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An operator invariant for handlebody-knots
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Abstract. A handlebody-knot is a handlebody embedded in the 3-sphere. We im-
prove Luo’s result about markings on a surface, and show that an IH-move is sufficient
to investigate handlebody-knots with spatial trivalent graphs without cut-edges. We also
give fundamental moves with a height function for handlebody-tangles, which helps us
to define operator invariants for handlebody-knots. By using the fundamental moves, we
give an operator invariant.

1. Introduction. A handlebody-knot is a handlebody embedded in the
3-sphere S3. Since to each knot corresponds a genus one handlebody-knot
obtained by taking a regular neighborhood, handlebody-knot theory is a
generalization of knot theory. Handlebody-knots are also closely related to
spatial graphs, finite graphs embedded in S3. Handlebody-knots appear in
spatial graph theory as neighborhood equivalence classes of spatial graphs,
introduced by Suzuki [14].

A handlebody-link is a disjoint union of handlebodies embedded in S3.
Any handlebody-link is a regular neighborhood of a spatial trivalent graph.
Furthermore, any handlebody-link is a regular neighborhood of a spatial
trivalent graph without cut-edges, where a cut-edge is an edge such that the
number of connected components of the graph increases when we remove
the edge. When a handlebody-link H is a regular neighborhood of a spatial
trivalent graph K, we say that H is represented by K.

Two spatial trivalent graphs related by an IH-move represent an equiv-
alent handlebody-link, where an IH-move is a local spatial move for spatial
trivalent graphs. The second author [2] showed that two spatial trivalent
graphs represent an equivalent handlebody-link if and only if they are re-
lated by a finite sequence of IH-moves:

{handlebody-link} = {spatial trivalent graph}/IH-moves.
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This was derived from Luo’s result [8] about markings on a surface. In this
paper, we improve Luo’s result and show that two spatial trivalent graphs
without cut-edges represent an equivalent handlebody-link if and only if they
are related by a finite sequence of IH-moves such that all trivalent graphs
appearing in the sequence have no cut-edges:

{handlebody-link}={spatial trivalent graph without cut-edges}/IH-moves.

We remark that the cycle double cover conjecture [13, 15] states that any
graph without cut-edges has a cycle double cover, which was used to nor-
malize the Yamada polynomial [3].

A diagram of a handlebody-link is a diagram of a spatial trivalent graph
which represents the handlebody-link. Kishimoto, Moriuchi, Suzuki and the
second author [6] gave a table of genus two handlebody-knots up to six cross-
ings, and classified them according to the crossing number and irreducibility.
Koda [11] investigated the symmetry group of a genus two handlebody-knot.

The fundamental group of the exterior of a handlebody-link is an invari-
ant of the handlebody-link, although it does not work for handlebody-links
with homeomorphic exteriors. In [2, 4, 7], quandle cocycle invariants are
defined for handlebody-links. Since the discovery of the Jones polynomial,
many link invariants have been defined, which include so-called quantum
invariants. It is important for handlebody-knot theory to define quantum
invariants for handlebody-links. In this paper, we give a sufficient condi-
tion needed to define operator invariants for handlebody-links by improving
Luo’s result. We note that a quantum invariant is an operator invariant. This
is the first step to topological field theory for handlebody-knots. We give an
operator invariant for handlebody-links by using the condition obtained.

Throughout this paper we work in the piecewise linear category.

2. A marking on a surface with boundary. Let Σg,r be a compact
orientable surface of genus g with r boundary components. A marking m =⋃3g+r−3
i=1 mi is a disjoint union of 3g + r− 3 pairwise non-parallel, essential,

non-boundary parallel unoriented simple closed curves in int(Σg,r). From a

marking m, we can obtain a new marking m′ =
⋃3g+r−3
i=1 m′i where m′j = mj

for j 6= i and m′i ∩mi consists of two points of different intersection signs.
We call this operation a type II move. An arc α in int(Σg,r) is called a wave
with respect to the marking m if α ∩m = α ∩mi = ∂α for some i, and α
approaches its end points from the same side of mi. For any given markings
m,n in a compact orientable surface without boundary, Luo [8] showed that
m can be transformed into m′ by a finite sequence of type II moves and
isotopies so that n contains no waves with respect to m′. Here we extend his
theorem to markings on a compact orientable surface Σg,r with boundary.
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Theorem 2.1. If m and n are two markings on Σg,r, then there is a
marking m′ obtained from m by a finite sequence of type II moves and iso-
topies so that n contains no waves with respect to m′.

