FUNDAMENTA
MATHEMATICAE
194 (2007)

Generic absoluteness under projective forcing
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Abstract. We study the preservation of the property of L(R) being a Solovay model
under projective ccc forcing extensions. We compute the exact consistency strength of the
generic absoluteness of L(R) under forcing with projective ccc partial orderings and, as
an application, we build models in which Martin’s Axiom holds for 1 partial orderings,
but it fails for the E}H’l‘ ~

1. Introduction. In this paper we continue the systematic study of the
preservation of the property of L(R) being a Solovay model under various
classes of forcing notions. This work started in [2], where we considered the
class of projective absolutely-ccc forcing notions and obtained an exact con-
sistency result for the preservation of the property of L(R) being a Solovay
model under this class of forcing extensions. It turned out that the large car-
dinals involved were the definably Mahlo cardinals, a weak form of Mahlo
cardinals that satisfy some definability conditions. As a corollary we obtained
the equiconsistency of: (1) there exists a definably-Mahlo cardinal; and (2)
L(RR)-absoluteness for projective absolutely ccc posets.

In [3] we showed that every projective strongly proper forcing notion pre-
serves the property of L(R) being a definably Mahlo Solovay model. Hence,
the consistency of L(IR)-absoluteness under projective strongly proper forc-
ing notions has the existence of a definably Mahlo cardinal as an upper
bound. We also proved in [3] that the consistency strength of the preserva-
tion of L(R) being a Solovay model under o-linked forcing notions is exactly
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that of a Mahlo cardinal, in contrast with the general ccc case, for which a
weakly compact cardinal is required.

Recall that a Solovay model over V is the L(R) of a model M O V which
has the following properties:

(1) For every x € R, wy is an inaccessible cardinal in V' [z].

(2) Every z € R is small-generic over V. That is, for some forcing notion
P in V that is countable in M, there is, in M, a P-generic filter g
over V such that z € Vg].

The reason we call a model with properties (1) and (2) above a Solo-
vay model is the following result of Woodin (see [2]), which says that it is
elementarily equivalent to Solovay’s model from [10].

LEMMA 1.1. Suppose that V. C M are models of (a fragment of ) ZFC
and M satisfies (1) and (2) above. Then there is a forcing notion W in M
which does not add new reals and creates a generic filter C for the Levy
collapse of wM over V' such that M and V[C] have the same reals.

Our interest in the preservation of the property of L(R) being a Solovay
model under forcing extensions that do not collapse w; lies mainly in the
fact (Lemma 1.3 below) that it implies a strong form of generic absoluteness
for the theory of the reals (see [2]).

DEFINITION 1.2. Let V be a model of ZF. Let P € V' be a forcing notion
and let ¢ be a formula (possibly with parameters in V). V is @-absolute for
P iff

ViEe iff VPEo.
If X is a set of formulas, V is X-absolute for P iff for every ¢ € X, V is
p-absolute for P. Given a class I' of posets, V is X-absolute for I iff for
every P € I', V is Y-absolute for P in V.
V is L(R)-absolute for P iff there exists an elementary embedding

jiL®)Y - L®R)Y
that fixes all the ordinals (and therefore all the reals). For I" a class of posets,
V is L(R)-absolute for I' if it is L(R)-absolute for every P in I'.
The following lemma is proved in [2].

LEMMA 1.3. Suppose that L(R)YM and L(R)N are Solovay models over
V such that RM C RN and wM = wi¥. Then there exists an elementary
embedding j : L(R)™ — L(R)N which fizes all the ordinals.

Recall that for I' a point-class, a I'-poset is a triple P = (P, <p, Lp),
where <p is a [-subset of w* x w*, P = field(<p), (P,<p) is a partial
order, and L p is a I'-subset of w* x w“ contained in P x P such that for
every z,y € P, x Lp y iff ,y are incompatible. P is a projective poset iff it
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is (isomorphic to) a I'-poset for some projective point-class I'. Notice that
a poset P is projective iff it is (isomorphic to a poset that is) first-order
definable in H(w;), with parameters.

In this paper we consider the class of projective ccc forcing notions. We
show that the property of L(R) being a ¥,-weakly compact Solovay model
(see definitions below) is preserved by forcing with g}l 41 ccc posets, and
that the property of L(R) being a definably weakly compact Solovay model
is preserved by all projective ccc posets. We give an example of a A% poset
P with the property K, hence ccc, such that ¥} generic absoluteness under
forcing with P implies that w; is Xi-weakly compact in L. A generaliza-
tion of this example to higher projective levels shows that the consistency
strength of L(R)-absoluteness under 2}1 41 ccc forcing is exactly the exis-
tence of a Y,,-weakly compact cardinal. Further, the consistency strength of
L(R)-absoluteness under projective ccc forcing extensions is exactly that of
the existence of a definably weakly compact cardinal. In the last section, and
as an application of the previous results, we build models in which Martin’s
axiom holds for Z]ﬂll partial orderings but not for the 2711 11

2. Projective ccc forcing extensions. We will address the question
of the preservation of the property of L(R) being a Solovay model under
arbitrary projective ccc forcing notions. As we will see, we need to consider
a definable form of weakly compact cardinals.

2.1. X, -weakly compact cardinals. Recall that a I} sentence of the lan-
guage of set theory is a sentence of the form VX ¢(X), where p(X) is a
first-order formula of the language of set theory expanded with the predi-
cate symbol X.

DEFINITION 2.1. Let s be a cardinal and n € w. Then « is X, -weakly
compact (X,-w.c., for short) iff k is inaccessible and for every R C V,; which
is definable by a Y,, formula (with parameters) over V, and every II} sen-
tence @, if

(Vi,e,R) =@
then there is a@ < k (equivalently, unboundedly many « < k) such that
(Va,€,RNV,) = &.

That is, « reflects H% sentences with ¥, predicates. Moreover, x being
I1,,-weakly compact (Il,-w.c., for short) is defined analogously by substi-
tuting IL,, for 3, in the definition above. Thus, an inaccessible cardinal k is
I1,-w.c. iff it reflects II] sentences with II,, predicates. An inaccessible car-
dinal is A, -weakly compact (Ap-w.c., for short) iff it reflects II} sentences
with A, predicates.
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DEFINITION 2.2 (A. Leshem, [9]). A cardinal s is X,-weakly compact
(3-w.c., for short) iff k is ¥,,-w.c. for every n € w.

PROPOSITION 2.3. For k an inaccessible cardinal, the following are equiv-
alent:

(1) Kk is Xp-w.c.

(2) K is II,-w.c.

(3) K is Apyi-w.c.

(4) For every I} formula ®(xo,...,zx) in the language of set theory
and every ag,...,ax € Vi, if Vii E @(ag,...,ax), then there is A €
I, := {\ < K : X\ is inaccessible and V\ <, Vi} such that V) =
(ﬁ(ao, ey ak).

Proof. (3)=-(1) and (3)=(2) are trivial.

(1)=(2): Suppose that R C V. For every IIj formula ¥ where R appears
as a predicate, let ¥ be the formula obtained from ¥ by substituting every
occurrence of the subformula Rz, where x is a first order variable, by —Rx.
Note that ¥ is also I}

It is easily shown, by induction on the complexity of formulas, that for
every formula ¥ and every «,

Vo, &, ROVL) =W iff (Vi €, Vo \R) =W
Suppose now that R C Vj is definable by means of a II,, formula over V,, and
@ is a 1! sentence. If (Vi, €, R) = &, then (Vy, €,V \ R) |= ®. Since & is
Sp-w.c., there is a < « such that (Va, €, (Vi \R)NV,) = (Va, €, Vo \R) E &,
and therefore (V,, €, RNV,) = .

