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Descriptive set theoretical complexity of randomness notions
by

Liang Yu (Nanjing)

Abstract. We study the descriptive set theoretical complexity of various randomness
notions.

1. Introduction. The original motivation of this paper is to charac-
terize weakly 2-random reals by prefix-free Kolmogorov complexity. Since
Schnorr characterized Martin—Lof randomness by prefix-free Kolmogorov
complexity, many people thought that every randomness notion should have
a characterization by initial segment complexity. For example, Miller and
others obtained a very successful characterization of 2-randomness.

THEOREM 1.1 (Miller [8], [9]; Nies, Stephan and Terwijn [12]). A real x

is 2-random if and only if
JeVn Im (C(xzfm) > m — c)
if and only if
deVn3am > n (K (z[m) > m+ K(m) — c).
Recently, Miller and Yu [10] obtained the following result.
THEOREM 1.2 (Miller and Yu [10]). = &y is random if and only if
deVn (K (xn) 4+ C(y[n) > 2n — c).

This theorem gives almost all the “relativizable” randomness notions
stronger than Martin—Lof randomness unrelativized Kolmogorov complexity
characterizations. An important question remaining open is whether there
is a Kolmogorov complexity characterization for weak 2-randomness. This
question has been approached in many ways. For example, one way is to ask
whether there is a sequence { fy, }necw of functions such that for every real x,
x is weakly 2-random if and only if InVm 3k > m (K (z[k) > k + fn(k)).
Most of these attempts aimed at some kind of X3-characterizations for weak
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2-randomness. But all of the ways (of course) failed. So people suspected
that the collection of weakly 2-random reals is not 3. We confirm this in
this paper.

Then we also study the descriptive set theoretical complexity of some
other classical randomness notions. Many results have been obtained in [5]
by using Wadge reductions. Given two sets of reals A and B, A is Wadge
reducible to B, written A <y B, if there is a continuous function f : 2¥ — 2%
such that for every z, z € A if and only if f(x) € B. The authors of [5] prove,
for example, that the collection of Schnorr random reals is TI3-complete
(and so non—Eg). Here we give another more direct way, by using forcing
arguments, to prove that result. One might think that the results in [5] are
stronger since it is proved that the collection of Schnorr random reals is
Hg—complete. Actually they are not by the following well known descriptive
set theory result.

THEOREM 1.3 (Folklore). For any & < wy and each Eg (or Hg) set A,
if A is not 1'[2 (or 22), then every Eg set is Wadge reducible to A.

Theorem is an immediate consequence of Borel determinacy. More-
over, our technique yields results of independent interest. For example, we
prove that the forcing notion of I{-classes with computable positive mea-
sures does not produce a Martin—Lof random real.

We also study the complexity of the collection of Al-random reals.
Sacks [I3] essentially proves that the collection of Al-random reals is IT3.
Hjorth and Nies [6] introduced IT{-Martin-Lof randomness, which is an
analog to the classical Martin—L6f randomness in higher recursion theory.
But a difficult question was whether I1}-Martin-Lof randomness is different
from Al-randomness. The separation of ITi-Martin-Lof randomness from
Al-randomness was given in [2]. The proof in that paper was rather in-
volved, and only a sketch was presented. Here we give a full proof by a
simpler argument. Furthermore, we have a total characterization of where
Aj-randomness is different from II{-Martin-Lof randomness.

The paper is organized as follows: In Section 2, we give some basic defini-
tions. In Section 3, we present some easy facts about the descriptive set theo-
retical complexity of various randomness notions. Most of them are probably
known. In Section 4, we prove that the collection of weakly 2-random reals
is not 3. In Section 5, we prove that the collection of Schnorr random reals
is not 9. In Section 6, we prove that the collection of Al-random reals is
not Eg. In Section 7, we raise some questions.

2. Preliminaries. A real is Kurtz random if it does not belong to any
I19 null set. Since every co-null open X set is dense, every weakly 1-generic
real is Kurtz random.
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A Schnorr test is a uniformly c.e. sequence {U, }ne. of open sets such
that u(U,) = 27" for every n. A real x is Schnorr random if for every
Schnorr test {Un}new, © € (ew Un- This is equivalent to saying that = ¢
Mo Un for any c.e. sequence {Uy, }ne., of open sets such that p(Uy,) = o= f(n)
for every m where f is a computable function from w to [0, 1] such that
lim,, o f(n) = 0.

