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On the number of countable models of stable theories

by

Predrag Tanović (Beograd)

Abstract. We prove:

Theorem. If T is a countable, complete, stable, first-order theory having an infinite
set of constants with different interpretations, then I(T,ℵ0) ≥ ℵ0.

Let T be a countable, complete, first-order theory having infinite mod-
els, and let I(T,ℵ0) denote the number of isomorphism classes of its count-
able models. There are several known examples where I(T,ℵ0) is finite and
greater than 1. They are obtained by first constructing an ℵ0-categorical
theory and then adding an infinite set of constants. In all of them the un-
derlying theory interprets a partial order with infinite chains; in particular
they are unstable (an infinite subset of a model of T is linearly ordered by
a formula). It has been conjectured that it is not possible to find such an
example with T stable:

(C) If T is stable and not ℵ0-categorical then I(T,ℵ0) ≥ ℵ0.

There are a few results partially confirming conjecture (C): Lachlan [4]
proved it for superstable theories, Pillay [6] for weakly normal theories,
Hrushovski [2] for theories which admit finite coding, Herwig and others [3]
for theories with no dense forking chains, Tsuboi [7] for unions of ℵ0-cate-
gorical theories, and Tsuboi [8] for unions of pseudo-superstable theories. In
this paper we confirm the conjecture for theories having an infinite set of
constants with different interpretations.

We shall assume that the reader is familiar with some basic stability
theory, as can be found in [1] or [5]. Throughout the paper let T be a fixed,
stable and small (i.e |S(∅)| ≤ ℵ0) theory, and we operate in its monster
model M; all the sets are countable subsets of M, all the models are ele-
mentary submodels ofM and |= φ(a, b) meansM |= φ(a, b). The smallness
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of T implies existence of atomic (hence prime) models over finite sets and
the Cantor–Bendixson rank, denoted by CB(−), has ordinal value on S(∅).

The independence of A and B over C is denoted by A^B (C), the
dependence by A /̂ B (C); two types p ∈ S(A) and q ∈ S(B) are almost
orthogonal , p ⊥a q, if whenever a and b realize nonforking extensions of p
and q to AB, then a^b (AB). We use Hrushovski’s quantifier: if p ∈ S(A)
is stationary and φ(x, y) is over A then (dpx)φ(x, y) is read “for the generic
x satisfying p”, meaning: |= (dpx)φ(x, b) iff for some (all) a |= p, a^b (A)
implies φ(a, b). Finally, a is definable if there exists a formula φ(x) without
parameters such that a is the only tuple of elements of M satisfying φ(x).

Definition. A type is strongly nonisolated if it is almost orthogonal to
all isolated types over the same or a larger domain.

We list some basic properties of strongly nonisolated types that will be
used further in the text without specific mentioning:

(1) A nonforking extension of a strongly nonisolated type is strongly
nonisolated.

(2) If tp(a) is stationary and strongly nonisolated and tp(b) is isolated
then tp(b/a) is isolated. To see this, note that a and b must be independent
so, by stationarity, there is only one possibility for tp(a/b) and hence for
tp(ab) as well. Therefore tpx(a) ∪ tpy(b) ` tpxy(ab) and tp(b/a) is isolated.

(3) A power of a stationary, strongly nonisolated type is also strongly
nonisolated. To see this, suppose that a1 and a2 are two independent real-
izations of such a type and let tp(b) be isolated. Then tp(a1/a2) is strongly
nonisolated by (1), and tp(b/a2) is isolated by (2). Thus a1 ^b (a2) and
since b^a2 we must have a1a2 ^b. Therefore tp(a1)2 is strongly noniso-
lated and the general case follows by induction.

Lemma 1. Suppose that p ∈ S1(∅) is an accumulation point of types of
definable elements. Then p is stationary and strongly nonisolated.

Proof. Suppose that E is a definable equivalence relation with finitely
many classes and choose a sequence of types of definable elements converging
to p. Then almost all elements chosen are in the same E-class, since the
sequence is convergent. All the realizations of p have to be in the class.
Thus p is stationary and it remains to show that p is strongly nonisolated.

Suppose, on the contrary, that q ∈ Sm(∅) is isolated, by ϕ(y) say, a |= p,
b |= q and a and b are dependent. Let ψ(x, y) be such that |= ψ(a, b) and
ψ(x, b) forks over ∅. Consider the formula

(∃y)(ϕ(y) ∧ ψ(x, y)).

