}-c_{k}}{k}\right) i E_{-k}^{(r+1)}(t)
$$

exists and thus (i) follows.
Now, for $t \neq 0$, we have

$$
\begin{aligned}
f^{(r)}(t)-G_{n}^{(r)}(c, t)= & 2 \sum_{k=n+1}^{\infty} \Delta\left(\frac{c_{k}}{k}\right) \widetilde{D}_{k}^{(r+1)}(t)+i \sum_{k=n+1}^{\infty} \Delta\left(\frac{c_{-k}-c_{k}}{k}\right) E_{-k}^{(r+1)}(t) \\
= & 2 \sum_{k=n+1}^{\infty}(k+1) \Delta^{2}\left(\frac{c_{k}}{k}\right) \widetilde{K}_{k}^{(r+1)}(t)-2(n+1) \Delta\left(\frac{c_{n+1}}{n+1}\right) \widetilde{K}_{n+1}^{(r+1)}(t) \\
& +i \sum_{k=n+1}^{\infty} \Delta\left(\frac{c_{-k}-c_{k}}{k}\right) E_{-k}^{(r+1)}(t)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\|f^{(r)}(t)-G_{n}^{(r)}(c, t)\right\|_{1} \leq 2 \sum_{k=n+1}^{\infty}(k+1)\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right| \int_{-\pi}^{\pi}\left|\widetilde{K}_{k}^{(r+1)}(t)\right| d t \\
& \quad+2(n+1)\left|\Delta\left(\frac{c_{n+1}}{n+1}\right)\right| \int_{-\pi}^{\pi}\left|\widetilde{K}_{n+1}^{(r+1)}(t)\right| d t+\sum_{k=n+1}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right| \int_{-\pi}^{\pi}\left|E_{-k}^{(r+1)}(t)\right| d t
\end{aligned}
$$

Applying Lemmas 4.5, 3,7 and 4.1, we have

$$
\begin{aligned}
& \left\|f^{(r)}(t)-G_{n}^{(r)}(c, t)\right\|_{1}=O\left(\sum_{k=n+1}^{\infty}(k+1)^{r+2}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right|\right) \\
& \quad+O\left((n+1)^{r+2}\left|\Delta\left(\frac{c_{n+1}}{n+1}\right)\right|\right)+O\left(\sum_{k=n+1}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right| k^{r+1} \log k\right)
\end{aligned}
$$

But

$$
\begin{aligned}
\left|\Delta\left(\frac{c_{n+1}}{n+1}\right)\right| & =\left|\sum_{k=n+1}^{\infty} \Delta^{2}\left(\frac{c_{k}}{k}\right)\right| \leq \sum_{k=n+1}^{\infty} \frac{k^{r+2}}{k^{r+2}}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right| \\
& \leq \frac{1}{(n+1)^{r+2}} \sum_{k=n+1}^{\infty} k^{r+2}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right|=o\left(\frac{1}{(n+1)^{r+2}}\right), \quad n \rightarrow \infty
\end{aligned}
$$

Hence, $\left\|f^{(r)}(t)-G_{n}^{(r)}(c, t)\right\|_{1}=o(1), n \rightarrow \infty$ by the hypothesis of the theorem. Since $G_{n}^{(r)}(c, t)$ is a polynomial, it follows that $f^{(r)} \in L^{1}(T)$.

The proof of (iii) follows from the estimate

$$
\begin{array}{r}
\left\lvert\,\left\|f^{(r)}-S_{n}^{(r)}(f)\right\|_{1}-\left\|\frac{i}{n+1}\left(\widehat{f}(n+1) E_{n}^{(r+1)}-\widehat{f}(-(n+1)) E_{-n}^{(r+1)}\right)\right\|_{1}\right. \| \\
\leq\left\|f^{(r)}-G_{n}^{(r)}(c, t)\right\|_{1}=o(1), \quad n \rightarrow \infty,
\end{array}
$$