A Martin—Léf test is a uniformly c.e. sequence {U, } new of open sets such
that u(Uy) < 27" for every n. A real x is Martin-Léf random (or 1-random)
if for every Martin-Lof test {Up}new, T & [),eo Un- There exists a universal
Martin—Lof test, i.e. a Martin—Lof test covering all the Martin—Lof tests.

A generalized Martin—Lof test is a uniformly c.e. sequence {Uy,}new of
open sets such that lim, . pu(U,) = 0. A real = is weakly 2-random if
for every generalized Martin-Lof test {Up}new, & [)pew Un- There is no
universal Martin—Lo6f test. We have the following nice result.

THEOREM 2.1 (Downey, Nies, Weber and Yu [4]; Hirschfeldt and Mil-
ler []). A real z is weakly 2-random if and only if x is 1-random and does
not Turing-compute any non-computable Ag-real.

For some information about higher randomness, see [13], [6] and [2].
A real is Al-random if and only if it does not belong to any Al null set.
It is essentially due to Sacks [I3] that a real x is Al-random if and only if
for any Al-sequence of Al open sets {U, }new for which limy, . u(U,) = 0,
z & (), Un- So the collection of Al-random reals is IT3.

A TI-Martin-Lof test is a Ii-sequence of IT3-coded open sets {U, }new
(i.e. the set {(n,0) | o € Uy,} is I1}) so that p(U,) < 27" for every n. Hjorth
and Nies [6] proved that there is a universal IT1{-Martin-Lof test. A real is
I}- Martin—Léf random if it does not belong to any IT}-Martin-Lof test. We
have the following result.

THEOREM 2.2 (Chong, Nies and Yu [2]). If w¥ = WX, then x is A}-
random if and only if x is 111 -Martin-Léf random.

We identify an open set U with a set of finite strings. For any finite string
o € 2<% we use [o] to denote the open set {x | x = o}. For any tree T, we
write [T'] for the closed set {x | Vn (z[n € T)}.

For more information about randommness and computability theory,
see [11] and [3].

3. Some basic facts. The following facts are immediate and probably
known. Many of them can be found in [5].

ProrosiTioN 3.1.

(1) The collection of Kurtz random reals is TI9 but not T19.
(2) The collection of Schnorr random reals is T13.
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(3) The collection of 1-random reals is 9.
(4) The collection of weakly 2-random reals is TI3 but not T19.
(5) The collection of Al-random reals is TIS.

Proof. (1) Obviously the collection K of Kurtz random reals is TI9.
Suppose that K is II3. Then there is a recursive set R C w x w x 2<%
so that x € K if and only if VYn3m R(n,x[m). For each n, let K, =
{z | 3m R(n,zIm)}. Then K, is %Y, conull and K C K,, for every n.
Hence it would be easy to computably construct a sequence of finite strings
o9 < 01 < -+ so that [0,] C K, for every n. Then the computable real
T = Unew 0n € [hew Kn = K would be Kurtz random, a contradiction.

(2) Obvious (see [0]).

(3) Obvious.

(4) Obviously the collection of weakly 2-random reals W is TI3. Suppose
that K is Hg. Then there is a computable set R C w X w X w x 2<% such
that x € W if and only if Vn3ImVj R(n,m,z[j). For each n, let W,, =
{z | ImVj R(n,m,x|5)} and W, = {x | Vj R(n,m,z[5)}. Then K,, is 9,
co-null and W C W, for every n. We ()'-computably construct a sequence of
finite strings o9 < 01 < --- and H? positive measure sets Top 2 171 D --- S0
that o, € T, as follows: oy = () and Wy = 2%, Given o,, and R,,, since W,, 1
is co-null, we may (/-computably find the least m such that T,, "W, , N [07,]
={x > o, |z € [T, ANVjR(n,m,z[j)} has positive measure. Let T}, 41 =
T, " Wym N [on] and 0,41 be a finite string in T,,1; extending o,,. Then
the (-computable real = (J,,c,, 0n € e Wn = W is weakly 2-random,
a contradiction to Theorem 2.1

(5) Obvious. =

The results above about descriptive complexity of the collections of Kurtz
random and 1-random reals are rigid.

