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The multifractal box dimensions of typical measures

by

Frédéric Bayart (Clermont-Ferrand and Aubière)

Abstract. We compute the typical (in the sense of Baire’s category theorem) multi-
fractal box dimensions of measures on a compact subset of Rd. Our results are new even
in the context of box dimensions of measures.

1. Introduction
1.1. Formulation of the problem. The origin of this paper goes back

to the work [MR02] of J. Myjak and R. Rudnicki, where they investigate
the box dimensions of typical measures. To state their result, we need to
introduce some terminology. Let K be a compact subset of Rd, and let P(K)
be the set of Borel probability measures on K; we endow P(K) with the
weak topology. By a property true for a typical measure of P(K), we mean
a property which is satisfied by a dense Gδ-set of elements of P(K).

For a subset E ⊂ Rd, we denote the lower box dimension of E and the
upper box dimension of E by dimB(E) and dimB(E), respectively. Also, for
a probability measure µ, we define the small and big lower (resp. upper)
multifractal box dimensions of µ by

dim∗,B(µ) = inf
µ(E)>0

dimB(E), dim∗B(µ) = lim
ε>0

inf
µ(E)>1−ε

dimB(E),

dim∗,B(µ) = inf
µ(E)>0

dimB(E), dim
∗
B(µ) = lim

ε>0
inf

µ(E)>1−ε
dimB(E).

Finally, we define the local upper box dimension of K by

dimB,loc(K) = inf
x∈K

inf
r>0

dimB(K ∩B(x, r)).

Theorem A (Myjak and Rudnicki). Let K be a compact subset of Rd.
Then a typical measure µ ∈ P(K) satisfies

dim∗,B(µ) = dim∗B(µ) = 0,

dimB,loc(K) ≤ dim∗,B(µ) ≤ dim
∗
B(µ) ≤ dimB(K).
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The result concerning the upper multifractal box dimension does not
solve completely the problem for compact sets even as simple as K =
{0} ∪ [1, 2]. In this case we just find that, typically,

0 ≤ dim∗,B(µ) ≤ dim
∗
B(µ) ≤ 1.

In particular, we do not know whether the interval [0, 1] is the shortest
possible, or whether dim∗,B(µ) and dim

∗
B(µ) coincide for a typical measure.

Our original aim was to answer this question. To do that, we need to
introduce the maximal local upper box dimension of a set E, defined by

dimB,loc,max(E) = sup
y∈E, ρ>0

dimB,loc(E ∩B(y, ρ)).

Our first main result now reads:

Theorem 1.1. Let K be a compact subset of Rd. Then a typical measure
µ ∈ P(K) satisfies

dim∗,B(µ) = dimB,loc(K), dim
∗
B(µ) = dimB,loc,max(K).

Applying this theorem with K = {0} ∪ [1, 2], we find that a typical
measure µ ∈ P(K) satisfies

dim∗,B(µ) = 0 and dim
∗
B(µ) = 1.

1.2. Multifractal box dimensions. In [Ols11], L. Olsen has put the
work of Myjak and Rudnicki in a more general context, that of multifractal
box dimensions of measures, which is interesting by itself. Fix a Borel prob-
ability measure π on Rd with support K. For a bounded subset E of K, the
multifractal box dimensions of E with respect to π are defined as follows.
For r > 0 and a real number q, write

Nq
π(E, r) = inf

(B(xi,r)) is a cover of E

∑
i

π(B(xi, r))
q.

The lower and upper covering multifractal box dimensions of E of order q
with respect to π are defined by

dimq
π,B(E) = lim inf

r→0

logNq
π(E, r)

− log r
, dim

q
π,B(E) = lim sup

r→0

logNq
π(E, r)

− log r
.

Let now µ ∈ P(K). We define the small and big lower multifractal box
dimensions of µ of order q with respect to the measure π (resp. the small
and big upper multifractal box dimensions of µ of order q with respect to the
measure π) by

dimq
∗,π,B(µ) = inf

µ(E)>0
dimq

π,B(E), dim∗,qπ,B(µ) = lim
ε>0

inf
µ(E)>1−ε

dimq
π,B(E),

dim
q
∗,π,B(µ) = inf

µ(E)>0
dim

q
π,B(E), dim

∗,q
π,B(µ) = lim

ε>0
inf

µ(E)>1−ε
dim

q
π,B(E).
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Multifractal box dimensions of measures play a central role in multi-
fractal analysis. For instance, the multifractal box dimensions of measures
in Rd having some degree of self-similarity have been intensively studied (see
[Fal97] and the references therein). In [Ols11], L. Olsen gives estimates of the
typical multifractal box dimensions of measures, in the spirit of Myjak and
Rudnicki. To state his result, we need a few definitions. Firstly, the upper
moment scaling of π is the function τπ : R→ R defined by

τπ(q) = dim
q
π,B(K).

The local upper multifractal box dimension of K of order q is defined by

dim
q
π,B,loc(K) = inf

x∈K
inf
r>0

dim
q
π,B(K ∩B(x, r)).

This last quantity will also be called the local upper moment scaling of π
and will be denoted by τπ,loc(q). Finally, let

Dπ(−∞) = lim sup
r→0

log infx∈K π(B(x, r))

log r
,

Dπ(+∞) = lim inf
r→0

log supx∈K π(B(x, r))

log r
.

