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Abstract. We consider finite groups which admit a faithful, smooth action on an
acyclic manifold of dimension three, four or five (e.g. Euclidean space). Our first main
result states that a finite group acting on an acyclic 3- or 4-manifold is isomorphic to a
subgroup of the orthogonal group O(3) or O(4), respectively. The analogous statement
remains open in dimension five (where it is not true for arbitrary continuous actions,
however). We prove that the only finite nonabelian simple groups admitting a smooth
action on an acyclic 5-manifold are the alternating groups A5 and A6, and deduce from
this a short list of finite groups, closely related to the finite subgroups of SO(5), which are
the candidates for orientation-preserving actions on acyclic 5-manifolds.

1. Introduction. All finite group actions considered in the present pa-
per will be faithful and smooth (or locally linear).

By the recent geometrization of finite group actions on 3-manifolds, every
finite group action on the 3-sphere is conjugate to an orthogonal action; in
particular, the finite groups which occur are exactly the well-known finite
subgroups of the orthogonal group O(4). Finite groups acting on arbitrary
homology 3-spheres are considered in [MeZ1, MeZ2] and [Z]; here some other
finite groups occur and the situation is not completely understood yet (see
[Z] and Section 7).

In dimension four, it is no longer true that a finite group action on the
4-sphere is conjugate to an orthogonal action (e.g. the Smith conjecture does
not remain true for the 4-sphere, that is, the fixed point set of a periodic
diffeomorphism of S4 may be a knotted 2-sphere). However it has been
shown in [MeZ3, MeZ4] that a finite group which admits an orientation-
preserving action on the 4-sphere, and more generally on any homology
4-sphere, is isomorphic to a subgroup of the orthogonal group SO(5) (up to
2-fold extensions in the case of solvable groups).
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In the present paper we consider finite groups acting on acyclic (com-
pact or non-compact) low-dimensional manifolds, i.e. manifolds with trivial
reduced integer homology (e.g. Euclidean spaces). Our first main result is
the following.

Theorem 1. A finite group which admits a faithful, smooth action on
an acyclic 3- or 4-manifold is isomorphic to a subgroup of O(3) or O(4),
respectively, and to a subgroup of SO(3) or SO(4) if the action is orientation-
preserving. In particular, the only finite nonabelian simple group admitting
such an action is the alternating group A5.

See [DV] for the finite subgroups of O(3) and O(4). Theorem 1 answers
[E, Problem 11] on finite groups acting on Euclidean space R4, for the case
of smooth actions.

In the situation of Theorem 1, whereas each solvable group admitting
an action has a global fixed point, this does not remain true in general for
nonsolvable groups. As a classical example, the Poincaré homology 3-sphere
admits an action of A5 with a single fixed point, and the complement of
this fixed point is an acyclic 3-manifold with a fixed point free A5-action. In
dimension five, we do not know whether there exists a fixed point even for
solvable groups. On the other hand, for nonsolvable groups, one of the main
technical problems in the proof of such classification results is to get hold of
the finite simple groups which may occur; in dimension five, the following is
true.

Theorem 2. The only finite nonabelian simple groups admitting a faith-
ful, smooth action on an acyclic 5-manifold are the alternating groups A5

and A6 (for actions of quasisimple groups there occurs, in addition, the bi-
nary dodecahedral group A∗

5).

So these are exactly the simple (or quasisimple) subgroups of the orthog-
onal group SO(5); we recall that a quasisimple group is a perfect, central
extension of a simple group. From Theorem 2 we deduce the following result
for arbitrary finite groups acting on acyclic 5-manifolds.

Theorem 3. Let G be a finite group admitting a smooth, faithful, orien-
tation-preserving action on an acyclic 5-manifold. Then one of the following
cases occurs.

(i) G is a subgroup of SO(5);
(ii) G contains a normal subgroup N which is cyclic or a central product

of a cyclic group with A5, A∗
5 or A6, and the factor group G/N is

an elementary abelian 2-group of rank at most four.

See [MeZ4, Corollary 2] for a characterization of the finite subgroups
of group SO(5). At present, we do not know an example of a group which
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admits a faithful, smooth, orientation-preserving action on an acyclic 5-
manifold but is not isomorphic to a subgroup of SO(5); however for contin-
uous actions such examples in fact do exist. Specifically, among the groups
G described in Theorem 3(ii) there are the Milnor groups Q(8a, b, c) ([Mn])
which are extensions of a cyclic group by the elementary abelian 2-group
(Z2)2. Some of the Milnor groups admit a faithful, continuous, orientation-
preserving action on R5 but none of them is isomorphic to a subgroup of
SO(5); see Section 7.

