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Inaccessible cardinals without the axiom of choice
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Abstract. We consider four notions of strong inaccessibility that are equivalent in
ZFC and show that they are not equivalent in ZF.

1. Introduction. Large cardinals serve as a calibration of logical
strength for axiom systems of set theory. If we compare theories up to
equiconsistency, every natural set-theoretic axiom system is equiconsistent
with some ZFC + L where L is a large cardinal axiom. These axioms come
in many guises, and most of the large cardinal axioms have several equiv-
alent definitions. For instance, a cardinal κ is measurable if there is a κ-
complete nonprincipal ultrafilter on it, but in the presence of the axiom of
choice you can show that this is equivalent to the statement “there is an
elementary embedding of the universe into a transitive class with critical
point κ”.

If you move into the choiceless world, some of these ZFC-equivalent defi-
nitions are not equivalent anymore. The cardinal ℵ1 can never be the critical
point of an elementary embedding of the universe into a transitive class, but
it is possible that it carries a σ-complete nonprincipal ultrafilter in models
of ZF (1). It is interesting to analyze how much of the robustness of large
cardinal notions we lose if we give up the axiom of choice.
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(1) Cf. [Je03, Theorem 21.16]. Even worse, in some cases, even the consistency strength
of ZFC + L and ZF + L is different. For instance, let L be “there is a cardinal κ such that
Pκ(κ+) carries a normal measure”. Then the consistency strength of ZF + L is bounded
from above by ω Woodin cardinals ([Be81] in combination with Woodin’s result on the
consistency strength of AD; cf. [Ka03, Theorem 32.16]), whereas the consistency strength
of ZFC + L is far bigger. (The last statement combines a result of Solovay on the failure
of �κ at a κ+-supercompact cardinal κ with inner model results by Schimmerling and
Zeman [ScZe01]. For more details, see [Bo02, Kapitel 6].)
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In this paper, we investigate a large cardinal notion that is in conflict
with negations of the axiom of choice: the notion of strong inaccessibility.
A strongly inaccessible cardinal κ is a regular strong limit cardinal where
the traditional ZFC-definition of “strong limit” is that for all λ < κ, we have
2λ < κ.

In the ZF-context, this does not necessarily make sense, as 2λ may not
be well-ordered. We look at four different definitions of inaccessible cardi-
nals that are equivalent in ZFC but not equivalent in ZF (i-inaccessibility,
v-inaccessibility, s-inaccessibility, and ı-inaccessibility) and study the impli-
cational structure of these notions (in ZF).

The paper is organized as follows: In §2, we present the definitions and
their simple consequences. The four notions mentioned are presented in an
implication diagram in Figure 1. In §3, we first finish the proof of the positive
part of the implication diagram. After that, in §4, we briefly digress and
discuss a property (∗ω1,ı) that corresponds to being inaccessible without
being a limit cardinal. The main part of the paper (§§5, 6, and 7) contains
the three independence results proving that none of the arrows in Figure 1
is reversible. Throughout this paper, the ambient theory is ZF.

2. Definitions of strong limits. Ordinarily, in set theory with the
axiom of choice, we write X ≤ Y to mean that there is an injection from
X to Y , or equivalently (provided X 6= ∅) that there is a surjection from Y

to X. Without the axiom of choice, these two statements are not equivalent
anymore and we have to be much more precise. We define four different
notions of “being smaller than” for the context of ZF:

Let X and Y be nonempty sets and κ be a cardinal. Then we write

• X <i κ if there is some α < κ and an injection from X into α,
• X <s κ if there is some α < κ and a surjection from α onto X,
• X <ı Y if there is no injection from Y into X, and
• X <s Y if there is no surjection from X onto Y .

Of course, if X and Y are well-orderable, these four relations coincide.
The following are immediate observations:

Observation 1. For a nonempty set X and a cardinal κ, the statements

X <s κ and X <i κ are equivalent and both imply that X is well-orderable.

Observation 2. If κ is a cardinal and X is a nonempty set , then

X <s κ implies X <s κ.

Observation 3. For nonempty sets X and Y , if X <s Y , then X <ı Y .

