Generating varieties for the triple loop space of classical Lie groups

by

Yasuhiko Kamiyama (Okinawa)

Abstract. For G = SU(n), Sp(n) or Spin(n), let $C_G(SU(2))$ be the centralizer of a certain SU(2) in G. We have a natural map $J : G/C_G(SU(2)) \to \Omega_0^3 G$. For a generator α of $H_*(G/C_G(SU(2)); \mathbb{Z}/2)$, we describe $J_*(\alpha)$. In particular, it is proved that $J_* : H_*(G/C_G(SU(2)); \mathbb{Z}/2) \to H_*(\Omega_0^3 G; \mathbb{Z}/2)$ is injective.

1. Introduction. The purpose of this paper is to study an analogue of Bott's theorem on generating varieties when S^1 is replaced by SU(2) and ΩG is replaced by $\Omega_0^3 G$, where G is a classical Lie group. We will explain the motivation for the study later. We recall Bott's theorem. Let G be a compact simply connected Lie group. For a circle S^1 on G, let $C_G(S^1) \to \Omega G$ defined by $f(gC_G(S^1))(x) = gxg^{-1}x^{-1}$, where $x \in S^1$. According to Bott [2], if S^1 is a suitable circle (more precisely, S^1 determines an element of $H_1(T;\mathbb{Z})$, where T is a maximal torus of G containing S^1 , and if the element is dual to a long root), then $(S^1$ becomes a generating circle and) f has the property that the image of $f_*: H_*(G/C_G(S^1);\mathbb{Z}) \to H_*(\Omega G;\mathbb{Z})$ generates the Pontryagin ring $H_*(\Omega G;\mathbb{Z})$. We call $G/C_G(S^1)$ a generating variety.

Let SU(2) be a subgroup of G and $C_G(SU(2))$ its centralizer in G. Hereafter we abbreviate $C_G(SU(2))$ to C or C_G and consider homology with $\mathbb{Z}/2$ -coefficients. We have a map

$$J: G/C \to \Omega_0^3 G$$

defined by

$$J(gC)(x) = gxg^{-1}x^{-1},$$

where $x \in SU(2)$. For G = SU(2), J is essentially the well known J-homomorphism $J: SO(3) \to \Omega_1^3 S^3$. At present, the Pontryagin ring $H_*(\Omega_0^3 G; \mathbb{Z}/2)$

²⁰⁰⁰ Mathematics Subject Classification: Primary 58D27; Secondary 53C07, 55R40. Key words and phrases: generating variety, instantons, triple loop space.

is known for all G. (See [3] for G = SU(n), [4] for G = Spin(n), [5] for G = Sp(n) and [6] for exceptional Lie groups.) The ring is polynomial with infinitely many generators and the generators are constructed as follows. From a finite number of elements $b_{\mu_1}, \ldots, b_{\mu_r}$ of $H_*(\Omega_0^3G; \mathbb{Z}/2)$, all the generators are constructed by applying the homology operations Q_1 , Q_2 (and possibly Q_3). In this paper the subscript of an element means its degree, that is, $\deg(b_{\mu}) = \mu$. We call these b_{μ} fundamental generators. Now we consider the following questions:

(1) Is $J_*: H_*(G/C; \mathbb{Z}/2) \to H_*(\Omega_0^3G; \mathbb{Z}/2)$ injective?

(2) Does the image of J_* contain all the fundamental generators?

The motivation for the questions is as follows. For a compact simple simply connected Lie group G, let M(k, G) be the moduli space of based gauge equivalence classes of G-instantons over S^4 with instanton number k. Let $i_k : M(k, G) \to \Omega_k^3 G$ be the inclusion. In [3] Boyer, Mann and Waggoner constructed non-trivial classes in $H_*(M(k, SU(n)); \mathbb{Z}/2)$. For that purpose, they used a description of M(1, G) in terms of a homogeneous space. More precisely, let $C = C_G(SU(2))$ be the centralizer of a certain SU(2) in G. Then a result of [3] tells us that there exists a diffeomorphism $M(1, G) \cong \mathbb{R}^5 \times G/C$ such that the following diagram is homotopy commutative:

A crucial result of [3] determines $J_*(\alpha)$, where $\alpha \in H_*(SU(n)/C; \mathbb{Z}/2)$ is an *even*-dimensional generator (see Theorem 2.6). The motivation of this paper is to continue the study for G = SU(n), Sp(n), and $Spin(n) \ (n \neq 4)$. Hence hereafter we consider an embedding of SU(2) into G so that $M(1,G) \cong \mathbb{R}^5 \times G/C$. (See [3], [9] or Sections 2–3.)

For G/C, we have the following examples:

EXAMPLE 1.1 ([3], [9]). (i) $SU(n)/C_{SU(n)}$ is diffeomorphic to the unit tangent bundle of $\mathbb{C}P^{n-1}$.

(ii) $Sp(n)/C_{Sp(n)}$ is diffeomorphic to $\mathbb{R}P^{4n-1}$.

(iii) Since $\text{Spin}(5) \cong Sp(2)$ and $\text{Spin}(6) \cong SU(4)$, we obtain examples of $\text{Spin}(n)/C_{\text{Spin}(n)}$ for n = 5 and 6 from (i) and (ii).

In the main theorems of this paper, we describe $J_*(\alpha)$ for α a generator of $H_*(G/C; \mathbb{Z}/2)$. (See Theorem 2.7 for G = SU(n) and α an odd-dimensional generator, Theorem 2.8 for G = Sp(n), and Theorem 3.4 for G = Spin(n).) In particular, we have the following:

THEOREM A. Let G be SU(n), Sp(n), or Spin(n) $(n \neq 4)$. Embed SU(2)into G so that $M(1,G) \cong \mathbb{R}^5 \times G/C$. Then

(i) $J_*: H_*(G/C; \mathbb{Z}/2) \to H_*(\Omega_0^3G; \mathbb{Z}/2)$ is injective.

