Generic absoluteness under projective forcing

by

Joan Bagaria (Barcelona) and Roger Bosch (Oviedo)

Abstract. We study the preservation of the property of $L(\mathbb{R})$ being a Solovay model under projective ccc forcing extensions. We compute the exact consistency strength of the generic absoluteness of $L(\mathbb{R})$ under forcing with projective ccc partial orderings and, as an application, we build models in which Martin's Axiom holds for $\sum_{n=1}^{\infty}$ partial orderings, but it fails for the $\sum_{n=1}^{\infty}$.

1. Introduction. In this paper we continue the systematic study of the preservation of the property of $L(\mathbb{R})$ being a Solovay model under various classes of forcing notions. This work started in [2], where we considered the class of projective absolutely-ccc forcing notions and obtained an exact consistency result for the preservation of the property of $L(\mathbb{R})$ being a Solovay model under this class of forcing extensions. It turned out that the large cardinals involved were the definably Mahlo cardinals, a weak form of Mahlo cardinals that satisfy some definability conditions. As a corollary we obtained the equiconsistency of: (1) there exists a definably-Mahlo cardinal; and (2) $L(\mathbb{R})$ -absoluteness for projective absolutely ccc posets.

In [3] we showed that every projective strongly proper forcing notion preserves the property of $L(\mathbb{R})$ being a definably Mahlo Solovay model. Hence, the consistency of $L(\mathbb{R})$ -absoluteness under projective strongly proper forcing notions has the existence of a definably Mahlo cardinal as an upper bound. We also proved in [3] that the consistency strength of the preservation of $L(\mathbb{R})$ being a Solovay model under σ -linked forcing notions is exactly

²⁰⁰⁰ Mathematics Subject Classification: 03E15, 03E35, 03E50, 03E55.

 $[\]it Key\ words\ and\ phrases$: Solovay model, projective ccc forcing extension, generic absoluteness.

Research partially supported by the MEC-FEDER grants BFM2002-03236 and MTM 2005-01025, and the grants 2002SGR-00126 and 2005SGR-00738 of the Generalitat de Catalunya, and PR-01-GE-10 of the Principado de Asturias.

that of a Mahlo cardinal, in contrast with the general ccc case, for which a weakly compact cardinal is required.

Recall that a *Solovay model* over V is the $L(\mathbb{R})$ of a model $M \supseteq V$ which has the following properties:

- (1) For every $x \in \mathbb{R}$, ω_1 is an inaccessible cardinal in V[x].
- (2) Every $x \in \mathbb{R}$ is *small-generic* over V. That is, for some forcing notion \mathbb{P} in V that is countable in M, there is, in M, a \mathbb{P} -generic filter g over V such that $x \in V[g]$.

The reason we call a model with properties (1) and (2) above a *Solovay model* is the following result of Woodin (see [2]), which says that it is elementarily equivalent to Solovay's model from [10].

LEMMA 1.1. Suppose that $V \subseteq M$ are models of (a fragment of) ZFC and M satisfies (1) and (2) above. Then there is a forcing notion \mathbb{W} in M which does not add new reals and creates a generic filter C for the Levy collapse of ω_1^M over V such that M and V[C] have the same reals.

Our interest in the preservation of the property of $L(\mathbb{R})$ being a Solovay model under forcing extensions that do not collapse ω_1 lies mainly in the fact (Lemma 1.3 below) that it implies a strong form of generic absoluteness for the theory of the reals (see [2]).

DEFINITION 1.2. Let V be a model of ZF. Let $\mathbb{P} \in V$ be a forcing notion and let φ be a formula (possibly with parameters in V). V is φ -absolute for \mathbb{P} iff

$$V \models \varphi \quad \text{iff} \quad V^{\mathbb{P}} \models \varphi.$$

If Σ is a set of formulas, V is Σ -absolute for $\mathbb P$ iff for every $\varphi \in \Sigma$, V is φ -absolute for $\mathbb P$. Given a class Γ of posets, V is Σ -absolute for Γ iff for every $\mathbb P \in \Gamma$, V is Σ -absolute for $\mathbb P$ in V.

V is $L(\mathbb{R})$ -absolute for \mathbb{P} iff there exists an elementary embedding

$$j: L(\mathbb{R})^V \to L(\mathbb{R})^{V^{\mathbb{P}}}$$

that fixes all the ordinals (and therefore all the reals). For Γ a class of posets, V is $L(\mathbb{R})$ -absolute for Γ if it is $L(\mathbb{R})$ -absolute for every \mathbb{P} in Γ .

The following lemma is proved in [2].

LEMMA 1.3. Suppose that $L(\mathbb{R})^M$ and $L(\mathbb{R})^N$ are Solovay models over V such that $\mathbb{R}^M \subseteq \mathbb{R}^N$ and $\omega_1^M = \omega_1^N$. Then there exists an elementary embedding $j: L(\mathbb{R})^M \to L(\mathbb{R})^N$ which fixes all the ordinals.

Recall that for Γ a point-class, a Γ -poset is a triple $\mathbb{P} = \langle P, \leq_P, \perp_P \rangle$, where \leq_P is a Γ -subset of $\omega^\omega \times \omega^\omega$, $P = \text{field}(\leq_P)$, $\langle P, \leq_P \rangle$ is a partial order, and \perp_P is a Γ -subset of $\omega^\omega \times \omega^\omega$ contained in $P \times P$ such that for every $x, y \in P$, $x \perp_P y$ iff x, y are incompatible. \mathbb{P} is a projective poset iff it

is (isomorphic to) a Γ -poset for some projective point-class Γ . Notice that a poset \mathbb{P} is projective iff it is (isomorphic to a poset that is) first-order definable in $H(\omega_1)$, with parameters.

In this paper we consider the class of projective ccc forcing notions. We show that the property of $L(\mathbb{R})$ being a Σ_n -weakly compact Solovay model (see definitions below) is preserved by forcing with Σ_{n+1}^1 ccc posets, and that the property of $L(\mathbb{R})$ being a definably weakly compact Solovay model is preserved by all projective ccc posets. We give an example of a Δ_3^1 poset \mathbb{P} with the property K, hence ccc, such that Σ_4^1 generic absoluteness under forcing with \mathbb{P} implies that ω_1 is Σ_1 -weakly compact in L. A generalization of this example to higher projective levels shows that the consistency strength of $L(\mathbb{R})$ -absoluteness under Σ_{n+1}^1 ccc forcing is exactly the existence of a Σ_n -weakly compact cardinal. Further, the consistency strength of $L(\mathbb{R})$ -absoluteness under projective ccc forcing extensions is exactly that of the existence of a definably weakly compact cardinal. In the last section, and as an application of the previous results, we build models in which Martin's axiom holds for Σ_n^1 partial orderings but not for the Σ_{n+1}^1 .

- **2. Projective ccc forcing extensions.** We will address the question of the preservation of the property of $L(\mathbb{R})$ being a Solovay model under arbitrary projective ccc forcing notions. As we will see, we need to consider a definable form of weakly compact cardinals.
- **2.1.** Σ_n -weakly compact cardinals. Recall that a Π_1^1 sentence of the language of set theory is a sentence of the form $\forall X \ \varphi(X)$, where $\varphi(X)$ is a first-order formula of the language of set theory expanded with the predicate symbol X.

DEFINITION 2.1. Let κ be a cardinal and $n \in \omega$. Then κ is Σ_n -weakly compact (Σ_n -w.c., for short) iff κ is inaccessible and for every $R \subseteq V_{\kappa}$ which is definable by a Σ_n formula (with parameters) over V_{κ} and every Π^1_1 sentence Φ , if

$$\langle V_{\kappa}, \in, R \rangle \models \Phi$$

then there is $\alpha < \kappa$ (equivalently, unboundedly many $\alpha < \kappa$) such that

$$\langle V_{\alpha}, \in, R \cap V_{\alpha} \rangle \models \Phi.$$

That is, κ reflects Π_1^1 sentences with Σ_n predicates. Moreover, κ being Π_n -weakly compact (Π_n -w.c., for short) is defined analogously by substituting Π_n for Σ_n in the definition above. Thus, an inaccessible cardinal κ is Π_n -w.c. iff it reflects Π_1^1 sentences with Π_n predicates. An inaccessible cardinal is Δ_n -weakly compact (Δ_n -w.c., for short) iff it reflects Π_1^1 sentences with Δ_n predicates.

DEFINITION 2.2 (A. Leshem, [9]). A cardinal κ is Σ_{ω} -weakly compact (Σ_{ω} -w.c., for short) iff κ is Σ_n -w.c. for every $n \in \omega$.

Proposition 2.3. For κ an inaccessible cardinal, the following are equivalent:

- (1) κ is Σ_n -w.c.
- (2) κ is Π_n -w.c.
- (3) κ is Δ_{n+1} -w.c.
- (4) For every Π_1^1 formula $\Phi(x_0, \ldots, x_k)$ in the language of set theory and every $a_0, \ldots, a_k \in V_\kappa$, if $V_\kappa \models \Phi(a_0, \ldots, a_k)$, then there is $\lambda \in I_n := \{\lambda < \kappa : \lambda \text{ is inaccessible and } V_\lambda \preccurlyeq_n V_\kappa \}$ such that $V_\lambda \models \Phi(a_0, \ldots, a_k)$.

Proof. (3) \Rightarrow (1) and (3) \Rightarrow (2) are trivial.

(1) \Rightarrow (2): Suppose that $R \subseteq V_{\kappa}$. For every Π_1^1 formula Ψ where R appears as a predicate, let $\widetilde{\Psi}$ be the formula obtained from Ψ by substituting every occurrence of the subformula Rx, where x is a first order variable, by $\neg Rx$. Note that $\widetilde{\Psi}$ is also Π_1^1 .

It is easily shown, by induction on the complexity of formulas, that for every formula Ψ and every α ,

$$\langle V_{\alpha}, \in, R \cap V_{\alpha} \rangle \models \Psi \quad \text{iff} \quad \langle V_{\alpha}, \in, V_{\alpha} \setminus R \rangle \models \widetilde{\Psi}.$$

Suppose now that $R \subseteq V_{\kappa}$ is definable by means of a Π_n formula over V_{κ} and Φ is a Π^1_1 sentence. If $\langle V_{\kappa}, \in, R \rangle \models \Phi$, then $\langle V_{\kappa}, \in, V_{\kappa} \setminus R \rangle \models \widetilde{\Phi}$. Since κ is Σ_n -w.c., there is $\alpha < \kappa$ such that $\langle V_{\alpha}, \in, (V_{\kappa} \setminus R) \cap V_{\alpha} \rangle = \langle V_{\alpha}, \in, V_{\alpha} \setminus R \rangle \models \widetilde{\Phi}$, and therefore $\langle V_{\alpha}, \in, R \cap V_{\alpha} \rangle \models \Phi$.

(2) \Rightarrow (4): Suppose that $\Phi(x_0,\ldots,x_k) = \forall X \ \varphi(X,x_0,\ldots,x_k)$ is a Π_1^1 formula and $a_0,\ldots,a_k \in V_{\kappa}$ are such that $V_{\kappa} \models \Phi(a_0,\ldots,a_k)$.

Let Ψ be the Π_1^1 sentence expressing that κ is inaccessible, and let σ be the first order sentence saying that the Π_n -club $C_n := \{\alpha < \kappa : V_\alpha \preccurlyeq_n V_\kappa\}$ is unbounded. Then

$$\langle V_{\kappa}, \in, C_n \rangle \models \Phi(a_0, \dots, a_k) \land \Psi \land \sigma.$$

Since κ is Π_n -w.c., there is $\lambda < \kappa$ such that

$$\langle V_{\lambda}, \in, C_n \cap V_{\lambda} \rangle \models \Phi(a_0, \dots, a_k) \wedge \Psi \wedge \sigma.$$

But then λ is inaccessible, and since $C_n \cap \lambda$ is unbounded, $\lambda \in I_n$.

(4) \Rightarrow (3): Suppose that R is a Δ_{n+1} subset of V_{κ} and Φ is a Π_1^1 sentence such that

$$\langle V_{\kappa}, \in, R \rangle \models \Phi.$$

Let $\varphi(x, y_0, \ldots, y_k)$ be a Σ_{n+1} formula and $\psi(x, z_0, \ldots, z_l)$ a Π_{n+1} formula that define R in V_{κ} with parameters a_0, \ldots, a_k and b_0, \ldots, b_l , respectively.

Thus,

$$\langle V_{\kappa}, \in, R \rangle \models \forall x \ (Rx \leftrightarrow \varphi(x, a_0, \dots, a_k) \leftrightarrow \psi(x, b_0, \dots, b_l)).$$

Let $\Phi'(y_0, \ldots, y_k)$ be the Π_1^1 formula (with y_0, \ldots, y_k as the only free individual variables) obtained by substituting every occurrence of the formula Rx in Φ by the formula $\varphi(x, y_0, \ldots, y_k)$. Then, clearly, $V_{\kappa} \models \Phi'(a_0, \ldots, a_k)$.

