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Cellular covers of cotorsion-free modules
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Abstract. In this paper we improve recent results dealing with cellular covers of
R-modules. Cellular covers (sometimes called colocalizations) come up in the context of
homotopical localization of topological spaces. They are related to idempotent cotriples,
idempotent comonads or coreflectors in category theory.

Recall that a homomorphism of R-modules π : G → H is called a cellular cover
over H if π induces an isomorphism π∗ : HomR(G,G) ∼= HomR(G,H), where π∗(ϕ) = πϕ
for each ϕ ∈ HomR(G,G) (where maps are acting on the left). On the one hand, we
show that every cotorsion-free R-module of rank κ < 2ℵ0 is realizable as the kernel of
some cellular cover G → H where the rank of G is 3κ + 1 (or 3, if κ = 1). The proof
is based on Corner’s classical idea of how to construct torsion-free abelian groups with
prescribed countable endomorphism rings. This complements results by Buckner–Dugas.
On the other hand, we prove that every cotorsion-free R-module H that satisfies some
rigid conditions admits arbitrarily large cellular covers G→ H. This improves results by
Fuchs–Göbel and Farjoun–Göbel–Segev–Shelah.

1. Introduction. Cellular covers of groups and modules are the alge-
braic analogues of the cellular approximations of topological spaces due to
J. H. C. Whitehead. These feed into the context of homotopical localization
in closed model categories established by Bousfield, Farjoun, Hirschhorn,
and others (see e.g. [1], [2], [10], [16], [27], [30]). In some special cases there
is even a good interplay between cellularization of spaces and cellulariza-
tion of groups via the fundamental group [31], as was previously obtained
for localizations in [5], [2], [6], [7]. For instance, the universal central exten-

sion 0→ H2(H;Z)→ H̃ → H → 1 of a perfect group H yields a surjective
cellular cover, with kernel the Schur multiplier H2(H;Z). This central exten-
sion is the one induced on the lowest homotopy groups of the fiber sequence
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AX → X → X+, whereX → X+ is the Quillen plus-construction, AX → X
is the acyclic cellular approximation, and X = K(H, 1) is the Eilenberg–Mac
Lane space with fundamental group H; see [31]. Other motivating examples
can be found in [31], [29], [17], [19], [32].

Recall that a homomorphism π : G → H of groups is a cellular cover
over H if every homomorphism ϕ : G → H lifts uniquely to an endomor-
phism ϕ̃ of G such that πϕ̃ = ϕ. In such case π : G → Im(π) is a cellular
cover over Im(π), hence one can assume without loss of generality that
π : G→ H is an epimorphism. We then say that

(1.1) 0→ K → G
π→ H → 1

is a cellular exact sequence.

One of the main objectives is to classify (up to isomorphism) all possible
cellular exact sequences with either fixed cokernel H or kernel K. It is then
crucial to know whether there is a set or a proper class (up to isomorphism)
of cellular exact sequences (1.1) for a fixed K or H. Certainly, it is more
desirable to find cellular covers of any given cardinality λ ≥ |K| or |H|. Here
we are guided by similar results obtained for localizations; see e.g. [6], [13],
[14], [15], [23], [25], [28].

First observe that K must be central in G, and conversely every abelian
group K is the Schur multiplier H2(H;Z) of some perfect group H, thus all
abelian groups can appear as kernels of cellular covers [17]. It has also been
proved in [17] that G is abelian, nilpotent, or an R-module, whenever H is
abelian, nilpotent or an R-module, respectively, where R is any commutative
ring with 1 (compare with the case of localizations [28], [7]). Of course, other
properties like for example being perfect (see [35]) are not transferred in
general (cf. [33]). Further results on cellular covers of arbitrary groups have
recently been achieved in [11] and [18].

Recall some known results for cellular covers of abelian groups. If H is
divisible, then G in (1.1) can be determined explicitly as shown in [12]. A
different proof of this result using Maltis duality theory is given in [21]. If
H is reduced, then K must be cotorsion-free (see [3], [18], [21]). And if H is
torsion and reduced, then the cellular exact sequence collapses and K = 0
(see [21]). Furthermore, if K is free, then it is very easy to see ([18]) that
|K| ≤ |H|.

The situation becomes more exciting for cotorsion-free abelian groups.
Buckner and Dugas showed in [3] that if K is cotorsion-free, then there exist
arbitrarily large cellular covers G→ H with kernel K. Hence (1.1) runs over
a proper class in that case. By their construction, |G| ≥ 2ℵ0 . Here [3] uses
a construction based on the combinatorial principle Strong Black Box from
[26] which we will replace by the ordinary Black Box, thus filling in missing
cardinals κℵ0 for the size of the kernels (see Corollary 3.1). However, due
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to the nature of the Black Box this does not say anything about cellular
covers of size below the continuum—one problem that we want to attack in
the present paper. We would like to point out that these Black Boxes are
theorems in ZFC, thus do not depend on additional axioms of set theory
(see for instance [24]).

Dually, for every infinite cardinal λ there exists a cotorsion-free abelian
group H of cardinal λ which admits arbitrary large cellular covers G
(see [18]). The proof is based on [22] concerning the existence of arbitrarily
large indecomposable vector spaces with four distinguished subspaces. For
instance every rank one group that is not a ring has arbitrarily large cellu-
lar covers (see [21]). Note that this result does not fix the group H, but the
cardinal λ.

In the present paper we make the following new contributions to the
theory of cellular covers: As indicated above we consider the existence of
cellular covers of size below the continuum. In this case cotorsion-free is
the same as torsion-free and reduced; see [24]. And if K is cotorsion-free of
rank κ < 2ℵ0 , then we prove that there exists a cellular cover G of rank 3,
3κ + 1, or κ, respectively if κ is 1, finite and ≥ 2, or infinite (see Theo-
rem 3.2). This explains our interest in extending the main result of [3] to
Corollary 3.1 mentioned above. Dually, if H is cotorsion-free of size κ < 2ℵ0

and End(H) = Z, then there exists a cellular cover G of size κ (see The-
orem 4.1). Looking at cokernels of size larger than the continuum we are
also able to find arbitrarily large cellular sequences with prescribed coker-
nel. This is our main result (Theorem 4.4): If H is cotorsion-free of size
κ ≥ 2ℵ0 and satisfies End(H) = Z and Hom(H,M) = 0 for all ℵ0-free
abelian groups M , then there exist arbitrarily large cellular covers G. To
get this result we have to modify the classical Black Box to be suitable for
this purpose.