(ii) Excluding a fundamental generator in $H_{2n-6}(\Omega_0^3 \operatorname{Spin}(n); \mathbb{Z}/2)$ for $n \equiv 3 \pmod{4}$, there are choices of the fundamental generators b_{μ} of $H_*(\Omega_0^3G; \mathbb{Z}/2)$ such that every b_{μ} is in the image of J_* .

If $\alpha \in H_*(G/C_G; \mathbb{Z}/2)$ is a stable element, that is, α is non-trivial in $H_*(G(\infty)/C_{G(\infty)}; \mathbb{Z}/2)$ (where $G(\infty)$ denotes SU, Sp or Spin), then we can use the Bott periodicity to study $J_*(\alpha)$ in $H_*(\Omega_0^3G; \mathbb{Z}/2)$ (see (5.4)). On the other hand, for G = SU(n) or Spin(n), $H_*(G/C_G; \mathbb{Z}/2)$ contains a non-stable element. The following theorem is a key to determining $J_*(\alpha)$ for α non-stable. For a map $f: X \to \Omega_0^3G$, let $\text{Ad}(f): \Sigma^3X \to G$ be the adjoint map of f.

THEOREM B. (i) For G = SU(n) with n even, let $i : S^{2n-3} \to SU(n)/C$ be the inclusion of the fiber of the unit tangent bundle of $\mathbb{C}P^{n-1}$. Then $\operatorname{Ad}(J \circ i)$ generates the 2-component of $\pi_{2n}(SU(n)) \cong \mathbb{Z}/n!$.

(ii) For G = Spin(n) with $n \neq 7$, there exists a spherical class in $H_{n-4}(\text{Spin}(n)/C;\mathbb{Z})$ which is denoted by $\nu : S^{n-4} \to \text{Spin}(n)/C$. Then $\text{Ad}(J \circ \nu)$ is a generator of $\pi_{n-1}(\text{Spin}(n))$. (More precisely; $\text{Ad}(J \circ \nu)$ is one of the generators for $n \equiv 0, 1, 2, 4 \pmod{8}$; $\text{Ad}(J \circ \nu)$ has infinite order for n even and is of order 2 for n odd with $n \neq 7$.)

This paper is organized as follows. In Section 2 we study the cases G = SU(n) and Sp(n). Theorems 2.7 and 2.8 are the main results for G = SU(n) and G = Sp(n) respectively. In Section 3 we study the case G = Spin(n), where Theorem 3.4 is the main result. Theorems 2.7 and 2.8 are proved in Section 4 and Theorem 3.4 is proved in Section 5, where Theorem B is a key for the proofs.

2. Main results for G = SU(n) and Sp(n). First we study the case G = SU(n). Since SU(2) = Sp(1), we assume $n \ge 3$. (The (2.2) below holds for n = 2, but it is more natural to consider (2.4) for $n \ge 3$.) We embed SU(2) into SU(n) as the first 2×2 elements. Then $C = C_{SU(n)}$ is given by the following set of matrices:

(2.1)
$$C = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & A \end{pmatrix} : A \in U(n-2), a^2 \det A = 1 \right\}.$$

Therefore SU(n)/C is diffeomorphic to the unit tangent bundle of $\mathbb{C}P^{n-1}$ (see [3], [9] or (4.1)) and $H^*(SU(n)/C; \mathbb{Z}/2)$ is given as follows: (1) For *n* even, $H^*(SU(n)/C; \mathbb{Z}/2) \cong H^*(\mathbb{C}P^{n-1}; \mathbb{Z}/2) \otimes H^*(S^{2n-3}; \mathbb{Z}/2).$ (2) For *n* odd,

$$H^*(SU(n)/C; \mathbb{Z}/2) \cong H^*(\mathbb{C}P^{n-2}; \mathbb{Z}/2) \otimes H^*(S^{2n-1}; \mathbb{Z}/2).$$

We write the generators of $H_*(SU(n)/C; \mathbb{Z}/2)$ as follows.

(1) For n even,

(2.2)
$$\begin{cases} \alpha_{2i}, & 1 \le i \le n-1, \\ \beta_{2i+1}, & n-2 \le i \le 2n-3. \end{cases}$$

(2) For
$$n$$
 odd,

(2.3)
$$\begin{cases} \alpha_{2i}, & 1 \le i \le n-2, \\ \beta_{2i+1}, & n-1 \le i \le 2n-3. \end{cases}$$

The structure of $H_*(\Omega_0^3 SU(n); \mathbb{Z}/2)$ is given in [3]. First, the following elements are defined in $H_*(\Omega_0^3 SU(n); \mathbb{Z}/2)$:

(2.4)
$$\begin{cases} x_2, \\ y_{2i}, & 2 \le i \le n-2, \ i \equiv 0 \pmod{2}, \\ z_{4i+1}, & \left[\frac{n-1}{2}\right] \le i \le n-2, \ i \equiv 1 \pmod{2}. \end{cases}$$

Here x_2 is defined by $x_2 = Q_2[1] * [-2]$. (2.4) gives the set of fundamental generators of $H_*(\Omega_0^3 SU(n); \mathbb{Z}/2)$. The set of all ring generators is as follows:

$$\begin{cases} Q_2^a(x_2), & a \ge 0, \\ Q_2^a(y_{2i}), & a \ge 0, \ 2 \le i \le \left[\frac{n-3}{2}\right], \ i \equiv 0 \pmod{2}, \\ Q_1^a Q_2^b(y_{2i}), & a, b \ge 0, \ \left[\frac{n-1}{2}\right] \le i \le n-2, \ i \equiv 0 \pmod{2}, \\ Q_1^a Q_3^b(z_{4i+1}), & a, b \ge 0, \ \left[\frac{n-1}{2}\right] \le i \le n-2, \ i \equiv 1 \pmod{2}. \end{cases}$$

Consider the following diagram:

(2.5)
$$SU(n)/C_{SU(n)} \xrightarrow{J} \Omega_0^3 SU(n)$$
$$\downarrow^i \qquad \qquad \downarrow^j \\ SU(n+1)/C_{SU(n+1)} \xrightarrow{J} \Omega_0^3 SU(n+1)$$

where *i* and *j* are the inclusions. If α_{2i} is defined both in $H_{2i}(SU(n)/C_{SU(n)}; \mathbb{Z}/2)$ and $H_{2i}(SU(n+1)/C_{SU(n+1)}; \mathbb{Z}/2)$, then α_{2i} in the top row is mapped by i_* to α_{2i} in the bottom row. Similar remarks hold for β_{2i+1} with respect to i_* and for x_2, y_{2i} and z_{4i+1} with respect to j_* .