Hence, there is $\lambda \in I_n$ such that

$$V_{\lambda} \models \Phi'(a_0, \dots, a_k) \land \forall x \ (\varphi(x, a_0, \dots, a_k) \leftrightarrow \psi(x, b_0, \dots, b_l)).$$

But since $V_{\lambda} \leq_n V_{\kappa}$, $R \cap V_{\lambda} = \{x : V_{\lambda} \models \varphi(x, a_0, \dots, a_k)\}$. Therefore,

$$\langle V_{\lambda}, \in, R \cap V_{\lambda} \rangle \models \Phi. \blacksquare$$

Notice that in the proof of $(4)\Rightarrow(3)$ above, we have not made use of the fact that λ was inaccessible. Thus an inaccessible cardinal κ is Σ_n -w.c. iff κ reflects Π_1^1 sentences (in the language with \in only) to some $\lambda < \kappa$ such that $V_{\lambda} \leq_n V_{\kappa}$.

Leshem [9] has proved that if κ is Mahlo, then the set of Σ_{ω} -w.c. cardinals below κ is stationary. So, all these cardinals are, consistency-wise, below a Mahlo cardinal.

Let us recall from [2] that a subset C of a cardinal κ is a \prod_n -club iff C is a club subset of κ that is definable over V_{κ} by means of a \prod_n formula, possibly with parameters. A subset $S \subseteq \kappa$ is \prod_n -stationary iff for every \prod_n -club subset C of κ , $S \cap C \neq \emptyset$. (Notice that we do not require that S itself be \prod_n -definable.) Finally, κ is a \prod_n -Mahlo cardinal iff it is inaccessible and the set of all inaccessible cardinals below κ is \prod_n -stationary. For more information about \prod_n -Mahlo cardinals see [2] and [4]. The next fact shows that Σ_n -w.c. cardinals are \prod_n -Mahlo, and that the least \prod_n -Mahlo cardinal is not Σ_n -w.c.

FACT 2.4. Every Σ_n -w.c. cardinal κ is \prod_n -Mahlo, and the set of \prod_n -Mahlo cardinals below κ is \prod_n -stationary.

Proof. Suppose that κ is Σ_n -w.c. Let C be a \prod_n -club of κ , i.e., C is a club on κ which is definable over V_{κ} by means of a Π_n formula with parameters. Let Φ the Π_1^1 sentence expressing that κ is inaccessible. Let ϱ be the first-order sentence expressing that C is unbounded. Then

$$\langle V_{\kappa}, \in, C \rangle \models \Phi \wedge \varrho.$$

So, there is $\alpha < \kappa$ such that

$$\langle V_{\alpha}, \in, C \cap V_{\alpha} \rangle \models \Phi \wedge \varrho.$$

Therefore α is inaccessible, and since $C \cap V_{\alpha} = C \cap \alpha$ is unbounded in α , $\alpha \in C$.

Note that "every Π_n -club of κ contains an inaccessible cardinal" is expressible by a first-order sentence. Therefore, the above argument shows that there is a Π_n -stationary set of Π_n -Mahlo cardinals below κ .

Recall κ is a Σ_{ω} -Mahlo cardinal iff it is Π_n -Mahlo for every $n \in \omega$. In [4] it is shown that every Σ_{ω} -w.c. cardinal is Σ_{ω} -Mahlo, and that the set of Σ_{ω} -Mahlo cardinals below a Σ_{ω} -w.c. cardinal is Σ_{ω} -stationary. However, also from [4], if κ is Π_{n+1} -Mahlo, then the set of Σ_n -w.c. cardinals below κ is Π_{n+1} -stationary.

2.1.1. The tree property

DEFINITION 2.5. Let κ be a cardinal and $n \in \omega$. A tree $T = \langle T, \leq_T \rangle$ with $T \subseteq V_{\kappa}$ is a Σ_n -tree (over V_{κ}) iff there are Σ_n formulas $\varphi_T(x)$, $\varphi_{\leq_T}(x,y)$ and $\varphi_{\operatorname{ht}_T}(x,y)$, possibly with parameters in V_{κ} , such that for every $t,t' \in V_{\kappa}$ and every $\alpha < \kappa$,

$$t \in T \quad \text{iff} \quad V_{\kappa} \models \varphi_{T}(t),$$

$$t \leq_{T} t' \quad \text{iff} \quad V_{\kappa} \models \varphi_{\leq_{T}}(t, t'),$$

$$t \in T_{\alpha} \quad \text{iff} \quad V_{\kappa} \models \varphi_{\text{ht}_{T}}(t, \alpha),$$

where T_{α} denotes the α th level of the tree T. Similarly, we define the notion of Π_n -tree by substituting Π_n for Σ_n in the above definition. Moreover, T is a Δ_n -tree iff T is both a Σ_n -tree and a Π_n -tree. Finally, T is a Σ_{ω} -tree iff T is a Σ_n -tree for some $n \in \omega$.

DEFINITION 2.6. Let κ be a cardinal and $n \in \omega$. κ has the Σ_n -tree property iff κ is inaccessible and every κ -tree which is a Σ_n -tree has a cofinal branch. The Π_n -tree property, Δ_n -tree property, and Σ_ω -tree property are defined analogously.

LEMMA 2.7. For every $n \in \omega$, if κ is Σ_n -w.c., then κ has the Σ_n -tree property.

Proof. Suppose that κ is a Σ_n -w.c. cardinal and let T be a κ -tree which is a Σ_n -tree over V_{κ} . Suppose that T does not have a branch of length κ . So, since κ is regular, every branch of T belongs to V_{κ} .

Let Φ be the Π_1^1 sentence expressing that κ is inaccessible.

Let Ψ be the following Π_1^1 sentence:

$$\forall B \ (B \text{ is a branch of } T \to \exists x \ B = x).$$

Let F be the function with domain κ such that $F(\alpha) = T_{\alpha}$, the α th level of T. Since $t \in T_{\alpha}$ is a Σ_n fact over V_{κ} , F is Δ_{n+1} -definable over V_{κ} . Let φ be the following first-order sentence:

$$\forall \alpha \ (\alpha \text{ is an ordinal} \to \exists x \ F(\alpha) = x).$$

Thus,

$$\langle V_{\kappa}, \in, T, F \rangle \models \Phi \wedge \Psi \wedge \varphi.$$

Hence, there is $\lambda < \kappa$ such that

$$\langle V_{\lambda}, \in, T \cap V_{\lambda}, F \cap V_{\lambda} \rangle \models \Phi \wedge \Psi \wedge \varphi.$$

Fix some $t \in T_{\lambda}$. Let $\operatorname{pred}(t) = \{t' \in T : t' <_T t\}$. It is clear that $\operatorname{pred}(t)$ is a branch through $T \cap V_{\lambda}$. So, $\operatorname{pred}(t) \in V_{\lambda}$, and hence, since λ is inaccessible, $|\operatorname{pred}(t)| < \lambda$. A contradiction.

COROLLARY 2.8. If κ is Σ_{ω} -w.c., then κ has the Σ_{ω} -tree property.

2.1.2. The partition property. Recall that if κ is a cardinal and n > 0 is a natural number, $[\kappa]^n$ is the set of all subsets of κ with exactly n elements.

Given a cardinal κ , natural numbers $n, m \ (n > 0)$, and a function $f : [\kappa]^n \to m$, a set $H \subseteq \kappa$ is said to be f-homogeneous iff $f''[H]^n = \{i\}$ for some $i \in m$.

DEFINITION 2.9. Let κ be a cardinal. Then κ has the Σ_n -partition property iff κ is an inaccessible cardinal and for every function $f:[\kappa]^2 \to \{0,1\}$ that is Σ_n -definable over V_{κ} there exists an f-homogeneous set of cardinality κ . We write $\kappa \xrightarrow{\Sigma_n} (\kappa)^2$ to indicate that κ has the Σ_n -partition property. The Σ_{ω} -partition property is defined analogously, and we write $\kappa \xrightarrow{\Sigma_{\omega}} (\kappa)^2$.

LEMMA 2.10. For every $n \in \omega$, n > 0, if κ has the Σ_n -tree property, then $\kappa \xrightarrow{\Sigma_n} (\kappa)^2$.

Proof. Let $F: [\kappa]^2 \to \{0,1\}$ be Σ_n -definable over V_{κ} . Let $\varphi(x,y,z)$ be a Σ_n formula, possibly with parameters in V_{κ} , that defines it.

For every $\beta < \kappa$, let $f_{\beta} : \beta \to \{0,1\}$ be such that for all $\alpha < \beta$, $f_{\beta}(\alpha) = F(\{\alpha,\beta\})$. Let $T = \{f_{\beta} | \gamma : \gamma \leq \beta < \kappa\}$ be ordered by extension. Note that T is Σ_n -definable over V_{κ} :

$$t \in T \text{ iff } V_{\kappa} \models \exists \beta, \gamma (\gamma \leq \beta \wedge \text{dom}(t) = \gamma \wedge (\forall \alpha < \gamma) (\exists i \in \{0, 1\}) (\varphi(\alpha, \beta, i))).$$

It is clear that for every $\beta < \kappa$, we have: $t \in T_{\beta}$ iff $t \in T$ and $dom(t) = \beta$. So, T is a Σ_n -tree. Moreover, $ht(T) = \kappa$, and since for every $\beta < \kappa$, $T_{\beta} \subseteq 2^{\beta}$, and κ is inaccessible, $|T_{\beta}| < \kappa$. Therefore T is a κ -tree.

Since κ has the Σ_n -tree property, there is a cofinal branch B through T. Let $\{t_{\xi}: \xi < \kappa\}$ be an increasing enumeration of B so that $\text{dom}(t_{\xi}) = \xi$ for all $\xi < \kappa$. For every $i \in \{0, 1\}$, let

$$H_i = \{ \xi < \kappa : t_{\xi} (\xi, i) \in B \}.$$

We claim that for every $i \in \{0,1\}$, H_i is a homogeneous subset of κ for F. Fix $\alpha, \beta, \gamma \in H_i$ with $\alpha < \beta < \gamma$. Since $t_{\alpha} \langle \alpha, i \rangle \subseteq t_{\beta}$ and $t_{\beta} \langle \beta, i \rangle \subseteq t_{\gamma}$,

$$F(\{\alpha, \beta\}) = t_{\beta}(\alpha) = i = t_{\gamma}(\beta) = F(\{\beta, \gamma\}).$$

So, the H_i are homogeneous for $i \in \{0,1\}$. Since $|B| = \kappa$, either $|H_0| = \kappa$ or $|H_1| = \kappa$. Therefore, $\kappa \xrightarrow{\Sigma_n} (\kappa)^2$.

COROLLARY 2.11. If κ has the Σ_{ω} -tree property, then $\kappa \xrightarrow{\Sigma_{\omega}} (\kappa)^2$.

LEMMA 2.12 (E. Kranakis, [8]). Assume V = L. For every n > 0, $\kappa \xrightarrow{\Sigma_n} (\kappa)^2$ implies that for every Π_1^1 formula $\Phi(x_0, \ldots, x_k)$ and $a_0, \ldots, a_k \in L_{\kappa}$ such that $L_{\kappa} \models \Phi(a_0, \ldots, a_k)$, there is $\lambda < \kappa$ with $L_{\lambda} \preccurlyeq_n L_{\kappa}$ such that $L_{\kappa} \models \Phi(a_0, \ldots, a_k)$.

Finally, we have:

Theorem 2.13. (V=L) Let κ be a cardinal. Then for every $n\geq 1$ the following are equivalent:

- (1) κ is a Σ_n -w.c. cardinal.
- (2) κ has the Σ_n -tree property.
- (3) $\kappa \xrightarrow{\Sigma_n} (\kappa)^2$.

Proof. $(1)\Rightarrow(2)$ follows from Lemma 2.7.

 $(2) \Rightarrow (3)$ follows from Lemma 2.10.

Since $L \models \kappa \xrightarrow{\Sigma_n} (\kappa)^2$, by definition, κ is inaccessible in L. The rest of implication (3) \Rightarrow (1) follows from Lemma 2.12 (this is the only place where V = L is used) and Proposition 2.3.

Corollary 2.14. (V = L) Let κ be a cardinal. Then the following are equivalent:

- (1) κ is Σ_{ω} -w.c.
- (2) κ has the Σ_{ω} -tree property.
- (3) $\kappa \xrightarrow{\Sigma_{\omega}} (\kappa)^2$.
- 2.2. Generic absoluteness for projective ccc posets

DEFINITION 2.15. $L(\mathbb{R})^M$ is a Σ_n -w.c. (resp. Σ_ω -w.c.) Solovay model over $V \subseteq M$ iff M satisfies:

- (1) For every $x \in \mathbb{R}$, ω_1 is a Σ_n -w.c. (resp. Σ_ω -w.c.) cardinal in V[x].
- (2) Every $x \in \mathbb{R}$ is small-generic over V.