Recall also that a measure π on Rd is called a doubling measure provided
there exists C > 0 such that

sup
x∈supp(π)

sup
r>0

π(B(x, 2r))

π(B(x, r))
≤ C.

We can now give Olsen’s result.

Theorem B (Olsen). Let π be a Borel probability measure on Rd with
compact support K.

(1) A typical measure µ ∈ P(K) satisfies

−qDπ(+∞) ≤ dimq
∗,π,B(µ) ≤ dim∗,qπ,B(µ) ≤ −qDπ(−∞) for all q ≤ 0,

−qDπ(−∞) ≤ dimq
∗,π,B(µ) ≤ dim∗,qπ,B(µ) ≤ −qDπ(+∞) for all q ≥ 0.

(2) If π is a doubling measure, then a typical measure µ ∈ P(K) satisfies

τπ,loc(q) ≤ dim
q
∗,π,B(µ) ≤ dim

∗,q
π,B(µ) ≤ τπ(q) for all q ≤ 0.

If moreover K does not contain isolated points, then this result re-
mains true for all q ∈ R.

For q = 0, this implies in particular Myjak and Rudnicki’s theorem.

1.3. Statement of our main results. Of course, the questions asked
after Theorem A also make sense in this more general context. To answer
them, we have to introduce the maximal local upper moment scaling of π,
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which is defined by

τπ,loc,max(q) = sup
y∈K,ρ>0

dim
q
π,B,loc(K ∩B(y, ρ)).

Theorem 1.2. Let π be a doubling Borel probability measure on Rd with
compact support K. Then a typical measure µ ∈ P(K) satisfies, for any
q ∈ R,

dim
q
∗,π,B(µ) = τπ,loc(q), dim

∗,q
π,B(µ) = τπ,loc,max(q).

Putting q = 0, we retrieve Theorem 1.1.
We can also observe that Olsen’s theorem does not settle completely the

typical values of the lower multifractal box dimensions. For instance, when
computed for a self-similar compact set K satisfying the open set condition
(see below) and an associated self-similar measure π, the values of Dπ(+∞)
and Dπ(−∞) are in general different. Moreover, it has been pointed out
in [Bay12] that, given a fixed compact set K ⊂ Rd, a typical probability
measure π ∈ P(K) satisfies Dπ(−∞) = +∞ and Dπ(+∞) = 0!

We have been able to compute the typical value of the big lower multi-
fractal box dimension of a measure. As before, we need to introduce some
definitions, which are uniform versions of Dπ(−∞) and Dπ(+∞). Let π be
a Borel probability measure with support K. Define

Dπ,unif(−∞) = inf
N

inf
y1,...,yN∈K

ρ>0

lim sup
r→0

inf
i=1,...,N

log(infx∈B(yi,ρ) π(B(x, r)))

log r
,

Dπ,unif(+∞) = sup
N

sup
y1,...,yN∈K

ρ>0

lim inf
r→0

sup
i=1,...,N

log(supx∈B(yi,ρ) π(B(x, r)))

log r
.

Theorem 1.3. Let π be a Borel probability measure with compact sup-
port K. Then a typical measure µ ∈ P(K) satisfies

dim∗,qπ,B(µ) =

{
−qDπ,unif(−∞) provided q ≥ 0,
−qDπ,unif(+∞) provided q ≤ 0.

Unfortunately, we do not have a similar result for the small lower multi-
fractal box dimensions. We have just been able to improve Olsen’s inequality.
This improvement is sufficient to conclude for self-similar compact sets. We
need to introduce the following quantities. Let π be a Borel probability mea-
sure with compact support K. Define

Dπ,unif,max(−∞)

= sup
z∈K
κ>0

inf
y1,...,yN∈B(z,κ)

ρ>0

lim sup
r→0

inf
i=1,...,N

log(infx∈B(yi,ρ) π(B(x, r)))

log r
,
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Dπ,max(−∞) = sup
y∈K
ρ>0

lim sup
r→0

log infx∈B(y,ρ) π(B(x, r))

log r
,

Dπ,unif,min(+∞)

= inf
z∈K
κ>0

sup
y1,...,yN∈B(z,κ)

ρ>0

lim inf
r→0

sup
i=1,...,N

log(supx∈B(yi,ρ) π(B(x, r)))

log r
,

Dπ,min(+∞) = inf
y∈K
ρ>0

lim inf
r→0

log supx∈B(y,ρ) π(B(x, r))

log r
.

Theorem 1.4. Let π be a Borel probability measure with compact sup-
port K. Then a typical measure µ ∈ P(K) satisfies

−qDπ,max(−∞) ≤ dimq
∗,π,B(µ) ≤ −qDπ,unif,max(−∞) provided q ≥ 0,

−qDπ,min(+∞) ≤ dimq
∗,π,B(µ) ≤ −qDπ,unif,min(−∞) provided q ≤ 0.

Although the above quantities are not very engaging, they can be easily
computed for regular measures π. This is for instance the case for self-similar
measures on self-similar compact sets. To show this fix an integer M ≥ 2.
For any m = 1, . . . ,M , let Sm : Rd → Rd be a contracting similarity with
Lipschitz constant rm ∈ (0, 1). Let (p1, . . . , pM ) be a probability vector. We
define K and π as the self-similar compact set and the self-similar mea-
sure associated with the list (S1, . . . , SM , p1, . . . , pM ), i.e. K is the unique
nonempty compact subset of Rd such that

K =
⋃
m

Sm(K),

and π is the unique Borel probability measure on Rd such that

π =
∑
m

pmπ ◦ S−1m

(see for instance [Fal97]). It is well known that suppπ = K. We say that the
list (S1, . . . , SM ) satisfies the Open Set Condition if there exists an open and
nonempty bounded subset U of Rd with SmU ⊂ U for all m, and SmU ∩SlU
= ∅ for all l,m with l 6= m.

