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Abstract

The Complex Absorbing Potential (CAP) method is widely used to compute resonances in
Quantum Chemistry, both for scalar valued and matrix valued Hamiltonians. In the semiclassical
limit ~→ 0 we consider resonances near the real axis and we establish the CAP method rigorously
in an abstract matrix valued setting by proving that resonances are perturbed eigenvalues of
the nonselfadjoint CAP Hamiltonian, and vice versa. The proof is based on pseudodifferential
operator theory and microlocal analysis.
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1. Introduction

The Complex Absorbing Potential (CAP) method has emerged as a very useful method
for computing resonances in Quantum Chemistry. Depending upon the definition of what
a resonance is, its existence can be justified in several ways. Within the semiclassical
limit, i.e., as Planck’s “constant” ~ tends to zero, we analyze resonances in the spectral
meaning by studying the meromorphic continuation of the resolvent of the Hamiltonian
describing the quantum system. The resonant eigenstate associated with complex poles of
the resolvent play a central role in scattering processes of atomic and molecular physics.
Numerous techniques have been developed for calculating these poles.

In a typical quantum scattering scenario particles with positive energy arrive from
infinity, interact with a localized potential V (x) whereafter they leave to infinity. The
absolutely continuous spectrum of the corresponding Hamiltonian T (~) = −~2∆ + V (x)
coincides with the positive semi-axis. Nevertheless, the resolvent function (T (~)−z)−1 ad-
mits a meromorphic continuation from the upper half-plane {Im z > 0} to (some part of)
the lower half-plane {Im z < 0}. Generally, this continuation has poles zk = Ek − iΓk/2,
Γk > 0, which are called resonances of the scattering system. The probability density of
the corresponding “eigenfunction” ψk(x) decays in time like e−tΓk/~, thus physically ψk
represents a metastable state with a decay rate Γk/~ or, re-phrased, a lifetime τk = ~/Γk.
In the semiclassical limit ~ → 0, resonances zk satisfying Γk = O(~) (equivalently, with
lifetimes bounded away from zero) are called “long-lived”. Physically, the generalized
eigenfunction ψk(x) only makes sense near the interaction region, whereas its behaviour
away from that region is evidently nonphysical; outgoing waves of exponential growth.
If one perturbs T (~) by an artificial CAP −iW (x) which is supposed to vanish in the
interaction region and to be positive outside (“switched on”), then the resulting Hamil-
tonian J(~) := T (~)− iW (x) is a nonselfadjoint operator and the effect of the potential
W (x) is to absorb outgoing waves (up to an O(~∞) error); on the contrary, a real val-
ued positive potential would reflect the waves back into the interaction region. In some
neighbourhood of the positive axis, the spectrum of J(~) consists of discrete eigenval-
ues z̃k corresponding to L2-eigenfunctions ψ̃k. The CAP method provides a recipe for
computing resonances of width − Im z(~) ≤ c(~) = O(~N ), N � 1. Studying the CAP
method from a mathematical point of view amounts to relating zk and z̃k quantitatively;
the so-called approximating resonances context. We limit ourselves to a detailed study
of the behaviour of the resonances and resonant states near the real axis. By resonances
near the real axis we mean resonances in a “box” Ω(~) = [l0, r0] + i[−c(~), 0] where
0 < c(~) = O(~N ), N � 1. In particular, we do not need to worry about pseudospectra
[68, 9].

[5]



6 J. Kungsman and M. Melgaard

It is evident that the CAP method is useful for numerical computations, where one
works on bounded domains. Indeed, when a wavepacket gets near to the edge of a numer-
ical grid, artificial reflections occur which rapidly deteriorate the quality of the computed
solution. A CAP attenuates the asymptotic part of the wavepacket and thus suppresses
the reflection. The idea of using an artificial CAP in resonant scattering process was first
conceived by Jolicard and Austin [23]. It was then used by Kosloff and Kosloff [27] in
the field of time-dependent wavepacket propagation. Neuhauser and Baer [41, 42] used a
CAP to give a time-dependent treatment of reactive scattering and later these authors
applied the CAP in a time-independent framework [43]. Seideman and Miller used a CAP
to compute cumulative reaction probabilities [53]. Work on approximating resonances, in
particular analytic investigations, are found in Jolicard and Austin [23, 24, 25], Child [7],
Riss and Meyer [48, 49], Poirier and Carrington [47], Mandelshtam and Neumaier [30],
and Manolopoulos [31]. The ease of implementation of the CAP method in the discrete
variable representation (DVR)/pseudo-spectral methods [52] explains its increasing use:
one just add a complex (diagonal) potential to the Hamiltonian. The CAP is assumed
to be zero in the interaction region and “switched on” in the region where there are no
interactions. In concrete implementations, however, “switch-on” point is moved inward
towards the interaction region as much as possible to minimize the number of grid points
used. The results are very good: see e.g., Seideman and Miller [53], Vibók and Balint-
Kurti [69], Riss and Meyer [49, 50], Vibók and Halász [70], Neumaier and Mandelshtam
[44], and Santra [52]. We refer to Muga et al. [38] for a survey on the level of theoretical
physics.

The discussion above, including all references, concerns scalar valued Hamiltonians.
Matrix valued Hamiltonians and similar systems appear frequently in quantum mechan-
ics, e.g., coupled electronic states [4, 45, 71], multichannel scattering [15, 32, 33], reso-
nances for diatomic molecules [8, 36, 37] and when one reduces the dimension by means
of the Born–Oppenheimer approximation [18] and similar methods that lead to so-called
effective Hamiltonians.

We give results in a matrix valued “black box” scattering setting which allow us to
include a wide class of (effective) Hamiltonians. Although these (effective) Hamiltonians
are not in general exactly equal to matrix valued Schrödinger operators, the latter form
important models for more general systems that could also be studied with more or less
the same methods. Hence, as a toy model which works as our main “case study” in this
introduction and one we return to repeatedly throughout the paper, we consider the
semiclassical matrix valued Schrödinger Hamiltonian

T (~) = −~2∆⊗ I2 + V (x) = ~2

(−∆ 0
0 −∆

)
+
(
Vaa Vab
Vba Vbb

)
(1.1)

acting on the Hilbert space H = h ⊕ h = L2(Rn) ⊕ L2(Rn) = L2(Rn)2 = L2(Rn,C2)
equipped with the scalar product

〈ψ,φ〉 =
∫

Rn
(ψaφa + ψbφb) dnx.

of two spinor valued functions ψ = (ψa, ψb)t, φ = (φa, φb)t ∈ H. The entries of the
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Hermitian matrix potential V are taken to be bounded and compactly supported real
valued functions. Each entry of V looks as in Figure 1.

Vij

δ

W

R0 R′
0 R1 R2 |x|

Fig. 1. Entries of matrix potentials V and W when R′
0 < R1

Adopting the convention that resonances lie in the lower half-plane, we define reso-
nances of T (~) in a neighbourhood Ω of some energy E > 0 as either (1) the poles of
the meromorphic extension of the resolvent (T (~) − z1)−1 from C+ ∩ Ω to Ω (see Ap-
pendix A.1), or (2) as the eigenvalues of the complex scaled version T θ(~) of T (~); see
Section 4.2.

In accordance with the CAP method, the Hamiltonian T (~) is perturbed by a complex
valued diagonal potential −iW = −i diag(W,W ) with W being a nonnegative function
supported outside suppV . More precisely, suppW ⊂ Rn \ B(0, R1) with R0 < R1. The
resulting Hamiltonian J(~) := T (~)− iW is the CAP Hamiltonian. We shall prove that
in a neighbourhood of the real axis of polynomial width c(~) = O(~N ), the resonances
of T (~) are perturbed eigenvalues of the CAP Hamiltonian J(~) and, vice versa the
eigenvalues of J(~) are perturbed resonances of T (~). Specifically, Theorem 5.1 estimates
the distance between the resonances of T (~) and the spectrum of J(~) (where J is either
J∞ or JR, see Chapter 7 for an explanation) provided we are close to the real axis.
The error is e−C/~ (up to a fixed polynomial factor). Theorem 5.5 addresses the same
question as Theorem 5.1 but we allow the supports of V and W to intersect (see Figure
1 where R0, R1, and R′0 are introduced). This yields an O(~∞) error and in order to
treat this case, we need that V has diagonal structure for |x| ≥ R0. Theorems 5.6
and 5.7, the most substantial results, estimate the number of resonances of T (~) in a
box close to the real axis, by the number of eigenvalues of J(~) and assert that the
error is max{

√
c(~), e−~−2/3+ε} (up to a fixed polynomial factor). We consider both cases

(suppV ∩ suppW = ∅ and, respectively, suppV ∩ suppW 6= ∅).
Our results are analogous to the scalar valued ones by Stefanov [63], who gave the

first rigorous results within the context of approximating resonances. Needless to say,
numerous modifications are necessary to carry over the results to the matrix valued set-
ting, where no prior results exist. The natural framework for the semiclassical limit is the
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theory of pseudodifferential operators and indeed our proofs rely heavily on pseudodiffer-
ential techniques. We give a summary of the necessary facts in Chapter 3. As mentioned
above we work within the semiclassical setting of “black box scattering” introduced by
Sjöstrand and Zworski [57] and extended by Sjöstrand [54]. In Chapter 4 we show how
to carry over this framework to the matrix valued setting and, furthermore, we define
the abstract black box Hamiltonian H(~) (generalizing T (~) above) under fairly gen-
eral conditions given in Assumption 4.1. We formulate our main results in Chapter 5.
In Chapter 6 we establish an important a priori cutoff resolvent estimate for the Hamil-
tonian H(~), resp. HR(~). The CAP Hamiltonians J∞(~), resp. JR(~), are defined in
Chapter 7, their resolvents are analyzed, and estimates of the number of their eigenvalues
on rectangles are given in Chapter 8. Using the matrix valued cutoff resolvent estimate
and the matrix valued semiclassical maximum principle given in Appendix B, we prove in
Chapter 9 that quasimodes of H(~) generate perturbed resonances of H(~). The proofs
of the main theorems are given in Chapters 10, 11, and 12. Throughout the paper we
have strived to make it self-contained to some reasonable extent.

The strategy of the proof of Theorem 5.1 is to start from a resonance of H(~) and
then, by considering a cutoff resonant state ofH(~), construct a quasimode which satisfies
the assumptions in Proposition 9.1. Theorem 5.5 holds under a nontrapping condition,
Assumption 5.4, and the requirement that the principal symbol of H(~) is scalar valued
away from the black box; see Assumption 5.2. Its proof is more involved than the proof
of Theorem 5.1. We begin by solving Heisenberg’s equations of motion semiclassically.
Next, by utilizing a standard localization result away from the semiclassical wavefront
set, we are able to investigate how singularities propagate. This allows us to propagate
microlocally the key estimate in the proof of Theorem 5.1 and hence we complete the
proof by arguments similar to the ones in the proof of Theorem 5.1. Theorems 5.6 and 5.7
require a “decomposition” approach to treat clusters of resonances which are too close
and to ensure that the multiplicities are kept the same. For this purpose the box Ω(~)
in (5.4) is expressed as a union

⋃
Ωj(~) of disjoint boxes having smaller widths. By an

application of Proposition 9.1 we show that mj(~) resonances of H(~) in Ωj(~) imply
that there exist at least mj(~) eigenvalues of J(~) in a larger domain Ω̃j(~), like (9.2).
Since the domains Ω̃j(~) intersect each other, we must ensure that we do not count some
resonances more than once. We show how to avoid this and, as a matter of fact, there
are at least m(~) =

∑
jmj(~) eigenvalues in Ω(~). The latter is shown by demonstrating

that the set of all m(~) cutoff resonant states satisfy (9.1). Once again the “propagation
of singularities” result is applied, in combination with the above mentioned auxiliary
matrix valued results. An interesting open problem is to treat the case R1 < R′0, when
the principal symbol of H(~) is also matrix valued away from the black box.

To the best of our knowledge the CAP method has not previously been investigated
rigorously in the matrix valued setting. For abstract block matrix Hamiltonians, Men-
nicken and Motovilov [35] consider analytic continuation of the transfer function to the
nonphysical sheet of its Riemann surface. Nonselfadjoint operators whose spectra include
the resonances of the initial operator are constructed. The authors treat resonances as
the discrete spectrum of the transfer function situated in the so-called nonphysical sheets
of its Riemann surface (Lax–Phillips approach). A factorization theorem for the transfer
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function is established and basis properties for the “root” vectors are proven. For matrix
valued Schrödinger operators Nedelec gives a simple criterion for the potential to pro-
duce resonances in [39] and, in [40] the lower bound C~−1|ln ~|−3/2 on the number of
resonances near a point is established in dimension three. Bolte and Glaser [3] prove a
semiclassical version of Egorov’s theorem for Pauli type Hamiltonians.

2. Preliminaries

Notation. Throughout the paper we denote by C (with or without indices) various pos-
itive constants whose precise value is of no importance. We shall denote by M2(C) the
set of all 2 × 2 matrices over C, equipped with the operator norm denoted by ‖ · ‖2×2.
We denote by I2 the corresponding identity matrix. For n ∈ N we let L2(Rn,C2) be
the space of C2-valued L2 functions on Rn endowed with its usual norm ‖ · ‖ and scalar
product 〈·, ·〉. The space C∞0 (Rn) consists of all infinitely differentiable functions on Rn
with compact support, and C∞b (Rn) consists of all bounded continuous functions, with
all derivatives bounded. We let Dx = −i∂/∂x and Dα = Dα1

x1
· · ·Dαn

xn with standard
multi-index notation α = (α1, . . . , αn) ∈ Nn. For x ∈ Rn we denote 〈x〉 := (1 + |x|2)1/2

and, analogously, 〈~D〉 = (1 + (~D)2)1/2, where (~D)2 =
∑n
j=1(~Dxj )

2.
The standard Sobolev spaces are denoted Hk(Rn,Cr) or just Hk(Rn) if r = 1. The

semiclassical variant, denoted Hk
~(Rn,Cr), is endowed with the ~-Sobolev norm ‖〈~D〉2⊗

Ir · ‖L2(Rn)⊗Cr . The Schwartz space of rapidly decreasing functions and its adjoint space
of tempered distributions are denoted by S(Rn) and S ′(Rn), respectively. For f, g ∈
C∞0 (Rn) we use f ≺ g to mean that g = 1 in a neighbourhood of supp f (i.e., the support
of f).

Operators. Let H be a separable complex Hilbert space. We denote its scalar product and
norm by 〈·, ·〉H and ‖ · ‖H, respectively. Let T be a linear operator on H with domain
D(T ), range Ran(T ) and kernel Ker(T ). Its adjoint (when it exists) is denoted T ∗. The
spectrum and resolvent set are denoted by spec(T ) and ρ(T ), respectively. The resolvent
of a linear operator T is denoted by R(T, z) = (T − zI)−1 or merely R(z) if it is clear
which operator we mean. If X1 and X2 are normed linear vector spaces, then B(X1,X2)
denotes the space of all bounded operators from X1 into X2. If X = X1 = X2, then we
write B(X ). The number of eigenvalues (or resonances) of T on a set Ω ⊂ C will be
denoted Count(T,Ω), the so-called counting function. Scalar valued, respectively matrix
valued, operators are denoted by capitals, respectively boldface capitals.

Meromorphic operator valued functions. Let K1 and K2 be two normed linear vector
spaces. Holomorphic and meromorphic functions with values in operators acting from
K1 into K2 are defined as follows. A holomorphic function A(z), defined on an open set
Ω ⊂ C, with values in B(K1,K2), is a function with values in the space of linear operator
from K1 into K2 such that χ1A(z)χ2 is holomorphic for all χj ∈ C∞0 (Rn). Analogously,
a meromorphic function is one which is holomorphic on Ω \ S, where S ⊂ Ω is a discrete
set, and such that if z0 ∈ S then near z0 we have
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A(z) =
N∑
j=1

Aj
(z − z0)j

+B(z)

with Aj : K1 → K2 (continuous in the sense that χ1Ajχ2 is bounded for all χj ∈ C∞0 (Rn))
of finite rank, and B(z) holomorphic with values in B(K1,K2) for z in a neighbourhood
of z0.

Elliptic regularity. The following a priori estimate will turn out to be useful [13, Lemma
7.1].

Theorem 2.1 (Semiclassical elliptic estimate). Let W b U be open sets. Then for
differential operators A(h) =

∑
|α|≤m aα(x)(hDx)α which are classically elliptic, i.e.∑

|α|=m aα(x)ξα 6= 0 for ξ 6= 0, one has

‖u‖Hm~ (W ) ≤ C(‖u‖L2(U) + ‖A(~)u‖L2(U))

for some constant C > 0.

3. Matrix valued pseudodifferential operators

We recall elements of the pseudodifferential operator theory which will be used in what
follows. The basic motivation for pseudodifferential calculus is to obtain an algebraic
correspondence between classical observables and quantum observables. In more math-
ematical terms this “quantization” involves turning functions on phase space T∗(Rnx) =
R2n = Rnx ×Rnξ , henceforth referred to as symbols, into operators on some function space
over Rx, most notably L2(Rn) ⊗ C2. The subject is vast and we only pinpoint results
and definitions relevant to us. The corresponding theory for scalar objects is well-known
[21, 67, 51, 14, 12]. Most of the results carry over to the matrix valued case, if one takes
into account some minor modifications.

3.1. Operators and symbols. For any

a ∈ S(T∗(Rn))⊗M2(C)

and u ∈ S(Rn)⊗ C2, we define the operator A : S(Rn)⊗ C2 → S(Rn)⊗ C2 by

(Au)(x) = (Opw(b)u)(x) = (2π~)−n
∫∫

T∗Rn
e
i
~ 〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y) dy dξ, (3.1)

where the uniformly convergent integral is defined in the Bochner sense. These operators
A = Opw(a) are called Weyl operators, and we designate the Weyl symbol of A by
symbw(A) = a. Henceforth we also use the short-hand notation Op(a) and aw for such
an operator A. We remark that our choice of taking a((x+ y)/2, ξ) rather than the more
general a(tx + (1 − t)y, ξ) corresponds to what is called Weyl quantization. This is a
convenient choice that we shall make throughout. In theory one can jump from one type
of quantization to another although for computations it is easiest to settle for one version.
Having in mind operators such as −~2∆⊗I2 +V (x) that are quantizations of Hermitian
symbols |ξ|2I2 +V (x) (independently of choice of t-quantization) we would like to allow
for symbols that grow at infinity. If we permit symbols belonging to S ′(T∗(Rn))⊗M2(C)
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it turns out that in general we cannot expect that Op(a) Op(b) = Op(c) for some c ∈
S ′(T∗(Rn))⊗M2(C), i.e. such operators cannot be composed with one another. Therefore
we retreat for a moment to discuss certain intermediate classes of symbols for which the
associated operators enjoy better properties.

