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of bounded cardinality

by

Piotr J. Wojciechowski (El Paso, TX)

Abstract. For a given cardinal number a, we construct a totally ordered MV-algebra
M(a) having the property that every totally ordered MV-algebra of cardinality at most a

embeds into M(a). In case a = ℵ0, the algebra M(a) is the first known MV-algebra with
respect to which the deductive system for the infinitely-valued Łukasiewicz’s propositional
logic is strongly complete.

1. Preliminaries. All necessary information about MV-algebras and
lattice-ordered groups can be found in [6] and in [1], respectively. We use two
main tools: the Mundici Categorical Equivalence Theorem [10] establishing
the equivalence between the category of MV-algebras and the category of
unital abelian lattice-ordered groups, and the Hahn Embedding Theorem
that allows one to view an abelian totally ordered group as a certain group
of real functions ([1, Chapter 3]). Before proceeding to the main result, let
us recall these two facts along with the relevant definitions.

If G is an abelian lattice-ordered group (`-group) and u > 0 is an element
of G, then u is a strong order unit if for any positive element a ∈ G there
exists a positive integer n such that nu > a. Another way of phrasing it is to
say that the set G+ of all positive elements of G satisfies G+ =

⋃∞
n=1[0, nu],

where for any a, b ∈ G, we define [a, b] = {x ∈ G : a ≤ x ≤ b}. An `-group
with a strong order unit is called unital.

Given any abelian `-group G and a positive element u in G, by Γ (G, u)
is denoted the MV-algebra ([0, u],⊕,¬, 0) where the operations are defined
by x⊕ y = (x+ y)∧ u and ¬x = u− x. Conversely, for every MV-algebra A
there exists an abelian `-group G with a strong order unit u such that A is
isomorphic to Γ (G, u). Moreover, the morphism Γ establishes an equivalence
between the two categories (Mundici [10]).
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Since all our `-groups here are going to be totally ordered (o-groups), we
focus on the relevant embedding theorem for the abelian o-groups. Let Λ
denote any totally ordered set, and consider real functions from Λ. For each
such function f , let the support of f be the set supp(f) = {λ ∈ Λ : f(λ) 6= 0}.
The set of all functions whose support satisfies the ascending chain condition
(relative to the total order of Λ) forms an abelian o-group if addition is
defined pointwise and a function is considered positive if and only if its value
at the maximal element of its support is positive. This o-group is called the
Hahn o-group on the totally ordered set Λ, and is denoted by V (Λ,R).

The Hahn Embedding Theorem says that every abelian o-group embeds
into the Hahn group V (Λ,R) for some totally ordered set Λ. Suppose then
that G is a subgroup of V (Λ,R). We will use the convention that for every
g ∈ G, gλ denotes the λ-component of g, i.e. the real value g assumes
at λ. Using the generalized sequence notation for clarity, we identify g with
(. . . , gλ, . . .).

Finally, if T is an arbitrary totally ordered set with a maximal elementm,
let 1(T ) denote the characteristic function of T , so that 1(T ) : T → R and

1(T )(t) =
{

1 if t = m,
0 if t < m.

2. Result. The following lemma is partially based on [7].

Lemma 2.1. Let u ∈ V (Λ,R) be such that uµ > 0 for µ the maximal
element of Λ. Then there exists an o-group automorphism φ of V (Λ,R)
such that φ(u) = 1(Λ).

Proof. For every g ∈ V (Λ,R), we define φ(g) by specifying its compo-
nents:

(φ(g))λ =
{
gλ − uλ · gµ/uµ if λ 6= µ,
gµ/uµ if λ = µ.

Since addition is pointwise, it is routine to check that φ is an o-group
homomorphism. Also, φ(g)λ = 0 for every λ ∈ Λ implies that gλ = 0 for ev-
ery λ, so g = 0, and thus φ is one-to-one. That φ(g) is an element of V (Λ,R)
follows from the fact that clearly supp(φ(g)) ⊆ supp(g) ∪ supp(u) and thus
supp(φ(g)) satisfies the ascending chain condition since both supp(g) and
supp(u) do.

If f = (. . . , fλ, . . .) ∈ V (Λ,R), then if we let

gλ =
{
fλ + uλ · fµ if λ 6= µ,
uµ · fµ if λ = µ,

then for similar reasons as before, g = (. . . , gλ, . . .) ∈ V (Λ,R), and f = φ(g),
so φ is onto V (Λ,R).
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Finally,

(φ(u))λ =
{
uλ − uλ · uµ/uµ = 0 if λ 6= µ,
uµ/uµ = 1 if λ = µ,

so φ(u) = 1(Λ).

Corollary 2.2. For every abelian o-group G with a strong order unit
u there exists a totally ordered set Λ with a maximal element such that G
embeds into V (Λ,R) with u mapped to 1(Λ). Moreover , the set Λ can be
chosen to have the same cardinality as G.