and from Lemma 4.2.
Considering the sums $U_{n}^{(r)}$ instead of $G_{n}^{(r)}$ and in view of Remark 4.1, statement (ii) in Theorem 4.2 can be replaced by:
(ii') $f^{(r)} \in L^{1}(T)$ and $\left\|U_{n}^{(r)}(c, t)-f^{(r)}(t)\right\|_{1}=o(1), n \rightarrow \infty$.
Thus we have the following result:
Theorem 4.3. Under the hypothesis of Theorem 4.2, statements (i), (ii') and (iii) hold.
4.2. On a theorem of P. L. Ul'yanov. The function $\varphi(x)$ is called A-integrable on $[a, b]$ if
a) $m E\{|\varphi(x)|>n\}=o(1 / n)$,
b) the limit $\lim _{n \rightarrow \infty} \int_{a}^{b}[\varphi(x)]_{n} d x=I$ exists, where

$$
[\varphi(x)]_{n}= \begin{cases}n & \text { if } \varphi(x)>n \\ \varphi(x) & \text { if }|\varphi(x)| \leq n \\ -n & \text { if } \varphi(x)<-n\end{cases}
$$

The number I is called the A-integral of φ on $[a, b]$.
As an application of A-integrals, P. L. Ul'yanov [68] obtained an interesting result concerning the integrability of $|f|^{p}$ and $|g|^{p}$, for any $0<p<1$, where

$$
f(x)=\sum_{k=1}^{\infty} a_{k} \cos k x, \quad g(x)=\sum_{k=1}^{\infty} a_{k} \sin k x
$$

and $\left\{a_{n}\right\}$ is a null sequence of bounded variation:
Theorem 4.4 ([68]). Let $\left\{a_{n}\right\} \in B V$. Then for any $0<p<1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi}\left|f(x)-S_{n}(x)\right|^{p} d x=0, \quad \lim _{n \rightarrow \infty} \int_{-\pi}^{\pi}\left|g(x)-\widetilde{S}_{n}(x)\right|^{p} d x=0 \tag{4.4}
\end{equation*}
$$

It is obvious that the assertion of this theorem holds when the coefficients $\left\{a_{n}\right\}$ belong to the classes $S, F_{q}, S_{q}, S_{q \alpha}$ (case $r=0$) for some $q>1, \alpha \geq 0$.

Next, we shall define a new L^{p}-integrability class $(0<p<1)$ as follows. A null sequence $\left\{a_{n}\right\}$ belongs to the class $H_{q \alpha}, 0<q \leq 1, \alpha \geq 0$, if there exists a decreasing sequence $\left\{A_{k}\right\}$ such that

$$
\sum_{k=1}^{\infty} k^{\alpha} A_{k}<\infty, \quad \frac{1}{n^{q \alpha+q}} \sum_{k=1}^{n} \frac{\left|\Delta a_{k}\right|^{q}}{A_{k}^{q}}=O(1)
$$

Theorem 4.5. For any $0<q \leq 1$ and any $\alpha \geq 0$ the class $H_{q \alpha}$ is a subclass of $B V$.
Proof. Applying the Abel transformation and the well known inequality

$$
\begin{equation*}
\left(\sum b_{i}\right)^{q} \leq \sum b_{i}^{q} \quad \text { for } b_{i} \geq 0 \text { and } 0<q \leq 1 \tag{4.5}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta a_{k}\right| & =\sum_{k=1}^{n-1} k^{\alpha+1}\left(\Delta A_{k}\right)\left(\frac{1}{k^{\alpha+1}} \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|}{A_{j}}\right)+n^{\alpha+1} A_{n}\left(\frac{1}{n^{\alpha+1}} \sum_{j=1}^{n} \frac{\left|\Delta a_{j}\right|}{A_{j}}\right) \\
& \leq \sum_{k=1}^{n-1} k^{\alpha+1}\left(\Delta A_{k}\right)\left(\frac{1}{k^{q \alpha+q}} \sum_{j=1}^{k} \frac{\left|\Delta a_{j}\right|^{q}}{A_{j}^{q}}\right)^{1 / q}+n^{\alpha+1} A_{n}\left(\frac{1}{n^{q \alpha+q}} \sum_{j=1}^{n} \frac{\left|\Delta a_{j}\right|^{q}}{A_{j}^{q}}\right)^{1 / q} \\
& =O_{q}(1)\left[\sum_{k=1}^{n-1} k^{\alpha+1}\left(\Delta A_{k}\right)+n^{\alpha+1} A_{n}\right]
\end{aligned}
$$

