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Abstract. We consider prediction problems in which each of a countably infinite set
of agents tries to guess his own hat color based on the colors of the hats worn by the
agents he can see, where who can see whom is specified by a graph V on ω. Our interest
is in the case in which U is an ultrafilter on the set of agents, and we seek conditions on U
and V ensuring the existence of a strategy such that the set of agents guessing correctly
is of U-measure one. A natural necessary condition is the absence of a set of agents in U
for which no one in the set sees anyone else in the set. A natural sufficient condition is
the existence of a set of U-measure one so that everyone in the set sees a set of agents of
U-measure one. We ask two questions: (1) For which ultrafilters is the natural sufficient
condition always necessary? (2) For which ultrafilters is the natural necessary condition
always sufficient? We show that the answers are (1) p-point ultrafilters, and (2) Ramsey
ultrafilters.

1. Introduction. Our set-theoretic notation is fairly standard. Each
ordinal is the set of smaller ordinals, so ω = {0, 1, 2, . . .} and 2 = {0, 1}. If X
and Y are sets, then XY denotes the set of all functions from X to Y , X−Y
is the set-theoretic difference of X and Y , and Xc = ω −X when X ⊆ ω.
We let P(A) denote the power set of A, and [ω|<ω is the collection of finite
subsets of ω. If f is a function and A is a subset of the domain of f , then f |A
is the restriction of f to the set A. We regard a graph V on ω as a subset of
ω×ω in which (x, y) ∈ V implies x < y. We let V (x) = {y ∈ ω : (x, y) ∈ V }.
If s ∈ X2 for some X ∈ [ω|<ω, then [s] = {f ∈ ω2 : f |X = s}. These sets
constitute a basis for a compact topology on ω2 that makes it homeomorphic
to the Cantor set.

We consider the standard hat problem in which ω is the set of agents
and 2 is the set of hat colors. Each g ∈ ω2 is a coloring which intuitively
corresponds to the placing of colored hats on the agents, with “g(x) = i”
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being interpreted as “agent x has hat color i.” Visibility is specified by a
graph V on ω, where (x, y) ∈ V is interpreted as “agent x can see (the
hat worn by) agent y.” If we fix such a visibility graph, then a strategy
for agent x is a function Sx : ω2 → 2 such that Sx(g) = Sx(h) whenever
g|V (x) = h|V (x). Intuitively, Sx(g) is agent x’s guess of his own hat color
for the coloring g and his guess only depends on the hats worn by the agents
he can see. A predictor for V is a sequence P = 〈Sx : x ∈ ω〉 where, for each
x, Sx is a strategy for agent x. Given a coloring g, agent x guesses correctly
for g with P if Sx(g) = g(x). For more background, see [HT08a], [HT08b],
[HT09], and [HT10].

A filter on ω is a non-empty collection F of subsets of ω that is closed
under finite intersections and the formation of supersets. It is proper if
F 6= P(ω) and it is non-principal if it contains all cofinite subsets of ω.
Whenever we say “filter” we mean “proper, non-principal filter on ω.” An
ultrafilter U on ω is a maximal filter; these are the filters for which exactly
one of X and Xc is in U for each X ⊆ ω. A set in U is said to be of U-measure
one; its complement is of U-measure zero.

Two well-known classes of ultrafilters arise in what follows. An ultrafilter
U is a p-point if for every f ∈ ωω there exists a set X ∈ U such that f |X is
either constant or finite-to-one. If the conclusion can be strengthened from
“finite-to-one” to “one-to-one,” then U is a Ramsey ultrafilter. With the
continuum hypothesis (or just Martin’s Axiom), one can prove that Ramsey
ultrafilters (and thus p-points) exist, but in ZFC one cannot even prove that
p-points exist; see [W82]. Ramsey ultrafilters get their name from the fact
that they can be characterized as precisely the ones for which every graph on
ω will have either a complete subgraph in the ultrafilter or an independent
subgraph in the ultrafilter.

Suppose now that F is a filter on ω and that we have a visibility graph
V on ω such that V (x) ∈ F for every x ∈ ω. Then we can construct a
predictor for the corresponding hat problem as follows. Consider the equiv-
alence relation ≡ on ω2 wherein g ≡ h if {x ∈ ω : g(x) = h(x)} ∈ F . The
axiom of choice guarantees the existence of a function Φ : ω2→ ω2 such that
Φ(g) ≡ g, and Φ(g) = Φ(h) iff g ≡ h. We now set Sx(g) = Φ(g)(x). Notice
that this makes sense, because agent x can determine g’s equivalence class.
Intuitively, the agents are agreeing on a representative from each equiva-
lence class and guessing as if the true coloring is this representative. It is
now easy to see that the set of agents guessing correctly is in F ; we call a
predictor with this property an F-predictor (and when F is the collection
of cofinite subsets of an infinite set, we call it a finite-error predictor). This
argument is really a weakened version of arguments put forth by Galvin
[G65] (see also [GP76]) in the mid-1960s and by Gabay-O’Connor [HT08a]
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in the mid-2000s; it works equally well if there are κ colors for an arbitrary
cardinal κ.