Needless to say, our results hold for R-modules, and are stated in broader
generality as indicated here (see Section 2).

We finally remark that cellular covers of groups provide (singly cogener-
ated) colocalization functors in the category of groups as noticed in [17]. In
particular, they can be translated to spaces by simply taking Eilenberg–Mac
Lane spaces as in [31] or [23]. That is, if G→ H is a surjective cellular cover
of groups then K(G,n) → K(H,n) is a cellular approximation of spaces
(assuming H is abelian for n ≥ 2). The terminology for abelian groups
follows [20].

2. Cellular covers of modules. A homomorphism of R-modules π :
G→ H is called a cellular cover over H if π induces an isomorphism

π∗ : HomR(G,G) ∼= HomR(G,H),
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where π∗(ϕ) = πϕ for each ϕ ∈ HomR(G,G) (where maps are acting on
the left). For R = Z these are precisely cellular covers (or colocalizations) of
abelian groups (see e.g. [17], [21]). Recall that π : G→ H is a localization if it
induces an isomorphism π∗ : HomR(H,H) ∼= HomR(G,H), by π∗(ϕ) = ϕπ.

If π : G→ H is a cellular cover of R-modules, then π induces a morphism
EndR(H) → EndR(G), given by ϕ 7→ ϕ̃, where ϕ̃ : G → G is the unique
lifting of ϕ, i.e. such that πϕ̃ = ϕπ. In fact, it is a homomorphism of R-
algebras, also by uniqueness of liftings. The first part of the following result
can be found in [21].

Proposition 2.1. Let η : R0 → R be a homomorphism of rings, H
be an R-module and π : G → H a cellular cover as R0-modules. Then G
admits a unique R-module structure for which π : G→ H is a morphism of
R-modules. Furthermore, π is also a cellular cover viewed as R-modules if
η(R0) is central in R.

Proof. The last assertion is shown as follows. If ϕ : G → H is an R-
homomorphism, then it is an R0-homomorphism (via η), hence it lifts to
a unique R0-homomorphism ϕ̃ : G → G such that πϕ̃ = ϕ. For a fixed
r ∈ R, left multiplication by r on G is an R0-homomorphism since η(R0) is
central in R. Therefore, rϕ̃ and ϕ̃r are two R0-homomorphisms such that
πrϕ̃ = rπϕ̃ = rϕ = ϕr = πϕ̃r, since π and ϕ are R-homomorphisms.
Because π is an R0-cellular cover it follows that rϕ̃ = ϕ̃r, and hence ϕ̃ is an
R-homomorphism.

In particular, for R0 = Z and R any ring with 1, cellular covers G→ H
as abelian groups over an R-module H are also cellular covers as R-modules
(this improves Proposition 2.6 in [21]).

The following easy observation allows us to consider surjective cellular
covers:

Proposition 2.2. A homomorphism of R-modules π : G → H is a
cellular cover if and only if π : G → Im(π) is a cellular cover and the
induced homomorphism Hom(G,H)→ Hom(G,Cokerπ) is trivial.

In this paper we will construct surjective cellular covers G → H which
are also localizations (cf. [17]). These properties are easy to verify when the
modules involved are rigid in the sense that EndR(G) = R = EndR(H),
where R is a ring with 1. The following fact is immediate and will be used
in our theorems:

Proposition 2.3. Let π : G→ H be an epimorphism of R-torsion-free
modules and suppose that G is rigid. Then π is a cellular cover if and only if
HomR(G,H) = πR. In that case H is rigid as well, and π is a localization.
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Proof. If EndR(G)=R and G is R-torsion-free then HomR(G,Kerπ)=0
and therefore π∗ is injective. It is also clear that π∗ is surjective if and only
if HomR(G,H) = πR. The last statement is immediate.

We now fix some notation and setting from [24] for cotorsion-free mod-
ules, from which we will build up our desired rigid modules.

LetR be a commutative ring with 1, and S = {sn : n ∈ ω} a distinguished
countable multiplicatively closed subset such that R is S-reduced and S-
torsion-free. Thus S induces a Hausdorff topology on R, taking qmR (m ∈ Z)

as the neighborhoods of zero where qm =
∏
n<m sn. We let R̂ be the S-

adic completion of R. We will also assume that R is cotorsion-free (with

respect to S), that is, Hom(R̂, R) = 0. More generally, an R-module M is

S-cotorsion-free if HomR(R̂,M) = 0. We must say what it means that M
has rank κ ≤ |R|. (Note that R may not be a domain.) If |M | > |R| it
suffices to let rk(M) = |M |. If |M | ≤ |R|, then rk(M) = κ means that there
is a free submodule E =

⊕
i<κRei of M such that M/E is S-torsion. (Note

that E also exists if |M | > |R|.) Recall that M is S-torsion if for all m ∈M
there is s ∈ S such that sm = 0. Similarly, a submodule N of M is S-pure
if sM ∩ N = sN for all s ∈ S. If M is S-torsion-free and N ⊆ M , then
we denote by N∗ the smallest S-pure submodule of M containing N , i.e.
N∗ = {m ∈M : sm ∈ N for some s ∈ S}.

We will write Hom(M,N) for HomR(M,N). In what follows, all appear-
ances of torsion, pure, etc. refer to S and we will therefore not mention the
underlying set S.

3. A theorem about kernels of cellular covers. Using the Strong
Black Box from [26] it was shown in [3] that any cotorsion-free R-module K
can be the kernel of a cellular cover of arbitrarily large cardinality κ. Analyz-
ing the proof by Buckner and Dugas [3] we note that the Strong Black Box
can easily be replaced by the (general) Black Box as in [9] or [24]. Thus the
existence of cotorsion-free kernels of cellular covers extends to a wider spec-
trum of cardinals. We skip the proof of the following corollary concerning
uncountable cardinals κ since the necessary changes can be deduced from
our proof of Theorem 4.4 below.

Corollary 3.1. Let R be a commutative, cotorsion-free ring with 1 and
κ be any infinite cardinal with κℵ0 > |R|. If K is a cotorsion-free R-module
of size κ, then there is a cellular exact sequence 0 → K → G → M → 0
and |G| = κℵ0. If κ = κℵ0, then all members of the cellular exact sequence
have the same size κ.

We note that applications of the (Strong) Black Box in [3] provide cellular
covers of size greater than or equal to the continuum. Using a classical idea
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due to A. L. S. Corner (see [8]) we will be able to derive cellular covers of
size κ < 2ℵ0 (which complements the results in Buckner and Dugas [3]). On
top of this, thanks to the preliminary work in [24, p. 16, Theorem 1.1.20],
our construction is much simpler.