Proof. The proof is as in [8]. We use the minimum number W (n|m)
of waves with respect to m which are contained in n up to isotopy, and
the geometric intersection number I(m,n) between m and n. The theorem
can be shown by induction on the complexity (W (n|m), I(m,n)) in the
lexicographic order. Here we recall Luo’s arguments. He showed that when
W (n|m) > 0, we can obtain a new marking m′ by a type II move so that
W (n|m′) < W (n|m), or we can obtain a new marking m′ by a finite sequence
of type II moves so that W (n|m′) ≤W (n|m) and I(m′, n) < I(m,n). Since
no marking intersects ∂Σg,r, and ∂Σg,r is fixed on each type II move, we
can show the theorem in the same way as in [8].

For two markings m,n on Σg,r, we say that m,n determine the same
handlebody structure if there exists an embedding from Σg,r to the boundary
∂Hg of the genus g handlebody Hg such that each image of m and n bounds
a union of disjoint proper disks in Hg.

Corollary 2.2. If m,n are two markings on Σg,r which determine the
same handlebody structure, then they are related by a finite sequence of type
II moves.

3. The type II move without separating curves

Theorem 3.1. Suppose that two markings m,n on Σg,r are related by a
finite sequence of type II moves and isotopies, and both m and n consist of
non-separating simple closed curves in Σg,r. Then there is a sequence m =
m(0),m(1), . . . ,m(k) = n of markings such that, for each i ∈ {1, . . . , k}, the
marking m(i) consists of non-separating simple closed curves and is obtained
from m(i−1) by a single type II move and isotopies.

Corollary 3.2. Suppose that m,n are two markings on Σg,r which
determine the same handlebody structure, and both m and n consist of
non-separating simple closed curves in Σg,r. Then there is a sequence m =
m(0),m(1), . . . ,m(k) = n of markings such that, for each i ∈ {1, . . . , k}, the
marking m(i) consists of non-separating simple closed curves and is obtained
from m(i−1) by a single type II move and isotopies.

Lemma 3.3 below is needed for the proof of Theorem 3.1. Here we con-
sider markings on punctured spheres. By the well known Jordan curve theo-
rem, each simple closed curve contained in a marking separates the boundary
components of the punctured sphere into two non-empty sets of components.
Throughout this section, we write AmB when a simple closed curve m sep-
arates the set of boundary components A ∪B into A and B.
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Lemma 3.3.

(a) Let Σ0,4 be a 4-punctured sphere with boundary components a, b, c, d,
and m a marking on Σ0,4. Suppose that each of two markings m′ and
m′′ is obtained from m by a single type II move, and m′∩m′′ contains
no isotopically removable points. If {a, b}m′′{c, d}, then there is a
finite sequence m′ = m(0),m(1), . . . ,m(k) = m′′ of markings on Σ0,4

such that m(i) is obtained from m(i−1) by a single type II move, and
for each i ∈ {1, . . . , k}, either {a, b}m(i){c, d} or {a, d}m(i){b, c}.

(b) Let Σ0,5 be a 5-punctured sphere with boundary components a, b, c,
d, e, and m1 ∪m2 a marking on Σ0,5. Suppose that each of m′1 ∪m2

and m1 ∪ m′2 is obtained from m1 ∪ m2 by a single type II move,
and neither m′1 ∩ m1 nor m2 ∩ m′2 contains isotopically removable
points. If {a, b}m1{c, d, e}, {a, b, c}m2{d, e}, {a, d, e}m′1{b, c} and
{a, b, e}m′2{c, d}, then there is a simple closed curve n in Σ0,5 such
that {a, e}n{b, c, d} and n∩m′i = ∅, and n∩mi consists of two points
of different intersection signs, for i ∈ {1, 2}.