Notice that since every Σ_n -w.c. (resp. Σ_{ω} -w.c.) cardinal is inaccessible, Lemma 1.1 also holds for Σ_n -w.c. (resp. Σ_{ω} -w.c.) Solovay models.

We will make use of the following property of Σ_n -w.c. cardinals:

Lemma 2.16. Let $n \geq 1$. Suppose that κ is a Σ_n -w.c. cardinal and $\mathbb P$ is a κ -cc poset that is Σ_n -definable (with parameters) over V_{κ} . If $X \subseteq \mathbb P$ has cardinality less than κ , then there is a complete subposet $\mathbb Q$ of $\mathbb P$, also of cardinality less than κ , such that $X \subseteq \mathbb Q$.

Proof. Let $X \subseteq \mathbb{P}$ with $|X| < \kappa$. Since κ is inaccessible, there is a cardinal $\lambda < \kappa$ with $X \subseteq V_{\lambda}$.

Let $R = \{D : D \text{ is a maximal antichain of } \mathbb{P}\}$. Since \mathbb{P} is κ -cc, $R \subseteq V_{\kappa}$. For all $D \in V_{\kappa}$, $D \in R$ iff V_{κ} satisfies:

$$D \subseteq \mathbb{P} \land \forall x, y \in D \ (x \neq y \to x \perp_{\mathbb{P}} y) \land \forall z \ (z \in \mathbb{P} \to \exists y \in D \ (\neg z \perp_{\mathbb{P}} y)).$$

Note that the formula above is the conjunction of a Σ_n formula and a Π_n formula. Hence, R is a Δ_{n+1} predicate in V_{κ} .

Let Φ be the conjunction of the following sentences of the second-order language of type $\{\in, \mathbb{P}, \leq_{\mathbb{P}}, \perp_{\mathbb{P}}, R\}$:

- (1) $\leq_{\mathbb{P}}$ is a partial order with field $(\leq_{\mathbb{P}}) = \mathbb{P}$.
- (2) $\perp_{\mathbb{P}}$ is the incompatibility relation of $\langle \mathbb{P}, \leq_{\mathbb{P}} \rangle$.
- (3) $\forall Y \ (Y \subseteq \mathbb{P} \land \forall xy \ (Yx \land Yy \land x \neq y \to x \perp_{\mathbb{P}} y)$ $\land \forall z \ (\mathbb{P}z \to \exists y \ (Yy \land \neg y \perp_{\mathbb{P}} z)) \to \exists x \ (Rx \land Y = x))$, i.e, every maximal antichain of \mathbb{P} belongs to R.

Notice that (1) and (2) are first-order, and (3) is Π_1^1 .

We have

$$\langle V_{\kappa}, \in, \mathbb{P}, \leq_{\mathbb{P}}, \perp_{\mathbb{P}}, R \rangle \models \Phi.$$

So, since κ is Σ_n -w.c., there is $\alpha < \kappa$ with $\lambda < \alpha$ such that

$$\langle V_{\alpha}, \in, \mathbb{P} \cap V_{\alpha}, \leq_{\mathbb{P}} \cap V_{\alpha}, \perp_{\mathbb{P}} \cap V_{\alpha}, R \cap V_{\alpha} \rangle \models \Phi.$$

Let $\mathbb{Q} = \langle \mathbb{P} \cap V_{\alpha}, \leq_{\mathbb{P}} \cap V_{\alpha}, \perp_{\mathbb{P}} \cap V_{\alpha} \rangle$. So, $|\mathbb{Q}| < \kappa$. By (1) and (2), \mathbb{Q} is a subposet of \mathbb{P} that preserves the incompatibility relation of \mathbb{P} . Since $\lambda < \alpha$, we have $X \subseteq \mathbb{P} \cap V_{\alpha}$. Finally, let D be a maximal antichain of \mathbb{Q} . Then, by (3), $D \in R \cap V_{\alpha}$. So since $D \in R$, it follows that D is a maximal antichain of \mathbb{P} . This shows that \mathbb{Q} is a complete subposet of \mathbb{P} of cardinality less than κ which includes X.

For α an ordinal, we shall write $\operatorname{Coll}_{\alpha}$ for the Levy collapse below α , instead of the usual and more cumbersome $\operatorname{Coll}(\omega, <\alpha)$.

THEOREM 2.17. Let $n \geq 1$. Suppose $L(\mathbb{R})^M$ is a Σ_n -w.c. Solovay model over V and \mathbb{P} is a ccc poset which is, in M, Σ_n -definable (with parameters) over $H(\omega_1)$. Then the $L(\mathbb{R})$ of any \mathbb{P} -extension of M is also a Σ_n -w.c. Solovay model over V.

Proof. Let $\kappa = \omega_1^M$. Force over M with Woodin's partial ordering \mathbb{W} (see Lemma 1.1) to obtain a $\operatorname{Coll}_{\kappa}$ -generic C over V so that $\mathbb{R}^M = \mathbb{R}^{V[C]}$. Notice that for a generic filter $G \subseteq \mathbb{P}$, G is \mathbb{P} -generic over M iff it is \mathbb{P} -generic over V[C] and, moreover, $\mathbb{R}^{M[G]} = \mathbb{R}^{V[C][G]}$. Thus, to prove the theorem it will be enough to show that every real in V[C][G] is generic over V for some forcing notion \mathbb{P} in V that is countable in V[C][G].

Let $\dot{\mathbb{P}}$ be a $\operatorname{Coll}_{\kappa}$ -name for \mathbb{P} in V. By the Factor Lemma for the Levy collapse, we may assume that the parameters of the definition of \mathbb{P} are in V. Further, since the Levy collapse is homogeneous, we may assume that $\Vdash_{\operatorname{Coll}_{\kappa}}$ " $\dot{\mathbb{P}}$ is a poset". Notice that $\operatorname{Coll}_{\kappa}$ is definable by means of a Σ_1 and a Π_1 formula without parameters over V_{κ} (see [2]). Hence, for $n \geq 1$, $\operatorname{Coll}_{\kappa} * \dot{\mathbb{P}}$ is a poset which is Σ_n -definable over V_{κ} , possibly with parameters.

Let x be a real in V[C][G]. Let \dot{x} be a simple $\operatorname{Coll}_{\kappa} * \dot{\mathbb{P}}$ -name for x in V, and let X be the set of all conditions of $\operatorname{Coll}_{\kappa} * \dot{\mathbb{P}}$ in $TC(\dot{x})$. Since $\operatorname{Coll}_{\kappa} * \dot{\mathbb{P}}$ is κ -cc, $|X| < \kappa$. So, by Lemma 2.16, there is a complete subposet \mathbb{Q} of $\operatorname{Coll}_{\kappa} * \dot{\mathbb{P}}$ such that $X \subseteq \mathbb{Q}$ and \mathbb{Q} has cardinality less than κ . Let $H = (C * G) \cap \mathbb{Q}$. Then H is \mathbb{Q} -generic over V and $\dot{x}[H] = \dot{x}[C * G] = x$. This completes the proof of the theorem since it shows that x is generic over V for the countable poset \mathbb{Q} .

COROLLARY 2.18.

- (1) For every $n \ge 1$, $\operatorname{Con}(\operatorname{ZFC} + there \ exists \ a \ \Sigma_n$ -w.c. $\operatorname{cardinal})$ implies $\operatorname{Con}(\operatorname{ZFC} + L(\mathbb{R}) \text{-absoluteness for } \sum_{n+1}^{1} \operatorname{ccc \ posets})$.
- (2) $\operatorname{Con}(\operatorname{ZFC} + \operatorname{there\ exists\ } a \Sigma_{\omega} \text{-w.c.\ } \operatorname{cardinal}) \operatorname{implies\ } \operatorname{Con}(\operatorname{ZFC} + L(\mathbb{R}) \text{-} \operatorname{absoluteness\ for\ projective\ } \operatorname{ccc\ posets}).$

Proof. (1): Suppose κ is Σ_n -w.c. Force with $\operatorname{Coll}_{\kappa}$ so that the $L(\mathbb{R})$ of the generic extension M is a Σ_n -w.c. Solovay model over V. By Theorem 2.17 and Lemma 1.3, $L(\mathbb{R})$ -absoluteness holds in M for ccc posets that are Σ_n definable, with parameters, in $H(\omega_1)$, and hence, for Σ_{n+1}^1 ccc posets.

Recall that for Γ a class of posets, a poset \mathbb{P} is Γ -productive-ccc iff it is ccc and for every ccc poset \mathbb{Q} in Γ , $\mathbb{P} \times \mathbb{Q}$ is ccc.

Let Γ_n be the class of all \sum_{n+1}^1 ccc posets, and let Γ_ω be the class of all projective ccc forcing notions. Then, as in [2], we can show:

Theorem 2.19.

- (1) If $L(\mathbb{R})^M$ is a Σ_n -w.c. Solovay model, then in $L(\mathbb{R})^M$ every ccc poset is Γ_n -productive-ccc.
- (2) If $L(\mathbb{R})^M$ is a Σ_{ω} -w.c. Solovay model, then in $L(\mathbb{R})^M$ every ccc poset is Γ_{ω} -productive-ccc.
- *Proof.* (1): Suppose $L(\mathbb{R})^M$ is a Σ_n -w.c. Solovay model over V, and in $L(\mathbb{R})^M$, \mathbb{P} is a ccc poset and \mathbb{Q} is a poset in the class Γ_n .

It is known (see [7]) that there is a ccc poset \mathbb{Q}^* in Γ_n such that \mathbb{Q} completely embeds into \mathbb{Q}^* , and if G is \mathbb{Q}^* -generic over some model M, then M[G] is of the form M[g] for some real g.

Let \mathbb{Q}^* be as above, and suppose τ is a \mathbb{Q}^* -name for an uncountable antichain of \mathbb{P} , $\tau \in L(\mathbb{R})^M$. Let $\varphi_{\mathbb{P}}(x)$, $\varphi_{\leq_{\mathbb{P}}}(x,y)$ and $\varphi_{\perp_{\mathbb{P}}}(x,y)$ be formulas with only reals and ordinals as parameters that define, respectively, \mathbb{P} ,

 $\leq_{\mathbb{P}}$, and $\perp_{\mathbb{P}}$ in $L(\mathbb{R})^M$, and let $\varphi_{\mathbb{Q}^*}(x)$, $\varphi_{\leq_{\mathbb{Q}^*}}(x,y)$, and $\varphi_{\perp_{\mathbb{Q}^*}}(x,y)$ be Σ^1_{n+1} formulas with real parameters that define, respectively, \mathbb{Q}^* , $\leq_{\mathbb{Q}^*}$, and $\perp_{\mathbb{Q}^*}$. Thus, there is a formula $\varphi(x,y)$ with only reals and ordinals as parameters such that the following holds in $L(\mathbb{R})^M$:

- (i) For all p, a, if $\varphi(p, a)$, then $\varphi_{\mathbb{O}^*}(p)$ and $\varphi_{\mathbb{P}}(a)$.
- (ii) For all p, q, a, b, if $\varphi(p, a), \varphi(q, b)$, and not $\varphi_{\perp_{\mathbb{Q}^*}}(p, q)$, then $\varphi_{\perp_{\mathbb{P}}}(a, b)$.
- (iii) For all $p, a, \varphi(p, a)$ iff $\langle p, \check{a} \rangle \in \tau$.

Suppose G is \mathbb{Q}^* -generic over $L(\mathbb{R})^M$. So, G is also generic over M. Let N be the $L(\mathbb{R})$ of $L(\mathbb{R})^M[G]$. Clearly, since M[G] and $L(\mathbb{R})^M[G]$ have the same reals, $N = L(\mathbb{R})^{M[G]}$. Thus, by Lemma 1.3 and Theorem 2.17, (i) and (ii) above hold in N. Since G is easily coded by a real, $G \in N$. In N, let $A = \{a : \exists p \in G \ \varphi(p, a)\}$. Notice that, by (iii) above, $\tau[G] \subseteq A$, and so A is an uncountable set in N. Also, for every $a \in A$, $N \models \varphi_{\mathbb{P}}(a)$. Let \mathbb{P}^N and $\leq_{\mathbb{P}}^N$ be the sets defined in N by the formulas $\varphi_{\mathbb{P}}(x)$ and $\varphi_{\leq_{\mathbb{P}}}(x, y)$, respectively. Then $N \models \text{``}(\mathbb{P}^N, \leq_{\mathbb{P}}^N)$ is a ccc poset". So, since

 $N \models$ "A is an uncountable subset of \mathbb{P}^{N} ",

we have

$$N\models \text{``}\exists p,q,a,b\ (\varphi(p,a)\land\varphi(q,b)\land\neg\varphi_{\bot_{\mathbb{D}^*}}(p,q)\land\neg\varphi_{\bot_{\mathbb{P}}}(a,b))\text{''}.$$

Therefore, by 1.3 and 2.17,

$$L(\mathbb{R})^M \models \text{``}\exists p,q,a,b \ (\varphi(p,a) \land \varphi(q,b) \land \neg \varphi_{\perp_{\mathbb{Q}^*}}(p,q) \land \neg \varphi_{\perp_{\mathbb{P}}}(a,b))\text{''},$$

which contradicts (ii) above.