Theorem 3.2. Let R be a commutative, torsion-free, reduced ring with 1,
of size < 2ℵ0. Let K be any torsion-free and reduced R-module of rank
κ < 2ℵ0. Then there is a cotorsion-free R-module G of rank 3 if κ = 1, and
of rank 3κ+ 1 if 2 ≤ κ < 2ℵ0, with submodule K such that Hom(G,K) = 0
and Hom(G,G/K) = πR where π : G→ G/K (g 7→ g+K) is the canonical
epimorphism. In particular,

0→ K → G→ G/K → 0

is a cellular exact sequence.

Proof. We first note that the assumptions on R and K imply that R and
K are cotorsion-free, by [24, p. 19, Corollary 1.1.25]. Also recall that any
ordinal α is the same as the set {β : β < α}, in particular any natural number
k is k = {0, 1, . . . , k−1}. Choose a free R-submodule E =

⊕
α<κReα ⊆ K of

rank κ such that K/E is torsion, and let F =
⊕

α<κRfα be a free R-module
of the same rank. Note that E also exists if rk(K) = |K|. If C = K ⊕ F ,

then we define the R-module G as a pure submodule of the completion Ĉ.
We distinguish two cases: If 1 < κ is finite, then we let f ′ = f0 + · · ·+ fκ−1
and define

(3.1) G = 〈K,F,wα(weα + fα), w′f ′ | α < κ〉∗ ⊆ Ĉ

where w, w′ and wα ∈ R̂ (α < κ) is a family of algebraically independent
elements over C. Its existence follows from a theorem of Göbel–May; see
[24, p. 16, Theorem 1.1.20]. If κ = 1 we can omit the element w′f ′ (as the
argument (3.8) below will not be needed).

In case κ is infinite, we define

(3.2) G = 〈K,F,wα(weα + fα), w′α(f0 + fα) | α < κ〉∗ ⊆ Ĉ

where w, w′α and wα (α < κ) is again a family of algebraically independent
elements over C; for its existence we can apply the same result as above
because κ < 2ℵ0 .

Clearly the rank of G is 3 for κ = 1, 3κ+ 1 if 1 < κ is finite, and κ if κ is
infinite. We must now show that the exact sequence 0→ K → G→M → 0
with M = G/K satisfies the conditions stated in the theorem.

Let π : Ĉ = K̂ ⊕ F̂ → F̂ be the canonical projection with kernel K̂.

We consider the case when κ 6= 1 is finite. The infinite case is similar
and left to the reader. The case κ = 1 is trivial.



Cellular covers of cotorsion-free modules 217

If x ∈ G, then by (3.1) there is s ∈ S such that

(3.3) sx = k + f +
∑
α

rαwα(weα + fα) + r′w′f ′

for some k ∈ K, f ∈ F, r′, r, rα ∈ R.
By continuity of π it follows that π(sx) = f +

∑
α rαwαfα + r′w′f ′, thus

(3.4) π(G) ⊆ 〈F,wαfα, w′f ′ | α < κ〉∗ ⊆ F̂ .
Next we show that

(3.5) G ∩ K̂ = K.

It will suffice to verify G ∩ K̂ ⊆ K. If x ∈ G ∩ K̂, by (3.1) there is s ∈ S
such that sx = k + f +

∑
α rαwα(weα + fα) + r′w′f ′ = k′ ∈ K̂. Thus[

k +
∑
α

rαwαweα − k′
]

+
[
f +

∑
α

rαwαfα + r′w′f ′
]

= 0.

Since the sum K̂ ⊕ F̂ is direct we have k +
∑

α rαwαweα − k′ = f +∑
α rαwαfα+r′w′f ′ = 0. Algebraic independence in the second term implies

f = 0, r′ = 0 and rα = 0 for all α < κ. From the first term we get k−k′ = 0,
so sx = k′ = k ∈ K. Purity and torsion-freeness of K imply x ∈ K as
required.

We now show that

(3.6) Hom(G,K) = 0.

Let ϕ : G → K be a homomorphism. By the continuity of ϕ, from
wα(weα+fα) ∈ G we get ϕ(wα(weα+fα)) = wα(wϕ(eα)+ϕ(fα)) ∈ K, hence
wα(wϕ(eα)+ϕ(fα)) = k′ for some k′ ∈ K. Again by algebraic independence
of wα we get ϕ(eα) = 0 and ϕ(fα) = 0 for all α < κ. Thus ϕ(E) = ϕ(F ) = 0,
so that ϕ induces a map ϕ′ : G/(E⊕F )→ K. The torsion part of G/(E⊕F )
is (E⊕F )∗/(E⊕F ). It must vanish under the induced map ϕ′, because K is
torsion-free. Thus ϕ factors through G/(E⊕F )∗ which is divisible while the
image is reduced, so all of G is in the kernel and ϕ = 0 as claimed in (3.6).

Finally we show

(3.7) Hom(G,G/K) = πR.

By (3.4) and (3.5) it follows that π(G) = 〈F,wαfα, w′f ′ | α < κ〉∗ = G/K
canonically. Thus we can view ϕ : G→ G/K as a map

ϕ : G→ 〈F,wαfα, w′f ′ | α < κ〉∗ ⊆ Ĉ,
and also G ⊆ Ĉ.

For any β < κ we have swβ(wϕ(eβ) + ϕ(fβ)) = sϕ(wβ(weβ + fβ)) =
f +

∑
α rαwαfα + r′w′f ′ for suitable coefficients. Algebraic independence

and torsion-freeness imply f = 0, rα = 0 (α 6= β), r′ = 0 and
swβ(wϕ(eβ) + ϕ(fβ)) = rβwβfβ. Thus, sϕ(weβ) = rβfβ − sϕ(fβ). Now
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ϕ(fβ) ∈ 〈F,wαfα, w′f ′ | α ≤ κ〉∗, and by algebraic independence of w also
ϕ(eβ) = 0 and ϕ(sfβ) = rβfβ for all β < κ. In particular E ⊆ Kerϕ,
so ϕ�K induces ϕ′ : K/E → G/K. However, K/E is torsion while G/K
is torsion-free, hence ϕ′ = 0. This shows that K ⊆ Kerϕ, and ϕ factors
through ϕ : G/K → G/K. But we have seen before that ϕ(fβ) = rβfβ (we
may assume s = 1 by purity and torsion-freeness). If we apply ϕ to w′f ′ we
will obtain similarly ϕ(f ′) = r′f ′ for some r′ ∈ R and derive

r′f0 + · · ·+ r′fκ−1 = r′f ′ = ϕ(f ′) = ϕ(f0) + · · ·+ ϕ(fκ−1)(3.8)

= r0f0 + · · ·+ rκ−1fκ−1.