Proof. (a) Each marking on Σ0,4 is a simple closed curve which separates
the four boundary components of Σ0,4 into two pairs (see Figure 1, left).
Since m,m′′ are related by a single type II move, we have either {a, d}m{b, c}
or {a, c}m{b, d}. If {a, d}m{b, c}, then we put m(1) = m, m(2) = m′′, and
k = 2. If {a, c}m{b, d}, then m′′ = tk(m′), where t is a right-hand or left-
hand half Dehn twist along m, and k is a non-negative integer. Put m(i) =
ti(m′) for each i ∈ {0, 1, . . . , k}. Then m(i) is obtained from m(i−1) by a
single type II move, and for each i ∈ {1, . . . , k}, either {a, b}m(i){c, d} or
{a, d}m(i){b, c}.

(b) Let Σ0,3 be a 3-punctured sphere which is obtained from Σ0,5 by
cutting open along m1 ∪ m2 and has the boundary component c. Since
m′1∩m′2 contains no isotopically removable points, there are two intersection
points p1, p2 of m′1 and m′2 in Σ0,3. For each i ∈ {1, 2}, there is an arc αi
in m′i ∩ Σ0,3 whose boundary is p1 ∪ p2. Let n be a simple closed curve in
Σ0,5 which is isotopic to the curve cl(m′1 − α1) ∪ cl(m′2 − α2), and does not
intersect m′1 ∪ m′2 as shown in Figure 1 (right). Then {a, e}n{b, c, d} and
n ∩mi consists of two points of different intersection signs because of the
type II move between m′i and mi for i ∈ {1, 2}.

Proof of Theorem 3.1. Throughout this proof, by a finite sequence of
markings which connects two markings, we mean a finite sequence of mark-
ings from one to another such that any successive two are related by a
single type II move and isotopies. By the assumption of Theorem 3.1, there
is a finite sequence of markings which connects m and n. We assume that
there are some markings in the sequence which contain separating simple



An operator invariant for handlebody-knots 237

a b

c d

m
m′

m′′

a

b

c

d

e
m1 m2

m′
1 m′

2
n

Fig. 1. Markings on punctured spheres

closed curves in Σg,r. For each marking of the sequence, we consider the
number of separating simple closed curves contained in the marking. Let
m(0),m(1), . . . ,m(k) be a subsequence of the sequence that is a maximal
part among the sequence, where k ≥ 2. In other words, m(0) and m(k) each
contain exactly N − 1 separating simple closed curves, and m(i) contains
exactly N separating simple closed curves for each i ∈ {1, . . . , k − 1}. We
will show that there is a finite sequence of markings which connects m(k−2)

and m(k) such that each marking of the sequence except m(k−2) contains
at most N − 1 separating simple closed curves. Then we can reduce the
total length of maximal parts of the sequence without changing the start
m and the target n. By reducing the length repeatedly, we obtain a finite
sequence of markings which connects m and n so that each marking consists
of non-separating simple closed curves in Σg,r.

A single type II move replaces only one curve of a marking. Without loss
of generality, we can put

m(k−2) = m1 ∪ · · · ∪m′p ∪ · · · ∪ml,

m(k−1) = m1 ∪ · · · ∪ml,

m(k) = m1 ∪ · · · ∪m′′q ∪ · · · ∪ml,

and assume that m′p ∩m′′q contains no isotopically removable points. Note
that mq is separating and m′′q is non-separating in Σg,r. There are three cases
for mp and mq: 1) p = q; 2) p 6= q and the closure of some component of
Σg,r −m(k−1) contains both mp and mq as boundary components; 3) p 6= q
and the closure of no component of Σg,r − m(k−1) contains both mp and
mq as boundary components. Note that each of mp,m

′
p,mq,m

′′
q connects

exactly two pants components of Σg,r −m(k−1), because the pairs mp,m
′
p

and mq,m
′′
q are each related by a single type II move.