Now suppose H is \mathbb{Q} -generic over $L(\mathbb{R})^M$. Let G be \mathbb{Q}^* -generic over $L(\mathbb{R})^M$ such that

$$L(\mathbb{R})^M[H] \subseteq L(\mathbb{R})^M[G].$$

Since \mathbb{P} is ccc in $L(\mathbb{R})^M[G]$, it is also ccc in $L(\mathbb{R})^M[H]$.

COROLLARY 2.20. If $L(\mathbb{R})^M$ is a Σ_n -w.c. Solovay model over V, then in M there are no Σ_{n+1}^1 Suslin trees. And if $L(\mathbb{R})^M$ is a Σ_{ω} -w.c. Solovay model over V, then in M there are no projective Suslin trees.

Proof. If T is a \sum_{n+1}^{1} Suslin tree, then $T \times T$ with the product ordering is a \sum_{n+1}^{1} poset which is not ccc (see [6]).

3. The strength of generic absoluteness under projective ccc forcing notions. In this section we shall prove the following:

THEOREM 3.1. If Σ_4^1 -absoluteness holds for Δ_3^1 ccc forcing notions, then ω_1 is a Σ_1 -w.c. cardinal in L.

Proof. Suppose towards a contradiction that ω_1 is not Σ_1 -w.c. in L. We know (see [2]) that ω_1 is inaccessible in L and, in fact, ω_1 is inaccessible to

reals, i.e., $\omega_1^{L[x]}$ is countable for every real x. Hence, by Theorem 2.13, there is, in L, an Aronszajn tree $T = \langle T, \leq_T \rangle$ whose nodes are elements of $2^{<\omega_1}$ and which is a Σ_1 -tree over L_{ω_1} .

We need the following version of the Silver tree S_T for T (See [5]): For every set M and every $X \subseteq M$, let $H^M(X)$ denote the Skolem hull of X in M. Then the Silver tree S_T for T is defined as follows:

- (1) $\langle \alpha, \beta, a \rangle \in S_T$ iff
 - (a) $\alpha < \beta < \omega_1$,
 - (b) $a \in L_{\beta}$ is a function with $\alpha \subseteq \text{dom}(a)$,
 - (c) $L_{\beta} = H^{L_{\beta}}(\alpha \cup \{a\}),$
 - (d) $a \upharpoonright \alpha \in T$.
- (2) $\langle \alpha, \beta, a \rangle \leq_{S_T} \langle \gamma, \delta, c \rangle$ iff
 - (a) $\alpha \leq \gamma$,
 - (b) $L_{\beta} = \mu^{n} H^{L_{\delta}}(\alpha \cup \{c\})$, where μ is Mostowski's transitive collapse function, and $\mu(c) = a$.

Note that if $\langle \alpha, \beta, a \rangle \in S_T$, then $\langle \alpha, \beta, a \rangle$ is a node of height α .

LEMMA 3.2 (J. H. Silver, see [5]). S_T is an Aronszajn tree in L such that in any model of ZFC (extending L), if there is a branch of length ω_1 through S_T , then $cf(\omega_1) = \omega$.

An important fact for our purposes is that the complexity of S_T is the same as that of T. That is:

LEMMA 3.3. For all $n \ge 1$, if $T \subseteq 2^{<\omega_1}$ is a Σ_n -tree (resp. Π_n -tree) over L_{ω_1} , then S_T is also a Σ_n -tree (resp. Π_n -tree) over L_{ω_1} .

Proof. Fix some recursive enumeration $\langle \varphi_i : i \in \omega \rangle$ of all formulas of the language of set theory of the form $\exists \overline{x} \ \varphi(\overline{y}, \overline{z}, \overline{x})$, where $\overline{y}, \overline{z}, \overline{x}$ are finite sequences of variables and \overline{x} is non-empty. We use the following notational conventions: given a formula φ_i , we denote by φ_i' the formula resulting from the removal of the first block of existential quantifiers of φ_i . Also, $\exists \overline{y} \ \varphi_i$ denotes the formula resulting by adding the block of existential quantifiers $\exists \overline{y}$ to the formula φ_i . Note that the maps $\varphi_i \mapsto \varphi_i'$ and $\varphi_i \mapsto \exists \overline{y} \ \varphi_i$ are recursive.

If x is an ordered pair, then let $(x)_0$ and $(x)_1$ denote, respectively, the first and second coordinates of x.

For every set $M \in L$, we define the function r^M from $\omega \times M^{<\omega}$ to $M^{<\omega} \times M^{<\omega}$ as follows: for all $i \in \omega$ and every $b \in M^{<\omega}$,

$$r^{M}(i,b) = \begin{cases} \text{the } <_{L} \text{-least } a \in M^{<\omega} \times M^{<\omega} \text{ such that} \\ M \models \varphi_{i}'((a)_{0}, b, (a)_{1}) & \text{if } M \models \exists y \ \varphi_{i}(b), \\ \langle \emptyset, \emptyset \rangle & \text{if } M \nvDash \exists y \ \varphi_{i}(b). \end{cases}$$

Let Sk^M be the function from $\omega \times M^{<\omega}$ into $M^{<\omega}$ defined by $\mathrm{Sk}^M(i,b) = (r^M(i,b))_0$ for every $i \in \omega$ and $b \in M^{<\omega}$.

CLAIM 3.4. (V = L) For every set M, the functions r^M and Sk^M are Δ_1 with M as a parameter.

Proof. We only need to show that r^M is Δ_1 . Let $\operatorname{Sat}(x, y, z)$ denote the satisfaction relation for sets, i.e., $\operatorname{Sat}(x, y, z)$ iff the set x satisfies the formula y with the sequence z of elements of x. Notice that this is a Δ_1 relation.

For every $i \in \omega$, and every $b \in M^{<\omega}$, $r^M(i,b) = a$ iff

- (1) a is an ordered pair, and $(a)_0, (a)_1 \in M^{<\omega}$.
- (2) Either $Sat(M, \exists y \ \varphi_i, b)$ and
 - (a) $Sat(M, \varphi_i', (a)_0^-b^-(a)_1),$
 - (b) $(\forall c, d \in M)(\operatorname{Sat}(M, \varphi'_i, c^{\smallfrown}b^{\smallfrown}d) \to a <_L \langle c, d \rangle),$
- (3) or $\neg \operatorname{Sat}(M, \exists \overline{y} \varphi_i, b)$ and $(\forall c, d \in M)(a \leq_L \langle c, d \rangle)$.

Since $<_L$ is a Δ_1 relation, (1), (2), and (3) can be written as both Σ_n and Π_n sentences. Hence, r^M is a Δ_1 function.

Therefore, the functions $M \mapsto r^M$ and $M \mapsto \operatorname{Sk}^M$ are Δ_1 definable in L without parameters.

CLAIM 3.5. (V = L) For every set M and every $X \subseteq M$, $H^M(X)$ is a Δ_1 definable set with M and X as parameters.

Proof. Given M and $X \subseteq M$, define a sequence $(H^M(X,n))_{n<\omega}$ recursively by:

$$H^{M}(X,0) = \operatorname{Sk}^{M}"(\omega \times X^{<\omega}),$$

$$H^{M}(X,n+1) = \operatorname{Sk}^{M}"(\omega \times H^{M}(X,n)^{<\omega}).$$

Since Sk^M is Δ_1 definable, with M as parameter, the map $n \mapsto H^M(X, n)$ is also Δ_1 definable with parameters M and X. Note that $H^M(X) = \bigcup_{n \in \omega} H^M(X, n)$. Thus, for all a,

$$a \in H^M(X)$$
 iff $(\exists n \in \omega)(a \in H^M(x,n)),$

and so $H^M(X)$ is Δ_1 -definable with M and X as parameters.

We continue with the proof of Lemma 3.3. Recall that T is a tree which is definable over L_{ω_1} with Σ_n formulas $\varphi_T(x)$ and $\varphi_{\leq_T}(x,y)$, possibly with parameters. Then, for all $\alpha, \beta < \omega_1$ and every $b \in L_{\omega_1}$, $\langle \alpha, \beta, b \rangle \in S_T$ iff L_{ω_1} satisfies:

- (1) α and β are ordinals and $\alpha < \beta$.
- (2) b is a function such that $(\forall \gamma \in \alpha)(\gamma \in \text{dom}(b))$ and $b \in L_{\beta}$.
- (3) $(\forall x \in L_{\beta})(x \in H^{L_{\beta}}(\alpha \cup \{b\}))$ and $(\forall x \in H^{L_{\beta}}(\alpha \cup \{b\}))(x \in L_{\beta}).$
- (4) $\varphi_T(b \upharpoonright \alpha)$.

- (1) is Δ_0 . Since the maps $\beta \mapsto L_{\beta}$, and $(X, M) \mapsto H^M(X)$ are Δ_1 , (2) and
- (3) are Δ_1 . Finally, it is clear that (4) is Σ_n .

Note that μ , the Mostowski collapsing map, is Δ_1 . So, for all $\alpha, \beta, \gamma, \delta < \omega_1$ and every $b, d \in L_{\omega_1}$, $\langle \alpha, \beta, b \rangle \leq_{S_T} \langle \gamma, \delta, d \rangle$ iff L_{ω_1} satisfies:

- (1) $\langle \alpha, \beta, b \rangle, \langle \gamma, \delta, d \rangle \in S_T$.
- (2) $\alpha \leq \gamma$.
- (3) $(\forall x \in L_{\beta})(x \in \mu(H^{L_{\delta}}(\alpha \cup \{d\})))$ and $(\forall x \in \mu(H^{L_{\delta}}(\alpha \cup \{d\}))(x \in L_{\beta}).$
- (4) $\mu(d) = b$.
- (1) is Σ_n in L_{ω_1} , (2) is Δ_0 , and (3) and (4) are Δ_1 in L_{ω_1} .

Therefore $\langle S_T, \leq_{S_T} \rangle$ is a tree which is Σ_n -definable over L_{ω_1} .

It only remains to show that the relation $t \in (S_T)_{\alpha}$ is Σ_n over L_{ω_1} . But this is clear, since $t \in (S_T)_{\alpha}$ iff $t \in S_T$ and $t_0 = \alpha$. This finishes the proof of Lemma 3.3.

Remark 3.6. Notice that the arguments above show that in L, if (T, \leq_T) is a tree where both T and \leq_T are Σ_n -definable over L_κ and, possibly, the levels of T are not Σ_n -definable over L_κ , where κ is an uncountable cardinal, then S_T is a Σ_n -tree over L_κ . Thus, if V=L, then the conclusion of Lemma 2.7 can be strengthened to: every κ -tree that is Σ_n -definable over L_κ has a cofinal branch. Hence, in Theorem 2.13 we can add the following as a further equivalence: κ is inaccessible and every κ -tree that is Σ_n -definable over V_κ has a cofinal branch.

Continuing now with the proof of Theorem 3.1, recall that WO is the Π_1^1 set of elements of the Baire space ω^{ω} that code well-orderings of ω . If $a \in WO$, let ||a|| be the order-type of the well-ordering coded by a (see [6]). For $x \subseteq \omega$, let \overline{x} be the element of ω^{ω} coded by x, via some recursive bijection between $\mathcal{P}(\omega)$ and ω^{ω} .

LEMMA 3.7. If C is a $\operatorname{Coll}_{\omega_1}$ -generic filter over V, then there is a function $\pi \in V[C]$ from WO into WO such that:

- (1) For every $x \in WO$, $\pi(x)$ is a code for the ordinal ||x||.
- (2) For every $x, y \in WO$, if ||x|| = ||y||, then $\pi(x) = \pi(y)$.
- (3) π has a $\operatorname{Coll}_{\omega_1}$ -name that can be coded by a Δ_3^1 subset of ω^{ω} .

Proof. Let \dot{WO} be the set of all simple $Coll_{\omega_1}$ -names σ for a subset of ω such that $\Vdash_{Coll_{\omega_1}}$ " $\overline{\sigma} \in \dot{WO}$ ".

Note that, since $\operatorname{Coll}_{\omega_1} \in L$, every $\operatorname{Coll}_{\omega_1}$ -generic filter over V is also generic over L. So, for every $\gamma < \omega_1$ let τ_{γ} be the $<_L$ -least simple $\operatorname{Coll}_{\omega_1}$ -name for a subset of ω such that $\Vdash_{\operatorname{Coll}_{\omega_1}}$ " $\|\overline{\tau}_{\gamma}\| = \check{\gamma}$ ". Let $B_{\omega_1} = \{\tau_{\gamma} : \gamma < \omega_1\}$ and let $\dot{B} = \operatorname{Coll}_{\omega_1} \times B_{\omega_1}$.