The paper is organized as follows. Section 2 contains some preliminary
results about finite group actions on acyclic manifolds. In Section 3 we
present the proof of Theorem 1 in the 3-dimensional case which is much
shorter than that in four dimensions (the main ingredient in dimension
three is the Gorenstein–Walter classification of the finite simple groups
with dihedral Sylow 2-subgroups, while in dimensions four and five this
is replaced by the more involved Gorenstein–Harada classification of the
finite simple groups of sectional 2-rank at most four); so this gives the
reader a shortcut to the basic methods of the present paper, without the
technical problems on finite simple groups arising in dimensions four and
five. In Section 4 we prove Theorem 2 concerning simple groups acting
on acyclic 5-manifolds; this also implies the analogue for simple groups
acting on acyclic 4-manifolds, needed for the proof of the 4-dimensional
case of Theorem 1 given in Section 5 (a direct proof in dimension four
would be somewhat shorter since the case of quasisimple groups can be
avoided; on the other hand, the main technical difficulties related to the
Gorestein–Harada list remain the same, so we prefer to give the proof
only in dimension five). In Section 6 we prove Theorem 3, and in the last
section we discuss continuous actions of the Milnor groups on acyclic 5-
manifolds.

2. Preliminary results. If G is a finite group acting on an n-manifold,
the fixed point set of G is a submanifold and by Newman’s Theorem has
dimension strictly smaller than n (see [B, Chapter III]). If G has non-empty
global fixed point set, the group G leaves invariant a tubular neighborhood
of the fixed point set (see [B, Chapter VI]). Hence, once we have found that
G fixes pointwise a submanifold of dimension d, we automatically deduce
that G is a subgroup of O(n−d), and of SO(n−d) if the action is orientation-
preserving.

Suppose that G is a p-group acting smoothly on a Zp-acyclic n-mani-
fold (a manifold with trivial homology with coefficients in Zp, the integers
mod p). By Smith theory (see [B, Chapter III, Section 5]) the fixed point set
of G is again a Zp-acyclic manifold (of even codimension if p is odd) and, in
particular, it is nonempty; thus, G is a subgroup of O(n).
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By the above discussion we can state the following:

Lemma 1. A finite p-group acting on an acyclic n-manifold is isomor-
phic to a subgroup of O(n), and to a subgroup of SO(n) if the action is
orientation-preserving.

We note that every action of a finite group G on an acyclic 1- or 2-
manifold has a global fixed point, so that, in particular, an analogue of The-
orem 1 also holds in the 1- and 2-dimensional case. The 1-dimensional case is
obvious: an acyclic 1-manifold (even Zp-acyclic) is diffeomorphic to R, [0,∞)
or [0, 1], hence a finite group acting on it is either trivial or generated by
an orientation-reversing involution with one fixed point. The 2-dimensional
case is considered in the following lemma.

Lemma 2. Any faithful and smooth action of a finite group G on an
acyclic 2-manifold X admits a global fixed point, and G is therefore either
dihedral with an orientation-reversing involution, or cyclic.

Proof. Suppose first that G is a nonabelian simple group; then the action
is orientation-preserving (since otherwise G would have a subgroup of index
two). Let S be a Sylow 2-subgroup of G. By Lemma 1, S is a finite subgroup
of SO(2), so it is cyclic; this is a contradiction since a simple group cannot
have a cyclic Sylow 2-subgroup (see [Su2, Corollary 2 of Theorem 2.2.10,
p. 144]).

Hence we can suppose that G admits no nonabelian simple subgroups
and, if N is a minimal nontrivial normal subgroup in G, it is an elementary
abelian p-group by [Su1, Corollary 3 of (2.4.14), p. 137]. Let XN be the
submanifold of points fixed by N ; it has dimension at most 1, is invariant
under the action of G and Zp-acyclic. So either XN is a point and we are
done, or XN is an acyclic 1-manifold. In the latter case, let T be the normal
subgroup of G fixing all the points in XN . Then the factor group G/T acts
faithfully on XN , with at least one global fixed point as noted above, and
also G fixes that point. Hence G is a finite subgroup of O(2), and of SO(2)
if the action is orientation-preserving.

This concludes the proof of Lemma 1.

Note that every orientable Zp-acyclic 2-manifold is acyclic. This can
easily be seen, using simplicial homology and considering a cycle α that is not
an integral boundary (note that α can always be chosen to have a connected
and simple geometric realization), but that is a boundary modulo p of a
2-chain β and reaching the contradiction that α is an integral boundary.
The orientability hypothesis cannot be omitted, as it is needed to induce a
coherent orientation on all 2-simplices appearing with nonzero coefficients
in β. The projective plane is an example of a nonorientable Zp-acyclic 2-
manifold (with p odd) that is not acyclic.
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This remark, together with Lemma 2, leads us directly to a crucial
lemma.