Definition 3.1. A function m : R2n → [0,∞) is said to be an order function if there
exist C,N > 0 such that

m(x, ξ) ≤ C(1 + (x− y)2 + (ξ − η)2)N/2m(y, η)

for all (x, ξ), (y, η) ∈ T∗Rn.

Notice that the classes we shall work with are better than S(Rn) ⊗M2(C) in that
they do allow for some growth of the symbols and their derivatives at infinity. Examples
of order functions we will encounter are 〈ξ〉2 and 1. We now make the following definition.

Definition 3.2. Let m : R2n → [0,∞) be an order function. Define Sq(m) ⊂ C∞(T∗Rn)
⊗M2(C) to consist of all a ∈ C∞(T∗Rn)⊗M2(C) such that for all multi-indices α, β ∈ Nn0
there are constants Cα,β > 0 with

‖∂αξ ∂βxa(x, ξ)‖n×n ≤ Cα,β~−qm(x, ξ) for all (x, ξ) ∈ T∗Rn.

Here we have tacitly assumed a to depend on the semiclassical parameter ~ and the
above estimate to hold uniformly for ~ ∈ (0, 1]. According to this definition, a and its
derivatives vanish the more rapidly the more negative q is. We shall abbreviate S0(m) =
S(m). In direct analogy with the corresponding result for scalar symbols (see [14, Theorem
2.21] and [12, Lemma 7.8]), the following result holds.

Proposition 3.3. For a ∈ S(m) the operator A as defined by (3.1) is bounded on
S(Rn)⊗ C2.

By duality the same result holds forA : S ′(Rn)⊗C2 → S ′(Rn)⊗C2. For symbols that
are bounded with all their derivatives we even have the celebrated result by Calderón–
Vaillancourt [12, Theorem 7.11].

Proposition 3.4. Let a ∈ S(1). Then Op(a) defines a continuous operator on L2(Rn)
⊗ C2.

Actually it is enough to assume that a and its derivatives up to and including order
2n+ 1 are bounded on Rn. An upper bound for ‖A‖B(L2(Rn)⊗C2) is then given by

Cn sup
|α|≤2n+1

sup
x∈Rn

‖(∂αxa)(x)‖2×2

for some constant Cn that only depends on n [12].
Next we state the fundamental product formula Op(a) Op(b) = Op(a# b) together

with a recipe for calculating the new symbol a # b (see, e.g., [14, Section 2.3] or [12,
Theorem 7.9]).

Proposition 3.5. Let m1,m2 be order functions and assume a ∈ S(m1) and a ∈ S(m2).
Then there exists c ∈ S(m1m2) such that

AB = Op(a) Op(b) = Op(c).
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Explicitly

c(x, ξ) =: a# b = exp
(
ih

2
(∇x · ∇η −∇ξ · ∇y)

)
a(x, ξ)b(y, η)

∣∣∣∣y=x
η=ξ

.

The symbol a# b is called the Weyl, or twisted, product of the symbols a and b and
is unique modulo S−∞(m) :=

⋂
q∈R Sq(m).

Next we give a semiclassical variant of Beals’ characterization of pseudodifferential
operators.

Lemma 3.6. Let A(~) : S(Rd)⊗C2 → S ′(Rd)⊗C2 be a linear and continuous operator
depending on the semiclassical parameter ~ ∈ (0, ~0]. Then the following statements are
equivalent:

(1) A(~) = Op(a) is a Weyl operator with symbol a ∈ S0(m).
(2) For every sequence l1(x, ξ), . . . , lN (x, ξ), N ∈ N, of linear forms on T∗Rd the operator

given by the multiple commutator

[Op(lN ), [Op(lN−1), . . . , [Op(l1),A] . . .]]

is bounded as an operator on L2(Rd)⊗ C2 and its norm is of the order ~N .

The direction (1)⇒(2) follows immediately from the symbolic calculus above. For the
opposite direction we refer to [12, Proposition 8.3].

3.2. Asymptotic series. It is often convenient to think of a semiclassical symbol as a
formal power series in ~ so that an element a ∈ Sq(m) corresponds to a series of the form
~−qa0 + ~−q+1a1 + · · · with aj ∈ S(m) for every j, abbreviated

a ∼
∞∑
j=0

~−q+jaj .

We will reserve the notation Sqcl(m) for elements of Sq(m) that have such asymptotic
expansions in integer powers of ~. We call a0 the principal symbol of a and the subsequent
coefficient a1 the subprincipal symbol of a. Regarding Proposition 3.5 at the level of power
series one can show that if

a ∼
∑
j≥0

~jaj ∈ Scl(m1) and b ∼
∑
j≥0

~jbj ∈ Scl(m2),

then a# b ∈ Scl(m1m2) with a# b ∼∑k≥0 ~k(a# b)k, where

(a# b)k(x, ξ) = (2i)−k
∑

|α|+|β|+j+l=k

(−1)|α|

|α|!|β|! ((∂αx ∂
β
ξ aj)(∂

α
ξ ∂

β
xbl))(x, ξ),

where k, j, l ∈ N0 and α, β ∈ Nn0 . In this context the product is referred to as the Moyal
product. In particular, we see that

(a# b)0 = a0b0 and (a# b)1 = a0b1 + a1b0 −
i

2
{a0, b0},
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where {·, ·} denotes the Poisson bracket defined through

{a, b} =
n∑
j=1

(
∂a

∂ξj

∂b

∂xj
− ∂a

∂xj

∂b

∂ξj

)
.

As opposed to the scalar case, we have in general {a, b} 6= −{b,a} and in particular
{a,a} 6= 0.

For the record we mention the following result (see, e.g., [51, Theorem II.53]):

Proposition 3.7. Let m : R2n → [0,∞) be an order function. If∫∫
R2n

m(x, ξ) dx dξ

is finite then every A ∈ Op(Scl(m)) is of trace class with ‖A‖tr = O(~−n).

3.3. Inverses. An operator A = Op(a) is called elliptic if its symbol a ∈ S(m) is
invertible, i.e., if the matrix inverse a−1 exists in S(m−1). One can then construct a
parametrix q ∈ S(m−1) which is an asymptotic inverse of a in the sense of symbol
products:

Lemma 3.8. Suppose a ∈ S(m) is elliptic in the sense that a−1(x, ξ) exists for all (x, ξ) ∈
T∗Rd and belongs to the class S(m−1). Then there exists a parametrix q ∈ S(m−1) with
an asymptotic expansion of the form

q ∼ a−1 + ~(a−1 # r) + ~2(a−1 # r # r) + · · · (3.2)

such that
a# q ∼ q # a ∼ I2.

Proof. Consider
Op(a) Op(a)−1 = 1− ~ Op(r),

where r ∈ S(m). For sufficiently small ~, the operator 1 − ~ Op(r) possesses a bounded
inverse and one can define a (left and right) inverse Op(a)−1(1− ~ Op(r))−1 for Op(a).
Moreover, Lemma 3.6 implies that that this inverse is again a bounded pseudodifferen-
tial operator. To derive an asymptotic expansion for the parametrix q, one proceeds by
defining the operator QN := Op(a)−1(1 + ~R+ · · ·+ ~NRN ), with R = Op(r), which is
equivalent to Q = Op(q) modulo terms of order ~N+1. Hence one can write

q ∼ a−1 + ~(a−1 # r) + ~2(a−1 # r # r) + · · ·
and this yields the result.

3.4. Semiclassical wavefront set. In the semiclassical matrix valued setting we intro-
duce the wavefront set as for a family of ~-tempered smooth functions {u(~)} (cf. [51,
58, 13]).

Definition 3.9 (Wavefront set). We say that (x0, ξ0) 6∈ WFs~ u(~) if and only if there
exists a ∈ S(1), invertible near (x0, ξ0), such that

‖aw(x, ~D)u(~)‖L2 ≤ C~s.

The definition can be illustrated by the following fact.
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Lemma 3.10. If (x0, ξ0) 6∈WFs~ u then

‖bw(x, ~D)u(~)‖L2 = O(~s)

for any b ∈ C∞0 (R2n) with support in a sufficiently small neighbourhood of (x0, ξ0).

Proof. Let a ∈ S(1) be elliptic near (x0, ξ0) with ‖aw(x, ~D)u(~)‖L2 = O(~s) and select
χ ∈ C∞0 (R2n) with χ = a(x0, ξ0)−1 near (x0, ξ0) such that

χ(x, ξ)(a(x, ξ)− a(x0, ξ0)) + I2

is invertible on R2n. In view of Lemma 3.8 there exists a parametrix cw(x, ~D) so that
bw(x, ~D) can be decomposed according to

bw(x, ~D)u(~) = bw(x, ~D)cw(x, ~D)χw(x, ~D)aw(x, ~D)u(~)

+ bw(x, ~D)cw(x, ~D)(1− χw(x, ~D)a(x0, ξ0))u(~) +O(~∞).

Hence if supp b∩ supp(1−χa(x0, ξ0)) = ∅, then we conclude that ‖b(x, ~D)wu(~)‖L2 =
O(~s).

3.5. Helffer–Robert–Sjöstrand calculus. We shall sometimes make use of the Helffer–
Robert–Sjöstrand functional calculus for ~-pseudodifferential operators, namely the one
that originates with the Cauchy–Green–Riemann–Stokes formula

f(A) = − 1
π

∫
C

∂f̃

∂z
(A− z1)−1 dz (3.3)

where f ∈ C∞0 (Rn) and A = Op(a) is an essentially selfadjoint operator with symbol
a ∈ S(m). Here f̃ ∈ C∞0 (C) denotes an extension of f such that |∂f̃(z)| ≤ CN |Im z|N
for all N ∈ N0. Therefore we call f̃ an almost analytic extension of f . The resulting
functional calculus was developed in [19, 20] (see also [12]) for the scalar setting, and the
results were carried over to the matrix valued setting by Dimassi [10, 11].

4. Framework and assumptions

In this section we introduce the abstract Hamiltonian under fairly general assumptions.
Moreover, we summarize some of its basic properties.

4.1. Matrix valued black box framework. We carry over the semiclassical framework
of “black box scattering” from the scalar valued setting in [54]. Let H be a complex
separable Hilbert space admitting the orthogonal decomposition

H = HR0 ⊕ (L2(Rn \B(0, R0))⊗ C2),

where R0 > 0 is fixed and B(0, R) = {x ∈ Rn : |x| < R} for any R > 0. For the
corresponding orthogonal projections we will employ the notation 1B(0,R0) = 1|x|≤R0⊗I2

and 1Rn\B(0,R0) = 1Rn\B(0,R0) ⊗ I2, respectively. Moreover, we will use the notation HR
for the space HR0 ⊕ (L2(B(0, R) \B(0, R0))⊗ C2), where R > R0.

Hamiltonian. Our operators shall mostly depend on a semiclassical parameter ~ ∈ (0, 1]
although we will not always write this dependence explicitly, especially in proofs. We
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consider a family of selfadjoint unbounded operators H(~) in H with a common domain
D (independent of ~) equipped with the graph norm

‖u‖D := ‖(H(~) + i1)u‖H.
Specifically, we need that H(~) is an essentially selfadjoint operator on S(Rn) ⊗ C2

with symbol h(~) ∈ S0
cl(m); its principal symbol will be denoted h0(~). We impose the

following conditions:

Assumption 4.1.

(i) Let h ∈ S0
cl(m) be Hermitian.

(ii) Let h0 be elliptic in the sense that

‖(h0 + iI2)−1‖2×2 ≤ cm(x, ξ)−1.

(iii) Suppose 1Rn\B(0,R0)D = H2(Rn \B(0, R0),C2)
(iv) Let

1B(0,R0)(H(~)− i1)−1 : H −→ H (4.1)

be compact.
(v) Suppose

(H(~)u)|Rn\B(0,R0)
= H0(~)(u|Rn\B(0,R0)

) (4.2)

where
H0(~)u =

( ∑
|α|≤2

aα(x)(~D)α
)
u and aα Hermitian. (4.3)

(vi) Suppose H0(~) = (−~2∆)⊗ I2 for |x| > R′0 > R0

Essential selfadjointness is ensured by (i)–(ii). Condition (iii) is understood uniformly
in ~ in the sense that if H2(Rn \B(0, R0))⊗C2 comes equipped with the ~-Sobolev norm
‖(〈~D〉2 ⊗ I2)u‖L2(Rn\B(0,R0))⊗C2 , where D carries the graph norm ‖(H + i1)u‖H then
1Rn\B(0,R0) : D → H2(Rn \ B(0, R0)) ⊗ C2 is uniformly bounded in ~ with a uniformly
bounded right inverse. Conversely we assume that if u ∈ H2(Rn \B(0, R0))⊗C2 vanishes
near {|x| = R0} then u ∈ D with 1B(0,R0)u = 0. Condition (v) says that outside H0,R0 ,
H(~) is supposed to coincide with H0(~).

Example 4.2. Under the conditions mentioned in the Introduction, it is clear that the
matrix valued Schrödinger operator in (1.1) satisfies Assumption 4.1.

4.2. Complex scaling. We briefly describe how to define a complex scaled version
Hθ(~) of H(~). The interested reader may consult [57] for further details. Given ε0 ∈
(0, π/2), 0 ≤ θ0 ≤ π and R̃ > R′0 we let [0, θ0] × [0,∞) 3 (θ, t) 7→ fθ(t) ∈ C be smooth
with fθ(·) injective and such that

(i) fθ(t) = t for 0 ≤ t ≤ R̃;
(ii) 0 ≤ arg fθ(t) ≤ θ, 0 ≤ arg ∂tfθ(t) ≤ θ + ε0, ∂tfθ 6= 0;
(iii) arg fθ(t) ≤ arg ∂tfθ(t) ≤ arg fθ(t) + ε0;
(iv) fθ(t) = eiθ0t for t ≥ R̃+ δ/2 for some δ > 0.
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We will also add the additional assumption that

θ(r) = e−(r− eR)−k for R̃ ≤ r ≤ R̃+ 1/C for some k > 0 and C � 1.

Denote by r ∈ R+ and ω ∈ Sn−1 the radial and angular part of x ∈ Rn \{0} respectively,
i.e. r = |x| and ω = x/|x|. A map κθ from R+ × Sn−1 to Cn is defined by

κθ : (r, ω) 7→ fθ(r)ω.

Upon identifying Rn\{0} with R+×Sn−1 we may regard κθ as a map from Rn to Cn. Let
Γθ = κθ(Rn). By locally identifying Cn near a point of Γθ \ {0} with {(s, ω) ∈ C× Cn :∑
ω2
j = 1} (using the substitution x = sω), we see that Γθ is a totally real submanifold

(meaning TxΓθ ∩ iTxΓθ = {0}, see e.g. [57]) of (real) maximal dimension n.
We define the dilated operator Hθ as follows: we work in the Hilbert space

Hθ = HR0 ⊕ L2(Γθ \B(0, R′0),C2),

where B(0, R′0) denotes the real ball as above. If χ ∈ C∞0 (B(0, R′0 + ε)) equals one in a
neighbourhood of B(0, R′0), we define

Dθ = {u ∈ Hθ : χu ∈ D, (1− χ)u ∈ H2(Γθ \B(0, R′0))⊗ C2}.
This definition does not depend on the choice of χ. For v ∈ Dθ denote by ṽ an almost
analytic extension of v (i.e., a smooth extension of v to a neighbourhood of Γθ such
that ∂v vanishes to infinite order on Γθ). The unbounded operator Hθ : Hθ → Hθ with
domain Dθ is defined as

Hθu|B(0,R′0) = H(χu)|B(0,R′0) ,

Hθu|Γθ\B(0,R′0) = −∆Γθ ⊗ I2(u|Γθ\B(0,R′0)) := −∆z ⊗ I2((u|Γθ\B(0,R′0))˜ )|Γθ ,
which does not depend on the choice of χ.

Proposition 4.3. Let Assumptions 4.1 and 4.6 be satisfied.

(1) If z ∈ C \ {0}, arg z 6= −2θ, then Hθ − z1 : Dθ → Hθ is a Fredholm operator with
index zero.

(2) A point z ∈C\e−2iθ[0,+∞) belongs to the spectrum of Hθ if and only if Ker(Hθ−z1)
6= {0}.
The proof is similar to the one in the scalar valued setting [57, Lemma 3.2 and

Lemma 3.3]. Under different assumptions, a matrix valued version is found in Nedelec
[39, Proposition 3.1].

4.3. Resonances and resonant states. In the following we use

Hcomp = {u ∈ H : supp(1Rn\B(0,R0)u) is bounded},
Hloc = HR0 ⊕ L2

loc(Rn \B(0, R0),C2),

Dloc = {u ∈ Hloc : χu ∈ D for χ ∈ C∞0 (Rn), χ constant near B(0, R0)}.
In light of the following result, quantum resonances in a neighbourhood Ω of some

energy E > 0 can be defined as the poles of the meromorphic extension of the resolvent
(H(~)− z1)−1 from C+ ∩ Ω to Ω.
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Proposition 4.4. Let Assumption 4.1 hold. The operator H(~) has only discrete spec-
trum in R− and R(z, ~) : Hcomp → Dloc admits a meromorphic continuation from C+

to

(1) C∗ = C \ {0} when n = 1;
(2) the Riemann surface associated with z 7→ √z when n ≥ 3 is odd;
(3) the Riemann surface associated with z 7→ log z when n is even.

For a proof we refer to Appendix A.1. Alternatively, resonances can be characterized
as the eigenvalues of Hθ(~) in e−2i[0,θ)R+ for some θ ∈ (0, θ0]. We will denote this set by
ResH(~) and include them with their multiplicity (see below).

Next we introduce the corresponding resonant states (see, e.g., [56, pp. 12–13]).

Definition 4.5. Let z0(~) be a resonance of H(~). An element

u ∈ Ran
(

1
2πi

∫
|z−z0|�ε

(H(~)− z1)−1 dz

)
(4.4)

such that (H(~) − z0(~)1)u = 0 will be called a resonant state corresponding to the
resonance z0(~).

If z0(~) is a resonance then the dimension of the range appearing in (4.4) is finite
(i.e. the spectral projection is of finite rank) and this number is what we take to be the
multiplicity of z0(~) [56].

