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On finite groups of isometries of handlebodies in arbitrary
dimensions and finite extensions of Schottky groups

by

Mattia Mecchia and Bruno P. Zimmermann (Trieste)

Abstract. It is known that the order of a finite group of diffeomorphisms of a
3-dimensional handlebody of genus g > 1 is bounded by the linear polynomial 12(g − 1),
and that the order of a finite group of diffeomorphisms of a 4-dimensional handlebody (or
equivalently, of its boundary 3-manifold), faithful on the fundamental group, is bounded
by a quadratic polynomial in g (but not by a linear one). In the present paper we prove
a generalization for handlebodies of arbitrary dimension d, uniformizing handlebodies by
Schottky groups and considering finite groups of isometries of such handlebodies. We prove
that the order of a finite group of isometries of a handlebody of dimension d acting faith-
fully on the fundamental group is bounded by a polynomial of degree d/2 in g if d is even,
and of degree (d+1)/2 if d is odd, and that the degree d/2 for even d is best possible. This
implies analogous polynomial Jordan-type bounds for arbitrary finite groups of isometries
of handlebodies (since a handlebody of dimension d > 3 admits S1-actions, there does not
exist an upper bound for the order of the group itself).

1. Introduction. All finite group actions in the present paper will be
faithful, smooth and orientation-preserving, and all manifolds will be ori-
entable. We study finite group actions of large order on handlebodies of
dimension d ≥ 3 and genus g > 1.

An orientable handlebody V d
g of dimension d and genus g can be defined

as a regular neighbourhood of a finite graph with free fundamental group of
rank g embedded in the sphere Sd; alternatively, it is obtained from the ball
Bd by attaching along its boundary g copies of a handle Bd−1 × [0, 1] in an
orientable way, or as the boundary-connected sum of g copies of Bd−1×S1.
The boundary of V d

g is a closed manifold Hd−1
g which is the connected sum

of g copies of Sd−2 × S1.
By [Z1] the order of a finite group of diffeomorphisms of a 3-dimensional

handlebody V 3
g of genus g > 1 is bounded by the linear polynomial 12(g−1)
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(see also [MMZ, Theorem 7.2], [MZ]); moreover, a finite groupG acting faith-
fully on V 3

g acts faithfully also on the fundamental group. On the other hand,

since the closed 3-manifold H3
g admits S1-actions, it has finite cyclic group

actions of arbitrarily large order acting trivially on the fundamental group,
and the same is true for handlebodies V d

g of dimensions d > 3. However it

is shown in [Z4] that if a finite group of diffeomorphisms of H3
g = ∂V 4

g acts
faithfully on the fundamental group, then the order of the group is bounded
by a quadratic polynomial in g (but not by a linear one), and hence the
same holds for 4-dimensional handlebodies V 4

g . As a consequence, each fi-

nite group G acting on H3
g or V 4

g has a finite cyclic normal subgroup G0 (the
subgroup acting trivially on the fundamental group) such that the order of
G/G0 is bounded by a quadratic polynomial in g (see [Z4]).

There arises naturally the question (asked in [Z4]) whether there are
analogous polynomial bounds for the orders of finite groups acting on han-
dlebodies V d

g of arbitrary dimension d. Whereas finite group actions in di-
mension 3 are standard by the recent geometrization of such actions after
Thurston and Perelman, the situation in higher dimensions is more compli-
cated and not well-understood. Hence one is led to consider some kind of
standard actions also in higher dimensions. We will do so by uniformizing
the handlebodies V d

g by Schottky groups (groups of Möbius transformations

of the ball Bd acting by isometries on its interior, the Poincaré model of
hyperbolic space Hd), thus realizing their interiors as complete hyperbolic
manifolds, and then considering finite groups of isometries of such hyper-
bolic (Schottky) handlebodies (see Section 2 for the definition of Schottky
groups).

Our main results are as follows.

Theorem 1. Let G be a finite group of isometries of a hyperbolic han-
dlebody V d

g of dimension d ≥ 3 and of genus g > 1 which acts faithfully
on the fundamental group. Then the order of G is bounded by a polynomial
of degree d/2 in g if d is even, and of degree (d + 1)/2 if d is odd. The
degree d/2 is best possible in even dimensions, whereas in odd dimensions
the optimal degree is at least (d− 1)/2.