Lemma 3. Let G be a finite group acting on an acyclic n-manifold X,
with a nontrivial normal p-subgroup N . Suppose that one of the following
conditions holds:

(i) the submanifold of points fixed by N has dimension d ≤ 2;
(ii) n = 3;

(iii) n = 4 and the action of G is orientation-preserving;
(iv) n = 5, the action of G is orientation-preserving and N is not cyclic.

Then G has at least one global fixed point. Hence G acts orthogonally on the
boundary of some regular neighborhood of the fixed point and it is isomorphic
to a subgroup of O(n) (and of SO(n) if the action is orientation-preserving).

Proof. Suppose that condition (i) holds. If d ≤ 1, we can proceed as
in the proof of Lemma 2. Suppose therefore that N fixes pointwise XN ,
a Zp-acyclic 2-manifold. Then XN is also orientable. In fact, if XN is
a Z2-acyclic manifold, it is orientable since otherwise the first homology
H1(XN ,Z) would surject onto Z2; if p is odd instead, the order of N is odd
and XN is orientable by [B, Chapter IV, Theorem 2.1, p. 175]. Therefore,
XN is an acyclic 2-manifold.

Now, as in the proof of Lemma 2, we consider the normal subgroup T
of G fixing each point of XN . Then G/T acts on XN and has a global fixed
point, hence also G has a global fixed point. This concludes the proof in the
first case.

Note that conditions (ii) and (iii) each easily imply (i).
If n = 5 and the action of G is orientation-preserving, the fixed point set

of N may also have dimension three. In this case, by the discussion at the
beginning of this section, the subgroup N is isomorphic to a finite subgroup
of SO(2), hence it is cyclic. This concludes the proof of Lemma 3.

3. Proof of Theorem 1 for acyclic 3-manifolds. Let G be a finite
group with a smooth and faithful action on an acyclic 3-manifold.

Proposition 1. Suppose that G is a nonabelian simple group acting on
an acyclic 3-manifold. Then G is isomorphic to the alternating group A5.

Proof. The action of G is orientation-preserving as otherwise it would
have a subgroup of index two. By Lemma 1 a Sylow 2-subgroup of G is
isomorphic to a subgroup of SO(3) and hence is dihedral (since a Sylow
2-subgroup of a nonabelian simple group cannot be cyclic by [Su2, Corol-
lary 2 of Theorem 2.2.10, p. 144]). By the Gorenstein–Walter characteri-
zation of the finite simple groups with dihedral Sylow 2-subgroups ([G1,



208 A. Guazzi et al.

Theorem 1.4.7], [Su2, Theorem 6.8.6, p. 505]), G is isomorphic to a lin-
ear fractional group PSL(2, q) for an odd prime power q = pn, or to the
alternating group A7.

Suppose first that G is PSL(2, q) for an odd prime power q = pn. If
n > 1 then PSL(2, q) has a noncyclic elementary abelian p-subgroup (Zp)n

(represented by the upper triangular matrices with both diagonal entries
equal to one, isomorphic to the additive group of the finite field with q
elements). By Lemma 1 the group (Zp)n does not admit an action on an
acyclic 3-manifold. Hence n = 1; now PSL(2, p) has a semidirect product
Zp oZ(p−1)/2 as a subgroup, with an effective action of Z(p−1)/2 (represented
by diagonal matrices) on the normal subgroup Zp. By Lemma 3, this is
possible only for p = 5, so we are left with the group PSL(2, 5) isomorphic
to A5.

Finally, A7 has a subgroup Z3×Z3 which is again excluded by Lemma 1.
This completes the proof of Proposition 1.

Recall that a quasisimple group is a perfect central extension of a simple
group, i.e. it is perfect and the factor group by its center is a nonabelian
simple group. A semisimple group is a central product of quasisimple groups,
i.e. the factor group by its center is a direct product of nonabelian simple
groups (see [Su2, Chapter 6.6]). Any finite group G contains a unique max-
imal semisimple normal group E(G) (which may be trivial); the subgroup
E(G) is characteristic in G, and the quasisimple factors of E(G) are called
the components of G. The generalized Fitting subgroup F ∗(G) of G is defined
as the (central) product of E(G) and the Fitting subgroup F (G) (the maxi-
mal nilpotent normal subgroup of G) which is characteristic in G. The gener-
alized Fitting subgroup of a nontrivial group is never trivial and its central-
izer in G coincides with its center, i.e. CG(F ∗(G)) = Z(F ∗(G)) = Z(F (G))
(see [Su2, Chapter 6.6, p. 452]).