(2)=-(4): Suppose that &(z,...,z;) = VX o(X,z0,..., 7)) is a I} for-
mula and ay, ..., a; € V, are such that V,; = @(ao,...,a).

Let ¥ be the H% sentence expressing that x is inaccessible, and let o be
the first order sentence saying that the II,,-club C, := {a < Kk : V, <, Vii}
is unbounded. Then

(Vi, €,Ch) E P(ag,...,ax) N¥ Ao.
Since k is II,,-w.c., there is A < x such that
(\, €,C, N V) = P(ag,...,ax) NV Ao
But then A is inaccessible, and since C,, N A is unbounded, A € I,,.

(4)=(3): Suppose that R is a A, subset of V,; and & is a II] sentence
such that

(Vi, €, R) =@

Let o(z,yo0,...,yx) be a Xy, 41 formula and ¥ (z, 20, ..., 2) a Il,4; formula
that define R in V, with parameters ag,...,a; and by, ..., b;, respectively.
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Thus,
(Vi, €, R) EVz (Rx < o(z,a0,...,ax) < P(z,bo,...,b)).

Let @ (yo, ..., yr) be the ITI formula (with yg, ...,y as the only free indi-

vidual variables) obtained by substituting every occurrence of the formula

Rz in @ by the formula ¢(x, o, ..., yx). Then, clearly, V,; = &'(ao, ..., ax).
Hence, there is A € I, such that

Vi b (a0, ...ax) AVz (o(z.an......ax) < (b, .. br).
But since V) <, Vi, RNV ={z: V) E ¢o(z,ap,...,ax)}. Therefore,
(V\,e&,RNVy) =D. n

Notice that in the proof of (4)=(3) above, we have not made use of the
fact that \ was inaccessible. Thus an inaccessible cardinal x is X,-w.c. iff
reflects I} sentences (in the language with € only) to some A < & such that
V)\ <n VK'

Leshem [9] has proved that if x is Mahlo, then the set of ¥,,-w.c. cardinals
below k is stationary. So, all these cardinals are, consistency-wise, below a
Mabhlo cardinal.

Let us recall from [2] that a subset C of a cardinal & is a II,-club iff C
is a club subset of k that is definable over V,, by means of a II,, formula,
pos51b1y with parameters. A subset S C k is Il,-stationary iff for every

n-club subset C' of k, SN C # . (Notice that we do not require that S
1tself be II,,-definable.) Finally, « is a II,,-Mahlo cardinal iff it is inaccessible
and the set of all inaccessible cardinals below £ is Il,-stationary. For more
information about II,-Mahlo cardinals see [2] and [4] The next fact shows
that ¥,-w.c. cardinals are 1I,,-Mahlo, and that the least II,-Mahlo cardinal
is not X,-w.c.

FacT 2.4. Every Xp-w.c. cardinal r is 1l,-Mahlo, and the set of 1, -
Mahlo cardinals below £ s 11, -stationary.

Proof. Suppose that « is X,-w.c. Let C' be a Il,-club of &, ie., C is
a club on x which is definable over V, by means “of a 11, formula with
parameters. Let @ the I} sentence expressing that x is inaccessible. Let o
be the first-order sentence expressing that C' is unbounded. Then

(Vi, €,C) =D A p.
So, there is a < k such that
(Va, €,CNVy) EPA p.

Therefore « is inaccessible, and since C NV, = C' N « is unbounded in «,
aeC.
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Note that “every IL,-club of k contains an inaccessible cardinal” is ex-
pressible by a first-order sentence. Therefore, the above argument shows that
there is a En—stationary set of En—Mahlo cardinals below k. m

Recall k is a X,-Mahlo cardinal iff it is En—Mahlo for every n € w.
In [4] it is shown that every X,-w.c. cardinal is ¥,-Mahlo, and that the set
of ¥,-Mahlo cardinals below a ¥,-w.c. cardinal is 3 -stationary. However,
also from [4], if k is II,,41-Mahlo, then the set of ¥,-w.c. cardinals below
is II,,+1-stationary.

2.1.1. The tree property

DEFINITION 2.5. Let k be a cardinal and n € w. A tree T' = (T, <p) with
T C Vg is a X, -tree (over V) iff there are ¥,, formulas ¢7(x), o<, (x,y) and
©ht, (2, y), possibly with parameters in V,;, such that for every ¢,¢' € V,; and
every a < K,

teT iff V. oer),
t<pt iff Vi e (tt),
t e Ta iff Vn ‘: Phtp (tv a)’

where T, denotes the ath level of the tree T'. Similarly, we define the notion
of II,,-tree by substituting II,, for >, in the above definition. Moreover, T is
a A, -tree iff T is both a ¥,-tree and a II,,-tree. Finally, T is a X, -tree iff T
is a 2, -tree for some n € w.

DEFINITION 2.6. Let x be a cardinal and n € w. s has the X, -tree
property iff k is inaccessible and every x-tree which is a 3,-tree has a cofinal
branch. The II,-tree property, A,-tree property, and X, -tree property are
defined analogously.

LEMMA 2.7. For every n € w, if k is Xp-w.c., then k has the X, -tree
property.

Proof. Suppose that x is a ¥,-w.c. cardinal and let T be a k-tree which
is a X,-tree over V. Suppose that T does not have a branch of length . So,
since k is regular, every branch of 7" belongs to V.

Let @ be the I1} sentence expressing that x is inaccessible.

Let ¥ be the following II} sentence:

VB (B is a branch of T' — 3z B = x).

Let F' be the function with domain x such that F'(a)) = T, the ath level
of T. Since t € T, is a %, fact over Vi, F is A, 1-definable over V. Let ¢
be the following first-order sentence:

Va (o is an ordinal — 3z F(a) = z).
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Thus,
(Vi, 6, T,F) =P AT A .

Hence, there is A < k such that
<V)\,€,TQV)\,FOV>\> |:@/\W/\g0.

Fix some t € Ty. Let pred(t) = {t' € T : t' <p t}. It is clear that
pred(t) is a branch through T'N V). So, pred(t) € V), and hence, since A is
inaccessible, |pred(t)| < A. A contradiction. m

COROLLARY 2.8. If Kk is X, -w.c., then k has the ¥, -tree property.

2.1.2. The partition property. Recall that if s is a cardinal and n > 0 is
a natural number, [x]" is the set of all subsets of k with exactly n elements.

Given a cardinal k, natural numbers n,m (n > 0), and a function f :
[k]" — m, a set H C k is said to be f-homogeneous iff f”[H|" = {i} for
some ¢ € m.

DEFINITION 2.9. Let x be a cardinal. Then x has the X, -partition prop-
erty iff x is an inaccessible cardinal and for every function f : [x]?> — {0,1}
that is ¥, -definable over V,; there exists an f-homogeneous set of cardinal-

ity k. We write K Zn, (k)? to indicate that x has the ¥,-partition property.

The X, -partition property is defined analogously, and we write s 2o, (k)2

LEMMA 2.10. For everyn € w, n > 0, if k has the X, -tree property, then
RN (k)2

Proof. Let F : [k]?> — {0,1} be X,-definable over V,. Let ¢(x,y, 2) be a
Y, formula, possibly with parameters in V, that defines it.

For every 8 < k, let fg: 8 — {0,1} be such that for all o < 3, fg(ar) =

F({a,p}). Let T = {fglv: v < B < K} be ordered by extension. Note that
T is X,-definable over V,:

teTiff Vi = 30,7(y < fAdom(t) =y A (Va < 7)(3i € {0,1})(#(a, 5,4))).

