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Realization and nonrealization of Poincaré duality
quotients of F2[x, y] as topological spaces

by

Dagmar M. Meyer and Larry Smith (Göttingen)

Abstract. Let d2,0 = x2y + xy2, d2,1 = x2 + xy + y2 ∈ F2[x, y] be the two Dickson
polynomials. If a and b are positive integers, the ideal (da2,0,d

b
2,1) ⊂ F2[x, y] is invariant

under the action of the mod 2 Steenrod algebra A ∗ if and only if when we write b = 2t · k
with k odd, then a ≤ 2t. The quotient algebra F2[x, y]/(da2,0,d

b
2,1) is a Poincaré duality

algebra and for such a and b admits an unstable action of A ∗. It has trivial Wu classes
if and only if a = 2t for some t ≥ 0 and b = 2t(2s − 1) for some s > 0. We ask under
what conditions on a and b, F2[x, y]/(da2,0,d

b
2,1) appears as the mod 2 cohomology of a

manifold. In this note we show that for a = 2t = b there is a topological space whose
cohomology is F2[x, y]/(d2t

2,0, d
2t
2,1) if and only if t = 0, 1, 2, or 3, and in these cases the

space may be taken to be a smooth manifold.

Let d2,0 = x2y + xy2,d2,1 = x2 + xy + y2 ∈ F2[x, y] be the two Dickson
polynomials. In [10] we determined which ideals of the form (da2,0,d

b
2,1) ⊂

F2[x, y] are invariant under the action of the mod 2 Steenrod algebra (1).
The corresponding Poincaré duality algebras, viz. F2[x, y]/(da2,0,d

b
2,1), sup-

port the structure of an unstable algebra over the Steenrod algebra A ∗. As
such they have Wu classes Wui defined by the requirement that Sqi(u) =
Wui ∪ u whenever i + deg(u) is the degree of the fundamental class of the
Poincaré duality algebra (see e.g. [2]). Amongst the A ∗-unstable algebras
F2[x, y]/(da2,0,d

b
2,1) those for which the Wu classes are trivial are of particu-

lar interest: this is for example the case if a = 2t = b. We showed they can
be used to study the so called Hit Problem (this problem has a large litera-
ture and we refer the reader to [16] and the reference list there). Namely, a
monomial xαyγ ∈ F2[x, y] that represents a fundamental class for a quotient
F2[x, y]/(da2,0,d

b
2,1) with trivial Wu classes is an A ∗-indecomposable. In the

case of two variables mod 2 we thereby gave the known solution [11] to the
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(1) We include in Section 3 an ad hoc derivation (after all we know the answer!) that

avoids the theory developed in [10] to handle the general case.
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problem of determining generators for F2[x, y] as A ∗-module a fully new
interpretation: see the comments following Theorem 1.1.

In this note we examine which of the A ∗-unstable algebras

F2[x, y]/(d2t
2,0,d

2t
2,1)

can appear as the mod 2 cohomology of a topological space. The method
that we use to construct those that do yields a closed smooth manifold.

We have tried to keep the notation as standard as possible: for any
unexplained notations we refer to [15] and [14].

1. Recollections and statement of results. We denote by d2,0 =
x2y + xy2,d2,1 = x2 + xy + y2 ∈ F2[x, y] the two Dickson polynomials.
They form a regular sequence, as do da2,0,d

b
2,1 for any a, b ∈ N. Hence the

quotient algebra F2[x, y]/(da2,0,d
b
2,1) satisfies Poincaré duality (see e.g. [13]

or [14, Theorem 6.5.1]). We introduce the notation d(a, b) = (da2,0,d
b
2,1) for

the ideal in F2[x, y] generated by da2,0 and db2,1, and write H(a, b) for the
quotient algebra F2[x, y]/d(a, b). If the ideal d(a, b) is invariant under the
action of the mod 2 Steenrod algebra A ∗ then this algebra has Wu classes
(see e.g. [2]). In [10] we proved the following result:

Theorem 1.1. For a, b ∈ N the ideal d(a, b) is invariant under the ac-
tion of the mod 2 Steenrod algebra A ∗ if and only if when we write b = 2t ·k
with k odd , then a ≤ 2t. The quotient algebra H(a, b) has trivial Wu classes
if and only if a = 2t and b = 2t(2s − 1) for some s > 0.