Proof of Theorem 1 for 3-dimensional manifolds. We divide the proof
into two subcases.

If the Fitting subgroup F (G) is not trivial then G has a nontrivial normal
p-subgroup, and by Lemma 3 the action of G has a global fixed point.

If F (G) is trivial, E(G) coincides with the generalized Fitting subgroup
F ∗(G), hence CG(E(G)) = Z(E(G)) = Z(F (G)) is trivial. Therefore, G acts
faithfully by conjugation on its normal subgroup E(G), so G is a subgroup
of Aut(E(G)), up to isomorphism. Also, by the definition of a semisimple
group, E(G) ∼= E(G)/Z(E(G)) is a direct product of simple groups acting
on an acyclic 3-manifold. Therefore, by Proposition 1, E(G) ∼= (A5)k.

Suppose that k ≥ 2. Then E(G) would contain an elementary abelian
5-subgroup of rank 2, which is not a subgroup of O(3); a contradiction.
Therefore E(G) is isomorphic to A5 and G is a subgroup of Aut(A5) ∼= S5,
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hence either G ∼= S5 or G ∼= A5. Suppose that G ∼= S5. Then the subgroup
generated by (4532), (12345) is a semidirect product Z5 o Z4, which is not
a subgroup of O(3). Thus, we have a contradiction by Lemma 3.

We conclude that every finite group with trivial Fitting subgroup acting
smoothly on an acyclic 3-manifold is isomorphic to A5, a subgroup of SO(3),
and this completes the proof of Theorem 1 for acyclic 3-manifolds.

4. Proof of Theorem 2. To prove Theorem 2 we need some prelimi-
nary results.

Lemma 4. A finite group G which admits a faithful, orientation-preserv-
ing action on an acyclic 5-manifold has sectional 2-rank at most four.

Proof. By Lemma 1, every 2-subgroup of G is in particular a subgroup
of SO(5) and it is therefore generated by at most four elements (e.g. by
[MeZ3, Proposition 3.1.]).

Lemma 5. For a prime p and a positive integer r, let Zp o Zr be a
metacyclic group (semidirect product), with normal subgroup Zp and factor
group Zr, which admits a faithful and orientation-preserving action on an
acyclic 5-manifold. Then, by conjugation, the square of each element of Zr

acts trivially or dihedrally on Zp.

Proof. If the fixed point set of Zp is a 3-manifold, then Zp locally acts as
a group of rotations around it and an element in Zr conjugates a rotation of
minimal angle to a rotation of minimal angle, so it acts trivially or dihedrally
on Zp. If instead Zp fixes pointwise a submanifold of dimension at most 2,
then, by Lemma 2, the group Zp o Zr is a subgroup of SO(5) and the claim
follows from [MeZ3, Lemma 2.2].

We also state the following algebraic lemma that will frequently be used
in the proof of Theorem 2 and that is a simple consequence of [Su1, Theorem
2.9.18, p. 257].

Lemma 6. Let S be a simple group. If H is a simple subgroup of S then
any central perfect extension of S contains a central perfect extension of H.

Proof of Theorem 2. Let G be a finite nonabelian quasisimple group
acting on an acyclic 5-manifold. Since G is perfect and has no subgroup of
index two, the action of G is orientation-preserving. By Lemma 4, the Sylow
2-subgroup S has sectional 2-rank at most four. By the Gorenstein–Harada
classification of the simple groups of sectional 2-rank at most four ([G1,
p. 6], [Su2, Theorem 6.8.12, p. 513]), the factor of G by its center is one of
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the groups in the following list (q denotes an odd prime power):

PSL(m, q), PSU(m, q), m ≤ 5,

G2(q), 3D4(q), PSp(4, q), 2G2(32m+1) (m ≥ 1),
PSL(2, 8), PSL(2, 16), PSL(3, 4), PSU(3, 4), Sz(8),

Am (7 ≤ m ≤ 11), Mi (i ≤ 23), Ji (i ≤ 3), McL, Ly.