Proof. By the Hahn Theorem, G embeds into V (Λ,R) for some totally
ordered set Λ. Since G is unital, we can assume that Λ has a maximal
element µ. Then uµ > 0 and the assumptions of Lemma 2.1 are satisfied.
Therefore, via the automorphism φ, G embeds into V (Λ,R) so that u is
mapped to 1(Λ).

In order to prove the cardinality statement, we refer to the construction of
the set Λ as described in [1, Chapter 3]. In the Hahn group, the set Λ consists
of the so-called regular subgroups ofG (in an `-groupG, a subgroup is regular
if it is a convex `-subgroup maximal with respect to missing some element
from the group). It is well-known that in an o-group, there is precisely one
such subgroup per nonzero element (o-groups are special-valued). Therefore
we can always find Λ such that |Λ| ≤ |G|. In case this inequality is strict,
we can extend Λ to a totally ordered set of cardinality |G| with a maximal
element µ, and the embedding will obviously still hold true.

Lemma 2.3. For every cardinal number a there exists a totally ordered
set ∆̂(a) with a maximal element such that for every totally ordered set Λ
with a maximal element µΛ and of cardinality at most a, V (Λ,R) embeds
into V (∆̂(a),R) in such a way that 1(Λ) is mapped to 1(∆̂(a)).

Proof. Let Ξ be an arbitrary set of cardinality a. Let Ψ be the set of
all total orders <ψ on Ξ that have a maximal element. Totally order Ψ any
way by some relation <. Then consider the disjoint union ∆ of copies of Ξ
indexed by the elements of Ψ , so that ∆ =

⋃
ψ∈Ψ Ξψ, where Ξψ = Ξ and

is ordered by <ψ. Now totally order ∆ by ≺, where for δ, σ ∈ ∆, δ ≺ σ if
and only if either δ ∈ Ξψ and σ ∈ Ξτ and ψ < τ (in Ψ), or for some ψ ∈ Ψ ,
δ, σ ∈ Ξψ and δ <ψ σ (in Ξψ). It is obvious that this yields a total order.

Finally, let ∆̂(a) = ∆ ∪ {µ} and let µ be the maximal element of ∆̂(a)
in the extended order.

Let φ : Λ → Ξ be a set embedding granted by the cardinality condition
|Λ| ≤ a. Let us choose a total order ψ on Ξ such that for all α, β ∈ Λ, if
α <Λ β, then φ(α) <ψ φ(β). This way φ becomes an order embedding of the
totally ordered set Λ into Ξψ. Let now φ̂ : Λ→ ∆̂(a) be a mapping defined
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by

φ̂(λ) =
{
φ(λ) if λ 6= µΛ,
µ if λ = µΛ.

The above ordered set embedding yields the o-group embedding of
V (Λ,R) into V (∆̂(a),R) by (. . . , fλ, . . .) 7→ (. . . , fπ, . . .), where π ∈ ∆̂(a)
and

fπ =

{
fbφ(λ)

if π ∈ φ̂(Λ),

0 if π 6∈ φ̂(Λ).

It is clear that 1(Λ) is mapped to 1(∆̂(a)).

Theorem 2.4. For a given cardinal number a there exists a totally or-
dered MV-algebra M(a) such that every totally ordered MV-algebra of cardi-
nality at most a embeds in M(a).

Proof. Let A be a totally ordered MV-algebra of cardinality a. If a < ℵ0,
then for some n, A is isomorphic to Łn, the n-element Łukasiewicz chain, and
thus embeds into Γ (Q, 1). So in this case we putM(a) = Γ (Q, 1). For a ≥ ℵ0,
by the Mundici Equivalence Theorem, there is an abelian o-group G with a
strong order unit u such that A is isomorphic to Γ (G, u). As sets, A = [0, u]
and G+ =

⋃∞
n=1[0, nu] =

⋃∞
n=0[nu, (n + 1)u], and for every n = 0, 1, . . . ,

|[nu, (n + 1)u]| = |[0, u]| = |A| = a, and since a is infinite, |G| = |G+| = a.
By Corollary 2.2, G embeds into V (Λ,R) for some totally ordered Λ of
cardinality a, with a maximal element and such that u is mapped to 1(Λ).
Then by Lemma 2.3, it further embeds into V (∆̂(a),R) and u is mapped to
1(∆̂(a)). Therefore we put M(a) = Γ (V (∆̂(a),R),1(∆̂(a))).

If a = ℵ0, the construction of the target MV-algebra becomes much
simpler due to the fact that all countable totally ordered sets order-embed
into the rationals. Let Q̂ = Q ∪ {∞} denote the usually ordered set of the
rationals extended by the maximal element ∞.

Theorem 2.5. Every at most countable totally ordered MV-algebra em-
beds into Γ (V (Q̂,R),1(Q̂)).

