How many clouds cover the plane?

by

James H. Schmerl (Storrs, CT)

Abstract

The plane can be covered by $n+2$ clouds iff $2^{\aleph_{0}} \leq \aleph_{n}$.

According to Komjáth [1], a subset C of the Euclidean plane \mathbb{R}^{2} is a cloud around \mathbf{a} if $\mathbf{a} \in \mathbb{R}^{2}$ and whenever $\ell \subseteq \mathbb{R}^{2}$ is a line and $\mathbf{a} \in \ell$, then $C \cap \ell$ is finite. The following is proved in [1].

Theorem 1 (Komjáth). Suppose that $1 \leq n<\omega$. If $2^{\aleph_{0}} \leq \aleph_{n}$, then \mathbb{R}^{2} can be covered by $n+2$ clouds.

It should be remarked that a somewhat stronger conclusion was proved: whenever $\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{n+1} \in \mathbb{R}^{2}$ are $n+2$ distinct noncollinear points, then each \mathbf{a}_{i} has a cloud C_{i} around it such that $\mathbb{R}^{2}=C_{0} \cup C_{1} \cup \ldots \cup C_{n+1}$. A converse to Theorem 1 was proved in [1] for $n=1$. That is, if \mathbb{R}^{2} can be covered by 3 clouds, then the Continuum Hypothesis holds. The converse for $n>1$ was left open. However, Komjáth [2] did prove that it is relatively consistent that $2^{\aleph_{0}}=\aleph_{4}$ and \mathbb{R}^{2} cannot be covered by 3 clouds.

The following converse to Theorem 1 is the main new result in this note.
THEOREM 2. Suppose that $1 \leq n<\omega$. If \mathbb{R}^{2} can be covered by $n+2$ clouds, then $2^{\aleph_{0}} \leq \aleph_{n}$.

There are many results closely related to Theorems 1 and 2. Simms [4] presents a thorough historical account of these theorems. We will make use of the following one which Simms attributes to Kuratowski [3].

Theorem 3 (Kuratowski). Suppose that $n<\omega$ and that X is any set. Then $|X| \leq \aleph_{n}$ iff there are $D_{0}, D_{1}, \ldots, D_{n+1} \subseteq X^{n+2}$ which cover X^{n+2} such that $D_{i} \cap \ell$ is finite whenever $i \leq n+1$ and $\ell \subseteq X^{n+2}$ is a line parallel to the ith coordinate axis.

In this theorem we have referred to ℓ as a line parallel to the i th coordinate axis; such an ℓ is a set for which

[^0]$$
\ell=\left\{\left(a_{0}, a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}, a_{n+1}\right) \in X^{n+2}: x \in X\right\}
$$
for some $a_{0}, a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n+1} \in X$.
Proof (${ }^{1}$) of Theorem 2. Suppose that $C_{0}, C_{1}, \ldots, C_{n+1}$ cover \mathbb{R}^{2}, where each C_{i} is a cloud around \mathbf{a}_{i}. Without loss of generality, we assume that each $\mathbf{a}_{i} \neq \mathbf{0}$. We will show that $2^{\aleph_{0}} \leq \aleph_{n}$.

For $2 \leq m<\omega$, consider \mathbb{R}^{m} as a vector space over \mathbb{R}, and let $\mathbf{P}_{m}(\mathbb{R})$ be real projective m-space, with \mathbb{R}^{m} being embedded in $\mathbf{P}_{m}(\mathbb{R})$ by identifying the point $\left(x_{0}, x_{1}, \ldots, x_{m-1}\right) \in \mathbb{R}^{m}$ with the point in $\mathbf{P}_{m}(\mathbb{R})$ having homogeneous coordinates $\left[x_{0}, x_{1}, \ldots, x_{m-1}, 1\right]$.

For $i<n+2$, let $\infty_{i} \in \mathbf{P}_{n+2}(\mathbb{R})$ be the point at infinity on (every line parallel to) the i th coordinate axis of \mathbb{R}^{n+2}, and let $\mathbf{e}_{i} \in \mathbb{R}^{n+2}$ be the i th standard basis vector. Let $S: \mathbf{P}_{n+2}(\mathbb{R}) \rightarrow \mathbf{P}_{n+2}(\mathbb{R})$ be a collineation for which $S\left(\infty_{i}\right)=\mathbf{e}_{i}$ and $S(\mathbf{0})=\mathbf{0}$, and let $T: \mathbb{R}^{n+2} \rightarrow \mathbb{R}^{2}$ be the unique linear transformation such that $T\left(\mathbf{e}_{i}\right)=\mathbf{a}_{i}$. If $\mathbf{x} \in \mathbb{R}^{n+2}$, then $T S(\mathbf{x})$ is defined as long as \mathbf{x} is not in the hyperplane $H \subseteq \mathbb{R}^{n+2}$. Since $\mathbf{0} \notin H$, let $I=(-\varepsilon, \varepsilon)$ be an open interval such that $I^{n+2} \cap H=\emptyset$, and then let $D_{i}=(T S)^{-1}\left(C_{i}\right) \cap I^{n+2}$ for each $i<n+2$. Clearly, the D_{i} 's cover I^{n+2} since the C_{i} 's cover \mathbb{R}^{2}.