It is satisfied by a, so it belongs to p. Hence, there exists a definable element
c which satisfies our formula. Pick b′ so that |= ϕ(b′)∧ψ(c, b′). Since tp(b) =
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tp(b′), ψ(x, b′) forks over ∅, so c and b′ are dependent, contradicting the
definability of c.

Therefore, p is almost orthogonal to all isolated types from S(∅). Since
any nonforking extension of p is an accumulation point of types of definable
elements, p is strongly nonisolated.

In order to prove the Theorem we shall prove the following, more general
result, from which the Theorem follows according to Lemma 1:

Theorem 1. Suppose that there exists a stationary , strongly nonisolated
type over ∅. Then I(T,ℵ0) ≥ ℵ0.

In the proof of Theorem 1 the key role will be played by p-minimal types;
the notion is introduced below. In the absence of regular types some of their
good properties, proved in Lemmas 2 and 3, will enable us to construct
infinitely many nonisomorphic models.

Definition. Let p ∈ S(∅), q ∈ Sn(A).

(a) q is p-minimal if there exists a formula ϕ(x) such that q is the only
type in Sn(A) which contains ϕ(x) and is not almost orthogonal to p.

(b) The sequence (a1, a2, . . . , an) is p-minimal if tp(a1), tp(a2/a1), . . .
. . . , tp(an/a1a2 . . . an−1) are all p-minimal.

Note that for any p, since T is small, p-minimal types (over dom(p))
exist: take a type of minimal CB-rank which is not almost orthogonal to p.

We shall be interested in p-minimal types when p is strongly nonisolated,
in which case, since p is almost orthogonal to all isolated types, they must
be nonisolated.

Recall that b is semi-isolated over a if there exists a formula φ(x, a) ∈
tp(b/a) such that φ(x, a) ` tp(b).

Lemma 2. Suppose that p, q ∈ S(∅), p is strongly nonisolated , q is p-
minimal , a |= p, b |= q and a and b are dependent. Then b is semi-isolated
over a.

Proof. Suppose ψ(y) witnesses p-minimality of q. Let ϕ(x, a) be satisfied
by b and forking over ∅ and suppose |= ϕ(b′, a) ∧ ψ(b′). Now |= ϕ(b′, a)
implies that b′ forks with a and |= ψ(b′) implies that b′ |= q since q is the
only type containing ψ(x) which is not almost orthogonal to p. Therefore,
ϕ(x, a) ∧ ψ(x) ` q(x) and b is semi-isolated over a by the latter formula.

It follows from the lemma that whenever q is p-minimal and a |= p then
there is an isolated extension of q in S(a); take b |= q which forks with a
and a formula φ(x, a) ∈ tp(b/a) implying q(x), then choose an isolated type
in S(a) containing φ(x, a).
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Lemma 3. Suppose p, q ∈ S(∅), p is stationary and strongly nonisolated ,
q is p-minimal , b |= q and a1 and a2 are two independent realizations of p.
Then b is independent of at least one of a1 and a2.

Proof. Suppose, on the contrary, that b forks with both a1 and a2 and
choose formulas φ1(y, a1) and φ2(y, a2) both satisfied by b, both forking over
∅ and, using Lemma 2, both implying q(x). Let ϕ(x) be (dpz)(∃y)(φ1(y, x)∧
φ2(y, z)). Clearly, ϕ(x) ∈ p.

Claim 1. Any type from S(∅) containing ϕ(x) is consistent with
φ1(b, x).

Proof. Suppose |= ϕ(a′1). Choose a′2 |= p independent of a′1 and choose
b′ satisfying |= φ1(b′, a′1)∧φ2(b′, a′2). Now φ2(b′, a′2) ensures that b′ |= q hence
if tp(b′a′1) = tp(ba′′1) we have tp(a′′1) = tp(a′1) and |= φ1(b, a′′2). Finally, a′′2
witnesses that tp(a′1) is consistent with φ1(b, x). Claim 1

Find c |= q such that tp(c/a2) is isolated, which is possible by the remark
after Lemma 2. Let tp(c/a2) be isolated by ψ(z, a2).

Claim 2. |= ψ(c′, a2) implies a1 ^c′ and hence |= ¬φ1(c′, a1).

Proof. Since a1^a2, tp(a1/a2) is strongly nonisolated, and tp(c′/a2) is
isolated, we get c′^a1 (a2). By transitivity c′^a1a2 and c′^a1. Claim 2

From Claim 2 we conclude that the following formula, call it θ(x), is
satisfied by a1 (and hence belongs to p):

(dpz)(∀y)(ψ(y, z)⇒ ¬φ1(y, x)).