This result follows quite naturally from a number of general principles
established in [10, Parts II and III]. A reason why the quotient algebras
H(a, b) with trivial Wu classes are particularly interesting is that monomi-
als representing their fundamental class are A ∗-indecomposable in F2[x, y]
(see e.g. [11] and [16]). In fact we show in [10, Part V] that choosing one
representative for the fundamental class of each such algebra and adjoining
the distinct products of the form x2s−1y2t−1 for s, t ∈ N0 one obtains a basis
for the A ∗-indecomposables of F2[x, y]. For the sake of completeness, and
to make this short note independent of [10], we present an ad hoc proof of
Theorem 1.1 in Section 3.

In this note we consider the problem of realizing the quotient algebras
H(2t, 2t) for t ∈ N0, which support an A ∗-action, as the F2-cohomology of
a topological space. We prove:

Theorem 1.2. The unstable A ∗-algebra H(2t, 2t) ∼= F2[x, y]/(d2t
2,0,d

2t
2,1)

occurs as a cohomology algebra if and only if t = 0, 1, 2, 3.

The proof of this result occupies the next section.
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2. Constructions and nonexistence results. The first result pro-
vides us with a means of constructing examples of spaces realizing H(2t, 2t)
as an algebra over the Steenrod algebra for small t. We denote by RP(n)
the n-dimensional real projective space. We write x ∈ H1(RP(n);F2) for
the nonzero element and ξ↓RP(n) for the canonical line bundle; so the first
Stiefel–Whitney class w1(ξ) is x. If η↓X is a real vector bundle over the space
X then RP(η↓X) denotes the total space of the associated real projective
space bundle RP(η)↓X.

Proposition 2.1. If there exists a vector bundle τt↓RP(3 · 2t − 1) of
dimension 2t+1 having total Stiefel–Whitney class w(τt) = 1 + x2t + x2t+1 ∈
H∗∗(RP(3 · 2t − 1);F2) then

H∗(RP(τt↓RP(3 · 2t − 1));F2)

= F2[x, y]/((x2y + xy2)2t, (x2 + xy + y2)2t) = H(2t, 2t).

For t = 0, 1, 2, 3 such a bundle exists, and hence H(2t, 2t) occurs as a coho-
mology algebra for t = 0, 1, 2, 3.

Proof. Suppose τt↓RP(3 · 2t − 1) is a vector bundle as in the statement.
We employ the projective bundle theorem, [6, Chapter 16, Theorem 2.5], to
compute the mod 2 cohomology of the total space RP(τt↓RP(3 · 2t − 1)) of
the corresponding real projective bundle and find

H∗(RP(τt↓RP(3 · 2t − 1));F2) ∼= H∗(RP(3 · 2t − 1);F2)[y]

(
∑2t+1

i=0 yiw2t+1−i(τt))

∼= F2[x, y]
(x3·2t, y2t+1 + y2tx2t + x2t+1)

.

Note that

x2t(y2t+1
+ y2tx2t + x2t+1

) = (x2ty2t+1
+ y2tx2t+1

) + x2t+1+2t

= (xy2 + x2y)2t + x3·2t

so we can rewrite the cohomology as

F2[x, y]/((x2y + xy2)2t, (x2 + xy + y2)2t),

which is H(2t, 2t).
It remains to prove that for 0 ≤ t ≤ 3 such a bundle τt↓RP(3 · 2t − 1)

exists. To this end consider the bundle ξ ⊕ . . .⊕ ξ
←−−3·2t−−→

↓RP(3 · 2t − 1). Its total
Stiefel–Whitney class is

w(ξ ⊕ . . .⊕ ξ
←−−3·2t−−→

) = w(ξ)3·2t = (1+x)3·2t = (1+x)2t+1
(1+x)2t = 1+x2t +x2t+1

because x3·2t = 0 ∈ H∗(RP(3 ·2t−1)). The dimension of this bundle is 3 ·2t.
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If this bundle had 2t linearly independent cross sections, then we could write

ξ ⊕ . . .⊕ ξ
←−−3·2t−−→

∼= τt ⊕ R2t↓RP(3 · 2t − 1)

and τt would be the sought for bundle.
Denote by s(k, n) the maximum number of linearly independent cross

sections of the bundle kξ↓RP(n). The geometric dimension of kξ↓RP(n)
is therefore k − s(k, n), i.e., we may write kξ ∼= ξ̃ ⊕ Rs(k,n)↓RP(n) for a
suitable vector bundle ξ̃ of dimension k − s(k, n). According to K. Y. Lam,
[7, Theorem 1.12] or [8, Theorem 2.1], s(n + 1, n) = %(n + 1), where %(m)
is the Radon–Hurwitz number: if m = 2α+4β(2γ + 1) where 0 ≤ α ≤ 3 then
%(m) = 2α + 8β. We use this to compute the geometric dimension of the
bundle ξ ⊕ . . .⊕ ξ

←−−3·2t−−→
↓RP(3 · 2t − 1).

