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Generi
 absoluteness under proje
tive for
ingbyJoan Bagaria (Bar
elona) andRoger Bos
h (Oviedo)
Abstra
t. We study the preservation of the property of L(R) being a Solovay modelunder proje
tive 


 for
ing extensions. We 
ompute the exa
t 
onsisten
y strength of thegeneri
 absoluteness of L(R) under for
ing with proje
tive 


 partial orderings and, asan appli
ation, we build models in whi
h Martin's Axiom holds for Σ

∼

1
n partial orderings,but it fails for the Σ

∼

1
n+1.1. Introdu
tion. In this paper we 
ontinue the systemati
 study of thepreservation of the property of L(R) being a Solovay model under various
lasses of for
ing notions. This work started in [2℄, where we 
onsidered the
lass of proje
tive absolutely-


 for
ing notions and obtained an exa
t 
on-sisten
y result for the preservation of the property of L(R) being a Solovaymodel under this 
lass of for
ing extensions. It turned out that the large 
ar-dinals involved were the de�nably Mahlo 
ardinals, a weak form of Mahlo
ardinals that satisfy some de�nability 
onditions. As a 
orollary we obtainedthe equi
onsisten
y of: (1) there exists a de�nably-Mahlo 
ardinal; and (2)

L(R)-absoluteness for proje
tive absolutely 


 posets.In [3℄ we showed that every proje
tive strongly proper for
ing notion pre-serves the property of L(R) being a de�nably Mahlo Solovay model. Hen
e,the 
onsisten
y of L(R)-absoluteness under proje
tive strongly proper for
-ing notions has the existen
e of a de�nably Mahlo 
ardinal as an upperbound. We also proved in [3℄ that the 
onsisten
y strength of the preserva-tion of L(R) being a Solovay model under σ-linked for
ing notions is exa
tly
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96 J. Bagaria and R. Bos
hthat of a Mahlo 
ardinal, in 
ontrast with the general 


 
ase, for whi
h aweakly 
ompa
t 
ardinal is required.Re
all that a Solovay model over V is the L(R) of a modelM ⊇ V whi
hhas the following properties:(1) For every x ∈ R, ω1 is an ina

essible 
ardinal in V [x].(2) Every x ∈ R is small-generi
 over V . That is, for some for
ing notion
P in V that is 
ountable in M , there is, in M , a P-generi
 �lter gover V su
h that x ∈ V [g].The reason we 
all a model with properties (1) and (2) above a Solo-vay model is the following result of Woodin (see [2℄), whi
h says that it iselementarily equivalent to Solovay's model from [10℄.Lemma 1.1. Suppose that V ⊆ M are models of (a fragment of ) ZFCand M satis�es (1) and (2) above. Then there is a for
ing notion W in Mwhi
h does not add new reals and 
reates a generi
 �lter C for the Levy
ollapse of ωM

1 over V su
h that M and V [C] have the same reals.Our interest in the preservation of the property of L(R) being a Solovaymodel under for
ing extensions that do not 
ollapse ω1 lies mainly in thefa
t (Lemma 1.3 below) that it implies a strong form of generi
 absolutenessfor the theory of the reals (see [2℄).Definition 1.2. Let V be a model of ZF. Let P ∈ V be a for
ing notionand let ϕ be a formula (possibly with parameters in V ). V is ϕ-absolute for
P i�

V |= ϕ i� V P |= ϕ.If Σ is a set of formulas, V is Σ-absolute for P i� for every ϕ ∈ Σ, V is
ϕ-absolute for P. Given a 
lass Γ of posets, V is Σ-absolute for Γ i� forevery P ∈ Γ , V is Σ-absolute for P in V .

V is L(R)-absolute for P i� there exists an elementary embedding
j : L(R)V → L(R)V Pthat �xes all the ordinals (and therefore all the reals). For Γ a 
lass of posets,

V is L(R)-absolute for Γ if it is L(R)-absolute for every P in Γ .The following lemma is proved in [2℄.Lemma 1.3. Suppose that L(R)M and L(R)N are Solovay models over
V su
h that RM ⊆ RN and ωM

1 = ωN
1 . Then there exists an elementaryembedding j : L(R)M → L(R)N whi
h �xes all the ordinals.Re
all that for Γ a point-
lass, a Γ -poset is a triple P = 〈P,≤P ,⊥P 〉,where ≤P is a Γ -subset of ωω × ωω, P = field(≤P ), 〈P,≤P 〉 is a partialorder, and ⊥P is a Γ -subset of ωω × ωω 
ontained in P × P su
h that forevery x, y ∈ P , x ⊥P y i� x, y are in
ompatible. P is a proje
tive poset i� it
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tive for
ing 97is (isomorphi
 to) a Γ -poset for some proje
tive point-
lass Γ . Noti
e thata poset P is proje
tive i� it is (isomorphi
 to a poset that is) �rst-orderde�nable in H(ω1), with parameters.In this paper we 
onsider the 
lass of proje
tive 


 for
ing notions. Weshow that the property of L(R) being a Σn-weakly 
ompa
t Solovay model(see de�nitions below) is preserved by for
ing with Σ
∼

1
n+1 


 posets, andthat the property of L(R) being a de�nably weakly 
ompa
t Solovay modelis preserved by all proje
tive 


 posets. We give an example of a ∆1

3 poset
P with the property K, hen
e 


, su
h that Σ1

4 generi
 absoluteness underfor
ing with P implies that ω1 is Σ1-weakly 
ompa
t in L. A generaliza-tion of this example to higher proje
tive levels shows that the 
onsisten
ystrength of L(R)-absoluteness under Σ
∼

1
n+1 


 for
ing is exa
tly the exis-ten
e of a Σn-weakly 
ompa
t 
ardinal. Further, the 
onsisten
y strength of

L(R)-absoluteness under proje
tive 


 for
ing extensions is exa
tly that ofthe existen
e of a de�nably weakly 
ompa
t 
ardinal. In the last se
tion, andas an appli
ation of the previous results, we build models in whi
h Martin'saxiom holds for Σ
∼

1
n partial orderings but not for the Σ

∼
1
n+1.2. Proje
tive 


 for
ing extensions. We will address the questionof the preservation of the property of L(R) being a Solovay model underarbitrary proje
tive 


 for
ing notions. As we will see, we need to 
onsidera de�nable form of weakly 
ompa
t 
ardinals.2.1. Σn-weakly 
ompa
t 
ardinals. Re
all that a Π1
1 senten
e of the lan-guage of set theory is a senten
e of the form ∀X ϕ(X), where ϕ(X) is a�rst-order formula of the language of set theory expanded with the predi-
ate symbol X.Definition 2.1. Let κ be a 
ardinal and n ∈ ω. Then κ is Σn-weakly
ompa
t (Σn-w.
., for short) i� κ is ina

essible and for every R ⊆ Vκ whi
his de�nable by a Σn formula (with parameters) over Vκ and every Π1

1 sen-ten
e Φ, if
〈Vκ,∈, R〉 |= Φthen there is α < κ (equivalently, unboundedly many α < κ) su
h that

〈Vα,∈, R ∩ Vα〉 |= Φ.That is, κ re�e
ts Π1
1 senten
es with Σn predi
ates. Moreover, κ being

Πn-weakly 
ompa
t (Πn-w.
., for short) is de�ned analogously by substi-tuting Πn for Σn in the de�nition above. Thus, an ina

essible 
ardinal κ is
Πn-w.
. i� it re�e
ts Π1

1 senten
es with Πn predi
ates. An ina

essible 
ar-dinal is ∆n-weakly 
ompa
t (∆n-w.
., for short) i� it re�e
ts Π1
1 senten
eswith ∆n predi
ates.



98 J. Bagaria and R. Bos
hDefinition 2.2 (A. Leshem, [9℄). A 
ardinal κ is Σω-weakly 
ompa
t(Σω-w.
., for short) i� κ is Σn-w.
. for every n ∈ ω.Proposition 2.3. For κ an ina

essible 
ardinal , the following are equiv-alent :(1) κ is Σn-w.
.(2) κ is Πn-w.
.(3) κ is ∆n+1-w.
.(4) For every Π1
1 formula Φ(x0, . . . , xk) in the language of set theoryand every a0, . . . , ak ∈ Vκ, if Vκ |= Φ(a0, . . . , ak), then there is λ ∈

In := {λ < κ : λ is ina

essible and Vλ 4n Vκ} su
h that Vλ |=
Φ(a0, . . . , ak).Proof. (3)⇒(1) and (3)⇒(2) are trivial.(1)⇒(2): Suppose that R ⊆ Vκ. For every Π1

1 formula Ψ where R appearsas a predi
ate, let Ψ̃ be the formula obtained from Ψ by substituting everyo

urren
e of the subformula Rx, where x is a �rst order variable, by ¬Rx.Note that Ψ̃ is also Π1
1.It is easily shown, by indu
tion on the 
omplexity of formulas, that forevery formula Ψ and every α,

〈Vα,∈, R ∩ Vα〉 |= Ψ i� 〈Vα,∈, Vα \R〉 |= Ψ̃ .Suppose now that R ⊆ Vκ is de�nable by means of a Πn formula over Vκ and
Φ is a Π1

1 senten
e. If 〈Vκ,∈, R〉 |= Φ, then 〈Vκ,∈, Vκ \ R〉 |= Φ̃. Sin
e κ is
Σn-w.
., there is α < κ su
h that 〈Vα,∈, (Vκ\R)∩Vα〉 = 〈Vα,∈, Vα\R〉 |= Φ̃,and therefore 〈Vα,∈, R ∩ Vα〉 |= Φ.(2)⇒(4): Suppose that Φ(x0, . . . , xk) = ∀X ϕ(X,x0, . . . , xk) is a Π1