4.4. Reference operator. As for the scalar valued setting in Sjöstrand and Zworski [57]
and Sjöstrand [54], we construct a selfadjoint reference operator H](~) from the matrix
valued operator H(~). Let R > R′0 and introduce the flat n-torus Tn := (R/R]Z)n, where
R] > 2R. Define

H] = HR′0 ⊕ (L2(Tn \B(0, R′0))⊗ C2),

where the decomposition is orthogonal. Put, for 1B(0,R′0) ≺ χ ≺ 1B(0,R),

D] = {u ∈ H] : χu ∈ D, (1− χ)u ∈ H2(Tn)⊗ C2} (4.5)

and
H](~)u = H(~)χu+Q](~)(1− χ)u,

where
Q]u =

∑
|α|≤2

a]α(x, ~)(~D)α

is a formally selfadjoint operator on Tn. Viewing B(0, R) ⊂ Tn we assume a]α(x, ~) =
aα(x, ~) for |x| < R. Moreover we make the assumption that aα is independent of ~ for
|α| = 2, a]α ∈ C∞b (T), uniformly in ~ and satisfies the uniform ellipticity condition for
matrix valued operators (see, e.g., Agranovich [2, Section 3.2]):∣∣∣det

∑
|α|=2

a]α(x)ξα
∣∣∣ ≥ C > 0, x, ξ ∈ Rn, |ξ| = 1. (4.6)

In Proposition A.1 of the Appendix, we prove that the operator H](~) : H] → H] is
selfadjoint and its spectrum is purely discrete.
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We impose the following condition:

Assumption 4.6. Let the reference operator H] be defined under the above-mentioned
requirements. Suppose

#{ z ∈ spec(H](~)) : |z| ≤ λ} ≤ C(λ/~2)n
]/2 (4.7)

for some C > 0 and n] ≥ n.

Below (see (6.9)) we show that Assumption 4.6 implies that

#{z ∈ ResH(~) : 0 < l0 ≤ Re z ≤ r0, 0 ≤ − Im z ≤ c0} ≤ C(l0, r0, c0)~−n
#
. (4.8)

Example 4.7. For the matrix valued Schrödinger operator T (~) in (1.1), Assumption 4.6
is fulfilled with n] = n.

5. Results

Below we always require that Assumptions 4.1 and 4.6 are satisfied. Moreover, J(~)
denotes either J∞(~) or JR(~); rigorous definitions are found in Chapter 7.

5.1. Individual resonances. The case R′0 < R1. A sketch is given in Figure 1; recall
that suppW ⊂ Rn \B(0, R1), R0 < R1. We obtain the following result.

Theorem 5.1. Let Assumptions 4.1 and 4.6 hold.

(1) If R′0 < R1 and z0(~) is a resonance of H(~) in

[l0, r0] + i

[
−
(

~n]+1

C log 1
~

)2

, 0
]
, (5.1)

then there is an ~0 ∈ (0, 1] such that, for 0 < ~ ≤ ~0, J(~) has an eigenvalue in[
Re z0(h)− ε(~) log

1
~
,Re z0(~) + ε(~) log

1
~

]
+ i[−ε(~), 0],

where ε(~) = C~−n]−1/2
√
− Im z0(~) + e−γ(R1)/~. Here the constant γ(R1) > 0 sat-

isfies limR1→∞ γ(R1)/R1 = C−1
0 for some constant C0 > 0.

(2) If w0(~) is an eigenvalue of J(~) in (5.1), then there is an ~0 ∈ (0, 1] such that for
0 < ~ ≤ ~0 and B > 0 fixed, H(~) has a resonance in[

Rew0(~)− δ(~) log
1
~
,Rew0(~) + δ(~) log

1
~

]
+ i[−δ(~), 0],

where δ(~) = CB~−n]−1
√
− Imw0(~) + e−B/~.

5.2. Individual resonances. The case R1 < R′0. For this case we shall henceforth
impose the following assumption.

Assumption 5.2. Suppose that the principal symbol h0 of H is scalar valued away from
the black box, i.e.,

h0 = h0 ⊗ I2 for |x| ≥ R0, (5.2)



CAP method for systems 19

Under Assumption 5.2, h0 generates classical dynamics. The Hamiltonian vector field
Xh0 := (∂ξh0,−∂xh0) of h0 generates a flow via the solution of the Hamilton–Jacobi
equations {

d
dt (x(t), ξ(t)) = Xh0(x(t), ξ(t)),

(x(0), ξ(0)) = (x0, ξ0),

that we denote by Φt(x0, ξ0).

Definition 5.3. A Hamiltonian H(~) is said to be nontrapping for energies λ ∈ [l0, r0]
if the corresponding classical trajectories Φt(x, ξ) = (x(t), ξ(t)) at energy λ, i.e. such that
h0(x(t), ξ(t)) = λ, fulfill

lim
|t|→∞

|x(t)| =∞ and |x(t)| > R0 for all t ∈ R.

In addition to Assumption 5.2 we need to impose the following condition:

Assumption 5.4. Suppose that

H0 = H||x|>R0 is nontrapping for energies in [l0, r0]. (5.3)

Theorem 5.5. Let R1 < R′0 and suppose Assumptions 5.2–5.4 hold. Suppose, moreover,
that the uniform estimates in (11.2) are satisfied. Then the conclusion of Theorem 5.1.1
holds true with

ε(~) = C~−n
]−3/2

√
− Im z0(~) +O(~∞).

5.3. Clusters of resonances. The case R′0 < R1. Bear in mind that the nota-
tion Count(H(~),Ω(~)) is used for the number of resonances in Ω(~) (and, similarly,
Count(J(~),Ω(~)) denotes the number of eigenvalues of J(~) in Ω(~)), counting multi-
plicities.

Theorem 5.6. Suppose R′0 < R1. Fix 0 < l0 < r0 < ∞ and let J(~) denote either
J∞(~), or JR(~). Let

Ω(~) = [l(~), r(~)] + i[−c(~), 0], (5.4)

where l0 ≤ l(~) < r(~) ≤ r0,

e−~−2/3+ε0 ≤ c(~) ≤ ~M and 2c(~) ≤ r(~)− l(~)

for some ε0 ∈ (0, 2/3) and a positive constant M . Then there exists N > 0 such that

Count(J(~),Ω−(~)) ≤ Count(H(~),Ω(~)) ≤ Count(J(~),Ω+(~)) (5.5)

where

Ω−(~) = [l(~) + c(~), r(~)− c(~)] + i[−~Nc(~)2, 0],

Ω+(~) = [l(~)− ~−Nc(~)1/2, r(~) + ~−Nc(~)1/2] + i[−~−Nc(~)1/2, 0].

If one weakens the lower bound for c(~) such that e−C/~ ≤ c(~), then the first in-
equality in (5.5) is still valid.



20 J. Kungsman and M. Melgaard

5.4. Clusters of resonances. The case R1 < R′0. We obtain the following result.

Theorem 5.7. Let R1 < R′0 and suppose Assumptions 5.2–5.4 hold. Suppose, moreover,
that the uniform estimates in (11.2) are satisfied. Then the assertions of Theorem 5.6 are
valid with Ω+(~) replaced by

Ω̃+(~) = [l(~)− ~−Nc(~)1/2 −O(~∞), r(~) + ~−Nc(~)1/2 +O(~∞)]

+ i[−~−Nc(~)1/2 −O(~∞), 0].

6. Cutoff resolvent estimate

We will need the following important a priori cutoff resolvent estimate which comes from
estimates for the resolvent of the matrix valued scaled operator Hθ(~).

Proposition 6.1. Let Assumptions 4.1 and 4.6 hold. For any simply connected

Ω b Sθ = {z : max(−π, 2θ − 2π < − arg z < 2θ)}
and g : (0, ~0)→ (0, 1) for some ~0 > 0 there is a constant A = A(Ω) > 0 and ~1 ∈ (0, ~0)
such that

‖χ(H(~)− z1)−1χ‖B(H) ≤ A exp(−A~−n
]

log g(~))

∀z ∈ Ω \
⋃

zj∈Res(H)∩Ω

D(zj , g(~)), (6.1)

for all ~ ∈ (0, ~1) and 1B(0,R0) ≺ χ ∈ C∞0 (Rn). Here D(z, r) = {w : |w − z| ≤ r}.

Before we give the proof, we mention that the estimate goes back to Stefanov and
Vodev [64, 65], who established a global scalar valued version which allowed them to prove
that for scattering by compactly supported perturbations in odd dimensional Euclidean
space, existence of localized quasimodes implies existence of resonances converging to
the real axis. Within the scalar valued setting, a local version, like the one in (6.1), was
first proved by Tang and Zworski [66, Lemma 1] but it essentially comes from Sjöstrand’s
work on the local trace formula for resonances [54]. Our proof in the matrix valued setting
borrows ideas from Sjöstrand and Zworski [57], Sjöstrand [54], and [66]; see also Sjöstrand
[56, Lemma 11.3].

Lemma 6.2. Let f ∈ C∞0 (R) and 1B(0,R0) ≺ ψ0 ≺ χ̃0. Then

‖(1− χ̃0)f(H])ψ0‖tr = O(~∞),

where f(H]) is defined as in (3.3).

Proof. Let ψ0 ≺ ψ1 ≺ · · · ≺ ψN ≺ χ̃0 and iterate the identity

(H] − z1)−1ψj = ψj+1(Q] − z1)−1ψj

+ (H] − z1)−1[Q],ψj+1](Q] − z1)−1ψj
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N times to obtain

(H] − z1)−1ψ0 =
N∑
j=1

ψj(Q
] − z1)−1[Q],ψj−1](Q] − z1)−1

× [Q],ψj−2] · · · [Q],ψ1](Q] − z1)−1ψ0

+ (H] − z1)−1[Q],ψN ](Q] − z1)−1[Q],ψN−1] · · · [Q],ψ1](Q] − z1)−1ψ0.

Since (1− χ̃0)ψj = 0 for all 1 ≤ j ≤ N we get

(1− χ̃0)(H] − z1)−1ψ0

= (1− χ̃0)(H] − z1)−1[Q],ψN ](Q] − z1)−1[Q],ψN−1] · · · [Q],ψ1](Q] − z1)−1ψ0.

Using (H]−z1)−1 = O(|Im z|−1) and [H],ψj ] = O(~) we see that (1−χ̃0)(H]−z1)−1ψ0

is negligible in the sense that for all N ∈ N there exists M(N) > 0 such that its norm is
ON (1)~N |Im z|−M(N). With N > n we have

‖(1− χ̃0)(H] − z1)−1ψ0‖tr = ON (1)
~N−n

|Im z|−N

and it follows that ‖(1− χ̃0)f(H])ψ0‖tr = O(~∞).

For |x| ≥ R′0 the operator Hθ = Hθ ⊗ 1 is a scalar elliptic differential opera-
tor with principal symbol hθ = hθ ⊗ I2 where hθ globally takes values in the sector
ei[−2(θ+ε0),ε0]R≥0. Let F be a smooth map from a neighbourhood of this sector into itself
with the property that F = Id for |z| � 1 as well as in a neighbourhood of the ray
e−2iθR≥0 and Ω ∩ RanF = ∅. We observe that F ◦ hθ is well-defined with values away
from Ω. Moreover, with f := F |R =: x+ g(x) for some g ∈ C∞0 (Rn) we deduce from the
functional calculus (see Chapter 3) that

f(H]) = H] + g(H])

with g(H]) : H] → H] of rank O(~−n]). Let χ0 + χ1 + χ2 = 1 be such that 1
B(0,R′0)

≺
χ0 ≺ 1B(0, eR) and χ1 ∈ C∞0 (Γθ) with χ0 + χ1 = 1 near B(0, R2) where R2 > R̃ is such
that F ◦ hθ = hθ for |x| ≥ R2. For χj ≺ χ̃j ∈ C∞(Γθ), where the χ̃j have the same
support properties, we define

H̃θ = χ̃0f(H])χ0 + χ̃1RFχ1 + χ̃2Hθχ2, (6.2)

where RF is an ~-pseudodifferential operator with the leading symbol F (hθ)I2 such that
the total Weyl symbol of RF −Hθ for x near suppχ1 has compact support in ξ.

Lemma 6.3. Provided ~ > 0 is sufficiently small, the operator H̃θ − z1 is invertible for
z ∈ Ω with

(H̃θ − z1)−1 = O(1) : H → D,
uniformly for z ∈ Ω.

Proof. Rewrite (6.2) as

H̃θ = Hθ + χ̃0g(H])χ0 + χ̃1(RF −Hθ)χ1 (6.3)
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to see that H̃θ is a perturbation of Hθ by compact operators [51, 12]. It follows (see
Proposition 4.3) that H̃θ − z1 is Fredholm of index zero. Therefore the claim follows
provided we can show the a priori estimate

‖u‖ ≤ C‖(H̃θ − z1)u‖ for all u ∈ D. (6.4)

Indeed, this estimate implies that Ker(H̃θ − z1) = {0} so that codim Ran(H̃θ − z1) =
dim coker(H̃θ − z1) = 0 and, consequently, H̃θ − z1 is bijective. In order to prove (6.4),
let {ψj}2j=0 ⊂ C∞b (Γθ) have the same support properties as the χj with ψ0 ≺ χ0 and

ψ2
0 + ψ2

1 + ψ2
2 = 1.

Using (6.2), 1 = χ0 + (1− χ0) and ψ0 ≺ χ0, in conjunction with Lemma 6.2, we deduce
that

‖(H̃θ − z1)ψ0u‖2 = ‖(f(H])− z1)ψ0u‖2 +O(~∞)‖u‖2. (6.5)

Moreover, for some constants Cj , j = 1, 2, we have the elliptic estimates

C2
j ‖ψju‖2 ≤ ‖(H̃θ − z1)ψju‖2.

As a consequence,

‖(H̃θ − z1)u‖2 =
2∑
j=0

‖ψj(H̃θ − z1)u‖2

≥
2∑
j=0

(‖(H̃θ − z1)ψju‖ − ‖[ψj , H̃θ]u‖)2 ≥ C2
0‖u‖2 −O(~)‖u‖2D,

which completes the proof of the invertibility of H̃θ − z1 provided ~ is small enough
because

‖u‖2D ≤ C(‖(H̃θ − z1)u‖2 + ‖u‖2).

The next lemma is an improvement of Lemma 6.3:

Lemma 6.4. There exists an operator S : H → H of rank O(~−n]), compactly supported
in the sense that S = χSχ for χ � 1B(0,R) if R is sufficiently large, such that

(Hθ + S − z1)−1 = O(1) : H → D,
uniformly for z ∈ Ω.

Proof. The support property of the symbol of RF −Hθ implies that we can find T F of
rank O(~−n]) such that

χ̃1((RF −Hθ)− T F )χ1 = O(~∞).

Using this T F to replace the latter term in (6.3) we define

S := χ̃0g(H])χ0 + χ̃1T Fχ1,

which in view of Lemma 6.3 satisfies the desired conclusion.

We now pose the Grushin problem and prove the cut-off resolvent estimate (6.1):

Proof of Proposition 6.1. Denote N = rankS so N = O(~−n]) and let {e1, . . . , eN} be
an orthonormal basis of Ran 〈H〉−2S∗, where S∗ denotes the adjoint of S : H → H.
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Define

X̃b : (ujb)j∈{1,...,N} 7→
N∑
j=1

ujbej ,

Xb(z) : (ujb)j∈{1,...,N} 7→
N∑
j=1

ujb(Hθ + S − z)ej , z ∈ Ω,

Xa : u 7→ (〈u, ej〉D)j∈{1,...,N},

T (z) =
(
Hθ − z Xb(z)
Xa 0

)
: D ⊕ CN → H⊕ CN .

Denote the inverse of T (z) by

Y(z) =
(
Y (z) Ya(z)
Yb(z) Yba(z)

)
: H⊕ CN → D ⊕ CN .

Here the entries satisfy

Y (z) = (1− X̃bXa)(Hθ + S − z1)−1,

Ya(z) = −(1− X̃bXa)(Hθ + S − z1)−1(Hθ − z1)X̃b + X̃b,

Yb(z) = Xa(Hθ + S − z1)−1,

Yba(z) = −Xa(Hθ + S − z1)−1(Hθ − z1)X̃b.

Some further identities are (with prime standing for ∂z):

(Hθ − z1)−1 = Y (z)− Ya(z)Y −1
ba (z)Yb(z),

(Hθ − z1)Ya(z) = −Xb(z)Yba(z),

Yb(z)(Hθ − z1) = Yba(z)Xa,

Yb(z)Ya(z) = Y ′ba(z) + Yb(z)R′b(z)Ya(z).

(6.6)

The functions Ya(z), Yb(z),Y (z) and Yab(z) are analytic for z ∈ Ω.
If we introduce the notation D(z; ~) := detYba(z) we have by Cramer’s rule

Y −1
ba (z) =

1
D(z; ~)

Ỹba(z), (6.7)

where Ỹba is the adjugate of Yba, having cofactor elements Cij . We estimate Ỹba from
above according to

‖Ỹba(z)‖ ≤ N sup
1≤i,j≤N

|Cij | ≤ NCN ≤ C~−n
]

eC~−n
]

for some C > 0, (6.8)

where we have also used the fact that ‖Yba‖ = O(1) so that all minors are bounded.
Next we estimate the denominator in (6.7) from below. Start with the factorization

D(z; ~) = G(z; ~)Dw(z; ~) where Dw(z; ~) =
∏

zj∈Res(H)∩Ω

(z − zj).

As always, the zj are counted according to their multiplicity. By a classical result on the
Grushin problem, z is an eigenvalue of Hθ if and only if zero is an eigenvalue of the
effective Hamiltonian Yba(z) and multiplicities agree.
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It follows that G and its inverse are both holomorphic on Ω. Notice also how the
bound |D(z; ~)| ≤ eC~−n

]

in conjunction with Jensen’s inequality for the number of zeros
of an analytic function immediately implies that

#(ResH(~) ∩ Ω) ≤ C~−n
]

. (6.9)

This in turn implies |Dw| ≤ CeC~−n
]

for all z ∈ Ω. Since ‖Y −1
ba (z)‖ is uniformly bounded

if we stay uniformly away from ResH we obtain similarly for any δ > 0 the lower bound

|Dw(z; ~)| ≥ e−C~−n
]

, z ∈ Ωδ := {z ∈ Ω : Im z ≥ δ},

because the resonances in Ω are confined to Ω ∩ C−. Hence |G(z; ~)| ≥ e−C~−n
]

for all
z ∈ Ωδ. With Ω̃ b Ω any simply connected relatively open ~-independent subset of Ω,
consider the nonnegative harmonic function

0 ≤ `(z; ~) = C~−n
] − log |G(z; ~)|

on Ω̃. Then `(z; ~) ≤ C~−n] on Ωδ and by Harnack’s inequality for nonnegative harmonic
functions, ` is of uniformly constant order of magnitude throughout all of Ω̃. Consequently,
log |G(z; ~)| ≥ −C~−n] , i.e. |G(z; ~)| ≥ e−C~−n

]

on Ω̃. Thus, assuming

z ∈ Ω̃ \
⋃

zj∈Res(H)∩eΩ
D(zj , g(~)),

we get

|D(z; ~)| = |G(z; ~)| |Dw(z; ~)| ≥ e−C~−n
]

(g(~))C~−n
]

≥ CeC~−n
]

log g,

where in the last step the exponential e−C~−n
]

has been absorbed by the exponential
factor containing g, possibly at the expense of “worse” constants. Combining this with
(6.7) and (6.8) we see that there is an A > 0 such that ‖Y −1

ba ‖ ≤ Ae−A~−n
]

log g. The
proposition now follows from (6.6) and

χ(H − z1)−1χ = χ(Hθ − z1)−1χ, z ∈ Ω, 1B(0,R0) ≺ χ ∈ C∞0 (Rn),

together with the fact that ‖Y (z)‖, ‖Ya(z)‖ and ‖Yb(z)‖ are all O(1) for z ∈ Ω.