It is clear that for every 5 < &, we have: t € T3 iff t € T and dom(t) = 3.
So, T'is a 3,,-tree. Moreover, ht(1") = k, and since for every 3 < k, Ty C 268,
and k is inaccessible, |Tg| < k. Therefore T is a s-tree.

Since k has the X,,-tree property, there is a cofinal branch B through T'.
Let {t¢ : £ < Kk} be an increasing enumeration of B so that dom(t¢) = ¢ for
all £ < k. For every i € {0,1}, let

H; ={{ <r:t (1) € B}.

We claim that for every i € {0,1}, H; is a homogeneous subset of x for F'.
Fix a, 8,7 € H; with a < 3 <. Since t; (o, i) C tg and t5(8,i) C Ly,

F({a,B}) = tg(a) =i = t,(8) = F({B,7})-
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So, the H; are homogeneous for ¢ € {0,1}. Since |B| = k, either |Hy| = K or
|H1| = k. Therefore, k Zn, (k)% =

COROLLARY 2.11. If k has the X, -tree property, then k RN (k)2.

LEMMA 2.12 (E. Kranakis, [8]). Assume V = L. For everyn > 0, K Zn,
(k)% implies that for every N} formula ®(xo,...,z) and ag,...,ar € Ly
such that L, = ®(ag,...,ax), there is X < k with Ly <, Lx such that
L, E ®(ap,...,a).

Finally, we have:

THEOREM 2.13. (V = L) Let k be a cardinal. Then for every n > 1 the
following are equivalent:

(1) k is a ¥p-w.c. cardinal.
(2) K has the 3, -tree property.

(3) Kk = (k)2

Proof. (1)=-(2) follows from Lemma 2.7.
(2)=(3) follows from Lemma 2.10.

Since L = & Zn, (k)?, by definition, & is inaccessible in L. The rest of
implication (3)=-(1) follows from Lemma 2.12 (this is the only place where
V = L is used) and Proposition 2.3. =

COROLLARY 2.14. (V = L) Let k be a cardinal. Then the following are
equivalent:

(1) k is Ty-w.c.

(2) Kk has the X, -tree property.

(3) K = (0.

2.2. Generic absoluteness for projective ccc posets

DEFINITION 2.15. L(R)M is a ,-w.c. (resp. ¥,-w.c.) Solovay model
over V. .C M iff M satisfies:

(1) For every = € R, w; is a ¥,-w.c. (resp. X,-w.c.) cardinal in V[z].
(2) Every x € R is small-generic over V.

Notice that since every ¥,-w.c. (resp. ¥,-w.c.) cardinal is inaccessible,
Lemma 1.1 also holds for ¥,,-w.c. (resp. ¥,-w.c.) Solovay models.
We will make use of the following property of ¥,-w.c. cardinals:

LEMMA 2.16. Let n > 1. Suppose that k is a Xp-w.c. cardinal and P
is a Kk-cc poset that is X, -definable (with parameters) over V. If X C P
has cardinality less than k, then there is a complete subposet Q of P, also of
cardinality less than k, such that X C Q.
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Proof. Let X C P with | X| < k. Since k is inaccessible, there is a cardinal
A < k with X C V.

Let R = {D : D is a maximal antichain of P}. Since P is x-cc, R C V.
For all D € V,, D € R iff V,; satisfies:

DCPAVz,yeD (z#y—axlpy) AVz (2€P—3JyeD(-z1lpy)).

Note that the formula above is the conjunction of a ¥, formula and a II,
formula. Hence, R is a A, 11 predicate in V.

Let @ be the conjunction of the following sentences of the second-order
language of type {€,P, <p, Lp, R}:

(1) <p is a partial order with field(<p) = P.

(2) Lp is the incompatibility relation of (P, <p).

B) VY (Y CPAVey YeAYyAzx#y—x lpy)
AVz (Pz — Jy (YyA-y Lp 2)) — Jz (Re ANY = z)), i.e, every
maximal antichain of P belongs to R.

Notice that (1) and (2) are first-order, and (3) is IT}.
We have
(Vi,€,P,<p, Lp,R) = &.

So, since k is ¥,-w.c., there is a < k with A < « such that
Vo, e, PNVy, <pNV,, LpNVy, RNVy) E ©.

Let Q = (PN V,, <pNV,, LpNV,). So, |Q| < k. By (1) and (2), Q is a
subposet of P that preserves the incompatibility relation of P. Since A < «,
we have X C PN V,. Finally, let D be a maximal antichain of Q. Then, by
(3), D € RNV,. So since D € R, it follows that D is a maximal antichain
of P. This shows that Q is a complete subposet of P of cardinality less than
% which includes X. =

For o an ordinal, we shall write Coll, for the Levy collapse below «,
instead of the usual and more cumbersome Coll(w, <«).

THEOREM 2.17. Let n > 1. Suppose L(R)M is a ,,-w.c. Solovay model
over V and P is a ccc poset which is, in M, ¥,-definable (with parame-
ters) over H(w1). Then the L(R) of any P-extension of M is also a ¥y, -w.c.
Solovay model over V.

Proof. Let k = w{w . Force over M with Woodin’s partial ordering W (see
Lemma 1.1) to obtain a Coll,-generic C over V so that RM = RV[C]. Notice
that for a generic filter G C P, G is P-generic over M iff it is P-generic over
V[C] and, moreover, R [6] = RVICUIG] Thus, to prove the theorem it will be
enough to show that every real in V[C][G] is generic over V for some forcing
notion P in V' that is countable in V[C][G].



104 J. Bagaria and R. Bosch

Let P be a Coll,-name for P in V. By the Factor Lemma for the Levy
collapse, we may assume that the parameters of the definition of P are in V.
Further, since the Levy collapse is homogeneous, we may assume that I-co,
“Pis a poset”. Notice that Coll, is definable by means of a ¥; and a II;
formula without parameters over Vy (see [2]). Hence, for n > 1, Coll, P is
a poset which is X,-definable over V, possibly with parameters.

Let z be a real in V[C][G]. Let & be a simple Coll, * P-name for z in V,
and let X be the set of all conditions of Coll, P in TC(i). Since Coll, * P is
k-cc, | X| < k. So, by Lemma 2.16, there is a complete subposet Q of Coll,, «P
such that X C Q and Q has cardinality less than x. Let H = (C'« G) N Q.
Then H is Q-generic over V and #[H] = z[C * G] = z. This completes the
proof of the theorem since it shows that x is generic over V for the countable

poset Q. m
COROLLARY 2.18.

(1) For everyn > 1, Con(ZFC + there exists a Xy, -w.c. cardinal) implies
Con(ZFC + L(R)-absoluteness for E}zﬂ cce posets).

(2) Con(ZFC + there ezists a ¥,-w.c. cardinal) implies Con(ZFC+L(R)-
absoluteness for projective ccc posets).

Proof. (1): Suppose k is ¥,-w.c. Force with Coll,; so that the L(R) of
the generic extension M is a ¥,-w.c. Solovay model over V. By Theorem
2.17 and Lemma 1.3, L(R)-absoluteness holds in M for ccc posets that are
Y., definable, with parameters, in H(w;), and hence, for Z]J}L 41 ccc posets. =

Recall that for I" a class of posets, a poset P is I'-productive-ccc iff it is
ccc and for every ccc poset Q in I, P x QQ is ccc.

Let I5, be the class of all Z:_,}L-‘rl ccc posets, and let I, be the class of all
projective ccc forcing notions. Then, as in [2], we can show:

THEOREM 2.19.

