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Abstract. Let X be a Tikhonov space, C(X) be the space of all continuous real-
valued functions defined on X, and CL(X ×R) be the hyperspace of all nonempty closed
subsets of X × R. We prove the following result: Let X be a locally connected locally
compact paracompact space, and let F ∈ CL(X × R). Then F is in the closure of C(X)
in CL(X × R) with the Vietoris topology if and only if: (1) for every x ∈ X, F (x) is
nonempty; (2) for every x ∈ X, F (x) is connected; (3) for every isolated x ∈ X, F (x) is
a singleton set; (4) F is upper semicontinuous; and (5) F forces local semiboundedness.
This gives an answer to Problem 5.5 in [HM] and to Question 5.5 in [Mc2] in the realm
of locally connected locally compact paracompact spaces.

1. Introduction. Let X be a Tikhonov space, C(X) be the space of
all continuous real-valued functions defined on X, and CL(X × R) be the
hyperspace of all nonempty closed subsets of X × R, where R is the space
of real numbers.
The fundamental result concerning approximation of relations by contin-

uous functions is due to Cellina [Ce], who studied approximation of relations
in the Hausdorff metric (see also [Be3], [Ho1], [Ho2]). Beer [Be3] extended
Cellina’s result given for multifunctions with convex values to continuous
starshaped valued multifunctions.
In [HM] and [HMP] the authors studied approximation of relations in the

Vietoris and the locally finite topologies. In fact, they gave a satisfactory
solution for the approximation problem in the locally finite topology, by
proving the following:
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Let X be a countably paracompact normal q-space and F ∈ CL(X×R).
Then:

(a) If dimX = 0 then F is in the closure of C(X) in CL(X × R) with
the locally finite topology if and only if F is the graph of a usco map
which maps isolated points into singletons.

(b) If X is locally connected then F is in the closure of C(X) with the
locally finite topology if and only if F is the graph of a cusco map
which maps isolated points into singletons.

A q-space is a space in which every point has a sequence (Un) of neigh-
bourhoods such that if xn ∈ Un for each n, then (xn) has a cluster point. This
concept was introduced in [Mi] and has been useful, among other things, for
studying function spaces (see [MN]). The class of q-spaces includes the first
countable spaces and Čech-complete spaces.

The paper [HMP] gives the solution of Problem 5.5 in [HM] and Question
5.5 in [Mc2] in the realm of normal, countably paracompact, strongly zero-
dimensional spaces:

Let X be a countably paracompact normal space. The following are
equivalent:

(a) dimX = 0;

(b) the closure of C(X) in CL(X×R) with the Vietoris topology consists
of all F ∈ CL(X × R) such that F (x) 6= ∅ for every x ∈ X and F
maps isolated points into singletons.

In the present paper we give the solution of the above approximation
problem for locally connected locally compact paracompact spaces.

Main Theorem. Let X be a locally connected locally compact paracom-
pact space, and let F be a closed subset of X ×R. Then F is in the closure
of C(X) in CL(X × R) with the Vietoris topology if and only if :

(1) for every x ∈ X, F (x) is nonempty ;

(2) for every x ∈ X, F (x) is connected ;

(3) for every isolated x ∈ X, F (x) is a singleton set ;

(4) F is upper semicontinuous;

(5) F forces local semiboundedness.

There are other theorems like this in the literature; see [Be2] about re-
lations that are approximated in the Hausdorff distance by Baire class one
functions, and [Mc1] about the closure of densely continuous forms in the
Vietoris topology. Moreover there is a rich literature concerning approxima-
tion of a multifunction from above by a decreasing sequence of “continuous”
multifunctions (see [Hu], [DB], [DBM]).
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2. Preliminaries. We refer to Beer [Be1] and Engelking [En] for basic
notions. If X and Y are nonempty sets, a set-valued mapping or multifunc-
tion from X to Y is a mapping that assigns to each element of X a (possibly
empty) subset of Y . If T is a set-valued mapping from X to Y , then its graph
is {(x, y) : y ∈ T (x)}.
If F is a subset of X×Y and x ∈ X, define F (x) = {y : (x, y) ∈ F}. Thus

we can assign to each subset F of X × Y a set-valued mapping which takes
the value F (x) at each point x ∈ X. Then F is the graph of this set-valued
mapping. In our paper we will identify mappings with their graphs.
To describe the hypertopologies we will work with, we introduce the

following notation. Let (X, τ) be a topological space and CL(X) be the
hyperspace of all nonempty closed subsets of X. For U ⊂ X, define

U+ = {A ∈ CL(X) : A ⊂ U}, U− = {A ∈ CL(X) : A ∩ U 6= ∅}.

If U is a family of open sets in X, define U− =
⋂
{U− : U ∈ U}.

A subbase for the Vietoris (resp., locally finite) topology on CL(X) (see
[Be1]) consists of the sets of the form U+ with U ∈ τ and the form U− with
U ⊂ τ finite (resp., locally finite).
Throughout the paper X will be a Hausdorff topological space. We use

CLV(X × R) to denote CL(X × R) with the Vietoris topology.

3. Necessary conditions for relations approximated by contin-

uous functions in the Vietoris topology. To prove the Main Theorem
we start with some necessary conditions for an F ∈ CL(X ×R) to be in the
closure of C(X) in CLV(X × R).
The following three results are known but we include them for the

reader’s convenience.