Remark 6.5. The estimate (6.9) on the number of resonances is also derived for the
matrix valued Schrödinger operator (1.1) within the simpler setting in Nedelec [39, p. 219];
for this case n] = n.

7. Hamiltonians with complex absorbing potentials

Let W ∈ L∞(Rn) be a complex valued potential such that

ReW (x) ≥ 0, suppW ⊂ Rn \B(0, R1), R0 < R1.

We also assume that for some δ0 > 0 and R2 > R1,

ReW ≥ δ0 for |x| > R2.
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Furthermore, we assume that

|ImW | ≤ C
√

ReW. (7.1)

We point out that this condition is obviously fulfilled in the special case of a real W .
Then we define

W =
(
W 0
0 W

)
We now define two CAP operators. First,

J∞(~) = H(~)− iW on H.

Second, given R > R2, let HR(~) be as above (roughly speaking it is the restriction of H
to the ball B(0, R)) and let HR(~) be the Dirichlet realization of H(~) there. Put

JR(~) = HR(~)− iW on HR. (7.2)

We see that both J∞(~) and JR(~) are closed unbounded operators with

D(J∞(~)) = D(H(~)) =: D and D(JR(~)) = D(HR(~)).

Furthermore, since ReW ≥ 0, we see that C+ is contained in their resolvent sets.
Next we prove that for any ~ > 0, spec(J∞(~)) ∩ {z ∈ C : Im z > −δ0} consists only

of eigenvalues of finite multiplicity. The same is true for JR(~) in all of C (see below).
The underlying ideas are close to the ones in the proof of Proposition 4.3 (see also [56,
Theorem 2.2]). Compared to the scalar valued case in [63], we avoid semiclassical elliptic
estimates and the Fourier transform.

Theorem 7.1. Let Assumption 4.1 be satisfied. For any ~ > 0 the resolvent (J∞(~) −
z1)−1 : H → H has a meromorphic extension from C+ into {z ∈ C : Im z > −δ0}. The
poles of (J∞(~)− z1)−1 are eigenvalues of J∞(~) of finite multiplicity.

Proof. Since the nature of this result is not semiclassical, we will simply take ~ = 1. We
will construct an approximate right parametrix of J∞ − z1. We let

∑3
i=1 χi = 1 be a

smooth partition of unity such that χ1 = 1 in a neighbourhood of B(0, R0), suppχ1 ⊂
B(0, (R0+R1)/2), suppχ3 ⊂ Rn\B(0, R2) and χ3 = 1 for |x| � 1. Let χi ≺ χ̃i, i = 1, 2, 3,
have the same support properties (but

∑3
i=1 χ̃i 6= 1). We introduce a modified version of

W by W̃ = diag(W̃ , W̃ ), where

W̃ =

{
δ0 for |x| < R2,

W otherwise.

For z0 ∈ C+, we introduce

E(z) = χ̃1(H − z01)−1χ1 + χ̃2(H0 − iW − z01)−1χ2

+ χ̃3(H0 − iW̃ − z1)−1χ3. (7.3)

In particular Re W̃ ≥ δ0 and this implies (H0 − iW̃ − z1)−1 is analytic for Im z > −δ0.
Since H is selfadjoint, this makes E(z) analytic in {Im z > −δ0}. We now apply J∞−z1
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to the terms of E(z):

(J∞ − z1)χ̃1(H − z01)−1χ1

= (H − iW − z1)χ̃1(H − z01)−1χ1

= Hχ̃1(H − z01)−1χ1 − iWχ̃1(H − z01)−1χ1 − χ̃1z(H − z01)−1χ1

= χ̃1H(H − z01)−1χ1 + [H0, χ̃1](H − z01)−1χ1 − χ̃1z(H − z01)−1χ1

= [H0, χ̃1](H − z01)−1χ1 + χ̃1(H − z1)(H − z01)−1χ1

= [H0, χ̃1](H − z01)−1χ1 + χ̃1(H − z01 + (z0 − z)1)(H − z01)−1χ1

= [H0, χ̃1](H − z01)−1χ1 + χ̃1(I + (z − z0)(H − z01)−1)χ1.

Here we have used the fact that Wχ̃1u = 0 for all u ∈ H, since supp χ̃1 ⊂ B(0, R1)
whereas suppW ⊂ Rn \ B(0, R1) as well as Hχ̃1u = χ̃1Hu + [H0, χ̃1]u. Similarly we
obtain, observing the fact that χ̃2Hu = χ̃2H0u as supp χ̃2 ⊂ Rn \B(0, R0):

(J∞ − z1)χ̃2(H0 − iW − z01)χ2 = [H0, χ̃2](H0 − iW − z01)−1χ2

+ χ̃2(I + (z0 − z)(H0 − iW − z01)−1)χ2.

In the same manner, using χ̃3χ3 = χ3, we obtain

(J∞ − z1)χ̃3(H0 − iW̃ − z1)−1χ3 = [H0, χ̃3](H0 − iW̃ − z1)−1χ3 + χ3.

Therefore, as
∑3
i=1 χ̃iχi =

∑3
i=1 χi = 1,

(J∞ − z1)E(z) = 1 +K(z), (7.4)

where

K(z) = [H0, χ̃1](H − z01)−1χ1 + (z0 − z)χ̃1(H − z01)−1χ1

+ [H0, χ̃2](H0 − iW − z01)−1χ2

+ (z0 − z)χ̃2(H0 − iW − z01)−1χ2

+ [H0, χ̃3](H0 − iW̃ − z1)−1χ3

= K1 +K2(z) +K3 +K4(z) +K5(z), (7.5)

with the obvious interpretation of the Ki. Arguing as in the proof of Proposition 4.4 we
see that K2(z) is compact on H and we can easily see that the same holds for K4(z).
Since H0 and χ̃j commute at the level of principal symbols, the commutators will be
first order operators and clearly with compactly supported smooth coefficients. As a
consequence of the Rellich–Kondrashov theorem, the image of a bounded sequence in
H2(Rn \B(0, R0))⊗C2 will be bounded in H1(Rn \B(0, R0))⊗C2 and therefore have a
convergent subsequence in L2(Rn\B(0, R0))⊗C2. It follows from these considerations that
K(z) is a compact operator on H. By inspection we see that K(z) depends analytically
on z ∈ {z ∈ C : Im z > −δ0}.

Next we claim that for Im z0 � 1 and z close to z0 we have ‖K(z)‖ ≤ 1/2 and
therefore 1 + K(z) is invertible (with inverse given by a Neumann series). Since H is
selfadjoint it follows from the basic estimate ‖(H − z1)−1‖ ≤ |Im z|−1 for Im z 6= 0 that
K2(z) and K4(z) are O((Im z0)−1) for Im z0 � 1 and |z − z0| small. Writing

K1 = [H0, χ̃1](1− χ1)(H − z01)−1χ1
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where

(1− χ1)(H − z01)−1χ1 =

{
O((Im z0)−1) : H → L2(Rn \B(0, R0))⊗ C2

O(1) : H → H2(Rn \B(0, R0))⊗ C2

we find by interpolation that (1 − χ1)(H − z01)−1χ1 = O((Im z0)−1/2) as an operator
H → H1(Rn \ B(0, R0)) ⊗ C2. Since [H0, χ̃1] : H1(Rn \ B(0, R0)) ⊗ C2 → L2(Rn \
B(0, R0))⊗C2 is bounded it follows that K1 = O((Im z0)−1/2) for Im z0 � 1 on H. The
same type of estimate holds for K3 and K5(z), so for Im z0 and Im z sufficiently large we
have ‖K(z)‖ ≤ 1/2 and as a consequence (1 +K(z))−1 exists in B(H) for such z and z0.

By the construction of W̃ , {K(z)}z∈{Im z>−δ0} depends analytically on z. By analytic
Fredholm theory we conclude that z 7→ (1+K(z))−1 is a meromorphic family of operators
for Im z > −δ0 so that E(z)(1 + K(z))−1 is a meromorphic right inverse of J∞ − z1.
Similarly

F (z) = χ1(H − z01)−1χ̃1 + χ2(H0 − iW − z01)χ̃2 + χ3(H0 − iW 1 − z1)−1χ̃3

satisfies F (z)(J∞ − z1) = 1 +L(z), where

L(z) = (z0 − z)χ1(H − z01)−1χ̃1 − χ1(H − z01)−1[H0, χ̃1]

+ (z0 − z)χ2(H0 − iW − z1)−1χ̃2 − χ2(H0 − iW − z01)−1[H0, χ̃2]

− χ3(H0 − iW 1 − z1)−1[H0, χ̃3]

and we conclude as before that (1 + L)−1F is a meromorphic left inverse of J∞ − z1.
Outside the poles,

(1 +L)−1F = (1 +L)−1F (J∞ − z1)E(1 +K)−1 = E(1 +K)−1,

so the one-sided “inverses” share the same poles and are equal elsewhere, meaning they
are equal as meromorphic functions. We are thus justified in writing

(J∞ − z1)−1 = E(z)(1 +K(z))−1

and so the meromorphic extension of (J∞ − z1)−1 follows from that of (1 +K(z))−1.
We see that (J∞ − z1)−1 is meromorphic in {z ∈ C : Im z > −δ0} with poles

among those of (1 +K(z))−1, as E(z) is analytic. Moreover, the residue of the resolvent
(J∞− z1)−1 at each pole is of finite order as well as finite rank, because the same is true
for each residue of (1 +K(z))−1 by analytic Fredholm theory.

The second statement of the proposition follows from the general theory of nonselfad-
joint operators (see for instance [17]).

Remark 7.2. For the matrix valued Schrödinger operator a more direct (but somewhat
more tedious) proof can be given by using the Feshbach formula (used essentially to reduce
the problem to the scalar setting), the spectral theorem, semiclassical elliptic estimates
and Green’s formula.

It is straightforward to establish the analogue of Theorem 7.1 for the resolvent of the
CAP Hamiltonian JR(~).
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Theorem 7.3. Let Assumption 4.1 be satisfied. For any ~ > 0 the resolvent (JR(~) −
z1)−1 : H → H has a meromorphic extension from C+ into C. The poles of (JR(~) −
z1)−1 are eigenvalues of JR(~) of finite multiplicity.

8. Eigenvalue estimate on a rectangle

Here we give an estimate of the number of eigenvalues of the CAP Hamiltonian J∞(~)
on a rectangle. The result is an analogue of the estimate (4.8) for H(~) and it provides
us with the same upper bound, but this time for the number of eigenvalues of J∞(~)
rather than the resonances of H(~).

The scalar valued case is treated in Stefanov [63, Proposition 2]. The proof in the ma-
trix valued setting is quite different because we utilize pseudodifferential operator theory
whereas Stefanov uses various estimates of characteristic values (Weyl type asymptotics
etc.) close to the account in [56, Section 6]. Furthermore, in contrast to Stefanov, we do
not use the reference operator H](~) in the proof.

Proposition 8.1. Let Assumption 4.1 hold. Suppose l < r, 0 < c < δ0 and Ω = [l, r] +
i[−c, 0]. Then the number of eigenvalues of J∞(~) in Ω satisfies

Count(J∞(~),Ω) = O(~−n
]

).

Proof. Bear in mind the representation (7.4), i.e.,

(J∞ − z1)E(z) = 1 +K(z),

where
K(z) = K1 +K2(z) +K3 +K4(z) +K5(z)

and the z0 appearing in K(z) satisfies Im z0 � 0, and is chosen as before. Let r > 0 be
such that Ω ⊂ D(z0, r) = {z ∈ C : |z − z0| < r} and D(z0, r) ⊂ {z ∈ C : Im z > −δ0}.

We recall from the proof of Theorem 7.1 that for all ~ ∈ (0, 1] we can make ‖K1‖+
‖K3‖ arbitrarily small by choosing Im z0 > 0 large and that

K5(z) = [H0, χ̃3](H0 − iW̃ − z1)−1χ3.

Our choice of r implies, by the construction of W̃ , that

(H0 − iW̃ − z1)−1 : H → D
is a bounded operator for any z ∈ D(z0, r) (not necessarily close to z0). Since H0 and
χ̃3 commute at the level of principal symbols, [H0, χ̃3] is of first order and therefore

‖[H0, χ̃3]u‖H ≤ C~‖u‖H1
~(supp∇eχ3)⊗C2 ≤ C~‖u‖D.

It follows that K5(z) is O(~) on H. Therefore (1 +K1 +K3 +K5(z))−1 exists provided
Im z0 is chosen large enough and ~ is sufficiently small, and we may write

1 +K(z) = (1− K̃(z))(1 +K1 +K3 +K5(z)), (8.1)

where

K̃(z) = −(K2(z) +K4(z))(1 +K1 +K3 +K5(z))−1.
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From the meromorphic identity

(1− K̃n]

(z))−1 = (1 + K̃(z) + · · ·+ K̃n]−1
(z))−1(1− K̃(z))−1

we infer that the poles of (1− K̃n]

(z))−1 include those of (1− K̃(z))−1, which, by (8.1),

in turn include the poles of (1 +K(z))−1, i.e. the eigenvalues of J∞. Since K̃
n]

(z) is of

trace class it suffices to estimate the number of zeros of f(z) = det(1− K̃n]

(z)) in Ω. We
have

symbw([H0,χ]) = −i~{h0,χ}+O(~2) ∈ S(〈ξ〉).
Since (h0 − z1)−1 ∈ S(〈ξ〉−2) it follows from Proposition 3.5 that

symbw(K1) ∈ S(〈ξ〉−1).

Similar arguments work for K3 and K5(z) and we get

symbw((1 +K1 +K3 +K5(z))−1) ∈ S(1).

Since K2(z),K4(z) ∈ S(〈ξ〉−2) a repeated application of Proposition 3.5 yields

symbw(K̃
n]

(z)) ∈ S(〈ξ〉−2n]).

From Proposition 3.7 it then follows that K̃
n]

(z) is of trace class with ‖K̃n]

(z)‖tr =
O(~−n]). Using

|det(1 + K̃
n]

(z))| ≤ exp(‖K̃n]

(z)‖tr)

(see [56, p. 57]), we get |f(z)| ≤ eC~−n
]

. Applying Jensen’s formula for the number of
zeros of an analytic function in a disk D(z0, r + ε) for ε sufficiently small it becomes
evident that f has no more than O(~−n]) zeros in Ω.

We continue to carry over properties of H to the analogous ones for J∞ by showing
how the matrix valued cutoff resolvent estimate in Proposition 6.1 remains true also for
the CAP Hamiltonian; the proof follows essentially the scalar valued reasoning in Petkov
and Zworski [46, Proposition 4.2] which is closely related to Sjöstrand [56, p. 104].

Proposition 8.2. Let Assumptions 4.1 and 4.6 hold. If Ω := [l, r] + i[−c, 0] where 0 <
l < r and 0 < c < δ0, then there is an A = A(Ω) such that

‖(J∞(~)− z1)−1‖ ≤ AeA~−n
]

log(1/g(~)), ∀z ∈ Ω \
⋃

wj∈spec(J∞)∩Ω

D(wj , g(~))

for any 0 < g(~)� 1.

Proof. With the notation of the proofs of Propositions 6.1 and 7.1 we get, with |K| :=√
K∗K (see [17]),

‖(J∞(~)− z1)−1‖ ≤ ‖E(z)‖ ‖(1 +K(z))−1‖ ≤ det(1 + |K|n])
|f(z)| ≤ CeC~−n

]

|f(z)|−1,

so it suffices to obtain lower bounds on |f(z)|. Let {wj(~)}N(~)
j=1 be the eigenvalues of J∞
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in D(z0, r + ε) so that N(~) = O(~−n]) according to Proposition 8.1, and write

f(z, ~) = ek(z,~)

N(~)∏
j=1

(z − wj(~)), z ∈ D(z0, r),

with k(z, ~) analytic in z on D(z0, r). Using the upper bound on |f | from the proof of
Proposition 8.1 and an estimate of Cartan for the product [29, Ch. I] we obtain, for
|z − z0| = r,

eC~−n
]

≥ |f(z)| = eRe k(z)

N(~)∏
j=1

|z − wj | > eRe k(z)η
N(~)
0

for some η0 > 0. Using the maximum principle for the harmonic function Re k, this
implies Re k(z) < C~−n] for all z ∈ D(z0, r). Writing

1
f(z0)

= det((1 + K̃
n]

(z0))−1) = det(1− K̃n]

(z0)(1 + K̃
n]

(z0))−1)

we can obtain the same upper bound as before so that log |f(z0)| ≥ −C~−n] . Moreover
for z0 6∈

⋃N(~)
j=1 D(wj , g(~)) we have

log
(N(~)∏
j=1

|z0 − wj |
)
≥ N(~) log(g) ≥ −C~−n

]

log
1
g
,

because N(~) = O(~−n]). Thus

−C~−n
] ≤ log |f(z0)| = Re k(z0) + log

(N(~)∏
j=1

|z0 − wj |
)
≤ Re k(z0) + C~−n

]

log
1
g
,

so all in all |Re(k(z0))| ≤ C~−n] log(1/g). Considering instead eiϕf(z) we may assume
Im k is such that |k(z0)| ≤ C~−n] log(1/g). To say something about Re k(z) for a general
point z ∈ D(z0, ρ) with ρ < r we use the Borel–Carathéodory theorem [28, Ch. XII, §3]
which tells us that

max
|z−z0|=ρ

|k(z)| ≤ 2ρ
r − ρ max

|z−z0|=r
Re k(z) +

r + ρ

r − ρ |k(z0)|, ρ < r.