(1) If LR)M is a $,-w.c. Solovay model, then in L(R)M every ccc poset
1s I, -productive-ccc.

(2) If LR)M is a ¥,,-w.c. Solovay model, then in L(R)M every ccc poset
1s I,,-productive-ccc.

Proof. (1): Suppose L(R)M is a ¥,-w.c. Solovay model over V, and in
L(RYM, P is a ccc poset and Q is a poset in the class I},.

It is known (see [7]) that there is a ccc poset Q* in I, such that Q
completely embeds into Q*, and if G is Q*-generic over some model M, then
MIG] is of the form M|g] for some real g.

Let Q* be as above, and suppose 7 is a Q*-name for an uncountable
antichain of P, 7 € L(R)M. Let ¢p(z), p<,(z,y) and ¢, (z,y) be formu-
las with only reals and ordinals as parameters that define, respectively, P,
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<p, and Lp in L(R)M, and let ¢g-(z), <o (2,y), and @1 . (z,y) be DI
formulas with real parameters that define, respectively, Q*, <g«, and Lg-.
Thus, there is a formula ¢(x,y) with only reals and ordinals as parameters
such that the following holds in L(R)M:

(i) For all p, a, if p(p, a), then ¢g-(p) and pp(a).

(ii) For all p,q,a,b, if ¢(p, a), ¥(g,b), and not ¢ . (p, q), then ¢, (a,b).

(iii) For all p, a, p(p,a) iff (p,a) € 7.

Suppose G is Q*-generic over L(R)M. So, G is also generic over M. Let
N be the L(R) of L(R)M[G]. Clearly, since M[G] and L(R)™[G] have the
same reals, N = L(R)M[C], Thus, by Lemma 1.3 and Theorem 2.17, (i) and
(ii) above hold in N. Since G is easily coded by a real, G € N. In N, let
A={a:3pe€ G p(p,a)}. Notice that, by (iii) above, 7[G] C A, and so A is
an uncountable set in N. Also, for every a € A, N |= ¢p(a). Let PV and <
be the sets defined in N by the formulas ¢p(z) and @<, (z,y), respectively.
Then N | “(PN, <p") is a ccc poset”. So, since

N = “A is an uncountable subset of PV”,

we have

N E “3p,q,a,b (o(p,a) Ap(q,0) A1 (p:q) A —p1,(a,b))”.
Therefore, by 1.3 and 2.17,

LIR)M &= “3p,q,a,b (¢(p,a) A (g, b) A =@y (p,q) A=piy(a,b))”,
which contradicts (ii) above.
Now suppose H is Q-generic over L(R)M. Let G' be Q*-generic over
L(R)M such that
LR)M[H] € LR)M[G].
Since P is ccc in L(R)M[G], it is also ccc in L(R)M[H]. =
COROLLARY 2.20. If L(R)M is a ¥,,-w.c. Solovay model over V, then in

M there are no E%H*l Suslin trees. And if L(R)M is a $,-w.c. Solovay model
over V', then in M there are no projective Suslin trees.

Proof. If T is a 2711 41 Suslin tree, then 7' x T with the product ordering
is a ZJ,}%H poset which is not ccc (see [6]). m

3. The strength of generic absoluteness under projective ccc
forcing notions. In this section we shall prove the following:

THEOREM 3.1. If X}-absoluteness holds for A} ccc forcing notions, then
wi 18 a Y1-w.c. cardinal in L.

Proof. Suppose towards a contradiction that w; is not ¥i-w.c. in L. We
know (see [2]) that w; is inaccessible in L and, in fact, w; is inaccessible to
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reals, i.e., wlL[x] is countable for every real z. Hence, by Theorem 2.13, there
is, in L, an Aronszajn tree T = (T, <r) whose nodes are elements of 2<“
and which is a »1-tree over L, .

We need the following version of the Silver tree St for T' (See [5]): For
every set M and every X C M, let HM(X) denote the Skolem hull of X
in M. Then the Silver tree St for T is defined as follows:

(1) (o, B,a) € St iff

(a) a < f <wi,

(b) a € Lg is a function with a C dom(a),
(c) Lg=H"(aU{a}),

d)

St~

a
b) Lg = p”HL(aU{c}), where u is Mostowski’s transitive collapse
function, and p(c) = a.

Note that if (a, 3,a) € St, then («, 3, a) is a node of height a.

LEMMA 3.2 (J. H. Silver, see [5]). St is an Aronszagn tree in L such that
in any model of ZFC (extending L), if there is a branch of length wy through
St, then cf(w) = w.

An important fact for our purposes is that the complexity of St is the
same as that of T. That is:

LEMMA 3.3. Foralln > 1, if T C 2<% is a X, -tree (resp. I,,-tree) over
L, , then St is also a X, -tree (resp. 11, -tree) over L, .

Proof. Fix some recursive enumeration (¢; : ¢ € w) of all formulas of
the language of set theory of the form 3% ¢(¥,z, ), where 7, Z, T are finite
sequences of variables and Z is non-empty. We use the following notational
conventions: given a formula ¢;, we denote by ¢/ the formula resulting from
the removal of the first block of existential quantifiers of ;. Also, 7 ;
denotes the formula resulting by adding the block of existential quantifiers
3y to the formula ¢;. Note that the maps ¢; — ¢, and ¢; — Jy ¢; are
recursive.

If z is an ordered pair, then let (x)g and (z); denote, respectively, the
first and second coordinates of z.

For every set M € L, we define the function M from w x M<“ to
M=<¥ x M<% as follows: for all 7 € w and every b € M <%,

the <, -least a € M<%¥ x M <% such that
rM(i,b) = ¢ M = ¢l((a)o,b, (a)1) if M |= Ty ¢i(b),
(0,0) if M ¥ 3y pi(b).
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Let Sk be the function from w x M<“ into M <% defined by SkM(i,b) =
(rM(i,b))o for every i € w and b € M<¥,

CrLAmM 3.4. (V = L) For every set M, the functions r™ and Sk are
Ay with M as a parameter.

Proof. We only need to show that 7" is A;. Let Sat(z,y, z) denote the
satisfaction relation for sets, i.e., Sat(x,y, z) iff the set x satisfies the formula
y with the sequence z of elements of x. Notice that this is a A; relation.

For every i € w, and every b € M<% rM (i b) = a iff

(1) ais an ordered pair, and (a)o, (a); € M<%.

(2) Either Sat(M, 3y ¢;,b) and

(a) Sat(M,g;, (a)g b (a)1),
(b) (Ve,d € M)(Sat(M, ¢}, c~b"d) — a <r, {c,d)),

(3) or =Sat(M, Iy ¢;,b) and (Ve,d € M)(a <, (c,d)).

Since <y, is a Aj relation, (1), (2), and (3) can be written as both ¥,
and II,, sentences. Hence, M is a A function. =

Therefore, the functions M — r™ and M — Sk™ are Ay definable in L
without parameters.

CLAIM 3.5. (V = L) For every set M and every X C M, HM(X) is a
Ay definable set with M and X as parameters.