Remark 3.1 (see [HM]). It is easy to verify that if F is in the closure of
C(X) in CLV(X ×R) then F (x) 6= ∅ for every x ∈ X, and F maps isolated
points of X to singletons.

Lemma 3.2 (see [HM]). Let X be a locally connected regular space. If F
is in the closure of C(X) in CLV(X × R) then for every x ∈ X, F (x) is
connected.

Proof. Suppose, by way of contradiction, that F is in the closure of C(X)
in CLV(X×R) but F (x) is not connected for some x ∈ X. Then there exist
r < s < t in R such that (x, r) and (x, t) are in F while (x, s) is not. Let U be
a connected open neighbourhood of x in X such that the closed set U ×{s}
in X × R is disjoint from F . Define W to be the complement of this closed
set in X × R. Also define W1 = U × (−∞, s) and W2 = U × (s,∞). Then
W+∩W−1 ∩W

−
2 is a neighbourhood of F in CLV(X×R) and must therefore

contain some f ∈ C(X). It follows that (−∞, s) and (s,∞) separate the
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set f(U), which contradicts the fact that f(U) is connected because f is
continuous.

Lemma 3.3 (see [HM]). Let X be a locally connected regular space. If F
is in the closure of C(X) in CLV(X × R), then F is the graph of an upper
semicontinuous multifunction.

Proof. Suppose, by way of contradiction, that F is in the closure of
C(X) in CLV(X × R), but F is not the graph of an upper semicontinuous
multifunction. Then there is an x ∈ X and a neighbourhood V of F (x)
in R such that for every neighbourhood U of x, F (x′) is not contained in
V for some x′ ∈ U . Since F (x) is connected by Lemma 3.2, there is an
open interval V ′ containing F (x) such that V ′ ⊂ V , say V ′ = (a, b) (the
case of an infinite interval is similar). Let U be a connected neighbourhood
of x such that U × {a, b} is disjoint from F . So there exists an x′ ∈ U
such that F (x′) is not contained in V . Define W = X × R \ U × {a, b},
W1 = U × V ′, and W2 = U × R \ V ′. Then F ∈ W+ ∩W−1 ∩W

−
2 , so there

is an f ∈W+ ∩W−1 ∩W
−
2 ∩C(X). But then f(U) is contained in R \ {a, b}

and intersects both (a, b) and R\ [a, b], which contradicts the fact that f(U)
is connected.

We say that F ∈ CL(X×R) forces local semiboundedness if every closed
subset of X × R which is disjoint from F is locally semibounded. Here a
closed subset G of X × R is locally semibounded if for every x ∈ X there
exists a neighbourhood U of x and n ∈ N such that for every component C
of G, C ∩ U × R ⊂ U × (−∞, n] or C ∩ U × R ⊂ U × [−n,∞).

Lemma 3.4. If F is in the closure of C(X) in CLV(X×R) then F forces
local semiboundedness.

Proof. Let F be in the closure of C(X) in CLV(X × R) and suppose it
does not force local semiboundedness. Then there exists G ∈ CL(X × R)
with F ∩G = ∅ such that G is not locally semibounded at some x ∈ X.
Let W = X × R \ G. Then F ∈ W+, so there is an f ∈ W+ ∩ C(X).

Note that for every z ∈ X, (z, f(z)) /∈ G. Now there is a neighbourhood U
of x and a bounded open interval V containing f(x) such that U × V ⊂W
and f(U) ⊂ V . Let n ∈ N with V ⊂ (−n, n).
Since G is not locally semibounded at x, there exists a component C

of G containing elements (x1, t1) and (x2, t2) such that x1, x2 ∈ U , t1 ∈
(−∞,−n), and t2 ∈ (n,∞). Then f(x1), f(x2) ∈ (t1, t2).
Define L = {(x, t) ∈ X × R : t < f(x)} and M = {(x, t) ∈ X × R : t >

f(x)}. Then L and M are disjoint open subsets of X×R containing (x1, t1)
and (x2, t2), respectively.
Since C is connected, there exists (x, t) ∈ C \ (L ∪M). Then t = f(x),

so that (x, f(x)) ∈ C ⊂ G, which is a contradiction.
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4. The proof of the Main Theorem. The Main Theorem follows
from the theorem below. In it, Z(F ) is the complement of the union of open
sets U such that for some finite interval (a, b), all F (x) with x ∈ U intersect
(a, b).

Theorem. Let X be a locally connected locally compact paracompact
space, and let F be a closed subset of X × R such that :

(1) for every x ∈ X, F (x) is nonempty ;
(2) for every x ∈ X, F (x) is connected ;
(3) F is upper semicontinuous;

(4) F forces local semiboundedness.

If W is an open subset of X×R containing F and U is an open subset of X
containing Z(F ), then there exists an open subset W0 of X × R such that :

(a) W0 ⊂W ;
(b) for every x ∈ X \ U , F (x) ⊂W0(x);
(c) for every x ∈ X, W0(x) is nonempty ;
(d) for every x ∈ X, W0(x) is connected.

Lemma 4.1. Let X be a Baire space and F ∈ CL(X×R) be the graph of
an upper semicontinuous multifunction with nonempty values. Then Z(F )
is a nowhere dense closed subset of X.