 $J_*(\alpha_{2i})$ is known:

THEOREM 2.6 ([3]). There are choices of the fundamental generators y_{2i} such that:

272

(i) For *i* even, $J_*(\alpha_{2i}) = y_{2i}$.

(ii) For *i* odd, $J_*(\alpha_{2i})$ contains the term $x_2 * y_{2i-2}$.

Our main result for G = SU(n) is as follows.

THEOREM 2.7. There are choices of the fundamental generators z_{4i+1} (where $i \equiv 1 \pmod{2}$) such that

- (i) $J_*(\beta_{8k+1})$ contains the term $Q_1(y_{4k})$.
- (ii) $J_*(\beta_{8k+3})$ contains the term $x_2 * Q_1(y_{4k})$.
- (iii) $J_*(\beta_{8k+5}) = z_{8k+5}$.
- (iv) $J_*(\beta_{8k+7})$ contains the term $x_2 * z_{8k+5}$.

REMARK. In [3], $J_*(\beta_5)$ is also studied.

From Theorems 2.6, 2.7 and the structure of $H^*(SU(n)/C; \mathbb{Z}/2)$, we see that $J^*: H^*(\Omega_0^3 SU(n); \mathbb{Z}/2) \to H^*(SU(n)/C; \mathbb{Z}/2)$ is surjective, hence Theorem A holds for G = SU(n).

Next we study the case G = Sp(n). We embed Sp(1) into Sp(n) as the first 1×1 element. Then $C = C_{Sp(n)} = \mathbb{Z}/2 \times Sp(n-1)$, hence Sp(n)/C is diffeomorphic to $\mathbb{R}P^{4n-1}$. We write the generators of $H_*(Sp(n)/C;\mathbb{Z}/2)$ as α_{μ} $(1 \leq \mu \leq 4n-1)$. The structure of $H_*(\Omega_0^3 Sp(n);\mathbb{Z}/2)$ is given in [5]. The result is

$$H_*(\Omega_0^3 Sp(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[Q_1^a Q_2^b[1] * [-2^{a+b}] : a, b \ge 0]$$
$$\otimes \mathbb{Z}/2[Q_1^a Q_2^b(z_{4i}) : a, b \ge 0, 1 \le i \le n-1].$$

Setting $x_1 = Q_1[1] * [-2]$ and $y_2 = Q_2[1] * [-2]$, we have the set of fundamental generators x_1, y_2 and z_{4i} $(1 \le i \le n - 1)$.

Our result for G = Sp(n) is as follows.

THEOREM 2.8. There are choices of the fundamental generators z_{4i} such that

(i) $J_*(\alpha_1) = x_1$, $J_*(\alpha_2) = y_2$ and $J_*(\alpha_{4i}) = z_{4i}$ $(1 \le i \le n-1)$.

(ii) In general, for $1 \le \mu \le 4n - 1$, set $\mu = \varepsilon_1 + 2\varepsilon_2 + 4i$, where $\varepsilon_j = 0$ or 1. Then $J_*(\alpha_{\mu})$ contains the term $x_1^{\varepsilon_1} * y_2^{\varepsilon_2} * z_{4i}$.

Theorem A for G = Sp(n) follows from Theorem 2.8 and the structure of $H^*(Sp(n)/C; \mathbb{Z}/2)$.

We prove Theorems 2.7 and 2.8 in Section 4.

3. Main result for G = Spin(n). Since $\text{Spin}(3) \cong SU(2)$ and Spin(4) is not simple, we assume $n \ge 5$. Recall that $\text{Spin}(4) \cong S_1^3 \times S_2^3$, where S_1^3 and S_2^3 are two copies of $\text{Spin}(3) \cong S^3$. (In Section 5 we write S_i^3 in terms of the Clifford algebra.) We embed Spin(3) into Spin(n) as S_1^3 . Then $C = C_{\text{Spin}(n)} = \text{Spin}(n-4) \times S_2^3$. We recall the structure of $H^*(\text{Spin}(n)/C; \mathbb{Z}/2)$.

PROPOSITION 3.1 ([7]). Let n = 4t + l with $0 \le l \le 3$. Then we have the following isomorphism of modules:

 $H^*(\operatorname{Spin}(n)/C; \mathbb{Z}/2) \cong \mathbb{Z}/2[c_2]/(c_2^t) \otimes \Delta(u_{i_1}, u_{i_2}, u_{i_3}),$

where deg $c_2 = 4$ and deg $u_{i_j} = i_j$ with

$$(i_1, i_2, i_3) = \begin{cases} (4t - 4, 4t - 3, 4t - 2), & n = 4t, \\ (4t - 3, 4t - 2, 4t), & n = 4t + 1, \\ (4t - 2, 4t, 4t + 1), & n = 4t + 2, \\ (4t, 4t + 1, 4t + 2), & n = 4t + 3. \end{cases}$$

Here $\Delta(x_1, \ldots, x_m)$ denotes the graded algebra over $\mathbb{Z}/2$ with $\mathbb{Z}/2$ -basis $\{x_{i_1} \ldots x_{i_r} : 1 \leq i_1 < \ldots < i_r \leq m\}$. (If we add the relations $x_i^2 = 0$, $\Delta(x_1, \ldots, x_m)$ becomes the exterior algebra $\Lambda(x_1, \ldots, x_m)$.)