In the first case, the connected surface obtained from two components
of Σg,r − m(k−1) by gluing along mp is homeomorphic to the 4-punctured
sphere. Let Σ0,4 be the closure of that punctured sphere. Without loss of
generality, we can put labels a, b, c, d on the four boundary components
of Σ0,4 so that {a, c}mp{b, d} and {a, b}m′′p{c, d}. By putting m = mp,
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m′ = m′p and m′′ = m′′p in Lemma 3.3(a), we obtain a finite sequence
mp,0 = m′p,mp,1, . . . ,mp,k′ = m′′p of markings on Σ0,4 connecting m′p and m′′p
such that for each i ∈ {1, . . . , k′}, either {a, b}mp,i{c, d} or {a, d}mp,i{b, c}.
When there exists a component of the closure of Σg,r −Σ0,4 which contains
simple closed curves x and y, we write x ∼ y. Since mp is separating and
m′′p is non-separating in Σg,r, we have a ∼ c or b ∼ d. Hence mp,i is a non-

separating simple closed curve in Σg,r for each i ∈ {1, . . . , k′}. Put m(k,i) =

(m(k−1) − mp) ∪ mp,i for each i ∈ {0, 1, . . . , k′}. Then m(k,0), . . . ,m(k,k′)

is a finite sequence of markings on Σg,r connecting m(k−2) and m(k), and
the number of separating simple closed curves of m(k,i) is N − 1 for each
i ∈ {1, . . . , k′}.

In the second case, the connected surface obtained from some com-
ponents of Σg,r − m(k−1) by gluing along mp ∪ mq is not homeomorphic
to the 2-punctured torus, because mq is a separating simple closed curve
in Σg,r, and thus is homeomorphic to a 5-punctured sphere. Let Σ0,5 be
that sphere. Without loss of generality, we can put labels a, b, c, d, e on the
five boundary components of Σ0,5 so that {a, b}mp{c, d, e}, {a, b, c}mq{d, e},
{a, d, e}m′p{b, c} and {a, b, e}m′′q{c, d}. By putting m1 = mp, m2 = mq,
m′1 = m′p and m′2 = m′′q in Lemma 3.3(b), we obtain a simple closed curve
n in Σ0,5 such that {a, e}n{b, c, d} and n ∩ m′i = ∅, and n ∩ mi consists
of two points of different intersection signs, for i ∈ {1, 2}. When there ex-
ists (resp. does not exist) a component of the closure of Σg,r − Σ0,5 which
contains simple closed curves x and y, we write x ∼ y (resp. x � y). We
suppose that n is separating in Σg,r, and show that mp is non-separating
and m′p is separating in Σg,r, which contradicts the assumption that the

number of separating simple closed curves of m(k−2) is at most N . Since m′′q
is non-separating in Σg,r, we have

a ∼ c, a ∼ d, b ∼ c, b ∼ d, e ∼ c or e ∼ d.
Since mq and n are separating in Σg,r, we have b ∼ c, which implies that mp

is non-separating in Σg,r. Since mq and n are separating in Σg,r, we have

b � e, b � d, c � e, c � d, a � b and a � c,

which implies that m′p is separating in Σg,r. Hence n is a non-separating

simple closed curve in Σg,r. Put m(k,1) = (m(k−2) −mq) ∪ n and m(k,2) =
(m(k)−mp)∪n. Then m(k−2),m(k,1),m(k,2),m(k) is a finite sequence of mark-
ings on Σg,r connecting m(k−2) and m(k), and the number of separating
simple closed curves of m(k,i) is at most N − 1 for each i ∈ {1, 2}.