In the following, we shall use the symbol x as a placeholder for one of the
four symbols i, s, ı and s. We say that a limit cardinal κ is an x-strong limit
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if for all λ < κ, we have P(λ) <x κ, and we call an uncountable cardinal κ

x-inaccessible if it is a regular x-strong limit cardinal (2).
Of course, inaccessibility of a cardinal κ is typically connected with meta-

mathematical properties of Vκ. This suggests another natural definition of
inaccessibility: An ordinal κ is v-inaccessible if Vκ is a model of second-
order ZF. Here, by Vκ we mean the collection of sets of (Mirimanoff) rank
< κ, regarded as a structure by interpreting ∈ as actual membership. By
“second-order ZF”, we mean ZF with replacement strengthened to say that
the image of a set under any function (not just under definable functions) is
a set. It is easy to check the following characterizations of v-inaccessibility.

Proposition 4. The following are equivalent , for any ordinal κ:

(1) κ is v-inaccessible,
(2) κ is a regular , uncountable cardinal and for all α < κ, we have

Vα <s κ,
(3) κ is a regular , uncountable cardinal and for all α < κ and all cofinal

subsets C ⊆ κ, we have Vα <s C.

Combining Proposition 4 with the fact that P(λ) ⊆ Vλ+1, we immedi-
ately get the following connection between v-inaccessibility and s-inaccessi-
bility:

Corollary 5. Every v-inaccessible cardinal is s-inaccessible.

The implication diagram in Figure 1 gives the connections between the
five notions of inaccessibility. All implications except the ones labelled (‡)
follow from the above simple observations and Corollary 5. The implication
(‡) will be proved as Theorem 11.
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Fig. 1. The implication diagram

It is quite easy to see that the notion of an i-strong limit is too strong
for purposes of set theory without the axiom of choice:

(2) Here and for the rest of the paper, “cardinal” means “initial ordinal”.
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Proposition 6. If there is an uncountable i-strong limit , then there is

a well-ordering of the real numbers.

Proof. If κ is uncountable, then ℵ0 < κ, so by Observation 1, P(ω) is
well-orderable.

We now use the notation IC for the assertion “there is an inaccessible
cardinal” (meaning “there is an i-inaccessible cardinal” if we use it in the
¬AC-context). For the separating instances (without AC), we use the follow-
ing notation:

• ICv/¬i “there is an v-inaccessible cardinal which is not i-inaccessible”,
• ICs/¬v “there is an s-inaccessible cardinal which is not v-inaccessible”,
• ICı/¬s “there is an ı-inaccessible cardinal which is not s-inaccessible”.

The goal of this paper is to show that the arrows in the above diagram
do not reverse in ZF, i.e., that ZF+ ICv/¬i, ZF+ ICs/¬v, and ZF+ ICı/¬s are
consistent (cf. Theorems 17, 20, and 25). On the metamathematical side, it
is interesting to note that the different definitions of strong inaccessibility
do not give different consistency strength:

Proposition 7. If κ is ı-inaccessible, then κ is inaccessible in L.

Proof. Clearly, κ is regular in L. Let α < κ. If L |=“there is an injection
from κ into P(α)”, then there is an injection from κ into PL(α) ⊆ P(α), so
κ is not ı-inaccessible in the universe.

Corollary 8. The following are equiconsistent :

(1) ZFC + IC,
(2) ZF + “there is an i-inaccessible”,
(3) ZF + “there is an v-inaccessible”,
(4) ZF + “there is an s-inaccessible”,
(5) ZF + “there is an ı-inaccessible”.

The project of this paper was in part motivated by the behaviour of
cardinals under the assumption of ZF + AD where AD denotes the axiom of
determinacy (cf. [Ka03, § 27]) (3).

In the ZFC-context, the property

(∗κ,x) for all λ < κ, we have P(λ) <x κ

can only hold for limit cardinals. This remains true without the axiom of
choice for <s:

(3) For an alternative definition of strong inaccessibility designed specifically for the
AD-context, see [Ke85]. There, a cardinal κ is strongly inaccessible if it is regular and
for all λ < κ there is a bijection between the set of ultrafilters on λ and a proper initial
segment of κ. Kechris proved (under the assumption of AD+V = L(R)) that δ

2
1 is strongly

inaccessible in this sense.
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Observation 9. The statement (∗κ+,s) is inconsistent with ZF.