By hypothesis such a group G injects into the outer automorphism group
of the fundamental group of V d

g , a free group of rank g. We note that by [WZ]
the optimal upper bound for the order of an arbitrary finite subgroup of
the outer automorphism group Out(Fg) of a free group Fg of rank g > 2
is 2gg! (i.e., exponential in g). It is shown in [Z2] that every finite subgroup
of Out(Fg) can be induced (or realized in the sense of the Nielsen realiza-
tion problem) by an isomorphic group of isometries of a handlebody V d

g of
sufficiently high dimension d.
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Without the hypothesis that G acts faithfully on the fundamental group,
the proof of Theorem 1 gives the following polynomial Jordan-type bound
for finite groups of isometries of V d

g .

Corollary. Let G be a finite group of isometries of a hyperbolic han-
dlebody V d

g of genus g > 1, and let G0 denote the normal subgroup of G

acting trivially on the fundamental group. Then:

(i) G0 is isomorphic to a subgroup of the orthogonal group SO(d − 2),
and the order of the factor group G/G0 is bounded by a polynomial
as in Theorem 1.

(ii) G has a normal abelian subgroup (a subgroup of G0) whose index
in G is bounded by a polynomial as in Theorem 1.

By the classical Jordan bound, each finite subgroup G of a complex linear
group GL(d,C) has a normal abelian subgroup whose index in G is bounded
by a constant depending only on the dimension d (see [C] for the optimal
bound for each d; see also [Z5] and its references for generalizations of the
Jordan bound in the context of diffeomorphism groups of manifolds).

In more algebraic terms, Theorem 1 is equivalent to the following:

Theorem 2. Let E be a group of Möbius transformations of Sd−1 which
is a finite effective extension of a Schottky group Sg of rank g > 1. Then
the order of the factor group E/Sg is bounded by a polynomial in g as in
Theorem 1.

Here effective extension means that no element of E acts trivially on Sg
by conjugation. By [Z2] every finite effective extension of a Schottky group
can be realized by a group of Möbius transformations in some sufficiently
high dimension d.

As a consequence of the geometrization of finite group actions in di-
mension 3, using the methods of [RZ, Section 2] every finite group G of
diffeomorphisms of a 3-dimensional handlebody V 3

g can be shown to be con-

jugate to a group of isometries, uniformizing V 3
g by a suitable Schottky group

(which depends on G). This is no longer true in higher dimensions; however,
if G is a finite group of diffeomorphisms of a 4-dimensional handlebody V 4

g

then, uniformizing V 4
g by a suitable Schottky group, G acts also as a group

of isometries of V 4
g inducing the same action on the fundamental group (by

applying the methods of [Z4] to the boundary 3-manifold H3
g of V 4

g ). This
raises naturally the following:

Questions. (i) Is every finite group G of diffeomorphisms of a handle-
body V d

g isomorphic to a group of isometries of a hyperbolic handlebody V d
g

(inducing the same action on the fundamental group)?
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(ii) Is every finite group G of diffeomorphisms of a ball Bd (i.e., a han-
dlebody of genus zero) or of a sphere Sd−1 isomorphic to a subgroup of the
orthogonal group SO(d)?

In general, such a finite group G of diffeomorphisms is not conjugate to
a group of isometries of a handlebody resp. to a group of orthgonal maps;
we note that (ii) is not true for finite groups G of homeomorphisms of Bd

or Sd−1 (see [GMZ, Section 7]).

In Section 2 we prove the first part of Theorem 1. In Section 3 we present
examples of finite isometric group actions on handlebodies which show that
the degree d/2 of the polynomial bound in Theorem 1 is best possible in
even dimensions (even for finite cyclic groups G), and that a lower bound
for the degree in odd dimensions is (d−1)/2. Note that for d = 3 the bound
(d+ 1)/2 is not best possible since it gives a quadratic bound instead of the
actual linear bound 12(g − 1) (so maybe for all odd dimensions d ≥ 3 the
optimal degree is (d− 1)/2, but this remains open at present).