Theorems 1.3 and 1.4 imply the following more appealing corollary:

Corollary 1.5. Let K and π be as above, and assume that the Open
Set Condition is satisfied. Let

smin = min
m

log pm
log rm

and smax = max
m

log pm
log rm

.
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Then a typical measure µ ∈ P(K) satisfies

dimq
∗,π,B(µ) = dim∗,qπ,B(µ) =

{−smaxq for any q ≥ 0,
−sminq for any q ≤ 0.

This improves Theorem 2.1 of [Ols11], which just says that a typical
µ ∈ P(K) satisfies

−smaxq ≤ dimq
∗,π,B(µ) ≤ dim∗,qπ,B(µ) ≤ −sminq for all q ≥ 0,

−sminq ≤ dimq
∗,π,B(µ) ≤ dim∗,qπ,B(µ) ≤ −smaxq for all q ≤ 0.

1.4. Organization of the paper. In Section 2, we summarize all the
results which will be needed throughout the paper. Section 3 is devoted to
the proof of Theorem 1.2. The proofs of Theorems 1.3 and 1.4 share some
similarities. They will be given in Section 4, together with application to
self-similar measures.

2. Preliminaries. Throughout this paper, P(K) will be endowed with
the weak topology. It is well known (see for instance [Par67]) that this topol-
ogy is completely metrizable by the Fortet–Mourier distance defined as fol-
lows. Let Lip(K) denote the family of Lipschitz functions f : K → R, with
|f | ≤ 1 and Lip(f) ≤ 1, where Lip(f) denotes the Lipschitz constant of f .
We endow P(K) with the metric L defined by

L(µ, ν) = sup
f∈Lip(K)

∣∣∣� f dµ− �
f dν

∣∣∣
for any µ, ν ∈ P(K). In particular, for µ ∈ P(K) and δ > 0, BL(µ, δ) =
{ν ∈ P(K); L(µ, ν) < δ} will stand for the ball with center at µ and radius
equal to δ.

We shall repeatedly use the following lemma.

Lemma 2.1. For any α ∈ (0, 1) and any β > 0, there exists η > 0 such
that, for any Borel subset E of K and any µ, ν ∈ P(K),

L(µ, ν) < η ⇒ µ(E) ≤ ν(E(α)) + β,

where E(α) = {x ∈ K; dist(x,E) < α}.
Proof. We set

f(t) =


α provided t ∈ E,
α− dist(x,E) provided 0 < dist(x,E) ≤ α,
0 otherwise.

Then f is Lipschitz, with |f | ≤ 1 and Lip(f) ≤ 1. Thus, if L(µ, ν) < η,

µ(E) ≤ 1

α

�
f dµ ≤ 1

α

[�
f dν + η

]
≤ ν(E(α)) +

η

α
.

Hence, it suffices to take η = αβ.
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An application of Lemma 2.1 is the following result on open subsets of
P(K):

Lemma 2.2. Let x ∈ K, a ∈ R and r > 0. Then the set {µ ∈ P(K);
µ(B(x, r)) > a} is open.

Proof. If a 6∈ [0, 1), then the set is either empty or equal to P(K). Other-
wise, let µ ∈ P(K) be such that µ(B(x, r)) > a. One may find ε > 0 such
that µ(B(x, (1− ε)r)) > a. Thus the result follows from Lemma 2.1 applied
with E = B(x, (1− ε)r), α = εr and β = (µ(B(x, (1− ε)r))− a)/2.

Finally, we will use the fact that some subsets of P(K) are dense in P(K)
(see e.g. [Ols05, Lemma 2.2.4]):

Lemma 2.3. Let (xn)n≥1 be a dense sequence in K and let (ηn)n≥1 be
a sequence of positive real numbers going to zero. For each n ≥ 1 and each
i ∈ {1, . . . , n}, let µn,i ∈ P(K) be such that supp(µn,i) ⊂ K ∩ B(xi, ηn).
Then, for any m ≥ 1, the set

⋃
n≥m{

∑n
i=1 piµn,i; pi > 0,

∑
i pi = 1} is

dense in P(K).

3. The typical upper multifractal box dimensions. This section is
devoted to the proof of Theorem 1.2.

3.1. Doubling measures, packings and coverings. When π is a
doubling measure, it will be convenient to express the multifractal box di-
mensions of a set using packings instead of coverings. For E ⊂ Rd, recall
that a family of balls (B(xi, r)) is called a centred packing of E if xi ∈ E for
all i and |xi − xj | > 2 for all i 6= j. We then define

Pq
π(E, r) = sup

(B(xi,r)) is a packing of E

∑
i

π(B(xi, r))
q.

When π is a doubling measure, dimq
π,B(E) and dim

q
π,B(E) can be defined

using packings (see [Ols11]):

Lemma 3.1. Let π be a doubling Borel probability measure on Rd with
support K. Then

dimq
π,B(E) = lim inf

r→0

logPq
π(E)

− log r
, dim

q
π,B(E) = lim sup

r→0

logPq
π(E)

− log r

for all E ⊂ K and all q ∈ R.