Proof. In ZF, there is a surjection from P(κ) onto κ+.

The analogue of Observation 9 for ı is not true: By a theorem of My-
cielski’s, AD implies that there cannot be an injection from ω1 into the
reals [Ka03, Proposition 27.11(a)]; therefore (∗ω1,ı) holds under AD. We will
return to (∗ω1,ı) in §4.

3. v-inaccessible cardinals. In this section, we shall show the remain-
ing implication (‡) from our diagram of implications. We start with a simple
fact:

Lemma 10. Let κ be i-inaccessible. If α < κ and Vα is well-orderable,
then Vα <i κ.

Proof. Suppose not, and let α be the first counterexample. By i-inaccessi-
bility of κ, this α cannot be a successor ordinal, and it obviously is not 0, so it
is a limit ordinal. By minimality of α, we have Vβ <i κ for all β < α. By reg-
ularity of κ, find a cardinal λ < κ such that for all β < α, we have Vβ <i λ.

Use the hypothesis to fix a well-ordering of Vα; it restricts to well-
orderings of Vβ for all β < α, which then determine order-isomorphisms
fβ : Vβ → τβ, where, by our choice of λ, we have τβ < λ for all β < α.
Combining all these maps fβ, we get a one-to-one map g : Vα → α × λ

defined by

g(x) := 〈̺(x), f̺(x)+1(x)〉,

where ̺(x) is the Mirimanoff rank of x. Since α × λ is well-orderable with
order-type < κ, this finishes the proof.

Theorem 11. Every i-inaccessible cardinal is v-inaccessible.

Proof. Let κ be i-inaccessible. By definition, κ is regular and uncount-
able, so it remains to prove that no Vα with α < κ can be mapped onto κ.
In fact, we shall prove more, namely that every such Vα is well-orderable
and has cardinality < κ.

By Lemma 10, it remains to show that Vα is well-orderable for all α < κ.
Suppose not, and let α be the smallest counterexample. So Vβ is well-
orderable and, by Lemma 10, of cardinality < κ for all β < α. As in the proof
of Lemma 10, α must be a limit ordinal, and we can obtain a cardinal λ < κ

such that Vβ <i λ for all β < α. Thus, each such Vβ has a well-ordering of
length < λ (4).

(4) If we could choose one such well-ordering for each β < α, then we could combine
these, as in the proof of the lemma, to well-order Vα. Unfortunately, we cannot immedi-
ately make such choices. The rest of the proof is devoted to getting such choices without
invoking the axiom of choice.
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By i-inaccessibility of κ, fix a well-ordering ≺ of P(λ). We inductively
define, for β ≤ α, specific well-orderings ≺β of Vβ as described below. Note
that the induction includes β = α, so we will obtain a well-ordering ≺α of
Vα, thereby completing the proof.

Let ≺0 be the empty relation (on the empty set V0 = ∅). For limit β, let

x ≺β y :⇔ ̺(x) < ̺(y) or (̺(x) = ̺(y) = γ and x ≺γ+1 y).

Finally, for a successor ordinal β = γ +1, notice that the order-isomorphism
from ≺γ to its order-type τ maps Vγ one-to-one into λ (as our choice of λ

ensures τ < λ). This induces a one-to-one map of Vβ = P(Vγ) into P(λ).
Use this map to pull back the fixed well-ordering of P(λ) to a well-ordering
of Vβ , and define that well-ordering to be ≺β .

4. The property (∗ω1,ı). In this section, we briefly return to the prop-
erty (∗κ,x) for successor cardinals κ. We will discuss the case κ = ω1. We
have seen that (∗ω1,s) is refutable in ZF, but (∗ω1,ı) is a theorem of ZF+AD.
Even more, ZF + (∗ω1,ı) is equiconsistent with ZF. For this, we give the fol-
lowing simple argument using the Feferman–Lévy model which is a folklore
result well-known in the community:

The Feferman–Lévy model (cf. [FeLé63] and [Je03, Example 15.57]) is a
symmetric submodel of a generic extension that satisfies “R is a countable
union of countable sets” (¬38 in the notation of [HoRu98]).