PROPOSITION 3.2.

(1) The collection of Kurtz random reals is not 39.
(2) The collection of 1-random reals is not TI9.

Proof. (1) Otherwise, there is a sequence { P, } ne, of closed sets such that
\U,, Pn contains exactly all the Kurtz random reals. Since all the generic reals
are Kurtz random, (J,, P, is comeager. Hence there must be some n such
that P, is not meager. Then P, must contain an interval and so contain a
computable real, a contradiction.

(2) Otherwise, there is a sequence {Uy, }new of open sets such that (), Up
contains exactly all the 1-random reals. Then for every n, u(U,) = 1. So
every U, is dense. Hence every sufficiently generic real would belong to
,, Un. But no 1-generic real can be random, a contradiction. m

The second result above can be found in [5].
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4. Weak 2-randomness. In this section, we prove that the collection
of weakly 2-random reals is not Eg. We apply a forcing argument.

DEFINITION 4.1. Define a forcing notion P = (P, <) as follows:

(1) P € P if and only if P is a I1{-class with positive measure.
(2) For P,Q € P, P <@ if and only if P C Q.

Let {F,; }mew be an increasing sequence of II{ sets such that Unew
is of measure 1. Set C' = Fn.Let Do ={P|PePANPCC(CY}.

LEMMA 4.2. D¢ is dense.

F,

mew

Proof. Suppose that {Fy, }mew is an increasing sequence of IIY sets such
that (J,,c,, Fm is of measure 1 and C = J,,,c, Fim- Let P € P. Then there
is some large enough m such that u(F,,) > 1 — u(P)/2. So

p(Fn N P) = p(Fp) +p(P) — p(Fn UP) > 1—p(P) /24 p(P) —1 = p(P)/2.
Thus F,,, "\ P €D¢c. m
The following lemma is a stronger version of Lemma 2.2 in [I].

LEMMA 4.3. For every computable tree T', there is a generalized Martin—
Léf test {Vi}new such that for any o, if [o] N [T] is not empty, then [o] N
[T) N[, Va is not empty.

Proof. The idea is to build a uniformly c.e. sequence {V,,}ne. of open
sets densely meeting [T']. The method is just like building a null comeager
set. But we may make some mistakes since there is no effective way to predict
whether [¢] N [T] is not empty. So, at every step, we need to “correct” the
construction of the previous steps. But the measure of mistakes will become
very small whenever the step is large enough. This is the reason we can
ensure that {V},} e, is a generalized Martin—Lof test.

Fix a computable tree T'. So there is a computable approximation to 7'
by computable trees {Ts}se, such that

(1) To =T;

(2) Tsy1 ={o |0 € TAIT €2 NT (7 is compatible with o)}.

Then Ty41 C T for every s.

Fix a computable enumeration {o;}ic, of 2<“ and an enumeration
{of 1 }icgst1 of 2571 for each s.

We construct V,, for every n step by step.

STEP 0: We put the empty string A into Vj. So the open set 1} is 2%.
STEP s + 1:
SUBSTEP 1: We correct {Vj}r<s step by step.

SUBSTEP 1.0: Check whether there is a 0 € Ty;1N25"L. If so, do nothing.
Otherwise, stop the construction.
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SUBSTEP 1.k: Check whether there is some 7 € V}, such that there is no
v € Tsr1 N 25T with v = 7. If so, check whether there is some 7/ = T[k
in 2/7l such that there is a v € Tyyq N 2°F! with that v > 7/. If so, put 7/
into Vj for all j < k; otherwise, do nothing.