2. Schottky groups and the proof of Theorem 1. A Schottky
group Sg of rank or genus g is a group of Möbius transformations acting
on the sphere Sd−1 = ∂Bd defined in the following way (analogously to the
Schottky groups in dimension 2 acting on S2, see [L], [M] or [R, p. 584]; see
also [Z2]). Let S1, T1, . . . , Sg, Tg be spheres of dimension d−2 in Sd−1 which
bound disjoint balls B1, D1, . . . , Bg, Dg of dimension d − 1; choose Möbius
transformations f1, . . . , fg such that fi(Si) = Ti and fi maps the exterior
of Bi to the interior of Di. Then it is easy to see that f1, . . . , fg are free
generators of a free group Sg of Möbius transformations. The complement
in Sd−1 of the interiors of the balls Bi and Di is a fundamental domain
for the action of Sg on Sd−1 − Λ(Sg) where Λ(Sg) denotes the set of limit
points of Sg in Sd−1 (a Cantor set). In this definition, one may consider
round spheres S1, T1, . . . , Sg, Tg (thus defining a so-called classical Schot-
tky group), or just topological spheres (and it is known that non-classical
Schottky groups exist); however, this is not relevant for the present paper, in
particular in the examples constructed in Section 3 the Schottky subgroups
will always be classical.

The group of Möbius transformations of Sd−1 extends naturally to the
interior of the ball Bd (“Poincaré extension”) where it becomes the group
of orientation-preserving isometries of the Poincaré model of hyperbolic
space Hd. The action of Sg is free and properly discontinuous on the inte-
rior Hd of Bd, and a fundamental domain for this action is the region of Hd

bounded by all hyperbolic hyperplanes defined by the spheres Si and Ti (i.e.,
half-spheres of dimension d−1 orthogonal to Sd−1 along these spheres). The
quotient (Bd−Λ(Sg))/Sg is a handlebody V d

g whose interior Hd/Sg has the
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structure of a complete hyperbolic manifold, and we say that the Schottky
group Sg uniformizes the handlebody V d

g . When speaking of a finite group
G of isometries of a handlebody V d

g we mean that V d
g can be uniformized

by a Schottky group Sg such that G acts by hyperbolic isometries on the
interior of V d

g .

Let V d
g be a handlebody uniformized by a Schottky group Sg. Let G

be a finite group of isometries of V d
g which induces a faithful action on

the fundamental group. The group of all lifts of elements of G to the uni-
versal covering Bd − Λ(Sg) of V d

g defines a group E of Möbius transfor-

mations of Bd, with factor group E/Sg ∼= G, so we have a finite exten-
sion

1→ Sg ↪→ E → G→ 1;

by general covering space theory, this extension is effective since G acts
faithfully on the fundamental group of V d

g (isomorphic to the group Sg of
covering transformations).

Lemma 1. The extension 1→ Sg ↪→ E → G→ 1 is effective if and only
if E has no non-trivial finite normal subgroups.

Proof. Let F be a finite normal subgroup E. Since the intersection of F
with the normal torsionfree subgroup Sg of E is trivial, the normal subgroups
F and Sg of E commute elementwise (any commutator fsf−1s−1 of elements
f ∈ F and s ∈ Sg is an element of both F and Sg and hence trivial). Hence
if the extension is effective, F has to be trivial.

Conversely, suppose that every finite normal subgroup of E is trivial. The
subgroup of elements of the finite extension E of Sg inducing by conjugation
the trivial automorphism of Sg is clearly finite (since the centre of Sg is
trivial), normal and hence trivial, so the extension is effective.

This completes the proof of Lemma 1.

As a consequence of Stalling’s structure theorem for groups with in-
finitely many ends, a finite extension E of a free group is the fundamental
group π1(Γ,G) of a finite graph of finite groups (Γ,G) (see [KPS]); here
Γ denotes a finite graph, and to its vertices v and edges e are associated
finite vertex groups Gv and edge groups Ge, with inclusions of the edge
groups into the adjacent vertex groups. The fundamental group π1(Γ,G)
of the finite graph of finite groups (Γ,G) is the iterated free product with
amalgamation and HNN-extension of the vertex groups amalgamated over
the edge groups, first taking the iterated free product with amalgamation
over a maximal tree of Γ , and then associating an HNN-generator to each
of the remaining edges. We note that each finite subgroup of E = π1(Γ,G) is
conjugate to a vertex group of (Γ,G), and that the vertex groups are maxi-
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mal finite subgroups of E (see [ScW], [Se] or [Z3] for the standard theory of
graphs of groups and their fundamental groups).

We will assume in the following that the graph of groups (Γ,G) has no
trivial edges, i.e. no edges with two different vertices such that the edge group
coincides with one of the two vertex groups (by collapsing trivial edges, i.e.
amalgamating the two vertex groups into a single vertex group); we say that
such a graph of groups is in normal form.