Now, letting $n \rightarrow \infty$ and applying Lemmas 1.10 and 1.11, we obtain $\left\{a_{n}\right\} \in B V$.
Combining this theorem and Theorem 4.5, we obtain
Corollary 4.1. Let $\left\{a_{n}\right\} \in H_{q \alpha}$ for some $0<q \leq 1$ and $\alpha \geq 0$. Then for any $0<p<1$, the limits (4.4) hold.

In this section, I shall prove a version of Ul'yanov's theorem and extend it to the r th derivative of the complex series

$$
\sum_{|n|<\infty} c_{n} e^{i n t}, \quad t \in T
$$

where $\left\{c_{n}\right\}$ is a null sequence of complex numbers such that for some $r \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
\sum_{|k|<\infty} k^{r}\left|\Delta c_{k}\right|<\infty \tag{4.6}
\end{equation*}
$$

The class of null sequences of complex numbers such that (4.6) holds is denoted by $(B V)_{r}^{*}$. For $r=0$, we have $(B V)^{*}=(B V)_{r}^{*}$, i.e. it is the class of null sequences of complex numbers of bounded variation.
Theorem 4.6. Let $r \in \mathbb{N} \cup\{0\}$ and $\left\{c_{n}\right\} \in(B V)_{r}^{*}$. Then the pointwise limit $f^{(r)}$ of the rth derivative of the sums (4.1) exists in $T \backslash\{0\}$ and for any $0<p<1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi}\left|f^{(r)}(t)-S_{n}^{(r)}(t)\right|^{p} d t=0 \tag{4.7}
\end{equation*}
$$

Proof. If $t \neq 0$, we obtain

$$
\sum_{k=0}^{n} c_{k}\left(e^{i k t}\right)^{(r)}=\sum_{k=1}^{n-1} \Delta c_{k} E_{k}^{(r)}(t)+c_{n} E_{n}^{(r)}(t)
$$

Applying (4.3) and

$$
c_{n} n^{r} \leq \sum_{k=n}^{\infty} k^{r}\left|\Delta c_{k}\right| \rightarrow 0, \quad n \rightarrow \infty
$$

we see that $\sum_{k=0}^{\infty} c_{k}\left(e^{i k t}\right)^{(r)}$ exists a.e. Similarly $\sum_{k=-\infty}^{-1} c_{k}\left(e^{i k t}\right)^{(r)}$ converges a.e. and hence $\lim _{n \rightarrow \infty} S_{n}^{(r)}(t)=f^{(r)}(t)$ exists in $T \backslash\{0\}$. It is obvious that for $t \neq 0$,

$$
f(t)-S_{n}(t)=\sum_{|j| \geq n+1} \Delta c_{j} E_{j}(t)
$$

By (4.3) the series $\sum_{|j| \geq n+1} \Delta c_{j} E_{j}^{(r)}(t)$ is uniformly convergent on any compact subset of $T \backslash\{0\}$. Consequently,