One of the advantages of using packings instead of coverings is that it
helps us to obtain regularity of the map q 7→ dim

q
π,B(E), as shown in the

following lemma.

Lemma 3.2. Let π be a doubling Borel probability measure on Rd with
support K, and let E ⊂ K.
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(1) The map q 7→ dim
q
π,B(E) is nonincreasing, convex and therefore con-

tinuous.
(2) The maps q 7→ τπ,loc(q) and q 7→ τπ,loc,max(q) are nonincreasing.

Proof. Part (1) is Lemma 4.2 of [Ols11] and part (2) is trivial.

As a first application, we show that, in order to find a residual subset R
of P(K) such that any µ ∈ R satisfies the conclusions of Theorem 1.2 for
any q ∈ R, it suffices to find a residual subset which works for a fixed q ∈ R.

Proposition 3.3. Let π be a doubling Borel probability measure on Rd
with support K. Then there exists a countable set Q ⊂ R such that⋂

q∈R
{µ ∈ P(K); τπ,loc(q) ≤ dim

q
∗,π,B(µ)}

=
⋂
q∈Q
{µ ∈ P(K); τπ,loc(q) ≤ dim

q
∗,π,B(µ)},⋂

q∈R
{µ ∈ P(K); τπ,loc(q) ≥ dim

q
∗,π,B(µ)}

=
⋂
q∈Q
{µ ∈ P(K); τπ,loc(q) ≥ dim

q
∗,π,B(µ)},⋂

q∈R
{µ ∈ P(K); τπ,loc,max(q) ≤ dim

∗,q
π,B(µ)}

=
⋂
q∈Q
{µ ∈ P(K); τπ,loc,max(q) ≤ dim

∗,q
π,B(µ)}⋂

q∈R
{µ ∈ P(K); τπ,loc,max(q) ≥ dim

∗,q
π,B(µ)}

=
⋂
q∈Q
{µ ∈ P(K); τπ,loc,max(q) ≥ dim

∗,q
π,B(µ)}.

Proof. Let Q1 (resp. Q2) be the set of points of discontinuity of τπ,loc
(resp. of τπ,loc,max). Q1 and Q2 are at most countable. Set Q = Q1∪Q2∪Q.

The first equality is already contained in [Ols11, Prop. 4.3]. Regarding the
second one, let µ ∈ P(K) be such that τπ,loc(q) ≥ dim

q
∗,π,B(µ) for any q ∈ Q,

and let us fix q ∈ R\Q. Let (qn) be a sequence in Q increasing to q. For each
n, we may find En with µ(En) > 0 and dim

qn
π,B(En) ≤ τπ,loc(qn) + 1/n. For

n large enough, we get, by continuity of τπ,loc at q,

dim
q
π,B(En) ≤ dim

qn
π,B(En) ≤ τπ,loc(q) + δ

for any fixed δ > 0, so that dimq
∗,π,B(µ) ≤ τπ,loc(q).

The proof of the third equality goes along the same lines and is left to
the reader. Regarding the last one, let µ ∈ P(K) be such that τπ,loc,max(q) ≥
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dim
∗,q
π,B(µ) for any q ∈ Q, and let us fix q ∈ R. Let ε > 0, δ > 0 and let

(qn) ⊂ Q be a sequence decreasing to q. Let also (εn) ⊂ (0,+∞) be such
that

∑
n εn < ε. For each n, we may find En ⊂ K such that µ(En) > 1− εn

and dim
qn
π,B(En) ≥ τπ,loc,max(qn) + δ. Set E =

⋂
nEn so that µ(E) > 1 − ε

and observe that, by continuity of dimq
π,B(E),

dim
q
π,B(E) ≤ lim inf

n
τπ,loc,max(qn) + δ ≤ τπ,loc,max(q) + δ.

We conclude this section by pointing out that, working with doubling
measures, we can also add a dilation factor when studying the multifractal
dimensions.

Lemma 3.4. Let π be a doubling Borel probability measure on Rd with
compact support K. Let c > 0, E ⊂ K and q ∈ R. Then

dim
q
π,B(E) = lim sup

r→0

log sup(B(xi,r)) is a packing of E

∑
i π(B(xi, cr))

q

− log r
.

3.2. The lower bounds. In this subsection, we fix q ∈ R. We shall
prove, at the same time, that quasi-all measures µ ∈ P(K) satisfy

(A) dim
q
∗,π,B(µ) ≥ τπ,loc(q), (B) dim

∗,q
π,B(µ) ≥ τπ,loc,max(q)

(we shall prove (A) since we want to dispense with the assumption “K has
no isolated points”).

If we want to prove (A), we consider t < τπ,loc(q) and we set F =
G = K. If we want to prove (B), then we consider t < τπ,loc,max(q), a pair
(y, κ) ∈ K ∩ (0,+∞) such that dim

q
π,B,loc(B(y, κ) ∩ K) > t, and we set

F = K ∩B(y, κ), G = K ∩B(y, κ/2).
Let now x ∈ K and s > 0.

• If x /∈ F , then we set µx,s = δx and rx,s = s.
• If x ∈ F , then dim

q
π,B(B(x, s) ∩ F ) > t, so that we may choose rx,s in

(0, s) satisfying

t <
logPq

π(B(x, s) ∩ F, rx,s)
− log rx,s

.