1 for-mula and a0, . . . , ak ∈ Vκ are su
h that Vκ |= Φ(a0, . . . , ak).Let Ψ be the Π1
1 senten
e expressing that κ is ina

essible, and let σ bethe �rst order senten
e saying that the Πn-
lub Cn := {α < κ : Vα 4n Vκ}is unbounded. Then
〈Vκ,∈, Cn〉 |= Φ(a0, . . . , ak) ∧ Ψ ∧ σ.Sin
e κ is Πn-w.
., there is λ < κ su
h that

〈Vλ,∈, Cn ∩ Vλ〉 |= Φ(a0, . . . , ak) ∧ Ψ ∧ σ.But then λ is ina

essible, and sin
e Cn ∩ λ is unbounded, λ ∈ In.(4)⇒(3): Suppose that R is a ∆n+1 subset of Vκ and Φ is a Π1
1 senten
esu
h that

〈Vκ,∈, R〉 |= Φ.Let ϕ(x, y0, . . . , yk) be a Σn+1 formula and ψ(x, z0, . . . , zl) a Πn+1 formulathat de�ne R in Vκ with parameters a0, . . . , ak and b0, . . . , bl, respe
tively.
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ing 99Thus,
〈Vκ,∈, R〉 |= ∀x (Rx↔ ϕ(x, a0, . . . , ak) ↔ ψ(x, b0, . . . , bl)).Let Φ′(y0, . . . , yk) be the Π1

1 formula (with y0, . . . , yk as the only free indi-vidual variables) obtained by substituting every o

urren
e of the formula
Rx in Φ by the formula ϕ(x, y0, . . . , yk). Then, 
learly, Vκ |= Φ′(a0, . . . , ak).Hen
e, there is λ ∈ In su
h that

Vλ |= Φ′(a0, . . . , ak) ∧ ∀x (ϕ(x, a0, . . . , ak) ↔ ψ(x, b0, . . . , bl)).But sin
e Vλ 4n Vκ, R ∩ Vλ = {x : Vλ |= ϕ(x, a0, . . . , ak)}. Therefore,
〈Vλ,∈, R ∩ Vλ〉 |= Φ.Noti
e that in the proof of (4)⇒(3) above, we have not made use of thefa
t that λ was ina

essible. Thus an ina

essible 
ardinal κ is Σn-w.
. i� κre�e
ts Π1

1 senten
es (in the language with ∈ only) to some λ < κ su
h that
Vλ 4n Vκ.Leshem [9℄ has proved that if κ is Mahlo, then the set of Σω-w.
. 
ardinalsbelow κ is stationary. So, all these 
ardinals are, 
onsisten
y-wise, below aMahlo 
ardinal.Let us re
all from [2℄ that a subset C of a 
ardinal κ is a Π

∼n-
lub i� Cis a 
lub subset of κ that is de�nable over Vκ by means of a Πn formula,possibly with parameters. A subset S ⊆ κ is Π
∼n-stationary i� for every

Π
∼n-
lub subset C of κ, S ∩ C 6= ∅. (Noti
e that we do not require that Sitself be Πn-de�nable.) Finally, κ is a Π

∼n-Mahlo 
ardinal i� it is ina

essibleand the set of all ina

essible 
ardinals below κ is Π
∼n-stationary. For moreinformation about Π

∼n-Mahlo 
ardinals see [2℄ and [4℄. The next fa
t showsthat Σn-w.
. 
ardinals are Π
∼n-Mahlo, and that the least Π

∼n-Mahlo 
ardinalis not Σn-w.
.Fa
t 2.4. Every Σn-w.
. 
ardinal κ is Π
∼n-Mahlo, and the set of Π

∼n-Mahlo 
ardinals below κ is Π
∼n-stationary.Proof. Suppose that κ is Σn-w.
. Let C be a Π

∼n-
lub of κ, i.e., C isa 
lub on κ whi
h is de�nable over Vκ by means of a Πn formula withparameters. Let Φ the Π1
1 senten
e expressing that κ is ina

essible. Let ̺be the �rst-order senten
e expressing that C is unbounded. Then

〈Vκ,∈, C〉 |= Φ ∧ ̺.So, there is α < κ su
h that
〈Vα,∈, C ∩ Vα〉 |= Φ ∧ ̺.Therefore α is ina

essible, and sin
e C ∩ Vα = C ∩ α is unbounded in α,

α ∈ C.
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hNote that �every Π
∼n-
lub of κ 
ontains an ina

essible 
ardinal� is ex-pressible by a �rst-order senten
e. Therefore, the above argument shows thatthere is a Π

∼n-stationary set of Π
∼n-Mahlo 
ardinals below κ.Re
all κ is a Σω-Mahlo 
ardinal i� it is Π

∼n-Mahlo for every n ∈ ω.In [4℄ it is shown that every Σω-w.
. 
ardinal is Σω-Mahlo, and that the setof Σω-Mahlo 
ardinals below a Σω-w.
. 
ardinal is Σω-stationary. However,also from [4℄, if κ is Πn+1-Mahlo, then the set of Σn-w.
. 
ardinals below κis Πn+1-stationary.2.1.1. The tree propertyDefinition 2.5. Let κ be a 
ardinal and n ∈ ω. A tree T = 〈T,≤T 〉 with
T ⊆ Vκ is a Σn-tree (over Vκ) i� there are Σn formulas ϕT (x), ϕ≤T

(x, y) and
ϕhtT

(x, y), possibly with parameters in Vκ, su
h that for every t, t′ ∈ Vκ andevery α < κ,
t ∈ T i� Vκ |= ϕT (t),

t ≤T t′ i� Vκ |= ϕ≤T
(t, t′),

t ∈ Tα i� Vκ |= ϕhtT
(t, α),where Tα denotes the αth level of the tree T . Similarly, we de�ne the notionof Πn-tree by substituting Πn for Σn in the above de�nition. Moreover, T isa ∆n-tree i� T is both a Σn-tree and a Πn-tree. Finally, T is a Σω-tree i� Tis a Σn-tree for some n ∈ ω.Definition 2.6. Let κ be a 
ardinal and n ∈ ω. κ has the Σn-treeproperty i� κ is ina

essible and every κ-tree whi
h is a Σn-tree has a 
o�nalbran
h. The Πn-tree property , ∆n-tree property , and Σω-tree property arede�ned analogously.Lemma 2.7. For every n ∈ ω, if κ is Σn-w.
., then κ has the Σn-treeproperty.Proof. Suppose that κ is a Σn-w.
. 
ardinal and let T be a κ-tree whi
his a Σn-tree over Vκ. Suppose that T does not have a bran
h of length κ. So,sin
e κ is regular, every bran
h of T belongs to Vκ.Let Φ be the Π1

1 senten
e expressing that κ is ina

essible.Let Ψ be the following Π1
1 senten
e:

∀B (B is a bran
h of T → ∃x B = x).Let F be the fun
tion with domain κ su
h that F (α) = Tα, the αth levelof T . Sin
e t ∈ Tα is a Σn fa
t over Vκ, F is ∆n+1-de�nable over Vκ. Let ϕbe the following �rst-order senten
e:
∀α (α is an ordinal → ∃x F (α) = x).
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ing 101Thus,
〈Vκ,∈, T, F 〉 |= Φ ∧ Ψ ∧ ϕ.Hen
e, there is λ < κ su
h that

〈Vλ,∈, T ∩ Vλ, F ∩ Vλ〉 |= Φ ∧ Ψ ∧ ϕ.Fix some t ∈ Tλ. Let pred(t) = {t′ ∈ T : t′ <T t}. It is 
lear that
pred(t) is a bran
h through T ∩ Vλ. So, pred(t) ∈ Vλ, and hen
e, sin
e λ isina

essible, |pred(t)| < λ. A 
ontradi
tion.Corollary 2.8. If κ is Σω-w.
., then κ has the Σω-tree property.2.1.2. The partition property. Re
all that if κ is a 
ardinal and n > 0 isa natural number, [κ]n is the set of all subsets of κ with exa
tly n elements.Given a 
ardinal κ, natural numbers n,m (n > 0), and a fun
tion f :
[κ]n → m, a set H ⊆ κ is said to be f -homogeneous i� f”[H]n = {i} forsome i ∈ m.Definition 2.9. Let κ be a 
ardinal. Then κ has the Σn-partition prop-erty i� κ is an ina

essible 
ardinal and for every fun
tion f : [κ]2 → {0, 1}that is Σn-de�nable over Vκ there exists an f -homogeneous set of 
ardinal-ity κ. We write κ Σn−−→ (κ)2 to indi
ate that κ has the Σn-partition property.The Σω-partition property is de�ned analogously, and we write κ Σω−−→ (κ)2.Lemma 2.10. For every n ∈ ω, n > 0, if κ has the Σn-tree property , then
κ