$$
f^{(r)}(t)-S_{n}^{(r)}(t)=\sum_{|j| \geq n+1} \Delta c_{j} E_{j}^{(r)}(t)
$$

Finally, we obtain

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|f^{(r)}(t)-S_{n}^{(r)}(t)\right|^{p} d t & =\int_{-\pi}^{\pi}\left|\sum_{|j| \geq n+1} \Delta c_{j} E_{j}^{(r)}(t)\right|^{p} d t \\
& =O\left(\left(\sum_{|j| \geq n+1} j^{r}\left|\Delta c_{j}\right|\right)^{p}\right) \int_{-\pi}^{\pi} \frac{d t}{|t|^{p}} \rightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Let us replace the conditions $\Im_{r}, S_{p r}, F_{p r}, S_{p \alpha r}$ by the conditions $\Im_{r}^{*}, S_{p r}^{*}, F_{p r}^{*}, S_{p \alpha r}^{*}$ when the coefficients are sequences of complex numbers. It is obvious that $\Im_{r}^{*} \subset(B V)_{r}^{*}$, $S_{p r}^{*} \subset(B V)_{r}^{*}, F_{p r}^{*} \subset(B V)_{r}^{*}, S_{p \alpha r}^{*} \subset(B V)_{r}^{*}$. Applying these inclusions we obtain the following corollaries of Theorem 4.6.
Corollary 4.2. Let $r \in \mathbb{N} \cup\{0\}$ and $\left\{c_{n}\right\} \in \Im_{r}^{*}$. Then the pointwise limit $f^{(r)}$ of the rth derivative of the sums (4.1) exists in $T \backslash\{0\}$ and for any $0<p<1$, the limit (4.7) holds.
Corollary 4.3. Let $q>1, r \in \mathbb{N} \cup\{0\}$ and $\left\{c_{n}\right\} \in S_{q r}^{*}$. Then the pointwise limit $f^{(r)}$ of the rth derivative of the sums (4.1) exists in $T \backslash\{0\}$ and for any $0<p<1$, the limit (4.7) holds.

Corollary 4.4. Let $q>1, r \in \mathbb{N} \cup\{0\}$ and $\left\{c_{n}\right\} \in F_{q r}^{*}$. Then the pointwise limit $f^{(r)}$ of the rth derivative of the sums (4.1) exists in $T \backslash\{0\}$ and for any $0<p<1$, the limit (4.7) holds.

Corollary 4.5. Let $q>1, \alpha \geq 0, r \in\{0,1, \ldots,[\alpha]\}$ and $\left\{c_{n}\right\} \in S_{q \alpha r}^{*}$. Then the pointwise limit $f^{(r)}$ of the rth derivative of the sums (4.1) exists in $T \backslash\{0\}$ and for any $0<p<1$, the limit (4.7) holds.

Now, we shall define a new subclass of $(B V)_{r}^{*}$. Namely, a null sequence $\left\{c_{k}\right\}$ of complex numbers belongs to the class $H_{q \alpha r}^{*}, 0<q \leq 1, \alpha \geq 0, r \in\{0,1, \ldots,[\alpha]\}$, if there exists a decreasing sequence $\left\{A_{k}\right\}$ such that $\sum_{k=1}^{\infty} k^{\alpha} A_{k}<\infty$ and

$$
\frac{1}{n^{q(\alpha-r)+q}} \sum_{k=1}^{n} \frac{\left|\Delta c_{k}\right|^{q}}{A_{k}^{q}}=O(1)
$$

Theorem 4.7. For any $0<q \leq 1, \alpha \geq 0$ and $r \in\{0,1, \ldots,[\alpha]\}$ we have the embedding $H_{q \alpha r}^{*} \subseteq(B V)_{r}^{*}$.
Proof. Let $\left\{c_{n}\right\} \in H_{q \alpha r}^{*}$. Applying the Abel transformation and (4.5), we obtain