In the following, we will exclude all the central perfect extensions of these
groups except A5, A∗

5, and A6.
We suppose first that G is isomorphic to SL(2, p) or to PSL(2, p), for a

prime p ≥ 5. The group SL(2, p) has a metacyclic subgroup Zp o Zp−1 (rep-
resented by all upper triangular matrices): the normal subgroup Zp consists
of the matrices having both entries on the diagonal equal to one and the sub-
group Zp−1 consists of the diagonal matrices. The projection of Zp oZp−1 to
PSL(2, p) is a metacyclic subgroup Zp o Z(p−1)/2, and the action of Z(p−1)/2

on the normal subgroup Zp is effective. By Lemma 5 we conclude that p = 5
and G can be isomorphic to PSL(2, 5) ∼= A5 or to SL(2, 5) ∼= A∗

5 .
Next we consider G isomorphic to PSL(2, q) or to SL(2, q) for q = pn

with p an odd prime and n > 1. In SL(2, q) the subgroup of upper triangular
matrices is a semidirect product (Zp)noZq−1. The projection of the subgroup
to PSL(2, q) is a semidirect product (Zp)n o Z(q−1)/2, and the action of
Z(q−1)/2 on the normal subgroup is effective. In any case we can suppose that
the group contains a subgroup isomorphic to (Zp)n oZr where r depends on
the group we consider. The fixed point set of the subgroup (Zp)n is an acyclic
1-manifold M ; in fact, it cannot be a Zp-acyclic 3-manifold since (Zp)n would
act faithfully on an orthogonal 1-sphere around M . Now (Zp)n o Zr has a
global fixed point, acts faithfully on a 3-sphere around M which is the
boundary of a 4-disk orthogonal to M at a fixed point and is a subgroup of
O(4). This is possible only for n = 2 and p = 3 (e.g. r = 2k with k ≤ 3 by
[MeZ1, Proposition 3 and 4]). The group SL(2, 9) can be excluded since it
contains a subgroup (Z3)2oZ4 acting faithfully and orientation-preservingly
on a 3-sphere around M but the elements of order four in Z4 act dihedrally
on the subgroup (Z3)2 and this is impossible (e.g. by [MeZ1, Proposition
3]). In this case G is isomorphic to PSL(2, 9) ∼= A6.

In general the unique central perfect extension of PSL(2, q) is SL(2, q);
the only exception is PSL(2, 9) that has two other central extensions, one
with center of order three and the other with center of order six (see [Co,
Table 5]). By [Co] we deduce that neither of these extensions contains an
any element of order nine. In both cases the Sylow 3-subgroup of order 27
contains a normal subgroup isomorphic to (Z3)2 and by the same argument
used above, we can conclude that these groups cannot act on an acyclic
5-manifold.
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Now we consider PSL(m, q), SL(m, q), PSU(m, q), SU(m, q) with q odd
and 3 ≤ m ≤ 5 (for m = 2 we have PSL(2, q) ∼= PSU(2, q)). The groups
PSL(m, q) and SL(m, q) contain a subgroup isomorphic to SL(m − 1, q),
and the groups PSU(m, q) and SU(m, q) contain a subgroup isomorphic
to SU(m − 1, q). Using these subgroups we can eliminate inductively most
of the groups. This process ends up with a case by case analysis of the
simple groups with m = 3 and q = 3, 5 (these groups do not admit any
central perfect extension with nontrivial center). To eliminate these groups
we use [Co] to find subgroups (metacyclic or simple) that we have already
excluded.

Also in most cases the unique central extension of PSL(m, q) (resp.
PSU(m, q)) is SL(m, q) (resp. SU(m, q)). We can have an intermediate ex-
tension between PSL(4, q) and SL(4, q) and between PSU(4, q) and SU(4, q)
but the above argument works again. The only simple group of this type
that admits further central extensions is PSU(4, 3) (see [Co, Table 5]); in
this case Lemma 6 and the inclusion PSL(2, 7) ⊂ A7 ⊂ PSU(4, 3) exclude
directly all the central perfect extensions.

The group PSp(4, q) contains a subgroup isomorphic to PSL(2, q). This
inclusion excludes automatically most of the simple groups and their central
perfect extensions (by Lemma 6); only a few groups have to be checked case
by case. The group PSp(4, 3) and its central extension contain a subgroup
isomorphic to (Z3)3 that can be excluded by the same argument used for
PSL(2, pn) with n ≥ 3. The group PSp(4, 5) contains PSL(2, 25) (see [Co]),
while PSp(4, 9) is excluded as it has a subgroup isomorphic to PSp(4, 3).

Up to central extension we have 3D4(q) ⊃ G2(q) ⊃ PSL(3, q) (see [St,
Table 0A8], [GL, Table 4-1]). These inclusions and Lemma 6 exclude 3D4(q),
G2(q) and their central extensions.

The Ree groups 2G2(32m+1) have one conjugacy class of involutions, the
centralizer of an involution is Z2

2×PSL(2, 32m+1) ([G2, p. 164]), so for m ≥ 1
they do not act (the group 2G2(3) is not simple).