The mod 2 cohomology ring with squaring operations is also determined in [7]. By Proposition 3.1, we can define elements of $H_*(\text{Spin}(n)/C; \mathbb{Z}/2)$ as follows. Note that two of u_{i_j} are even-dimensional and one of them has dimension congruent to 1 mod 4. We write them as u_{2a_j} (j = 1, 2) and u_{4b+1} . Hence $a_2 = a_1 + 1$. We set

(3.2)
$$\begin{cases} \alpha_{4i} = (c_2^i)^*, & 1 \le i \le t - 1, \\ \beta_{4b+4i+1} = (c_2^i u_{4b+1})^*, & 0 \le i \le t - 1, \\ \gamma_{2a_j+4i} = (c_2^i u_{2a_j})^*, & 0 \le i \le t - 1, \ j = 1, 2, \end{cases}$$

where $(\cdot)^*$ denotes the dual element with respect to the monomial basis.

The structure of $H_*(\Omega_0^3 \operatorname{Spin}(n); \mathbb{Z}/2)$ is given in [4]. It depends on the congruence class of $n \mod 8$. For example, for n = 8g + 2, we have the following set of fundamental generators of $H_*(\Omega_0^3 \operatorname{Spin}(8g + 2); \mathbb{Z}/2)$:

$$\begin{cases} x_{4k}, & 1 \le k \le 2g - 1, \\ y_{8g+8k+5}, & 0 \le k \le g - 1, \\ z_{8g+2k}, & -1 \le k \le 4g - 2, \ k \not\equiv 1 \pmod{4}. \end{cases}$$

Hence y_{μ} is defined only when $\mu \equiv 5 \pmod{8}$ and z_{μ} is defined only when $\mu \equiv 0, 4$ or 6 (mod 8). We define y_{μ} for $\mu \equiv 1 \pmod{8}$ and z_{μ} for $\mu \equiv 2 \pmod{8}$ by setting

(3.3)
$$\begin{cases} y_{8g+8k+1} = Q_1(x_{4g+4k}), & 0 \le k \le g-1, \\ z_{8g+2k} = Q_2(x_{4g+k-1}), & 1 \le k \le 4g-3, \ k \equiv 1 \pmod{4}. \end{cases}$$

The elements of (3.3) are not fundamental generators. We do the same procedure for all n. Then we obtain the following elements of $H_*(\Omega_0^3 \operatorname{Spin}(n); \mathbb{Z}/2)$, among which the elements of the form (3.3) are not fundamental generators. $\begin{cases} x_{4i}, & 1 \le i \le t - 1, \\ y_{4t+4i-3}, & 0 \le i \le t - 1, \\ z_{4t+2i-4}, & 0 \le i \le 2t - 1. \end{cases}$ (2) For n = 4t + 1, $\begin{cases} x_{4i}, & 1 \le i \le t - 1, \\ y_{4t+4i-3}, & 0 \le i \le t - 1, \\ z_{4t+2i-2}, & 0 \le i \le 2t - 1. \end{cases}$ (3) For n = 4t + 2, $\begin{cases} x_{4i}, & 1 \le i \le t - 1, \\ y_{4t+4i+1}, & 0 \le i \le t - 1, \\ z_{4t+2i-2}, & 0 \le i \le 2t - 1. \end{cases}$

(4) For n = 4t + 3,

(1) For n = 4t,

 $\begin{cases} x_{4i}, & 1 \le i \le t - 1, \\ y_{4t+4i+1}, & 0 \le i \le t - 1, \\ z_{4t+2i}, & 0 \le i \le 2t. \end{cases}$

For $\alpha_{\mu}, \beta_{\mu}, \gamma_{\mu}$ in (3.2) and $x_{\mu}, y_{\mu}, z_{\mu}$, a similar naturality to (2.5) holds. Note that $\alpha_{\mu}, \beta_{\mu}, \gamma_{\mu}$ correspond to $x_{\mu}, y_{\mu}, z_{\mu}$ respectively except the fundamental generator z_{8t} in $H_{8t}(\Omega_0^3 \operatorname{Spin}(n); \mathbb{Z}/2)$ for n = 4t + 3. The following main theorem asserts that the correspondence is realized through J_* :

THEOREM 3.4. There are choices of the fundamental generators x_{μ} for $\mu \equiv 0 \pmod{4}$, y_{μ} for $\mu \equiv 5 \pmod{8}$ and z_{μ} for $\mu \equiv 0, 4, 6 \pmod{8}$ such that

- (i) $J_*(\alpha_{\mu}) = x_{\mu}$.
- (ii) (a) When $\mu \equiv 5 \pmod{8}$, $J_*(\beta_{\mu}) = y_{\mu}$.

(b) When $\mu \equiv 1 \pmod{8}$, $J_*(\beta_{\mu})$ contains the term y_{μ} .

(iii) (a) When $\mu \equiv 0, 4 \text{ or } 6 \pmod{8}, J_*(\gamma_{\mu}) = z_{\mu}$.

(b) When $\mu \equiv 2 \pmod{8}$, $J_*(\gamma_{\mu})$ contains the term z_{μ} .

Note that y_{μ} in Theorem 3.4(ii)(b) and z_{μ} in (iii)(b) are not fundamental generators. (Compare (3.3).)

Theorem A for G = Spin(n) follows from Theorem 3.4 and the structure of $H^*(\text{Spin}(n)/C; \mathbb{Z}/2)$ (see Proposition 3.1).

We prove Theorem 3.4 in Section 5.