SUBSTEP 2: For every 4, check whether there is some 7 € Tg11 extend-
ing afH. If not, go to ¢ + 1; otherwise, check whether there is some 7 € V;
such that 7 > af“. If yes, put 7 into Vi41; otherwise, check whether there
is some very long 7 > af“ in Tgy1 that is longer than any finite strings
mentioned before. If yes, pick such a 7 and put it into Vsy1; otherwise, do
nothing. Now for every k < s, check whether there is some 7 € V}, compat-
ible with 7. If yes, do nothing; otherwise, put 7 into Vj.

This finishes the construction.

By the construction, V,,+1 C V,, for any n.

If 0 € T and [o] N [T] # 0, then there is some stage so > |o| at which
we find some op > o such that o9 € T and [00] N [T] # (0 and put it
into Vj,|. Then there is some larger stage s1 > |og| at which we find some
o1 = g such that o1 € T and [01] N [T] # 0 and put it into V|,|, etc. Since
Mnew Vo = Nicw Vios|» the teal z = (J;c,, 0: is in (e, Va) N T. In other
words, [o] N [T]N (), Vx is not empty.

To see that {V, }new is a generalized Martin—Lof test, it is sufficient to
show limy, oo pt(V;,) = 0. For any 4, there is a large enough s > i+1 such that
the open set Es = {0 € 2° | 0 € T} has measure less than p([T]) + 271
Then from step s of the construction, except the correction substep, we
only put a prefix-free set of finite strings into V. Moreover, except those
strings put in at the correction substep, for different strings in Vj, they have
different lengths greater than or equal to s. But at the correction substep,
by the assumption on Ej, we put into V; a set of finite strings of measure
at most 2771 . So

M(‘/ts) S Z 2—t 4 2—i—1 — 2—S+1 + 2—i—1 S 2—i—1 4 2—i—1 — 2—1'.
t>s
Thus lim;, 00 (V) = 0. =
For any TI set G, let Dg = {P | P € PAPNG = (}.

LEMMA 4.4. If G is a Hg set only containing weakly 2-random reals,
then Dg s dense in P.

Proof. Suppose that G is TI9 only containing weakly 2-random reals.
Let {Uy, }new be a sequence of open sets such that G = (), Uy,. Let P € P.
Without loss of generality, we may assume that for any o, if [o] N P # 0,
then p([o] N P) > 0 (since we may assume that P only contains 1-random
reals). Then we claim that there is some o such that PN [o] NG = ) but
PnNio] #0.
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Suppose not. By Lemma [.3] there is a generalized Martin—Lof test
{Vi.}new such that for any o, if [o] N P is not empty, then [o¢] N PN, Vn
is not empty. Then we build a sequence of strings oo < 01 < -+ as follows.

Let o9 = (). Now suppose [0;] N P # 0. Let 7 = o; with [7] NP # 0
and [7] N P CV;. By the property of {V,,},, there exists such a 7. Then by
assumption, let o; 41 > 7 be such that [o;41] N P C U;.

Let 2 = e, 0i- Then 2 € PN (N,e, Un) N (Npew V). Since = €
Mnew Vs 2 is not weakly 2-random, which contradicts the fact that G only
contains weakly 2-random reals.

So there is some o such that PN o] NG = 0 but P N [o] # 0. Let
Q=PnNjo]. ThenQ e Pand Q < P. m

THEOREM 4.5. The collection of weakly 2-random reals is not Zg.

Proof. Suppose otherwise. Then there is a countable sequence {Gy, }, of
ITY sets such that \U,, Gn contains exactly all the weakly 2-random reals. So
G, only contains weakly 2-random reals for every n. Then by Lemma[4.4] for
any sufficiently generic real g over P, g € G,, for any n. By Lemma for
any sufficiently generic real g over P, g is weakly 2-random, a contradiction. =

5. Schnorr randomness. In this section, we give another proof that
the collection of Schnorr random reals is not £3. We use a similar method
to the previous section with some modifications.

DEFINITION 5.1. Define a forcing notion Q = (Q, <) as follows:

(1) Q € Q if and only if Q is a I1{-class with some computable positive
measure.

(2) For P,Q € Q, P < Q if and only if P C Q.

For any Schnorr test {Up, }new with u(U,) = 27" for every n, set U =
N, Un.-Let Dy ={P | PeQAPNU =0}.