In the third case, mp ∩ mq = ∅. Put m(k,1) = (m(k−2) − mq) ∪ m′′q .
Then m(k−2),m(k,1),m(k) is a finite sequence of markings on Σg,r connecting
m(k−2) and m(k), and the number of separating simple closed curves of m(k,1)

is at most N − 1.
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4. A handlebody-tangle. A handlebody-link [2] is a disjoint union
of handlebodies embedded in the 3-sphere S3. Two handlebody-links are
equivalent if one can be transformed into the other by an isotopy of S3.
A handlebody-tangle is a disjoint union of handlebodies embedded in the
3-ball B3 such that the intersection of the handlebodies and the boundary
of B3 consists of disks, which we call the end disks of the handlebody-tangle.
Two handlebody-tangles are equivalent if one can be transformed into the
other by an isotopy of B3 fixed on the boundary of B3. We note that a
handlebody-tangle with no end disks corresponds to a handlebody-link.

A uni-trivalent graph is a finite graph with each vertex of valency 1
or 3. In this paper, a uni-trivalent graph may contain circle components.
A trivalent tangle is a uni-trivalent graph embedded in B3 such that the
intersection of the graph and the boundary of B3 is the union of all univalent
vertices of the graph, where we call a univalent vertex an end point of the
trivalent tangle. When a handlebody-tangle H is a regular neighborhood of
a trivalent tangle T such that every end disk of H contains just one univalent
vertex of T , we say that H is represented by T (see Figure 2).

H T1 T2

Fig. 2. T1 and T2 represent H

A cut-edge of a trivalent tangle T is an edge whose ends are trivalent
vertices such that the number of connected components of T increases when
we remove the edge. An IH-move is a local change of a trivalent tangle as
described in Figure 3, where the replacement is applied in a disk embedded
in the interior of B3. Since a type II move corresponds to an IH-move,
Corollaries 2.2 and 3.2 imply the following theorems (see also [2]).

↔

Fig. 3. An IH-move

Theorem 4.1. Two trivalent tangles with the same end points represent
an equivalent handlebody-tangle if and only if they are related by a finite
sequence of IH-moves and isotopies of B3 fixed on the boundary of B3.
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Theorem 4.2. Two trivalent tangles with the same end points and no
cut-edges represent an equivalent handlebody-tangle if and only if they are
related by a finite sequence of IH-moves and isotopies of B3 fixed on the
boundary of B3 such that all trivalent tangles appearing in the sequence
have no cut-edges.

A diagram of a trivalent tangle is a projection image of the trivalent
tangle into the disk B2 together with “over and under” information at each
transversal double point, which is the only admissible multiple point on the
diagram. Any two diagrams of equivalent spatial trivalent graphs are related
by a finite sequence of moves R1–5 depicted in Figure 4 [18] (see also [9]).
Since we may apply an IH-move in a small disk by an isotopy of B3 fixed
on the boundary of B3, we have the following corollaries.

↔
R1

↔
R1

↔
R2

↔
R3

↔
R4

↔
R4

↔
R5

↔
R5

↔
R6

Fig. 4

Corollary 4.3. Two trivalent tangles with the same end points repre-
sent an equivalent handlebody-tangle if and only if their diagrams are related
by a finite sequence of moves R1–6.

Corollary 4.4. Two trivalent tangles with the same end points and
no cut-edges represent an equivalent handlebody-tangle if and only if their
diagrams are related by a finite sequence of moves R1–6 such that all dia-
grams appearing in the sequence are diagrams of trivalent tangles without
cut-edges.

In these corollaries, two diagrams are regarded as the same if they can
be transformed into each other by an isotopy of B2 fixed on the boundary
of B2.

Theorem 4.2 is a generalization of Theorem 7.1 in [10], where Koda
showed the statement of Theorem 4.2 for spatial theta-curves by showing
an actual deformation for a bypass. Kishimoto and the second author [5]
introduced the IH-complex CIH of spatial trivalent graphs, which is the sim-
plicial complex defined by the following conditions:

• The vertex set of CIH consists of all spatial trivalent graphs.
• A family of n+ 1 vertices {K0,K1, . . . ,Kn} spans an n-simplex if and

only ifKi,Kj are related by a single IH-move for any i, j ∈ {0, 1, . . . , n}
such that i 6= j.
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By Theorem 4.2, we have the following corollary.