Lemma 12. If X is a countable union of countable sets, then there is no

surjection from X onto ℵℵ0

1 .

Proof. This is essentially the diagonal argument for König’s Theorem:
Let X =

⋃

n∈ω Xn for some countable sets Xn and let π be any function from

X to ℵℵ0

1 . Then π[Xn] is a countable set, and therefore ω1\{π(x)(n) ; x∈Xn}
6= ∅. Let αn be the least element of this set. Define Z : ω → ω1 by Z(n) :=
αn. Then Z is not in the range of π.

Lemma 13. If there is an injection from ω1 into the reals (170 in the

notation of [HoRu98]), then there is a bijection between the reals and ℵℵ0

1 .

Proof. By the assumption, we have an injection from ℵ1 into 2ℵ0 , and
hence from ℵℵ0

1 into (2ℵ0)ℵ0 and thus into 2ℵ0 . By the Schröder–Bernstein

theorem, we get a bijection from 2ℵ0 to ℵℵ0

1 .

Obviously, Lemmas 12 and 13 show that the Feferman–Lévy model sat-
isfies (∗ω1,ı).

Corollary 14. If Cons(ZFC), then Cons(ZF + (∗ω1,ı)).
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5. Cardinals that are not i-inaccessible. For the remainder of the
paper, we shall freely use the notation for forcing and symmetric submodels
of generic extensions as laid out in [Je03, pp. 249–261]. In the ZFC context,
we can recursively define for any cardinal µ its beth sequence by i0(µ) := µ,
iα+1(µ) := 2iα(µ), and iδ(µ) :=

⋃

{iα(µ) ; α < δ} (for limit ordinals δ).

Lemma 15. Let M be a model of ZFC. Assume that , in M , λ, µ, and

κ are cardinals satisfying 2λ < κ, 2µ < κ. Assume further that , in M ,
P is a partial order with Card(P) = µ. Let G be P-generic over M , and

M ⊆ N ⊆ M [G] such that N is a model of ZF. Then

N |= 2λ <s κ.

Similarly , if in addition, in M , iλ(µ) < κ, then

N |= Vλ <s κ.

Proof. This lemma is a standard and basic technique of forcing. Let us
call a P-name τ canonical if it consists of pairs 〈α̌, p〉 for α < λ. Obviously,
there are at most (2Card(λ×P))M many canonical names. In M [G], every
subset of λ has a canonical name, so we have

(2λ)M [G] ≤ (2Card(λ×P))M = (2max{λ,µ})M < κ.

Therefore, M [G] |= “there is no surjection from 2λ onto κ”.
Suppose, towards a contradiction, N has a surjection from (2λ)N onto κ.

This persists in M [G] and (since (2λ)N ⊆ (2λ)M [G]) can be trivially extended
to a surjection from 2λ onto κ in M [G]. Contradiction!

For the additional claim, we define canonical α-names for elements of Vα

by recursion: Elements F of Vω are absolute and can be represented by the
name F̌ . These names are the canonical 0-names. If C is the set of canonical
α-names (for elements of Vω+α), then a canonical α + 1-name is a subset
of C × P. Recursively, it is easy to see that there are at most iλ(µ)M many
canonical λ-names, so M [G] |= “there is no surjection from Vλ onto κ”,
which again persists downwards to N .

Corollary 16. Let M be a model of ZFC + IC and let κ ∈ M be in-

accessible. If P ∈ M is a partial order with M |= Card(P) < κ and N is a

ZF-model such that M ⊆ N ⊆ M [G], then

N |= “κ is v-inaccessible”.

Proof. Since Card(P) < κ, κ remains regular in M [G] and hence in N .
The rest follows from Lemma 15.

Theorem 17. If Cons(ZFC + IC), then Cons(ZF + ICv/¬i).

Proof. Assume that κ is strongly inaccessible in M |= ZFC. If P is Cohen
forcing and G is P-generic over M , we can create a symmetric submodel
N ⊆ M [G] such that the reals in N are not well-ordered (cf. [Je03, Example
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15.52]). By Proposition 6, we know that N |= “κ is not i-inaccessible”. But
by Corollary 16, N |= “κ is v-inaccessible”.