This implies
|Re k(z)| ≤ C~−n

]

log(1/g) for all z ∈ D(z0, ρ)

by the maximum modulus principle and hence

log |f(z)| ≥ −C~−n
]

log
1
g

for all z ∈ D(z0, ρ) \
N(~)⋃
j=1

D(wj , g(~)).

The proposition now follows by covering Ω by finitely many disks and repeating the
argument.

We close this chapter with an easy lemma.

Lemma 8.3. Let Assumption 4.1 be satisfied. Then

‖(J∞ − z)−1‖ ≤ 1
Im z

for z ∈ C+.
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Proof. We begin by noticing that, for any f ∈ D,

− Im 〈(J∞ − z1)f ,f〉 = − Im 〈Hf − i(ReW )f + (ImW )f − zf ,f〉
= 〈(ReW )f ,f〉+ (Im z)‖f‖2

≥ (Im z)‖f‖2.
Therefore, by the Cauchy–Schwarz inequality,

‖(J∞ − z1)f‖‖f‖ ≥ (Im z)‖f‖2.
On substituting g = (J∞ − z1)f this reads

‖g‖‖(J∞ − z1)−1g‖ ≥ (Im z)‖(J∞ − z1)−1g‖2,
or

‖(J∞ − z1)−1g‖ ≤ 1
Im z
‖g‖,

i.e. ‖(J∞ − z1)−1‖ ≤ 1/ Im z.

Results similar to the ones for J∞(~) and its resolvent given above are valid for JR(~)
and its resolvent.

Proposition 8.4. Let Assumptions 4.1 and 4.6 hold. Then the statements of Proposi-
tions 8.1, 8.2 and Lemma 8.3 hold for JR(~) as well.

9. Quasimodes

Quasimodes are defined as a sequence of approximate real “resonances” with associated
approximate solutions supported in a fixed compact set. In this chapter we prove that
the existence of quasimodes yields the existence of many resonances exponentially close
to the quasimodes (not only the imaginary, but the real part as well). The first scalar
valued result, for well-separated quasimodes, of this type goes back to the remarkable
paper by Stefanov–Vodev [65] (using the Phragmén–Lindelöf principle and a global cutoff
resolvent estimate) in the context of Rayleigh surface waves in linear elasticity, where it
was shown, for general compactly supported perturbations in odd-dimensional Euclidean
spaces, that existence of real quasimodes with polynomially small error implies existence
of resonances converging to the real axis at the same rate. Their method, however, was not
sensitive enough to yield information on the density of those resonances. An essential step
ahead was taken by Tang and Zworski [66] who realized that one can localize resonances
not only close to the real axis but even near a quasimode so that, if the quasimode is
large enough, then there is always a resonance close to it; confirming that quasimodes
are perturbed resonances. The main ingredients are the local cutoff resolvent estimate
and a semiclassical maximum principle. They managed to obtain lower bounds on the
number of resonances near the real axis; at least linear bounds and, if the quasimodes
are “well distributed” in some sense, one could also achieve finer bounds. If quasimodes
are distributed in an “irregular way”, specifically, if there can be multiple quasimodes
or clusters of quasimodes too close to each other, then the method in [66] only enables
one to show that these multiple quasimodes or clusters generate only a single resonance.
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Stefanov [59] managed to treat multiplicities in the case when quasimodes are very close
to each other. He showed that such clusters of quasimodes generate (asymptotically) at
least the same number of resonances. In [63] he improved the latter result in several ways
by modifying the reasoning in [59, Theorem 1]. The underlying ideas, however, are the
same as in Tang and Zworski [66] (see also [56, Theorem 11.2]).

We use the matrix valued local cutoff resolvent estimate in Proposition 6.1 and the
matrix valued semiclassical maximum principle in Lemma B.1 to prove a result similar
to [63, Theorem 3].

Proposition 9.1. Let N ≥ 0, M > 0, A as in Proposition 8.2 and 0 < l0 < l(~) ≤
r(~) ≤ r0 <∞ where ~ ∈ (0, ~0] for some ~0 ∈ (0, 1].

(1) Assume that for any ~ ∈ (0, ~0] there exists m(~) ∈ Z+, Ej(~) ∈ [l(~), r(~)] and
{uj(~)}m(~)

j=1 ⊂ D with ‖uj‖ = 1 and suppuj(~) ⊂ K b Rn where K is independent
of ~ such that

‖(H(~)− Ej(~)1)uj(~)‖ ≤ R(~), (9.1)

where R(~) ≤ ~n]+N+1/(C log(1/~)), and any {ũj(~)}m(~)
j=1 ⊂ H with ‖ũj(~) −

uj(~)‖ = ~N/M is linearly independent. Then there is an ~1(A,B,M,N) ∈ (0, ~0]
such that for all ~ ∈ (0, ~1] and any B > 0, H(~) has at least m(~) resonances in[

l(~)− c(~) log
1
h
, r(~) + c(~) log

1
~

]
+ i[−c(~), 0], (9.2)

where c(~) = max{CAMR(~)~−n]−N−1, e−B/~}.
(2) The first assertion remains true if we replace H(~) by J(~) and “resonances” by

“eigenvalues” in its statement.

Proof. 1. Let z1(~), . . . , zJ(~) be all distinct resonances in the larger domain

Ω2(~) := [l(~)− 2w(~), r(~) + 2w(~)] + i

[
− 2A~−n

]

log
1
r̃(~)

, r̃(~)
]
, (9.3)

where

w(~) = 4n]A~−n
]

r̃(~) log
1
r̃(~)

log
1
~

and r̃(~) is to be specified below. Fix χ ∈ C∞0 (Rn) with χ � 1K and expand χR(z)χ as
in (B.7). The multiplicity of zj(~) is then given by the dimension of (4.4). We must prove

m̃ :=
J∑
j=1

rankA(j)
−1 ≥ m.

Let Π be the orthogonal projection onto
⋃J
j=1A

(j)
−1H, and let Π′ = 1 − Π. Then clearly

rank Π ≤ m̃ so it is enough to show that

rank Π ≥ m. (9.4)

According to Lemma B.3,
F (z) := Π′χR(z)χ
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is analytic in a neighbourhood of Ω2(~). Moreover, asH is selfadjoint, we have for z ∈ C+

the estimate

‖F (z)‖ ≤ ‖(H − z1)−1‖ ≤ 1
Im z

.

As a consequence of Proposition 6.1 we get

‖F (z)‖ ≤ AeA~−n
]

log(1/er) for all z ∈ Ω2 \
J⋃
j=1

D(zj , r̃(~)). (9.5)

Using the fact that F (z) is analytic in Ω2 we next prove that this estimate is in fact
valid in the whole of the smaller domain Ω. This follows from the standard maximum
modulus principle (which holds true also for operator valued functions since ‖F (z)‖ =
max‖u‖=‖v‖=1 |〈F (z)u,v〉|) provided we can show that any connected union of disks
D(zjk , r̃) having a point in common with Ω has no point in common with the complement
of Ω2. To prove this it is enough, since resonances live in C−, to show that any such
connected union has length no more than

min
~�1

{
w(~), A~−n

]

(
log

1
r̃

)
r̃

}
= A~−n

]

(
log

1
r̃

)
r̃.

In view of Assumption 4.6 there are no more thanO(~−n]) resonances in Ω2, and therefore
any connected union of disks D(zjk , r̃) has diameter at most O(~−n] r̃). Clearly, since
r̃(~) = o(1), there is ~2 ∈ (0, 1] such that

C~−n
]

r̃ < A~−n
]

(
log

1
r̃

)
r̃

for 0 < ~ < ~2 and the claim follows. Thus, since (9.5) is true on the boundary of any
connected union of disks D(zjk , r̃) intersecting Ω and since such unions never intersect
the complement of Ω2 (where F (z) may not be analytic), it follows from the maximum
modulus principle that (9.5) is also true in the interior of all such connected unions of
disks. Therefore

‖F (z)‖ ≤ AeA~−n
]

log(1/er) for all z ∈ Ω.

Thus the requirements of Corollary B.2 are satisfied. The hypothesis in (9.1) in conjunc-
tion with Corollary B.2 yields

‖Π′uj‖ = ‖Π′χR(z)χ(H − z1)uj‖ ≤ ‖Π′χR(z)χ‖R ≤ e3R

r̃(~)

and consequently ‖ũj − uj‖ ≤ e3R/r̃ for ũj := Πuj . By our hypothesis {ũj}mj=1 will be
linearly independent if we take

r̃(~) = max{e3M~−NR(~), e−B/~}

and from this (9.4) follows.
(2) Using Lemma 8.1, Proposition 8.2 and Lemma 8.3 we can argue as in the proof

of (1).
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Remark 9.2. If we apply the theorem for only one quasimode E(~), then the theorem
implies the existence of a resonance z(~) with

|Re z0(~)− E(~)| ≤ CR(~)~−n
]−1 log

1
~

and
0 ≤ − Im z0(~) ≤ CR(~)~−n

]−1.

10. Individual resonances. The case R′
0 < R1

Below we always require that Assumptions 4.1 and 4.6 are satisfied. To establish Theo-
rem 5.1 we prove that cutoff resonant states of H(~) are quasimodes of J(~), and cutoff
eigenfunctions of J(~) are quasimodes of H(~). Specifically, starting from a resonance
of H(~) belonging to the rectangle (5.1), the strategy of the proof of Theorem 5.1 is to
construct a quasimode which satisfies the assumptions in Proposition 9.1. An applica-
tion of the latter proposition then yields the desired assertion. The first ingredient in the
proof is Burq’s absorption estimate [5, Proposition 2.2] in its improved version (10.1);
see below and notice γ, found in Stefanov [61, Proposition 2]. The difference between
the two versions is that one can choose γ large provided ρ is made large enough; this is
even implicit in Burq’s original proof. Moreover, Stefanov proved that γ is bounded from
below; a fact which is essential for the proof below.

Proof of Theorem 5.1. (1) Let z0(~) be a resonance of H(~) in the rectangle defined in
(5.1), and let u = (ua, ub)t be the corresponding resonant state (cf. Definition 4.5). For
|x| > R′0 we see that

(H(~)− z0(~)1)u = 0 ⇒ (−~2∆⊗ I2 − z0(~)I2)u = 0,

which implies that the components of u are outgoing resonant states of−~2∆ for |x| ≥ R′0.
In particular, u#, # = a, b, admits Burq’s absorption estimate [5] in its improved version
(see also Lemma 12.1)∫

|x|=ρ
(|u#|2 + |~∇xu#|2) dSx ≤ C(−~−1 Im z0(~) + e−γ(ρ)/~)

∫
B(0,ρ)

|u#|2 dx (10.1)

for any ρ > R′0 and some γ(ρ) which is bounded from below. More specifically, γ(ρ) ≥
C0(ρ − R′0) for some C0 > 0 provided ~ is sufficiently small [61]. In particular, γ(ρ) →
∞ as ρ → ∞. By integrating (10.1) with respect to ρ ∈ [R′0, R1] and estimating the
first integrand by C

∫
B(0,R1)

|u#|2 dx and the second by Ce−C0(R1)/~ ∫
B(0,R1)

|u#|2 dx, we
obtain, after multiplying by ~2,

‖~u#‖2L2(B(0,R′0,R1)) + ‖~2∇xu#‖2L2(B(0,R′0,R1))

≤ C(−~ Im z0(~) + e−C0(R1)/~)‖u#‖2L2(B(0,R1)), (10.2)

where we have kept the notation γ since it possesses the same properties as before and
the exponential term has absorbed a polynomial factor ~2.
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Letting v(~) = χu(~), we find that

(H(~)− z0(~)1)v(~) = [H0(~),χ]u(~), (10.3)

because u(~) is a resonant state corresponding to the resonance z0(~). Since χ = const
on B(0, R′0), we notice that

[H0(~),χ]u(~) = ([−~2∆, χ]⊗ I2)u(~),

Then, by straightforward calculations,

[−~2∆, χ]u#(~) = −~2(2∇χ · ∇u#(~) + (∆χ)u#(~)) (10.4)

implies that
[H0,χ]u(~) = −~2((∆χ) + 2(∇χ) · ∇)⊗ I2 u(~),

and therefore, by (10.3)–(10.4) and the simple inequality 2ab ≤ a2 + b2,

‖(H(~)− z0(~)1)v(~)‖2L2(Rn)⊗C2

≤ C
∑

#=a,b

(
~2‖∇χ · ∇u#(~)‖2L2(B(0,R1)\B(0,R′0)) + ~2‖(∆χ)u#(h)‖2L2(B(0,R1)\B(0,R′0))

)
,

because supp(∇χ) ⊂ B(0, R1) \ B(0, R′0). Since χ is smooth on Rn, we therefore infer
that

‖(H(~)− z0(~)1)v(~)‖2L2(Rn)⊗C2

≤ C
∑

#=a,b

(
~2‖∇u#(~)‖2L2(B(0,R′0,R1)) + ~2‖u#(~)‖2L2(B(0,R′0,R1))

)
,

which, together with (10.2) and the inequality
√
a+ b ≤ √a+

√
b for a, b ≥ 0, yields

‖(H(~)− z0(~)1)v(~)‖L2(Rn)⊗C2

≤ C(~1/2
√
− Im z0(~) + e−C0(R1)/2~)‖u(~)‖L2(B(0,R1))⊗C2 . (10.5)

Next we claim that
‖u‖L2(B(0,R1))⊗C2 ≤ C‖v‖L2(Rn)⊗C2 . (10.6)

Indeed, by the definition of v(~),

‖v(~)− u(~)‖2H1(B(0,R′0,R1))

=
∑

#=a,b

∫
B(0,R′0,R1)

(
(χ− 1)2|u#(~)|2 + |~∇((χ− 1)u#)|2

)
dx. (10.7)

Splitting this integral into two in the natural way one easily sees the first term can be
estimated by C‖u#‖L2(B(0,R′0,R1)), whereas for the second term we have∫

B(0, R′0, R1)|~∇((χ− 1)u#)|2 dx

≤ ~2

∫
B(0,R′0,R1)

(
|(∇(χ− 1))u#|+ |(χ− 1)∇u#|

)2
dx.
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Since both ∇(χ − 1) and χ − 1 are bounded on the annulus B(0, R′0, R1), the above
integral may be estimated by

C~2

∫
B(0,R′0,R1)

(|u#|+ |∇u#|)2 dx,

or, as 2|u#||∇u#| ≤ |u#|2 + |∇u#|2, it can be estimated by

C~2

∫
B(0,R′0,R1)

(|u#|2 + |∇u#|2) dx

= C~2(‖u#‖2L2(B(0,R′0,R1)) + ‖∇u#‖2L2(B(0,R′0,R1))). (10.8)

Denoting −~−1 Im z0(~)+e−C0(R1)/~ by ε(~) we infer from the above discussion, together
with (10.2), that

‖v(~)− u(~)‖H1(B(0,R′0,R1)) ≤ C
√
ε(~)‖u‖L2(B(0,R1))⊗C2 .

In particular,

‖v(~)− u(~)‖L2(B(0,R′0,R1))⊗C2 ≤ C
√
ε(~)‖u‖L2(B(0,R1))⊗C2 . (10.9)

Since v(~) = u(~) on B(0, R′0) we have

‖u(~)‖2L2(B(0,R1))⊗C2 = ‖v(~)‖2L2(B(0,R1))⊗C2 + ‖u(~)‖2L2(B(0,R′0,R1))⊗C2 . (10.10)

Using

‖u(~)‖L2(B(0,R′0,R1))⊗C2 ≤ ‖v(~)− u(~)‖L2(B(0,R′0,R1))⊗C2 + ‖v(~)‖L2(B(0,R′0,R1))⊗C2 ,

the inequality 2ab ≤ a2 + b2, (10.9)–(10.10) and lim~→0 ε(~) = 0, we find

‖u(~)‖2L2(B(0,R′0,R1))⊗C2 ≤ C1

1− C2ε(~)
‖v(~)‖2L2(B(0,R1))⊗C2 ≤ C3‖v(~)‖2L2(Rn)⊗C2

for some constants C1, C2, C3 > 0. Again using v(~) = u(~) on B(0, R′0) we arrive at
(10.6). Using the latter in (10.5), we have

‖(H(~)− z0(~)1)v(~)‖L2(Rn)⊗C2 ≤ C(~1/2
√
− Im z0(~) + e−C0(R1)/~)‖v(~)‖L2(R2)⊗C2 .

Here we may in fact replace z0(~) by Re z0(~). Indeed, using the triangle inequality, we
have

‖(H(~)− Re z0(~)1)v(~)‖L2(Rn)⊗C2 ≤ ‖(H(~)− z0(~)1)v(~)‖L2(Rn)⊗C2

+ |Im z0(~)| ‖v(~)‖L2(Rn)⊗C2 ,

so it suffices to show

|Im z0(~)| = − Im z0(~) ≤ C~1/2
√
− Im z0(~),

or, equivalently, − Im z0(~) ≤ C~, which is true for small ~ by the assumption on z0(~).
Since suppχ ⊂ B(0, R1) whereas suppW ⊂ Rn \B(0, R1), we see that Wv = Wχu = 0
so that H(~)v(~) = J(~)v(~). We thus even have

‖(J(~)− Re z0(~)1)v(~)‖L2(Rn)⊗C2≤C(~1/2
√
− Im z0(~) + e−C0(R1)/~)‖v(~)‖L2(Rn)⊗C2 .
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By interpreting v(~) as a quasimode for J(~), an application of Proposition 9.1(2) in
conjunction with Remark 9.2 ensures the existence of an eigenvalue w0 of J(~) with

|Rew0 − Re z0| ≤ ε(~) log
1
~

and − Imw0 ≤ ε(~)

where ε(~) is as in the theorem.
(2) Let u ∈ D be a normalized eigenfunction corresponding to w0. Since H(~) is

symmetric, it follows that

0 = Im 〈(J(~)− w0)u,u〉 = −〈(ReW )u,u〉 − Imw0‖u‖2,
or, equivalently,

‖(ReW )1/2u‖ = (− Imw0)1/2.

With 1B(0,R2) ≺ χ ∈ C∞0 (Rn) we have

(H(~)− w01)χu = χ(H(~)− w01)u+ [H0,χ]u = iχWu+ [H0,χ]u.