Σn−−→ (κ)2.Proof. Let F : [κ]2 → {0, 1} be Σn-de�nable over Vκ. Let ϕ(x, y, z) be a
Σn formula, possibly with parameters in Vκ, that de�nes it.For every β < κ, let fβ : β → {0, 1} be su
h that for all α < β, fβ(α) =
F ({α, β}). Let T = {fβ↾γ : γ ≤ β < κ} be ordered by extension. Note that
T is Σn-de�nable over Vκ:
t ∈ T i� Vκ |= ∃β, γ(γ ≤ β∧dom(t) = γ∧ (∀α < γ)(∃i ∈ {0, 1})(ϕ(α, β, i))).It is 
lear that for every β < κ, we have: t ∈ Tβ i� t ∈ T and dom(t) = β.So, T is a Σn-tree. Moreover, ht(T ) = κ, and sin
e for every β < κ, Tβ ⊆ 2β,and κ is ina

essible, |Tβ| < κ. Therefore T is a κ-tree.Sin
e κ has the Σn-tree property, there is a 
o�nal bran
h B through T .Let {tξ : ξ < κ} be an in
reasing enumeration of B so that dom(tξ) = ξ forall ξ < κ. For every i ∈ {0, 1}, let

Hi = {ξ < κ : t⌢ξ 〈ξ, i〉 ∈ B}.We 
laim that for every i ∈ {0, 1}, Hi is a homogeneous subset of κ for F .Fix α, β, γ ∈ Hi with α < β < γ. Sin
e t⌢α 〈α, i〉 ⊆ tβ and t⌢β 〈β, i〉 ⊆ tγ ,
F ({α, β}) = tβ(α) = i = tγ(β) = F ({β, γ}).
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hSo, the Hi are homogeneous for i ∈ {0, 1}. Sin
e |B| = κ, either |H0| = κ or
|H1| = κ. Therefore, κ Σn−−→ (κ)2.Corollary 2.11. If κ has the Σω-tree property , then κ Σω−−→ (κ)2.Lemma 2.12 (E. Kranakis, [8℄). Assume V = L. For every n > 0, κ Σn−−→
(κ)2 implies that for every Π1

1 formula Φ(x0, . . . , xk) and a0, . . . , ak ∈ Lκsu
h that Lκ |= Φ(a0, . . . , ak), there is λ < κ with Lλ 4n Lκ su
h that
Lκ |= Φ(a0, . . . , ak).Finally, we have:Theorem 2.13. (V = L) Let κ be a 
ardinal. Then for every n ≥ 1 thefollowing are equivalent :(1) κ is a Σn-w.
. 
ardinal.(2) κ has the Σn-tree property.(3) κ Σn−−→ (κ)2.Proof. (1)⇒(2) follows from Lemma 2.7.(2)⇒(3) follows from Lemma 2.10.Sin
e L |= κ

Σn−−→ (κ)2, by de�nition, κ is ina

essible in L. The rest ofimpli
ation (3)⇒(1) follows from Lemma 2.12 (this is the only pla
e where
V = L is used) and Proposition 2.3.Corollary 2.14. (V = L) Let κ be a 
ardinal. Then the following areequivalent :(1) κ is Σω-w.
.(2) κ has the Σω-tree property.(3) κ Σω−−→ (κ)2.2.2. Generi
 absoluteness for proje
tive 


 posetsDefinition 2.15. L(R)M is a Σn-w.
. (resp. Σω-w.
.) Solovay modelover V ⊆M i� M satis�es:(1) For every x ∈ R, ω1 is a Σn-w.
. (resp. Σω-w.
.) 
ardinal in V [x].(2) Every x ∈ R is small-generi
 over V .Noti
e that sin
e every Σn-w.
. (resp. Σω-w.
.) 
ardinal is ina

essible,Lemma 1.1 also holds for Σn-w.
. (resp. Σω-w.
.) Solovay models.We will make use of the following property of Σn-w.
. 
ardinals:Lemma 2.16. Let n ≥ 1. Suppose that κ is a Σn-w.
. 
ardinal and Pis a κ-

 poset that is Σn-de�nable (with parameters) over Vκ. If X ⊆ Phas 
ardinality less than κ, then there is a 
omplete subposet Q of P, also of
ardinality less than κ, su
h that X ⊆ Q.



Generi
 absoluteness under proje
tive for
ing 103Proof. LetX ⊆ P with |X| < κ. Sin
e κ is ina

essible, there is a 
ardinal
λ < κ with X ⊆ Vλ.Let R = {D : D is a maximal anti
hain of P}. Sin
e P is κ-

, R ⊆ Vκ.For all D ∈ Vκ, D ∈ R i� Vκ satis�es:
D ⊆ P ∧ ∀x, y ∈ D (x 6= y → x ⊥P y) ∧ ∀z (z ∈ P → ∃y ∈ D (¬z ⊥P y)).Note that the formula above is the 
onjun
tion of a Σn formula and a Πnformula. Hen
e, R is a ∆n+1 predi
ate in Vκ.Let Φ be the 
onjun
tion of the following senten
es of the se
ond-orderlanguage of type {∈,P,≤P,⊥P, R}:(1) ≤P is a partial order with �eld(≤P) = P.(2) ⊥P is the in
ompatibility relation of 〈P,≤P〉.(3) ∀Y (Y ⊆ P ∧ ∀xy (Y x ∧ Y y ∧ x 6= y → x ⊥P y)

∧ ∀z (Pz → ∃y (Y y ∧ ¬y ⊥P z)) → ∃x (Rx ∧ Y = x)), i.e, everymaximal anti
hain of P belongs to R.Noti
e that (1) and (2) are �rst-order, and (3) is Π1
1.We have

〈Vκ,∈,P,≤P,⊥P, R〉 |= Φ.So, sin
e κ is Σn-w.
., there is α < κ with λ < α su
h that
〈Vα,∈,P ∩ Vα,≤P ∩ Vα,⊥P ∩ Vα, R ∩ Vα〉 |= Φ.Let Q = 〈P ∩ Vα,≤P ∩ Vα,⊥P ∩ Vα〉. So, |Q| < κ. By (1) and (2), Q is asubposet of P that preserves the in
ompatibility relation of P. Sin
e λ < α,we have X ⊆ P ∩ Vα. Finally, let D be a maximal anti
hain of Q. Then, by

(3), D ∈ R ∩ Vα. So sin
e D ∈ R, it follows that D is a maximal anti
hainof P. This shows that Q is a 
omplete subposet of P of 
ardinality less than
κ whi
h in
ludes X.For α an ordinal, we shall write Collα for the Levy 
ollapse below α,instead of the usual and more 
umbersome Coll(ω,<α).Theorem 2.17. Let n ≥ 1. Suppose L(R)M is a Σn-w.
. Solovay modelover V and P is a 


 poset whi
h is, in M , Σn-de�nable (with parame-ters) over H(ω1). Then the L(R) of any P-extension of M is also a Σn-w.
.Solovay model over V .Proof. Let κ = ωM

1 . For
e overM with Woodin's partial ordering W (seeLemma 1.1) to obtain a Collκ-generi
 C over V so that RM = RV [C]. Noti
ethat for a generi
 �lter G ⊆ P, G is P-generi
 over M i� it is P-generi
 over
V [C] and, moreover, RM [G] = RV [C][G]. Thus, to prove the theorem it will beenough to show that every real in V [C][G] is generi
 over V for some for
ingnotion P in V that is 
ountable in V [C][G].
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hLet Ṗ be a Collκ-name for P in V . By the Fa
tor Lemma for the Levy
ollapse, we may assume that the parameters of the de�nition of P are in V .Further, sin
e the Levy 
ollapse is homogeneous, we may assume that 
Collκ

“Ṗ is a poset�. Noti
e that Collκ is de�nable by means of a Σ1 and a Π1formula without parameters over Vκ (see [2℄). Hen
e, for n ≥ 1, Collκ ∗ Ṗ isa poset whi
h is Σn-de�nable over Vκ, possibly with parameters.Let x be a real in V [C][G]. Let ẋ be a simple Collκ ∗ Ṗ-name for x in V ,and let X be the set of all 
onditions of Collκ ∗ Ṗ in TC(ẋ). Sin
e Collκ ∗ Ṗ is
κ-

, |X| < κ. So, by Lemma 2.16, there is a 
omplete subposet Q of Collκ∗Ṗsu
h that X ⊆ Q and Q has 
ardinality less than κ. Let H = (C ∗ G) ∩ Q.Then H is Q-generi
 over V and ẋ[H] = ẋ[C ∗ G] = x. This 
ompletes theproof of the theorem sin
e it shows that x is generi
 over V for the 
ountableposet Q.Corollary 2.18.(1) For every n ≥ 1, Con(ZFC+ there exists a Σn-w.
. 
ardinal) implies

Con(ZFC + L(R)-absoluteness for Σ
∼

1
n+1 


 posets).(2) Con(ZFC+ there exists a Σω-w.
. 
ardinal) implies Con(ZFC+L(R)-absoluteness for proje
tive 


 posets).Proof. (1): Suppose κ is Σn-w.
. For
e with Collκ so that the L(R) ofthe generi
 extension M is a Σn-w.
. Solovay model over V . By Theorem2.17 and Lemma 1.3, L(R)-absoluteness holds in M for 


 posets that are

Σn de�nable, with parameters, in H(ω1), and hen
e, for Σ
∼

1
n+1 


 posets.Re
all that for Γ a 
lass of posets, a poset P is Γ -produ
tive-


 i� it is


 and for every 


 poset Q in Γ , P × Q is 


.Let Γn be the 
lass of all Σ

∼
1
n+1 


 posets, and let Γω be the 
lass of allproje
tive 


 for
ing notions. Then, as in [2℄, we 
an show:Theorem 2.19.(1) If L(R)M is a Σn-w.
. Solovay model , then in L(R)M every 


 posetis Γn-produ
tive-


.(2) If L(R)M is a Σω-w.
. Solovay model , then in L(R)M every 


 posetis Γω-produ
tive-


.Proof. (1): Suppose L(R)M is a Σn-w.
. Solovay model over V , and in

L(R)M , P is a 


 poset and Q is a poset in the 
lass Γn.It is known (see [7℄) that there is a 


 poset Q∗ in Γn su
h that Q
ompletely embeds into Q∗, and if G is Q∗-generi
 over some modelM , then
M [G] is of the form M [g] for some real g.Let Q∗ be as above, and suppose τ is a Q∗-name for an un
ountableanti
hain of P, τ ∈ L(R)M . Let ϕP(x), ϕ≤P