4. Proofs of Theorems 2.7 and 2.8. First we prove Theorem B(i). Recall that $C = C_{SU(n)}$ is given in (2.1). We set

$$SU(n-2) = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & A \end{pmatrix} : A \in SU(n-2) \right\},\$$
$$SU(n-1) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix} : B \in SU(n-1) \right\},\$$
$$U(n-1) = \left\{ \begin{pmatrix} a & 0 \\ 0 & B \end{pmatrix} : B \in U(n-1), a \det B = 1 \right\}$$

We have the following fiber bundle which realizes SU(n)/C as the unit tangent bundle of $\mathbb{C}P^{n-1}$:

(4.1)
$$SU(n-1)/SU(n-2) \xrightarrow{i} SU(n)/C \to SU(n)/U(n-1)$$

where *i* is the inclusion. We obtain a map $\operatorname{Ad}(J \circ i) : S^{2n-3} \wedge S^3 \to SU(n)$. Consider the homotopy sequence of a principal bundle

$$SU(n-1) \to SU(n) \xrightarrow{p} S^{2n-1}.$$

Since

$$\pi_{2n-1}(SU(n-1)) \cong \begin{cases} 0, & n \text{ even} \\ \mathbb{Z}/2, & n \text{ odd,} \end{cases}$$

(see, for example, [8]), $p_* : \pi_{2n}(SU(n)) \to \pi_{2n}(S^{2n-1})$ is surjective for n even. Hence in order to prove Theorem B(i), it suffices to prove the following:

PROPOSITION 4.2. For n even, set $\phi = p \circ \operatorname{Ad}(J \circ i)$. Then ϕ is a generator of $\pi_{2n}(S^{2n-1})$.

Proof. First we calculate ϕ explicitly. Let $(z_1, \ldots, z_{n-1}) \land (a, b) \in S^{2n-3} \land S^3$. We use the following notations.

(1) A matrix in SU(n) which represents (z_1, \ldots, z_{n-1}) is given by

$$g = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & z_1 & 0 & \dots & 0 \\ \vdots & \vdots & & \mathbf{A} \\ 0 & z_{n-1} & & & \end{pmatrix}$$

where

$$\begin{pmatrix} z_1 & 0 & \dots & 0\\ \vdots & & \mathbf{A} \\ z_{n-1} & & \end{pmatrix} \in SU(n-1).$$

(2) A matrix in SU(n) which corresponds to (a, b) is given by

$$x = \begin{pmatrix} a & -\overline{b} & 0 \\ b & \overline{a} & \\ 0 & E_{n-2} \end{pmatrix}$$

where E_{n-2} denotes the unit matrix.

(3) We define the projection $p: SU(n) \to S^{2n-1}$ by mapping an element of SU(n) to its first row.

Now it is easy to calculate the first row of $qxq^{-1}x^{-1}$. The result is

 $\phi((z_1,\ldots,z_{n-1})\wedge(a,b)) = (|b|^2\overline{z}_1 + |a|^2, a\overline{b}(1-\overline{z}_1), -\overline{b}\overline{z}_2,\ldots,-\overline{b}\overline{z}_{n-1}).$ Define $\psi: S^{2n-3} \wedge S^3 \to S^{2n-1}$ by

(4.3)
$$\psi((z_1, \dots, z_{n-1}) \land (a, b)) = (|b|^2 z_1 + |a|^2, bz_2, \dots, bz_{n-1}, ab(1-z_1)).$$

It is clear that $\phi \sim \psi$

It is clear that $\phi \simeq \psi$.

Next we calculate the generator of $\pi_{2n}(S^{2n-1})$ explicitly. The following lemma is well known (see, for example, [11, p. 107]).

LEMMA 4.4. The map $j: S^m \wedge S^p \to S^{m+p}$ defined by

$$j((u_1, \dots, u_{m+1}) \land (x_1, \dots, x_{p+1})) = \left(\frac{(1-x_1)u_1 + (1+x_1)}{2}, \frac{(1-x_1)u_2}{2}, \dots, \frac{(1-x_1)u_{m+1}}{2}, \sqrt{\frac{1-u_1}{2}}x_2, \dots, \sqrt{\frac{1-u_1}{2}}x_{p+1}\right)$$

is a homeomorphism.

Let $\eta: S^3 \to S^2$ be the Hopf map. It is given by $\eta(a,b) = (1-2|b|^2, 2ab) \in$ $S^2 \subset \mathbb{R} \times \mathbb{C}$. Then $\Sigma^{2n-3}\eta$ is the generator of $\pi_{2n}(S^{2n-1})$, and using Lemma 4.4, we have

(4.5)
$$\Sigma^{2n-3} \eta((z_1, \dots, z_{n-1}) \wedge (a, b))$$

= $(|b|^2 z_1 + |a|^2, |b|^2 z_2, \dots, |b|^2 z_{n-1}, ab\sqrt{2(1 - \operatorname{Re} z_1)}).$

Now we have two maps, ψ in (4.3) and $\Sigma^{2n-3}\eta$ in (4.5). We prove that $\psi \simeq \Sigma^{2n-3}\eta$ when n is even. We define a map $h: S^{2n-1} \to S^{2n-2}$ by

$$h(w_1, \dots, w_n) = \frac{(w_1, 2\overline{w}_2 w_3, |w_2|^2 - |w_3|^2, w_4, \dots, w_n)}{\sqrt{|w_1|^2 + (|w_2|^2 + |w_3|^2)^2 + \sum_{i=4}^n |w_i|^2}}.$$

It is easy to see that $h \simeq \Sigma^{2n-4}\eta$, hence the composition $h \circ : \pi_{2n}(S^{2n-1}) \to \pi_{2n}(S^{2n-2})$ is an isomorphism. We define a map $\psi_1 : S^{2n-3} \wedge S^3 \to S^{2n-1}$ by

$$\psi_1((z_1,\ldots,z_{n-1})\wedge(a,b)) = (|b|^2 z_1 + |a|^2, |b|z_2, |b|z_3, bz_4,\ldots, bz_{n-1}, ab(1-z_1)).$$

It is clear that $h \circ \psi = h \circ \psi_1$, hence $\psi \simeq \psi_1$. This process implies that two coordinates of ψ can be changed simultaneously from bz_i to $|b|z_i$. Since nis even, we see that ψ is homotopic to the map $\tilde{\psi} : S^{2n-3} \wedge S^3 \to S^{2n-1}$ defined by

$$\widetilde{\psi}((z_1,\ldots,z_{n-1})\wedge(a,b)) = (|b|^2 z_1 + |a|^2, |b|z_2,\ldots,|b|z_{n-1}, ab(1-z_1)).$$

Finally, using (4.5), it is easy to construct a homotopy $\tilde{\psi} \simeq \Sigma^{2n-3}\eta$. This completes the proof of Proposition 4.2, and hence also that of Theorem B(i).