Proof. Given M and X C M, define a sequence (HM(X,n)),<., recur-
sively by:
HM(X,0) = SKM” (w x X<¥),
HM (X, n+1) = SKM?(w x HM(X,n)<).
Since Sk is A; definable, with M as parameter, the map n — HM (X, n)
is also A; definable with parameters M and X. Note that HM(X) =
Unew HM (X, n). Thus, for all a,
ac HY(X) if (3ncw)(ac HM(z,n)),
and so HM(X) is Aj-definable with M and X as parameters. m
We continue with the proof of Lemma 3.3. Recall that T is a tree which
is definable over L, with ¥, formulas ¢7(x) and @<, (z,y), possibly with

parameters. Then, for all a, 3 < w; and every b € Ly, (o, 3,b) € Sy iff L,
satisfies:

(1) o and (3 are ordinals and a < 3.
(2) bis a function such that (Vy € o)(y € dom(b)) and b € Lg.
E ; (Vx( € I;g)(x € H:(au {b})) and (Vo € HE¢(a U {b}))(z € Lp).
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(1) is Ag. Since the maps 8 — Lg, and (X, M) — HM(X) are Ay, (2) and
(3) are A;. Finally, it is clear that (4) is X,,.

Note that u, the Mostowski collapsing map, is Ay. So, for all «, 3,~,d
< wj and every b,d € Ly, , (a, 3,b) <g, (7,9,d) iff L,, satisfies:

(1) {0 B,b), (1,6,d) € Sr.
(2) a <.
(3) (Va € Lﬁ)(fc € p(H" (au{d}))) and (Vz € p(H"(aU{d}))(z € Lp).
(4) p(d) =
(1) is 3, in Lwl, (2) is Ap, and (3) and (4) are A; in L, .

Therefore (S7,<g,) is a tree which is 3, -definable over L.

It only remains to show that the relation t € (S7)q is X, over L, . But
this is clear, since t € (St), iff t € S7 and ty = a. This finishes the proof of
Lemma 3.3.

REMARK 3.6. Notice that the arguments above show that in L, if (T, <r)
is a tree where both T" and <7 are ¥,-definable over L, and, possibly, the
levels of T' are not X,-definable over L, where k is an uncountable cardinal,
then St is a 3,-tree over L. Thus, if V = L, then the conclusion of Lemma
2.7 can be strengthened to: every k-tree that is 3,-definable over L, has a
cofinal branch. Hence, in Theorem 2.13 we can add the following as a further
equivalence: « is inaccessible and every k-tree that is X,,-definable over Vi
has a cofinal branch.

Continuing now with the proof of Theorem 3.1, recall that WO is the
I} set of elements of the Baire space w* that code well-orderings of w.
If a € WO, let ||a|| be the order-type of the well-ordering coded by a (see [6]).
For x C w, let T be the element of w* coded by x, via some recursive bijection
between P(w) and w®.

LEMMA 3.7. IfC is a Coll,, -generic filter over V, then there is a function
m € VIC] from WO into WO such that:

(1) For every x € WO, ©(z) is a code for the ordinal | x|
(2) For every x,y € WO, if |[z[| = [lyl[, then m(z) = 7 (y).
(3) 7 has a Coll, -name that can be coded by a A} subset of w*.

Proof. Let WO be the set of all simple Coll,,, -names o for a subset of w
such that I-cen,, ‘G € WO”.

Note that, since Coll,, € L, every Coll,, -generic filter over V is also
generic over L. So, for every v < wi let 7, be the <y -least simple Coll,,, -name
for a subset of w such that IFcon,,, “|7+[ =%". Let By, = {7y : v <wi} and
let B = Coll,, x B,,.

Define the function 7,,, from WO into B, as follows: for every o € WO,
T, (0) = 7 iff
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(1) 7 € B,,,

(2) Feon,, “loll = II7l-
Let 7 = Colly,, X 7y, .

We can now easily check that if C' is Coll,, -generic over V, then in V[C],
7 := 7[C] is a function satisfying: if 7(a) = b, then ||@|| = |[b]| and b is the
unique code in B[C] coding the ordinal ||@|. Thus 7 satisfies (1) and (2) of
the lemma, modulo a recursive coding of elements of the Baire space w* by
subsets of w.

To prove (3) we need to compute the complexity of the sets and names
involved in the definition of .

First observe that Coll,, is a Al poset (see [2]).

Let WO* be the set of codes of elements of WO. Then WO* is a A} set
of reals (cf. [1]).

CLAIM 3.8. Let B* be the set of all codes of elements of B, . Then B*
is a A} set of reals.

Proof. Let <} be the following relation: for every z,y € w*, x <} y iff
x,y code simple Coll,,-names in L for subsets of w and the name coded
by x is <p-less than the name coded by y. Since every simple Coll,,, -name
for a subset of w is hereditarily countable, the predicate “z codes a simple
Coll,,,-name in L for a subset of w” is X1 in H(w1). Hence, as <y, is also
over H(wy), <% is a ¥ relation.

Recall that B,, is the range of a function that assigns to each v < wy
the <p-least Coll,,-name for a subset of w that is forced by Coll,,, to be a
code for . Thus, x € B* iff

(1) @ codes a simple Coll,,-name in L for a subset of w and IFcon,, “z €

WwWO” ,
(2) for every w, if w codes a simple Coll,,-name for a subset of w, and
w <} x, then Wcon,, “IIw| = ||z

Since (1) is a 3 sentence and (2) is II3, B* is a A} set.

Let 7* be the relation given by: 7*(x,y) iff  and y code simple Coll,, -
names o and T, respectively, for subsets of w, and m,, (0) = 7.

We will finish the proof of (3) of Lemma 3.7 by showing that 7* is a A}
relation.

Let S(v,x,y) iff v codes a condition p € Coll,,,  and y code simple
Coll,,-names o and 7, respectively, for subsets of w, and p Icon,, “lIoll =
|7]|”. Since the relation ||7|| = ||7|| is £, and Coll,, is a A} ccc poset, S is
a Al relation.

So, for every z,y € w¥, 7*(x,y) iff

(1) z € WO*,
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(2) y € B,

(3) Vo S(v,z,y).
Since (1) is Al (2) is Al and (3) is I1}, we see that 7* is Al. This concludes
the proof of Lemma 3.7. u

Recall that WF denotes the I1} set of all reals that code a well-founded
relation on w (see [6]). Every set in H(w;) can be coded by some x € WF
as follows: z € w¥ codes a € H(w;) iff (w, E;) = (TC(a), €), where for
n,m € w, nE,m iff x(J(n,m)) = 0, where J is some recursive one-to-one
pairing function from w X w onto w. Moreover, every x € WF codes one and
only one set in H(w1). So, given z € WF, denote by [z] the set coded by x.
Note that the map = — [z] is Ay over H(wy). Let [z] ~ [y] iff ¢ WF or
y ¢ WF or (w, E;) & (w, Ey). Thus, [z] ~ [y] is a £ relation on the reals.
Hence, we may code every function f € H(w;) by a real so that the set F’
of all such codes is a A} set of reals: for every x € w¥, x € F iff

(1) x codes (z,, : n € w),
(2) Vn (x, codes (z0,zL)y A2l 2l € WF),
(3) ¥n,m ([zp] ~ [2] = [zp] ~ 7).

n m n m

Back to the proof of Theorem 3.1, recall that we have a tree T whose
nodes are functions in 2<“* and which is ¥;-definable in L,,. By Lemma 3.3,
St is also ¥j-definable in L,,. And by Lemma 3.2, St is still an Aronszajn
tree in V, and in any generic extension of V that preserves wj. Force with
Coll,, over V. In the generic extension V[C], and using the function 7 from
Lemma 3.7, we may code the nodes of S by reals to obtain an isomorphic
tree S5 on the reals. Namely: for all z,y,z € w*, (z,y,2) € S7 iff

(1) z,y € WO,

(2) m(z) =z An(y) =y,

(3) 3f (=l lyll, f) € St A z codes the <p-least Coll,,-name o for a
real such that o[C] codes f).