Since by assumption ImW ≤ C(ReW )1/2 and W is essentially bounded we see that
‖iχWu‖ ≤ C(− Imw0)1/2. By the semiclassical elliptic estimates in Theorem 2.1 we
get, componentwise,

‖[−~2∆, χ]u#‖ = ~‖~(∆χ)u# + 2∇χ · (~∇f#)‖ ≤ C~‖u#‖H1
~(B(0,R2,R2+µ))

≤ C~(‖(−~2∆− iW − w0)u#‖B(0,R2,R2+µ) + ‖u#‖B(0,R2,R2+µ))

≤ C~‖u#‖B(0,R2,R2+µ),

where µ > 0 is such that supp(∇χ) ⊂ B(0, R2, R2 + µ). Since for |x| ≥ R2 we can write∫
R2<|x|<R2+µ

|u#|2 dx ≤ δ−1
0

∫
ReW |u#|2 dx = C‖(ReW )1/2u#‖2 (10.11)

we conclude that ‖(H(~)− w01)χu‖ ≤ C(− Imw0)1/2. Since

1 = ‖u‖ = ‖χu+ (1− χ)u‖ ≤ ‖χu‖+ (−δ−1
0 Imw0)1/2,

where the last inequality can be seen as in (10.7), we see that ‖χu‖ is uniformly bounded
away from 0 for small enough ~ and therefore we can regard χu/‖χu‖ as a quasimode
for H(~). An application of Proposition 9.1 in conjunction with Remark 9.2 yields the
conclusion.

11. Individual resonances. The case R1 < R′
0

In this chapter we establish Theorem 5.5 and we begin by outlining the strategy of the
proof. Let R′0 < R′1 and 1B(0,R′0) ≺ χ ≺ 1B(0,R′1). An application of the same arguments
as in the proof of Theorem 5.1 gives us the estimate

‖(H(~)− Re z0(~)1)v(~)‖ ≤ Cε̃(~), (11.1)

where ε̃(~) = (
√
−~ Im z0(~) + e−γ(ρ)/~)‖u(~)‖L2(B(0,R′1)). Since, by hypothesis, the sup-

ports of v(~) and W intersect, we cannot just replace H(~) by J(~) in (11.1) (as we did
for its analogue in the proof of Theorem 5.1). Under the nontrapping condition in As-
sumption 5.4, we will prove that v(~) is “small” away from B(0, R0); not merely outside
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B(0, R′0) as (10.1) and (10.5) suggest. For this purpose we employ microlocal analysis.
We solve Heisenberg’s equation of motion semiclassically by adapting ideas from Ivrii [22,
Section 2.3] and Bolte–Glaser [3, Proposition 3.1]. Next, by a standard localization result
away from the semiclassical wavefront set, we investigate how singularities propagate.
The resulting auxiliary result, Proposition 11.1, is inspired by the discussion in Ivrii [22,
Section 2.3] (see also [62, Lemma 3.1]). The Egorov type statement, which is part of its
proof, differs from the scalar case in that one also needs to propagate the matrix degrees
of freedom. These are contained in the dynamics of a(t) in the form of unitary transport
matrices d(t); see below for details.

Proposition 11.1 (Propagation of singularities). Let Assumptions 5.2 and 5.4 be satis-
fied. Suppose, moreover, that

‖∂αx ∂βξ hj‖ ≤ C for all (x, ξ) ∈ T∗Rn and |α|+ |β|+ j ≥ 2, (11.2)

where h ∼∑ ~lhl. Furthermore, suppose that for some z0(~) ∈ [l0, r0], one has (H(~)−
z0(~))u(~) = g(~) with ‖u(~)‖ ≤ C, uniformly in ~, and where ‖g(~)‖ = O(~s+1). Put,
for any fixed (x0, ξ0) ∈ T∗Rn with |x0| ≥ R0 and 0 < T < ∞, (x1, ξ1) = ΦT (x0, ξ0); see
Figure 2. Then, provided ~ is sufficiently small, (x1, ξ1) 6∈ WFs u implies that the same
holds true for (x0, ξ0).

Rξ

Rx

(x0, ξ0)

(x1, ξ1) = ΦT (x0,

R0

Fig. 2. Sketch of nontrapping scenario in phase space

Proof. By assumption we can find a ∈ S(1) such that a(x, ~D)u = O(~s) and a0(x, ξ) =
I2 near (x1, ξ1) where a ∼∑ ~lal. Our aim is to construct a symbol a(t) ∈ S(1), t ∈ [0, T ],
which is invertible, supported near ΦT−t(x0, ξ0), and ‖a(T )(x, ~D)u‖ ≤ C~s. Introduce
the strongly continuous one-parameter group of unitary operators U(t) = e−

i
~ Ht. These

are well-defined for all t ∈ R since H is selfadjoint. The time evolution A(t) of A =
Opw(a) is given by the bounded operator

A(t) = U∗(t)AU(t),
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and, as a consequence, it satisfies Heisenberg’s equation of motion

∂

∂t
A(t) =

i

h
[H,A(t)], A(0) = A. (11.3)

We will solve this equation semiclassically at the level of symbols, i.e. we shall construct
coefficients al(t) so that the Weyl symbol a(t) of A(t) has the formal asymptotic expan-
sion

a(t) ∼
∞∑
l=0

~lal(t).

As we will see, al(t) ∈ S(1) for all t ∈ [0, T ], and consequently we can find (with a slight
abuse of notation) A(t) so that for all 0 ≤ t ≤ T we have

∂

∂t
A(t) =

i

~
[H,A(t)] +R(t), A(0) = A, (11.4)

where ‖R(t)‖ = O(~s+1). To calculate the coefficients al(t) we use (11.3) together with
pseudodifferential calculus (see Section 3.2) to obtain the recursive Cauchy problem

∂

∂t
al(t)− {h0,al(t)} − i[h1,al(t)]

=
∑

0≤k≤l−1
j+|α|+|β|=l−k+1

i|α|−|β|

2|α|+|β||α|!|β|!
(
(∂βξ ∂

α
xak(t))(∂αξ ∂

β
xhj)

− (−1)|α|−|β|(∂αξ ∂
β
xhj)(∂

β
ξ ∂

α
xak(t))

)
,

(11.5)

with al(0) = al (cf. also [22, Section 3.2]). For l = 0 the sum on the right is empty so at
leading order (11.5) can be rewritten as

d

dt
[d−1(x, ξ,−t)a0(t)(Φ−t(x, ξ))d(x, ξ,−t)] = 0,

where d is the solution of the Cauchy problem

∂

∂t
d(x, ξ, t) + ih1(Φt(x, ξ))d(x, ξ, t) = 0, d(x, ξ, 0) = I2.

We remark that the time derivative is to be understood along the trajectory Φt(x, ξ). By
differentiating the quantity ‖d(x, ξ, t)v‖2 for v ∈ C2 with respect to t, using the defining
equation for d and the fact that h1 is Hermitian it follows that ‖d(x, ξ, t)v‖2 is constant
and therefore equal to ‖v‖2 so that d(x, ξ, t) is unitary. Moreover, as a consequence of
the fact that both f(t) = d(Φt(x, ξ),−t) and g(t) = d(Φt(x, ξ), T − t)d(ΦT (x, ξ),−T )
satisfy

f ′(t) + ih1(Φt(x, ξ))f(t) = 0

as well as f(T ) = g(T ) it follows by uniqueness that also f(0) = g(0) or, in other words,

d(Φt(x, ξ),−t) = d−1(x, ξ, t).

Using these properties we can write

a0(t)(x, ξ) = d∗(x, ξ, t)a0(Φt(x, ξ))d(x, ξ, t).
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We observe that suppa0(T ) = Φ−T (suppa0) is confined to a neighbourhood of (x0, ξ0).
For the higher order coefficients we similarly need to solve

d

dt
[d−1(x, ξ,−t)al(t)(Φ−t(x, ξ))d(x, ξ,−t)]

=
∑

0≤k≤l−1
j+|α|+|β|=l−k+1

i|α|−|β|

2|α|+|β||α|!|β|!
(
(∂βξ ∂

α
xak(t))(∂αξ ∂

β
xhj)

− (−1)|α|−|β|(∂αξ ∂
β
xhj)(∂

β
ξ ∂

α
xak(t))

)
, (11.6)

however, this time with an inhomogeneity depending on the previous terms on the right-
hand side. The Jacobian DΦt satisfies the variation equation

d

dt
DΦt = D

(
∂ξh0(x(t), ξ(t)),−∂xh0(x(t), ξ(t))

)
DΦt

with DΦt|t=0 = I2. From this it follows that ‖DΦt − I2‖ ≤ C|t|eCt for all t ∈ [0, T ]. By
[22, Section 3.2] our assumption on the Hamiltonian implies that |∂αx ∂βξ Φt(x, ξ)| ≤ C for
all α, β ∈ Nn0 and t ∈ [0, T ]. Consequently, a ◦ Φt ∈ S(1) because already a ∈ S(1). Since
d(x, ξ, t) is unitary, it is also bounded. Moreover, the estimate (11.2) for j = 1 implies,
again by [22, Section 3.2], that ‖∂αx ∂βξ d(x, ξ, t)‖ ≤ C for all t ∈ [0, T ] and |α| + |β| ≥ 1.
Since the right-hand side of (11.6) only contains terms with |α| + |β| + j ≥ 2 it follows
that it is bounded in matrix norm for all (x, ξ) ∈ T∗Rn. It follows by means of Duhamel’s
principle that al(t) ∈ S(1) for all l ≥ 0. From these considerations (11.4) follows. Consider
now

α(t) = ‖a(t)w(x, ~D)u‖
so that α(0) = O(~s). With A(t) as in (11.4) we obtain, as a consequence of the fact that
H is selfadjoint,

d

dt

α(t)2

2
= Re

〈
d

dt
A(t)u,A(t)u

〉
= ~−1 Im 〈([H − z0,A(t)] +R(t))u,A(t)u〉
= −~−1 Im 〈A(t)(H − z0)u,A(t)u〉+ ~−1 Im (R(t)u,A(t)u)

= −~−1 Im 〈A(t)g,A(t)u〉+ ~−1 Im 〈R(t)u,A(t)u),

where ‖g‖ = O(~s+1), from which it follows that

α(t)
d

dt
α(t) ≤ C~sα(t) + ~−1‖R(t)u‖α(t).

Consequently, since α(0) = O(~s) and ‖R(t)u‖ = O(~s+1),

α(t) = O(~s) for t ∈ [0, T ]. (11.7)

Since a0(T ) is close to the identity matrix near (x0, ξ0) it follows that a(T ) is invertible
near (x0, ξ0) provided ~ is sufficiently small. It follows that (x0, ξ0) 6∈WFs u.

Proof of Theorem 5.5. Arguing as in the proof of Theorem 5.1 where again v = χu but
this time 1B(0,R′0) ≺ χ ≺ 1B(0,R′1) for some R′1 > R′0 we obtain

‖(H(~)− Re z01)v‖ ≤ Cε̃(~)‖u‖L2(B(0,R′1)) (11.8)
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with ε̃(~) as before. Let µ > 0 and pick a point (x0, ξ0) ∈ h−1
0 [l0, r0] with |x0| > R0 + µ.

By Assumption 5.4 there exists T > 0 such that (x0, ξ0) can be connected to some
(x1, ξ1) = ΦT (x0, ξ0) with |x1| > R′1 where v = 0. Applying Proposition 11.1 (with H
replaced by H0 suffices) near this bicharacteristic implies (see (11.7)) that

‖v‖ = O(~−1ε̃(~) + ~∞) (11.9)

microlocally near (x0, ξ0). From (11.8) we get

‖(J(~)− Re z01)v‖ ≤ ‖(H(~)− Re z01)v‖+ C‖v‖L2({|x|>R1})

= O(ε̃(~)) +O(~−1ε̃(~) + ~∞) = O(~−1ε̃(~) + ~∞).

An application of Proposition 9.1 yields Theorem 5.5 because the exponential factor is
absorbed by the polynomial one for ~� 1.

12. Clusters of resonances

In this chapter we always impose Assumptions 4.1 and 4.6. The matrix valued results
in Propositions 6.1, 8.1, 8.2, 8.4 and 9.1 and Lemma B.1 underpin the proof of Theo-
rems 5.6 and 5.7. Moreover, the propagation of singularities result in Proposition 11.1
in combination with the reasoning from the proof of Theorem 5.5 will be used to prove
Theorem 5.7.

Decomposition into clusters. We consider the box Ω(~), defined in (5.4). After possi-
bly altering the box slightly without changing its properties we may assume ∂Ω(~) is free
from resonances. We gather all resonances in Ω(~) into the interior of mutually disjoint
subdomains

Ωj(~) = [lj(~), rj(~)] + i[−c(~), 0], 1 ≤ j ≤ J(~),

and denote by mj the number of resonances, counting multiplicities, in Ωj(~). Clearly
J(~)=O(~−n]) because, as a consequence of Assumption 4.6, Count(H,Ω(~))=O(~−n]);
see (6.9). Another easy consequence of the latter bound is that we can group the reso-
nances so that for j, k ∈ {1, . . . , J(~)}, j 6= k,

dist(Ωj(~),Ωk(~)) ≥ 4w(~), 0 < rj(~)− lj(~) ≤ C~−n
]

w(~) (12.1)

where 0 < w(~) = O(~N ), N � 1, is some pre-fixed quantity which we take to be

w(~) = ~−(5n]+1)/2c(~). (12.2)

We notice that with this choice of w(~) the bigger domains (9.3) introduced in the proof
of Proposition 9.1 will not intersect and therefore, provided the theorem applies, we can
use it for each subdomain separately without overcounting any resonances (eigenvalues).
Define

ΠΩj(~) =
1

2πi

∮
∂Ωj(~)

(H − z1)−1 dz, ΠΩ(~) =
∑

ΠΩj(~), HΩj = ΠΩj(~)H.

Clearly, by Lemma 8.1, the same decomposition can be made for the eigenvalues of
J(~). Then HΩj is the span of the generalized eigenvectors of Hθ corresponding to the
eigenvalues in Ωj(~) (see e.g. [26]) and Hθ is invariant on this set. We define HΩj =
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Hθ|HΩj
, which is of finite rank since the dimension mj of HΩj is finite (bounded by

C~−n]).

Dissipation estimate. Fix R̂ < R̃ with R′0 + δ < R̂ < R̃− δ and let

ρ =

{
1 for r < R̂− δ/2,
r(n−1)/2 for r > R̂.

Set H̃ = ρHρ−1 so that H̃ becomes selfadjoint on H̃ := ρH with the measure dµ :=
ρ−2rn−1 dr dω. With this change of variables we have

H̃|{r>R̂} = ~2

(
− ∂2

r −
∆ω

r2
+

(n− 1)(n− 3)
4r2

)
⊗ I2

and dµ|{r>R̂} = drdω. We denote by H̃θ the operator obtained from H̃ by complex

scaling for r ≥ R̃. In the following we shall use the notation |u|2 = |u1|2 + |u2|2.

Lemma 12.1. Let z ∈ C with Re z ≥ l0 and Im z ≤ 0. Then, for ~, θ0 > 0 sufficiently
small, we have for any u ∈ Dθ, 0 ≤ θ ≤ θ0, the estimate

C

∫ (
(θ + rθ′)|~∂ru|2 + θ(|~r−1∇ωu|2 + |u|2)

)
dr dω

≤ − Im 〈eiθ(H̃θ − z1)u,u〉 eH + (− Im z + e−~−2/3+ε
)‖u‖2eH,

where C = min(l0, 1)/2.

Proof. The idea of this proof goes back to Burq [6] (see also [62, 63]). There is no loss of
generality to assume suppu ⊂ {|x| > R̂}. Indeed, choose a smooth cutoff

χ =

{
0, r ≤ R̂,
1, r ≥ R̂+ δ.

Decomposing u according to u = χu+ (1− χ)u we have

Im 〈eiθ(H̃θ − Re z1)u,u〉 eH = Im 〈eiθ(H̃θ − Re z1)χu,χu〉 eH
+ Im 〈(H̃θ − Re z1)(1− χ)u,χu〉 eH
+ Im 〈(H̃θ − Re z1)(1− χ)u, (1− χ)u〉 eH
+ Im 〈(H̃θ − Re z1)χu, (1− χ)u〉 eH

= Im 〈eiθ(H̃θ − Re z1)χu,χu〉 eH,
since θ = 0 on supp(1− χ) and H̃θ is symmetric. Using

eiθH̃θ =
(
− 1

1 + irθ′
~∂r

e−iθ

1 + irθ′
~∂r − e−iθ

~2∆ω

r2
+ eiθ~2 (n− 1)(n− 3)

4r2

)
⊗ I2 (12.3)
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for r > R̂, integration by parts results in

− Im 〈eiθ(H̃θ − Re z1)u,u〉 eH=
∫ (

Im
(
− e−iθ

(1+irθ′)2

)
|~∂ru|2+sin θ|~r−1∇ωu|2

)
dr dω

+
∫

Im
(
eiθ Re z − e−iθ~2 (n− 1)(n− 3)

4r2

)
|u|2 dr dω

− h Im 〈g(r)~(∂r)⊗ Iu,u〉 eH
=: (I) + (II) + (III),

where

g(r) =
d

dr

(
1

1 + irθ′

)
e−iθ

1 + irθ′
= − i(rθ

′′ + θ′)e−iθ

(1 + irθ′)3
. (12.4)

It is easy to see that if θ0 > 0 is sufficiently small then

(I) ≥ 3
4

∫
((θ + 2rθ′)|~∂ru|2 + θ|~r−1∇ωu|2) dr dω.

Moreover, for ~ small enough,

(II) ≥
∫ (

Re z sin θ − l0
4
θ

)
|u|2 dr dω ≥ 3

4
l0

∫
θ|u|2 dr dω,

provided θ0 is sufficiently small. Writing

(III) = −~2

2i

(∫
g(∂ru)u dr dω −

∫
g(∂ru)u dr dω

)
and integrating the second integral by parts we obtain

(III) = −~2

i
〈(Re g)∂ru,u〉 eH − ~2

2i
〈(Re g′)u,u〉 eH +

~2

2
〈(Im g′)u,u〉 eH.

Taking real parts of both sides results in

(III) = − Im ~〈(Re g)~∂ru,u〉 eH +
~2

2
〈(Im g′)u,u〉 eH =: (III)(1) + (III)(2).