We denote by

χ(Γ,G) =
∑ 1

|Gv|
−
∑ 1

|Ge|
the Euler characteristic of the graph of groups (Γ,G) (the sum is taken over
all vertex groups Gv resp. edge groups Ge of (Γ,G)); then, by multiplicativity
of Euler characteristics under finite coverings of graphs of groups,

g − 1 = −χ(Γ,G)|G|
(see [ScW] or [Z3]); note that this is positive since we are assuming that
g > 1.

The finite extension E = π1(Γ,G) of the Schottky group Sg is a group of
Möbius transformations of Bd and acts as a group of hyperbolic isometries
on its interior Hd. Each finite group of isometries of hyperbolic space Hd has
a global fixed point in Hd and is conjugate to a finite group of orthogonal
transformations of Bd (which are exactly the isometries of Hd which fix the
origin in Bd). In particular, each finite vertex group Gv of E = π1(Γ,G)
has a fixed point in Hd and is isomorphic (conjugate) to a subgroup of the
orthogonal group SO(d), and different vertex groups of (Γ,G) have different
fixed points (since the vertex groups are maximal finite subgroups of E and
the action of E is properly discontinuous in Hd); also, if a vertex group fixes
a point in Hd then it is the maximal finite subgroup of E fixing this point.

Consider a non-closed edge e of (Γ,G), i.e. with two distinct vertices v1
and v2, with edge group Ge and vertex groups G1 and G2 (which we consider
as subgroups of E), with Ge = G1 ∩ G2. Let P1 6= P2 be fixed points of
G1 resp. G2 in Hd; then P1 and P2 define a hyperbolic line L which is fixed
pointwise by the edge group Ge = G1∩G2. The line L intersects Sd−1 = ∂Bd

in two points which are fixed by Ge; moreover, no subgroup of G1 larger than
Ge can fix one of these two points since otherwise it would fix pointwise the
line L and hence P2, so it would also be contained in G2.

Now let e be a closed edge of (Γ,G), i.e. an edge with only one vertex v.
There are two inclusions of the edge group Ge into the vertex group Gv

defining two subgroups Ge and G′e of Gv; denoting by t an HNN-generator
corresponding to the edge e, we have t−1G′et = Ge and Ge = Gv ∩ (t−1Gvt).
Note that t has infinite order, so it does not fix any point in Hd. Let P be a
fixed point of the finite subgroup Gv of E in Hd; then t−1Gvt fixes the point
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t(P ) 6= P , and its subgroup Ge = t−1G′et fixes the hyperbolic line L defined
by P and t(P ). As before, the hyperbolic line L intersects Sd−1 = ∂Bd in
two points which are fixed by Ge, and Ge is the maximal subgroup of Gv

fixing these two points.
Note also that, since Ge fixes a point in Sd−1, it is in fact isomorphic

(conjugate) to a subgroup of the orthogonal group SO(d−1). Summarizing,
we have:

Lemma 2. Let Gv ⊂ E be a vertex group of the graph of groups (Γ,G),
and let Ge ⊂ Gv be an adjacent edge group. Then Gv has a global fixed point
in Hd, and Ge has a global fixed point in Sd−1 = ∂Bd which is not fixed by
any other element of Gv. In particular, every vertex group is isomorphic to a
subgroup of the orthogonal group SO(d), and every edge group is isomorphic
to a subgroup of SO(d− 1).

We also need the following lemma which is contained in [Z4, proof of
Theorem 1]; since its proof is short, we present it for the convenience of the
reader. Let χ = χ(Γ,G) denote the Euler characteristic of (Γ,G); note that
−χ > 0 since g > 1, and that for any graph of groups in normal form one
has −χ ≥ 0 unless the graph consists of a single vertex.

Lemma 3. Let e be an edge of Γ . Denote by n the order of G and by
a the order of the edge group Ge. Then

n

a
≤ 6(g − 1).

Proof. Suppose first that e is a closed edge. If e is the only edge of (Γ,G)
then

−χ ≥ 1

a
− 1

2a
=

1

a
, g − 1 = −χn ≥ n

2a
,

n

a
≤ 2(g − 1).

If e is closed and not the only edge then

−χ ≥ 1

a
, g − 1 = −χn ≥ n

a
,

n

a
≤ g − 1.

Suppose that e is not closed. If e is the only edge of (Γ,G) then both
vertices of e are isolated and

−χ ≥ 1

a
− 1

2a
− 1

3a
=

1

6a
, g − 1 = −χn ≥ n

6a
,

n

a
≤ 6(g − 1).