Corollary 4.5. The full subcomplex of CIH spanned by spatial trivalent
graphs without cut-edges is connected in each component of CIH.

5. Sliced diagrams. In this section and the next, we mainly follow the
notation and definitions of [12, Chapter 3]. We consider trivalent tangles in
I3 whose end points lie on I2 × ∂I, and whose diagrams are depicted in I2,
where I is a closed interval. The last coordinate gives a height function.
Two trivalent tangle diagrams are assumed to be the same if they can be
transformed into each other by an isotopy preserving the order of crossings,
vertices, maxima, and minima with respect to the height function. We note
that the box I3 may be resized as necessary.

D1 D2

D1 ⊗D2

D1

D2

D1 ◦D2

Fig. 5

Fig. 6

For trivalent tangle diagrams D1, D2, we define their tensor product
D1 ⊗ D2 by the left diagram in Figure 5. For trivalent tangle diagrams
D1, D2 such that the number of bottom ends of D1 coincides with that of
top ends of D2, we define the composition D1 ◦ D2 by the right diagram
in Figure 5. The elementary trivalent tangle diagrams are those shown in
Figure 6. Any trivalent tangle diagram can be expressed as a composition
of tensor products of copies of elementary trivalent tangle diagrams. For
example, we have

= ◦ ◦

= ( ⊗ ) ◦ ( ⊗ ) ◦ ( ⊗ ) .

A trivial tangle diagram is a tensor product of copies of the leftmost diagram
in Figure 6. We note that the empty diagram is regarded as a trivial tangle
diagram. A classical tangle is a trivalent tangle without trivalent vertices.
A trivial tangle diagram is a classical tangle diagram.

A sliced diagram is a composition of tensor products of trivial tangle dia-
grams and one elementary trivalent tangle diagram. In other words, a sliced
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diagram is a composition of trivalent tangle diagrams each of which con-
tains at most one non-trivial elementary trivalent tangle diagram. The left
diagram in Figure 7 is a sliced diagram, while the right one is not.

Fig. 7

Theorem 5.1.

(1) Two sliced diagrams are related by an isotopy of the plane if and
only if they are related by a finite sequence of moves Pi, Pii, Piii,
Piv depicted in Figure 8.

(2) Two sliced diagrams represent an equivalent handlebody-tangle if and
only if they are related by a finite sequence of moves depicted in
Figure 8.

trivial
tangle
diagram

T1

T2

trivial
tangle
diagram ↔

Pi

T1

trivial
tangle
diagram

trivial
tangle
diagram

T2

↔
Pii

↔
Pii

↔
Piii

↔
Piii

↔
Piv

↔
Piv

↔
Ri

↔
Ri

↔
Rii ↔

Riii

↔
Riv

↔
Riv ↔

Rv
↔
Rv

↔
Rvi

Fig. 8

Proof. The theorem is true for classical tangles [1, 16, 17] (see [12, Chap-
ter 3]).

(1) If two sliced diagrams are related by a finite sequence of moves Pi,
Pii, Piii, Piv, then they are related by an isotopy of the plane. Let D1, D2
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D1

→

D′
1

Fig. 9

be sliced diagrams which are related by an isotopy ϕ of the plane. Let D′1
be a classical sliced diagram obtained from D1 by replacing every trivalent
vertex by a crossing and adding an edge between the free end of the crossing
and the top or bottom of the tangle diagram as shown in Figure 9, where
we allow new crossings on the edge. Let D′2 be a classical sliced diagram
obtained from D′1 by the isotopy ϕ. We remark that we can recover D2 from
D′2 by removing the added edges. Since the classical sliced diagrams D′1, D

′
2

are related by an isotopy of the plane, they are related by a finite sequence
of moves Pi, Pii, Piii. When we remove the added edges, the moves Pi, Pii,
Piii become Pi, Pii, Piii, Piv and the move

↔

This last move and Piv are obtained from Piii by removing one of the four
edges at a crossing. The last move is derived from Pi and Piv as follows:

↔
Piv

↔
Pi

↔
Pvi

Therefore the sliced diagrams D1, D2 are related by a finite sequence of
moves Pi, Pii, Piii, Piv.