By linear independence, rβ = r′ for all β < κ and ϕ = πr′ ∈ πR as desired.

We remark that the rank of G is chosen minimal (as stated in the theo-
rem).

Example 3.3. For K = Z this yields a cellular cover Z → G → M
with G and M of rank 3 and 2, respectively. Here is an explicit presentation
of G: Let R = Z, S = {1, p, p2, . . . } for a given prime p, R̂ the ring of p-adic
integers. Then G = 〈e, f, w(w′e + f)〉∗ where w and w′ are two linearly
independent p-adic numbers, not integers.

This is the simplest example of a cellular cover of abelian groups with
kernel Z. In fact, it will be shown in [34] that no group of rank 1 admits
cellular covers with free kernel.

On the other hand, the construction of Theorem 3.2 can be easily mod-
ified so that the rank of G becomes larger. For this, one can take F free of
rank κ′, with κ < κ′ < 2ℵ0 , and

G = 〈K,F,wβ(weα + fβ), w′f ′ | α < κ〉∗ | α < κ, β < κ′〉∗
where α = ψ(β) for any fixed surjective function ψ : κ′ → κ (cf. Theo-
rem 4.1).

We end this section with an interesting case of Theorem 4.1 not obtained
in Buckner and Dugas’s paper [4].

Corollary 3.4. If K is a torsion-free, reduced R-module of infinite size
κ < 2ℵ0, then there is a cellular exact sequence 0→ K → G→M → 0 with
rk(G) = rk(M) = κ.

4. Two theorems about cokernels of cellular covers. In this sec-
tion we take the opposite point of view and want to prescribe certain
cotorsion-free modules H such that 0 → K → G → H → 0 is a cellu-
lar exact sequence for suitable 0 → K → G’s. Our method will work for
particular rings R and S-topologies. Recall that an R-module M is called
ℵ0-free if every finite rank submodule of M is contained in a pure free sub-
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module of M . For a cardinal κ let E =
⊕

α<κReα be a free module of
rank κ. It will be clear from the context to which cardinal κ the module E
refers to.

As in Section 3, we have a borderline 2ℵ0 and must distinguish between
cokernels of size below or above and equal to 2ℵ0 . Moreover, due to technical
reasons in the construction we will have to assume that H is rigid and that
H has no non-trivial homomorphism into any ℵ0-free R-module (in the
Black Box construction). By Proposition 2.1 this is a reasonable restriction
on H.

4.1. Cokernels of size below the continuum. The main result of
this section reads as follows

Theorem 4.1. Let κ′ < 2ℵ0 be a cardinal, R a commutative, torsion-free
ring with 1 6= 0, of size < 2ℵ0. Moreover, let H be a cotorsion-free R-module
which is κ′-generated such that End(H) = R. Then for any cardinal κ with
κ′ ≤ κ < 2ℵ0 there is a cotorsion-free R-module G with the following prop-
erties:

(i) G is κ-generated and there is K ⊆ G with G/K = H.
(ii) If ϕ ∈ End(G), then there is a unique element r ∈ R such that

(ϕ − r · idG)(K) = 0, so there is an induced homomorphism ϕr :
H → G ((g +K) 7→ (ϕ− r)g).

(iii) If Hom(H,G) = 0, then End(G) = R.
(iv) Hom(G,H) = πR where π : G → H (g 7→ g + K) is the canonical

epimorphism.

In particular, if Hom(H,G) = 0, then 0 → K → G → H → 0 is a cellular
exact sequence.

Note that for R-modules of size < 2ℵ0 cotorsion-freeness is equivalent to
the R-module being torsion-free and reduced (see [24]).

Proof. We enumerate a generating system {hβ : β < κ′} of H and choose
a surjection ψ : κ → κ′. If C = E ⊕ H (with E as above), then we define

the desired module G as a pure submodule of the completion Ĉ, as follows:

(4.1) G = 〈E,wαeα, w′α(e1 + eα), (w̃αeα + hβ) | α < κ, ψ(α) = β〉∗ ⊆ Ĉ,

where wα, w′α, w̃α ∈ R̂ (α < κ) is a family of algebraically independent
elements over C. Using |C| < 2ℵ0 its existence follows again from a theorem
of Göbel–May; see [24, p. 16, Theorem 1.1.20].

Clearly G is κ-generated as required. We also consider the projection in-

duced by the decomposition Ĉ = Ê⊕Ĥ, which is π : Ĉ → Ĥ with kernel Ê.
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We will not distinguish between π and its natural restrictions to sub-
modules of Ĉ. If x ∈ G, then there is s ∈ S such that

sx = f +
∑
α<κ

rαwαeα +
∑
α<κ

r′αw
′
α(e1 + eα)(4.2)

+
∑

α<κ,ψ(α)=β

r̃α(w̃αeα + hβ)

for some f ∈ E and rα, r
′
α, r̃α ∈ R.

By definition and continuity of the map π it now follows that

π(sx) =
∑

α<κ,ψ(α)=β

r̃αhβ,

thus

(4.3) π(G) = H

since H is pure in its completion Ĥ, and we let K := Ê ∩ G. Obviously
K = Ker(π�G) and thus

E ⊆ K =
{
x ∈ G :

∑
α<κ,ψ(α)=β

r̃αhβ = 0 in (4.2)
}
.

This implies that K/E is divisible and the quotient (G/E)/(K/E) ∼= G/K
∼= H is reduced. There is a decomposition into a divisible summand and a
reduced part H:

(4.4) G/E = (K/E)⊕H with K/E the maximal divisible summand.

Next we establish (ii) and study ϕ ∈ End(G). If δ < κ and γ = ψ(δ), then
there is s = sδ ∈ S such that

sϕ(wδeδ) = swδϕ(eδ)

= f +
∑
α<κ

rαwαeα +
∑
α<κ

r′αw
′
α(e1 + eα) +

∑
α<κ,ψ(α)=β

r̃α(w̃αeα + hβ)

for some f ∈ E and rα, r
′
α, r̃α ∈ R.