LEMMA 5.2. Dy is dense.

Proof. Suppose that {Up,}new is a Schnorr test with p(U,) = 27" for
every n, U =, U, and P € Q. Then there is some large enough n such
that pu(U,) < p(P)/2. Hence the complement Py = 2 — U, has measure
>1—u(P)/2. So PyN P has measure > u(P)/2. We show that p(FPp N P) is
a computable real. Both P and Fy can be represented by computable trees
T and TP respectively. Since both P and Py belong to @, for any i we may
computably find some large enough s; such that “((UaeEsi [o])—P) <271

and pw((Uyepo o)) — Po) < 277! where E;, = {0 € 2% | 0 € T} and
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E) = {0 €2% |0 €T Then

i U )=o) =u((( U l)=r)o( U )-h)

UEEsiﬁEgi UEESiﬁESi UEESiﬂEQi
(U )Pl U ) m) =i
c€Es;NEY, o€ Es;NEY,
So .
w( U bl)-2supory<u( U ).
o€ Es;NEY, o€Es;NEY,

Thus u(P N Py) is computable. In other words, PN Py € Q. =

Now we want to mimic the proof of Lemma [£.4] But there is a problem:
in that proof we can ensure that, for any condition P € P, u([oc] N P) > 0
whenever [0] N P is not empty. The reason is that we can ensure that P only
contains 1-random reals. But every condition () € @ contains a computable
real. So we have to be more careful.

LEMMA 5.3. For ever computable tree T for which u([T]) > 0 is com-
putable, there is a Schnorr test {V, }new such that for any o, if u(lo] N[T))
> 0, then p([o] N [T)NV,) > 0 for each n.

Proof. Suppose that T is a computable tree such that u([T]) > 0 is
computable. Then there is a computable function f : w — w such that for
every s, |Ef(s)]/2f(5) — u(T) < 27% where F; = {0 € 2! | 0 € T}. Fix a
computable enumeration {o;}ic., of 2<% and an enumeration {0t} o041
of 2571 for each s. We define Uy = |, Up|[s] as follows:

At step 0, do nothing.

At step s + 1, select the least index ¢ such that

(1) There is no 7 > o; belonging to Up|[s].
(2) HUZ] N Ef(s)‘ > 9f(s)=s+1

Then pick any 2/()=s+1 finite strings in [oy] N Ef( and put them into
U() [S + 1].

Then by the definition of f, Up[s + 1] N [oy] N [T] # 0. Obviously at any
stage s+ 1, u(Up[s+ 1] — Up[s]) < 2752, So u(Up) is computable. Moreover,
for any o, if p([o] N [T]) > 0, then u([o] N [T] N Uy) > 0. If not, pick the
least index i such that p([o;] N [T]) > 0 but p(jo] N [T] N Uy) = 0. Then
there is a large enough stage sg such that for each j < i, if u([o;] N [T]) > 0,
then pu([o;] N [T] N Upso]) > 0. Suppose that u([o;] N [T]) > 27F; then at
any stage t > so + k, [[o:] N Eyy| > 2f(t)=k ~ 9f(M=t+1 Then we pick
any 2/(0=t*1 finite strings in [o5] N Ey(;) and put them into Up[t]. Then
u([o:] N [T) N Uplt]) > 27¢, a contradiction.
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Generally, for each n, we define U, = |J, Uy[s| as follows:
At step 0, do nothing.
At step s + 1, select the least index i such that

(1) There is no 7 = a; belonging to Uols).
(2) lloa] N Ep(spm)| > of (s+n)—s—n+1_

Then pick any 2f(6t7)=s=n+1 finite strings in [o}] N E¢(s4n) and put them
into Up[s + 1].

By the same argument as above, for every s, u(U,[s + 1] — Upls]) <
2757"+2 Qo for any n, u(U,) < 2773 is computable. Moreover, for any o,
if u([e]N[T]) > 0, then p([c]N[T)NT,) > 0.