$$
\begin{aligned}
\sum_{k=1}^{n} k^{r}\left|\Delta c_{k}\right| & =\sum_{k=1}^{n-1} k^{\alpha+1}\left(\Delta A_{k}\right)\left(\frac{1}{k^{\alpha+1}} \sum_{j=1}^{k} j^{r} \frac{\left|\Delta c_{j}\right|}{A_{j}}\right)+n^{\alpha+1} A_{n}\left(\frac{1}{n^{\alpha+1}} \sum_{j=1}^{n} j^{r} \frac{\left|\Delta c_{j}\right|}{A_{j}}\right) \\
& \leq \sum_{k=1}^{n-1} k^{\alpha+1}\left(\Delta A_{k}\right)\left(\frac{1}{k^{\alpha-r+1}} \sum_{j=1}^{k} \frac{\left|\Delta c_{j}\right|}{A_{j}}\right)+n^{\alpha+1} A_{n}\left(\frac{1}{n^{\alpha-r+1}} \sum_{j=1}^{n} \frac{\left|\Delta c_{j}\right|}{A_{j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \sum_{k=1}^{n-1} k^{\alpha+1}\left(\Delta A_{k}\right)\left(\frac{1}{k^{q(\alpha-r)+q}} \sum_{j=1}^{k} \frac{\left|\Delta c_{j}\right|^{q}}{A_{j}^{q}}\right)^{1 / q} \\
& +n^{\alpha+1} A_{n}\left(\frac{1}{n^{q(\alpha-r)+q}} \sum_{j=1}^{n} \frac{\left|\Delta c_{j}\right|^{q}}{A_{j}^{q}}\right)^{1 / q} \\
= & O_{q}(1)\left[\sum_{k=1}^{n-1} k^{\alpha+1}\left(\Delta A_{k}\right)+n^{\alpha+1} A_{n}\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$, and applying Lemmas 1.10 and 1.11, we obtain $\left\{c_{n}\right\} \in(B V)_{r}^{*}$.
Corollary 4.6. Let $0<q \leq 1, \alpha \geq 0, r \in\{0,1, \ldots,[\alpha]\}$ and $\left\{c_{n}\right\} \in H_{q \alpha r}^{*}$. Then the pointwise limit $f^{(r)}$ of the r th derivative of the sums (4.1) exists in $T \backslash\{0\}$ and for any $0<p<1$, the limit (4.7) holds.

Acknowledgements. I am grateful to my mentor Professor S. A. Telyakovskiŭ of the Steklov Mathematical Institute, RAS Moscow, Russia, for his support, suggestions, ideas and encouragement during the preparation of this Ph.D. thesis.