For small values of t we obtain the following table.

t RP(3 · 2t − 1) 3 · 2t %(3 · 2t) g.d.(3 · 2tξ↓RP(3 · 2t − 1)) 2t+1

0 RP(2) 3 1 2 2
1 RP(5) 6 2 4 4
2 RP(11) 12 4 8 8
3 RP(23) 24 8 16 16
4 RP(47) 48 9 39 32

In the table g.d.(−) denotes the geometric dimension of the bundle in paren-
theses. The difference of the entries in the columns headed 3 ·2t and %(3 ·2t)
is the geometric dimension listed in the fifth column. The last column shows
the geometric dimension needed to construct the desired vector bundle.
From this table we deduce the existence of the bundle τt↓RP(3 · 2t − 1)
for 0 ≤ t ≤ 3.

Note that the table occurring in the preceding proof suggests that the
A ∗-unstable algebra H(16, 16) does not occur as the cohomology of a topo-
logical space. This is in fact the case: namely, the remaining examples of
unstable A ∗-algebras of the form H(2t, 2t) do not occur as the mod 2 coho-
mology of a space. To demonstrate this, suppose that X(t) is a topological
space that has mod 2 cohomology isomorphic to H(2t, 2t) as an algebra
over the Steenrod algebra. Let ft : X(t)→RP(∞)× RP(∞) be a map that
realizes the natural epimorphism

F2[x, y]→H(2t, 2t) = F2[x, y]/(d2t
2,0,d

2t
2,1)

in mod 2 cohomology. Let F (t) be the homotopy fibre of ft. The space
RP(∞)×RP(∞) has fundamental group Z/2×Z/2. The composition factors
of a finite-dimensional vector space over a field of characteristic p acted on
by a finite p-group are trivial. It follows from [3] that we may employ the
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Eilenberg–Moore spectral sequence to compute the mod 2 cohomology of
F (t) (see e.g. [12], whose notations we employ).

Suppose t > 0. The Eilenberg–Moore spectral sequence for the fibration

F (t) ↪→ X(t)
ft→RP(∞)× RP(∞) has as E2-term

E∗,∗2
∼= Tor∗,∗F2[x,y](F2[x, y]/(d2t

2,0,d
2t
2,1),F2).

Since d2t
2,0,d

2t
2,1 is a regular sequence in F2[x, y] this may be computed with

the Koszul complex (see e.g. [14, Section 6.1] or [12, Part I]) and the result
is

E∗,∗2
∼= E(s−1(d2t

2,0), s−1(d2t
2,1)),

i.e., a bigraded exterior algebra on two generators s−1(d2t
2,0) of bidegree

(−1, 3 · 2t) and s−1(d2t
2,1) of bidegree (−1, 2t+1). From this it easily follows

that E2 = E∞. The action of the Steenrod algebra on E2 = E∞ satis-
fies Sq2t(s−1(d2t

2,1)) = s−1(d2t
2,0). For degree reasons the extension problem

as algebra over the Steenrod algebra from E∞ to H∗(F (t),F2) is trivial.
Therefore

H∗(F (t);F2) ∼= Tot(E(s−1(d2t
2,0), s−1(d2t

2,1)))

where Tot(E(s−1(d2t
2,0), s−1(d2t

2,1))) is a graded exterior algebra on generators

s−1(d2t
2,0) of degree 3 · 2t − 1 and s−1(d2t

2,1) of degree 2t+1 − 1. Since

Sq2t : H2t+1−1(F (t),F2)→H3·2t−1(F (t),F2)

is nonzero and H i(F (t),F2) = 0 for 2t+1 − 1 < i < 3 · 2t − 1 the solution to
the Hopf invariant one problem [1] shows that this is impossible if t > 3.

Therefore, combining this discussion with Proposition 2.1 we have proven
Theorem 1.2.