(x, y) and ϕ⊥P
(x, y) be formu-las with only reals and ordinals as parameters that de�ne, respe
tively, P,
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≤P, and ⊥P in L(R)M , and let ϕQ∗(x), ϕ≤Q∗

(x, y), and ϕ⊥Q∗
(x, y) be Σ1

n+1formulas with real parameters that de�ne, respe
tively, Q∗, ≤Q∗ , and ⊥Q∗ .Thus, there is a formula ϕ(x, y) with only reals and ordinals as parameterssu
h that the following holds in L(R)M :(i) For all p, a, if ϕ(p, a), then ϕQ∗(p) and ϕP(a).(ii) For all p, q, a, b, if ϕ(p, a), ϕ(q, b), and not ϕ⊥Q∗
(p, q), then ϕ⊥P

(a, b).(iii) For all p, a, ϕ(p, a) i� 〈p, ǎ〉 ∈ τ .Suppose G is Q∗-generi
 over L(R)M . So, G is also generi
 over M . Let
N be the L(R) of L(R)M [G]. Clearly, sin
e M [G] and L(R)M [G] have thesame reals, N = L(R)M [G]. Thus, by Lemma 1.3 and Theorem 2.17, (i) and(ii) above hold in N . Sin
e G is easily 
oded by a real, G ∈ N . In N , let
A = {a : ∃p ∈ G ϕ(p, a)}. Noti
e that, by (iii) above, τ [G] ⊆ A, and so A isan un
ountable set in N . Also, for every a ∈ A, N |= ϕP(a). Let PN and ≤N

Pbe the sets de�ned in N by the formulas ϕP(x) and ϕ≤P
(x, y), respe
tively.Then N |= “〈PN ,≤P

N 〉 is a 


 poset”. So, sin
e
N |= “A is an un
ountable subset of PN”,we have

N |= “∃p, q, a, b (ϕ(p, a) ∧ ϕ(q, b) ∧ ¬ϕ⊥Q∗
(p, q) ∧ ¬ϕ⊥P

(a, b))”.Therefore, by 1.3 and 2.17,
L(R)M |= “∃p, q, a, b (ϕ(p, a) ∧ ϕ(q, b) ∧ ¬ϕ⊥Q∗

(p, q) ∧ ¬ϕ⊥P
(a, b))”,whi
h 
ontradi
ts (ii) above.Now suppose H is Q-generi
 over L(R)M . Let G be Q∗-generi
 over

L(R)M su
h that
L(R)M [H] ⊆ L(R)M [G].Sin
e P is 


 in L(R)M [G], it is also 


 in L(R)M [H].Corollary 2.20. If L(R)M is a Σn-w.
. Solovay model over V , then in

M there are no Σ
∼

1
n+1 Suslin trees. And if L(R)M is a Σω-w.
. Solovay modelover V , then in M there are no proje
tive Suslin trees.Proof. If T is a Σ
∼

1
n+1 Suslin tree, then T × T with the produ
t orderingis a Σ

∼
1
n+1 poset whi
h is not 


 (see [6℄).3. The strength of generi
 absoluteness under proje
tive 


for
ing notions. In this se
tion we shall prove the following:Theorem 3.1. If Σ1

4-absoluteness holds for ∆1
3 


 for
ing notions , then

ω1 is a Σ1-w.
. 
ardinal in L.Proof. Suppose towards a 
ontradi
tion that ω1 is not Σ1-w.
. in L. Weknow (see [2℄) that ω1 is ina

essible in L and, in fa
t, ω1 is ina

essible to
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1 is 
ountable for every real x. Hen
e, by Theorem 2.13, thereis, in L, an Aronszajn tree T = 〈T,≤T 〉 whose nodes are elements of 2<ω1and whi
h is a Σ1-tree over Lω1

.We need the following version of the Silver tree ST for T (See [5℄): Forevery set M and every X ⊆ M , let HM (X) denote the Skolem hull of Xin M . Then the Silver tree ST for T is de�ned as follows:(1) 〈α, β, a〉 ∈ ST i�(a) α < β < ω1,(b) a ∈ Lβ is a fun
tion with α ⊆ dom(a),(
) Lβ = HLβ (α ∪ {a}),(d) a↾α ∈ T .(2) 〈α, β, a〉 ≤ST
〈γ, δ, c〉 i�(a) α ≤ γ,(b) Lβ = µ”HLδ(α∪{c}), where µ is Mostowski's transitive 
ollapsefun
tion, and µ(c) = a.Note that if 〈α, β, a〉 ∈ ST , then 〈α, β, a〉 is a node of height α.Lemma 3.2 (J. H. Silver, see [5℄). ST is an Aronszajn tree in L su
h thatin any model of ZFC (extending L), if there is a bran
h of length ω1 through

ST , then cf(ω1) = ω.An important fa
t for our purposes is that the 
omplexity of ST is thesame as that of T . That is:Lemma 3.3. For all n ≥ 1, if T ⊆ 2<ω1 is a Σn-tree (resp. Πn-tree) over
Lω1

, then ST is also a Σn-tree (resp. Πn-tree) over Lω1
.Proof. Fix some re
ursive enumeration 〈ϕi : i ∈ ω〉 of all formulas ofthe language of set theory of the form ∃x ϕ(y, z, x), where y, z, x are �nitesequen
es of variables and x is non-empty. We use the following notational
onventions: given a formula ϕi, we denote by ϕ′

i the formula resulting fromthe removal of the �rst blo
k of existential quanti�ers of ϕi. Also, ∃y ϕidenotes the formula resulting by adding the blo
k of existential quanti�ers
∃y to the formula ϕi. Note that the maps ϕi 7→ ϕ′

i and ϕi 7→ ∃y ϕi arere
ursive.If x is an ordered pair, then let (x)0 and (x)1 denote, respe
tively, the�rst and se
ond 
oordinates of x.For every set M ∈ L, we de�ne the fun
tion rM from ω × M<ω to
M<ω ×M<ω as follows: for all i ∈ ω and every b ∈M<ω,

rM (i, b) =





the <L -least a ∈M<ω ×M<ω su
h that
M |= ϕ′

i((a)0, b, (a)1) if M |= ∃y ϕi(b),

〈∅, ∅〉 if M 2 ∃y ϕi(b).
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tion from ω ×M<ω into M<ω de�ned by SkM (i, b) =
(rM (i, b))0 for every i ∈ ω and b ∈M<ω.Claim 3.4. (V = L) For every set M , the fun
tions rM and SkM are
∆1 with M as a parameter.Proof. We only need to show that rM is ∆1. Let Sat(x, y, z) denote thesatisfa
tion relation for sets, i.e., Sat(x, y, z) i� the set x satis�es the formula
y with the sequen
e z of elements of x. Noti
e that this is a ∆1 relation.For every i ∈ ω, and every b ∈M<ω, rM (i, b) = a i�(1) a is an ordered pair, and (a)0, (a)1 ∈M<ω.(2) Either Sat(M, ∃y ϕi, b) and(a) Sat(M,ϕ′

i, (a)
⌢
0 b

⌢(a)1),(b) (∀c, d ∈M)(Sat(M,ϕ′
i, c

⌢b⌢d) → a <L 〈c, d〉),(3) or ¬Sat(M, ∃y ϕi, b) and (∀c, d ∈M)(a ≤L 〈c, d〉).Sin
e <L is a ∆1 relation, (1), (2), and (3) 
an be written as both Σnand Πn senten
es. Hen
e, rM is a ∆1 fun
tion.Therefore, the fun
tions M 7→ rM and M 7→ SkM are ∆1 de�nable in Lwithout parameters.Claim 3.5. (V = L) For every set M and every X ⊆ M , HM (X) is a
∆1 de�nable set with M and X as parameters.Proof. Given M and X ⊆ M , de�ne a sequen
e (HM (X,n))n<ω re
ur-sively by:

HM (X, 0) = SkM”(ω ×X<ω),

HM (X,n+ 1) = SkM”(ω ×HM (X,n)<ω).Sin
e SkM is ∆1 de�nable, with M as parameter, the map n 7→ HM (X,n)is also ∆1 de�nable with parameters M and X. Note that HM (X) =⋃
n∈ω H

M (X,n). Thus, for all a,
a ∈ HM (X) i� (∃n ∈ ω)(a ∈ HM (x, n)),and so HM (X) is ∆1-de�nable with M and X as parameters.We 
ontinue with the proof of Lemma 3.3. Re
all that T is a tree whi
his de�nable over Lω1

with Σn formulas ϕT (x) and ϕ≤T
(x, y), possibly withparameters. Then, for all α, β < ω1 and every b ∈ Lω1

, 〈α, β, b〉 ∈ ST i� Lω1satis�es:(1) α and β are ordinals and α < β.(2) b is a fun
tion su
h that (∀γ ∈ α)(γ ∈ dom(b)) and b ∈ Lβ.(3) (∀x ∈ Lβ)(x ∈ HLβ (α ∪ {b})) and (∀x ∈ HLβ (α ∪ {b}))(x ∈ Lβ).(4) ϕT (b↾α).
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(1) is ∆0. Sin
e the maps β 7→ Lβ, and (X,M) 7→ HM (X) are ∆1, (2) and
(3) are ∆1. Finally, it is 
lear that (4) is Σn.Note that µ, the Mostowski 
ollapsing map, is ∆1. So, for all α, β, γ, δ
< ω1 and every b, d ∈ Lω1