For *n* even, let $\sigma_{2n-3} \in H_{2n-3}(S^{2n-3}; \mathbb{Z}/2)$ be the generator, where S^{2n-3} is the fiber of (4.1). By (2.2), we have $i_*(\sigma_{2n-3}) = \beta_{2n-3}$. Recall that we have a map $J \circ i : S^{2n-3} \to \Omega_0^3 SU(n)$.

LEMMA 4.6. $(J \circ i)_*(\sigma_{2n-3})$ is non-zero in $H_{2n-3}(\Omega_0^3 SU(n); \mathbb{Z}/2)$.

Proof. Let W be the homotopy-theoretic fiber of the inclusion $\Omega_0^3 SU(n)$ $\hookrightarrow \Omega_0^3 SU \simeq BU$. Consider the following diagram:

$$W \longrightarrow \Omega_0^3 SU(n) \longrightarrow \Omega_0^3 SU \simeq BU$$

$$\overbrace{J_{\circ i}}^{J_{\circ i}} \int_{J_{\circ i}} S^{2n-3}$$

where $J \circ i$ is the lift of $J \circ i$. The first non-vanishing homotopy of W is $\pi_{2n-3}(W) \cong \mathbb{Z}$ and $\widetilde{J \circ i}$ is not divisible by 2 by Theorem B(i). For n even, $H_{2n-3}(W;\mathbb{Z}/2) \to H_{2n-3}(\Omega_0^3 SU(n);\mathbb{Z}/2)$ is an isomorphism by (2.4). Hence $(J \circ i)_*(\sigma_{2n-3}) \neq 0$.

PROPOSITION 4.7. In $H_{2n-3}(\Omega_0^3 SU(n); \mathbb{Z}/2)$,

$$J_*(\beta_{2n-3}) = \begin{cases} Q_1(y_{4k}), & n = 4k+2, \\ z_{8k+5}, & n = 4k+4. \end{cases}$$

Proof. By Lemma 4.6, $J_*(\beta_{2n-3}) \neq 0$ in $H_{2n-3}(\Omega_0^3 SU(n); \mathbb{Z}/2)$. By (2.4), $H_{2n-3}(\Omega_0^3 SU(n); \mathbb{Z}/2) \cong \mathbb{Z}/2$ and the generator is as on the right-hand side of the conclusion. Hence the result follows.

Proof of Theorem 2.7. If β_{2n-3} is defined in $H_{2n-3}(SU(d)/C_{SU(d)};\mathbb{Z}/2)$, then $d \leq n$. Using (2.5) we can regard Proposition 4.7 as relations in $H_{2n-3}(SU(d)/C_{SU(d)};\mathbb{Z}/2)$ for each d for which β_{2n-3} is defined. For β_{2n-3} with n = 4k+2, the relation is up to the kernel of $i_*: H_{2n-3}(\Omega_0^3 SU(d);\mathbb{Z}/2)$ $\rightarrow H_{2n-3}(\Omega_0^3 SU(n);\mathbb{Z}/2)$, since $Q_1(y_{4k})$ is a fixed element. On the other hand, for β_{2n-3} with n = 4k + 4, we can define z_{8k+5} to be $J_*(\beta_{2n-3})$. Therefore (i) and (iii) of Theorem 2.7 hold.

Consider $\beta_{2n-1} \in H_{2n-1}(SU(n)/C; \mathbb{Z}/2)$ for *n* even. Since $\Delta_*(\beta_{2n-1})$ contains the term $\alpha_2 \otimes \beta_{2n-3}$ (where Δ_* denotes the coproduct), Propo-

sition 4.7 tells us that $J_*(\beta_{2n-1}) \neq 0$ in $H_{2n-1}(\Omega_0^3 SU(n); \mathbb{Z}/2)$. By (2.4), $H_{2n-1}(\Omega_0^3 SU(n); \mathbb{Z}/2) \cong \mathbb{Z}/2$, hence

(4.8)
$$J_*(\beta_{2n-1}) = \begin{cases} x_2 * Q_1(y_{4k}), & n = 4k+2, \\ x_2 * z_{8k+5}, & n = 4k+4. \end{cases}$$

Then using (2.5) we can regard (4.8) as relations in $H_{2n-1}(SU(d)/C_{SU(d)}; \mathbb{Z}/2)$ for each d for which β_{2n-1} is defined. Therefore (ii) and (iv) of Theorem 2.7 hold. This completes the proof of Theorem 2.7, and hence also that of Theorem A for G = SU(n).

Proof of Theorem 2.8. If G = Sp(1), then by the property of the classical *J*-homomorphism (see, for example, [3]), we have

(4.9)
$$\begin{cases} J_*(\alpha_1) = x_1, \\ J_*(\alpha_2) = y_2. \end{cases}$$

Then a similar diagram to (2.5) shows that (4.9) holds for all n.

Since $\Delta_* J_*(\alpha_3)$ contains the term $x_1 \otimes y_2$, $J_*(\alpha_3)$ must contain the term $x_1 * y_2$. (Actually, by [3], we have $J_*(\alpha_3) = x_1 * y_2 + x_1^3 + Q_1(x_1)$.) Similarly, since $\Delta_* J_*(\alpha_4)$ contains the term $y_2 \otimes y_2$, we can define z_4 to be $J_*(\alpha_4)$.

In general, we can prove the following results.

(i) When $\mu = 4i$, $\Delta_* J_*(\alpha_{\mu})$ contains the term $J_*(\alpha_{2i}) \otimes J_*(\alpha_{2i})$. Hence we can define z_{4i} to be $J_*(\alpha_{4i})$.

(ii) When $\mu = 4i+1$, 4i+2 or 4i+3, $\Delta_* J_*(\alpha_\mu)$ contains the term $x_1 \otimes z_{4i}$, $y_2 \otimes z_{4i}$ or $(x_1 * y_2) \otimes z_{4i}$. Hence $J_*(\alpha_\mu)$ must contain $x_1 * z_{4i}, y_2 * z_{4i}$ or $x_1 * y_2 * z_{4i}$.