Again, the sum Ê⊕ Ĥ is direct and wα, w
′
α, w̃α (α < κ) are algebraically

independent elements over C. Therefore, equating coefficients we obtain
sϕ(eδ) = rδeδ and ϕ acts on eδ as multiplication by rδ. A similar argument
shows that ϕ also acts on e1 + eδ as multiplication by some r′δ ∈ R, for all
δ < κ. Therefore,

r′δ(e1 + eδ) = ϕ(e1 + eδ) = ϕ(e1) + ϕ(eδ) = r1e1 + rδeδ.

And comparing components we get rδ = r for all δ < κ (which does not
depend on f). It follows that ϕ�E = r · id . Using that G is reduced and (4.4)
we see that ϕ− r · id induces a unique homomorphism ϕr : H = G/K → G,
which shows (ii).
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By the assumption of (iii) we note that the induced map ϕr from (ii)
vanishes, thus End(G) = R in this case and also Hom(G,K) = 0.

For (iv) we consider any ψ ∈ Hom(G,H). Clearly

ψ(wαeα) = wαψ(eα) ∈ H ∩ wαH,
which is zero by the algebraically independent element wα. Hence ψ induces
a homomorphism ψ̃ : G/E → H. Since H is reduced it follows from (4.4)
that ψ̃(K/E) = 0 and we can write ψ = πr for some r ∈ R and ψ ∈ πR. The
reverse inclusion for (iv) is trivial. Finally note that 0→ K → G→ H → 0
is a cellular exact sequence by Proposition 2.3.

Note that there are many examples of rings R and S-topologies such that
the constructed module G in the above theorem satisfies Hom(H,G) = 0
for given H. For instance, if H is a rank one group that is not a ring, then
one could choose R = Z and the Z-adic topology on R. Consequently, G will
be Z-homogeneous and hence Hom(H,G) = 0. This shows Corollary 5.5
from [21].

4.2. Cokernels of size greater than or equal to the continuum.
We now consider cellular covers of cotorsion-free modules of size ≥ 2ℵ0 and
utilize the Black Box from [9] to extend Theorem 4.1 to larger cardinals.

Let λ > |R| be an infinite cardinal such that λ = λℵ0 . If µ is any
infinite cardinal (and µℵ0 > |R|), then µℵ0 is a candidate for λ. The cardinal
condition ensures that the set of all countable subsets of λ has size λ as well.
This will be used to deduce that the completion of our canonical free base
module B of size λ has size λ as well. The heart of the Black Box construction
is to build the desired R-module on a tree T = ω>λ as its underlying set of
‘supports’ using the additional geometric structure.

Therefore let T be the set of all finite sequences τ = λ0
∧ · · · ∧λn−1 in λ,

hence
T = {τ : n→ λ : n ∈ ω}.

Recall that τ above is a finite branch of length n, thus Dom(τ) = n =
{0, . . . , n − 1}. Similarly we define the set Br(T ) of all infinite branches of
length ω, which is

Br(T ) = ωλ = {v : ω → λ}.
This set has cardinality λ by the assumption on λ. Finite and infinite
branches v have a canonical support, which is the subset

[v] = {v�m ∈ T : m < length of v}
of T . Note that [v], [w] are almost disjoint, that is, [v] ∩ [w] is finite, if and
only if v, w are distinct branches. Trees also have a natural ordering by
extensions as follows: For any τ, ν ∈ T ,

τ < ν ⇔ τ ⊆ ν ⇔ [τ ] ⊆ [ν] and ν�Domτ = τ.
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The norm of a branch τ ∈ Br(T ) is defined as

‖τ‖ = sup(Im(τ)) ∈ λ.

We transport these supports and norms to an R-module, taking

E =
⊕
τ∈T

Rτ

to be the free R-module generated by T ⊂ E (where τ ∈ T is identi-

fied with 1τ ∈ E). Any element g ∈ Ê can be expressed as a countable

sum g =
∑

n∈ω gnτn for some gn ∈ R̂, such that for all m ∈ ω, we have

gn ∈ qmR̂ for almost all n ∈ ω. We denote by [g] = {τn : gn 6= 0,
n ∈ ω} the support of g. If v is an infinite branch, then we also write

v =
∑

n∈ω qn(v�n) ∈ Ê and call this element a branch-element, which ob-
viously has the same support as the branch v, namely [v]. These branch-
elements will be useful tools to recognize elements of the module G under
construction.

Let H be a cotorsion-free R-module of size less than λ and put B :=
E ⊕H. As before let π : B̂ → Ĥ be the canonical projection onto Ĥ. As in
the previous section, our goal is to construct G ⊂∗ B̂ such that π(G) = H,
Hom(G,H) = πR and Hom(G,K) = 0, where K = Ê ∩ G = Ker(π�G).
Note that in this case 0→ K → G→ H → 0 is a cellular cover over H. In
order to ensure these properties we need to satisfy two requirements during
the construction: G ∩ Ĥ = 0 and End(G) = R. Thus we will have

(4.5) E ⊆∗ G ⊆∗ B̂

but H must not be contained in G. This forces us to adjust Shelah’s Black
Box to (4.5). Thus, if g+h ∈ B̂ = Ê⊕Ĥ, we let [g+h] := [g] be the support

of g + h just looking at the Ê-component of elements.

The notions of support and norm extend naturally to subsets X of B̂ as
follows:

[X] =
⋃
{[x] : x ∈ X} and ‖X‖ = sup{‖τ‖ : τ ∈ [X]}.

Note that ‖X‖ is an ordinal which is strictly less than λ if [X] is countable,
because the cofinality cf(λ) of λ is greater than ℵ0.

The classical Black Box also needs the notion of traps which are partial
approximations to endomorphisms B̂ → B̂. In our case, we will approximate
homomorphisms of the form ϕ : Ê ⊕H → B̂.

As before let ω>ω be the countable tree of finite sequences in ω and let
f : ω>ω → T be a tree embedding. Let ϕ : Dom(ϕ) → B̂ denote a partial

homomorphism with countable domain Dom(ϕ) ⊆∗ B̂ a pure submodule

of Ê ⊕H and suppose that [Dom(ϕ)] is a countable subtree of T . We will
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require

(f, ϕ) Im f ⊆ [Dom(ϕ)] ⊆ T
and call (f, ϕ) a trap.

By our assumptions on the cardinal λ it is clear that the number of
traps is λ, hence the following theorem is an easy modification of Shelah’s
classical Black Box (see the appendix of [9]). Recall that for an ordinal ρ we
let ρo = {δ < ρ : cf(δ) = ℵ0}.