Thus, S} is ¥i-definable in H(w1) with 7 and C as additional predicates.
We will now define a version of the specializing forcing of Harrington—
Shelah ([5]) which will code, using S7, any given wi-sequence of reals into a
single real. So, let X be a fixed sequence of reals of length wi, and let X,
denote the ath element of X.
Let the forcing notion IP(S}., X') be defined as follows:

e ¢ € P(S},X) iff ¢ is a finite function from S}, into Q such that

(1) (Vs,t € dom(q))(s <s;z t — q(s) < q(t)),
(2) (Vs = (x,y,2) € dom(q))((z codes o A o[C] codes f A
dom(f) =w-a A q(s) €w) — q(s) € Xa).

e ¢<q iff ¢ Cyq.
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It is clear that P(S}, X)) is Xi-definable in H(w;) with 7, C, and X as
additional predicates. And as in [5] one can show that P(S},X) has the
property K, i.e., every uncountable subset contains an uncountable subset
of pairwise compatible conditions. Hence it is ccc. Forcing with P(S7., X)
adds an order-preserving and continuous function Fx : 7 — Q, with the
property that for every n € w, n € X, iff F(t) = n for some t € S}, of
height w - a. Moreover, F'x specializes ST, i.e., for every a € Q, Fgl(a) is an
antichain of ST.

Now let X° = range(n) = {x € w¥ : Jy (y € WO A 7(y) = )}, ordered
by  <yo o' iff 2, 2" € XogA||z|| < ||2||. Clearly, (X°, <o) is a well-ordering
of reals of order-type wi. By using some fixed recursive coding of elements
of w* by subsets of w, we may assume that X2 € P(w) for all a < wy.

We next describe a finite-support iteration of length w, As-definable over
H(w), with 7, C, and X° as additional predicates. Let Py = P(S%, X©).
Given IP,,, which is As-definable over H(w;), with 7, C, and X° as additional
predicates, we define Py, 1:

For 3 < wi, let (S})<p denote the set of nodes of S} of height < f.
Notice that the predicate x € (S})<p is X1 in the parameter 3 over H(w1).
Let FXn be the P,,-name for the generic specializing function F'x». Thus,

FX" T(S;’)<w-(a+1) = {<p7 <t,7’>> :p € Py, <t,7“> ep te (Sik“)<w-(oe+1)}'

Since PP, is Ag-definable over H(w), with 7, C, and X° as additional pred-
icates, so is the set displayed above, with « as a parameter. Let X" be a
P,,-name for a code for Fyn. i.e., X"t = (X1 : o < w), where for every
o < wq,

Fp, “X"1 C w codes Fxn [(ST) <w-(a41)”-

So, P, forces that X"t codes (z,7), where © = (z; : k € w) codes
(S7)<w-(at1), ¥ = (U + k € w), and gy = {{p,7) : (w,7) € p}. Notice
that the sentence “x codes (S7)<u.(a+1)” 18 Q2.

Now let (p,q) € Ppyq iff p € P, and p IFp, “G € P(S%, X"H1)”. Let us
check that P, 1 is Ao-definable over H (wy), with 7, C, and X" as additional
predicates.

First notice that the predicate “N(q) iff ¢ is a P,,-name for a finite function
from S} into Q" is Ag. Indeed, N(q) iff ¢ is a finite set of triples (g, s,r),
where g € Py, s € S}, and r € Q, and for every (qo, s0,70), (q1, 51,71) € ¢, if
so = s1 and g # r1, then qo L ¢1.

Thus, we have: p IFp, “¢ € P(Sk, X" iff p € P,,, N(¢), and

(1) ¥{(qo80,70), {q1,51,71) € 4(s0 <s2 81 A1 >70 — G0 L 01),
(2) ¥{(q0,50,70) € ¢ (80 = (7,y,2) Az codes o A o[C] codes f A
dom(f) =w-aAp<qArg €Ew— qlFp, “rg € X2H1").
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But g IFp, “ro € X};H” iff 1o = (k,r) and there exists ¢; < g such that
(zk,7) € q1, where © = (z} : k € w) is the code for (S7)<u.(aq1)-

This shows that P,;1 is also Ay over H(w;), with 7, C, and X as
additional predicates.

Let PP be the direct limit of the iteration (P, : n < w). Since the support
of the iteration is finite, it is easily seen that P is As-definable over H(w1)
with 7, C, and X© as additional predicates (see Lemma 4.1 below). Moreover,
every P-generic filter G over V[C] adds a real ¢ such that X° € L|c] (see [5]),
and so V[C][G] E “Jz (L[z] has uncountably many reals)”.

It is interesting to observe that P (and, in fact, P(S%, X)) is not projective
in V[C], as there are no uncountable projective sequences of reals in V|[C].
However, we claim that the two-step iteration Coll,, * P is A:I,,.

It will be enough to show that the relation R(z,y) given by:

“z € Coll,, y is a Coll,,-name for a real, and z lFcon, ¥ € P

is Ay in H(w), without parameters.

But since Coll,,, is a_A% forcing notion, it will be enough to see that the
formula “x II—COHW1 y € P” is equivalent both to a 5 and a Il formula in

H(wy). For this, it is sufficient to show that the formula y € P is equivalent
both to a X3 and a Il formula in H (w;). This is clearly so in the Coll,,, -name
for m as a parameter. But since by Lemma 3.7, m has a Coll,,-name that is
As-definable in H(w;) without parameters, we are done.

Since “Jx (L[r] has uncountably many reals)” is a ¥j sentence, and
it holds in a Coll,, * P-generic extension of V, by X}-absoluteness for A}
ccc posets, it holds in V. Therefore, there exists a real x € V such that
wfm = wq, contradicting the fact that w; is inaccessible to reals. This finishes
the proof of 3.1. =

Theorem 3.1 can be easily generalized:

COROLLARY 3.9. Let n > 2. If E}l absoluteness holds for E}Hl ccc fore-
ing notions, then wy is a Xy -w.c. cardinal in L.

Proof. As in Theorem 3.1, if wy is not a ¥,-w.c. cardinal in L, then
there exists an Aronszajn tree T' on 2<“* which is a X,-tree over L, . As in
Lemmas 3.2 and 3.3, we can find S, a version of the Silver tree for T', which
is an Aronszajn tree definable over L,, and has the same complexity as 7.
Using S, we may define the poset P as in Theorem 3.1 in such a way that
Coll,, *Pis a fZ\]}L 1 and ccc poset that adds a real x such that w; = wle,
yielding a contradiction. =

We finish with two corollaries that summarize our results:
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COROLLARY 3.10. For every n > 2, the following are equiconsistent:

(1) L(R)-absoluteness under ,2\],111-‘,-1 cce posets.
(2) There ezists a Xp-w.c. cardinal.

COROLLARY 3.11. The following are equiconsistent:

(1) L(R)-absoluteness under projective ccc posets.
(2) There ezists a ¥,,-w.c. cardinal.

4. On iterations of projective ccc posets. We will show that after
the Levy collapse of a ¥,,-w.c. cardinal, the property of L(R) being a ¥,,-w.c.
Solovay model is preserved under finite-support iterations of 2711 41 ccc forcing
notions.

Recall that if P is a forcing notion, a simple P-name for a real, i.e., for a
function from w to w, is a set 7 of triples (p, m,n) such that p € P, n,m € w,
and for every m, the set of all p such that (p, m,n) € 7 for some n € w, is a
maximal antichain of PP.

Observe that if P is ccc and its conditions are real numbers, then for
every simple P-name 7 for a real, |TC(7)| is countable. Further, if P is a
finite-support iteration of ccc forcing notions whose conditions are reals,
then it can be easily shown, by induction on the length of the iteration, that
every simple P-name for a real has countable transitive closure.