This completes the proof of Theorem 2.8, and hence also that of Theorem A for G = Sp(n).

5. Proof of Theorem 3.4. Let $\nu : S^{n-4} \to \operatorname{Spin}(n)/C$ be the composition of the following maps:

$$S^{n-4} = \operatorname{Spin}(n-3)/\operatorname{Spin}(n-4) \xrightarrow{i} \operatorname{Spin}(n)/\operatorname{Spin}(n-4) \xrightarrow{\pi} \operatorname{Spin}(n)/C$$

where i is the inclusion and π is the projection. First we prove Theorem B(ii). We recall some notations and results about the Clifford algebra from [1].

Let e_1, \ldots, e_n be a basis of \mathbb{R}^n and C_n the Clifford algebra. Thus $e_i^2 = -1$ $(1 \le i \le n)$ and $e_i e_j + e_j e_i = 0$ $(i \ne j)$. For $g = e_{i_1} \ldots e_{i_k} \in C_n$, we set $g^t = e_{i_k} \ldots e_{i_1}$.

(1) Let Spin(n-4) be defined from \mathbb{R}^{n-4} with a basis e_1, \ldots, e_{n-4} . Then in the principal bundle

$$\operatorname{Spin}(n-4) \to \operatorname{Spin}(n-3) \xrightarrow{p} S^{n-4},$$

the projection p is given by $p(g) = ge_{n-3}g^t$.

(2) Let e_i $(n-3 \le i \le n)$ be a basis of \mathbb{R}^4 . Recall that $\text{Spin}(4) \cong S_1^3 \times S_2^3$ (see Section 3). We write S_i^3 in terms of the Clifford algebra as follows:

$$S_1^3 = \left\{ \frac{x_1}{2} \left(1 - e_{n-3}e_{n-2}e_{n-1}e_n \right) + \frac{x_2}{2} \left(e_{n-3}e_n + e_{n-2}e_{n-1} \right) \right. \\ \left. + \frac{x_3}{2} \left(-e_{n-3}e_{n-1} + e_{n-2}e_n \right) + \frac{x_4}{2} \left(e_{n-3}e_{n-2} + e_{n-1}e_n \right) \right. \\ \left. + \frac{1}{2} \left(1 + e_{n-3}e_{n-2}e_{n-1}e_n \right) : \sum_{i=1}^4 x_i^2 = 1 \right\}$$

and

$$S_2^3 = \left\{ \frac{x_1}{2} \left(1 + e_{n-3}e_{n-2}e_{n-1}e_n \right) + \frac{x_2}{2} \left(e_{n-3}e_n - e_{n-2}e_{n-1} \right) \right. \\ \left. + \frac{x_3}{2} \left(e_{n-3}e_{n-1} + e_{n-2}e_n \right) + \frac{x_4}{2} \left(e_{n-3}e_{n-2} - e_{n-1}e_n \right) \right. \\ \left. + \frac{1}{2} \left(1 - e_{n-3}e_{n-2}e_{n-1}e_n \right) : \sum_{i=1}^4 x_i^2 = 1 \right\}.$$

As in Section 3 we embed Spin(3) into Spin(n) as S_1^3 , hence $C = C_{\text{Spin}(n)} = \text{Spin}(n-4) \times S_2^3$.

We calculate $\operatorname{Ad}(J \circ \nu) : S^{n-4} \wedge S^3 \to \operatorname{Spin}(n)$ explicitly. Let $u \wedge x \in S^{n-4} \wedge S^3$, where $u = \sum_{i=1}^{n-3} u_i e_i$ with $\sum_{i=1}^{n-3} u_i^2 = 1$ and $x \in S^3_1$. We choose $g \in \operatorname{Spin}(n-3)$ so as to satisfy $ge_ng^t = u$. (Compare (1).) Then $\operatorname{Ad}(J \circ \nu)(u \wedge x) = gxg^t x^t$. It is easy to see that

Ad
$$(J \circ \nu)(u \wedge x) = \frac{-1+x_1}{2} u e_{n-3} + \frac{1+x_1}{2} + \frac{1}{2} (-x_4 e_{n-2} + x_3 e_{n-1} - x_2 e_n)(u - e_{n-3}).$$

et

We set

$$\operatorname{Pin}^1(n) = \operatorname{Pin}(n) - \operatorname{Spin}(n)$$

We multiply the formula for $\operatorname{Ad}(J \circ \nu)(u \wedge x)$ by e_{n-3} from the right, then we exchange the coefficients of e_{n-2} and e_n . Thus we obtain a map ψ : $S^{n-4} \wedge S^3 \to \operatorname{Pin}^1(n)$ defined by

(5.1)
$$\psi(u \wedge x) = \frac{1 - x_1}{2} u + \frac{1 + x_1}{2} e_{n-3} + \frac{1}{2} (x_2 e_{n-2} + x_3 e_{n-1} + x_4 e_n)(1 + u e_{n-3}).$$

In order to prove Theorem B(ii), it suffices to prove that ψ represents a generator of $\pi_{n-1}(\operatorname{Pin}^1(n))$.

Recall that for $n \neq 3, 7$, the characteristic map $T : S^{n-1} \to SO(n)$ of the principal bundle $SO(n) \to SO(n+1) \to S^n$ represents a generator of $\pi_{n-1}(SO(n))$, the first non-stable homotopy group (see, for example, [10]). In the Clifford algebra, the generator is given by the inclusion $\iota: S^{n-1} \to \operatorname{Pin}^1(n)$. In Lemma 4.4 for m = n - 4 and p = 3, we exchange u_1 and u_{n-3} , and change the order of the coordinates of the right-hand side. Thus we obtain a map $\zeta: S^{n-4} \wedge S^3 \to \operatorname{Pin}^1(n)$ defined by

(5.2)
$$\zeta(u \wedge x) = \frac{1 - x_1}{2} u + \frac{1 + x_1}{2} e_{n-3} + \sqrt{\frac{1 - u_{n-3}}{2}} (x_2 e_{n-2} + x_3 e_{n-1} + x_4 e_n).$$

Now we have two maps, ψ in (5.1) and ζ in (5.2). Making use of the homotopy

$$ue_{n-3} \mapsto \left\{ t \left(\sum_{i=1}^{n-4} u_i e_i \right) + u_{n-3} e_{n-3} \right\} e_{n-3},$$

where $t \in I$, it is easy to construct a homotopy $\psi \simeq \zeta$. This completes the proof of Theorem B(ii).