Theorem 4.2 (Shelah’s Black Box). Let λ = λℵ0 ≥ |R| be an infinite
cardinal and T = ω>λ be a tree which is the basis of a free R-module B =⊕

τ∈T Rτ . Moreover, let H be a cotorsion-free R-module of size less than λ
and let ρ = cf(λ). For any choice of disjoint stationary subsets S1, S2 ⊆ ρ
there exists an ordinal λ∗ of cardinality λ and a list of traps

(fα, ϕα), α ∈ λ∗,
with the following properties:

(a) ‖Dom(ϕα)‖ ∈ ρo is a limit ordinal with ‖v‖ = ‖Dom(ϕα)‖ for all
v ∈ Br(Im fα).

(b) If β < α ∈ λ∗ then ‖Dom(ϕβ)‖ ≤ ‖Dom(ϕα)‖ and Br(Im fβ) ∩
Br(Im fα) = ∅.

(c) If β + 2ℵ0 ≤ α, then Br(Dom(ϕβ)) ∩ Br(Im fα) = ∅.
(d) (Prediction) If X is a countable subset of Ê⊕H and ϕ : Ê⊕H → B̂

is a homomorphism, then there exist ordinals α1, α2 ∈ λ∗ such that
X ⊆ Dom(ϕαi) and ϕ�Dom(ϕαi) = ϕαi and ‖Dom(ϕαi)‖ ∈ Si for
i = 1, 2.

In the classical Black Box it is used that mappings from a free R-
module B to B have unique extensions to mappings from B̂ to B̂. We
still want to argue with unique extensions of mappings, which explains the
following observation.

Lemma 4.3. Let ϕ : Dom(ϕ) → Ê ⊕H be such that E′ ⊆∗ Dom(ϕ) ⊆∗
Ê ⊕ H ′ and π(Dom(ϕ)) = H ′ for some submodule H ′ ⊆∗ H and direct

summand E′ ⊆ E. Then ϕ has a unique extension ϕ̂ : Ê′⊕H ′ → Ê⊕Ĥ = B̂.

Proof. Since the completion commutes with finite direct sums we may
assume without loss of generality that E′ = E. Moreover, since Dom(ϕ)

is pure in Ê ⊕ H ′ it follows that E ⊆∗ Dom(ϕ) ∩ Ê is pure in Ê. Hence

there is a unique map ϕ̂E : Ê → Ê ⊕ Ĥ = B̂ such that ϕ̂E�Dom(ϕ) ∩ Ê =

ϕ�Dom(ϕ) ∩ Ê. Let h ∈ H ′. Then b̂ + h ∈ Dom(ϕ) for some b̂ ∈ Ê since
π(Dom(ϕ)) = H ′. Define

ϕ̂H′ : H ′ → Ê ⊕ Ĥ = B̂ via h 7→ ϕ(̂b+ h)− ϕ̂E (̂b).
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We claim that ϕ̂H′ is a well-defined homomorphism. Assume first that there
are b̂1, b̂2 ∈ B̂ such that b̂1 + h and b̂2 + h are in Dom(ϕ). Then

ϕ(̂b1 + h)− ϕ̂E (̂b1)− (ϕ(̂b2 + h)− ϕ̂E (̂b2))

= ϕ(̂b1 + h− (̂b2 + h))− ϕ̂E (̂b1 − b̂2) = ϕ(̂b1 − b̂2)− ϕ̂E (̂b1 − b̂2) = 0

since b̂1 − b̂2 ∈ Dom(ϕ) ∩ Ê. Hence ϕ̂H′ is well-defined.

Now assume that h1, h2 ∈ H ′ and b̂1, b̂2, b̂3 ∈ B̂ are such that b̂1 + h1,
b̂2 + h2, b̂3 + h1 + h2 ∈ Dom(ϕ). It follows that

ϕ̂H′(h1 + h2)− ϕ̂H′(h1)− ϕ̂H′(h2) = ϕ(̂b3 − b̂2 − b̂1)− ϕ̂E (̂b3 − b̂2 − b̂1) = 0

since again b̂3 − b̂2 − b̂1 ∈ Dom(ϕ) ∩ Ê. Hence ϕ̂H′ is a homomorphism.

Define ϕ̂ : Ê⊕H ′ → Ê⊕ Ĥ by ϕ̂(̂b+h) := ϕ̂E (̂b) + ϕ̂H′(h). Then clearly
ϕ̂ extends ϕ.

Finally, assume that ψ̂ extends ϕ too. Then ϕ̂�E = ψ̂�E = ϕ�E, and
hence uniqueness of ϕ̂E implies that ϕ̂E = ψ̂�Ê = ϕ̂�Ê. If h ∈ H ′, then
b̂+ h ∈ Dom(ϕ) for some b̂ ∈ Ê and hence

ϕ̂(̂b+ h) = ϕ̂E (̂b) + ϕ̂H′(h) = ϕ(̂b+ h),

and similarly

ψ̂(̂b+ h) = ϕ̂E (̂b) + ψ̂(h) = ϕ(̂b+ h).

Therefore ψ̂(h) = ϕ̂H′(h) and so ϕ̂ and ψ̂ coincide on Ê and on H ′ and are
thus identical. Uniqueness of ϕ̂ is shown.

We now want to apply the Black Box to show the following

Theorem 4.4. Let R be a commutative, torsion-free ring with 1 6= 0 and
κ a cardinal with κℵ0 > |R|. Moreover, let H be a cotorsion-free R-module
such that End(H) = R and |H| ≤ κ. Then there is a cotorsion-free R-module
G of size |G| = κℵ0 with the following properties:

(i) There is a submodule K ⊆ G with G/K = H.
(ii) If ϕ ∈ End(G), then there is a unique element r ∈ R such that

(ϕ − r · idG)(K) = 0, so there is an induced homomorphism ϕr :
H → G ((g +K) 7→ (ϕ− r)g).

(iii) If Hom(H,M) = 0 for every ℵ0-free module M , then End(G) = R,
and Hom(G,K) = 0.

(iv) Hom(G,H) = πR where π : G → H (g 7→ g + K) is the canonical
epimorphism.

In particular, if Hom(H,M) = 0 for all ℵ0-free modules M then 0→ K →
G→ H → 0 is a cellular exact sequence.