Thus, there exists a finite set Λx,s ⊂ B(x, s) ∩ F which consists of
points at distance at least 2rx,s and satisfying∑

z∈Λx,s

π(B(z, rx,s))
q ≥ r−tx,s.

We then set

µx,s =
1∑

z∈Λx,s π(B(z, rx,s))q

∑
z∈Λx,s

π(B(z, rx,s))
qδz.

Observe that, in both cases, supp(µx,s) ⊂ B(x, s).
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Let us denote by F the set of nonempty finite subsets of K. For A ∈ F ,
we write

Q(A) =
{
(px)x∈A; px ∈ (0, 1),

∑
x∈A

px = 1
}
.

Next, for A ∈ F and p = (px)x∈A ∈ Q(A), we denote

µA,p,s =
∑
x∈A

pxµx,s, rA,s = inf
x∈A

rx,s ∈ (0, s).

An application of Lemma 2.3 shows that, for any sequence (ηn) decreasing
to zero and for any m ≥ 1,⋃

n≥m

⋃
A∈F

⋃
p∈Q(A)

{µA,p,ηn}

is dense in P(K). Finally, for any A ∈ F , any p ∈ Q(A), any s > 0 and any
ε > 0, we consider a real number ηA,p,s,ε > 0 such that any µ ∈ P(K) with
L(µ, µA,p,s) < ηA,p,s,ε also satisfies, for any E ⊂ K,

µA,p,s(E(rA,s/2)) ≥ µ(E)− ε.

We now set

R =
⋂
m≥1

⋃
n≥m

⋃
A∈F

⋃
p∈Q(A)

BL(µA,p,1/n, ηA,p,1/n,1/n) ∩ {µ ∈ P(K); µ(G) > 0}.

This is a dense Gδ-subset of P(K) and we pick µ ∈ R. We shall prove that
either

(A) dim
q
∗,π,B(µ) ≥ t or (B) dim

∗,q
π,B(µ) ≥ t.

In case (A), let E ⊂ K with µ(E) > 0 and let E′ = E. In case (B), we begin
by fixing ε > 0 such that any subset E of K satisfying µ(E) ≥ 1 − ε also
satisfies µ(E ∩ G) > 0. Then we let E ⊂ K with µ(E) ≥ 1 − ε and define
E′ = E ∩G. In both cases, we are going to show that dimq

π,B(E
′) ≥ t.

Since µ ∈ R we may find sequences (An) ⊂ F , (pn) with pn ∈ Q(An),
and (sn) going to zero such that

µ ∈ BL(µAn,pn,sn , ηAn,pn,sn,sn).
For convenience, we set rn = rAn,sn , ηn = ηAn,pn,sn,sn and E′n = E′(rn/2).
Our assumption on ηn ensures that

µAn,pn,sn(E
′
n) ≥ µ(E′)− sn ≥

1

2
µ(E′)

provided n is large enough. By construction of µAn,pn,sn , we may find xn∈An
such that µxn,sn(E′n) ≥ 1

2µ(E
′).Moreover, xn also belongs to F . This is clear

in case (A), and in case (B), it follows from

µxn,sn(E
′
n) ≤ δxn(G(κ/2)) = δxn(F ) = 0,



The multifractal box dimensions 155

provided xn /∈ F and n is large enough so that E′n ⊂ G(κ/2). Hence, by
definition of µxn,sn when xn ∈ F , we obtain∑

z∈Λxn, sn∩E′
n

π(B(z, rxn,sn))
q ≥ 1

2
µ(E′)

( ∑
z∈Λxn,sn

π(B(z, rxn,sn))
q
)

≥ 1

2
µ(E′)r−txn,sn .

Now for any z ∈ Λxn,sn ∩ E′n, there exists xz ∈ E with ‖xz − z‖ ≤
1
2rn ≤ rxn,sn . It is then not hard to show that (B(xz, rxn,sn/2))z∈Λxn,sn∩E′

n

is a centred packing of E. Indeed, for u 6= v in Λxn,sn ,

‖xu−xv‖ ≥ ‖u−v‖−‖u−xu‖−‖v−xv‖ ≥ 2rxn,sn−
rxn,sn
2
− rxn,sn

2
= rxn,sn .

We also observe that, for any z ∈ Λxn,sn ∩ E′n,
B(xz, rx,sn/2) ⊂ B(z, rxn,sn) ⊂ B(xz, 2rxn,sn).

Summarizing, we have found a packing (B(u, r))u∈Λ of E′ with r as small
as we want, and a constant c0 ∈ R (c0 = 2 if q ≥ 0, and c0 = 1/2 if q ≤ 0)
so that ∑

u∈Λ
π(B(u, c0r))

q ≥ 1

2
µ(E′)r−t.

This yields dimq
π,B(E

′) ≥ t and concludes this part of the proof.

3.3. The upper bounds. We now turn to the proof of the upper bounds
in Theorem 1.2, which are simpler. As before, we fix q ∈ R. We first show
that a generic µ ∈ P(K) satisfies

dim
q
∗,π,B(µ) ≤ τπ,loc(q).

Indeed, let t > τπ,loc(q). There exists xt ∈ K and rt > 0 such that

dim
q
π,B(B(xt, rt)) ≤ t.