Proof. It is evident that Z(F ) is closed. Let {[an, bn] : n ∈ N} be an
enumeration of all intervals with rational ends. For each n ∈ N, put

Fn = {x ∈ X : F (x) ∩ [an, bn] 6= ∅}.

The upper semicontinuity of F implies that Fn is closed for every n ∈ N. It
is easy to verify that the sets Fn cover X. The union of the interiors of Fn
is dense in X and disjoint from Z(F ).

For the proof of the Theorem, we begin with some notation. For every
subset S of X × R, define

Sl = {(x,−t) : (x, t) ∈ S},

S↓ = {(x, s) ∈ X × R : ∃t ∈ R with s ≤ t and (x, t) ∈ S},

S↑ = {(x, s) ∈ X × R : ∃t ∈ R with t ≤ s and (x, t) ∈ S}.

Also define
F∗ = {(x, t) ∈ X × R : t < inf F (x)},

F ∗ = {(x, t) ∈ X × R : supF (x) < t}.

Lemma 4.2. The sets F∗ and F
∗ are disjoint open subsets of X × R,

and every component of X × R \W is contained in one of them.
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Proof. To show that F∗ is open in X × R, let (x, t) ∈ F∗ and let ε =
minF (x) − t. Since F is upper semicontinuous, x has a neighbourhood U ′

such that for every x′ ∈ U ′, F (x′) ⊂ (minF (x)− ε/2,∞). Then U ′ × (−∞,
t + ε/2) is a neighbourhood of (x, t) contained in F∗. A similar argument
shows that F ∗ is open in X × R.

Clearly F , F∗, F
∗ are pairwise disjoint. Note that if (x, t) ∈ X × R \

(F∗ ∪ F ∗), then inf F (x) ≤ t ≤ supF (x). Because F (x) is connected,
t ∈ F (x), so that (x, t) ∈ F . Therefore {F, F∗, F ∗} partitions X × R. Since
F ⊂W , it follows that every component of X×R\W is contained in either
F∗ or F

∗.

Let C∗ and C∗ be the families of components of X ×R \W contained in
F∗ and F

∗, respectively.

The next three lemmas develop a general tool for locally connected lo-
cally compact paracompact spaces that we need to apply to C∗ and C∗.

Lemma 4.3. Let Y be a locally connected regular space, let U be a con-
nected open subset of Y , and let A be a compact subset of U. Then there
exists a connected open subset V of Y such that A ⊂ V ⊂ V ⊂ U.

Proof. There exists a finite family V of connected open subsets of X such
that A ⊂

⋃
V and V ⊂ U for each V ∈ V. For any two distinct V1, V2 ∈ V,

there exists a finite chain of connected open sets with closure in U , beginning
with V1 and ending with V2. Let V be the (finite) union of all the sets in
all these chains. Then A ⊂ V and V ⊂ U. Also V is connected because the
union of each chain of sets is connected, and the chains connect every pair
of members of V.

Lemma 4.4. Let Y be a locally connected space, and let C be a locally
finite family of connected subsets of Y . Then the family of components of⋃
{C : C ∈ C} is discrete in Y .

Proof. The set
⋃
{C : C ∈ C} is a closed subset of Y , so its components

are closed in Y ; let D be the family of those components. To show that D is
discrete in Y , let y ∈ Y . Then there exists a neighbourhood U of y such that
the family C′ of members of C that intersect U is finite. For every C ∈ C′,
there exists a DC ∈ D that contains C. Then the family D′ = {DC : C ∈ C′}
only contains the members of D that intersect U . Now y can be in at most
one member of D′, so that U \

⋃
{D ∈ D′ : y /∈ D} is a neighbourhood of y

that intersects at most one member of D.

Lemma 4.5. Let Y be a locally connected locally compact paracompact
space, let U be an open subset of Y , and let A be a closed subset of Y
contained in U . Then there exists a closed subset B of Y such that A ⊂ B
⊂ U and the family of components of B is discrete in Y .
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Proof. First suppose that Y is σ-compact. Then we can write Y =⋃
{Yn : n ∈ N} where each Yn is compact and contained in the interior
of Yn+1. Let Y0 = Y−1 = ∅. For each n ∈ N, define An = A ∩ Yn \ Y ◦n−1 and
Un = U ∩ Y ◦n+1 \ Yn−2 (where S

◦ denotes the interior of S). Then each An
is compact and contained in the open set Un. Also

⋃
{An : n ∈ N} = A and⋃

{Un : n ∈ N} = U .
For each n ∈ N, let Un be the family of components of Un that intersect

the set An, which is a finite family since An is compact. Then for each
W ∈ Un, An ∩W is compact; so by Lemma 4.3, there exists a connected
open subset VW of Y such that An ∩ W ⊂ VW and VW ⊂ W . Define
Vn = {VW :W ∈ Un}, and observe that

⋃
Vn ⊂ Un.

Now letting n vary, define V =
⋃
{Vn : n ∈ N}. The family {Un : n ∈ N}

is locally finite because for each n, Un ∩ Un+j = ∅ for j ≥ 3. Therefore,
the family {

⋃
Vn : n ∈ N} is locally finite. Define B =

⋃
{V : V ∈ V},

which is closed because V is locally finite. By definition, A ⊂ B ⊂ U ; and
by Lemma 4.4, the family of components of B is discrete in Y .