Now a result which corresponds to Lemma 4.6 and Proposition 4.7 is as follows.

PROPOSITION 5.3. There are choices of the generators y_{μ} and z_{μ} such that the following relations hold in $H_{n-4}(\Omega_0^3 \operatorname{Spin}(n); \mathbb{Z}/2)$:

- (i) $J_*(\gamma_{n-4}) = z_{n-4}$ for $n \equiv 0, 2 \pmod{4}$.
- (ii) $J_*(\beta_{n-4}) = y_{n-4}$ for $n \equiv 1 \pmod{4}$.

Proof. Let W be the homotopy-theoretic fiber of the inclusion $\Omega_0^3 \operatorname{Spin}(n) \hookrightarrow \Omega_0^3 \operatorname{Spin} \simeq BSp$. Consider the following diagram:

where $J \circ \nu$ is the lift of $J \circ \nu$. The first non-vanishing homotopy of W is $\pi_{n-4}(W)$ and $\widetilde{J \circ \nu}$ is a generator by Theorem B(ii). If $n \not\equiv 3 \pmod{4}$, then for dimensional reasons, $H_{n-4}(W; \mathbb{Z}/2) \to H_{n-4}(\Omega_0^3 \operatorname{Spin}(n); \mathbb{Z}/2)$ is injective. Hence $(J \circ \nu)_*(\sigma_{n-4}) \neq 0$, where σ_{n-4} is a generator of $H_{n-4}(S^{n-4}; \mathbb{Z}/2)$. By (3.2), we have

$$\nu_*(\sigma_{n-4}) = \begin{cases} \gamma_{n-4}, & n \equiv 0, 2 \pmod{4}, \\ \beta_{n-4}, & n \equiv 1 \pmod{4}. \end{cases}$$

Then we can define y_{n-4} or z_{n-4} to be $J_*(\gamma_{n-4})$ or $J_*(\beta_{n-4})$. (More precisely, $J_*(\gamma_{n-4})$ for $n \equiv 6 \pmod{8}$ and $J_*(\beta_{n-4})$ for $n \equiv 5 \pmod{8}$ must be the right-hand side of (3.3), since $H_{n-4}(\Omega_0^3 \operatorname{Spin}(n); \mathbb{Z}/2) \cong \mathbb{Z}/2$.)

Proof of Theorem 3.4. First, Theorem 3.4(i) follows from the homotopy commutative diagram

where i, j and k are the inclusions. (The homotopy commutativity of the bottom square is proved in the same way as in the third diagram of [9, p. 4054] for k = 1 and $l = \infty$.)

Next, (ii) and (iii) of Theorem 3.4 are proved using Proposition 5.3 and a diagram similar to (2.5). (Compare the proof of Theorem 2.7 in Section 4.) This completes the proof of Theorem 3.4, and hence also that of Theorem A for G = Spin(n).

REMARK. Using Theorem 3.4, we can obtain information on $J_*(\alpha)$ for each generator α of $H_*(\text{Spin}(n)/C; \mathbb{Z}/2)$. For example, consider an element of the form $\alpha = (u_{i_1}^{\varepsilon_1} u_{i_2}^{\varepsilon_2} u_{i_3}^{\varepsilon_3})^*$, where $\varepsilon_j = 0$ or 1. (For the generators u_{i_j} , see Proposition 3.1, and for the notation $(\cdot)^*$, see (3.2).) We write ξ_{μ} for y_{μ} or z_{μ} . Then we can prove that $J_*(\alpha)$ contains the term $\xi_{i_1}^{\varepsilon_1} * \xi_{i_2}^{\varepsilon_2} * \xi_{i_3}^{\varepsilon_3}$. For the proof, consider the coproduct Δ_* .

References

- M. F. Atiyah, R. Bott and A. Shapiro, *Clifford modules*, Topology 3 (suppl. 1) (1964), 3–38.
- [2] R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
- [3] C. P. Boyer, B. M. Mann and D. Waggoner, On the homology of SU(n) instantons, Trans. Amer. Math. Soc. 323 (1991), 529–561.
- Y. Choi, Homology of the double and triple loop space of SO(n), Math. Z. 222 (1996), 59–80.
- [5] —, The mod 2 homology of Sp(n) instantons and the classifying space of the gauge group, Bull. Austral. Math. Soc. 55 (1997), 503–512.
- [6] Y. Choi and Y. Seonhee, Homology of the double and triple loop spaces of E₆, E₇, and E₈, Manuscripta Math. 103 (2000), 101–116.
- [7] Y. Kamiyama, A. Kono and M. Tezuka, Cohomology of the moduli space of SO(n)instantons with instanton number 1, preprint.
- [8] M. Mimura and H. Toda, *Topology of Lie Groups. I, II*, Transl. Math. Monographs 91, Amer. Math. Soc., Providence, RI, 1991.
- M. Sanders, Classifying spaces and Dirac operators coupled to instantons, Trans. Amer. Math. Soc. 347 (1995), 4037–4072.

- [10] N. Steenrod, The Topology of Fibre Bundles, Princeton Math. Ser. 14, Princeton Univ. Press, Princeton, 1951.
- [11] G. W. Whitehead, *Elements of Homotopy Theory*, Grad. Texts in Math. 61, Springer, 1978.

Department of Mathematics University of the Ryukyus Okinawa 903-0213, Japan E-mail: kamiyama@sci.u-ryukyu.ac.jp

Received 20 January 2003