We set Ut = {µ ∈ P(K); µ(B(xt, rt)) > 0}. Then Ut is dense and open.
Moreover, any µ ∈ Ut satisfies dim

q
∗,π,B(µ) ≤ t. The residual set we are

looking for is thus given by

R =
⋂

t∈Q, t>τπ,loc(q)

Ut.

We now show that a generic µ ∈ P(K) satisfies

dim
∗,q
π,B(µ) ≤ τπ,loc,max(q).

As before, let t > τπ,loc,max(q). We just need to prove that a generic µ ∈ P(K)

satisfies dim∗,qπ,B(µ) ≤ t. Let (yn) be a dense sequence of distinct points in K,
and let (κn) be a sequence decreasing to zero. For each n, we may find
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xn ∈ B(yn, κn) and rn > 0 such that dimq
π,B(B(xn, rn)) ≤ t. We may assume

that the sequence (rn) is going to zero.
We set

Λn =
{ n∑
i=1

piδxi ;

n∑
i=1

pi = 1, pi > 0
}
,

so that, by Lemma 2.3, the set
⋃
n≥m Λn is dense for any integer m ≥ 1.

Moreover, Lemma 2.1 tells us that, for any m ≥ 1, one may find ηm > 0
such that, for any µ ∈ Λn, and any ν ∈ P(K) with L(µ, ν) < ηm,

ν
( n⋃
i=1

B(xi, rn)
)
≥ µ

( m⋃
i=1

B(xi, rn/2)
)
− 1

m
≥ 1− 1

m
.

We then set
R =

⋂
m≥1

⋃
n≥m

⋃
µ∈Λn

BL(µ, ηm).

We observe that R is a dense Gδ-set. Pick ν ∈ R and ε > 0. Let also m ≥ 1
with 1/m ≤ ε. We may find n ≥ m and µ ∈ En such that L(µ, ν) < ηm.
Thus, defining E =

⋃n
i=1B(xi, rn), we get

ν(E) ≥ 1− 1

m
≥ 1− ε, dim

q
π,B(E) ≤ t.

Therefore, dim∗,qπ,B(ν) ≤ t.

4. The typical lower multifractal box dimensions. This section is
devoted first to proving Theorem 1.3. We begin with a lemma which helps
us to avoid the assumption “π is a doubling measure” throughout the proofs.

Lemma 4.1. Let π be a Borel probability measure with compact sup-
port K. Then

Dπ,unif(−∞)

= inf
N

inf
y1,...,yN∈K

ρ>0

lim sup
r→0

inf
i=1,...,N

log(infB(x,r)∩B(yi,ρ) 6=∅ π(B(x, r)))

log r
,

Dπ,max(−∞) = sup
y∈K
ρ>0

lim sup
r→0

log infB(x,r)∩B(y,ρ)6=∅ π(B(x, r))

log r
.

Proof. Let t > Dπ,unif(−∞). One may find y1, . . . , yN ∈ K, ρ > 0, α > 0
such that, for any r ∈ (0, α), there exists i ∈ {1, . . . , N} such that any
x ∈ B(yi, ρ) satisfies

log(π(B(x, r)))

log r
≤ t.(4.1)



The multifractal box dimensions 157

We set ρ0 = ρ/2 and α0 = min(ρ0, α). Let r ∈ (0, α0), let i ∈ {1, . . . , N} be
as above and let x ∈ K with B(x, r) ∩ B(yi, ρ0) 6= ∅. Then x ∈ B(yi, ρ) so
that (4.1) holds true. Thus, since t > Dπ,unif(−∞) is arbitrary,

inf
N

inf
y1,...,yN∈K

ρ>0

lim sup
r→0

inf
i=1,...,N

log(infB(x,r)∩B(yi,ρ) 6=∅ π(B(x, r)))

log r

≤ Dπ,unif(−∞).

The opposite inequality is trivial, and the proof of the second assertion fol-
lows exactly the same lines.

4.1. Proof of Theorem 1.3, part 1. In this subsection, we shall prove
that a generic measure µ ∈ P(K) satisfies

dim∗,qπ,B(µ) ≥

{
−qDπ,unif(−∞) provided q ≥ 0,
−qDπ,unif(+∞) provided q ≤ 0.

Firstly, let t > Dπ,unif(−∞) and let us prove that a generic µ ∈ P(K)
satisfies dim∗,qπ,B(µ) ≥ −qt for any q ≥ 0. Let N ≥ 1, y1, . . . , yN ∈ K and
ρ > 0 be such that

lim sup
r→0

inf
i=1,...,N

log(infB(x,r)∩B(yi,ρ)6=∅ π(B(x, r)))

log r
< t.

We set U =
⋂N
i=1{µ ∈ P(K); µ(B(yi, ρ)) > 0}. Then U is a dense and open

subset of P(K); let us pick µ ∈ U . There exists ε > 0 such that µ(E) > 1−ε
implies µ(E ∩ B(yi, ρ)) > 0 for any i = 1, . . . , N . Let now E ⊂ K with
µ(E) > 1−ε and let r be sufficiently small. There exists i ∈ {1, . . . , N} such
that

log(infB(x,r)∩B(yi,ρ)6=∅ π(B(x, r)))

log r
< t.

Now,
logNq

π(E, r) ≥ logNq
π(E ∩B(yi, ρ), r)

≥ log
(

inf
B(x,r)∩B(yi,ρ) 6=∅

π(B(x, r))q
)
≥ qt log r.

Hence, dimq
π,B(E) ≥ −qt, which yields dim∗,qπ,B(µ) ≥ −qt.