Now we consider the general case of a locally compact paracompact space
Y . In this case, we can write Y as the topological sum

⊕
{Yλ : λ ∈ Λ} of

σ-compact spaces Yλ. Then for each λ ∈ Λ, let Uλ = U∩Yλ and Aλ = A∩Yλ.
By the argument above, for each λ ∈ Λ, there exists a closed subset Bλ of
Yλ such that Aλ ⊂ Bλ ⊂ Uλ and the family of components of Bλ is discrete
in Yλ. Define B =

⊕
{Bλ : λ ∈ Λ}. Then B is closed in Y , A ⊂ B ⊂ U , and

the family of components of B is discrete in Y .

By Lemma 4.5, there exist familiesD∗ andD∗ of closed connected subsets
of X × R contained in F∗ and F

∗, respectively, such that
⋃
C∗ ⊂

⋃
D∗,⋃

C∗ ⊂
⋃
D∗, and D∗ and D∗ are discrete in X × R.

Define
H∗ = {(x, t) ∈ U × R : 0 < t < inf F (x)},

H∗ = {(x, t) ∈ U × R : supF (x) < t < 0},

H∗ = {D ∈ D∗ : D ⊂ H∗},

H∗ = {D ∈ D∗ : D ⊂ H∗}.

Let K∗ be the set of D ∈ H∗ such that for some n ∈ N, there exist
D1, . . . , Dn ∈ H∗ and D0 ∈ D∗ \ H∗ that satisfy Dn = D and for every
j = 1, . . . , n, Dj↑ ∩Dj−1↓ 6= ∅.
Similarly, let K∗ be the set of D ∈ H∗ such that for some n ∈ N, there

exist D1, . . . , Dn ∈ H∗ and D0 ∈ D∗ \H∗ that satisfy Dn = D and for every
j = 1, . . . , n, Dj↓ ∩Dj−1↑ 6= ∅.
Define

L∗ = H∗ \ K∗, M∗ = D∗ \ L∗,

L∗ = H∗ \ K∗, M∗ = D∗ \ L∗.
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Also define

L∗ =
⋃
{D↑ : D ∈ L∗}, M∗ =

⋃
{D↓ : D ∈M∗},

L∗ =
⋃
{D↓ : D ∈ L∗}, M∗ =

⋃
{D↑ : D ∈M∗}.

Lemma 4.6. The intersections L∗ ∩M∗ and L∗ ∩M∗ are empty.

Proof. Suppose that L∗∩M∗ 6= ∅. Then there exist D ∈ L∗ and E ∈M∗
such that D↑ ∩ E↓ 6= ∅. If E were not in H∗, then since D↑ ∩ E↓ 6= ∅,
D would be in K∗. Since it is not, it follows that E is in H∗. Therefore,
E is in K∗, so there exist D1, . . . , Dn ∈ H∗ and D0 ∈ D∗ \ H∗ that satisfy
Dn = E and for every j = 1, . . . , n, Di↑ ∩Di−1↓ 6= ∅. Let Dn+1 = D. Then
Dn+1↑∩Dn↓ = D↑∩E↓ 6= ∅. Therefore, D is in K∗, which is a contradiction.
Hence L∗ ∩M∗ = ∅. A similar argument shows that L∗ ∩M∗ = ∅.

Lemma 4.7. The sets L∗ and L
∗ are closed in X ×R.

Proof. Let (xi, si) be a net in L∗ that converges to some (x, s) ∈ X ×R.
Then for each i, there exists a Di ∈ L∗ such that (xi, si) ∈ Di↑, and so, there
exists an ri ∈ R such that 0 < ri ≤ si and (xi, ri) ∈ Di. The net (xi, ri) has
a cluster point (x, r) with some r ∈ [0, s]. Since L∗ is a subfamily of D∗, it
is discrete in X ×R, so (x, r) ∈ D for some D ∈ L∗. Thus (x, s) ∈ D↑ ⊂ L∗,
so that L∗ is closed in X × R. A similar argument shows that L∗ is closed
in X × R.

In order to show that M∗ is closed in X ×R, we introduce the following
sets and lemmas, which culminate with Lemma 4.11. We will leave out the
details for the similar argument that M∗ is closed in X × R.
For every D ⊂ F∗, define

D̂ = D ∪ (D ∩X × [0,∞))l ∪ (D \ U × R)↓.

Lemma 4.8. For every D ⊂ F∗, the following are true:

(1) D̂ ⊂ D↓ ⊂ F∗;

(2) if D is closed in X × R, then D̂ is closed in X × R;

(3) if D is connected and not contained in H∗, then D̂ is connected.