, 〈α, β, b〉 ≤ST
〈γ, δ, d〉 i� Lω1

satis�es:(1) 〈α, β, b〉, 〈γ, δ, d〉 ∈ ST .(2) α ≤ γ.(3) (∀x ∈ Lβ)(x ∈ µ(HLδ(α∪{d}))) and (∀x ∈ µ(HLδ(α∪{d}))(x ∈ Lβ).(4) µ(d) = b.
(1) is Σn in Lω1

, (2) is ∆0, and (3) and (4) are ∆1 in Lω1
.Therefore 〈ST ,≤ST

〉 is a tree whi
h is Σn-de�nable over Lω1
.It only remains to show that the relation t ∈ (ST )α is Σn over Lω1

. Butthis is 
lear, sin
e t ∈ (ST )α i� t ∈ ST and t0 = α. This �nishes the proof ofLemma 3.3.Remark 3.6. Noti
e that the arguments above show that in L, if (T,≤T )is a tree where both T and ≤T are Σn-de�nable over Lκ and, possibly, thelevels of T are not Σn-de�nable over Lκ, where κ is an un
ountable 
ardinal,then ST is a Σn-tree over Lκ. Thus, if V = L, then the 
on
lusion of Lemma2.7 
an be strengthened to: every κ-tree that is Σn-de�nable over Lκ has a
o�nal bran
h. Hen
e, in Theorem 2.13 we 
an add the following as a furtherequivalen
e: κ is ina

essible and every κ-tree that is Σn-de�nable over Vκhas a 
o�nal bran
h.Continuing now with the proof of Theorem 3.1, re
all that WO is the
Π1

1 set of elements of the Baire spa
e ωω that 
ode well-orderings of ω.If a ∈ WO, let ‖a‖ be the order-type of the well-ordering 
oded by a (see [6℄).For x ⊆ ω, let x be the element of ωω 
oded by x, via some re
ursive bije
tionbetween P(ω) and ωω.Lemma 3.7. If C is a Collω1
-generi
 �lter over V , then there is a fun
tion

π ∈ V [C] from WO into WO su
h that :(1) For every x ∈ WO, π(x) is a 
ode for the ordinal ‖x‖.(2) For every x, y ∈ WO, if ‖x‖ = ‖y‖, then π(x) = π(y).(3) π has a Collω1
-name that 
an be 
oded by a ∆1

3 subset of ωω.Proof. Let ẆO be the set of all simple Collω1
-names σ for a subset of ωsu
h that 
Collω1

“σ ∈ ẆO”.Note that, sin
e Collω1
∈ L, every Collω1

-generi
 �lter over V is alsogeneri
 over L. So, for every γ < ω1 let τγ be the <L-least simple Collω1
-namefor a subset of ω su
h that 
Collω1

“‖τγ‖ = γ̆”. Let Bω1
= {τγ : γ < ω1} andlet Ḃ = Collω1

×Bω1
.De�ne the fun
tion πω1

from ẆO into Bω1
as follows: for every σ ∈ ẆO,

πω1
(σ) = τ i�
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ing 109(1) τ ∈ Bω1
,(2) 
Collω1
“‖σ‖ = ‖τ‖.Let π̇ = Collω1
× πω1

.We 
an now easily 
he
k that if C is Collω1
-generi
 over V , then in V [C],

π := π̇[C] is a fun
tion satisfying: if π(a) = b, then ‖a‖ = ‖b‖ and b is theunique 
ode in Ḃ[C] 
oding the ordinal ‖a‖. Thus π satis�es (1) and (2) ofthe lemma, modulo a re
ursive 
oding of elements of the Baire spa
e ωω bysubsets of ω.To prove (3) we need to 
ompute the 
omplexity of the sets and namesinvolved in the de�nition of π.First observe that Collω1
is a ∆1

2 poset (see [2℄).Let WO∗ be the set of 
odes of elements of ẆO. Then WO∗ is a ∆1
2 setof reals (
f. [1℄).Claim 3.8. Let B∗ be the set of all 
odes of elements of Bω1

. Then B∗is a ∆1
3 set of reals.Proof. Let <∗

L be the following relation: for every x, y ∈ ωω, x <∗
L y i�

x, y 
ode simple Collω1
-names in L for subsets of ω and the name 
odedby x is <L-less than the name 
oded by y. Sin
e every simple Collω1

-namefor a subset of ω is hereditarily 
ountable, the predi
ate “x 
odes a simple
Collω1

-name in L for a subset of ω” is Σ1 in H(ω1). Hen
e, as <L is also Σ1over H(ω1), <∗
L is a Σ1

2 relation.Re
all that Bω1
is the range of a fun
tion that assigns to ea
h γ < ω1the <L-least Collω1
-name for a subset of ω that is for
ed by Collω1

to be a
ode for γ. Thus, x ∈ B∗ i�(1) x 
odes a simple Collω1
-name in L for a subset of ω and 
Collω1

“x ∈

ẆO”,(2) for every w, if w 
odes a simple Collω1
-name for a subset of ω, and

w <∗
L x, then 1Collω1

“‖w‖ = ‖x‖”.Sin
e (1) is a Σ1
2 senten
e and (2) is Π1

2, B∗ is a ∆1
3 set.Let π∗ be the relation given by: π∗(x, y) i� x and y 
ode simple Collω1

-names σ and τ , respe
tively, for subsets of ω, and πω1
(σ) = τ .We will �nish the proof of (3) of Lemma 3.7 by showing that π∗ is a ∆1

3relation.Let S(v, x, y) i� v 
odes a 
ondition p ∈ Collω1
, x and y 
ode simple

Collω1
-names σ and τ , respe
tively, for subsets of ω, and p 
Collω1

“‖σ‖ =

‖τ‖”. Sin
e the relation ‖σ‖ = ‖τ‖ is Σ1
1, and Collω1

is a ∆1
2 


 poset, S isa ∆1

2 relation.So, for every x, y ∈ ωω, π∗(x, y) i�(1) x ∈ WO∗,
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h(2) y ∈ B∗,(3) ∀v S(v, x, y).Sin
e (1) is ∆1
2, (2) is ∆1

3 and (3) is Π1
2, we see that π∗ is ∆1

3. This 
on
ludesthe proof of Lemma 3.7.Re
all that WF denotes the Π1
1 set of all reals that 
ode a well-foundedrelation on ω (see [6℄). Every set in H(ω1) 
an be 
oded by some x ∈ WFas follows: x ∈ ωω 
odes a ∈ H(ω1) i� 〈ω,Ex〉 ∼= 〈TC(a),∈〉, where for

n,m ∈ ω, nExm i� x(J(n,m)) = 0, where J is some re
ursive one-to-onepairing fun
tion from ω×ω onto ω. Moreover, every x ∈ WF 
odes one andonly one set in H(ω1). So, given x ∈ WF, denote by [x] the set 
oded by x.Note that the map x 7→ [x] is ∆1 over H(ω1). Let [x] ∼ [y] i� x /∈ WF or
y /∈ WF or 〈ω,Ex〉 ∼= 〈ω,Ey〉. Thus, [x] ∼ [y] is a Σ1

1 relation on the reals.Hen
e, we may 
ode every fun
tion f ∈ H(ω1) by a real so that the set Fof all su
h 
odes is a ∆1
2 set of reals: for every x ∈ ωω, x ∈ F i�(1) x 
odes 〈xn : n ∈ ω〉,(2) ∀n (xn 
odes 〈x0
n, x

1
n〉 ∧ x

0
n, x

1
n ∈ WF),(3) ∀n,m ([x0

n] ∼ [x0
m] → [x1

n] ∼ [x1
m]).Ba
k to the proof of Theorem 3.1, re
all that we have a tree T whosenodes are fun
tions in 2<ω1 and whi
h is Σ1-de�nable in Lω1

. By Lemma 3.3,
ST is also Σ1-de�nable in Lω1

. And by Lemma 3.2, ST is still an Aronszajntree in V , and in any generi
 extension of V that preserves ω1. For
e with
Collω1

over V . In the generi
 extension V [C], and using the fun
tion π fromLemma 3.7, we may 
ode the nodes of ST by reals to obtain an isomorphi
tree S∗
T on the reals. Namely: for all x, y, z ∈ ωω, 〈x, y, z〉 ∈ S∗

T i�(1) x, y ∈ WO,(2) π(x) = x ∧ π(y) = y,(3) ∃f (〈‖x‖, ‖y‖, f〉 ∈ ST ∧ z 
odes the <L-least Collω1
-name σ for areal su
h that σ[C] 
odes f).Thus, S∗

T is Σ1-de�nable in H(ω1) with π and C as additional predi
ates.We will now de�ne a version of the spe
ializing for
ing of Harrington�Shelah ([5℄) whi
h will 
ode, using S∗
T , any given ω1-sequen
e of reals into asingle real. So, let X be a �xed sequen
e of reals of length ω1, and let Xαdenote the αth element of X.Let the for
ing notion P(S∗

T , X) be de�ned as follows:
• q ∈ P(S∗

T , X) i� q is a �nite fun
tion from S∗
T into Q su
h that(1) (∀s, t ∈ dom(q))(s <S∗