Define the function π_{ω_1} from \dot{WO} into B_{ω_1} as follows: for every $\sigma \in \dot{WO}$, $\pi_{\omega_1}(\sigma) = \tau$ iff

- (1) $\tau \in B_{\omega_1}$,
- (2) $\Vdash_{\operatorname{Coll}_{\omega_1}}$ " $\|\overline{\sigma}\| = \|\overline{\tau}\|$.

Let $\dot{\pi} = \operatorname{Coll}_{\omega_1} \times \pi_{\omega_1}$.

We can now easily check that if C is $\operatorname{Coll}_{\omega_1}$ -generic over V, then in V[C], $\pi := \dot{\pi}[C]$ is a function satisfying: if $\pi(a) = b$, then $\|\overline{a}\| = \|\overline{b}\|$ and b is the unique code in $\dot{B}[C]$ coding the ordinal $\|\overline{a}\|$. Thus π satisfies (1) and (2) of the lemma, modulo a recursive coding of elements of the Baire space ω^{ω} by subsets of ω .

To prove (3) we need to compute the complexity of the sets and names involved in the definition of π .

First observe that $\operatorname{Coll}_{\omega_1}$ is a Δ_2^1 poset (see [2]).

Let WO* be the set of codes of elements of WO. Then WO* is a Δ_2^1 set of reals (cf. [1]).

CLAIM 3.8. Let B^* be the set of all codes of elements of B_{ω_1} . Then B^* is a Δ_3^1 set of reals.

Proof. Let $<_L^*$ be the following relation: for every $x, y \in \omega^{\omega}$, $x <_L^* y$ iff x, y code simple $\operatorname{Coll}_{\omega_1}$ -names in L for subsets of ω and the name coded by x is $<_L$ -less than the name coded by y. Since every simple $\operatorname{Coll}_{\omega_1}$ -name for a subset of ω is hereditarily countable, the predicate "x codes a simple $\operatorname{Coll}_{\omega_1}$ -name in L for a subset of ω " is Σ_1 in $H(\omega_1)$. Hence, as $<_L$ is also Σ_1 over $H(\omega_1)$, $<_L^*$ is a Σ_2^1 relation.

Recall that B_{ω_1} is the range of a function that assigns to each $\gamma < \omega_1$ the $<_L$ -least $\operatorname{Coll}_{\omega_1}$ -name for a subset of ω that is forced by $\operatorname{Coll}_{\omega_1}$ to be a code for γ . Thus, $x \in B^*$ iff

- (1) x codes a simple $\operatorname{Coll}_{\omega_1}$ -name in L for a subset of ω and $\Vdash_{\operatorname{Coll}_{\omega_1}}$ " $x \in \operatorname{WO}$ ".
- (2) for every w, if w codes a simple $\operatorname{Coll}_{\omega_1}$ -name for a subset of ω , and $w <_L^* x$, then $\mathbb{1}_{\operatorname{Coll}_{\omega_1}}$ " $\|\overline{w}\| = \|\overline{x}\|$ ".

Since (1) is a Σ_2^1 sentence and (2) is Π_2^1 , B^* is a Δ_3^1 set.

Let π^* be the relation given by: $\pi^*(x,y)$ iff x and y code simple $\operatorname{Coll}_{\omega_1}$ -names σ and τ , respectively, for subsets of ω , and $\pi_{\omega_1}(\sigma) = \tau$.

We will finish the proof of (3) of Lemma 3.7 by showing that π^* is a Δ_3^1 relation.

Let S(v,x,y) iff v codes a condition $p \in \operatorname{Coll}_{\omega_1}$, x and y code simple $\operatorname{Coll}_{\omega_1}$ -names σ and τ , respectively, for subsets of ω , and $p \Vdash_{\operatorname{Coll}_{\omega_1}} "\|\overline{\sigma}\| = \|\overline{\tau}\|$ ". Since the relation $\|\overline{\sigma}\| = \|\overline{\tau}\|$ is Σ_1^1 , and $\operatorname{Coll}_{\omega_1}$ is a Δ_2^1 ccc poset, S is a Δ_2^1 relation.

So, for every $x, y \in \omega^{\omega}$, $\pi^*(x, y)$ iff

 $(1) \ x \in WO^*,$

- (2) $y \in B^*$,
- (3) $\forall v \ S(v, x, y)$.

Since (1) is Δ_2^1 , (2) is Δ_3^1 and (3) is Π_2^1 , we see that π^* is Δ_3^1 . This concludes the proof of Lemma 3.7.

Recall that WF denotes the Π_1^1 set of all reals that code a well-founded relation on ω (see [6]). Every set in $H(\omega_1)$ can be coded by some $x \in WF$ as follows: $x \in \omega^{\omega}$ codes $a \in H(\omega_1)$ iff $\langle \omega, E_x \rangle \cong \langle TC(a), \in \rangle$, where for $n, m \in \omega$, $nE_x m$ iff x(J(n, m)) = 0, where J is some recursive one-to-one pairing function from $\omega \times \omega$ onto ω . Moreover, every $x \in WF$ codes one and only one set in $H(\omega_1)$. So, given $x \in WF$, denote by [x] the set coded by x. Note that the map $x \mapsto [x]$ is Δ_1 over $H(\omega_1)$. Let $[x] \sim [y]$ iff $x \notin WF$ or $y \notin WF$ or $\langle \omega, E_x \rangle \cong \langle \omega, E_y \rangle$. Thus, $[x] \sim [y]$ is a Σ_1^1 relation on the reals. Hence, we may code every function $f \in H(\omega_1)$ by a real so that the set F of all such codes is a Δ_2^1 set of reals: for every $x \in \omega^{\omega}$, $x \in F$ iff

- (1) $x \text{ codes } \langle x_n : n \in \omega \rangle$,
- (2) $\forall n \ (x_n \text{ codes } \langle x_n^0, x_n^1 \rangle \land x_n^0, x_n^1 \in \text{WF}),$ (3) $\forall n, m \ ([x_n^0] \sim [x_m^0] \rightarrow [x_n^1] \sim [x_m^1]).$

Back to the proof of Theorem 3.1, recall that we have a tree T whose nodes are functions in $2^{<\omega_1}$ and which is Σ_1 -definable in L_{ω_1} . By Lemma 3.3, S_T is also Σ_1 -definable in L_{ω_1} . And by Lemma 3.2, S_T is still an Aronszajn tree in V, and in any generic extension of V that preserves ω_1 . Force with $\operatorname{Coll}_{\omega_1}$ over V. In the generic extension V[C], and using the function π from Lemma 3.7, we may code the nodes of S_T by reals to obtain an isomorphic tree S_T^* on the reals. Namely: for all $x, y, z \in \omega^{\omega}$, $\langle x, y, z \rangle \in S_T^*$ iff

- (1) $x, y \in WO$,
- (2) $\pi(x) = x \wedge \pi(y) = y$,
- (3) $\exists f \ (\langle ||x||, ||y||, f \rangle) \in S_T \land z \text{ codes the } \langle L\text{-least Coll}_{\omega_1}\text{-name } \sigma \text{ for a } I$ real such that $\sigma[C]$ codes f).

Thus, S_T^* is Σ_1 -definable in $H(\omega_1)$ with π and C as additional predicates.

We will now define a version of the specializing forcing of Harrington— Shelah ([5]) which will code, using S_T^* , any given ω_1 -sequence of reals into a single real. So, let X be a fixed sequence of reals of length ω_1 , and let X_{α} denote the α th element of X.

Let the forcing notion $\mathbb{P}(S_T^*, X)$ be defined as follows:

- $q \in \mathbb{P}(S_T^*, X)$ iff q is a finite function from S_T^* into \mathbb{Q} such that
 - (1) $(\forall s, t \in \text{dom}(q))(s <_{S_T} t \to q(s) < q(t)),$
 - (2) $(\forall s = \langle x, y, z \rangle \in \text{dom}(q))((z \text{ codes } \sigma \land \sigma[C] \text{ codes } f \land \sigma[C])$ $dom(f) = \omega \cdot \alpha \land q(s) \in \omega) \to q(s) \in X_{\alpha}.$
- $q \leq q'$ iff $q' \subseteq q$.

It is clear that $\mathbb{P}(S_T^*,X)$ is Σ_1 -definable in $H(\omega_1)$ with π , C, and X as additional predicates. And as in [5] one can show that $\mathbb{P}(S_T^*,X)$ has the property K, i.e., every uncountable subset contains an uncountable subset of pairwise compatible conditions. Hence it is ccc. Forcing with $\mathbb{P}(S_T^*,X)$ adds an order-preserving and continuous function $F_X: S_T^* \to \mathbb{Q}$, with the property that for every $n \in \omega$, $n \in X_\alpha$ iff F(t) = n for some $t \in S_T^*$ of height $\omega \cdot \alpha$. Moreover, F_X specializes S_T^* , i.e., for every $a \in \mathbb{Q}$, $F_X^{-1}(a)$ is an antichain of S_T^* .

Now let $X^0 = \operatorname{range}(\pi) = \{x \in \omega^\omega : \exists y \ (y \in \operatorname{WO} \land \pi(y) = x)\}$, ordered by $x \leq_{X^0} x'$ iff $x, x' \in X_0 \land ||x|| \leq ||x'||$. Clearly, (X^0, \leq_{X^0}) is a well-ordering of reals of order-type ω_1 . By using some fixed recursive coding of elements of ω^ω by subsets of ω , we may assume that $X^0_\alpha \in \mathcal{P}(\omega)$ for all $\alpha < \omega_1$.

We next describe a finite-support iteration of length ω , Δ_2 -definable over $H(\omega_1)$, with π , C, and X^0 as additional predicates. Let $\mathbb{P}_0 = \mathbb{P}(S_T^*, X^0)$. Given \mathbb{P}_n , which is Δ_2 -definable over $H(\omega_1)$, with π , C, and X^0 as additional predicates, we define \mathbb{P}_{n+1} :

For $\beta < \omega_1$, let $(S_T^*)_{<\beta}$ denote the set of nodes of S_T^* of height $< \beta$. Notice that the predicate $x \in (S_T^*)_{<\beta}$ is Σ_1 in the parameter β over $H(\omega_1)$. Let \dot{F}_{X^n} be the \mathbb{P}_n -name for the generic specializing function F_{X^n} . Thus,

$$\dot{F}_{X^n} \upharpoonright (S_T^*)_{<\omega \cdot (\alpha+1)} = \{ \langle p, \langle t, r \rangle \rangle : p \in \mathbb{P}_n, \ \langle t, r \rangle \in p, \ t \in (S_T^*)_{<\omega \cdot (\alpha+1)} \}.$$

Since \mathbb{P}_n is Δ_2 -definable over $H(\omega_1)$, with π , C, and X^0 as additional predicates, so is the set displayed above, with α as a parameter. Let \dot{X}^{n+1} be a \mathbb{P}_n -name for a code for \dot{F}_{X^n} . i.e., $\dot{X}^{n+1} = \langle \dot{X}^{n+1}_{\alpha} : \alpha < \omega_1 \rangle$, where for every $\alpha < \omega_1$,

$$\Vdash_{\mathbb{P}_n} "\dot{X}_{\alpha}^{n+1} \subseteq \omega \text{ codes } \dot{F}_{X^n} \upharpoonright (S_T^*)_{<\omega \cdot (\alpha+1)} ".$$

So, \mathbb{P}_n forces that \dot{X}_{α}^{n+1} codes $\langle x, \dot{y} \rangle$, where $x = \langle x_k : k \in \omega \rangle$ codes $(S_T^*)_{<\omega \cdot (\alpha+1)}$, $\dot{y} = \langle \dot{y}_k : k \in \omega \rangle$, and $\dot{y}_k = \{\langle p, r \rangle : \langle x_k, r \rangle \in p\}$. Notice that the sentence "x codes $(S_T^*)_{<\omega \cdot (\alpha+1)}$ " is Δ_2 .

Now let $\langle p, \dot{q} \rangle \in \mathbb{P}_{n+1}$ iff $p \in \mathbb{P}_n$ and $p \Vdash_{\mathbb{P}_n}$ " $\dot{q} \in \mathbb{P}(S_T^*, \dot{X}^{n+1})$ ". Let us check that \mathbb{P}_{n+1} is Δ_2 -definable over $H(\omega_1)$, with π , C, and X^0 as additional predicates.