Proof. To show that D̂ ⊂ D↓, first observe that D ⊂ D↓ and (D \
U × R)↓ ⊂ D↓. Also for each (x,−t) ∈ (D ∩X × [0,∞))l, we have (x, t) ∈
D∩X×[0,∞), so that −t ≤ 0 ≤ t. This means that (D∩X×[0,∞))l ⊂ D↓,

and hence D̂ ⊂ D↓.
Now suppose that D is closed in X × R. Then D ∩X × [0,∞) is closed

in X × R. Since (D ∩X × [0,∞))l is homeomorphic to D ∩X × [0,∞), it
is also closed in X × R.
It remains to show that (D \ U ×R)↓ is closed in X ×R. Let (xi, si) be

a net in (D \ U ×R)↓ that converges to some (x, s) in X ×R. Then x /∈ U ,
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so x /∈ Z(F ). Thus x has a neighbourhood U0 such that {inf F (y) : y ∈ U0}
is bounded above by some b ∈ R. We may assume that each xi ∈ U0. Also
for each i, there exists a ti ∈ R such that si ≤ ti and (xi, ti) ∈ D \ U × R.
Now D ⊂ F∗, so each ti ≤ b. Then there exists a t ∈ [s, b] such that (x, t)
is a cluster point of the net (xi, ti). Since D \ U × R is closed in X × R,
(x, t) ∈ D \ U × R. Therefore (x, s) ∈ (D \ U × R)↓, as required.
Finally, suppose that D is connected and not contained in H∗. First note

that either D \ U × R = ∅ or (D \ U × R)↓ is the union of connected sets
each of which intersects the connected set D. Therefore, D ∪ (D \ U × R)↓
is connected. So we may assume that D ∩X × [0,∞) 6= ∅.
Suppose first that D ∩ X × {0} = ∅. Since D is connected, it follows

that D ⊂ X × (0,∞). In this case, (D ∩ X × [0,∞))l = Dl, which is
homeomorphic to D and hence connected. Also D is contained in F∗ but
not in H∗, so D \U ×R 6= ∅. Then (D \U ×R)↓ intersects both D and Dl,

and it follows that D̂ is connected in this case.
Now suppose that D∩X×{0} 6= ∅. If D∩(X×(−∞, 0]) = D∩(X×{0}),

then of course D ∪ (D ∩ (X × [0,∞))l = D ∪Dl and thus D̂ is connected.
If D ∩ (X × [0,∞)) = D ∩ (X ×{0}), then D ∪ (D ∩ (X × [0,∞))l = D and

so D̂ is connected.
Suppose now that both D∩(X×(−∞, 0]) 6= ∅ and D∩(X× [0,∞)) 6= ∅.

To show that D̂ is connected, it suffices to show that D̃ is connected, where
D̃ = (D ∩X × (−∞, 0])∪ (D ∩X × [0,∞))l. If D̃ were not connected, then

there would be disjoint open subsets H and K in D̃ ⊂ X × (−∞, 0] such

that D̃ = H ∪ K. Then (H ∪ Hl) ∩ D and (K ∪ Kl) ∩ D would be two
nonempty open disjoint sets of D with (H ∪Hl)∩D ∪ (K ∪Kl)∩D = D,
contradicting the connectedness of D.

It follows from Lemma 4.8 that for every D ∈ D∗ \ H∗, D̂ is a closed
connected subset of X × R.

Lemma 4.9. For every subfamily D of D∗ \ H∗, the set
⋃
{D̂ : D ∈ D}

is closed in X × R.

Proof. Put L =
⋃
{D : D ∈ D}. Then L̂ =

⋃
{D̂ : D ∈ D}, so by Lemma

4.8 we are done since D is discrete in X × R (being a subfamily of D∗).

Let E∗ be the family of sets E of the form

E = D0 ∪D1 ∪ · · · ∪Dn ∪ (D1↑ ∩D0↓) ∪ · · · ∪ (Dn↑ ∩Dn−1↓)

such that n ∈ N, D1, . . . , Dn ∈ K∗, D0 ∈ D∗\H∗, and for every j = 1, . . . , n,
Dj↑ ∩Dj−1↓ 6= ∅.
Then every member of K∗ is contained in some member of E∗. Also, for

every E ∈ E∗, E ⊂
⋃
{D↓ : D ∈M∗}, so that Ê ⊂

⋃
{D↓ : D ∈M∗}.

Lemma 4.10. For every E ∈ E∗, Ê is a closed connected subset of X×R.
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Proof. Since no E ∈ E∗ is contained in H∗, it suffices, by Lemma 4.8, to
show that each E in E∗ is a closed and connected subset of X ×R. So let E
be as in the definition of E∗. Since D0 ∪D1 ∪ · · · ∪Dn is closed in X ×R, to
show that E is closed in X×R, we need to show that Dj↑∩Dj−1↓ is closed
in X × R for each j = 1, . . . , n; so let such a j be fixed.

Let (xi, si) be a net in Dj↑ ∩ Dj−1↓ that converges to some (x, s) in
X × R. Then for each i, there exist ri, ti ∈ R such that 0 < ri ≤ si ≤ ti,
(xi, ri) ∈ Dj , and (xi, ti) ∈ Dj−1.

It is easy to verify that there is a cluster point (x, r) of (xi, ri) and of
course (x, r) ∈ Dj , since Dj is closed.

We claim that also the net (xi, ti) has a cluster point. Suppose, otherwise.
Then for each neighbourhood V of x and p ∈ N, there exists an n such that
xn ∈ V and tn > p.

If j − 1 = 0 put G = D̂0, and if j − 1 > 0 put

G = Dj−1 ∪Dj−1l ∪ {z} × [−q, q],

where (z, q) is any point in Dj−1.

Then G is a closed connected subset of X ×R disjoint from F . Since for
every neighbourhood V of x and p ∈ N, G ∩ V × R is contained neither in
V × (−∞, p] nor in V × [−p,∞), this contradicts the fact that F forces local
semiboundedness.