LEMMA 4.1. Letn > 1. Suppose L(R)M is a Yp-w.c. Solovay model over
V and P € M is the direct limit of an iteration (Py, Qqn : @ < A) of countable
length and with finite support such that for every o < A,

lFp, “Qq s a Z:/lhtl ccc poset”.

Then the L(R) of any P-extension of M is also a ¥,-w.c. Solovay model
over V.

Proof. Let k = wM. Force over M to obtain a Coll,-generic C over V
with RM = RV (see Lemma 1.1).

In M, for each a < A, fix a simple P,-name 7, for a real that codes the
parameters in some fixed X}, definition of Qa-

Since the iteration is of countable length and ccc, all the 7., a < A,
belong to V[C] and P = PVIC] where PVIC is the iteration in V[C] defined
in the same way as P is defined in M. Moreover, a filter G C PP is P-generic
over M iff it is P-generic over V[C], and RMIC] = RVICIIG], Thus, it is enough
to show that for every real x in V[C][G] and every X C Coll,, % P of size less
than k there is a complete subposet Q of Coll,, * P such that Q is countable
in V[C][G], X C Q and z is Q-generic over V.

We proceed by induction on A. So we assume that for every a < A and
every X C Coll, * P, of size less than k, there is a complete subposet Q of
Coll, * P, also of size less than k, such that X C Q.
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We may assume that A is a limit ordinal, since the successor case follows
directly from the proof of Theorem 2.17.

Now fix a subset X of Coll, x P of size less than k, and fix a real z
in V[C][G]. Let & € V be a simple Coll, * P-name for x, and let ¥ =
Coll, * PNTC(&). Since Coll, * P is k-cc, Y has cardinality less than x. Let
Z=XUY.

For every a < A, let Z, = ZNColl, *P,. By inductive hypothesis, we can
find a C-increasing chain (Q, : @ < \) such that Q, is a complete subposet
of Coll, xIP,, hence also a complete subposet of Coll, P, such that Z, C Q,
for all & < A. Let Q = [J,.) Qq. Since the iteration has finite support, Q
is a complete subposet of Coll, * P. Moreover, Q has size less than « and
Z C Q. Furthermore, letting H = C' « G N Q, we have #[H]| = z[C * G| = z,
and so z is Q-generic over V. =u

For conciseness, in what follows we will use the notation IP < QQ to express
that P is a complete subposet of Q.

THEOREM 4.2. Let k be a Xp-w.c. cardinal, n > 1, and let A > 0.
Suppose that P =Py € V is the direct limit of an iteration (Py, Qq : @ < \)
with finite support such that Pg = Coll, and for every a < A,

“( - 1 »”
IFp, “Qa s @ Xy, 4y cce poset”.

Then the L(R) of any P-generic extension of V is a ¥, -w.c. Solovay model
over V.

[G]

Proof. Suppose G is a P-generic filter over V. Notice that wY = K, and

SO wY €1 s a Yn-w.c. cardinal in V. We only need to prove that every real
in V[G] is small-generic over V, for then it will clearly follow that for every
. Vic]
real z in V]G], w,
The proof is by induction on A. So, suppose that for every 5 < A, writing
P; for the iteration up to 8 and letting G5 = G NPg, we find that L(R)YICs]
is a X,-w.c. Solovay model over V.
Let P! = (P}, Q}, : @ < A) € V[Go] be the remaining part of the iteration
(P, Qo : @ < A), ie., P§ = Qo[Go, IP’}Z_H = P. xQuy1 for n < w, and

IP’}X 1= Pl x Qg for a > w. We may assume that for every «,

is a ¥p-w.c. cardinal in V[x].

IFp1 “Qa has a largest element 17,

and 1 is some fixed real that does not depend on «. Moreover, we may
assume that for every p € P! and every a < A, p(a) is a simple P.-name for
a real.

In V[Go), for each a < A, a > 0, fix a simple P.-name 7, for a real that
codes the parameters in a fixed X, | ; definition of QL, so that for some X! 11
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IFp,, “Qa ={z: Soa(vaa)}”,
H_Pa “SQ}! = {<$7y> : T/foc(fﬁvyﬁa)}”,
Fp, “Lgy = {{z,y) : Ou(z,y,7a)}”.

Let x be a real in V[G] and let & € V[Gy] be a simple P!-name for .

Work in V[Go). Since P! is ccc, |TC(4)| is countable. Let u be a large
enough regular cardinal, and let N < H(u) be such that:

(1) PL (1o :a < \), € N,

(2) TC(z) C N,

(3) [N]=Ro.

Notice that if « € ORNN, then 7, € N, and since |TC(7,)| is countable,
TC(7o) € N.

Now let P* be the direct limit of the finite-support iteration (P, QL -
o < \) defined as follows: Pj = P§, and Ibpx “Qf = {z : pal,70)}" if
a € ORNN, and IFpx “QZ = {1}” otherwise, i.e., QZ is the trivial poset.

We need to check that the iteration is well-defined, i.e., if IFps “QZ =
{z: pa(x,74)}”, then 7, is a P -name. We will show much more:

CLAIM 4.3.

(1) If p€ P, then p € PL. And if p € N, then the converse also holds.

(2) If o is a simple P¥-name for a real, then it is also a simple PL-name
for a real. And if 0 € N, then the converse also holds.

(3) If p € P and 0,0', 74 are simple P’ -names for reals, then:

(a) If plres walo,7a), then pltpr pa(0, 7a).
(b) If plrps Ya(o,0',70), then plp1 Ya(0,0',70).
(c) If plrpy Oa(0,0',70), then plFpr 04(0, 0", 70).
And if a,p,0,0" € N, then the converses of (a), (b), and (c) also
hold.
(4) P* <P

Proof. By induction on «. For oo = 0 it is clear. So, let « = 3 + 1.

(1) Fix p € P;,. Then p = (p[B,0’), where p[8 € P}, ¢’ is a simple Pj-
name, and either p|(3 IFps “c’ =17, or p|f3 IFps (o', 78). So, by induction
hypothesis on (1), (2), and (3)(a), we deduce that p[3 € PL, ¢’ is a simple
]P’é—name, and either p[g ”_lea “o/ =17, or p|B II—% ¢p(0’,75). This shows
that p € PL.

Fix now p = (p[B,0’) € PLNN. Thus, p|3 € P}, o’ is a simple ]P’é—name,

/

and p|g ”_]P:}? ¢p(0’,78). Since p € N, we also know that p[3,¢" € N. So,
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again by induction hypothesis on (1), (2), and (3)(a), we infer that p[5 € P%,
o’ is a simple Pj-name, and p[3 Il—pg wp(0’, 73), which shows that p € P%,.

(2) Now suppose that o is a simple P} -name for a real. If ¢ € P}, NTC(0),
we can conclude as before in the case of p that ¢ € P.. This implies that o
is a simple P!-name.

If o is a simple P.-name for a real and o € N, then TC(s) C N. So,
if ¢ € PL, N TC(0), we can conclude as before in the case of p that ¢ € P%.
This implies that o is a simple P}-name. In particular, if & € N, then 7, is
a P} -name.