References

[1] Z. U. Ahmad and S. Zahid Ali Zaini, A note on L^{1}-convergence of Fourier series with δ-quasimonotone coefficients, Comm. Fac. Sci. Univ. Ankara Sér. A Math. 30 (1981), no. $1,1-5$.
[2] N. K. Bari, Trigonometric Series, Fizmatgiz, Moscow, 1961 (in Russian).
[3] S. S. Bhatia and B. Ram, On L^{1}-convergence of modified complex trigonometric sums, Proc. Indian Acad. Sci. 105 (1995), 193-199.
[4] R. P. Boas, Quasi-positive sequence and trigonometric series, Proc. London Math. Soc. 14 (1965), 38-48.
[5] R. Bojanić and Č. V. Stanojević, A class of L^{1}-convergence, Trans. Amer. Math. Soc. 269 (1982), 677-683.
[6] H. Bor, On integrability of Rees-Stanojević sums, Bull. Inst. Math. Acad. Sinica 13 (1985), 357-361.
[7] -, Integrability of Rees-Stanojević sums, Tamkang J. Math. 15 (1984), 157-160.
[8] L. S. Bosanquet, Note on convergence and summability factors (III), Proc. London Math. Soc. 50 (1949), 482-496.
[9] W. O. Bray and Č. V. Stanojević, Tauberian L^{1}-convergence classes of Fourier series, Trans. Amer. Math. Soc. 275 (1983), 59-69.
[10] G. A. Fomin, On linear methods for summing Fourier series, Mat. Sb. 65 (1964), 144-152 (in Russian).
[11] - Linear methods of summation of Fourier series similar to the method of BernsteinRogozinski, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 335-348 (in Russian).
[12] -, Certain conditions for the convergence of Fourier series in the metric of L, Mat. Zametki 21 (1977), 587-592 (in Russian).
[13] -, A class of trigonometric series, ibid. 23 (1978), 117-124 (in Russian).
[14] -, On the mean convergence of Fourier series, Mat. Sb. 38 (1981), 231-245 (in Russian).
[15] J. W. Garrett, C. S. Rees and Č. V. Stanojević, On L-convergence of Fourier series with quasi-monotone coefficients, Proc. Amer. Math. Soc. 72 (1978), 535-538.
[16] J. W. Garrett, C. S. Rees and Č. V. Stanojević, L ${ }^{1}$-convergence of Fourier series with coefficients of bounded variation, ibid. 80 (1980), 423-430.
[17] J. W. Garrett and Č. V. Stanojević, Necessary and sufficient conditions for L^{1}-convergence of trigonometric series, ibid. 60 (1976), 68-72.
[18] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1934.
[19] T. Kano, Coefficients of some trigonometric series, J. Fac. Shinshu Univ. 3 (1968), 153162.
[20] J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38-53.
[21] -, Sur certains "Tauberian theorems" de MM. Hardy et Littlewood, ibid. 3 (1930), 33-48.
[22] A. N. Kolmogorov, Sur l'ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bull. Acad. Polon. Sér A Sci. Math. 1923, 83-86.
[23] S. Kumari and B. Ram, Convergence and integrability of certain trigonometric sums, Tamkang J. Math. 19 (1988), 31-36.
[24] L. Leindler, On the equivalence of classes of Fourier coefficients, Math. Inequal. Appl. 3 (2000), 45-50.
[25] -, On the equivalence of classes of numerical sequences, Anal. Math. 26 (2000), 227-234.
[26] -, On the utility of Telyakovskiu's class S, J. Inequal. Pure Appl. Math. 2 (2001), Article 32; http://jipam.vu.edu.au.
[27] M. Marzuq, Necessary and sufficient conditions for integrability of certain cosine sums, Notices Amer. Math. Soc. 22 (1975), A-513.
[28] S. M. Mazhar, On generalized quasi-convex sequence and its application, Indian J. Pure Appl. Math 8 (1977), 784-790.
[29] C. N. Moore, On the use of Cesàro means in determining criteria for Fourier constants, Bull. Amer. Math. Soc. 39 (1933), 907-913.
[30] B. Ram and S. Kumari, On L^{1}-convergence of certain trigonometric sums, Indian J. Pure Appl. Math. 20 (1989), 908-914.
[31] C. S. Rees and Č. V. Stanojević, Necessary and sufficient condition for integrability of certain cosine sums, J. Math. Anal. Appl. 43 (1973), 579-586.
[32] S. Sheng, The extension of the theorems of Č. V. Stanojević and V. B. Stanojević, Proc. Amer. Math. Soc. 110 (1990), 895-904
[33] -, Some results on L ${ }^{1}$-approximation, Approx. Theory Appl. 7 (1991), 1-9.
[34] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer Trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 158-160.
[35] N. Singh and K. M. Sharma, Convergence of certain cosine sums in a metric space L, Proc. Amer. Math. Soc. 72 (1978), 117-120.
[36] -, 一, L^{1}-convergence of modified cosine sums with generalized quasi-convex coefficients, J. Math. Anal. Appl. 136 (1988), 189-200.
[37] Č. V. Stanojević, Classes of L ${ }^{1}$-convergence of Fourier and Fourier-Stieltjes series, Proc. Amer. Math. Soc. 82 (1981), 209-215.