(2) This follows from (1) and Corollary 4.3.

We note that moves based on [18] contain the following trivalent tangle
diagrams as elementary trivalent tangle diagrams:

6. An operator invariant. Let V be a module over a ring R. For
an automorphism c : V ⊗ V → V ⊗ V and linear maps n : V ⊗ V → R,
u : R→ V ⊗ V , h : V ⊗ V → V , y : V → V ⊗ V , to every sliced diagram D
we assign a linear map [D] as follows. We set[ ]

:= idV ,
[ ]

:= c,
[ ]

:= c−1,[ ]
:= n,

[ ]
:= u,

[ ]
:= h,

[ ]
:= y.

For a sliced diagram D, we define the linear map [D] by using

[D1 ⊗D2] = [D1]⊗ [D2], [D1 ◦D2] = [D1] ◦ [D2],
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recursively. For example,[ ]
= (idV ⊗ n)(c⊗ idV )(idV ⊗ u),

where we denote f ◦ g by fg.

By Theorem 5.1, we have the following.

Theorem 6.1. If an automorphism c : V ⊗V → V ⊗V and linear maps
n : V ⊗ V → R, u : R→ V ⊗ V , h : V ⊗ V → V , y : V → V ⊗ V satisfy the
equalities

(idV ⊗ n)(u⊗ idV ) = idV = (n⊗ idV )(idV ⊗ u),

(idV ⊗ n)(c⊗ idV ) = (n⊗ idV )(idV ⊗ c−1),
(idV ⊗ n)(c−1 ⊗ idV ) = (n⊗ idV )(idV ⊗ c),
(idV ⊗ n)(y ⊗ idV ) = h = (n⊗ idV )(idV ⊗ y),

(idV ⊗ n)(c⊗ idV )(idV ⊗ u) = idV = (idV ⊗ n)(c−1 ⊗ idV )(idV ⊗ u),

(c⊗ idV )(idV ⊗ c)(c⊗ idV ) = (idV ⊗ c)(c⊗ idV )(idV ⊗ c),
hc = h = hc−1,

(h⊗ idV )(idV ⊗ c)(c⊗ idV ) = c(idV ⊗ h),

(idV ⊗ h)(c⊗ idV )(idV ⊗ c) = c(h⊗ idV ),

h(h⊗ idV ) = h(idV ⊗ h),

then [D] is an invariant of a handlebody-tangle H represented by D. In
particular, if H is a handlebody-link, [D](1) is an invariant which takes
values in R.

Put Zm := Z/mZ and R := Z[ω]/(ωm − 1). We remark that ωis is well-
defined for i ∈ Z and s ∈ Zm. Let V be a free module over R with a basis
{vis | s ∈ Zm, i = 1, 2}. We define the automorphism c : V ⊗ V → V ⊗ V
and the linear maps n : V ⊗ V → R, u : R → V ⊗ V , h : V ⊗ V → V ,
y : V → V ⊗ V by

c(vis ⊗ v
j
t ) = ω(1−δij)stvjt ⊗ vis,

n(vis ⊗ v
j
t ) = δijδs(−t), u(1) =

∑
i∈{1,2}

∑
s∈Zm

vis ⊗ vi−s,

h(vis ⊗ v
j
t ) = δijv

i
s+t, y(vis) =

∑
t∈Zm

vis−t ⊗ vit,

where δij is the Kronecker symbol. These linear maps satisfy the equalities
in Theorem 6.1. We verify some of the equalities here:
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(idV ⊗ n)(u⊗ idV )(vis) = (idV ⊗ n)
( ∑
j∈{1,2}