Thus (θ(x) ∧ ϕ(x)) ∈ p, and we can find a satisfying it such that tp(a)
is isolated. Since, by Claim 1, tp(a) is consistent with φ1(b, x) we assume
without loss of generality that |= φ1(b, a).

Pick d |= p such that |= ψ(b, d). Since p is stationary and strongly
nonisolated and tp(a) is isolated we have d^a. Combining with |= θ(a) we
derive |= (∀y)(ψ(y, d) ⇒ ¬φ1(y, a)); using |= ψ(b, d) we get |= ¬φ1(b, a).
A contradiction. Lemma 3

Proof of Theorem 1. Suppose that p ∈ S(∅) is a strongly nonisolated
type. For each M |= T and r ∈ S(∅) define wr(M) to be the largest possible
integer n, if any, for which there exists a1 . . . an |= rn such that each ai forks
with M .

We shall construct models Mn for n ∈ ω satisfying

n ≤ lim
k→∞

wpk(Mn) < 2n,

which clearly suffices to derive the desired conclusion.
Fix n ∈ ω and find b1 such that tp(b1) is pk-minimal for almost all

k ∈ ω: to see that this is possible, find b1 such that tp(b1) is pk-minimal
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for some k ≥ 1 and that CB(tp(b1)) is minimal possible, say α; then the
formula isolating tp(b1) among the types of CB-rank at least α witnesses
pj-minimality of tp(b1) for all j ≥ k. Further, find b2 such that tp(b2/b1) is
pk-minimal for almost all k ∈ ω, . . . , find bn such that tp(bn/b1b2 . . . bn−1) is
pk-minimal for almost all k ∈ ω. Therefore, for almost all k ∈ ω, (b1, . . . , bn)
is a pk-minimal sequence. Let Mn be prime over b1 . . . bn.

Fix m ∈ ω such that (b1, . . . , bn) is pj-minimal for all j ≥ m and let
r = pm.

Claim 1. n ≤ wr(Mn).

Proof. By induction, choose a1, . . . , an |= r such that:

ak^b1 . . . bk−1 for k ≥ 2,(1)k
ak /̂ bk (b1 . . . bk−1) for k ≥ 1,(2)k
ak^a1 . . . ak−1b1 . . . bn (b1 . . . bk) for k ≥ 1.(3)k

The above choice is possible by r-minimality of (b1, . . . , bn).
We shall show that ak+1 ^a1 . . . akb1 . . . bk for 1 ≤ k ≤ n− 1.
For 1 ≤ j ≤ k ≤ n, from (3)j we have

aj^a1 . . . aj−1bk+1 (b1 . . . bk),

which, for j = 1, . . . , k, implies that {a1, . . . , ak, bk+1} is an independent set
over b1 . . . bk. Thus

bk+1 ^a1 . . . ak (b1 . . . bk).

From (3)k+1 we have ak+1 ^a1 . . . ak (b1 . . . bkbk+1). By transitivity, from
the last two independence relations, we get

ak+1bk+1 ^a1 . . . ak (b1 . . . bk)

and hence
ak+1 ^a1 . . . ak (b1 . . . bk),

which combined with (1)k+1 implies

ak+1 ^a1 . . . akb1 . . . bk.

Therefore, a1 . . . an |= rn. By (2)k each ak forks with b1 . . . bn so we
conclude that n ≤ wr(Mn). Claim 1

Claim 2. wr(Mn) < 2n.

Proof. Suppose that a1 . . . a2n |= r2n and split it into two disjoint se-
quences of length 2n−1 each. By our choice of k, tp(b1) is r2n−1

-minimal
so, by Lemma 3, b1 is independent of at least one of our sequences, say
a1 . . . a2n−1 . Further, tp(b2/b1) is, by our assumption, r2n−2

-minimal, so af-
ter splitting a1 . . . a2n−1 into two disjoint sequences of equal length we con-
clude using Lemma 3 that, without loss of generality, b2 ^a1 . . . a2n−2 (b1).
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Combining with the previous we get b2b1 ^a1 . . . a2n−2 . Continuing in this
way, we end up with, say, a1 independent of b1 . . . bn. Since r is strongly
nonisolated and since Mn is atomic over b1 . . . bn we conclude that a1 is
independent of Mn. Therefore wr(Mn) < 2n. Claim 2

Note that for any type q the sequence (wqi(M) | i ∈ ω) is nondecreasing,
so that limk→∞ wpk(Mn) exists. From Claims 1 and 2 we have

n ≤ lim
k→∞

wpk(Mn) < 2n. Theorem 1
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