Using (12.4) and properties of θ we see that

|Re g| ≤ C(θ′ + |θ′′|)(θ + θ′) ≤ Cθ,
implying

|(III)(1)| ≤ C~
∫
θ|~∂ru| |u| ≤ C~

∫
θ(|~∂ru|2 + |u|2)

from which it follows that (III)(1) can be absorbed by the estimates for (I) and (II). To
obtain a bound on (III)(2) use (12.4) again to see that

|g′| ≤ C(θ′ + |θ′′|+ |θ(3)|).
Therefore, with t := r − R̃, for any ε > 0 we have

|g′| ≤
{
e−~−2/3+ε

for 0 ≤ t ≤ ~2/(k+3),

C~−2θ for t ≥ ~2/(k+3),

provided ~� 1 and k � 1. Thus

|g′(r)| ≤ e−~−2/3+ε
+ C~−2θ for ~ sufficiently small and r ≥ R̃.
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We conclude that

(III)(2) ≤ e−~−2/3+ε‖u‖2eH + ~1/2

∫
θ|u|2 dr dω,

where the latter integral is absorbed by the estimate for (II). Putting everything together
we get, since Im z ≤ 0,

− Im 〈eiθ(H̃θ − z1)u,u〉 eH = − Im 〈eiθ(H̃θ − Re z1)u,u〉 eH + Im z〈cos θu,u〉 eH
≥ − Im 〈eiθ(H̃θ − Re z1)u,u〉 eH + Im z‖u‖2eH
≥ min(1, l0)

2

∫ (
(θ + rθ′)|~∂ru|2 + θ(|~r−1∇ωu|2 + |u|2)

)
dr dω

− e−~−2/3+ε‖u‖2eH + Im z‖u‖2eH.
(12.5)

Corollary 12.2. Under the assumptions of Lemma 12.1 and Im z > e−~−2/3+ε
/2, one

has
‖(Hθ − z1)−1‖B(H) ≤

2
Im z − 1

2e
−~−2/3+ε .

Proof. Following the proof of Lemma 12.1 until (12.5) we can write, since now Im z > 0,

− Im 〈eiθ(H̃θ − z1)u,u〉 eH = − Im 〈eiθ〈H̃θ − Re z1)u,u〉 eH + Im z〈cos θu,u〉 eH
≥ − Im 〈eiθ(H̃θ − Re z1)u,u〉 eH + Im z〈cos θ0u,u〉 eH
≥ min(1, l0)

2

∫ (
(θ + rθ′)|~∂ru|2 + θ(|~r−1∇ωu|2 + |u|2)

)
dr dω

− 1
4e
−~−2/3+ε‖u‖2eH + 1

2 Im z‖u‖2eH,
so that

1
2

(Im z − 1
2e
−~−2/3+ε

)‖u‖ eH ≤ ‖(H̃θ − z1)u‖ eH
and finally, after replacing u by ρu,

‖(Hθ − z1)−1‖B(H) ≤
2

Im z − 1
2e
−~−2/3+ε for Im z > 1

2e
−~−2/3+ε

.

Resonant state estimates. For the next few lemmas we work with a fixed subdo-
main Ωj and shall therefore avoid corresponding subscripts. We apply the matrix valued
cutoff resolvent estimate in Proposition 6.1 and the semiclassical maximum principle in
Lemma B.1. Using (12.1) we prove that (HΩ(~) − z01)u = O(~−(7n]+1)) for any lin-
ear combination u of resonant states associated to resonances belonging to a cluster. The
strategy of the proof follows closely Stefanov [60, Lemma 2] (see also [62, Proposition 3.2]).
It is necessary to work with the complex scaled Hamiltonian Hθ(~) for technical reasons.

Lemma 12.3. Under the assumptions above, the choice for w(~) in (12.2), and z0 ∈
[l(~), r(~)] one has

‖(HΩ − z01)u‖HΩ ≤ C~−(7n]+1)c(~)‖u‖H for all u ∈ ΠΩH.
Proof. Define z̃j(~) as the reflection of zj(~) about the line {Im z = c(~)}, i.e.

z̃j(~) = zj(~) + 2ic(~).
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By Lemma 12.1 and the lower bound on c(~) we have

‖(HΩ − z1)−1‖B(HΩ) ≤
4
c(~)

for Im z = c(~). Define

G(z, ~) =
p∏
j=1

(
z − zj
z − z̃j

)mj
,

where p denotes the number of distinct resonances in Ω. Then

|G(z, ~)| ≤ 1 for Im z ≤ c(~)

because the corresponding bound holds for each factor of the product. By the construction
of G := G⊗ I the function z 7→ F := G(H − z1)−1 is holomorphic for Im z ≤ c(~).

Since we always work with domains included in Ω0 := [l0/2, 2r0]+i[−c0, c0] with fixed
0 < l0 < r0 and 0 < c0 � 1, the constant A in Proposition 6.1 can be chosen uniformly
and consequently

‖(HΩ − z1)−1‖ ≤ AeAh−n
]

log(1/g)

for z ∈ Ω0 with dist(z,ResH) ≥ g(~) where g(~) � 1. In view of Assumption 4.6 we
can extend the larger domain Ω1 := [l(~)−5w(~), r(~) + 5w(~)] + i[−D(~)~−2n]−1, D(~)]
(albeit staying within some ~-independent neighbourhood of Ω(~), e.g. Ω0) so that no
resonance comes within distance ~n]+1 of ∂Ω1. Thus

‖F ‖ = O(exp(C~−n
]

log ~−1))

on the boundary of the extended version of Ω1. By the maximum principle the same
bound holds in all of Ω1. Since, by Corollary 12.2, ‖F ‖ ≤ 4/D(~) on the upper side of
Ω1 we can apply the matrix valued semiclassical maximum principle to conclude that

‖G(z)(HΩ − z1)−1‖B(HΩ) ≤
2e3

c(~)
for all z ∈ Ω̃(~),

where Ω̃(~) = [l(~)− w(~), r(~) + w(~)] + i[−~−n]D(~), D(~)]. It remains to estimate G
from below on ∂Ω̃(~). To do so we estimate (z − z̃j)/(z − zj) from above on ∂Ω̃(~). We
notice that

|z(~)− z̃j(~)| ≤ |zj(~)− zj(~)|+ 2c ≤ 4c(~).

Moreover, the distance from zj(~) to any of the sides Im z = −c(~)~−n] , Re z = l − w
and Re z = r + w of Ω̃ is always greater than D(~)~−n]/2 for ~� 1. Therefore∣∣∣∣z − z̃jz − zj

− 1
∣∣∣∣ =

∣∣∣∣zj − z̃jz − zj

∣∣∣∣ ≤ 4c(~)
c(~)~−n]/2

= 8~n
]

for all z ∈ ∂Ω̃(~)\{Im z = c(~)}. Since x 7→ (1 +x)1/x approaches e from below as x→ 0
we obtain

1
|G(z, ~)| ≤ (1 + 8~n

]

)m(~) ≤ (1 + 8~n
]

)C~−n
]

≤ e8C .

From this we infer the bound

‖(HΩ − z1)−1‖B(HΩ) ≤ C‖G(HΩ − z1)−1‖B(HΩ) ≤
C

c(~)
, z ∈ ∂Ω̃.
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For z0 ∈ [l(~), r(~)] we write

HΩ − z01 =
1

2πi

∮
∂Ω̃

(HΩ − z01)(z1−HΩ)−1 dz =
1

2πi

∮
∂Ω̃

(z − z0)(z1−HΩ)−1 dz,

to see that

‖HΩ − z01‖HΩ ≤ C|∂Ω̃||z − z0|‖(z1−HΩ)−1‖HΩ ≤ C
(r − l + w)2

c(~)
.

With w(~) = ~−(5n]+1)/2c(~) we get, for any u ∈ ΠΩH,

‖(Hθ − z01)u‖ ≤ C
(

(r(~)− l(~))2

c(~)
+ ~−(5n]+1)c(~)

)
‖u‖,

which under the assumption r(~)− l(~) ≤ C~−n]w(~) translates into

‖(Hθ − z01)u‖ ≤ C~−(7n]+1)c(~)‖u‖ for any u ∈ ΠΩH.
Next we address the degree of linear independence of resonant states associated to

resonances too close to each other. As a direct consequence of Lemma 12.3 we establish a
bound in the next lemma which states that the spectral projector ΠΩ related to appropri-
ately selected clusters of resonance of H(~) contained in “wide” boxes are polynomially
bounded provided the ΠΩ is restricted to generalized eigenfunctions corresponding to
eigenvalues in the “wide” box. Its scalar valued analogue is given in Stefanov [62, Propo-
sition 3.4]. This bound is the crucial ingredient which ensures that the assumptions in
Proposition 9.1(1) hold.

Lemma 12.4. Under the assumptions above, and the choice for w(~) in (12.2), there
exists a constant C > 0 such that

‖ΠΩ‖B(HΩ) ≤ C~−(7n]+1)/2.

Proof. As in the proof of Lemma 12.3 we have

‖(HΩ − z1)−1‖B(HΩ) ≤
C

c(~)
on ∂Ω̃.

Since there are no eigenvalues of HΩ in Ω̃ \ Ω we may write

ΠΩ|HΩ =
1

2πi

∮
∂Ω̃

(z1−HΩ)−1 dz

so that

‖ΠΩ‖ ≤ C
|∂Ω̃|
c(~)

≤ C r(~)− l(~) + w(~)
c(~)

≤ C ~−n]w(~)
c(~)

= C~−(7n]+1)/2.

By imitating the proof of Stefanov [62, Theorem 3.1] we extract the following result,
which measures how well generalized cutoff eigenfunctions approximate the equation
(H(~)− z0(~)1)v = 0 and how close these are to u.

Lemma 12.5. Fix z0(~) ∈ [l(~), r(~)] and let χ eR ∈ C∞0 (Rn) be such that 1B(0, eR+3δ/4) ≺
χ eR ≺ 1B(0, eR+δ). Then, for any u(~) ∈ ΠΩH with ‖u‖ = 1, one has

‖(H(~)− z0(~)1)χ eRu‖H + ‖u(~)− χ eRu(~)‖H ≤ C~−(7n]+1)/2
√
c(~).
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Proof. Lemmas 12.1 and 12.3 combined imply∫
θ(|~∇u|2 + |u|2) dx ≤ C(~−(7n]+1)c(~) + e−~−2/3+ε

)‖u‖2

≤ C~−(7n]+1)c(~)‖u‖ (12.6)

for ~ � 1. Recall how θ = θ0 is constant for |x| ≥ R̃ + δ/2. Set v = χ eRu. Since
supp(u− v) ⊂ {|x| ≥ R̃+ 3δ/4} we get from (12.6) the estimate

‖u− v‖H ≤ C(~−(7n]+1)
√
c(~) + e−~−2/3+ε

) ≤ C~−(7n]+1)/2
√
c(~)

provided ~� 1. Next

‖[Hθ,χ eR]u‖H ≤ C
(∫

eR+3δ/4≤|r|≤ eR+δ

(|~∇u|2 + |u|2) dx
)1/2

≤ C~−(7n]+1)θ
−1/2
0

√
c(~).

Since ‖(Hθ − z01)u‖H ≤ C~−(7n]+1)
√
c(~) and

(Hθ − z01)v = [Hθ,χ eR]u+ χ eR(Hθ − z01)u

we therefore have

‖(Hθ − z01)v‖H ≤ C~−(7n]+1)/2
√
c(~). (12.7)

Thus, in order to estimate ‖(H − z01)v‖ it suffices to estimate ‖(Hθ −H)v‖H. Using
the explicit representation (12.3) we get

‖(Hθ −H)v‖ eH ≤ C
(

(‖(θ + θ′)~2∂2
rv‖ eH + ‖(θ + θ′ + |θ′′|)~∂rv‖ eH

+
∥∥∥∥θ~2∇ω

r2
v

∥∥∥∥ eH + ‖θv‖ eH
)

=: I1 + I2 + I3 + I4.

(I1) By the product rule for differentiation and the fact that θ′, θ′′ ≤ Cθ1/2,

‖θ~2∂2
rv‖ eH ≤ C(‖~2∂2

r (θv)‖ eH + ~‖θ′~∂rv‖ eH + ~2‖θ′′v‖ eH)

≤ C(‖~2∂2
r (θv)‖ eH + ~‖θ1/2~∂rv‖ eH + ~2‖θ1/2v‖ eH)

≤ C(‖~2∂2
r (θv)‖ eH + ~−(7]+1)/2

√
c(~)),

where the last inequality follows from (12.6). We treat ‖θ′~2∂2
rv‖ eH similarly since

θ(3) ≤ Cθ1/2. It remains to treat the compactly supported ‖~2∂2
r (θv)‖ eH (since

‖~2∂2
r (θ′v)‖ eH can be done likewise). The standard semiclassical elliptic estimate

in Theorem 2.1 yields

‖~2∂2
r (θv)‖ eH ≤ C(‖(Hθ − z01)(θv)‖ eH + ‖θv‖ eH)

≤ C(‖[Hθ, θ]v‖ eH + C~−(7n]+1)/2
√
c(~))

≤ C(~2‖θ′′v‖ eH + ~‖θ′∂rv‖ eH + C~−(7n]+1)/2
√
c(~))

≤ C(~2‖θ1/2‖ eH + ~‖θ1/2∂rv‖ eH + C~−(7]+1)/2
√
c(~))

≤ C~−(7n]+1)/2
√
c(~).
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(I2) Since this term only involves a first order derivative it follows immediately from
(12.6) and the estimates θ, θ′, θ′′ ≤ Cθ1/2 that

I2 ≤ C~−(7n]+1)/2
√
c(~).

(I3) It can be seen in much the same way as for I1 that

I3 ≤ C~−(7n]+1)/2
√
c(~).

(I4) I4 ≤ C~−(7n]+1)/2
√
c(~) follows from (12.6) and θ ≤ Cθ1/2.

From ‖(H̃θ −H)v‖ eH ≤ C~−(7n]+1)/2
√
c(~) and (12.7) it now follows that

‖(Hθ − z01)v‖ ≤ C~−(7n]+1)/2
√
c(~).

Remark 12.6. In view of Propositions 8.1 and 8.2 one can go through the corresponding
arguments above for H(~) replaced by J(~) (denoting either J∞(~) or JR(~)) and con-
clude that Lemmas 12.3 and 12.4 remain true also for J(~). Lemma 12.5 remains valid
as well. To see this, replace the spectral projection by the corresponding one for J , i.e.
put

ΠΩj(~) =
1

2πi

∮
∂Ωj(~)

(J(~)− z1)−1 dz, (12.8)

where the Ωj have the same properties as before (again, this can be done in view of
Propositions 8.1 and 8.4). Note that the rank of ΠΩj(~) equals the multiplicity of each
eigenvalue. Let 1B(0,R2) ≺ χ ≤ 1 and u ∈ ΠΩ(~)H with ‖u‖ = 1. Arguing as in Chapter 10,
using

‖((ReW )1/2 ⊗ I)u‖2 = − Im((J(~)− lj1)u,u)

and

(H(~)− lj1)χu = [H0,χ]u+ iχWu+O(~−(7n]+1)c(~))

we see that

‖(H(~)− lj1)χu‖+ ‖u− χu‖ ≤ C~−(7n]+1)/2
√
c(~). (12.9)

Proofs of Theorems 5.6 and 5.7. With these preparations we are ready to give the
proofs of Theorems 5.6 and 5.7.

Proof of Theorem 5.6. 1. First we prove the estimate Count(H,Ω(~))≤Count(J ,Ω+(~)).
We adopt the strategy in [62, Theorem 3.2]. Choose R̃ and δ such that R′0 < R̃ < R1

and 0 < 2δ < R1 − R′0. We let χ eRuj(~). For every j = 1, . . . , J(h), let {ujk}Count(H,Ωj)
k=1

be an orthonormal basis of ΠΩjH. The functions ujk are linearly independent according
to nonselfadjoint spectral theory [17]. More importantly, in view of Lemma 12.4 the
linear independence is inherited under small perturbations. Furthermore, Lemma 12.5
shows that χ eRujk(~) are also quasimodes for J(~) because Hθ(~)χ eR = J(~)χ eR. To
verify the assumptions of Proposition 9.1, let {ũjk}k be another set of functions such
that ‖ũjk − χ eRujk‖ ≤ C~K . Suppose that, for some fixed j, {ũjk}Count(H(~),Ωj(~))

k=1 are
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linearly dependent. Then for some choice of scalars cjk, not all zero,
Count(H,Ωj)∑

k=1

cjkũjk = 0.

We may, by dividing through by maxk |cjk|, assume maxk |cjk| = 1. Using Lemma 12.5
and the assumption on ũjk above we get

∥∥∥Count(H,Ωj)∑
k=1

cjkujk

∥∥∥ =
∥∥∥Count(H,Ωj)∑

k=1

cjk(ujk − χ eRujk + χ eRujk − ũjk + ũjk)
∥∥∥

≤
∥∥∥Count(H,Ωj)∑

k=1

cjk(ujk − χ eRujk)
∥∥∥+

∥∥∥Count(H,Ωj)∑
k=1

cjk(χ eRujk − ũjk)
∥∥∥

+
∥∥∥Count(H,Ωj)∑

k=1

cjkũjk

∥∥∥
= O(~−n

]

)~−(7n]+1)/2
√
c(~) +O(~−n

]

)~K + 0 = O(~−n
]

)(~−(7n]+1)/2~M/2 + ~K).

Let j0 be the index for which |cj0k0 | = 1 for some k0. By applying ΠΩj0 (~) to
∑
cjkujk

we see that∥∥∥Count(H,Ωj0 )∑
k=1

cj0kuj0k

∥∥∥ =
∥∥∥ΠΩj0 (~)

Count(H,Ωj)∑
k=1

cjkujk

∥∥∥
≤ ‖ΠΩj0 (~)‖HΩ ·

∥∥∥Count(H,Ωj)∑
k=1

cjkujk

∥∥∥
≤ C~−(7n]+1)/2O(~−n

]

)(~K + ~−(7n]+1)/2~M/2)

= O(~−(9n]+1)/2)(~K + h−(7n]+1)/2~M/2), (12.10)

where we have used Lemma 12.4. However our choice of j0 and k0 above implies, since
{ujk}k constitute an orthonormal set for each fixed j,

1 = |cj0k0 | ≤
(Count(H,Ωj0 )∑

k=1

|cj0k|2
)1/2

=
∥∥∥Count(H,Ωj0 )∑

k=1

cj0kuj0k

∥∥∥.
This together with (12.10) provides a contradiction if

K > (9n] + 1)/2 and M/2 > 8n] + 1.

Thus, for all 1 ≤ j ≤ J(~), the {ũjk}Count(H(~),Ωj(~))
k=1 as above are linearly independent.

An application of Proposition 9.1(2) yields the conclusion.
2. For this proof we treat Ω = [l, r]+ i[−c, 0] as a large box Ω+ as above. If the smaller

box is designated by Ω− = [l̃, r̃] + i[−c̃, 0] we thus have

l = l̃ − ~−N
√
c̃, r = r̃ + ~−N

√
c̃, c = ~−N

√
c̃,

or, in other words, Ω− = [l + c, r − c] + i[−~2Nc2, 0] as in the theorem. By Remark 12.6
cutoff eigenfunctions of J are quasimodes of H with the same type of residuals as above.
It follows as in part 1 that Count(J ,Ω−) ≤ Count(H,Ω).
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Proof of Theorem 5.7. We divide the proof into two steps as in the proof of Theorem 5.6,
establishing the two estimates. This time around, however, since R1 ≤ R′0 it is necessary
to argue as in the proof of Theorem 5.5. Specifically, using Proposition 11.1 we propagate
the estimate in Lemma 12.5 to the whole of Rn \B(0, R0) to obtain

‖(H − lj1)χuj)‖+ ‖uj − χuj‖ ≤ C~−(7n]+3)/2
√
c(~) +O(~∞).