Now define V,, = (J,,>,, Um. Hence u(V;,) < 27" for each n. Hence by
an easy calculation, {(V;,) }new is uniformly computable. Thus {V;,} e, is a
Schnorr test. By the property of {Uy, }new, for any o and n, if u([o]N[T]) > 0,
then u([o]N[T]NV,) > 0. »

For any IT) set G, let Dg ={P|Pc QAPNG =0}

LEMMA 5.4. If G is a TI set only containing Schnorr random reals, then
D¢ is dense in Q.

Proof. Suppose that G is I only containing Schnorr random reals. Let
{Un}new be a sequence of open sets such that G = (), U,. Let P € Q. We
claim that there is some o such that PN [o] NG = 0 but pu(P N o)) > 0.

Suppose not. By Lemma there is a Schnorr test {V}, }ne, such that
for any o, if u([e] N P) > 0, then p(jo] NP NV,) > 0 for each n. Then we
build a sequence of strings o9 < o1 < --- as follows.

Let 09 = 0. Now suppose pu([o;] N P) > 0. Let 7 > o; be such that
u([r]NP) > 0 and [r] N P C V;. By the property of {V,},, there exists
such a 7. Then by assumption, let 0;41 > 7 be such that [o;11|NPNG # (.
Since G only contains Schnorr random reals, p([o;+1] N P NU;) > 0. Then
we may assume that [o;41] N P C U; and p([o+1 N P]) > 0.

Let 2 = e, 0i- Then 2 € PN ((N,e, Un) N (Nyew V). Since €
Mhew Vi, @ is not Schnorr random, which contradicts the assumption that
G only contains Schnorr random reals.

So there is some o such that PN [o] NG = 0 but u(P N[o]) > 0. Let
Q=PNo]. Then Qe Qand Q< P. m

THEOREM 5.5 (Hitchcock, Lutz and Terwijn [5]). The collection of
Schnorr random reals is not Zg.

Proof. Suppose otherwise. Then there is a countable sequence {Gy, },, of
IT9 sets such that |J, G, contains exactly the Schnorr random reals. Then
by Lemmas[5.2]and [5.4] for any sufficiently generic real g over Q, g is Schnorr
random but g ¢ G, for any n, a contradiction. =
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We want to point out that the forcing Q does not produce a 1-random
real. To see this, fix a universal Martin—Lof test {Up, }nen. For each n, let
D,={PeQ|PCU,}.

COROLLARY 5.6. For each n, D, is dense.

Proof. Let P € Q and G = 2 — U,,. Then G is a I1{ class only contain-
ing 1-random reals. Then by Lemma there is some Q < P such that
QeD, n

So if g is sufficiently generic over Q, then g is Schnorr random but not
1-random.

6. Al-randomness. In this section, we prove that the collection of Af-
random reals is not Eg. Some basic facts in higher randomness theory can
be found in [13], [6] and [2].

DEFINITION 6.1. Define a forcing notion D = (D, <) as follows:

(1) P € D if and only if P is a Al, closed set of reals with positive
measure.

(2) For P,Q € D, P <@ if and only if P C Q.

For any Al-sequence of Al-open sets {Up, }neo with limy, . u(Uy) = 0,
set U=, Un. Let Dy = {P | P DAPNU = 0}.

LEMMA 6.2. Dy is dense.

Proof. Suppose that {Uy,}new is a Al-sequence of Al-open sets with
limy,—oo p(Up) = 0, U = (,,Up and P € D. Then there is some large
enough n such that u(U,) < pu(P)/2. Hence the complement Py = 2 — U,
has measure > 1 — u(P)/2. So Py N P is a Al, closed set and has measure
> u(P)/2. Thus PNPye D. n

For any IIJ set G, let Dg = {P | P€ DAPNG = (}.

LEMMA 6.3. If G is a TI set only containing Al-random reals, then Dg
is dense in D.

Proof. Suppose that G is Hg only containing Al-random reals. Let
{U,}new be a sequence of open sets such that G = (), Up,. Let P € D.
Then there is a hyperarithmetic real  such that P is II9(x). Without loss of
generality, we may assume that for any o, if [c] NP # 0, then u([c]NP) >0
(since we may assume that P only contains 1-z-random reals). We claim
that there is some o such that PN [oc] NG =) but PN [o] # 0.