[38] Č. V. Stanojević and V. B. Stanojević, Generalizations of the Sidon-Telyakovskiŭ theorem, ibid. 101 (1987), 679-684.
[39] O. Szász, Quasi-monotone series, Amer. J. Math. 70 (1948), 203-206.
[40] N. Tanović-Miller, On a paper of Bojanić and Stanojević, Rend. Circ. Mat. Palermo 34 (1985), 310-324.
[41] S. A. Telyakovskiĭ, Some estimates for trigonometric series with quasi-convex coefficients, Mat. Sb. 63 (1964), 426-444 (in Russian).
[42] —, Integrability conditions for trigonometrical series and their application to the study of linear summation methods of Fourier series, Izv. Akad. Nauk. SSSR Ser. Mat. 28 (1964), 1209-1238 (in Russian).
[43] S. A. Telyakovskiĭ, An asymptotic estimate of the integral of the absolute value of a function given by a sine series, Sibirsk. Mat. Zh. 8 (1967), 1416-1422 (Russian).
[44] -, An estimate, useful in problems of approximation theory of the norm of a function by means of its Fourier coefficients, Trudy Mat. Inst. Steklov. 109 (1971), 73-109 (in Russian).
[45] -, On a sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 742-748 (in Russian).
[46] -, On the integrability of sine series, Trudy Mat. Inst. Steklov. 163 (1984), 229-233 (in Russian).
[47] -, A remark on conditions for the integrability of trigonometric series, Moscow Univ. Math. Bull. 55 (2000), no. 4, 39-40.
[48] S. A. Telyakovskiĭ and G. A. Fomin, On convergence in L^{1} metric of Fourier series with quasi-monotone coefficients, Trudy Mat. Inst. Steklov. 134 (1975), 310-313 (in Russian).
[49] Ž. Tomovski, An application of the Hausdorff-Young inequality, Math. Inequal. Appl. 1 (1998), 527-532.
[50] -, A note on some classes of Fourier coefficients, ibid. 2 (1999), 15-18.
[51] -, An extension of the Garrett-Stanojević class, preprint; http://melba.vu.edu.au/~rgmia /v3n4.html.
[52] -, An extension of the Sidon-Fomin type inequality and its applications, Math. Inequal. Appl. 4 (2001), 231-238.
[53] -, New generalizations of the Telyakovskič inequalities, preprint; http://melba.vu.edu.au/ \sim rgmia/v5n1.html.
[54] -, Necessary and sufficient condition for L^{1}-convergence of complex trigonometric series, Vestnik Russian Univ. People's Friendship 7 (2000), 139-145.
[55] -, Some results on L^{1}-approximation of the rth derivative of Fourier series, J. Inequal. Pure Appl. Math. 3 (2002), Article 10; http://jipam.vu.edu.au.
[56] -, Necessary and sufficient condition for L^{1}-convergence of cosine trigonometric series with δ-quasimonotone coefficients, Math. Commun. 4 (1999), 219-224.
[57] -, Generalization theorem on convergence and integrability for sine series, Math. Inequal. Appl. 3 (2000), 369-375.
[58] -, On a Bojanić-Stanojević type inequality and its applications, J. Inequal. Pure Appl. Math. 1 (2000), Article 13; http://jipam.vu.edu.au.
[59] -, Two new L^{1} estimates for trigonometric series with Fomin's coefficient condition, preprint; http://melba.vu.edu.au/~rgmia/v2n6.html.
[60] -, Two new L^{1}-estimates for trigonometric series with Fomin's coefficient condition, Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. 20 (1999), 39-44.
[61] -, Some classes of L^{1}-convergence of Fourier series, Math. Bull. 24 (L) (2000), 37-46.
[62] -, Remarks on some classes of Fourier coefficients, Anal. Math. 29 (2003), 165-170.
[63] -, A note on two inequalities of Telyakovskǐ̌ type, RGMIA, Research Report Collection, 4 (1), Article 7 (2001) (Melbourne, Australia): http://melba.vu.edu.au/~rgmia/v4n1.html.
[64] -, Some classes of L^{1}-convergence of Fourier series, J. Comput. Anal. Appl. 4 (2002), 79-89.
[65] -, Regularly quasi-monotone sequences and trigonometric series, Adv. Stud. Contemp. Math. 4 (2001), 17-21.
[66] -, On a paper of S. Zahid Ali Zenei, Tamkang J. Math. 33 (2002), 31-34.
[67] -, Convergence and integrability on some classes of trigonometric series, Ph.D. thesis, Univ. of Skopje, 2000 (in Macedonian); http://rgmia.vu.edu.au/monographs/tomovski_ thesis.htm.
[68] P. L. Ul'yanov, Application of A-integration on a class of trigonometric series, Mat. Sb. 35 (1954), 469-490 (in Russian).
[69] Ch.-J. de la Vallée Poussin, Cours d'Analyse Infinitésimale, Vol. 1, 1933 (in Russian).
[70] K. Van and S. A. Telyakovskiur, Differential properties of sums of a class of trigonometric series, Moscow Univ. Math. Bull. 54 (1999), 26-30.
[71] W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. 12 (1913), 41-70.
[72] S. Z. A. Zenei, Integrability of trigonometric series, Tamkang J. Math. 21 (1990), 295-301.
[73] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1959.