Using this we argue as in the proof of Theorem 5.6.

A. Auxiliary results

A.1. Meromorphic extension. We prove Proposition 4.4; a similar reasoning can be
found in [56, Theorem 2.2].

Proof of Proposition 4.4. From the second resolvent identity it follows that, for z ∈ ρ(H),

1B(R0)R(z) = 1B(R0)R(i) + 1B(R0)R(z)(iI − zI)R(i).

In view of the hypothesis in (4.1), 1B(R0)R(i) is compact and therefore 1B(R0)R(z) is
compact as an operator on H. Moreover, 1B(R0)R(z) is compact if and only if its adjoint
R(z)1B(R0) is compact. As a consequence of the Rellich–Kondrashov embedding theorem
[1, Theorem 6.2] the operator 1B(R0,R) : H2(Rn\B(0, R0))⊗C2 → L2(Rn\B(0, R0))⊗C2,
with B(0, R0, R) = {x : R0 < |x| < R}, is compact for any R ∈ (R0,∞). It follows that for
any such R the operators 1B(0,R)R(z) and R(z)1B(R) are compact on H for all z ∈ ρ(H)
and thus so are the cutoff resolvents χR(z) = χ1B(0,R)R(z) and R(z)χ = R(z)1B(R)χ

provided R is such that suppχ ⊂ B(0, R). Let χ0, χ1, χ2 ∈ C∞0 (Rn) with 1B(0,R′0) ≺ χ0 ≺
χ1 ≺ χ2. For z, z0 ∈ C+, define Q1,Q2 : H → D by

Q1(z) = (1− χ0)R0(z)(1− χ1), Q2(z0) = χ2R(z0)χ1.

By straightforward computations

(H − zI)Q1 = (1− χ1) + ~2[∆⊗ I,χ0]R0(z)(1− χ1)

=: (1− χ1) +K1(z),

(H − zI)Q2 = χ1 + χ2(z0I − zI)R(z0)χ1 + [H0,χ2]R(z0)χ1

=: χ1 +K2(z, z0).

It is well-known [34, Section 1.6] that R0(z) extends analytically to covering surfaces
as in the statement of the proposition, so for fixed z0 ∈ iR+ the operators Kj(z) are
analytic on the relevant surface. Since [∆⊗I,χj ] = (2(∇χj)·∇+(∆χj))⊗I are first order
differential operators with C∞0 coefficients they take bounded sequences (uj) ⊂ H2(Rn \
B(0, R0))⊗C2 to sequences bounded in H1(Rn \B(0, R0))⊗C2 and any such sequence
has a convergent subsequence in L2(Rn \ B(0, R0)) ⊗ C2 by the Rellich–Kondrashov
embedding theorem. Therefore

[∆⊗ I,χj ] : H2(Rn \B(0, R0))⊗ C2 → L2(Rn \B(0, R0))⊗ C2, j = 0, 2,

are compact operators. This implies that K1(z) is compact. Moreover, from

[R0,χ2]R(z0)χ1 = [H0,χ2](1− χ0)R(z0)χ1
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where (1 − χ0)R(z0) ∈ B(H, H2(Rn \ B(0, R′0)) ⊗ C2) and the compactness of cutoff
resolvents we obtain compactness of K2(z, z0) as well.

By selfadjointness, the spectral theorem and the definition of ‖ · ‖D (see Section 4.1)
we have

R(z0) =

{
O(|z0|−1) : H → H
O(1) : H → D

so that

(1− χ0)R(z0) =

{
O(|z0|−1) : H → L2(Rn \B(0, R0))⊗ C2

O(1) : H → H2(Rn \B(0, R0))⊗ C2.

By standard interpolation, we obtain the bound

(1− χ0)R(z0) = O(|z0|−1/2) : H → H1(Rn \B(0, R0))⊗ C2.

With K(z, z0) := K1(z) + K2(z, z0) we see that K(z0, z0) = O(|z0|−1/2) : H → H so
for Im z0 = |z0| sufficiently large (1 +K(z0, z0))−1 exists in B(H). With such z0 we can
apply analytic Fredholm theory with respect to z to see that (1 +K(z, z0))−1 exists in
the complement of a discrete set on surfaces as in the proposition. Since

R(z) = (Q1(z) +Q2(z0))(1 +K(z, z0))−1 (A.1)

this inverse only fails to exist when R(z) does, meaning spec(H)∩R− = specd(H)∩R−.
This proves the first part of the proposition.

From (A.1) we see that in order to extend R(z) : Hcomp → Dloc meromorphically
we must extend (1 +K)−1 : Hcomp → Hcomp. Unfortunately Fredholm theory does not
apply since Hcomp is not even a Banach space, so we resort to a little trick as follows:
Pick χ � χ2 so that χK = K, i.e. (1− χ)K = 0. From this we obtain the identities

(1 +K(1− χ))−1 = 1−K(1− χ),

1 +K = (1 +K(1− χ))(1 +Kχ),

which together imply

(1 +K)−1 = (1 +Kχ)−1(1−K(1− χ)).

Thus it suffices to extend (1 +Kχ)−1 : H → H. Applying analytic Fredholm theory as
before we arrive at the extension

R(z) = (Q1(z) +Q2(z0))(1 +K(z, z0)χ)−1(1−K(z, z0)(1− χ)).

A.2. Properties of reference operator

Proposition A.1. The operator H](~) : H] → H] is selfadjoint and its spectrum is
purely discrete.

Proof. Let u ∈ D((H])∗) ⊃ D(H]) and put (H])∗u = v. For all φ ∈ C∞0 (Tn\B(0, R′0))⊗
C2 we have

〈Q]u,φ〉 = 〈u,Q]φ〉 = 〈u,H]φ〉 = 〈(H])∗u,φ〉
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so that Q]u = v in Tn \B(0, R′0) in the distributional sense. Since v|Tn\B(0,R′0)
∈ L2(T \

B(0, R′0))⊗ C2 it follows by standard elliptic estimates [2, (3.21)] that

u|Tn\B(0,R′0)
∈ H2

loc(Tn \B(0, R′0))⊗ C2,

and by compactness we see that the exterior part of u belongs to D]. For the interior
part of u it suffices to consider u with u = χu (with χ as in (4.5)) for which

〈u,Hφ〉 = 〈u,H]φ〉 = 〈v,φ〉, φ ∈ D arbitrary,

since u and v have supports contained in B(0, R). Since we may also view u,v ∈ H
the selfadjointness of H implies u ∈ D and thus u ∈ D]. Now D((H])∗) ⊂ D(H]) in
conjunction with the fact that H] is symmetric means that H] is selfadjoint.

Now, let (vj) ⊂ H] be any bounded sequence and put uj = (H] + i1)−1vj ∈ D].
Then ((1−χ)uj) ⊂ H2(Tn)⊗C2 is also bounded and hence has a convergent subsequence
in H]. Moreover

(H + i1)χuj = [(−~2∆)⊗ I,χ]uj + χvj =: wj

so that (wj) is bounded. Thus, with χ̃ � χ, it follows from

χuj = (H + i1)−1χ̃wj

that also (χuj) has a convergent subsequence since (H + i1)−1χ̃ is compact (see the
proof of Proposition 4.4). Thus (uj) has a convergent subsequence, i.e. (H] + i1)−1 is
compact so that spec(H]) is purely discrete.

A similar result in the scalar valued setting goes back to [57].

B. Operator valued semiclassical maximum principle

To ensure that the paper is self-contained we include the proof of the following result.

Lemma B.1 (Operator valued maximum principle). Let 0 < ~ < 1 and 0 < `0 < `(~) <
r(~) < r0 < ∞. Suppose z 7→ A(z, ~) ∈ B(H) is an analytic operator valued function
defined in a neighbourhood of

Ω(~) := [`(~)− 2w(~), r(~) + 2w(~)] + i[−α(~)D−(~), D+(~)],

where 0 < D+(~) ≤ D−(~), 1 ≤ α(~) and D−(~)α(~) logα(~) ≤ w(~). If A(z, ~) satisfies

|〈A(z, ~)φ,ψ〉| ≤ eα(~) on Ω(~),

|〈A(z, ~)φ,ψ〉| ≤M(~) on [`(~)− 2w(~), r(~) + 2w(~)] + iD+(~),
(B.1)

for ‖φ‖ = ‖ψ‖ = 1 and some M(~) ≥ 1, then there exists h1 = h1(D−, D+, α) > 0
(independent of φ and ψ) such that

‖A(z, ~)‖B(H) ≤ e3M(~) ∀z ∈ Ω̃ := [`(~), r(~)] + i[−D−(~), D+(~)]

for ~ ∈ (0, ~1).
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Proof. We suppress dependence on ~ in this proof in order to simplify notation. Define
G(z) = 〈A(z, ~)φ,ψ〉 for normalized φ,ψ. By hypothesis,

|G(z)| ≤ eα(~) on Ω(~),

|G(z)| ≤M(~) on [`(~)− 2w(~), r(~) + 2w(~)] + iD+(~).
(B.2)

If we establish the statement of the lemma for the scalar valued function G(z), then an
application of the scalar valued result yields the result for A(z, ~). Let

g(z) = log |G(z)| − logM
Im z + αD−
αD− +D+

− α D+ − Im z

αD− +D+
. (B.3)

Since log |G(z)| = Re logG(z) we see that g(z) is a subharmonic function in a neighbour-
hood of Ω; more precisely, ∆g(z) = 2π

∑N
j=1 δ(z − zj) where δ stands for Dirac’s delta

and the zj ’s are the zeros of A(z) in Ω. So ∆g(z) ≥ 0, with equality if and only if A(z)
has no zeros in Ω.

By subharmonicity and (B.1) we have, for z ∈ Ω,

g(z) ≤
∫
∂Ω

P(z, y)g(y)|∂Ω dSy ≤ α
∫
∂Ω

P(z, y) dSy (B.4)

where P(z, y) is the Poisson kernel for Ω. We will use this to show g(z)≤1 for `≤Re z≤r.
On the lower horizontal side {z ∈ C : Im z = −αD−} we have

g(z) = log |G(z)| − α ≤ α− α = 0,

and similarly on the upper horizontal side we get

g(z) = log |G(z)| − logM
D+ + αD−
D+ + αD−

≤ logM − logM = 0,

so g ≤ 0 on both horizontal sides. Hence we see from the integral representation (B.4)
that we can restrict our attention to the case where y belongs to the vertical sides of Ω
and ` ≤ Re z ≤ r. To do so we apply Lemma 8.2 in [55]. That lemma tells us that for
“long domains”, e.g. complex regions of the form ΩR = [`, `+R] + i[r+ β] where R� 1
and 0 < β < π, we have PΩR(z, y) → dist(z, ∂ΩR)e−|z−y| as R → ∞ for y ∈ ∂ΩR and
z ∈ ΩR. To arrive at such a rectangle we make the change of variable z = (αD− +D+)ζ
and view f as defined on

Ω̂ =
[

`− w
αD− +D+

,
r + w

αD− +D+

]
+ i

[
− αD−
αD− +D+

,
D+

αD− +D+

]
.

It is easy to see that this is a long domain as defined above in the semiclassical limit ~→ 0.
Making the similar change of variable for y=y(η) we obtain from (B.4) the estimate

g(z) = g(z(ζ)) ≤ α
∫
∂bΩ P

(
(αD− +D+)ζ, (αD− +D+)η

)
(αD− +D+) dSη.

Here the integrand is exactly the Poisson kernel (1) for Ω̂ so, by the above mentioned

(1) Indeed, the argument is the same as for balls; if ∆u(z) = 0 in Ω and u(z) = v(z) on ∂Ω,

then for û(z) = u(kz), where k is a constant, we have ∆û(z) = 0 in bΩ and û(z) = v(kz) on ∂bΩ
where bΩ = kΩ. So if P(z, y) is the Poisson kernel for Ω then u(z) =

R
∂Ω
P(z, y)v(y) dSy whence

û(z) =
R

∂Ω
P(kz, y)v(y) dDy =

R
∂ bΩ P(kz, ky)v(ky)k dSy. So with bP(z, y) = kP(kz, ky) we have

û(z) =
R

∂ bΩ bP(z, y)û(y)|∂ bΩ dSy, which proves the claim.
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result, for ~� 1 we have

g(z) ≤ 2α dist(ζ, ∂Ω̂)e−|ζ−η| ≤ αe−|z−y|/(αD−+D+),

since the height of Ω̂ is 1 and dist(ζ, ∂Ω̂) ≤ 1/2.
For ` ≤ Re z ≤ r we have |z−y| ≥ 2w when y belongs to the vertical sides of Ω. Since

w ≥ D−α logα and αD− ≥ D− ≥ D+ we get

e−|z−y|/(αD−+D+) ≤ e−2w/(αD−+D+) ≤ α−2αD−/(αD−+D+) ≤ α−(αD−+D+)/(αD−+D+).

It follows that g(z) ≤ 1. If, in addition, − Im z ≤ D− then for the last term in (B.3) we
also have

α
D+ − Im z

αD− +D+
≤ α D+ +D−

αD− +D+
≤ 2αD−

αD−
= 2.

Since for Im z ≤ D+,

logM
Im z + αD−
αD− +D+

≤ logM,

it now follows from (B.3) that

log |G(z)| ≤ 1 + logM + 2,

which is to say that |G(z)| ≤Me3.

For our purposes we prefer to state the above lemma in the following version (which
essentially comes from the scalar valued formulation in [66]):

Corollary B.2. Let 0 < ~ < 1 and 0 < `0 < `(~) < r(~) < r0 <∞. Suppose A(z, ~) is
an analytic operator valued function defined in a neighbourhood of

Ω(~) := [`(~)− 2w(~), r(~) + 2w(~)] + i

[
−A~−n

]

log
1

D(~)
D(~), D(~)

]
(B.5)

where e−B/~ < D(~) < 1/2, B > 0 and 2An]~−n] log 1
~ log 1

D(~)D(~) ≤ w(~). If, for
normalized φ, ψ, the function A(z, ~) satisfies

|〈A(z, ~)φ,ψ〉| ≤ eA~−n
]

log(1/D(~)) on Ω(~),

|〈A(z, ~)φ,ψ〉| ≤ 1
Im z

on Ω(~) ∩ {z ∈ C : Im z > 0},
(B.6)

then there exists ~1 > 0 (independent of φ, ψ) such that for ~ ≤ ~1,

‖A(z, ~)‖B(H) ≤
e3

D(~)
for all z ∈ Ω̃ := [`(~), r(~)] + i[−D(~), D(~)].

Proof. Again we suppress ~-dependence. Let us apply Lemma B.1 with the choices α =
A~−n] log(1/D), D− = D+ =: D and M = 1/D. The only requirement worth a comment
is to show w ≥ D−α logα, which clearly follows if

2An]~−n
]

log
1
~

log
1

D(~)
D(~) ≥ AD~−n

]

log
(

1
D

)
log
(
A~−n

]

log
(

1
D

))
.

Since the latter inequality is equivalent to 1 ≥ A~n] log(1/D) which easily follows from
the assumption D > e−B/~ provided ~ is sufficiently small, the corollary is proved.

We also need the following lemma (see [59, Lemma 3]) and its spin-off.
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Lemma B.3. Let C∞0 (Rn) 3 χ, χ̃ � 1K , where K b Rn. Let Rχ(z, h) = χR(z, h)χ̃ have
a pole z0(~), i.e.,

Rχ(z, h) = A0(z) +
N∑
j=1

(z − z0)−jA−j(h), (B.7)

where A0(z) is analytic near z0. Let {χj} be cutoff functions such that χj ∈ C∞0 (Rn),
and

1K ≺ χ1 ≺ χ2 ≺ · · · ≺ χN−1 ≺ χ.
Then RanA−j ⊂ RanA−1 for j = 2, . . . , N , and

A−jχ1 = A−1(H(h)− z01)χj−1(H(h)− z01)χj−2 · · ·χ2(H(h)− z01)χ1.

Proof. We suppress dependence on ~. Multiply (B.7) by H − z1 from the right on both
sides of the expansion. On the left we obtain

Rχ(H − z1) = χ(H − z1)−1χ̃H −Rχz = χ(H − z1)−1(Hχ̃+ [χ̃,H])−Rχ

= χχ̃+ χRχ(z)[χ̃,H],

while on the right-hand side we get (add and subtract z0),

A0(H − z1) +
∑
{(z − z0)jA−j(z − z0)− (z − z0)−j+1A−j}

= A0(H − z1)−A−1 +
∑

(z − z0)−j(A−j(H − z0)−A−(j+1)).

From multiplication by χl on the right and A−(N+1) = 0 using the fact that the left-hand
side has no singular terms, we deduce A−j(H − z0)χl = A−(j+1)χl. So, by induction,

A−jχ1 = A−1(H(h)− z0)χj−1(H(h)− z0)χj−2 · · ·χ2(H(h)− z0)χ1.

This proves the claim.

Corollary B.4. Let χ ≺ χ̃ be C∞0 (Rn) cutoff functions. Then the range of the singular
part in the Laurent expansion of the cutoff resolvent χR(z, ~)χ is the same as the range
of the residue A−1 (cf. Lemma B.3).

Proof. Since χ̃ ≺ χ we can choose χ1 = χ in Lemma B.3. Multiply by χ from the right
in (B.7) to see that

χR(z, ~)χ = A0(z, ~) +
N∑
k=1

(z − z0(~))−kA−1(~)Qk(~),

where the Qk(~) are unbounded operators (however A−1(~)Qk(~) are bounded opera-
tors). This shows that the range of the singular part of the cutoff resolvent is a subset of
A−1(~)H. Since the reverse inclusion is obvious the corollary is proved.
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[52] R. Santra, Why complex absorbing potentials work: a discrete-variable representation per-

spective, Phys. Rev. A 74 (2006), 034701-1.

[53] T. Seideman and W. H. Miller, Quantum mechanical reaction probabilities via a discrete

variable representation-absorbing boundary condition Green’s function, J. Chem. Phys. 97

(1992), 2499–2514.

[54] —, A trace formula and review of some estimates for resonances, in: Microlocal Analysis

and Spectral Theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci. 490,

Kluwer, Dordrecht, 1997, 377–437.
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