Thus (xi, ti) has a cluster point (x, t), which is in Dj−1 since Dj−1 is
closed. Now 0 ≤ r ≤ s ≤ t, so (x, s) ∈ Dj↑ ∩Dj−1↓. This finishes the proof
that E is closed in X × R.

To show that E is connected, first note that D0, D1, . . . , Dn are all con-
nected. Thus it suffices to show that for each j = 1, . . . , n, Dj−1 ∪ Dj ∪
(Dj↑ ∩Dj−1↓) is connected; so let such a j be fixed. Since there exist some
(x, s) ∈ Dj↑ ∩Dj−1↓, there exist r, t ∈ R such that r ≤ s ≤ t, (x, r) ∈ Dj ,
and (x, t) ∈ Dj−1. Then the nonempty connected set {x}× [r, t] is contained
in Dj↑ ∩Dj−1↓. Now {x} × [r, t] intersects both Dj−1 and Dj , so that the
union Dj−1 ∪Dj ∪ {x} × [r, t] is connected.

Finally, note that each (x, s) ∈ Dj↑ ∩Dj−1↓ is in some {x} × [r, t] that
intersects both Dj−1 and Dj . Therefore, Dj−1 ∪Dj ∪ (Dj↑∩Dj−1↓) can be
written as the union of connected subsets of Dj−1∪Dj∪(Dj ↑ ∩Dj−1↓) each
of which intersects the connected setDj−1, so thatDj−1∪Dj∪(Dj↑∩Dj−1↓)
must be connected.

Lemma 4.11. The set
⋃
{Ê : E ∈ E∗} is closed in X × R.

Proof. Let E∗ =
⋃
{E : E ∈ E∗}. Now Ê∗ =

⋃
{Ê : E ∈ E∗}, so that

by Lemma 4.8 it suffices to show that E∗ is closed in X × R. To this end,
let (xi, si) be a net in E∗ that converges to some (x, s) in X × R. Now for
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each i, (xi, si) ∈ Ei for some Ei ∈ E∗. So for each i, we can write

Ei = D
i
0 ∪D

i
1 ∪ · · · ∪D

i
ni
∪ (Di1↑ ∩D

i
0↓) ∪ · · · ∪ (D

i
ni
↑ ∩Dini−1↓),

where ni ∈ N, Di0 ∈ D∗ \ H∗, and D
i
1, . . . , D

i
ni
∈ H∗ with Dij↑ ∩D

i
j−1↓ 6= ∅

for j = 1, . . . , ni.
Since D∗ is discrete in X × R, we may suppose that each

(xi, si) ∈ (D
i
1↑ ∩D

i
0↓) ∪ · · · ∪ (D

i
ni
↑ ∩Dini−1↓).

Then for each i, there exist ji ∈ {1, . . . , ni} and ri, ti ∈ R such that ri ≤
si ≤ ti, (xi, ri) ∈ Diji , and (xi, ti) ∈ D

i
ji−1
. Because each 0 < ri ≤ si, and

the net (si) converges to s, we may assume that the net (xi, ri) converges
to (x, r) for some r ∈ R with 0 ≤ r ≤ s. By the discreteness of D∗, there
is some i0 such that (x, r) ∈ D

i0
ji0
. Then we may assume that for each i,

(xi, ri) ∈ D
i0
ji0
.

Then of course for each i, (xi, ti) ∈ D
i0
ji0−1
. Since all (xi, ti) belong to

the same element Di0ji0−1
, to prove that the net (xi, ti) has a cluster point

we use the same argument as in the proof of Lemma 4.10.
Let (x, t) be a cluster point of the net (xi, ti). Then of course (x, t) ∈

Di0ji0−1
sinceDi0ji0−1

is closed. Now 0 ≤ r ≤ s ≤ t, so (x, s) ∈ Di0ji0
↑∩Di0ji0−1

↓.

If ji0 − 1 = 0 define

E = Di00 ∪D
i0
1 ∪ (D

i0
1 ↑ ∩D

i0
0 ↓).

If ji0 − 1 > 0, define

E = Di00 ∪D
i0
1 ∪ · · · ∪D

i0
ji0−1

∪Di0ji0

∪ (Di01 ↑ ∩D
i0
0 ↓) ∪ · · · ∪ (D

i0
ji0
↑ ∩Di0ji0−1

↓).

Then E ∈ E∗ and (x, s) ∈ E ⊂ E∗, so that E∗ is indeed closed in X × R.

Lemma 4.12. The sets M∗ and M
∗ are closed in X × R.

Proof. To show that M∗ is closed in X × R, let (xi, si) be a net in M∗
that converges to some (x, s) in X × R. Let

G =
⋃
{D̂ : D ∈ D∗ \ H∗} ∪

⋃
{Ê : E ∈ E∗}

which, by Lemmas 4.9 and 4.11, is closed in X × R. Since G ∩ F = ∅, G
is locally semibounded. So there exists a neighbourhood U0 of x and an
n ∈ N such that for every component C of G, C ∩ U0 × R ⊂ U0 × (−∞, n]
or C ∩ U0 × R ⊂ U0 × [−n,∞).
Let D be an arbitrary member ofM∗. Suppose, by way of contradiction,

that D ∩ U0 × (n,∞) 6= ∅. Then Dl ∩ U0 × (−∞,−n) 6= ∅. Let C be the

component of G that contains D. If D ∈ D∗ \ H∗, then Dl ⊂ D̂ ⊂ C by
Lemma 4.8. IfD ∈ H∗, thenD ∈ K∗. In this case,D ⊂ E for some E ∈ E∗, so
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that Dl ⊂ D̂ ⊂ Ê ⊂ C by Lemma 4.8. In either case, C∩U0×R is contained
neither in U0 × (−∞, n] nor in U0 × [−n,∞), which is a contradiction. This
shows that for every D ∈M∗, D ∩ U0 × (n,∞) = ∅.