∑
t∈Zm

vjt ⊗ v
j
−t ⊗ vis

)
=

∑
j∈{1,2}

∑
t∈Zm

δjiδ(−t)(−s)v
j
t = vis = idV (vis),

(idV ⊗ n)(c⊗ idV )(vis ⊗ v
j
t ⊗ vku) = (idV ⊗ n)(ω(1−δij)stvjt ⊗ vis ⊗ vku)

= ω(1−δij)stδikδs(−u)v
j
t

= ω−(1−δjk)tuδikδs(−u)v
j
t

= (n⊗ idV )(ω−(1−δjk)tuvis ⊗ vku ⊗ v
j
t )

= (n⊗ idV )(idV ⊗ c−1)(vis ⊗ v
j
t ⊗ vku),

(idV ⊗ n)(y ⊗ idV )(vis ⊗ v
j
t ) = (idV ⊗ n)

( ∑
u∈Zm

vis−u ⊗ viu ⊗ v
j
t

)
=
∑
u∈Zm

δijδu(−t)v
i
s−u = δijv

i
s+t = h(vis ⊗ v

j
t ),

(idV ⊗ n)(c⊗ idV )(idV ⊗ u)(vis)

= (idV ⊗ n)(c⊗ idV )
( ∑
j∈{1,2}

∑
t∈Zm

vis ⊗ v
j
t ⊗ v

j
−t

)
= (idV ⊗ n)

( ∑
j∈{1,2}

∑
t∈Zm

ω(1−δij)stvjt ⊗ vis ⊗ v
j
−t

)
=

∑
j∈{1,2}

∑
t∈Zm

ω(1−δij)stδijδstv
j
t = vis = idV (vis),

(c⊗ idV )(idV ⊗ c)(c⊗ idV )(vis ⊗ v
j
t ⊗ vku)

= (c⊗ idV )(idV ⊗ c)(ω(1−δij)stvjt ⊗ vis ⊗ vku)

= (c⊗ idV )(ω(1−δij)stω(1−δik)suvjt ⊗ vku ⊗ vis)

= ω(1−δij)stω(1−δik)suω(1−δjk)tuvku ⊗ v
j
t ⊗ vis

= (idV ⊗ c)(ω(1−δik)suω(1−δjk)tuvku ⊗ vis ⊗ v
j
t )

= (idV ⊗ c)(c⊗ idV )(ω(1−δjk)tuvis ⊗ vku ⊗ v
j
t )

= (idV ⊗ c)(c⊗ idV )(idV ⊗ c)(vis ⊗ v
j
t ⊗ vku),

hc(vis ⊗ v
j
t ) = h(ω(1−δij)stvjt ⊗ vis)

= ω(1−δij)stδjiv
j
t+s = δijv

i
s+t = h(vis ⊗ v

j
t ),
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(h⊗ idV )(idV ⊗ c)(c⊗ idV )(vis ⊗ v
j
t ⊗ vku)

= (h⊗ idV )(idV ⊗ c)(ω(1−δij)stvjt ⊗ vis ⊗ vku)

= (h⊗ idV )(ω(1−δij)stω(1−δik)suvjt ⊗ vku ⊗ vis)
= ω(1−δij)stω(1−δik)suδjkv

j
t+u ⊗ vis

= ω(1−δij)s(t+u)δjkv
j
t+u ⊗ vis

= c(δjkv
i
s ⊗ v

j
t+u)

= c(idV ⊗ h)(vis ⊗ v
j
t ⊗ vku),

h(h⊗ idV )(vis ⊗ v
j
t ⊗ vku) = h(δijv

i
s+t ⊗ vku) = δijδikv

i
s+t+u = δijδjkv

i
s+t+u

= h(δjkv
i
s ⊗ v

j
t+u) = h(idV ⊗ h)(vis ⊗ v

j
t ⊗ vku).

By Theorem 6.1, we obtain an invariant associated with the linear maps
c, n, u, h, y. In Table 1, we evaluate the invariant for some handlebody-links.
We note that this invariant is a kind of linking invariant and gives the same
value for any handlebody-knot of fixed genus.

Table 1

2m2

4m3

2m
∑

s,t∈Zm
ω2st + 2m3
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