Proof. Let λ := κℵ0 and E, T and B be as above. Then λℵ0 = λ is as
required for the Black Box. The module will be the union G =

⋃
α∈λGα of
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an ascending, continuous chain of cotorsion-free, ℵ0-free modules Gα with

E ⊆∗ Gα ⊆∗ B̂ and π(Gα) ⊆ H.
Recall that π : B̂ → Ĥ is the canonical projection. Let S1 and S2 be two

disjoint stationary subsets of ρo where ρ = cf(λ) and such that the Black

Box 4.2 holds for S1, S2. We begin with G0 ⊆∗ Ê ⊕H such that G0 is free
with π(G0) = H. It is easy to construct G0 by adding elements of the form
vh + h to E where h ∈ H and the vh’s form a set of almost disjoint infinite
branches (see also below for more details). By continuity we only need to

consider the inductive step at any α ∈ λ∗. We want to find gα ∈ Ê⊕H ⊆ B̂
such that

Gα+1 = 〈Gα, gα〉∗
and the new element gα must fulfill several tasks.

First we require that the new element gα is a ‘branch-like’ element of B̂:
Recall that any branch v ∈ Br(Im fα) has norm ‖v‖ = ‖Dom(ϕα)‖, by (a)
of Black Box 4.2, and gives rise to a non-constant branch-element, which we
also denote by v. Any sum b+ v with

b ∈ ̂Dom(ϕα) and ‖b‖ < ‖v‖
is called a branch-like element. The point is that a branch-like element has
a support which at the top looks like a branch from Br(Im fα). The choice
of generators for G helps to describe the action of homomorphisms on G.
We are ready for two preliminary Step Lemmas. The first one will be used
to ‘kill’ non-inner endomorphisms, and the second to ‘kill’ homomorphisms
ϕ : G→ H with no ϕ̃ : H → H such that ϕ = ϕ̃π.

Lemma 4.5. Let G be the module constructed so far with

(i) E ⊆∗ G ⊆∗ B̂,
(ii) π(G) := H ′ ⊆ H.

Let ϕ ∈ End(G) be such that ϕ�E 6∈ R. For any 0 6= h ∈ H ′ there is an

x′ ∈ Ê such that x = x′ + h satisfies

ϕ(x) 6∈ 〈G, x〉∗.
Moreover, the module G′=〈G, x〉∗ is cotorsion-free, ℵ0-free, and π(G′)⊆H.

Proof. First note that ϕ has a unique extension (again denoted by ϕ)

to ϕ : Ê ⊕ H ′ → B̂ by Lemma 4.3 which is again not in R. Thus ϕ(x) is

a well-defined element in B̂ for any choice of x ∈ Ê ⊕H ′. First we use the
assumption on ϕ to show that there exists a countable subset

(4.6) C ⊆ T such that D = 〈C〉 satisfies (ϕ− r)D̂ 6⊆ G for all r ∈ R.
Choose a ‘constant branch’ v : ω → {η} at some η < λ and let C ′ be a

countable subset of T such that the branch-element v belongs to D̂′ where
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D′ = 〈C ′〉. If (4.6) fails for D = D′, there is r ∈ R with (ϕ − r)D̂′ ⊆ G.

This implies that (ϕ − r)D̂′ = 0. Indeed, suppose that for some z ∈ D̂′

we have (ϕ − r)z 6= 0; then, since R̂D̂′ ⊆ D̂′, we would have a non-trivial

homomorphism R̂ → G given by r̂ 7→ (ϕ − r)(r̂z), which is impossible

because G is cotorsion-free. Hence (ϕ− r)D̂′ = 0 as desired.

But ϕ�E 6∈ R, so there is x ∈ E such that (ϕ − r)x 6= 0. Enlarge C ′

to C such that x ∈ D = 〈C〉. As before, using cotorsion-freeness of G we

have (ϕ − r′)D̂ = 0. Hence (ϕ − r)v = 0 and (ϕ − r′)v = 0, which implies

(r−r′)v = 0, and thus r = r′ as B̂ is torsion-free. In particular (ϕ−r)x = 0,
which is a contradiction.

Here is an alternative support argument to prove (4.6). We include this
at this point as similar arguments will be needed several times later on. If
(4.6) fails for D, then (ϕ− r′)D̂ ⊆ G for some r′ ∈ R, hence v(r − r′) ∈ G.
By construction there is qn and elements gα (α ∈ I) for some finite index
set I such that

(4.7) qnv(r − r′) =
∑
α∈I

rαgα + e

for some rα ∈ R and e ∈ E. Now recall that by construction all gα are
branch-like elements coming from branches vα that are not constant. Hence
for every α ∈ I there is some mα such that v�mα 6= vα�mα. Let m be the
maximum of all these mα. Restricting equation (4.7) to v�m it then follows
that qn(r − r′)v�m = 0 and hence r = r′. We derive the contradiction
(ϕ− r)x = 0 and (4.6) follows.

We may assume that

(4.8) D in (4.6) also satisfies (qnϕ− r)D̂ 6⊆ G for all n > 0, r ∈ R \ qnR.

Suppose (4.8) fails for ψ = qnϕ− r. Now we choose elements σm ∈ T of
length m which constitute an ‘anti-branch’, that is, two σm’s are incompa-
rable in T . Moreover we require

sup
m≤k
‖ψ(σm)‖ < ‖σk+1‖ and let t = tn :=

∑
m∈ω

qmq
m
n σm.

Then, for every non-zero k < ω, we have

ψ(t) ≡
∑
m≤k

qmq
m
n ψ(σm) mod qkq

k+1
n B̂,

hence

ψ(t)�σk ≡ −qkqknr mod qkq
k+1
n R

which cannot be 0 because r 6∈ qnR. Hence ‖ψ(t)‖ = sup ‖σk‖ and the
element ψ(t) cannot be in G by a support argument. Now we enlarge D
such that all the σm’s belong to D and this failure for (r, qn) is impossible
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for the enlarged D. Similarly we deal with the other (at most countably
many) potential failures of (4.8) and correct D, hence (4.8) holds.

We are now ready to find the desired element x ∈ Ê ⊕H ′. Let h ∈ H ′.
First we choose a new constant branch w with ‖D‖, ‖ϕ(D)‖ < ‖w‖. If the
branch-like element x = w+h satisfies the lemma, then the proof is finished.
Otherwise ϕ(x) ∈ 〈G, x〉∗ and there are n ∈ ω and r ∈ R such that

qnϕ(w + h)− r(w + h) ∈ G.
If n = 0 we can apply (4.6) directly, but if n > 0, we may assume that

r ∈ R \ qnR and (4.8) applies as well. (Note that G is pure in B̂ and the

S-topology is Hausdorff.) There is a d ∈ D̂ such that (qnϕ − r)d 6∈ G. Now
it is easy to check by support arguments that x = w + (d + h) meets the
requirements of the lemma.