We now consider the simple groups of Lie type and even characteristic.
The group PSL(2, 2n) with n = 3, 4 contains a semidirect product (Z2)nnZr.
If PSL(2, 2n) acted on an acyclic 5-manifold, by Lemma 3 the semidirect
product (Z2)n n Zr would be a subgroup of SO(5), and this is impossible as
Zr acts transitively by conjugation on (Z2)n (see [MeZ4, Lemma 1]).

The group PSU(3, 4) contains a subgroup isomorphic to Z13 o Z3 (see
[Co]) and this group cannot act by Lemma 5. The group PSU(3, 4) does not
admit any central extension with nontrivial center.

The group PSL(3, 4) contains a subgroup isomorphic to PSL(2, 7) that
we have already excluded. To eliminate the central extensions we apply
Lemma 6.
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Concerning the Suzuki group Sz(8), its Sylow 2-subgroup has order 64
with a normal subgroup (Z2)3 and it has a unique conjugacy class of involu-
tions (see [Co]). If Sz(8) admitted an action, the subgroup (Z2)3 would have
a global fixed point and would act on the 4-sphere that is the boundary of
some regular neighborhood of the fixed point. This is impossible as the invo-
lutions in (Z2)3 are all conjugate (see [MeZ4, Lemma 1]). Suppose now that
G is a central perfect extension of Sz(8); the center of G is an elementary
abelian 2-group of rank one or two. In any case the center fixes pointwise
a Z2-acyclic manifold M of dimension at most three. Since Sz(8) is simple,
the normal subgroup of the elements of G leaving invariant each point of
M coincides with the center of G. Hence, the quotient of G by its center,
and thus (Z2)3, acts faithfully and orientation-preservingly on M , which is
impossible by Lemma 1.

The alternating group A7 has a subgroup PSL(2, 7), which excludes all
alternating groups An for n ≥ 7. For any of the remaining simple groups it is
possible to find a simple subgroup already excluded. We will not give further
details and refer to [Co] and its references for the maximal subgroups.

This concludes the proof of Theorem 2.

5. Proof of Theorem 1 for acyclic 4-manifolds. In dimension 4,
Lemma 3 still applies to groups with nontrivial Fitting subgroup if we sup-
pose that the action is orientation-preserving. Hence, let us first suppose that
G is a finite group admitting a smooth, faithful and orientation-preserving
action on an acyclic 4-manifold. We will then extend our results to any
smooth and faithful action.

Proposition 2. A finite group G which admits a smooth and orienta-
tion-preserving action on an acyclic 4-manifold X is isomorphic to a sub-
group of SO(4). In particular if F (G) is trivial, then G is isomorphic to the
alternating group A5.

Proof. Suppose first that G is simple and nonabelian. Then G acts also
on X × R, an acyclic 5-manifold, and, by Theorem 2, G is isomorphic to
either A5 or A6. But A6

∼= PSL(2, 9) contains a solvable subgroup of the
form (Z3)2 o Z4, which is not a subgroup of SO(4) (it is shown in [MeZ1,
proof of Theorem 2] that it does not even act on a homology 3-sphere);
a contradiction, by Lemma 3. Hence, A5 is the only nonabelian simple group
which can act on an acyclic 4-manifold.

Suppose now that the Fitting subgroup of G is trivial. Then E(G) coin-
cides with the generalized Fitting group F ∗(G), and hence CG(E(G)) =
Z(E(G))=Z(F ∗(G)). ThereforeG is isomorphic to a subgroup of Aut(E(G)),
and E(G) = E(G)/Z(E(G)) is a (nontrivial) direct sum of simple nonabelian
groups, acting on an acyclic 4-manifold; thus E(G) ∼= (A5)k. For k ≥ 2,
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(A5)k contains an elementary abelian 2-subgroup of rank at least 4, which
is not a subgroup of SO(4) (e.g. by [MeZ1, Proposition 3]). Hence, A5

∼=
E(G) ⊂ G ⊂ Aut(E(G)) ∼= S5 and we deduce that either G ∼= A5 or
G ∼= S5. Finally, S5 contains a subgroup isomorphic to Z5 o Z4 (with faith-
ful action of Z4 on Z5) which is not a subgroup of SO(4) (by [Z, Proposi-
tion 3] it does not even act on a homology 3-sphere). We conclude that
G ∼= A5.

If F (G) is not trivial we can apply Lemma 3 and the conclusion follows.
This concludes the proof of Proposition 2.