We may assume that each xi ∈ U0. For each i, (xi, si) ∈ Di↓ for some
Di ∈ M∗. Since Di ∩ U0 × (n,∞) = ∅, there exists a ti ∈ [si, n] such
that (xi, ti) ∈ Di. Thus (x, t) is a cluster point of the net (xi, ti) for some
t ∈ [s, n]. Because D∗ is discrete in X × R, (x, t) ∈ D for some D ∈ M∗.
But then (x, s) ∈ D↓, which shows that M∗ is closed.

Now define

P = L∗ ∪ L
∗ ∪M∗ ∪M

∗, W0 =W \ P.

Lemma 4.13. The set W0 is an open subset of X ×R that satisfies con-

ditions (a)–(d) of the Theorem.

Proof. The set W0 is open in X × R by Lemmas 4.7 and 4.12, and it
clearly satisfies condition (a).

To show that it satisfies (b), let x ∈ X \ U . Then H∗(x) = ∅, so for
each D ∈ L∗, D(x) = ∅ because D ⊂ H∗. Therefore L∗(x) = ∅, and hence
F (x)∩L∗(x) = ∅. Also, it is clear that F (x)∩M∗(x) = ∅. Similarly, F (x)∩
L∗(x) = ∅ and F (x) ∩M∗(x) = ∅, so that F (x) ⊂W0(x).

To show that W0 satisfies (c) and (d), let x ∈ X. Suppose first that
0 < inf F (x). Then H∗(x) = ∅, so that L∗(x) = ∅. If L∗(x) 6= ∅, then
M∗(x) ⊂ L∗(x); also L∗(x)∩M∗(x) = ∅, so that R\P (x) = R\(L∗∪M∗)(x)
is a nonempty open interval. If L∗(x) = ∅, then M∗(x)∩M∗(x) = ∅, so that
R \ P (x) = R \ (M∗ ∪M∗)(x) is again a nonempty open interval.

For the case that supF (x) < 0, we argue in a similar manner to show that
R \ P (x) is a nonempty open interval. Finally, if 0 ∈ F (x), then L∗(x) = ∅
and L∗(x) = ∅, so that again R \ P (x) is a nonempty open interval.

Now X×R\W ⊂ P , so R\P (x) ⊂W (x). ThenW0(x) =W (x)\P (x) =
R \ P (x), which is a nonempty open interval.

Now we prove the Main Theorem of our paper:

Main Theorem. Let X be a locally connected locally compact paracom-
pact space, and let F be a closed subset of X ×R. Then F is in the closure
of C(X) in CLV(X × R) if and only if :

(1) for every x ∈ X, F (x) is nonempty ;

(2) for every x ∈ X, F (x) is connected ;

(3) for every isolated x ∈ X, F (x) is a singleton set ;

(4) F is upper semicontinuous;

(5) F forces local semiboundedness.
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Proof. First, let F ∈ CL(X×R) be in the closure of C(X) in CLV(X×R).
Then Remark 3.1 and Lemmas 3.2–3.4 imply that F satisfies conditions
(1)–(5).

Now, let F ∈ CL(X × R) satisfy (1)–(5) and let

G+ ∩
⋂

i∈I

W−i , I finite,

be a basic open subset of CLV(X × R) that contains F .

We may assume that each Wi equals Ui × Vi, where U i × Vi ⊂ G and Vi
is a bounded open interval.

We can suppose that there is a finite set J ⊂ I and points xj , ylj , l ∈

{1, . . . , nj}, j ∈ J , such that xj 6= xi for j 6= i, j, i ∈ J , ylj ∈ F (xj) for

all l ∈ {1, . . . , nj}, (xj , ylj) ∈ Ui × Vi for some i ∈ I and every i ∈ I, and

(xj , y
l
j) ∈ Ui × Vi for some j ∈ J and l ∈ {1, . . . , nj}.
Put L = {xj : xj /∈ Z(F )}. There is an open set U ⊂ X × R such

that Z(F ) ⊂ U and U ∩ L = ∅. Put further H = {xj : xj ∈ Z(F )} and
H ′ = {xj ∈ H : F (xj) 6= R}.
Let {O(xj) : xj ∈ H} be a family of pairwise disjoint neighbourhoods of

elements of H contained in U with O(xj) ⊂ Ui for some Ui.
Now let xj ∈ H ′. Then F (xj) = [tj ,∞) or F (xj) = (−∞, tj ]. There

are an open set V (xj) and ε > 0 such that xj ∈ V (xj), V (xj) ⊂ O(xj),

V (xj)× (tj − ε, tj + ε) ⊂ G and F (z) ⊂ (tj − ε,∞) or F (z) ⊂ (−∞, tj + ε)

for every z ∈ V (xj). Put Bj = (−∞, tj − ε] or Bj = [tj + ε,∞) respectively.
Set

W = G \
⋃
{V (xj)×Bj : xj ∈ H

′}.