The proof for q < 0 is similar, but now we have to take t < Dπ,unif(+∞).
As before, there exist y1, . . . , yN ∈ K, ρ > 0 and α > 0 such that, for any
r ∈ (0, α), there exists i ∈ {1, . . . , N} with

log(supB(x,r)∩B(yi,ρ)6=∅ π(B(x, r)))

log r
> t.

We then carry on the same proof mutatis mutandis, except that now

logNq
π(E, r) ≥ q log

(
sup

B(x,r)∩B(yi,ρ)6=∅
π(B(x, r))

)
.
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4.2. Proof of Theorem 1.3, part 2. In this subsection, we shall prove
that a generic measure µ ∈ P(K) satisfies

dim∗,qπ,B(µ) ≤

{
−qDπ,unif(−∞) provided q ≥ 0,
−qDπ,unif(+∞) provided q ≤ 0.

We just consider the case q ≥ 0 and let t < Dπ,unif(−∞). Let also (yn) be a
dense sequence inK, let (ρn) be a sequence decreasing to zero, and let (εn) be
a sequence of positive real numbers with

∑
n εn < 1. By assumption, for any

n ≥ 1, we may find rn ∈ (0, n−n) and points xn1 , . . . , xnn with xni ∈ B(yi, ρn)
such that, for any i = 1, . . . , n,

log(π(B(xni , rn))) ≤ t log rn.
We set

Λn =
{ n∑
i=1

piδxni ;
∑
i

pi = 1, pi > 0
}

so that
⋃
n≥m Λn is dense in P(K) for any m ≥ 1. We also set En =

{xn1 , . . . , xnn} so that µ(En) = 1 for any µ ∈ Λn. Lemma 2.1 gives us a
real number ηn > 0 such that

∀µ ∈ Λn, L(µ, ν) < ηn ⇒ ν(En(rn)) > 1− εn.
We let Fn = En(rn) and we consider the dense Gδ-set

R =
⋂
m≥1

⋃
n≥m

⋃
µ∈Λn

BL(µ, ηn).

Pick ν ∈ R. There exists a sequence (nk) going to +∞ and a sequence
(µnk) with L(ν, µnk) < ηnk for any k. Hence, ν(Fnk) > 1 − εnk . We define
Gl =

⋂
k≥l Fnk so that ν(Gl) → 1 as l → +∞. On the other hand, for any

k ≥ l,

Gl ⊂ Fnk ⊂
nk⋃
i=1

B(xnki , rnk).

Using this covering of Gl, we get

logNq
π(Gl, rnk) ≤

nk∑
i=1

π(B(xnki , rnk))
q ≤ nkrqtnk .

Taking the logarithm and then the lim inf yields

dimq
π,B(Gl) ≤ −tq.

Since ν(Gl) can be arbitrarily close to 1, this implies dim∗,qπ,B(ν) ≤ −qt.

4.3. Proof of Theorem 1.4, part 1. We turn to the study of the
small lower multifractal dimensions of a generic measure. More specifically,
in this subsection, we prove that a generic µ ∈ P(K) satisfies dimq

∗,π,B(µ) ≥
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−qDπ,max(−∞) for any q ≥ 0. Hence, let t > Dπ,max(−∞). Let (yn)n be a
dense sequence in K and let (ρn)n be a sequence of positive real numbers
decreasing to zero. Let us fix n ≥ 1. One may find αn > 0 such that, for any
r ∈ (0, αn), k ∈ {1, . . . , n}, and x ∈ K such that B(x, r) ∩B(yk, ρn) 6= ∅,

log π(B(x, r)) ≥ t log r.

We then set

Λn =
{ n∑
i=1

piδyi ; pi > 0,
∑
i

pi = 1
}
, Fn = {y1, . . . , yn}.

Any µ ∈ Λn satisfies µ(Fn) = 1. Hence, we may find ηn > 0 such that
ν(Fn(ρn)) > 1− 1/n provided L(µ, ν) < ηn. We finally consider

R =
⋂
m≥1

⋃
n≥m

⋃
µ∈Λn

BL(µ, ηn).

Pick ν in the dense Gδ-set R and let E ⊂ K with ν(E) > 0. We may find n
as large as we want such that ν(E ∩ Fn(ρn)) > 0. Now, for any r ∈ (0, αn),

logNq
π(E, r) ≥ logNq

π(E ∩ Fn(ρn), r)

≥ log
(

inf
B(x,r)∩Fn(ρn)6=∅

π(B(x, r))q
)
≥ qt log r.

Hence, dimq
∗,π,B(ν) ≥ −qt.

4.4. Proof of Theorem 1.4, part 2. We conclude the proof of
Theorem 1.4 by showing that a generic µ ∈ P(K) satisfies dimq

∗,π,B(µ) ≤
−qDπ,unif,max(−∞) for any q ≥ 0. We begin by fixing t < Dπ,unif,max(−∞).
There exist z ∈ K and κ > 0 such that

t < inf
y1,...,yN∈B(z,κ)

ρ>0

lim sup
r→0

inf
i=1,...,N

log(infx∈B(yi,ρ) π(B(x, r)))

log r
.