Proof. Since every countable totally ordered set order-embeds into the
usually ordered Q (see e.g. [3, Chapter 3, Theorem 1]), instead of ∆̂(ℵ0) in
the proof of Theorem 2.4, we simply take Q̂ and the result follows.

Let us agree in this case that M(ℵ0) = Γ (V (Q̂,R),1(Q̂)).

Corollary 2.6. Every subdirectly irreducible MV-algebra of cardinality
at most ℵ0 embeds into Γ (V (Q̂,R),1(Q̂)).

Proof. The natural order of a subdirectly irreducible MV-algebra is total,
so the result follows by Theorem 2.5.
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We summarize the MV-algebra embeddings in the following:

Corollary 2.7. Let a be any nonzero cardinal number , and let

M(a) =


Γ (V (∆̂(a),R),1(∆̂(a))) if a > ℵ0,
Γ (V (Q̂,R),1(Q̂)) if a = ℵ0,
Γ (Q, 1) if a < ℵ0.

Then every totally ordered MV-algebra of cardinality less than or equal to a
embeds in M(a).

3. Remarks. In the 1930’s, Jan Łukasiewicz proposed a deductive sys-
tem for what is now called the infinitely-valued Łukasiewicz propositional
logic and conjectured that his infinitely-valued logic is complete for the de-
ductive system he proposed. The deductive system had four axioms and the
Modus Ponens rule as the only inference rule for inferring theses from the
four axioms (see [12], [4], or [6]). Conjecturing completeness, Łukasiewicz
meant that the set of tautologies of his logic coincides with the set of theses
that can be inferred within his deductive system. The conjecture was proved
by Mordechaj Wajsberg in the 1930’s but was never published (see [12]). The
first published proof of Łukasiewicz’s conjecture is contained in [11]. The first
algebraic proof of Łukasiewicz’s conjecture is given in [5]. The concept of an
MV-algebra has been introduced in [4].

For a set Φ ∪ {α} of propositional formulas of Łukasiewicz’s logic let
Φ `∞ α mean that α has a proof within Łukasiewicz’s deductive system
from the set of hypotheses Φ. Next, for an MV-algebra A let Φ |=A α mean
that under every assignment of the elements of A for the propositional letters
of Φ ∪ {α}, α is valid in A whenever all formulas of Φ are valid in A under
that assignment. To be “valid” in Ameans to be equal to the greatest element
of A in its natural order.

In terms of `∞ and |=A, Łukasiewicz’s conjecture means that, for every α,
∅ `∞ α iff ∅ |=R α, where R is the MV-algebra defined on the interval [0, 1] of
real numbers. It is worth mentioning (see [13] or [14]) that, for every finite Φ
and α, Φ `∞ α iff Φ |=R α and that the equivalence is not true if Φ is infinite.
Every algebraM(a) we have constructed, however, has the property that, for
all Φ and α, Φ `∞ α iff Φ |=M(a) α. In this situation we say that Łukasiewicz’s
deductive system is strongly complete with respect to the algebra M(a). The
equivalence follows from the known fact that Łukasiewicz’s deductive system
is algebraizable in the sense of [2] and the fact due to Theorem 2.6 which says
that every countable and subdirectly irreducible MV-algebra is embeddable
into M(a); see [9] for a general discussion of this issue.

The algebraM(ℵ0) with respect to which Łukasiewicz’s deductive system
is strongly complete is the smallest we currently know. For many important
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nonclassical deductive systems it is known that strongly complete models
have to be uncountable (see [8], [15]). It has been pointed out and proven
by the referee of this paper that also in our case, the algebra M(ℵ0) must
be uncountable. We include the proof of this important observation below.

Theorem 3.1. An MV-algebra A with the property that every totally
ordered countable MV-algebra embeds into A is uncountable.

Proof. Using the unital `-group equivalence again, suppose that G is an
abelian o-group with a strong order unit u into which every countable unital
o-group can be embedded. Let C be the maximal proper convex subgroup
of G. Then G/C is an o-group without any proper convex subgroups and thus
it is archimedean, and consequently by Hölder’s Theorem, G/C is isomorphic
to a subgroup of the real numbers ([1, Theorem 2.3]). By Corollary 2.2 we
can assume that u corresponds to 1, so that if π : G → G/C is the natural
homomorphism, then we have π : G→ R and π(u) = 1.

Consider any unital o-group of the form Q + Qα where α ∈ R \ Q, and
the unit is 1. Then we have the embedding: φ : Q + Qα ↪→ G and φ(1) = u.
Next consider the homomorphism πφ : Q + Qα → R. It is an injection
since Q + Qα is archimedean. We have πφ(1) = π(u) = 1, so πφ is the
identity on Q, which is dense in R, therefore πφ is the identity on the entire
Q+Qα. Since R is the union of groups of this form, it follows that there is an
embedding of R into G/C. Thus we have R ↪→ G/C ⊆ R, hence G/C = R.
Therefore, |G| ≥ |R| > ℵ0.
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