It is easy to verify thatW is an open set in X×R which contains F . Now by
the Theorem there exists an open subset W0 of X ×R such that: W0 ⊂W ;
for every x ∈ X \U , F (x) ⊂W0(x); and for every x ∈ X,W0(x) is nonempty
and connected.

By Lemma 4.1 in [HM] there is an f ∈ W+0 ∩ C(X). We will modify
f to g as follows. Let I(X) denote the set of all isolated points of X. For
every xj ∈ L ∩ I(X) we put g(xj) = F (xj). For every xj ∈ L \ I(X) we
have F (xj) ⊂ W0(xj); i.e. there is an open interval I(xj) containing f(xj)

and ylj , l ∈ {1, . . . , nj}, with I(xj) ⊂ W0(xj). Let {G(xj) : xj ∈ L \ I(X)}
be a pairwise disjoint family of open sets such that for every xj ∈ L \ I(X),

xj ∈ G(xj), G(xj) ∩ U = ∅, G(xj) × I(xj) ⊂ W0, f(G(xj)) ⊂ I(xj) and
G(xj) ⊂ Ui for some i ∈ I.
Now as in the proof of Lemma 4.2 in [HM], using the Tietze extension

theorem we modify f to g on every G(xj) in such a way that g takes all the
values ylj , l ∈ {1, . . . , nj}, on G(xj).
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For every xj ∈ H we have {f(xj), ylj : l ∈ {1, . . . , nj}} ⊂ W (xj) and
since W (xj) is connected, there is an open interval J(xj) containing f(xj)

and ylj , l ∈ {1, . . . , nj}, with J(xj) ⊂W (xj).

We can suppose that for every xj ∈ H, O(xj)×J(xj) ⊂W and f(O(xj))
⊂ J(xj). Again as above we modify f to g on every O(xj) in such a way
that g takes all the values ylj , l ∈ {1, . . . , nj}, on every O(xj).
It is easy to verify that the constructed function g belongs to G+ ∩⋂
i∈IW

−
i .

5. Examples. We end with five examples, starting with an example of
a closed subset F1 of R

3 that satisfies conditions (1) through (4) of the Main
Theorem but not condition (5). Then we modify F1 in two different ways
to obtain closed subsets F2 and F3 of R

3 that satisfy all the conditions (1)
through (5). We then modify F2 to obtain another closed subset F4 of R

3

that satisfies conditions (1) through (4) but not (5); and finally we modify
F4 to obtain a closed subset F5 that again satisfies all the conditions (1)
through (5). So the relations F2, F3, and F5 have Vietoris approximations
by continuous real-valued functions on R

2, while the relations F1 and F4 do
not. These examples illustrate the subtlety of approximating a relation by
a continuous function in the Vietoris topology, caused primarily by condi-
tion (5).

Example 5.1. Let A = {(x, y, z) ∈ R
3 : x = 0}, B = {(x, y, z) ∈

R
3 : x ≤ 0, z = 0}, C = {(x, y, z) ∈ R

3 : x > 0, z = 1/x}, and for
every n ∈ N, let An = {(x, y, z) ∈ R

3 : x = 1/n, z ≤ n}. Then the relation
F1 = A∪B∪C∪{An : n ∈ N} is a closed subset of R3 that satisfies conditions
(1) through (4) but not (5). To see why condition (5) is not satisfied, for each
n ∈ N, let xn ∈ (1/(n+1), 1/n) and let Sn = {(x, y, z) ∈ R

3 : x = xn, −n ≤
y ≤ n, z ∈ {−n, n}} ∪ {(x, y, z) ∈ R

3 : x = xn, y ∈ {−n, n}, −n ≤ z ≤ n}.
Then G =

⋃
{Sn : n ∈ N} is a closed subset of R

3 that is disjoint from F1
but is not locally semibounded at (0, y) for any y ∈ R. Note that the Sn are
the components of G, so that G is not connected.

Example 5.2. Let P = {(x, y, z) ∈ R
3 : z = 0}. Then the relation

F2 = P ∪A∪
⋃
{An : n ∈ N} is a closed subset of R3 that satisfies conditions

(1) through (5).

Example 5.3. Let Z be the set of integers, and let D = {(x, y, z) ∈ R
3 :

x > 0, y ∈ Z, z ≤ 1/x}. Then the relation F3 = F1 ∪D is a closed subset of
R
3 that satisfies conditions (1) through (5).

Example 5.4. For every n ∈ N, let Hn = {(x, y, z) ∈ R
3 : x = 1/n, n−

1 < y < n, z < n}. Then the relation F4 = F2 \
⋃
{Hn : n ∈ N} is closed

in R
3 and satisfies conditions (1) through (4) but not condition (5). In this
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case, a non-locally semibounded closed subset G of R3 can be found that is
disjoint from F4 and, unlike the G in Example 5.1, it is connected.

Example 5.5. For every n ∈ N, let Dn = {(x, y, z) ∈ R
3 : 1/(n + 1) ≤

x ≤ 1/n, y = n− 1, z ≤ 1/x}. Then the relation F5 = F4 ∪
⋃
{Dn : n ∈ N}

is a closed subset of R3 that satisfies conditions (1) through (5).
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