If e is not closed, not the only edge and has exactly one isolated vertex
then

−χ ≥ 1

a
− 1

2a
=

1

2a
, g − 1 = −χn ≥ n

2a
,

n

a
≤ 2(g − 1).

Finally, if e is not closed, not the only edge and has no isolated vertex then

−χ ≥ 1

a
, g − 1 = −χn ≥ n

a
,

n

a
≤ g − 1.

Concluding, in all cases the inequality of Lemma 3 holds.
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Proof of Theorem 1. Let e be any edge of the finite graph of finite groups
(Γ,G) given by the G-action. By Lemma 2, Ge has a global fixed point
in Sd−1 = ∂Bd and is isomorphic to a subgroup of the orthogonal group
SO(d−1). By the classical Jordan bound for subgroups of GL(d−1,C), the
edge group Ge has an abelian subgroup A1 whose index in Ge is bounded
by a constant c depending only on the dimension. We will find a polynomial
upper bound in g for the order a1 of the abelian group A1; this will imply a
polynomial bound of the same degree also for the order a ≤ ca1 of Ge, and
finally for the order n of G, since, by Lemma 3,

n ≤ 6(g − 1)a ≤ c 6(g − 1)a1.

Let E1 be the subgroup of E generated by Sg and A1 (which is again
an effective extension of Sg, with factor group A1). Then also E1 is the
fundamental group of a finite graph of finite groups in normal form, which
we denote again by (Γ,G). Since the finite group A1 has a fixed point in Hd,
up to conjugation it is the vertex group Gv of some vertex v of (Γ,G), and
its fixed point set in Sd−1 is a sphere Sd1 of dimension d1 ≥ 0 (since Ge has
a global fixed point in Sd−1). Since (Γ,G) has no trivial edges and E1 has no
non-trivial finite normal subgroups by Lemma 1, some edge adjacent to v
has an edge group A2 of order a2 < a1 (i.e., properly contained in A1). By
Lemma 3,

a1 ≤ 6(g − 1)a2.

By Lemma 2, the edge group A2 has a fixed point in Sd−1 = ∂Bd which is
not fixed by any other element of the vertex group A1, hence the fixed point
set of A2 in Sd−1 is a sphere Sd2 of dimension d2 > d1.

We iterate the construction and consider the subgroup E2 of E1 gener-
ated by Sg and A2, obtaining an edge group A3 for E2 which fixes a sphere
Sd3 of dimension d3 > d2 in Sd−1, of order

a2 ≤ 6(g − 1)a3.

Hence, after at most d− 1 steps, we end up with a trivial edge group fixing
all of Sd−1. Collecting, we obtain the polynomial bound

n ≤ c 6d(g − 1)d

of degree d in g for the order of G.
To obtain a polynomial bound of the degree given in Theorem 1 we ar-

gue as follows. Suppose that the fixed point set of the normal subgroup A2

of A1 is a sphere Sd1+1 of dimension d2 = d1 + 1; note that Sd1+1 is in-
variant under the action of A1. Let A′1 denote the subgroup of index 1 or 2
of A1 which acts orientation-preservingly on Sd1+1. Then A′1 fixes Sd1+1

pointwise since otherwise the fixed point set of A′1 would be a sphere of
codimension at least 2 in Sd1+1; this is not possible since already A1 has
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fixed point set Sd1 of dimension d1. Continuing now with A′1 in the place
of A1, we can assume that the dimensions di increase by at least 2 in each
step. Hence the number of steps is at most d/2 if d is even, and (d+ 1)/2 if
d is odd, and this gives the degree of the polynomial upper bound as stated
in Theorem 1.

This completes the proof of the first part of Theorem 1; the second
part on the optimality of the degree d/2 for even g and the lower bound
(d− 1)/2 for odd g will follow from the examples of finite group actions on
handlebodies constructed in the next section.

Proof of the Corollary. The proof proceeds along the lines of the proof
of Theorem 1, with the following difference. In the proof of Theorem 1 we
considered the sequence of abelian subgroups A1, A2, . . . of G; after finitely
many steps, this ended with the trivial group, using the effectiveness of
the corresponding extensions E1, E2, . . . of Sg. Without effectiveness, the
sequence A1, A2, . . . of G ends with an abelian group Am which is a normal
subgroup of the corresponding extension Em; in particular, Am acts trivially
on Sg and is a subgroup of G0. The index of Am in G is bounded by a
polynomial as in the proof of Theorem 1, hence also the index of G0 in G is
bounded by such a polynomial.