First notice that the predicate " $N(\dot{q})$ iff \dot{q} is a \mathbb{P}_n -name for a finite function from S_T^* into \mathbb{Q} " is Δ_2 . Indeed, $N(\dot{q})$ iff \dot{q} is a finite set of triples $\langle q, s, r \rangle$, where $q \in \mathbb{P}_n$, $s \in S_T^*$, and $r \in \mathbb{Q}$, and for every $\langle q_0, s_0, r_0 \rangle, \langle q_1, s_1, r_1 \rangle \in \dot{q}$, if $s_0 = s_1$ and $r_0 \neq r_1$, then $q_0 \perp q_1$.

Thus, we have: $p \Vdash_{\mathbb{P}_n}$ " $\dot{q} \in \mathbb{P}(S_T^*, \dot{X}^{n+1})$ " iff $p \in \mathbb{P}_n$, $N(\dot{q})$, and

- (1) $\forall \langle q_0, s_0, r_0 \rangle, \langle q_1, s_1, r_1 \rangle \in \dot{q}(s_0 <_{S_T^*} s_1 \land r_1 \ge r_0 \to q_0 \perp q_1),$
- (2) $\forall \langle q_0, s_0, r_0 \rangle \in \dot{q} \ (s_0 = \langle x, y, z \rangle \land \dot{z} \ \text{codes} \ \sigma \land \sigma[C] \ \text{codes} \ f \land \text{dom}(f) = \omega \cdot \alpha \land p \leq q_0 \land r_0 \in \omega \rightarrow q_0 \Vdash_{\mathbb{P}_n} "r_0 \in \dot{X}_{\alpha}^{n+1}").$

But $q_0 \Vdash_{\mathbb{P}_n}$ " $r_0 \in \dot{X}_{\alpha}^{n+1}$ " iff $r_0 = \langle k, r \rangle$ and there exists $q_1 \leq q_0$ such that $\langle x_k, r \rangle \in q_1$, where $x = \langle x_k : k \in \omega \rangle$ is the code for $(S_T^*)_{<\omega \cdot (\alpha+1)}$.

This shows that \mathbb{P}_{n+1} is also Δ_2 over $H(\omega_1)$, with π , C, and X^0 as additional predicates.

Let \mathbb{P} be the direct limit of the iteration $\langle \mathbb{P}_n : n < \omega \rangle$. Since the support of the iteration is finite, it is easily seen that \mathbb{P} is Δ_2 -definable over $H(\omega_1)$ with π , C, and X^0 as additional predicates (see Lemma 4.1 below). Moreover, every \mathbb{P} -generic filter G over V[C] adds a real c such that $X^0 \in L[c]$ (see [5]), and so $V[C][G] \vDash \text{``}\exists x \ (L[x] \text{ has uncountably many reals)''}$.

It is interesting to observe that \mathbb{P} (and, in fact, $\mathbb{P}(S_T^*, X)$) is not projective in V[C], as there are no uncountable projective sequences of reals in V[C]. However, we claim that the two-step iteration $\mathrm{Coll}_{\omega_1} * \mathbb{P}$ is Δ_3^1 .

It will be enough to show that the relation R(x, y) given by:

" $x \in \operatorname{Coll}_{\omega_1}$, y is a $\operatorname{Coll}_{\omega_1}$ -name for a real, and $x \Vdash_{\operatorname{Coll}_{\omega_1}} y \in \dot{\mathbb{P}}$ "

is Δ_2 in $H(\omega_1)$, without parameters.

But since $\operatorname{Coll}_{\omega_1}$ is a Δ_2^1 forcing notion, it will be enough to see that the formula " $x \Vdash_{\operatorname{Coll}_{\omega_1}} y \in \dot{\mathbb{P}}$ " is equivalent both to a Σ_2 and a Π_2 formula in $H(\omega_1)$. For this, it is sufficient to show that the formula $y \in \dot{\mathbb{P}}$ is equivalent both to a Σ_2 and a Π_2 formula in $H(\omega_1)$. This is clearly so in the $\operatorname{Coll}_{\omega_1}$ -name for π as a parameter. But since by Lemma 3.7, π has a $\operatorname{Coll}_{\omega_1}$ -name that is Δ_2 -definable in $H(\omega_1)$ without parameters, we are done.

Since " $\exists x \ (L[x] \text{ has uncountably many reals})$ " is a Σ_4^1 sentence, and it holds in a $\operatorname{Coll}_{\omega_1} * \mathbb{P}$ -generic extension of V, by Σ_4^1 -absoluteness for Δ_3^1 ccc posets, it holds in V. Therefore, there exists a real $x \in V$ such that $\omega_1^{L[x]} = \omega_1$, contradicting the fact that ω_1 is inaccessible to reals. This finishes the proof of 3.1. \blacksquare

Theorem 3.1 can be easily generalized:

COROLLARY 3.9. Let $n \geq 2$. If \sum_{4}^{1} absoluteness holds for \sum_{n+1}^{1} ccc forcing notions, then ω_1 is a Σ_n -w.c. cardinal in L.

Proof. As in Theorem 3.1, if ω_1 is not a Σ_n -w.c. cardinal in L, then there exists an Aronszajn tree T on $2^{<\omega_1}$ which is a Σ_n -tree over L_{ω_1} . As in Lemmas 3.2 and 3.3, we can find S_T , a version of the Silver tree for T, which is an Aronszajn tree definable over L_{ω_1} and has the same complexity as T. Using S_T , we may define the poset $\mathbb P$ as in Theorem 3.1 in such a way that $\operatorname{Coll}_{\omega_1} * \mathbb P$ is a $\sum_{n=1}^{1}$ and ccc poset that adds a real x such that $\omega_1 = \omega_1^{L[x]}$, yielding a contradiction. \blacksquare

We finish with two corollaries that summarize our results:

COROLLARY 3.10. For every $n \geq 2$, the following are equiconsistent:

- (1) $L(\mathbb{R})$ -absoluteness under $\sum_{n=1}^{1} ccc posets$.
- (2) There exists a Σ_n -w.c. cardinal.

COROLLARY 3.11. The following are equiconsistent:

- (1) $L(\mathbb{R})$ -absoluteness under projective ccc posets.
- (2) There exists a Σ_{ω} -w.c. cardinal.
- 4. On iterations of projective ccc posets. We will show that after the Levy collapse of a Σ_n -w.c. cardinal, the property of $L(\mathbb{R})$ being a Σ_n -w.c. Solovay model is preserved under finite-support iterations of Σ_{n+1}^1 ccc forcing notions.

Recall that if \mathbb{P} is a forcing notion, a simple \mathbb{P} -name for a real, i.e., for a function from ω to ω , is a set τ of triples $\langle p, m, n \rangle$ such that $p \in \mathbb{P}$, $n, m \in \omega$, and for every m, the set of all p such that $\langle p, m, n \rangle \in \tau$ for some $n \in \omega$, is a maximal antichain of \mathbb{P} .

Observe that if \mathbb{P} is ccc and its conditions are real numbers, then for every simple \mathbb{P} -name τ for a real, $|\mathrm{TC}(\tau)|$ is countable. Further, if \mathbb{P} is a finite-support iteration of ccc forcing notions whose conditions are reals, then it can be easily shown, by induction on the length of the iteration, that every simple \mathbb{P} -name for a real has countable transitive closure.

LEMMA 4.1. Let $n \geq 1$. Suppose $L(\mathbb{R})^M$ is a Σ_n -w.c. Solovay model over V and $\mathbb{P} \in M$ is the direct limit of an iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \lambda \rangle$ of countable length and with finite support such that for every $\alpha < \lambda$,

$$\Vdash_{\mathbb{P}_{\alpha}}$$
 " $\dot{\mathbb{Q}}_{\alpha}$ is a $\sum_{n=1}^{1}$ ccc poset".

Then the $L(\mathbb{R})$ of any \mathbb{P} -extension of M is also a Σ_n -w.c. Solovay model over V.

Proof. Let $\kappa = \omega_1^M$. Force over M to obtain a $\operatorname{Coll}_{\kappa}$ -generic C over V with $\mathbb{R}^M = \mathbb{R}^{V[C]}$ (see Lemma 1.1).

In M, for each $\alpha < \lambda$, fix a simple \mathbb{P}_{α} -name τ_{α} for a real that codes the parameters in some fixed Σ_{n+1}^1 definition of $\dot{\mathbb{Q}}_{\alpha}$.

Since the iteration is of countable length and ccc, all the τ_{α} , $\alpha < \lambda$, belong to V[C] and $\mathbb{P} = \mathbb{P}^{V[C]}$, where $\mathbb{P}^{V[C]}$ is the iteration in V[C] defined in the same way as \mathbb{P} is defined in M. Moreover, a filter $G \subseteq \mathbb{P}$ is \mathbb{P} -generic over M iff it is \mathbb{P} -generic over V[C], and $\mathbb{R}^{M[G]} = \mathbb{R}^{V[C][G]}$. Thus, it is enough to show that for every real x in V[C][G] and every $X \subseteq \operatorname{Coll}_{\kappa} * \mathbb{P}$ of size less than κ there is a complete subposet \mathbb{Q} of $\operatorname{Coll}_{\kappa} * \mathbb{P}$ such that \mathbb{Q} is countable in V[C][G], $X \subseteq \mathbb{Q}$ and x is \mathbb{Q} -generic over V.

We proceed by induction on λ . So we assume that for every $\alpha < \lambda$ and every $X \subseteq \operatorname{Coll}_{\kappa} * \mathbb{P}_{\alpha}$ of size less than κ , there is a complete subposet \mathbb{Q} of $\operatorname{Coll}_{\kappa} * \mathbb{P}_{\alpha}$, also of size less than κ , such that $X \subseteq \mathbb{Q}$.

We may assume that λ is a limit ordinal, since the successor case follows directly from the proof of Theorem 2.17.

Now fix a subset X of $\operatorname{Coll}_{\kappa} * \mathbb{P}$ of size less than κ , and fix a real x in V[C][G]. Let $\dot{x} \in V$ be a simple $\operatorname{Coll}_{\kappa} * \dot{\mathbb{P}}$ -name for x, and let $Y = \operatorname{Coll}_{\kappa} * \dot{\mathbb{P}} \cap \operatorname{TC}(\dot{x})$. Since $\operatorname{Coll}_{\kappa} * \dot{\mathbb{P}}$ is κ -cc, Y has cardinality less than κ . Let $Z = X \cup Y$.

For every $\alpha < \lambda$, let $Z_{\alpha} = Z \cap \operatorname{Coll}_{\kappa} * \mathbb{P}_{\alpha}$. By inductive hypothesis, we can find a \subseteq -increasing chain $\langle \mathbb{Q}_{\alpha} : \alpha < \lambda \rangle$ such that \mathbb{Q}_{α} is a complete subposet of $\operatorname{Coll}_{\kappa} * \mathbb{P}_{\alpha}$, hence also a complete subposet of $\operatorname{Coll}_{\kappa} * \mathbb{P}$, such that $Z_{\alpha} \subseteq \mathbb{Q}_{\alpha}$ for all $\alpha < \lambda$. Let $\mathbb{Q} = \bigcup_{\alpha < \lambda} \mathbb{Q}_{\alpha}$. Since the iteration has finite support, \mathbb{Q} is a complete subposet of $\operatorname{Coll}_{\kappa} * \mathbb{P}$. Moreover, \mathbb{Q} has size less than κ and $Z \subseteq \mathbb{Q}$. Furthermore, letting $H = C * G \cap \mathbb{Q}$, we have $\dot{x}[H] = \dot{x}[C * G] = x$, and so x is \mathbb{Q} -generic over V.

For conciseness, in what follows we will use the notation $\mathbb{P} \triangleleft \mathbb{Q}$ to express that \mathbb{P} is a complete subposet of \mathbb{Q} .

THEOREM 4.2. Let κ be a Σ_n -w.c. cardinal, $n \geq 1$, and let $\lambda > 0$. Suppose that $\mathbb{P} = \mathbb{P}_{\lambda} \in V$ is the direct limit of an iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \lambda \rangle$ with finite support such that $\mathbb{P}_0 = \operatorname{Coll}_{\kappa}$ and for every $\alpha < \lambda$,

$$\Vdash_{\mathbb{P}_{\alpha}}$$
 " $\dot{\mathbb{Q}}_{\alpha}$ is a $\sum_{n=1}^{1}$ ccc poset".

Then the $L(\mathbb{R})$ of any \mathbb{P} -generic extension of V is a Σ_n -w.c. Solovay model over V.

Proof. Suppose G is a \mathbb{P} -generic filter over V. Notice that $\omega_1^{V[G]} = \kappa$, and so $\omega_1^{V[G]}$ is a Σ_n -w.c. cardinal in V. We only need to prove that every real in V[G] is small-generic over V, for then it will clearly follow that for every real x in V[G], $\omega_1^{V[G]}$ is a Σ_n -w.c. cardinal in V[x].