The proof now follows part 2 of the proof of Theorem 1.3, except that we
“localize” it in K ∩ B(z, κ). Specifically, we now consider a dense sequence
(yn) in K ∩B(z, κ). We construct the sequences (ρn), (εn), (rn) and (xin) as
above, but starting from this sequence (yn) and from the property

∀n ≥ 1, lim sup
r→0

inf
i=1,...,n

log(infx∈B(yi,ρn) π(B(x, r)))

log r
≥ t.
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We also ask that for any n ≥ 1 and any i ∈ {1, . . . , n}, B(xni , rn) is contained
in B(z, κ). Next, for any n ≥ 1, we now set

Λn =
{
λ

n∑
i=1

piδxni + (1− λ)θ; λ, pi ∈ (0, 1),
∑
i

pi = 1, θ ∈ P(K),

supp(θ) ∩B(z, κ+ 2rn) = ∅
}
,

En = {xn1 , . . . , xnn}, Fn = En(rn).

It is not hard to show that, for any m ≥ 1, the set
⋃
n≥m Λn remains dense

in P(K). Moreover, for any µ ∈ Λn, we may find ηn,µ > 0 such that

L(ν, µ) < ηn,µ ⇒
{
ν(Fn) ≥ λ(1− εn),
ν(B(z, κ)) ≤ λ(1− εn)−1.

Let R be the dense Gδ-subset of P(K) defined by

R =
⋂
m≥1

⋃
n≥m

⋃
µ∈Λn

BL(µ, δn,µ) ∩ {ν ∈ P(K); ν(B(z, κ)) > 0}.

Let ν ∈ R and let (nk) be a sequence growing to +∞ such that

ν(Fnk) ≥ (1− εnk)
2ν(B(z, κ))

for any k ≥ 1. We finally define G =
⋂
n Fnk . Since any Fn is contained in

B(z, κ), the previous inequality ensures that ν(G) > 0 provided (εn) goes
sufficiently fast to 0. On the other hand, for any k ≥ 1,

G ⊂ Fnk ⊂
nk⋃
i=1

B(xnki , rnk).

This yields (see part 2 of the proof of Theorem 1.3)

Nq
π(G, rnk) ≤ nkr

qt
nk

so that dimq
∗,π,B(ν) ≤ −qt.

4.5. Application to self-similar sets. We now show how to apply
Theorems 1.3 and 1.4 to self-similar compact sets. Let M ≥ 2, and let
S1, . . . , SM : Rd → Rd be contracting similarities with respective ratios
r1, . . . , rM ∈ (0, 1). Let (p1, . . . , pM ) be a probability vector. Let K be a
nonempty compact subset of Rd and let π be the probability measure in
P(K) satisfying

K =

M⋃
m=1

Si(K), π =

M∑
m=1

piπ ◦ S−1m .

We just need to prove the following proposition.

Proposition 4.2. Let K and π be as above and assume that the Open
Set Condition is satisfied. Define
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smin = min
m

log pm
log rm

and smax = max
m

log pm
log rm

.

Then

Dπ,unif(−∞) = Dπ,unif,max(−∞) = Dπ,max(−∞) = smax,

Dπ,unif(+∞) = Dπ,unif,min(+∞) = Dπ,min(−∞) = smin.

Proof. We just give the proof of the first inequality. It is straightforward
to check that

Dπ,max(−∞) ≥ Dπ,unif,max(−∞) ≥ Dπ,unif(−∞).

Thus we just need to prove that

Dπ,unif(−∞) ≥ smax and Dπ,max(−∞) ≤ smax.

Without loss of generality, we may assume that the diameter of K is less
than 1. We shall use standard notations which can be found e.g. in [Fal97].
For a word m = (m1, . . . ,mn) in {1, . . . ,M}n of length n, let

Sm = Sm1 ◦ · · · ◦ Smn , pm = pm1 × · · · × pmn , rm = rm1 × · · · × rmn .

If the word m is infinite, then Sm(K) =
⋂+∞
i=1 Smi(K) reduces to a single

point xm ∈ K and each point of K is uniquely defined by such a word. Let
now y ∈ K, ρ > 0 and let l be such that log pl

log rl
= smax. There exists a word

m = (m1, . . . ,mn) such that Sm(K) ⊂ B(y, ρ). We then define

m = (m1, . . . ,mn, l, . . . ), mk = (m1, . . . ,mn, l, . . . , l)

where l appears k times at the end of mk. We define xy as Sm(K). Now, for
any k ≥ 1, there exists z ∈ K such that x = Smk

z, so that B(xy, rmk
) =

Smk
(B(z, 1)). Now the definition of π and the open set condition ensure that

π(Smk
(B(z, 1))) = pmk

π(B(z, 1)) = pmk

since the diameter of K is less than 1. Thus, for any k ≥ 1,

π(B(xy, r
k+n
l )) ≤ π(B(xy, rmk

)) ≤ pmk
= pm1 . . . pmnp

k
l .

Finally, let N ≥ 1, let y1, . . . , yN ∈ K and let ρ > 0. To each yi, we can
associate a word mi of length ni and a point xi as above. Let n = max(ni).
Then for any i = 1, . . . , N ,

log π(B(xi, r
k+n
l ))

(k + n) log rl
≥ C

k + n
+

k

k + n
smax

where C does not depend on k. Letting k → +∞ gives Dπ,unif(−∞) ≥ smax.

On the other hand, it is well known that Dπ(−∞) ≤ smax (see for in-
stance [Pat97]). By the homogeneity of self-similar sets and self-similar mea-
sures, this implies Dπ,max(−∞) ≤ smax.
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