One further interesting aspect of this circle of examples and nonexamples
is to examine the spaces F (t) for t = 0, 1, 2, and 3 which occurred after the
proof of Proposition 2.1, and ask if we can identify them. Indeed, with the
help of an e-mail exchange with Fred Cohen and John Hubbuck, we can to
some extent. If we denote the exterior generators of H∗(F (i);F2) by u2t+1−1
and u3·2t−1, for i = 1, 2, 3, and the single generator for H∗(F (0);F2) by u1,
so that Sq2tu2t+1−1 = u3·2t−1, respectively Sq1(u1) = u2

1, then

H∗(F (0);F2) ∼= F2[u1]/(u3
1) ∼= H∗(SO(3);F2),

H∗(F (1);F2) ∼= E(u3, u5) ∼= H∗(SU(3);F2),

H∗(F (2);F2) ∼= E(u7, u11) ∼= H∗(S � (3)/S � (1);F2),

H∗(F (3);F2) ∼= E(u15, u23) ∼= H∗(F4/G2;F2).

The first two examples are realized by Lie groups which are homotopy unique
as H-spaces (see e.g. [4]). Of the remaining two examples, it is known that no
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space with the stated cohomology can be an H-space (see [5, Theorem 5.4]).
We are unaware of any reference that these spaces are homotopy unique at
the prime 2.

3. A proof of Theorem 1.1. If Sq = 1 + Sq1 + . . .+ Sqk + . . . is the
total Steenrod operation then (see e.g. [14, Chapter 9, Section 4])

(>)
Sq(d2,0) = d2,0(1 + d2,1 + d2,0),

Sq(d2,1) = d2,0 + d2,1(1 + d2,1).

From these formulae it is routine to verify the following:

Lemma 3.1. The ideal d(a, b) = (da2,0,d
b
2,1) ⊂ F2[x, y] is invariant under

the action of the mod 2 Steenrod algebra A ∗ if and only if upon writing
b = 2t · k with k odd one has a ≤ 2t.

Although the proof of Theorem 1.1 in this section is ad hoc, a number
of interesting results occur along the way. We begin with the observation
that {1, x, y, y2, xy, xy2} projects to an F2-basis for the quotient algebra
H(1, 1) = F2[x, y]/(d2,0,d2,1). Since the Dickson polynomials d2,0,d2,1 ∈
F2[x, y] form a regular sequence the algebra F2[x, y] is a free F2[da2,0,d

b
2,1]-

module for any a, b ∈ N. Using the nested chain of subalgebras F2[da2,0,d
b
2,1]

⊆ F2[d2,0,d2,1] ⊂ F2[x, y] we see that

(?) {dλ2,0 · dµ2,1 · h | 0 ≤ λ < a, 0 ≤ µ < b, and h ∈ {1, x, y, y2, xy, xy2}}
is a basis for F2[x, y] as an F2[da2,0,d

b
2,1]-module, and hence projects to an

F2-basis for F2[x, y]/(da2,0,d
b
2,1). The element da−1

2,0 · db−1
2,1 · xy2 represents a

fundamental class of this quotient algebra.

Lemma 3.2. The graded vector subspace of F2[x, y] defined by

M = SpanF2
{dλ2,0 · dµ2,1 · h | λ, µ ∈ N0 and h ∈ {1, x, y, y2, xy}} ⊂ F2[x, y]

is closed under the action of the Steenrod algebra on F2[x, y]. (N.B. h = xy2

is excluded from the list.)

Proof. Direct computation gives

(z)

Sq(x) = x+ x2 = x+ d2,1 · 1 + xy + y2,

Sq(y) = y + y2,

Sq(xy) = (x+ x2)(y + y2) = xy + d2,0 · 1 + d2,0 · (x+ y) + d2,1 · xy,
Sq(y2) = y2(1 + y2) = y2 + d2,0 · y + d2,1 · y2.

Since Sq is multiplicative, for λ, µ ∈ N0 and h ∈ F2[x, y] one has

Sq(dλ2,0 · dµ2,1 · h) = Sq(d2,0)λ · Sq(d2,1)µ · Sq(h),

and the result follows from (>) and (z).
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Lemma 3.3. Suppose that the ideal d(a, b) = (da2,0,d
b
2,1) ⊂ F2[x, y] is

closed under the action of the Steenrod algebra. Then the graded vector sub-
space of F2[x, y]/d(a, b) defined by

N = SpanF2
{dλ2,0 · dµ2,1 · h | 0 ≤ λ < a, 0 ≤ µ < b, and h ∈ {1, x, y, y2, xy}}

is closed under the action of the Steenrod algebra on F2[x, y]/d(a, b). (N.B.
Again h = xy2 is excluded from the list.) Hence the Wu class Wuk of this al-
gebra is nontrivial if and only if there are integers λ, µ ∈ N0 with 0 ≤ λ < a,
0 ≤ µ < b such that Sqk(dλ2,0 · dµ2,1 · xy2) = da−1

2,0 · db−1
2,1 · xy2.