Proof of Theorem 1 for acyclic 4-manifolds. Let G be a group acting on
an acyclic 4-manifold X. We divide the proof into two subcases.

Suppose that the Fitting subgroup F (G) is not trivial. If G contains a
nontrivial normal p-subgroup P such that the submanifold of points fixed
by P has dimension at most 2, then Lemma 3 applies and the claim is
proven. Otherwise, F (G) being nontrivial, G admits a normal p-subgroup
P which fixes pointwise a 3-submanifold and is therefore generated by an
orientation-reversing involution t.

Let G0 be the index two subgroup of orientation-preserving elements
in G. As t is an orientation-reversing element, G0 ∩ P = 1 and both P
and G0 are normal in G. We find that G = G0 × P ∼= G0 × Z2. Note
that F (G0) is trivial, otherwise G0 (and hence G ∼= G0 × P ) would admit
a normal p-subgroup which, acting orientation-preservingly on X, fixes a
submanifold of dimension at most 2; a contradiction. Therefore G0 is a
group acting orientation-preservingly on an acyclic 4-manifold with trivial
Fitting subgroup.

If G0 is trivial, then G ∼= Z2; otherwise G0
∼= A5, by Proposition 2. In

the latter case, G ∼= A5×Z2, which is a subgroup of O(3) and hence of O(4).
If instead F (G) is trivial, E(G) = F ∗(G) is not trivial. Then E(G), being

semisimple, is in particular perfect and hence its action on X is orientation-
preserving; also, F (E(G)) is trivial, thus E(G) ∼= A5, by Proposition 2. Since
the centralizer CG(E(G)) = CG(F ∗(G)) = Z(F ∗(G)) = Z(F (G)) is trivial,
G is isomorphic to a subgroup of Aut(E(G)) ∼= S5 containing A5. Therefore
either G ∼= A5 or G = S5, both subgroups of O(4).

For an orthogonal action of S5 on R4, just consider the action of S5 on
R5 permuting the standard orthonormal base and restrict the action to the
hyperplane described by the equation x1 + · · · + x5 = 0, which is invariant
under the action of S5 on R5.

This concludes the proof of Theorem 1.

6. Proof of Theorem 3. Suppose that a group G acts preserving the
orientation on an acyclic 5-manifold and that it has nontrivial Fitting sub-
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group F (G). By Lemma 3 either G has a global fixed point and is a subgroup
of SO(5), or F (G) is a direct product of cyclic groups of coprime orders fixing
3-manifolds. In the latter case, in particular, F (G) is cyclic.

This implies that if an abelian (or even nilpotent) group acts orientation-
preservingly and with no global fixed point on an acyclic 5-manifold, it
is cyclic. As for cyclic groups which are not p-groups, it is still an open
question whether or not they can act with no global fixed points, depending
on how many primes divide their order (see [HKMS]). Note that if the acyclic
manifold is homeomorphic to a closed disk, this is not possible, by Brouwer’s
Theorem.

Proposition 3. Suppose that G is a (nontrivial) semisimple group act-
ing on an acyclic 5-manifold. Then G is isomorphic to one of the following
groups:

A5, A6, A∗
5, A∗

5 ×Z2 A∗
5.

In particular, a semisimple group can act on an acyclic 5-manifold if and
only if it is a subgroup of SO(5).

Proof. Since G is perfect and nonabelian the action is orientation-pre-
serving. By Theorem 2, the quasisimple components of G are isomorphic to
A5, A6 or A∗

5. Since by Lemma 4 the sectional 2-rank of G is at most four,
G is the central product of at most two of these quasisimple groups, so it
remains to analyze the case of groups with two quasisimple components.
Suppose first that G = Q1×Q2, where Q1 is isomorphic to either A5 or A6.
In this case G has a subgroup isomorphic to A4×Q2. The subgroup A4×Q2

contains a normal elementary 2-group of rank two; by Lemma 3 the group
A4×Q2 would be a subgroup of SO(5), which is not the case (e.g. by [MeZ4]).

Next, the group A∗
5 × A∗

5 has a normal elementary 2-subgroup of rank
two and again is not a subgroup of SO(5). So the only remaining semisimple
group with two components is A∗

5 ×Z2 A∗
5.

This finishes the proof of Proposition 3.

Proof of Theorem 3. By Lemma 3 we can suppose that either the Fitting
subgroup F (G) is trivial, or F (G) is cyclic and the fixed point set of each
p-subgroup of F (G) is a 3-dimensional manifold (since otherwise G is a
subgroup of SO(5) and we are done). In the latter case each p-subgroup of
F (G) acts as a rotation group around its 3-dimensional fixed point set. Each
element of G acts by conjugation on each p-subgroup of F (G); this action
may be either trivial or dihedral since a rotation of minimal angle around
the fixed point set is conjugate to a rotation of minimal angle. In any case
the square of each element of G acts by conjugation trivially on F (G).