If U is an ultrafilter on ω, then U ×U is the ultrafilter on ω×ω wherein
V ∈ U × U if {x : {y : (x, y) ∈ V } ∈ U} ∈ U . Notice that if we regard V as
a visibility graph, then V ∈ U ×U precisely when we have a U-measure one
set of agents who each see a U-measure one set of agents. The argument in
the previous paragraph shows that V ∈ U × U is a sufficient condition for
the existence of a U-predictor; we call this the natural sufficient condition
for the existence of a U-predictor.

There is also a natural necessary condition for the existence of a U-
predictor : The visibility graph contains no independent set of U-measure
one. The point is that we can always make every agent in an independent
set guess incorrectly by first placing hats of color zero on everyone’s head,
and then changing the hat color for those agents in the independent set who
guessed correctly.

With these preliminaries, we can define the classes of ultrafilters in which
we are interested.

Definition 1.1. An SIN-ultrafilter U is one for which the natural suf-
ficient condition for the existence of a U-predictor (V ∈ U × U) is also
necessary.

An NIS-ultrafilter U is one for which the natural necessary condition for
the existence of a U-predictor (no independent set in U) is also sufficient.

“SIN” stands for “sufficient is necessary” and “NIS” stands for “neces-
sary is sufficient.” We read each of these prefixes letter-by-letter (“S-I-N”
instead of “sin”) and thus use the article “an” as opposed to “a.” In Sec-
tion 2 we show that the SIN-ultrafilters are precisely the p-points, and that
the NIS-ultrafilters are precisely the Ramsey ultrafilters. Some additional
remarks are in Section 3.

I thank Chris Hardin for many discussions concerning these and related
problems. My own interest in ultrafilters goes back to some joint work [BT78]
in the late 1970s with my thesis advisor, Jim Baumgartner.

2. The main results. We begin by characterizing the SIN-ultrafilters.

Theorem 2.1. An ultrafilter is an SIN-ultrafilter iff it is a p-point ul-
trafilter.

Proof. Suppose first that U is not a p-point and choose f ∈ ωω such
that f is neither constant on a set in U nor finite-to-one on a set in U .
Let V be the graph on ω with (x, y) ∈ V if x < y and f(x) = f(y). No
agent sees a set in U , and thus V /∈ U × U . However, for each k ∈ ω, the
agents in f−1({k}) have a finite-error predictor among themselves because
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each agent in f−1({k}) sees all but finitely many other agents in f−1({k}).
The combined use of these predictors will ensure that the set of errors is a
set upon which the function f is finite-to-one, and thus not in U . Hence,
we have a U-predictor even though each agent sees only a set of agents of
U-measure zero.

Now suppose that U is a p-point and V is a graph on ω for which V /∈
U × U . Thus, the set X = {x ∈ ω : V (x) /∈ U} ∈ U . Let 〈Sx : x ∈ ω〉
be any predictor. We will produce a coloring g for which a set of agents of
U-measure one guesses incorrectly.

Let Y = {y ∈ ω : ∃x ∈ X such that (x, y) ∈ V }. Thus, Y consists of
those agents who are seen by a (smaller) agent in X.

Case 1: Y /∈ U . Because Y /∈ U , we know that Y c ∈ U , and thus
X ∩ Y c = X − Y ∈ U . But X − Y is an independent set and, as pointed
out earlier, it is easy to produce a coloring g for which everyone in an
independent set guesses incorrectly. Thus we are done in Case 1.

Case 2: Y ∈ U . Choose f ∈ ωω such that for each y ∈ Y we have
that f(y) is the least x ∈ X such that (x, y) ∈ V . Because U is a p-point,
there exists a set Z ∈ U such that f |Z is either constant or finite-to-one. If
f(Z) = {x}, then f(Y ∩ Z) = {x}, and by choosing any y ∈ Y ∩ Z (which
is in U and thus non-empty), we see that we must have x ∈ X. But then
{y ∈ Y ∩ Z : x < y} ⊆ V (x), and thus V (x) ∈ U , contrary to the definition
of X. It thus follows that f |Z is finite-to-one. We will now produce a coloring
that makes all the agents in Z guess incorrectly.

For each x ∈ Z let Wx ⊆ ω2 be defined as follows: h ∈ Wx iff h(y) = 0
for all y ∈ Zc and Sx(h) 6= h(x). Thus Wx consists of those colorings that
place hats of color zero on all the agents not in Z and place hats on the
agents in Z so that agent x guesses incorrectly.

Claim 1. Wx is a closed subset of ω2.

If h /∈ Wx, then either h(x) = 1 for some x ∈ Zc (in which case h ∈
[h|{x}] ⊆ ω2 − Wx) or h(x) = 0 for every x ∈ Zc and Sx(h) = h(x) (in
which case h ∈ [h|((V (x) ∪ {x}) ∩ Z)] ⊆ ω2−Wx).

Claim 2. The sets Wx have the finite-intersection property.