Lemma 4.6. Let G be the module constructed so far with

(i) E ⊆∗ G ⊆∗ B̂,
(ii) π(G) := H ′ ⊆ H.

Let ϕ ∈ Hom(G,H) be such that ϕ�E 6= 0. For any 0 6= h ∈ H ′ there is an

x′ ∈ Ê such that x = x′ + h satisfies

ϕ(x) 6∈ H.
Moreover, the module G′ = 〈G, x〉∗ is cotorsion-free, ℵ0-free and π(G′) ⊆ H.

Proof. As in Lemma 4.5, ϕ has a unique extension (again denoted by ϕ)

to ϕ : Ê⊕H ′ → B̂. Since H is cotorsion-free the following is obvious: There
exists a countable subset

(4.9) C ⊆ T such that D = 〈C〉 satisfies ϕ(D̂) 6⊆ H.

We now find the desired element x ∈ Ê ⊕ H ′. Let h ∈ H ′. First we
choose a new constant branch w with ‖D‖, ‖ϕ(D)‖ < ‖w‖. If the branch-like
element x = w+h satisfies the lemma, then the proof is finished. Otherwise
ϕ(x) ∈ H. But ϕ�E 6= 0 and H is cotorsion-free, hence there is e ∈ E such

that ϕ(R̂e) 6⊆ H. Choose γ ∈ R̂ such that ϕ(γe) 6∈ H. Now it is obvious
that x = w + (γe+ h) meets the requirements of the lemma.

We now continue the construction of G and describe the two tasks de-
pending on the traps (ϕα, fα) of the Black Box in order to control endomor-
phisms of G and homomorphisms G→ H:

(I) First we consider the following ‘bad case’ for α: If there is an x ∈
̂Dom(ϕα) such that ‖x‖ < ‖Dom(ϕα)‖ ∈ S1 ∪ S2 and either

ϕα(x) 6∈ 〈Gα, x〉∗ (if ‖Dom(ϕα)‖ ∈ S1), or

ϕα(x) 6∈ H (if ‖Dom(ϕα)‖ ∈ S2),
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then choose a branch v ∈ Br(Im fα) and put gα = v or gα = x+v; the choice
of gα depends on the requirement that either

ϕα(gα) 6∈ 〈Gα, gα〉∗ = Gα+1 (if ‖Dom(ϕα)‖ ∈ S1), or

ϕα(gα) 6∈ H (if ‖Dom(ϕα)‖ ∈ S2).
If α is not bad, then choose any branch-like gα taking care of (II).

(II) If β < α was bad before and ϕβ(gβ) 6∈ Gβ+1 then we still want
ϕβ(gβ) 6∈ Gα+1.

We first show

Lemma 4.7. There is a choice of gα’s such that the two tasks (I) and
(II) are satisfied.

Proof. The work on condition (I) has been put into Lemmas 4.5 and 4.6,
hence (II) must be verified. We apply a short argument from [9, p. 457] and
restrict ourselves to the case of endomorphisms of G (i.e. ‖Dom(ϕα)‖ ∈ S1).
The case of homomorphisms into H (if ‖Dom(ϕα)‖ ∈ S2) is similar but
easier and therefore left to the reader. When defining gα = gα,v = x+ v we
have a free choice of branches v ∈ Br(Im fα) which we now use. If (II) is
violated for some β = βv, then

(4.10) ϕβ(gβ) ∈ 〈Gα, gα,v〉∗, hence ϕβv(qkvgβv)− gα,vav ∈ Gα.
A support argument and (c) from the Black Box show that

βv < α < βv + 2ℵ0 ,

and if β0 is the least ordinal satisfying this inequality, then, for all v ∈
Br(Im fα),

β0 < βv < β0 + 2ℵ0 .

By cardinalities, there are two distinct branches v, w ∈ Br(Im fα) such that
βv = βw. Suppose kv ≥ kw. Subtracting the corresponding expressions (4.10)
we get

rvgα,v −
qkv
qkw

gα,wrw ∈ Gα

and by an easy support argument it can be seen that this is only possible
for v = w, a contradiction. Hence (II) can be arranged for gα = x + v and
some v ∈ Br(Im fα).

We claim that the two tasks suffice to show the statement of Theorem
4.4 and verify the conditions mentioned there.

First note that K = Ker(π), and G/K is reduced. Consider any ϕ ∈
EndG and assume that ϕ�E 6∈ R.

By Lemma 4.5 there is an x ∈ Ê ⊕ H such that ϕ(x) 6∈ G and by the

Black Box we can find an α ∈ λ∗ such that ϕ extends ϕα, x ∈ D̂omϕα
and ‖x‖ < ‖Domϕα‖. Hence α is a bad case and gα in the construction



Cellular covers of cotorsion-free modules 229

must satisfy (I) and (II). It follows by task (I) that ϕα(gα) = ϕ(gα) 6∈ Gα+1.
By task (II) we also have ϕ(gα) 6∈ Gγ for any later ordinal α < γ ∈ λ∗,
hence ϕ(gα) 6∈ G and ϕ is not an endomorphism of G, a contradiction. Thus
ϕ�E = r · id for some r ∈ R. Thus (ii) of the theorem holds, and (iii) follows
with the help of (ii): We consider the map ϕr = ϕ − r. Since G is reduced
it follows that ϕr(K) = 0, so ϕr induces a ϕ̃ : H = G/K → G which
must be zero by the hypothesis in (iii). Thus End(G) = R, which implies
Hom(G,K) = 0.

Now we fix ϕ ∈ Hom(G,H) and suppose ϕ�E 6= 0. Then by Lemma 4.6

there is some x ∈ Ê⊕H such that ϕ(x) 6∈ H. Again, by the Black Box we can

find an α ∈ λ∗ such that ϕ extends ϕα, x ∈ D̂omϕα and ‖x‖ < ‖Domϕα‖.
Hence α is a bad case and gα in the construction must satisfy (I). It follows
that ϕα(gα) = ϕ(gα) 6∈ H, a contradiction. Thus ϕ�E = 0 and there is an
induced homomorphism ϕ̃ : H = G/K → H which has to be multiplication
by some r ∈ R by the assumptions on H. Thus ϕ ∈ πR as required.

The mapping conditions for the cellular cover 0 → K → G → H → 0
are obvious. Thus Theorem 4.4 holds.
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[24] R. Göbel and J. Trlifaj, Approximation Theory and Endomorphism Algebras, Ex-
positions Math. 41, de Gruyter, Berlin, 2006.
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La cañada de San Urbano
04120 Almeŕıa, Spain
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