The group G0 lifts to an isomorphic normal subgroup of the extension
E of Sg, which we also denote by G0. The finite group G0 has a fixed point
in Hd; we can assume that it fixes the origin O ∈ Bd and hence is iso-
morphic to a subgroup of SO(d). Since G0 is normal in E, it is contained
(up to conjugation) in each edge group of the graph of groups (Γ,G). By
Lemma 2, G0 has a global fixed point also in Sd−1 = ∂Bd, hence it fixes
pointwise a great sphere of dimension at least zero in Sd−1, and a linear
subspace B of dimension at least 1 in Bd. Since G0 commutes elementwise
with Sg, the Schottky group Sg acts on B. Since the action of Sg is properly
discontinuous and g > 1, B has dimension at least 2. Now G0 acts also on
the orthogonal complement of B in O ∈ Bd, a linear subspace of codimen-
sion at least 2, so G0 is isomorphic to a subgroup of the orthogonal group
SO(d− 2).

Finally, by the classical Jordan bound for linear groups, the subgroup G0

of SO(d−2) contains a normal abelian subgroup whose index is bounded by
a constant depending only on the dimension d. By taking the intersection
of this normal abelian subgroup with all isomorphic normal subgroups of
G0 we obtain a characteristic abelian subgroup A of G0 whose index in G0

is also bounded by a constant depending only on the dimension d. Hence
the indices of A and G0 in G are bounded by polynomials in g of the same
degree.

This completes the proof of the Corollary.
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3. Examples. We construct isometric actions of finite groups G on han-
dlebodies which realize the lower bounds for the degrees of the polynomial
bounds in Theorem 1. Specifically, we prove the following:

Proposition. For a fixed k ≥ 2 and all m ≥ 2, the finite group
G = (Zm)k admits an action, faithful on the fundamental group, on a han-
dlebody V d

g of genus g = mk − k and dimension d = 2k and 2k + 1; in

particular, the order n = mk of G is given by the polynomial

n = (g + k)k/kk = (1 + g/k)k

of degree k = d/2 in g if d is even, and k = (d− 1)/2 if d is odd.

Proof. For k > 1, let G = C1 × · · · × Ck
∼= (Zm)k, of order n = mk, be

the product of k cyclic groups Ci
∼= Zm of order m. Choose an orthogonal

action of G on the closed ball B2k ⊂ R2k of dimension d = 2k as follows. If
we decompose R2k = P1×· · ·×Pk as the product of k orthogonal planes Pi,
then each Ci acts on Pi faithfully by rotations and trivially on the k − 1
orthogonal planes.

Define a finite graph of finite groups (Γ,G) as follows. The graph Γ is
star-shaped with one central vertex v with vertex group Gv = G = C1 ×
· · · × Ck and k non-closed edges e1, . . . , ek each having v as a vertex, with
edge groups

Ge1 = C2×· · ·×Ck, Ge2 = C1×C3×· · ·×Ck, . . . , Gek = C1×· · ·×Ck−1

(i.e., exactly Ci is missing in Gei). Hence Γ has k+ 1 vertices, by definition
all with vertex group G = C1 × · · · × Ck, and the Euler characteristic of
(Γ,G) is

χ = (k + 1)
1

mk
− k 1

mk−1 .

There is an obvious projection of the fundamental group E = π1(Γ,G)
of the graph of groups (Γ,G) onto G; its kernel is a free group Fg of some
rank g, and we have an extension

1→ Fg ↪→ E → G→ 1,

which by construction of (Γ,G) is effective (has no non-trivial finite normal
subgroups, see Lemma 1). The rank g is given by

g − 1 = (−χ)n = (−χ)mk = mk − (k + 1), g = mk − k,
hence

n = mk = (g + k)k/kk,

which is a polynomial of degree k = d/2 in g and gives the maximal possi-
bility for the degree in Theorem 1 for even dimensions d.

We realize E = π1(Γ,G) as a group of Möbius transformations of Bd,
d = 2k, such that its subgroup Fg corresponds to a Schottky group Sg.
Then the quotient (Bd − Λ(Sg))/Sg is a handlebody V d

g of genus g, and E
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projects to an action of the factor group E/Sg ∼= G on V d
g which is faithful

on the fundamental group. In particular, the degree d/2 in Theorem 1 is
best possible for even dimensions d = 2k.