Suppose x1 < · · · < xk. Starting with color zero hats on everyone, we
can begin at agent xk and change his hat color (if necessary) so that he
guesses incorrectly. We now move to agent xk−1 and do the same; this does
not affect agent xk’s guess. Continuing down to agent x1 yields a coloring
in Wx1 ∩ · · · ∩Wxk

.
By compactness, there exists a coloring g that is in Wx for each x ∈ Z.

This coloring makes everyone in Z guess incorrectly, and thus completes the
proof.
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We now characterize the NIS-ultrafilters.

Theorem 2.2. An ultrafilter is an NIS-ultrafilter iff it is a Ramsey ul-
trafilter.

Proof. Suppose first that U is a Ramsey ultrafilter and that V is a graph
on ω having no independent subgraph with vertex set in U . Because U is
Ramsey it follows that there is a complete subgraph with vertex set X ∈ U .
But now we know that the agents in X have a finite-error strategy among
themselves and this ensures correct guesses by a set of agents in U as desired.

Suppose now that U is not a Ramsey ultrafilter, and choose f such that
f is neither constant on any set in U nor one-to-one on any set in U . We
want to produce a graph V satisfying the natural necessary condition (no
independent set in U) but for which there is no U-predictor. We consider
two cases:

Case 1: There exists a set Y ∈ U such that f |Y is finite-to-one. Let V
be the graph on ω in which (x, y) ∈ V iff x < y and f(x) = f(y). If Z is
an independent set in V , then f |Z is one-to-one, and so Z /∈ U . Now as in
the proof of the previous theorem, we deduce that each agent in Y sees only
finitely many other agents in Y , and so for every predictor, we have a hat
coloring for which every agent in Y guesses incorrectly. This shows that in
this case, the necessary condition is not sufficient.

Case 2: f is not finite-to-one on any set in U . Let V be the graph
on ω in which (x, y) ∈ V iff x < y and f(x) > f(y). Suppose Z ∈ U ; we
will show that Z is not an independent set in V . We know that f |Z is not
finite-to-one, so we can choose p such that infinitely many points of Z map
to p. But {x ∈ Z : f(x) ≤ p} /∈ U and so we can choose x ∈ Z such that
f(x) > p. But now if we choose y ∈ Z such that y > x and f(y) = p, then
x, y ∈ Z, x < y, and f(x) > f(y) so we have (x, y) ∈ V . This shows that V
has no independent set in U .

But now, given any predictor, we can start with color zero hats on every-
one and then successively change the hats on the agents in f−1({0}) so that
these agents all guess incorrectly, and then change the hats on the agents
in f−1({1}) so that these agents all guess incorrectly—without affecting the
guesses of the agents in f−1({0})—and so on until we have a coloring for
which every agent guesses incorrectly.

3. Additional remarks. We conclude with six brief comments.

P-point ultrafilters are also characterized by the following property: For
each countable collection X of sets in U there is a set Y ∈ U such that Y −X
is finite for each X ∈ X . This property, in fact, explains the name, since it
directly shows these ultrafilters to be p-points (in the topological sense) in
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the space βω−ω. One can use this property in the proof of Theorem 2.1 to
obtain the set Z ∈ U such that Z − V (x)c is finite for each x ∈ X.

An ultrafilter U is a q-point if for each f ∈ ωω that is finite-to-one,
there exists a set X ∈ U such that f |X is one-to-one. Thus, U is a Ramsey
ultrafilter iff it is both a p-point and a q-point. The two cases occurring in
the proof of Theorem 2.2 correspond (respectively) to U not being a q-point
and U not being a p-point.

Intuitively, the existence of a “successful” predictor depends on the
graph V providing a “large amount of visibility.” Theorem 2.1 is saying that
an ultrafilter U is a p-point precisely when the collection of graphs providing
sufficient visibility for a U-predictor is itself an ultrafilter (on ω×ω—and it
is indeed U × U in this case).

One can generalize the questions we asked to the context of filters on ω.
An SIN-filter F on ω is one for which the obvious sufficient condition for the
existence of an F-predictor (V ∈ F × F) is also necessary. An NIS-filter F
on ω is one for which the obvious necessary condition for the existence of an
F-predictor (all independent sets are of F-measure zero) is also sufficient.

Christopher Hardin [H10] has provided an elegant argument showing
that the filter of cofinite subsets of ω is an NIS-filter (that is, for every graph
on ω with no infinite independent set, there is a finite-error predictor). We
do not have a characterization of NIS-filters. On the other hand, it is not
hard to see (as we now demonstrate) that if F is an SIN-filter then F is an
ultrafilter. To see this, suppose that F is not an ultrafilter and let X ⊆ ω be
such that neither X nor Xc is in F . Consider the graph V in which (x, y) ∈ V
if x < y and both x and y are in X or both x and y are in Xc. Then, for every
x, we have V (x) /∈ F but the agents in X have a finite-error predictor among
themselves as do the agents in Xc. Thus, there is a finite-error predictor and
hence an F-predictor, showing that the sufficient condition is not necessary.

Finally, it is also the case that although we worked exclusively with
two-color hat problems, the number of colors, provided it is at least two,
played no role in any of our results. That is, the positive results were based
on the construction in Section 1 which, as pointed out there, works equally
well with κ colors.
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