The proof is by induction on λ . So, suppose that for every $\beta < \lambda$, writing \mathbb{P}_{β} for the iteration up to β and letting $G_{\beta} = G \cap \mathbb{P}_{\beta}$, we find that $L(\mathbb{R})^{V[G_{\beta}]}$ is a Σ_n -w.c. Solovay model over V.

Let $\mathbb{P}^1 = \langle \mathbb{P}^1_{\alpha}, \dot{\mathbb{Q}}^1_{\alpha} : \alpha < \lambda \rangle \in V[G_0]$ be the remaining part of the iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \lambda \rangle$, i.e., $\mathbb{P}^1_0 = \dot{\mathbb{Q}}_0[G_0]$, $\mathbb{P}^1_{n+1} = \mathbb{P}^1_n * \dot{\mathbb{Q}}_{n+1}$ for $n < \omega$, and $\mathbb{P}^1_{\alpha+1} = \mathbb{P}^1_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$ for $\alpha \geq \omega$. We may assume that for every α ,

$$\Vdash_{\mathbb{P}^1_{\alpha}}$$
 " $\dot{\mathbb{Q}}^1_{\alpha}$ has a largest element 1",

and **1** is some fixed real that does not depend on α . Moreover, we may assume that for every $p \in \mathbb{P}^1$ and every $\alpha < \lambda$, $p(\alpha)$ is a simple \mathbb{P}^1_{α} -name for a real.

In $V[G_0]$, for each $\alpha < \lambda$, $\alpha > 0$, fix a simple \mathbb{P}^1_{α} -name τ_{α} for a real that codes the parameters in a fixed Σ^1_{n+1} definition of $\dot{\mathbb{Q}}^1_{\alpha}$, so that for some Σ^1_{n+1}

formulas $\varphi_{\alpha}(x,y)$, $\psi_{\alpha}(x,y,z)$, and $\theta_{\alpha}(x,y,z)$,

$$\begin{split} &\Vdash_{\mathbb{P}_{\alpha}} \text{``}\dot{\mathbb{Q}}_{\alpha} = \{x: \varphi_{\alpha}(x, \tau_{\alpha})\}'', \\ &\Vdash_{\mathbb{P}_{\alpha}} \text{``} \leq_{\dot{\mathbb{Q}}_{\alpha}^{1}} = \{\langle x, y \rangle : \psi_{\alpha}(x, y, \tau_{\alpha})\}", \\ &\Vdash_{\mathbb{P}_{\alpha}} \text{``} \perp_{\dot{\mathbb{Q}}_{\alpha}^{1}} = \{\langle x, y \rangle : \theta_{\alpha}(x, y, \tau_{\alpha})\}". \end{split}$$

Let x be a real in V[G] and let $\dot{x} \in V[G_0]$ be a simple \mathbb{P}^1 -name for x.

Work in $V[G_0]$. Since \mathbb{P}^1 is ccc, $|\mathrm{TC}(\dot{x})|$ is countable. Let μ be a large enough regular cardinal, and let $N \leq H(\mu)$ be such that:

- (1) $\mathbb{P}^1, \langle \tau_\alpha : \alpha < \lambda \rangle, \dot{x} \in N,$
- (2) $TC(\dot{x}) \subseteq N$,
- (3) $|N| = \aleph_0$.

Notice that if $\alpha \in OR \cap N$, then $\tau_{\alpha} \in N$, and since $|TC(\tau_{\alpha})|$ is countable, $TC(\tau_{\alpha}) \subseteq N$.

Now let \mathbb{P}^* be the direct limit of the finite-support iteration $\langle \mathbb{P}^*_{\alpha}, \dot{\mathbb{Q}}^*_{\alpha} : \alpha < \lambda \rangle$ defined as follows: $\mathbb{P}^*_0 = \mathbb{P}^1_0$, and $\Vdash_{\mathbb{P}^*_{\alpha}} "\dot{\mathbb{Q}}^*_{\alpha} = \{x : \varphi_{\alpha}(x, \tau_{\alpha})\}"$ if $\alpha \in \mathrm{OR} \cap N$, and $\Vdash_{\mathbb{P}^*_{\alpha}} "\dot{\mathbb{Q}}^*_{\alpha} = \{\mathbf{1}\}"$ otherwise, i.e., $\dot{\mathbb{Q}}^*_{\alpha}$ is the trivial poset.

We need to check that the iteration is well-defined, i.e., if $\Vdash_{\mathbb{P}^*_{\alpha}}$ " $\dot{\mathbb{Q}}^*_{\alpha} = \{x : \varphi_{\alpha}(x, \tau_{\alpha})\}$ ", then τ_{α} is a \mathbb{P}^*_{α} -name. We will show much more:

CLAIM 4.3.

- (1) If $p \in \mathbb{P}_{\alpha}^*$, then $p \in \mathbb{P}_{\alpha}^1$. And if $p \in N$, then the converse also holds.
- (2) If σ is a simple \mathbb{P}_{α}^* -name for a real, then it is also a simple \mathbb{P}_{α}^1 -name for a real. And if $\sigma \in N$, then the converse also holds.
- (3) If $p \in \mathbb{P}_{\alpha}^*$ and $\sigma, \sigma', \tau_{\alpha}$ are simple \mathbb{P}_{α}^* -names for reals, then:
 - (a) If $p \Vdash_{\mathbb{P}^*_{\alpha}} \varphi_{\alpha}(\sigma, \tau_{\alpha})$, then $p \Vdash_{\mathbb{P}^1_{\alpha}} \varphi_{\alpha}(\sigma, \tau_{\alpha})$.
 - (b) If $p \Vdash_{\mathbb{P}^*_{\alpha}} \psi_{\alpha}(\sigma, \sigma', \tau_{\alpha})$, then $p \Vdash_{\mathbb{P}^1_{\alpha}} \psi_{\alpha}(\sigma, \sigma', \tau_{\alpha})$.
 - (c) If $p \Vdash_{\mathbb{P}^*_{\alpha}} \theta_{\alpha}(\sigma, \sigma', \tau_{\alpha})$, then $p \Vdash_{\mathbb{P}^*_{\alpha}} \theta_{\alpha}(\sigma, \sigma', \tau_{\alpha})$.

And if $\alpha, p, \sigma, \sigma' \in N$, then the converses of (a), (b), and (c) also hold.

 $(4) \ \mathbb{P}_{\alpha}^* \lessdot \mathbb{P}_{\alpha}^1.$

Proof. By induction on α . For $\alpha = 0$ it is clear. So, let $\alpha = \beta + 1$.

(1) Fix $p \in \mathbb{P}_{\alpha}^*$. Then $p = \langle p \upharpoonright \beta, \sigma' \rangle$, where $p \upharpoonright \beta \in \mathbb{P}_{\beta}^*$, σ' is a simple \mathbb{P}_{β}^* -name, and either $p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}^*} "\sigma' = \mathbf{1}"$, or $p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}^*} \varphi_{\beta}(\sigma', \tau_{\beta})$. So, by induction hypothesis on (1), (2), and (3)(a), we deduce that $p \upharpoonright \beta \in \mathbb{P}_{\beta}^1$, σ' is a simple \mathbb{P}_{β}^1 -name, and either $p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}^1} "\sigma' = \mathbf{1}"$, or $p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}^1} \varphi_{\beta}(\sigma', \tau_{\beta})$. This shows that $p \in \mathbb{P}_{\alpha}^1$.

Fix now $p = \langle p \upharpoonright \beta, \sigma' \rangle \in \mathbb{P}^1_{\alpha} \cap N$. Thus, $p \upharpoonright \beta \in \mathbb{P}^1_{\beta}$, σ' is a simple \mathbb{P}^1_{β} -name, and $p \upharpoonright \beta \Vdash_{\mathbb{P}^1_{\beta}} \varphi_{\beta}(\sigma', \tau_{\beta})$. Since $p \in N$, we also know that $p \upharpoonright \beta, \sigma' \in N$. So,

again by induction hypothesis on (1), (2), and (3)(a), we infer that $p \upharpoonright \beta \in \mathbb{P}_{\beta}^*$, σ' is a simple \mathbb{P}_{β}^* -name, and $p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}^*} \varphi_{\beta}(\sigma', \tau_{\beta})$, which shows that $p \in \mathbb{P}_{\alpha}^*$.

(2) Now suppose that σ is a simple \mathbb{P}_{α}^* -name for a real. If $q \in \mathbb{P}_{\alpha}^* \cap TC(\sigma)$, we can conclude as before in the case of p that $q \in \mathbb{P}_{\alpha}^1$. This implies that σ is a simple \mathbb{P}_{α}^1 -name.

If σ is a simple \mathbb{P}^1_{α} -name for a real and $\sigma \in N$, then $\mathrm{TC}(\sigma) \subseteq N$. So, if $q \in \mathbb{P}^1_{\alpha} \cap \mathrm{TC}(\sigma)$, we can conclude as before in the case of p that $q \in \mathbb{P}^*_{\alpha}$. This implies that σ is a simple \mathbb{P}^*_{α} -name. In particular, if $\alpha \in N$, then τ_{α} is a \mathbb{P}^*_{α} -name.

(3) Suppose now that $p \in \mathbb{P}^*_{\alpha}$, σ, τ_{α} are simple \mathbb{P}^*_{α} -names for reals, and $p \Vdash_{\mathbb{P}^*_{\alpha}} \varphi_{\alpha}(\sigma, \tau_{\alpha})$. We have already shown that $p \in \mathbb{P}^*_{\alpha}$ and σ is a simple \mathbb{P}^1_{α} -name. Since by the induction hypothesis of the theorem, $L(\mathbb{R})^{V[G_0]^{\mathbb{P}^*_{\beta}}}$ and $L(\mathbb{R})^{V[G_0]^{\mathbb{P}^1_{\beta}}}$ are both Σ_n -w.c. Solovay models over V, with the same ω_1 , and since, by induction hypothesis on (4), $\mathbb{P}^*_{\beta} \ll \mathbb{P}^1_{\beta}$, we also have $\mathbb{R}^{V[G_0]^{\mathbb{P}^*_{\beta}}} \subseteq \mathbb{R}^{V[G_0]^{\mathbb{P}^1_{\beta}}}$. So, by Lemma 1.3, there exists a canonical embedding from $L(\mathbb{R})^{V[G_0]^{\mathbb{P}^*_{\beta}}}$ into $L(\mathbb{R})^{V[G_0]^{\mathbb{P}^1_{\beta}}}$. We claim that $p \Vdash_{\mathbb{P}^1_{\alpha}} \varphi_{\alpha}(\sigma, \tau_{\alpha})$. Indeed, suppose $G^1_{\alpha} = G^1_{\beta} * \dot{H}$ is \mathbb{P}^1_{α} -generic over $V[G_0]$, with $p = p \upharpoonright \beta * \dot{q} \in G^1_{\alpha}$. Since $p \Vdash_{\mathbb{P}^*_{\alpha}} \varphi_{\alpha}(\sigma, \tau_{\alpha})$, and $\mathbb{P}^*_{\beta} \ll \mathbb{P}^1_{\beta}$, we deduce that $G^*_{\beta} := G^1_{\beta} \cap \mathbb{P}^*_{\beta}$ is \mathbb{P}^*_{β} -generic over $V[G_0]$ with $p \upharpoonright \beta \in G^*_{\beta}$. Hence,

$$V[G_0][G_\beta^*] \models "i_{G_\beta^*}(\dot{q}) \Vdash_{\mathbb{Q}_\beta^*} \varphi_\alpha(\sigma, \tau_\alpha)".$$

Since we have $i_{G_{\beta}^1}(\dot{q}) = i_{G_{\beta}^*}(\dot{q})$, by the canonical elementary embedding of $L(\mathbb{R})^{V[G_0][G_{\beta}^*]}$ into $L(\mathbb{R})^{V[G_0][G_{\beta}^1]}$, we obtain

$$V[G_0][G_{\beta}^1] \models "i_{G_{\beta}^1}(\dot{q}) \Vdash_{\mathbb{Q}_{\beta}^1} \varphi_{\alpha}(\sigma, \tau_{\alpha})".$$

Hence, $V[G_0][G_{\alpha}^1] \models \varphi_{\alpha}(\sigma, \tau_{\alpha})$. This proves (a), and similar arguments prove (b) and (c).