The realization of E = π1(Γ,G) as a group of Möbius transformations
of Bd proceeds inductively by standard combination methods (similar to
those in [Z2, Section 3]). Starting with the orthogonal group G described
above, we first realize the free product with amalgamation

Gv ∗Ge1
Gv1 = G ∗Ge G1

where e = e1 denotes the first edge of Γ , with vertices v and v1 and vertex
groups G = Gv and G1 = Gv1

∼= G. By construction, the fixed point set
of the subgroup Ge of G is a 2-ball B1 in Bd defining a hyperbolic plane
in Hd, still denoted by B1. Let L1 be a hyperbolic half-line in B1 starting
from its centre 0 and ending at a point R1 in Sd−1 = ∂Bd. Let V1 be a
neighbourhood of R1 in Bd bounded by a hyperbolic hyperplane H1 in Hd

orthogonal to L1; choose V1 sufficiently small such that f(V ) is disjoint
from V for all f ∈ G − Ge (note that Ge fixes L1 pointwise but that no
larger subgroup of G fixes L1 by construction of G). The reflection τ1 in
the hyperbolic hyperplane H1 commutes elementwise with Ge ⊂ G and,
considering G1 = τ1Gτ

−1
1 , we have G∩G1 = Ge. As for Schottky groups, it

is now easy to see that the group of Möbius transformations generated by G
and G1 is isomorphic to the free product with amalgamation G ∗Ge G1, and
that every torsionfree subgroup of finite index is in fact a Schottky group
(cf. [Z2] and the combination theorems in [M]).

We iterate the construction and adjoin Ge2 . Let L2 be a hyperbolic half-
line starting at the centre 0 and ending at a point R2 of Sd−1 = ∂Bd such
that R2 does not lie in G(V1). Let V2 be a small neighbourhood of R2 in Bd,
bounded by a hyperbolic hyperplane H2 orthogonal to L2 which does not
intersect G(V1). With G2 = τ2Gτ

−1
2 where τ2 denotes the reflection in H2,

this realizes the free product with amalgamation

Gv2 ∗Ge2
Gv ∗Ge1

Gv1

as a group of Möbius transformations. Continuing in this way, after k steps,
E is realized as a group of Möbius transformations, with Fg corresponding
to a Schottky group Sg.

Finally, in odd dimensions d = 2k + 1, we extend the orthogonal action
of G on B2k described above to an orthogonal action on B2k+1 (trivial on
the last coordinate) and then proceed as before. We get a polynomial of
degree k = (d − 1)/2 in g for the order n of G, whereas Theorem 1 gives
a polynomial bound of degree (d + 1)/2. As noted in the Introduction, the
optimal degree in dimension d = 3 is in fact 1, but for odd dimensions d > 3
it remains open.

This completes the proof of the Proposition, and also of Theorem 1.
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The examples given in the Proposition are for finite abelian groups G.
By suitably modifying the construction, one also obtains examples for finite
cyclic groups as follows.

Let d = 2k be a fixed even dimension, and let p > k be any prime. For
i = 1, . . . , k, the k integers qi = p + ik! are pairwise coprime: in fact, if a
prime p′ divides qi then p′ > k; if p′ divides also qj , for some j > i, then p′

divides qj−qi = (j− i)k!, which is a contradiction. Then G = Zq1×· · ·×Zqk

is a cyclic group of order n = q1 · · · qk. In analogy with the proof of the
Proposition, let (Γ,G) be a star-shaped graph of groups with k + 1 vertices
all with vertex group G, and with k edges where in each edge group exactly
one of the factors Zqi of G is missing, with

χ = χ(Γ,G) =
k + 1

n
− q1
n
− · · · − qk

n
.

There is an obvious surjection of π1(Γ,G) onto G; its kernel is a free group
of rank g with

g − 1 = (−χ)n = −(k + 1) + q1 + · · ·+ qk,

g = −k + kp+ (1 + · · ·+ k)k!,

p = (g + ck)/k

for a constant ck depending only on k. Now

|G| = n = q1 · · · qk ≥ pk ≥ (g + ck)k/kk,

so the order of G is bounded from below by a polynomial of degree k = d/2
in g.

Finally, the geometric realizations of G and E = π1(Γ,G) are exactly as
in the proof of the Proposition.
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