Let ℓ be a line of $\mathbf{P}_{n+2}(\mathbb{R})$ such that $\infty_{i} \in \ell$ and ℓ meets I^{n+2}. Since $T\left(\mathbf{e}_{i}\right) \neq \mathbf{0}, T S$ is one-one on $\ell \cap I^{n+2}$, and then, since $T S$ preserves collinearity, there is a unique line ℓ^{\prime} of \mathbb{R}^{2} which $T S$ maps ℓ into. Then $\mathbf{a}_{i}=T S\left(\infty_{i}\right) \in$ ℓ^{\prime}, so $D_{i} \cap \ell$ is finite. Kuratowski's theorem now applies, so $2^{\aleph_{0}}=|I| \leq \aleph_{n}$.

Komjáth [1] also defines a set $C \subseteq \mathbb{R}^{2}$ to be a circle around \mathbf{a} if $\mathbf{a} \in \mathbb{R}^{2}$ and every half-line from a meets C at no more than one point. Let us say that a cloud around \mathbf{a} is an n-cloud if it meets each line through a at no more than n points. Thus, every 1 -cloud is a circle, and every circle is a 2-cloud.

Komjáth [1] proves that \mathbb{R}^{2} can be covered by countably many circles. In fact, he shows that whenever $\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots$ are countably many noncollinear points, then each \mathbf{a}_{i} has a circle C_{i} around it such that $\mathbb{R}^{2}=C_{0} \cup C_{1} \cup \ldots$ His proof works equally well with 1-clouds. He conjectures that finitely many circles do not suffice to cover \mathbb{R}^{2}, and he remarks that he has proved that this is so when the circles are around distinct points. The following affirms Komjáth's conjecture.

Theorem 4. Finitely many circles cannot cover \mathbb{R}^{2}.

Proof. The proof is practically already in the proof of Theorem 2. For a contradiction, suppose that $C_{0}, C_{1}, \ldots, C_{n+1}$ are finitely many circles,

[^1]around $\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{n+1}$ respectively, which cover \mathbb{R}^{2}. We allow the possibility that not all the \mathbf{a}_{i} are distinct, but we do assume that each $\mathbf{a}_{i} \neq \mathbf{0}$. Proceed just as in the proof of Theorem 2 to obtain $T S: \mathbf{P}_{n+2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ and $D_{0}, D_{1}, \ldots, D_{n+1} \subseteq I^{n+2} \subseteq \mathbb{R}^{n+2}$. It is clear that each line which is parallel to the i th coordinate axis meets D_{i} in at most 2 points. We show this leads to a contradiction.

Let $N \subseteq I$ be a set having exactly $k=2 n+5$ elements. For each $i \leq n+1$, there are exactly k^{n+1} lines parallel to the i th coordinate axis which meet N^{n+2}; hence, $\left|D_{i} \cap N^{n+2}\right| \leq 2 k^{n+1}$. Therefore, $k^{n+2}=\left|N^{n+2}\right| \leq$ $(n+2) \cdot 2 k^{n+1}$, so that $k \leq 2(n+2)$, which is a contradiction.

The proof of Theorem 1 is very robust, being easily adapted to apply to objects other than clouds. For example, let us say that a subset $C \subseteq \mathbb{R}^{2}$ is a spray around \mathbf{a} if the intersection of C with any circle (in the classical Euclidean sense) centered at \mathbf{a} is finite. Then the following can be proved along the lines of the proof of Theorem 1.

TheOrem 5. Suppose that $1 \leq n<\omega$. If $2^{\aleph_{0}} \leq \aleph_{n}$, then \mathbb{R}^{2} can be covered by $n+2$ sprays.

We do not know if there is a converse to Theorem 5 in the style of Theorem 2.

References

[1] P. Komjáth, Three clouds can cover the plane, Ann. Pure Appl. Logic 109 (2001), 71-75.
[2] -, A strongly asymmetric function, preprint.
[3] C. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17.
[4] J. C. Simms, Sierpiński's Theorem, Simon Stevin 65 (1991), 69-163.
Department of Mathematics
University of Connecticut
Storrs, CT 06269, U.S.A.
E-mail: schmerl@math.uconn.edu

[^0]: 2000 Mathematics Subject Classification: 03E50, 51M05.

[^1]: $\left({ }^{1}\right)$ This presentation of the proof owes much to Jan Mycielski who saw what was really going on with my original proof.