6. Cardinals that are not v-inaccessible. In this section, we will
construct a model of ZF+ICs/¬v. We start with a ground model M satisfying
ZFC+“there exists an inaccessible” and let κ be a fixed inaccessible cardinal
in M . Consider the partial order

P := Fn(κ × ω, 2)

adding a κ-sequence of Cohen reals. Let G be the group of all permutations
of κ, acting on P by

π(p)(α, n) := p(π−1(α), n);

it permutes the canonical names ċα of the Cohen reals by acting on the
subscripts α. If A ⊆ κ is a set, then let KA ⊆ G be the set of those permu-
tations that fix the elements of A. Now take the filter F on G generated by
the set {KA ; A ⊆ κ, Card(A) < κ}. Fix a P-generic filter G over M and let
N be the symmetric submodel of M [G] defined by F .

Clearly, cα ∈ N , as K{α} is a support of its canonical name. For each
λ < κ, the initial segment Cλ := 〈cα ; α < λ〉 of the adjoined κ-sequence of
Cohen reals is in N , because its canonical name is supported by Kλ.

Proposition 18. In N , there is a surjection from Vω+4 onto κ; in

particular , κ is not v-inaccessible (by Lemma 4).

Proof. Consider, in N , the function t assigning to every well-ordering
(in N) of a subset (in N) of PN (ω) its order-type. For every λ < κ, the
set Cλ ∈ N witnesses that λ ∈ ran(t). But the domain of t is a subset of
Vω+4.

Proposition 19. In N , κ is s-inaccessible.

Proof. Consider λ < κ and suppose, toward a contradiction, that N

contains a map of PN (λ) onto κ. Fix, in the ground model M , a name ḟ

and a condition p such that p 
 “ḟ : PN (λ) → κ is surjective”.

For the rest of this proof, we shall work in M . Fix µ < κ large enough
so that Kµ supports ḟ and so that dom(p) ⊆ µ × ω.

Fix some α < κ. Since p forces α to be in the range of ḟ , we can choose
a nice name ẋα for a subset of λ and choose a condition qα extending p and
forcing that ḟ(ẋα) = α. Thanks to the countable chain condition of P, there
is a set I ⊆ κ such that Card(I) ≤ λ, dom(qα) ⊆ I ×ω, and dom(r) ⊆ I ×ω

for every condition r involved in the nice name ẋα. (Note that the conditions
involved in a nice name for a subset of λ constitute λ many antichains, each
of which is countable.) Let πα ∈ G be a permutation that fixes all ordinals
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< µ but moves all ordinals in I \µ to ordinals between µ and µ+λ (ordinal
sum). Then πα fixes ḟ and p, by our choice of µ. Therefore:

(1) πα(ẋα) is a nice name for a subset of λ, and all conditions involved
in it have domains ⊆ (µ + λ) × ω.

(2) πα(qα) is a condition extending p and having domain ⊆ (µ + λ)×ω.
(3) πα(qα) 
 ḟ(πα(ẋα)) = α.

Now let α vary over all ordinals < κ. The numbers of possibilities for
πα(ẋα) and πα(qα) are, thanks to the µ + λ bounds in (1) and (2), strictly
smaller than κ, because κ is inaccessible (in M). So there must be some
α < β < κ with πα(ẋα) = πβ(ẋβ) and πα(qα) = πβ(qβ). But then (3) and
the corresponding assertion for β say that one and the same condition forces
one and the same term to have two distinct values, a contradiction.

Theorem 20. If Cons(ZFC + IC), then Cons(ZF + ICs/¬v).

7. Cardinals that are not s-inaccessible. In this last section, we will
construct a model of ZF + ICı/¬s. We again start with a ground model M

satisfying ZFC+“there exists an inaccessible” and let κ be a fixed inaccessible
cardinal in M . Here we consider the partial order

P := Fn(κ × ω × ω, 2)

which adds for each α < κ a countable set of Cohen reals {c(α, n) ; n ∈ ω}.
We are going to permute these sets so that we cannot pick from these count-
able sets.