Suppose not. By Lemma [4.3] relativized to z, there is a generalized
xz-Martin-Lof test {V, }ne, such that for any o, if [o0] N P is not empty,
then [o] N PN(), Vs is not empty. Then we build a sequence of strings
0g < 01 < --- as follows.
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Let o9 = (. Now suppose [0;] NP # ). Let 7 > o; be such that [7]NP # ()
and [7] N P C V;. By the property of {V,,},, there exists such a 7. Then by
assumption, pick o;41 > 7 such that [o;41] N P C U;.

Let z = (J;c,, i- Then z € PN(N,,c., Un)N(Npew Va)- Since 2z € (e, Vi,
2 is not weakly 2-z-random. But x is hyperarithmetic, so z is not Al-random,
which contradicts the assumption that G only contains Al-random reals.

So there is some ¢ such that PN [o] NG = 0 but PN [o] # 0. Let

Q=PnNjo]. Then Q€ D and Q < P. m

By the same proof as in the previous sections, we have the following
result.

PROPOSITION 6.4. The collection of A}-random reals is not £3.

We give an application of Proposition

It is difficult to separate I1}-Martin—Léf randomness from Al-random-
ness. The proof in [2] is rather involved and only sketched. Now we may apply
the previous results to give a simpler proof (and even a stronger result).

Since the collection of TI3-Martin-L&f random reals is 9, an immediate
consequence of Proposition [6.4] is:

COROLLARY 6.5 (Chong, Nies and Yu [2]). There is a Al-random real
z which is not I} -Martin—Ldf random.

By analyzing the proof of Proposition [6.4] we can obtain a characteriza-
tion of where these notions differ.

THEOREM 6.6. For each x >, O, there is a A%—mndom real z =, ©
which is not 111 -Martin-Léf random.

Proof. The collection of II}-Martin-Léf random reals is a $9(&)-set.
Moreover, there is an -computable enumeration of the conditions in D (see
Sacks [13]). Then hyperarithmetically in &, by a finite extension argument,
it is not difficult to construct a Af(&)-perfect tree T such that every infinite
path in 7 is Al-random but not IT}-Martin-Léf random. By Theorem
every real x € [T] is hyperarithmetically above &. So for each x >, @, there
is a Al-random real z =, x which is not II}-Martin-Lof random. =

We want to make an observation here. In [I3], Sacks does not use a
forcing argument to study measure theoretic uniformity. Instead, he uses a
model .Z (WX, ). The advantage of his method is to show that . (w$X, )
satisfies Al-CA (and so w¥ = w{X) for almost all reals z. Now the rea-
son that a forcing argument is avoided seems clear since the forcing notion
with A} sets with positive measures does not produce a generic real x with

z _ , ,CK
wl _wl .
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7. Some remarks. We do not know the exact complexity of the
collection of TTi-random reals. We conjecture that it cannot be 3°

0 <wi®
(: Uoz<wICK 204) .

For any cardinal x and number n, we use x-X0 11 to denote the class of
sets which can be a union of less than k-many Hg—sets. For example, N;-
=0 11 is exactly the same as =Y 11- We can also define r-TT9 41 in a similar
way. Then the following is true.

THEOREM 7.1. Assume ZFC + Martin’s aziom. Then:

(1) The collection of Kurtz random reals is not 280 -X.
(2) The collection of Schnorr random reals is not 280 -X9.
(3) The collection of 1-random reals is not 280 -TI9.

(4) The collection of weakly 2-random reals is not 2%0-39.
(5) The collection of Al-random reals is not 280 -%9.

Proof. All the negative results in the previous sections were proved by
c.c.c. forcings except (1) and (3). But it is a theorem under ZFC + Martin’s
axiom that any set which is a union of less than 280-many meager sets is
meager (see [7]). So under ZFC + Martin’s axiom, (1)—(5) are all true. =

We do not know whether the conclusions of Theorem can be proved
under ZFC. We do not know either whether the following is known.

QUESTION 7.2. Is it consistent with ZFC + ~CH that every TI} set is
a union of Nyi-many closed sets?
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