Proof. Since N is the image of M of Lemma 3.2 under the quotient
map F2[x, y]→F2[x, y]/d(a, b), which is an A ∗-module homomorphism, the
first assertion follows from Lemma 3.2. The second assertion follows from
the first assertion, the fact that the set (?) projects to an F2-basis for
F2[x, y]/(da2,0,d

b
2,1), and that the element da−1

2,0 · db−1
2,1 · xy2 represents a fun-

damental class of this quotient algebra.

Proof of Theorem 1.1. Consider the Poincaré duality algebra H(a, b),
where b = 2t · c for some odd number c, and 0 < a ≤ 2t. First we show that
if a 6= 2t or if c is not of the form 2s − 1 for some s > 0, then H(a, b) has
nontrivial Wu classes.

To this end recall that a representative of the fundamental class is given
by da−1

2,0 db−1
2,1 · xy2. We will describe elements in H(a, b) that are mapped to

this fundamental class by a Steenrod operation.
First note that
Sq1(xy2) = x2y2 = d2,0 · x+ d2,0 · y + d2,1 · xy,
Sq2(xy2) = xy4 = d2,0 · xy + d2,1 · xy2,

Sq3(xy2) = x2y4

= d2
2,0 · 1 + d2,0d2,1 · x+ d2,0d2,1 · y + d2

2,1 · xy + d2,0 · xy2,

so that we have Sq(xy2) ≡ (1 + d2,1 + d2,0) · xy2 + E where the error term
E lies in N (here N is as in Lemma 3.3).

Consider the expression Sq(da−1
2,0 db−1−a

2,1 · xy2). Since N is trivial in the
degree of the fundamental class, Sq2a(da−1

2,0 db−1−a
2,1 ·xy2) is the homogeneous

part in degree 3(a− 1) + 2(b− 1) + 3 of

(z) da−1
2,0 (1 + d2,1 + d2,0)a(d2,1(1 + d2,1) + d2,0)b−1−a · xy2.

Because da2,0 · xy2 = 0 in H(a, b), expression (z) is the same as

da−1
2,0 (1 + d2,1)a(d2,1(1 + d2,1))b−1−a · xy2 = da−1

2,0 db−1−a
2,1 (1 + d2,1)b−1 · xy2.

The homogeneous part in degree 3(a − 1) + 2(b − 1) + 3 of this expres-
sion is

(
b−1
a

)
da−1

2,0 db−1
2,1 · xy2. If a < 2t then

(
b−1
a

)
is 1, and so in this case

Sq2a(da−1
2,0 db−1−a

2,1 · xy2) = da−1
2,0 db−1

2,1 · xy2.
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So suppose that a = 2t but that c is not of the form 2s − 1. Let jc :=
min{i ≥ 0 | αi(c) = 0}, where αi(c) is the coefficient of 2i in the dyadic
expansion of c. Since c is odd, jc > 0.

Consider the expression Sq2jc+t+1
(d2t−1

2,0 d2t(c−2jc)−1
2,1 ·xy2). With the same

arguments as before, we see that it is just the homogeneous part in degree
3(2t − 1) + 2(2tc− 1) + 3 of

d2t−1
2,0 d2t(c−2jc)−1

2,1 (1 + d2,1)2t(c−2jc+1)−1 · xy2,

which is (
2t(c− 2jc + 1)− 1

2t · 2jc
)

d2t−1
2,0 d2tc−1

2,1 · xy2.

The binomial coefficient is nontrivial so that indeed we have

Sq2jc+t+1
(d2t−1

2,0 d2t(c−2jc)−1
2,1 · xy2) = d2t−1

2,0 d2tc−1
2,1 · xy2.

It remains to verify that H(a, b) does have trivial Wu classes if a = 2t

and b = 2t(2s− 1). Denote the monomial d2t−1
2,0 d2t(2s−1)−1

2,1 ·xy2 representing
the fundamental class of the algebra H(2t, 2t(2s − 1)) by [H]. It suffices to
show that the coefficient of [H] in Sq(dλ2,0dµ2,1 ·xy2) is zero unless λ = 2t− 1
and µ = 2t(2s − 1)− 1.

We divide the work into three cases: let 0 ≤ j < t and assume that
αi(λ+ 1) = 0 and αi(µ) = 1 for all 0 ≤ i < j. We will show that

(i) If αj(λ + 1) = 0 and αj(µ) = 1 then the coefficient of [H] in
Sq(dλ2,0dµ2,1 · xy2) is the same as its coefficient in

d2j+1−1
2,1 Sq(dλ2,0dµ−(2j+1−1)

2,1 · xy2).