Suppose now that $\alpha, p, \sigma \in N$, and $p \Vdash_{\mathbb{P}^1_{\alpha}} \varphi_{\alpha}(\sigma, \tau_{\alpha})$. We have already shown that $p \in \mathbb{P}^*_{\alpha}$ and σ, τ_{α} are \mathbb{P}^*_{α} -names. To see that $p \Vdash_{\mathbb{P}^*_{\alpha}} \varphi_{\alpha}(\sigma, \tau_{\alpha})$, suppose $G^*_{\alpha} = G^*_{\beta} * \dot{H}$ is \mathbb{P}^*_{α} -generic over $V[G_0]$ with $p = p \upharpoonright \beta * \dot{q} \in G^*_{\alpha}$. Since $\mathbb{P}^*_{\beta} \Leftrightarrow \mathbb{P}^1_{\beta}$, we can extend G^*_{β} to a \mathbb{P}^1_{β} -generic filter G^1_{β} over $V[G_0]$ such that

$$V[G_0][G_{\beta}^1] \models "i_{G_{\beta}^1}(\dot{q}) \Vdash_{\mathbb{Q}_{\beta}^1} \varphi_{\alpha}(\sigma, \tau_{\alpha})".$$

Since $i_{G^1_{\beta}}(\dot{q}) = i_{G^*_{\beta}}(\dot{q})$ and since $\beta \in N$, by the canonical elementary embedding we have

$$V[G_0][G_{\beta}^*] \models "i_{G_{\beta}^*}(\dot{q}) \Vdash_{\mathbb{Q}_{\beta}^*} \varphi_{\alpha}(\sigma, \tau_{\alpha})".$$

Hence, $V[G_0][G_{\alpha}^*] \models \varphi_{\alpha}(\sigma, \tau_{\alpha})$. This proves the converse of (a), and similar arguments prove the converses of (b) and (c).

(4) Finally, suppose $\mathbb{P}_{\beta}^{*} \ll \mathbb{P}_{\beta}^{1}$. By (3), \mathbb{P}_{α}^{*} is a subposet of \mathbb{P}_{α}^{1} and the incompatibility relation is preserved. Now suppose $A \in V[G_{0}]$ is a maximal antichain of \mathbb{P}_{α}^{*} . Then $A \upharpoonright \beta := \{p \upharpoonright \beta : p \in A\}$ is a maximal antichain of \mathbb{P}_{β}^{1} and, by induction hypothesis, it is also a maximal antichain of \mathbb{P}_{β}^{1} . If $\beta \notin N$, then clearly A is maximal in \mathbb{P}_{α}^{1} . So, suppose $\beta \in N$. Then every $p \in A$ is of the form $\langle p \upharpoonright \beta, \sigma \rangle$, where $p \upharpoonright \beta \Vdash_{\mathbb{Q}_{\beta}^{*}} \varphi_{\beta}(\sigma, \tau_{\beta})$. Let $A(\beta) := \{p(\beta) : p \in A\}$. Then $\Vdash_{\mathbb{P}_{\beta}^{*}}$ " $A(\beta)$ is a maximal antichain of \mathbb{Q}_{β}^{*} ". Notice that, since $\Vdash_{\mathbb{P}_{\beta}^{*}}$ " $A(\beta)$ is countable", $A(\beta) \in L(\mathbb{R})^{V[G_{0}]^{\mathbb{P}_{\beta}^{*}}}$. Thus, by the canonical embedding from $L(\mathbb{R})^{V[G_{0}]^{\mathbb{P}_{\beta}^{*}}}$ into $L(\mathbb{R})^{V[G_{0}]^{\mathbb{P}_{\beta}^{*}}}$, we conclude that $\Vdash_{\mathbb{P}_{\beta}^{*}}$ " $A(\beta)$ is a maximal antichain of \mathbb{Q}_{β}^{1} ".

If α is a limit ordinal, then the claim follows by induction, using the fact that the iterations have finite support. This finishes the proof of the claim.

Since the iterations have finite support, it follows from the claim above that $\mathbb{P}^* \triangleleft \mathbb{P}$. Moreover, since $\dot{x} \in N$, \dot{x} is a \mathbb{P}^* -name. Notice that \mathbb{P}^* is a ccc iteration.

Let $\overline{\mathbb{P}} = \langle \overline{\mathbb{P}}_{\beta}, \dot{\overline{\mathbb{Q}}}_{\beta} : \beta < \operatorname{ot}(\operatorname{On} \cap N) \rangle$ be the iteration consisting of all non-trivial iterands of \mathbb{P}^* , i.e., $\overline{\mathbb{P}}_0 = \mathbb{P}_0^*$ and for every $\beta < \operatorname{ot}(\operatorname{On} \cap N)$, $\Vdash_{\overline{\mathbb{P}}_{\beta}}$ " $\dot{\overline{\mathbb{Q}}}_{\beta} = \{x : \varphi_{\alpha}(x, \tau_{\alpha})\}$ ", where $\alpha \in N$ and $\beta = \operatorname{ot}(\alpha \cap N)$. For each $p \in \mathbb{P}^*$, let $\overline{p} \in \overline{\mathbb{P}}$ be the result of deleting the coordinates of p that correspond to the trivial iterands of \mathbb{P}^* . Clearly, the map $e : \overline{p} \mapsto p$ is a dense complete embedding of $\overline{\mathbb{P}}$ into \mathbb{P}^* . Notice that \dot{x} is a $\overline{\mathbb{P}}$ -name.

Recall that G is \mathbb{P} -generic over V, and x is a real in V[G]. Let us write G as G_0*G^1 , where G_0 is \mathbb{P}_0 -generic over V and G^1 is \mathbb{P}^1 -generic over $V[G_0]$. Then \dot{x} is a \mathbb{P}^1 -name in $V[G_0]$ and $i_{G^1}(\dot{x})=x$. Let $g=e^{-1}[G^1\cap\mathbb{P}^*]$. Then g is $\overline{\mathbb{P}}$ -generic over $V[G_0]$ and $i_g(\dot{x})=x$. This shows that x belongs to a countable finite-support iteration over $V[G_0]$ of \sum_{n+1}^1 ccc forcing notions. So, by Lemma 4.1, x is small-generic over V. This proves the theorem. \blacksquare

COROLLARY 4.4. Suppose that $L(\mathbb{R})^M$ is a Σ_{ω} -w.c. Solovay model over V and $\mathbb{P} \in M$ is the direct limit of an iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \lambda \rangle$ with finite support such that for every $\alpha < \lambda$,

$$\Vdash_{\alpha}$$
 " $\dot{\mathbb{Q}}_{\alpha}$ is a projective ccc poset".

Then the $L(\mathbb{R})$ of any \mathbb{P} -generic extension of M is also a Σ_{ω} -w.c. Solovay model over V.

4.1. Two applications to Martin's Axiom for projective posets. The first application will show, modulo the consistency of definable weakly compact cardinals, that Martin's Axiom restricted to posets in a given projective point-class does not imply Martin's Axiom for posets in higher point-classes.

DEFINITION 4.5. Let Γ be a class of posets. Martin's Axiom for Γ , henceforth denoted by $MA(\Gamma)$, is the following statement:

For every ccc poset $\mathbb{P} \in \Gamma$ and for every family $\langle A_i : i < \kappa \rangle$, $\kappa < 2^{\aleph_0}$, of maximal antichains of \mathbb{P} , there exists $G \subseteq \mathbb{P}$ directed such that for every $i < \kappa$, $G \cap A_i \neq \emptyset$.

For every $n \ge 1$, $\operatorname{MA}(\sum_{n=1}^{\infty})$ is Martin's Axiom for $\sum_{n=1}^{\infty}$ posets. $\operatorname{MA}(\operatorname{Proj})$ is Martin's Axiom for projective posets.

THEOREM 4.6. Let $n \geq 1$, and suppose that there exists a Σ_n -w.c. cardinal in L. Then there exists a poset \mathbb{P} such that for every \mathbb{P} -generic filter G over L,

$$L[G] \models \mathrm{MA}({\textstyle\sum_{n=1}^{1}}) \land \neg \mathrm{MA}({\textstyle\sum_{n=2}^{1}}).$$

Proof. Let κ be the least Σ_n -w.c. cardinal in L. Let \mathbb{P} be the direct limit of an iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa^+ \rangle$, with finite support, where $\mathbb{P}_0 = \operatorname{Coll}_{\kappa}$ and for every $\alpha < \kappa^+$,

$$\Vdash_{\alpha}$$
 " \dot{Q}_{α} is a \sum_{n+1}^{1} ccc forcing notion",

so that for every \mathbb{P} -generic filter G over L,

$$L[G] \models \mathrm{MA}(\sum_{n=1}^{1}) \wedge 2^{\aleph_0} = \aleph_2$$

(see [1, Theorem 3.10]).

Now assume, towards a contradiction, that

$$L[G] \models MA(\Sigma_{n+2}^1).$$

Then, since $\omega_1^{L[G]} = \kappa$ is not a Σ_{n+1} -w.c. cardinal in L, there is, in L, a κ -Aronszajn tree T which is Σ_{n+1} -definable over L_{κ} . As in the proof of Theorem 3.1 we may define a Σ_{n+2}^1 ccc poset of the form $\operatorname{Coll}_{\omega_1} * \mathbb{P}$ such that $\operatorname{MA}(\operatorname{Coll}_{\omega_1} * \mathbb{P})$ implies that there exists a real x such that $\omega_1^{L[G]} = \omega_1^{L[x]}$. But then $L(\mathbb{R})^{L[G]}$ is not a Σ_n -w.c. Solovay model over V, in contradiction with Theorem 4.2. \blacksquare

COROLLARY 4.7. Let $n \geq 1$ and suppose that the existence of a Σ_n -w.c. cardinal is consistent with ZFC. Then ZFC + MA(Σ_{n+1}^1) does not imply MA(Σ_{n+2}^1).

It is known that if ZFC is consistent, then ZFC+MA(\sum_{1}^{1}) does not imply MA(\sum_{2}^{1}) (see [1, Section 5]).

For the second application, let φ be the statement "Every set of reals in $L(\mathbb{R})$ is Lebesgue measurable, has the property of Baire, is Ramsey, and has the perfect set property".

THEOREM 4.8. Let $n \geq 1$, and suppose that there exists a Σ_n -w.c. cardinal. Then there exists a poset \mathbb{P} such that for every \mathbb{P} -generic filter G over V,

$$V[G] \models \mathrm{MA}(\sum_{n=1}^{1}) \land \neg \mathrm{CH} + \varphi.$$

Proof. Let κ be a Σ_n -w.c. cardinal, and let \mathbb{P} be the direct limit of a finite-support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa^+ \rangle$, where $\mathbb{P}_0 = \operatorname{Coll}_{\kappa}$ and for every $\alpha < \kappa^+$,

$$\Vdash_{\alpha}$$
 " \dot{Q}_{α} is a $\sum_{n=1}^{1}$ ccc forcing notion",

so that for every \mathbb{P} -generic filter G over V,

$$V[G] \models \mathrm{MA}(\sum_{n+1}^{1}) \wedge 2^{\aleph_0} = \aleph_2$$

(see [1, Theorem 3.10]). By Theorem 4.2, $L(\mathbb{R})^{V[G]}$ is a Σ_n -w.c. Solovay model over V. Thus,

$$V[G] \models \varphi$$
.

Corollary 4.9.

- (1) For every $n \ge 1$, $\operatorname{Con}(\operatorname{ZFC} + there \ exists \ a \ \Sigma_n$ -w.c. cardinal) implies $\operatorname{Con}(\operatorname{ZFC} + \operatorname{MA}(\Sigma_{n+1}^1) + \neg \operatorname{CH} + \varphi)$.
- (2) Con(ZFC + there exists a Σ_{ω} -w.c. cardinal) implies Con(ZFC + MA(Proj) + \neg CH + φ).

References

- J. Bagaria and R. Bosch, Projective forcing, Ann. Pure Appl. Logic 86 (1997), 237–266.
- [2] —, —, Solovay models and ccc forcing extensions, J. Symbolic Logic 69 (2004), 742-766.
- [3] —, —, Proper forcing extensions and Solovay models, Arch. Math. Logic 43 (2004), 739–750.
- [4] R. Bosch, Small definably-large cardinals, in: J. Bagaria and S. Todorcevic (eds.), Set Theory. Centre de Ricerca Matemàtica, Barcelona, 2003–2004, Birkhäuser, 2006, 55–82.
- [5] L. Harrington and S. Shelah, Some exact equiconsistency results, Notre Dame J. Formal Logic 26 (1985), 178-188.
- [6] T. Jech, Set Theory, 3rd ed., Springer, 2003.
- [7] H. Judah and Andrzej Rosłanowski, Martin Axiom and the size of the continuum,
 J. Symbolic Logic 60 (1995), 374–391.
- [8] E. Kranakis, Definable partitions and reflection properties for regular cardinals, Notre Dame J. Formal Logic 26 (1985), 408-412.
- [9] A. Leshem, On the consistency of the definable tree property on ℵ₁, J. Symbolic Logic 65 (2000), 1204–1214.

[10] R. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1–56.

ICREA (Institució Catalana de Recerca i Estudis Avançats) and Departament de Lògica, Història i Filosofia de la Ciència Universitat de Barcelona Montalegre 6 08001 Barcelona, Spain E-mail: bagaria@ub.edu Departamento de Filosofía Universidad de Oviedo Teniente Alfonso Martínez, s/n 33011 Oviedo, Spain E-mail: roger@uniovi.es

Received 5 November 2005; in revised form 21 February 2007