T
t→ q(s) < q(t)),(2) (∀s = 〈x, y, z〉 ∈ dom(q))((z 
odes σ ∧ σ[C] 
odes f ∧

dom(f) = ω · α ∧ q(s) ∈ ω) → q(s) ∈ Xα).
• q ≤ q′ i� q′ ⊆ q.
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ing 111It is 
lear that P(S∗
T , X) is Σ1-de�nable in H(ω1) with π, C, and X asadditional predi
ates. And as in [5℄ one 
an show that P(S∗

T , X) has theproperty K, i.e., every un
ountable subset 
ontains an un
ountable subsetof pairwise 
ompatible 
onditions. Hen
e it is 


. For
ing with P(S∗
T , X)adds an order-preserving and 
ontinuous fun
tion FX : S∗

T → Q, with theproperty that for every n ∈ ω, n ∈ Xα i� F (t) = n for some t ∈ S∗
T ofheight ω ·α. Moreover, FX spe
ializes S∗

T , i.e., for every a ∈ Q, F−1
X (a) is ananti
hain of S∗

T .Now let X0 = range(π) = {x ∈ ωω : ∃y (y ∈ WO ∧ π(y) = x)}, orderedby x ≤X0 x′ i� x, x′ ∈ X0∧‖x‖ ≤ ‖x′‖. Clearly, (X0,≤X0) is a well-orderingof reals of order-type ω1. By using some �xed re
ursive 
oding of elementsof ωω by subsets of ω, we may assume that X0
α ∈ P(ω) for all α < ω1.We next des
ribe a �nite-support iteration of length ω, ∆2-de�nable over

H(ω1), with π, C, and X0 as additional predi
ates. Let P0 = P(S∗
T , X

0).Given Pn, whi
h is ∆2-de�nable over H(ω1), with π, C, and X0 as additionalpredi
ates, we de�ne Pn+1:For β < ω1, let (S∗
T )<β denote the set of nodes of S∗

T of height < β.Noti
e that the predi
ate x ∈ (S∗
T )<β is Σ1 in the parameter β over H(ω1).Let ḞXn be the Pn-name for the generi
 spe
ializing fun
tion FXn . Thus,

ḞXn↾(S∗
T )<ω·(α+1) = {〈p, 〈t, r〉〉 : p ∈ Pn, 〈t, r〉 ∈ p, t ∈ (S∗

T )<ω·(α+1)}.Sin
e Pn is ∆2-de�nable over H(ω1), with π, C, and X0 as additional pred-i
ates, so is the set displayed above, with α as a parameter. Let Ẋn+1 be a
Pn-name for a 
ode for ḞXn . i.e., Ẋn+1 = 〈Ẋn+1

α : α < ω1〉, where for every
α < ω1,


Pn
“Ẋn+1

α ⊆ ω 
odes ḞXn↾(S∗
T )<ω·(α+1)”.So, Pn for
es that Ẋn+1

α 
odes 〈x, ẏ〉, where x = 〈xk : k ∈ ω〉 
odes
(S∗

T )<ω·(α+1), ẏ = 〈ẏk : k ∈ ω〉, and ẏk = {〈p, r〉 : 〈xk, r〉 ∈ p}. Noti
ethat the senten
e �x 
odes (S∗
T )<ω·(α+1)� is ∆2.Now let 〈p, q̇〉 ∈ Pn+1 i� p ∈ Pn and p 
Pn

“q̇ ∈ P(S∗
T , Ẋ

n+1)”. Let us
he
k that Pn+1 is ∆2-de�nable over H(ω1), with π, C, and X0 as additionalpredi
ates.First noti
e that the predi
ate �N(q̇) i� q̇ is a Pn-name for a �nite fun
tionfrom S∗
T into Q� is ∆2. Indeed, N(q̇) i� q̇ is a �nite set of triples 〈q, s, r〉,where q ∈ Pn, s ∈ S∗

T , and r ∈ Q, and for every 〈q0, s0, r0〉, 〈q1, s1, r1〉 ∈ q̇, if
s0 = s1 and r0 6= r1, then q0 ⊥ q1.Thus, we have: p 
Pn

“q̇ ∈ P(S∗
T , Ẋ

n+1)” i� p ∈ Pn, N(q̇), and(1) ∀〈q0, s0, r0〉, 〈q1, s1, r1〉 ∈ q̇(s0 <S∗

T
s1 ∧ r1 ≥ r0 → q0 ⊥ q1),(2) ∀〈q0, s0, r0〉 ∈ q̇ (s0 = 〈x, y, z〉 ∧ z 
odes σ ∧ σ[C] 
odes f ∧

dom(f) = ω · α ∧ p ≤ q0 ∧ r0 ∈ ω → q0 
Pn
“r0 ∈ Ẋn+1

α ”).
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hBut q0 
Pn
“r0 ∈ Ẋn+1

α ” i� r0 = 〈k, r〉 and there exists q1 ≤ q0 su
h that
〈xk, r〉 ∈ q1, where x = 〈xk : k ∈ ω〉 is the 
ode for (S∗

T )<ω·(α+1).This shows that Pn+1 is also ∆2 over H(ω1), with π, C, and X0 asadditional predi
ates.Let P be the dire
t limit of the iteration 〈Pn : n < ω〉. Sin
e the supportof the iteration is �nite, it is easily seen that P is ∆2-de�nable over H(ω1)with π, C, andX0 as additional predi
ates (see Lemma 4.1 below). Moreover,every P-generi
 �lter G over V [C] adds a real c su
h that X0 ∈ L[c] (see [5℄),and so V [C][G] � “∃x (L[x] has un
ountably many reals)�.It is interesting to observe that P (and, in fa
t, P(S∗
T , X)) is not proje
tivein V [C], as there are no un
ountable proje
tive sequen
es of reals in V [C].However, we 
laim that the two-step iteration Collω1
∗ P is ∆1

3.It will be enough to show that the relation R(x, y) given by:�x ∈ Collω1
, y is a Collω1

-name for a real, and x 
Collω1
y ∈ Ṗ �is ∆2 in H(ω1), without parameters.But sin
e Collω1

is a ∆1
2 for
ing notion, it will be enough to see that theformula �x 
Collω1

y ∈ Ṗ � is equivalent both to a Σ2 and a Π2 formula in
H(ω1). For this, it is su�
ient to show that the formula y ∈ Ṗ is equivalentboth to a Σ2 and a Π2 formula inH(ω1). This is 
learly so in the Collω1

-namefor π as a parameter. But sin
e by Lemma 3.7, π has a Collω1
-name that is

∆2-de�nable in H(ω1) without parameters, we are done.Sin
e “∃x (L[x] has un
ountably many reals)� is a Σ1
4 senten
e, andit holds in a Collω1

∗ P-generi
 extension of V , by Σ1
4-absoluteness for ∆1

3


 posets, it holds in V . Therefore, there exists a real x ∈ V su
h that
ω

L[x]
1 = ω1, 
ontradi
ting the fa
t that ω1 is ina

essible to reals. This �nishesthe proof of 3.1.Theorem 3.1 
an be easily generalized:Corollary 3.9. Let n ≥ 2. If Σ

∼
1
4 absoluteness holds for Σ

∼
1
n+1 


 for
-ing notions , then ω1 is a Σn-w.
. 
ardinal in L.Proof. As in Theorem 3.1, if ω1 is not a Σn-w.
. 
ardinal in L, thenthere exists an Aronszajn tree T on 2<ω1 whi
h is a Σn-tree over Lω1

. As inLemmas 3.2 and 3.3, we 
an �nd ST , a version of the Silver tree for T , whi
his an Aronszajn tree de�nable over Lω1
and has the same 
omplexity as T .Using ST , we may de�ne the poset P as in Theorem 3.1 in su
h a way that

Collω1
∗ P is a Σ

∼
1
n+1 and 


 poset that adds a real x su
h that ω1 = ω

L[x]
1 ,yielding a 
ontradi
tion.We �nish with two 
orollaries that summarize our results:
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 absoluteness under proje
tive for
ing 113Corollary 3.10. For every n ≥ 2, the following are equi
onsistent :(1) L(R)-absoluteness under Σ
∼

1
n+1 


 posets.(2) There exists a Σn-w.
. 
ardinal.Corollary 3.11. The following are equi
onsistent :(1) L(R)-absoluteness under proje
tive 


 posets.(2) There exists a Σω-w.
. 
ardinal.4. On iterations of proje
tive 


 posets. We will show that afterthe Levy 
ollapse of a Σn-w.
. 
ardinal, the property of L(R) being a Σn-w.
.Solovay model is preserved under �nite-support iterations of Σ

∼
1
n+1 


 for
ingnotions.Re
all that if P is a for
ing notion, a simple P-name for a real, i.e., for afun
tion from ω to ω, is a set τ of triples 〈p,m, n〉 su
h that p ∈ P, n,m ∈ ω,and for every m, the set of all p su
h that 〈p,m, n〉 ∈ τ for some n ∈ ω, is amaximal anti
hain of P.Observe that if P is 


 and its 
onditions are real numbers, then forevery simple P-name τ for a real, |TC(τ)| is 
ountable. Further, if P is a�nite-support iteration of 


 for
ing notions whose 
onditions are reals,then it 
an be easily shown, by indu
tion on the length of the iteration, thatevery simple P-name for a real has 
ountable transitive 
losure.Lemma 4.1. Let n ≥ 1. Suppose L(R)M is a Σn-w.
. Solovay model over

V and P ∈M is the dire
t limit of an iteration 〈Pα, Q̇α : α < λ〉 of 
ountablelength and with �nite support su
h that for every α < λ,