It is zero otherwise.
(ii) If αi(µ) = 1 for all 0 ≤ i ≤ t, then the coefficient of [H] in

Sq(d2t−1
2,0 dµ2,1 · xy2) is zero.

(iii) Let t < i < s+ t and assume that αt(µ) = 0 and αm(µ) = 1 for all
0 ≤ m < t and all t < m < i. If αi(µ) = 1 then the coefficient of [H] in
Sq(d2t−1

2,0 dµ2,1 · xy2) is the same as its coefficient in

d2i+1−1−2t
2,1 Sq(d2t−1

2,0 dµ−(2i+1−1−2t)
2,1 · xy2).

It is zero otherwise.

The proofs of all three assertions are very similar so we supply details
only for the first, which is done by induction on j. If j > 0 then by induction
it suffices to consider the coefficient ηj of hj := d2t−1

2,0 d2t(2s−1)−2j

2,1 · xy2 in

(>) Sq(dλ2,0dµ−(2j−1)
2,1 · xy2)

= dλ2,0(1 + d2,1 + d2,0)λ+1(d2,1(1 + d2,1) + d2,0)µ−(2j−1) · xy2.
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We show that ηj is equal to the coefficient of hj in the expression

d2j+1−1
2,1 (Sq(dλ2,0dµ−(2j+1−1)

2,1 · xy2)) if αj(λ + 1) = 0 and αj(µ) = 1, and
is zero otherwise. There are four subcases corresponding to the four possible
values of αj(λ+ 1) and αj(µ).

If αj(λ + 1) = 0 and αj(µ) = 0, then the right hand side of (>) can
be expanded into a sum of terms of the form dω2,0dσ2,1 · xy2 with 2j+1 |σ.
Consequently, the coefficient of hj in this expression is zero.

If αj(λ+ 1) = 1 and αj(µ) = 0, then we have

Sq(dλ2,0dµ−(2j−1)
2,1 · xy2) = (1 + d2,1)2j ·E + d2j

2,0 ·E

with E = dλ2,0(1 + d2,1 + d2,0)λ+1−2j(d2,1(1 + d2,1) + d2,0)µ−(2j−1) · xy2. The

expressions (1 + d2,1)2j ·E and d2j
2,0 ·E can be expanded into sums of terms

of the form dω2,0dσ2,1 · xy2 which satisfy αj(ω) = 0 and 2j+1 |σ respectively.
So again the coefficient of hj is zero.

If αj(λ+ 1) = 1 and αj(µ) = 1, then we write

Sq(dλ2,0dµ−(2j−1)
2,1 · xy2) = (d2,1 + d3

2,1 + d2
2,0)2j ·E′ + (1 + d2j+1

2,1 )d2j
2,0 ·E′

with E′ = dλ2,0(1 + d2,1 + d2,0)λ+1−2j(d2,1(1 + d2,1) + d2,0)µ−(2j+1−1) · xy2.

Again, the expressions (d2,1 +d3
2,1 +d2

2,0)2j ·E′ and (1+d2j+1

2,1 )d2j
2,0 ·E′ can be

expanded into sums of terms of the form dω2,0dσ2,1·xy2 which satisfy αj(ω) = 0
and 2j+1 |σ respectively. Hence also in this case the coefficient of hj is zero.

If αj(λ+ 1) = 0 and αj(µ) = 1, then we write

Sq(dλ2,0dµ−(2j−1)
2,1 · xy2) = (d2j

2,1 + d2j+1

2,1 + d2j
2,0) ·E′′

with E′′ = dλ2,0(1 + d2,1 + d2,0)λ+1(d2,1(1 + d2,1) + d2,0)µ−(2j+1−1) · xy2.

The expression d2j
2,1 · E′′ is the same as d2j

2,1Sq(dλ2,0dµ−(2j+1−1)
2,1 · xy2), and

(d2j+1

2,1 +d2j
2,0)·E′′ can be expanded into a sum of terms of the form dω2,0dσ2,1·xy2

which satisfy 2j+1 |σ. Hence the coefficient of hj in Sq(dλ2,0dµ−(2j−1)
2,1 · xy2)

is the same as its coefficient in d2j
2,1Sq(dλ2,0dµ−(2j+1−1)

2,1 · xy2).
To start the induction, recycle the above argument with j = 0.
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