Suppose first that E(G) is trivial. Then F (G) coincides with the general-
ized Fitting subgroup F ∗(G) of G (the product of the Fitting subgroup F (G)
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and the maximal normal semisimple subgroup E(G)), and F ∗(G) = F (G)
contains its centralizer in G ([Su2, Theorem 6.6.11, p. 452]). By the preced-
ing paragraph, this implies that each element in G/F (G) has order at most
two, so G/F (G) is an elementary abelian 2-group, of rank at most four by
Lemma 4.

Suppose now that E(G) is nontrivial, and hence isomorphic to one of
the groups in Proposition 3. By [Su2, Theorem 6.6.11, p. 452], the factor
group of G by the center of F (G) is isomorphic to a subgroup of the au-
tomorphism group Aut(F ∗(G)) of the generalized Fitting subgroup. In our
situation, F (G) is cyclic and hence G/F (G) is isomorphic to a subgroup
of Aut(F ∗(G)), which in turn is isomorphic to a subgroup of Aut(F (G))×
Aut(E(G)) (since F (G) and E(G) are characteristic in G).

If E(G) is isomorphic to A5 or A∗
5, the outer automorphism of E(G)

has order two; if E(G) is isomorphic to A6, the outer automorphism group
is elementary abelian of order four (see [Co]). We have supposed that the
square of each element in G acts trivially on F (G) and, if E(G) has only
one component, such a square acts as an inner automorphism on E(G); this
implies easily that the square of each element in G is contained in F ∗(G),
and hence the factor group G/F ∗(G) is an elementary abelian 2-group, of
rank at most four.

Suppose that E(G) is isomorphic to A∗
5 ×Z2 A∗

5. Then the center Z2 of
E(G) is normal in G. By Lemma 3, we can assume that the fixed point set
of this normal subgroup Z2 has dimension three and hence, by Smith theory,
is a Z2-acyclic 3-manifold M . The factor group E(G)/Z2 is isomorphic to
A5 × A5 and admits a faithful, orientation-preserving action on M . Now
A5 × A5 has a subgroup (Z2)2 × (Z2)2 = (Z2)4; however, again by Smith
theory, the group (Z2)4 does not admit a faithful, orientation-preserving
action on a Z2-homology 3-sphere. So, if E(G) ∼= A∗

5×Z2 A∗
5, we have shown

that G is a subgroup of SO(5).
This finishes the proof of Theorem 3.

7. The Milnor groups Q(8a, b, c). It is observed in [Mn] that the
groups Q(8a, b, c) have periodic cohomology of period four but do not ad-
mit faithful, linear, free actions on S3 (in fact, they are not isomorphic to
subgroups of O(4)). We will assume in the following that a > b > c ≥ 1
are odd coprime integers. Then Q(8a, b, c) is a semidirect product Zabc oQ8

of a normal cyclic subgroup Za × Zb × Zc
∼= Zabc by the quaternion group

Q8 = {±1,±i,±j,±k} of order eight, where i, j and k act trivially on
Za,Zb and Zc, respectively, and in a dihedral way on the other two. Note
that Q(8a, b, c) also has a normal subgroup Z2abc, with factor group the
elementary abelian 2-group Z2

2, so it is one of the groups described in The-
orem 3.
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It has been shown by Milgram ([Mg]; see also the comments in [Ki,
p. 173, Update A to Problem 3.37]) that some of the groups Q(8a, b, c)
admit a faithful, free action on a homology 3-sphere; let Q be one of these
groups which admits such an action on a homology 3-sphere M . By the
double suspension theorem (see e.g. [Ca]), the double suspension M ∗ S1 of
M (the join of M with the 1-sphere) is homeomorphic to S5. Letting Q act
trivially on S1, the actions of Q on M and S1 induce a faithful, continuous,
orientation-preserving action of Q on S5 with fixed point set S1, and hence
also on R5 (the complement of a fixed point). Now it is not difficult to show
that none of the groups Q(8a, b, c) is isomorphic to a subgroup of SO(5). At
present, we do not know if some Milnor group Q(8a, b, c) admits a faithful,
smooth, orientation-preserving action on an acyclic 5-manifold.

Note. The referee provided two additional references ([BKS] and [KS])
on related work; in particular [KS] considers and completes the geometriza-
tion of finite group actions on Euclidean space R3.
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