Let G be the group of permutations of κ×ω that fix the first component,
i.e., the direct product of κ copies of the group of all permutations of ω. Let
this group act on P by permuting the indices 〈α, n〉 of the Cohen reals, i.e.,

π(p)(α, n, m) := p(π−1(α, n), m).

Similarly to §6, we let KA ⊆ G be the set of those permutations that fix
the elements of A ⊆ κ × ω. This time, we take the filter F on G generated
by the set {KA ; A ⊆ κ × ω finite}. Fix a P-generic filter G over M and let
N be the symmetric submodel of M [G] defined by F . Clearly, c(α, n) ∈ N ,
as K{〈α,n〉} is a support of its canonical name.

Lemma 21. In N , the cardinal κ is not s-inaccessible.

Proof. It is enough to show that there is a surjection from the reals onto
κ in N . We consider the function f ∈ M [G] defined by

f(x) :=

{

α if x = c(α, n) for some n,

0 otherwise.

It is easy to see that f has a hereditarily symmetric name, and thus f ∈ N .
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We now turn to the proof that κ is ı-inaccessible in N . For A ⊆ κ × ω,
p ∈ P and J ⊆ P, we define

pA := {〈α, n, m, i〉 ∈ p ; 〈α, n〉 ∈ A} = p ∩ (A × ω × 2),

JA := {pA ; p ∈ J}.

Lemma 22. Fix some finite A ⊆ κ×ω. Let ϕ be a formula of the forcing

language such that for all names τ occurring in ϕ, we have KA ⊆ sym(τ).
Then the following holds for all p ∈ P:

If p 
 ϕ, then pA

 ϕ.

Proof. If pA 1 ϕ, then there is a q ⊇ pA such that q 
 ¬ϕ. Find a
permutation π ∈ KA such that π(p) and q are compatible, i.e., there is
an r such that r ≤ π(p) and r ≤ q. Then r 
 ¬ϕ. Clearly, π(p) forces
ϕπ, the formula obtained from ϕ by replacing all names occurring in ϕ by
their π-images. Since π ∈ KA, and by assumption all of the names in ϕ are
supported by KA, we get ϕπ = ϕ, so r 
 ϕ, which is absurd.

We shall now look at intermediate models between M and M [G]. For
some finite A ⊆ κ × ω, we consider the forcing notion PA = {pA ; p ∈ P}
which is forcing-equivalent to ordinary Cohen forcing. Clearly, GA = {pA ;
p ∈ G} is a PA-generic filter over M , and M [GA] is essentially the Cohen
model.

Lemma 23. If X ∈ N is a set of ordinals, then there is a finite A ⊆ κ×ω

such that X ∈ M [GA].

Proof. Since X ∈ N , it has a hereditarily symmetric P-name Ẋ (with
respect to G). Fix a finite set A ⊆ κ × ω such that KA ⊆ sym(Ẋ). Let
ϕα ≏ α̌ ∈ Ẋ. Clearly, for each α there is some pα ∈ G such that pα 
 ϕα

or pα 
 ¬ϕα. For every ordinal α, the formula ϕα satisfies the requirement
of Lemma 22. Therefore, pA

α 
 ϕα if and only if pα 
 ϕα, and hence X ∈
M [GA].

Theorem 24. In N , the cardinal κ is ı-inaccessible.

Proof. Since our partial order has the c.c.c., it preserves cofinalities.
Therefore κ is regular in M [G] and hence still regular in N . It remains to
show that κ cannot be embedded in any 2λ for λ < κ.

Assume towards a contradiction that there is in N an injection h : κ → 2λ

for some λ < κ. Such an injection can be viewed as a subset of κ × λ, and
therefore as a set of ordinals. We apply Lemma 23 to h and deduce that
there is some finite A ⊆ κ × ω such that h ∈ M [GA] and thus

M [GA] |= κ ≤ 2λ.

Keeping in mind that Card(PA) = ℵ0, we can apply the proof of Lemma 15
to find that M |= κ ≤ 2λ, which is false.
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Theorem 25. If Cons(ZFC + IC), then Cons(ZF + ICı/¬s).
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