Pα

� Q̇α is a Σ
∼

1
n+1 


 poset�.Then the L(R) of any P-extension of M is also a Σn-w.
. Solovay modelover V .Proof. Let κ = ωM

1 . For
e over M to obtain a Collκ-generi
 C over Vwith RM = RV [C] (see Lemma 1.1).In M , for ea
h α < λ, �x a simple Pα-name τα for a real that 
odes theparameters in some �xed Σ1
n+1 de�nition of Q̇α.Sin
e the iteration is of 
ountable length and 


, all the τα, α < λ,belong to V [C] and P = PV [C], where PV [C] is the iteration in V [C] de�nedin the same way as P is de�ned in M . Moreover, a �lter G ⊆ P is P-generi
overM i� it is P-generi
 over V [C], and RM [G] = RV [C][G]. Thus, it is enoughto show that for every real x in V [C][G] and every X ⊆ Collκ ∗P of size lessthan κ there is a 
omplete subposet Q of Collκ ∗ Ṗ su
h that Q is 
ountablein V [C][G], X ⊆ Q and x is Q-generi
 over V .We pro
eed by indu
tion on λ. So we assume that for every α < λ andevery X ⊆ Collκ ∗ Pα of size less than κ, there is a 
omplete subposet Q of

Collκ ∗ Pα, also of size less than κ, su
h that X ⊆ Q.
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hWe may assume that λ is a limit ordinal, sin
e the su

essor 
ase followsdire
tly from the proof of Theorem 2.17.Now �x a subset X of Collκ ∗ P of size less than κ, and �x a real xin V [C][G]. Let ẋ ∈ V be a simple Collκ ∗ Ṗ-name for x, and let Y =
Collκ ∗ Ṗ∩TC(ẋ). Sin
e Collκ ∗ Ṗ is κ-

, Y has 
ardinality less than κ. Let
Z = X ∪ Y .For every α < λ, let Zα = Z∩Collκ∗Pα. By indu
tive hypothesis, we 
an�nd a ⊆-in
reasing 
hain 〈Qα : α < λ〉 su
h that Qα is a 
omplete subposetof Collκ ∗Pα, hen
e also a 
omplete subposet of Collκ ∗P, su
h that Zα ⊆ Qαfor all α < λ. Let Q =

⋃
α<λ Qα. Sin
e the iteration has �nite support, Qis a 
omplete subposet of Collκ ∗ P. Moreover, Q has size less than κ and

Z ⊆ Q. Furthermore, letting H = C ∗G ∩ Q, we have ẋ[H] = ẋ[C ∗G] = x,and so x is Q-generi
 over V .For 
on
iseness, in what follows we will use the notation P <◦ Q to expressthat P is a 
omplete subposet of Q.Theorem 4.2. Let κ be a Σn-w.
. 
ardinal , n ≥ 1, and let λ > 0.Suppose that P = Pλ ∈ V is the dire
t limit of an iteration 〈Pα, Q̇α : α < λ〉with �nite support su
h that P0 = Collκ and for every α < λ,

Pα

� Q̇α is a Σ
∼

1
n+1 


 poset�.Then the L(R) of any P-generi
 extension of V is a Σn-w.
. Solovay modelover V .Proof. Suppose G is a P-generi
 �lter over V . Noti
e that ωV [G]

1 = κ, andso ωV [G]
1 is a Σn-w.
. 
ardinal in V . We only need to prove that every realin V [G] is small-generi
 over V , for then it will 
learly follow that for everyreal x in V [G], ωV [G]

1 is a Σn-w.
. 
ardinal in V [x].The proof is by indu
tion on λ. So, suppose that for every β < λ, writing
Pβ for the iteration up to β and letting Gβ = G∩Pβ , we �nd that L(R)V [Gβ ]is a Σn-w.
. Solovay model over V .Let P1 = 〈P1

α, Q̇
1
α : α < λ〉 ∈ V [G0] be the remaining part of the iteration

〈Pα, Q̇α : α < λ〉, i.e., P1
0 = Q̇0[G0], P1

n+1 = P1
n ∗ Q̇n+1 for n < ω, and

P1
α+1 = P1

α ∗ Q̇α for α ≥ ω. We may assume that for every α,

P1

α
“Q̇1

α has a largest element 1�,and 1 is some �xed real that does not depend on α. Moreover, we mayassume that for every p ∈ P1 and every α < λ, p(α) is a simple P1
α-name fora real.In V [G0], for ea
h α < λ, α > 0, �x a simple P1

α-name τα for a real that
odes the parameters in a �xed Σ1
n+1 de�nition of Q̇1

α, so that for some Σ1
n+1
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tive for
ing 115formulas ϕα(x, y), ψα(x, y, z), and θα(x, y, z),

Pα

“Q̇α = {x : ϕα(x, τα)}′′,


Pα
“≤

Q̇1
α

= {〈x, y〉 : ψα(x, y, τα)}”,


Pα
“⊥

Q̇1
α

= {〈x, y〉 : θα(x, y, τα)}”.Let x be a real in V [G] and let ẋ ∈ V [G0] be a simple P1-name for x.Work in V [G0]. Sin
e P1 is 


, |TC(ẋ)| is 
ountable. Let µ be a largeenough regular 
ardinal, and let N 4 H(µ) be su
h that:(1) P1, 〈τα : α < λ〉, ẋ ∈ N ,(2) TC(ẋ) ⊆ N ,(3) |N | = ℵ0.Noti
e that if α ∈ OR∩N , then τα ∈ N , and sin
e |TC(τα)| is 
ountable,
TC(τα) ⊆ N .Now let P∗ be the dire
t limit of the �nite-support iteration 〈P∗

α, Q̇
∗
α :

α < λ〉 de�ned as follows: P∗
0 = P1

0, and 
P∗

α
“Q̇∗

α = {x : ϕα(x, τα)}” if
α ∈ OR ∩N , and 
P∗

α
“Q̇∗

α = {1}” otherwise, i.e., Q̇∗
α is the trivial poset.We need to 
he
k that the iteration is well-de�ned, i.e., if 
P∗

α
“Q̇∗

α =
{x : ϕα(x, τα)}”, then τα is a P∗

α-name. We will show mu
h more:Claim 4.3.(1) If p ∈ P∗
α, then p ∈ P1

α. And if p ∈ N , then the 
onverse also holds.(2) If σ is a simple P∗
α-name for a real , then it is also a simple P1

α-namefor a real. And if σ ∈ N , then the 
onverse also holds.(3) If p ∈ P∗
α and σ, σ′, τα are simple P∗

α-names for reals, then:(a) If p 
P∗

α
ϕα(σ, τα), then p 
P1

α
ϕα(σ, τα).(b) If p 
P∗

α
ψα(σ, σ′, τα), then p 
P1

α
ψα(σ, σ′, τα).(
) If p 
P∗

α
θα(σ, σ′, τα), then p 
P1

α
θα(σ, σ′, τα).And if α, p, σ, σ′ ∈ N , then the 
onverses of (a), (b), and (
) alsohold.(4) P∗

α <◦ P1
α.Proof. By indu
tion on α. For α = 0 it is 
lear. So, let α = β + 1.(1) Fix p ∈ P∗

α. Then p = 〈p↾β, σ′〉, where p↾β ∈ P∗
β, σ′ is a simple P∗

β-name, and either p↾β 
P∗

β
“σ′ = 1”, or p↾β 
P∗

β
ϕβ(σ′, τβ). So, by indu
tionhypothesis on (1), (2), and (3)(a), we dedu
e that p↾β ∈ P1

β, σ′ is a simple
P1

β-name, and either p↾β 
P1
β

“σ′ = 1”, or p↾β 
P1
β
ϕβ(σ′, τβ). This showsthat p ∈ P1

α.Fix now p = 〈p↾β, σ′〉 ∈ P1
α ∩N . Thus, p↾β ∈ P1

β, σ′ is a simple P1
β-name,and p↾β 
P1

β
ϕβ(σ′, τβ). Sin
e p ∈ N , we also know that p↾β, σ′ ∈ N . So,



116 J. Bagaria and R. Bos
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tion hypothesis on (1), (2), and (3)(a), we infer that p↾β ∈ P∗
β,

σ′ is a simple P∗
β-name, and p↾β 
P∗

β
ϕβ(σ′, τβ), whi
h shows that p ∈ P∗

α.(2) Now suppose that σ is a simple P∗
α-name for a real. If q ∈ P∗

α∩TC(σ),we 
an 
on
lude as before in the 
ase of p that q ∈ P1
α. This implies that σis a simple P1

α-name.If σ is a simple P1
α-name for a real and σ ∈ N , then TC(σ) ⊆ N . So,if q ∈ P1

α ∩ TC(σ), we 
an 
on
lude as before in the 
ase of p that q ∈ P∗
α.This implies that σ is a simple P∗

α-name. In parti
ular, if α ∈ N , then τα isa P∗
α-name.(3) Suppose now that p ∈ P∗

α, σ, τα are simple P∗
α-names for reals, and

p 
P∗

α
ϕα(σ, τα). We have already shown that p ∈ P1

α and σ is a simple
P1

α-name. Sin
e by the indu
tion hypothesis of the theorem, L(R)V [G0]
P∗
βand L(R)V [G0]

P1
β are both Σn-w.
. Solovay models over V , with the same

ω1, and sin
e, by indu
tion hypothesis on (4), P∗
β <◦ P1

β, we also have
RV [G0]

P∗
β
⊆ RV [G0]

P1
β . So, by Lemma 1.3, there exists a 
anoni
al embeddingfrom L(R)V [G0]