(3) Suppose now that p € P*, 0,7, are simple P}-names for reals, and
p IFpx ©a(0, 7). We have already shown that p € Pl and o is a simple

P.-name. Since by the induction hypothesis of the theorem, L(R)V[GO]%

]Pl
and L(R)V[G]” are both ¥,-w.c. Solovay models over V, with the same
w1, and since, by induction hypothesis on (4), Py < IP%, we also have

* 1
RV[GO]% C RV[GO}%. So, by Lemma 1.3, there exists a canonical embedding
* 1
from L(R)VIC0 into L(R)VIC™ We claim that p IFp ¢a(0, 7a). Indeed,
suppose G, = Gé « H is P.-generic over V[Gy], with p = p[3x¢ € GL. Since
plFps @a(0,7a), and Py < P};, we deduce that G} := G}j NP} is Ph-generic
over V[Go| with p[f € G- Hence,
VIGIGH E “ias(@) Fay Palo.7a)".
Since we have in (q) = igg(q'), by the canonical elementary embedding of
L(R)VIGIGE] into L(R)VICIGH] e obtain
VIGHIGH E “igy(d) gy alom)".
Hence, V[Go][GL] = ¢a(0, Ta). This proves (a), and similar arguments prove
(b) and (c).
Suppose now that a,p,o0 € N, and p lbp1 pa(0,7a). We have already
shown that p € P}, and 0,7, are P}-names. To see that p IFp: ©a(0,7a),

suppose G, = G * H is P%-generic over V[Go] with p = p[3* ¢ € G%. Since
Ph < IF’}),, we can extend G to a P/lg—generic filter G’é over V[Gp] such that

V[GO] [Gé] ): “iG}i (Q) ”_Qé (Pa(07 Ta)”'

Since iG}, (q) = e (¢) and since 8 € N, by the canonical elementary embed-
ding we have

VIG[Gp]  “iay(q) kg ealo; Ta)”.

Hence, V[Go][G%] = ¢alo, o). This proves the converse of (a), and similar
arguments prove the converses of (b) and (c).
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(4) Finally, suppose P} < P};. By (3), P% is a subposet of P! and the
incompatibility relation is preserved. Now suppose A € V[Gy| is a maximal
antichain of P%. Then A[f3 := {p|f : p € A} is a maximal antichain of Py
and, by induction hypothesis, it is also a maximal antichain of IP’}J,. fpegN,
then clearly A is maximal in P.. So, suppose 3 € N. Then every p € A is
of the form (p[3, o), where p[f3 Iy, (o, 73). Let A(B) := {p(B) : p € A}
Then IFpy “A(f) is a maximal antichain of QE”. Notice that, since IFps “A(B)

]P;*
is countable”, A(3) € L(R)VI[GO} . Thus, by the canonical embedding from
P} P
L(R)VIG]? into L(R)VIG]” we conclude that ”_P%f “A(f) is a maximal
antichain of Qé”.

If o is a limit ordinal, then the claim follows by induction, using the fact
that the iterations have finite support. This finishes the proof of the claim. m

Since the iterations have finite support, it follows from the claim above
that P* < P. Moreover, since & € N, & is a P*-name. Notice that P* is a ccc
iteration. _

Let P = (Pg,Qp : B < ot(On N N)) be the iteration consisting of all
non-trivial iterands of P*, i.e., Py = P§ and for every 3 < ot(On N N),
k5, “Qp = {z : Ya(z,7a)}’, where @ € N and 8 = ot(a N N). For each

p € P*,let p € P be the result of deleting the coordinates of p that correspond
to the trivial iterands of P*. Clearly, the map e : p — p is a dense complete
embedding of P into P*. Notice that & is a P-name.

Recall that G is P-generic over V, and z is a real in V[G]. Let us write G
as Go * G, where G is Py-generic over V and G' is P'-generic over V[Go].
Then i is a Pl-name in V[Gp] and i1 (2) = x. Let g = e 1[G* N P*]. Then
g is P-generic over V[Gy] and i,(#) = x. This shows that = belongs to a
countable finite-support iteration over V[Gp] of E,ll 41 ccc forcing notions.
So, by Lemma 4.1, z is small-generic over V. This proves the theorem. =

COROLLARY 4.4. Suppose that L(R)M is a Yu-w.c. Solovay model over
V and P € M is the direct limit of an iteration (P, Qq : a < \) with finite
support such that for every a < A,

lFo “Qq s a projective ccc poset”.

Then the L(R) of any P-generic extension of M is also a ¥,-w.c. Solovay
model over V.

4.1. Two applications to Martin’s Axziom for projective posets. The first
application will show, modulo the consistency of definable weakly compact
cardinals, that Martin’s Axiom restricted to posets in a given projective
point-class does not imply Martin’s Axiom for posets in higher point-classes.
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DEFINITION 4.5. Let I" be a class of posets. Martin’s Aziom for I, hence-
forth denoted by MA(I'), is the following statement:

For every ccc poset P € I' and for every family (A; :i < k), k < 2%,
of mazximal antichains of P, there exists G C P directed such that for every
i<k, GNA; #0.

For every n > 1, MA(XL) is Martin’s Aziom for X1 posets. MA(Proj) is
Martin’s Axiom for projegfive posets. -

THEOREM 4.6. Letn > 1, and suppose that there exists a Xp-w.c. cardi-
nal in L. Then there exists a poset P such that for every P-generic filter G
over L,

LGl & MA(,;,TlH*I) A-MA(Z, ).

Proof. Let k be the least ¥,-w.c. cardinal in L. Let P be the direct limit
of an iteration (P,, Q, : o < k™), with finite support, where Py = Coll, and
for every a < k™,

«ry s 1 : s on?
IFo “Qq is a ;4 ccc forcing notion”,

so that for every P-generic filter G over L,

LIG) E MA(Zp41) A 270 =Ry

(see [1, Theorem 3.10]).

Now assume, towards a contradiction, that

LIG] |E MA(3,,15).
Then, since wf[G} = k is not a X, 1-w.c. cardinal in L, there is, in L, a
k-Aronszajn tree T which is X, 1-definable over L,. As in the proof of
Theorem 3.1 we may define a X}, , ccc poset of the form Coll,,, *P such that
MA(Coll,,, * P) implies that there exists a real = such that wlL[G} = w{'[x}.
But then L(R)%l% is not a ,-w.c. Solovay model over V, in contradiction
with Theorem 4.2. =

COROLLARY 4.7. Let n > 1 and suppose that the existence of a 3, -w.c.
cardinal is consistent with ZFC. Then ZFC + MA(Z, ) does not imply
MA (S}, 5)-

It is known that if ZF'C is consistent, then ZFC+MA(X1) does not imply
MA(XY) (see [1, Section 5]).

For the second application, let ¢ be the statement “Every set of reals in
L(R) is Lebesgue measurable, has the property of Baire, is Ramsey, and has
the perfect set property”.
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THEOREM 4.8. Let n > 1, and suppose that there exists a >, -w.c. cardi-

nal. Then there exists a poset P such that for every P-generic filter G over V,

V[G] = MA(Z,,,,) A —CH + ¢.

Proof. Let k be a X,-w.c. cardinal, and let P be the direct limit of a

finite-support iteration <IP’a,Qa :a < k1), where Py = Coll,; and for every
a<kT,

72 1 : CSNES ]
IFo “Qa 1s @ X, ccc forcing notion”,

so that for every P-generic filter G over V,

VIG) = MA(Z,41) A 20 =Ry

(see |1, Theorem 3.10]). By Theorem 4.2, L(R)VI¢ is a %,-w.c. Solovay
model over V. Thus,

(1]
(2]
(3]
[4]

[5]

[6]
[7]

(8]
[9]

V[G] ): @. m

COROLLARY 4.9.

(1) For everyn > 1, Con(ZFC + there exists a Xp-w.c. cardinal) implies
Con(ZFC +MA(X, ;) + ~CH + ¢).

(2) Con(ZFC + there exists a X,-w.c. cardinal) implies Con(ZFC +
MA(Proj) + -CH + ¢).
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