P∗
β into L(R)V [G0]

P1
β . We 
laim that p 
P1

α
ϕα(σ, τα). Indeed,suppose G1

α = G1
β ∗ Ḣ is P1

α-generi
 over V [G0], with p = p↾β ∗ q̇ ∈ G1
α. Sin
e

p 
P∗

α
ϕα(σ, τα), and P∗

β <◦ P1
β , we dedu
e that G∗

β := G1
β ∩ P∗

β is P∗
β-generi
over V [G0] with p↾β ∈ G∗

β. Hen
e,
V [G0][G

∗
β] |= “iG∗

β
(q̇) 
Q∗

β
ϕα(σ, τα)”.Sin
e we have iG1

β
(q̇) = iG∗

β
(q̇), by the 
anoni
al elementary embedding of

L(R)V [G0][G∗

β
] into L(R)V [G0][G1

β
], we obtain

V [G0][G
1
β] |= “iG1

β
(q̇) 
Q1

β
ϕα(σ, τα)”.Hen
e, V [G0][G

1
α] |= ϕα(σ, τα). This proves (a), and similar arguments prove(b) and (
).Suppose now that α, p, σ ∈ N , and p 
P1

α
ϕα(σ, τα). We have alreadyshown that p ∈ P∗

α and σ, τα are P∗
α-names. To see that p 
P∗

α
ϕα(σ, τα),suppose G∗

α = G∗
β ∗ Ḣ is P∗

α-generi
 over V [G0] with p = p↾β ∗ q̇ ∈ G∗
α. Sin
e

P∗
β <◦ P1

β, we 
an extend G∗
β to a P1

β-generi
 �lter G1
β over V [G0] su
h that

V [G0][G
1
β] |= “iG1

β
(q̇) 
Q1

β
ϕα(σ, τα)”.Sin
e iG1

β
(q̇) = iG∗

β
(q̇) and sin
e β ∈ N , by the 
anoni
al elementary embed-ding we have
V [G0][G

∗
β] |= “iG∗

β
(q̇) 
Q∗

β
ϕα(σ, τα)”.Hen
e, V [G0][G

∗
α] |= ϕα(σ, τα). This proves the 
onverse of (a), and similararguments prove the 
onverses of (b) and (
).
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 absoluteness under proje
tive for
ing 117(4) Finally, suppose P∗
β <◦ P1

β. By (3), P∗
α is a subposet of P1

α and thein
ompatibility relation is preserved. Now suppose A ∈ V [G0] is a maximalanti
hain of P∗
α. Then A↾β := {p↾β : p ∈ A} is a maximal anti
hain of P∗

βand, by indu
tion hypothesis, it is also a maximal anti
hain of P1
β . If β 6∈ N ,then 
learly A is maximal in P1

α. So, suppose β ∈ N . Then every p ∈ A isof the form 〈p↾β, σ〉, where p↾β 
Q∗

β
ϕβ(σ, τβ). Let A(β) := {p(β) : p ∈ A}.Then 
P∗

β
“A(β) is a maximal anti
hain of Q̇∗

β”. Noti
e that, sin
e 
P∗

β
“A(β)is 
ountable�, A(β) ∈ L(R)V [G0]

P∗
β . Thus, by the 
anoni
al embedding from

L(R)V [G0]
P∗
β into L(R)V [G0]

P1
β , we 
on
lude that 
P1

β
“A(β) is a maximalanti
hain of Q̇1

β”.If α is a limit ordinal, then the 
laim follows by indu
tion, using the fa
tthat the iterations have �nite support. This �nishes the proof of the 
laim.Sin
e the iterations have �nite support, it follows from the 
laim abovethat P∗ <◦ P. Moreover, sin
e ẋ ∈ N , ẋ is a P∗-name. Noti
e that P∗ is a 


iteration.Let P = 〈Pβ, Q̇β : β < ot(On ∩ N)〉 be the iteration 
onsisting of allnon-trivial iterands of P∗, i.e., P0 = P∗
0 and for every β < ot(On ∩ N),


Pβ
“Q̇β = {x : ϕα(x, τα)}”, where α ∈ N and β = ot(α ∩ N). For ea
h

p ∈ P∗, let p ∈ P be the result of deleting the 
oordinates of p that 
orrespondto the trivial iterands of P∗. Clearly, the map e : p 7→ p is a dense 
ompleteembedding of P into P∗. Noti
e that ẋ is a P-name.Re
all that G is P-generi
 over V , and x is a real in V [G]. Let us write Gas G0 ∗G
1, where G0 is P0-generi
 over V and G1 is P1-generi
 over V [G0].Then ẋ is a P1-name in V [G0] and iG1(ẋ) = x. Let g = e−1[G1 ∩ P∗]. Then

g is P-generi
 over V [G0] and ig(ẋ) = x. This shows that x belongs to a
ountable �nite-support iteration over V [G0] of Σ
∼

1
n+1 


 for
ing notions.So, by Lemma 4.1, x is small-generi
 over V . This proves the theorem.Corollary 4.4. Suppose that L(R)M is a Σω-w.
. Solovay model over

V and P ∈ M is the dire
t limit of an iteration 〈Pα, Q̇α : α < λ〉 with �nitesupport su
h that for every α < λ,

α � Q̇α is a proje
tive 


 poset�.Then the L(R) of any P-generi
 extension of M is also a Σω-w.
. Solovaymodel over V .4.1. Two appli
ations to Martin's Axiom for proje
tive posets. The �rstappli
ation will show, modulo the 
onsisten
y of de�nable weakly 
ompa
t
ardinals, that Martin's Axiom restri
ted to posets in a given proje
tivepoint-
lass does not imply Martin's Axiom for posets in higher point-
lasses.
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hDefinition 4.5. Let Γ be a 
lass of posets.Martin's Axiom for Γ , hen
e-forth denoted by MA(Γ ), is the following statement:For every 


 poset P ∈ Γ and for every family 〈Ai : i < κ〉, κ < 2ℵ0 ,of maximal anti
hains of P, there exists G ⊆ P dire
ted su
h that for every
i < κ, G ∩Ai 6= ∅.For every n ≥ 1, MA(Σ

∼
1
n) is Martin's Axiom for Σ

∼
1
n posets. MA(Proj) isMartin's Axiom for proje
tive posets.Theorem 4.6. Let n ≥ 1, and suppose that there exists a Σn-w.
. 
ardi-nal in L. Then there exists a poset P su
h that for every P-generi
 �lter Gover L,

L[G] |= MA(Σ
∼

1
n+1) ∧ ¬MA(Σ1

n+2).Proof. Let κ be the least Σn-w.
. 
ardinal in L. Let P be the dire
t limitof an iteration 〈Pα, Q̇α : α < κ+〉, with �nite support, where P0 = Collκ andfor every α < κ+,

α “Q̇α is a Σ

∼
1
n+1 


 for
ing notion� ,so that for every P-generi
 �lter G over L,

L[G] |= MA(Σ
∼

1
n+1) ∧ 2ℵ0 = ℵ2(see [1, Theorem 3.10℄).Now assume, towards a 
ontradi
tion, that

L[G] |= MA(Σ1
n+2).Then, sin
e ωL[G]

1 = κ is not a Σn+1-w.
. 
ardinal in L, there is, in L, a
κ-Aronszajn tree T whi
h is Σn+1-de�nable over Lκ. As in the proof ofTheorem 3.1 we may de�ne a Σ1

n+2 


 poset of the form Collω1
∗P su
h that

MA(Collω1
∗ P) implies that there exists a real x su
h that ωL[G]

1 = ω
L[x]
1 .But then L(R)L[G] is not a Σn-w.
. Solovay model over V , in 
ontradi
tionwith Theorem 4.2.Corollary 4.7. Let n ≥ 1 and suppose that the existen
e of a Σn-w.
.
ardinal is 
onsistent with ZFC. Then ZFC + MA(Σ

∼
1
n+1) does not imply

MA(Σ1
n+2).It is known that if ZFC is 
onsistent, then ZFC+MA(Σ

∼
1
1) does not imply

MA(Σ1
2) (see [1, Se
tion 5℄).For the se
ond appli
ation, let ϕ be the statement �Every set of reals in

L(R) is Lebesgue measurable, has the property of Baire, is Ramsey, and hasthe perfe
t set property�.
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ing 119Theorem 4.8. Let n ≥ 1, and suppose that there exists a Σn-w.
. 
ardi-nal. Then there exists a poset P su
h that for every P-generi
 �lter G over V ,
V [G] |= MA(Σ

∼
1
n+1) ∧ ¬CH + ϕ.Proof. Let κ be a Σn-w.
. 
ardinal, and let P be the dire
t limit of a�nite-support iteration 〈Pα, Q̇α : α < κ+〉, where P0 = Collκ and for every

α < κ+,

α “Q̇α is a Σ

∼
1
n+1 


 for
ing notion� ,so that for every P-generi
 �lter G over V ,

V [G] |= MA(Σ
∼

1
n+1) ∧ 2ℵ0 = ℵ2(see [1, Theorem 3.10℄). By Theorem 4.2, L(R)V [G] is a Σn-w.
. Solovaymodel over V . Thus,

V [G] |= ϕ.Corollary 4.9.(1) For every n ≥ 1, Con(ZFC+ there exists a Σn-w.
. 
ardinal) implies
Con(ZFC + MA(Σ

∼
1
n+1) + ¬CH + ϕ).(2) Con(ZFC + there exists a Σω-w.
. 
ardinal) implies Con(ZFC +

MA(Proj) + ¬CH + ϕ).
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