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Representations of the direct product of matrix algebras

by

Daniele Guido (Roma and Potenza)
and Lars Tuset (Roma and Oslo)

Abstract. Suppose B is a unital algebra which is an algebraic product of full ma-
trix algebras over an index set X. A bijection is set up between the equivalence classes
of irreducible representations of B as operators on a Banach space and the σ-complete
ultrafilters on X (Theorem 2.6). Therefore, if X has less than measurable cardinality
(e.g. accessible), the equivalence classes of the irreducible representations of B are labeled
by points of X, and all representations of B are described (Theorem 3.3).

1. Introduction. Suppose B =
∏
x∈X B(Kx) is an algebraic product

of full matrix algebras B(Kx) over an index set X. Clearly B is a uni-
tal algebra under pointwise operations. Consider now a representation π of
B on a Banach space. The purpose of this paper is to characterize such
representations up to equivalence (see Theorem 3.3). A simple characteri-
zation is, however, only possible under the condition that X is a set of less
than measurable cardinality. While this condition imposes no real restriction
on X for practical applications of our result, since every set which can be
constructed (by the ordinary operations in set theory, such as unions and
powers) is of less than measurable cardinality, it is remarkable that such
a nontrivial condition arises in this context. Theorem 3.3 says that every
representation π of B (where the index set X is assumed to be of less than
measurable cardinality) is equivalent to a direct sum (including if necessary
infinite multiplicity) of representations obtained by restricting π to some of
the factors B(Kx) of B. As a corollary (see Corollary 3.4) to Theorem 3.3,
we conclude that when π is irreducible, it is equivalent to the representation
of B obtained by projecting down on one of the factors of B. We give a
separate proof of this corollary as a shortcut for the reader. We note that
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our results do not depend crucially on the fact that we represent unbounded
elements with bounded operators (cf. Remark 2.4).

The crucial notion in these investigations is that of a σ-complete ultrafil-
ter. To explain how these filters occur, let π be an irreducible representation
of B on a Banach space K. Define Fπ to be the collection of subsets of X
given by Fπ = {U ∈ X |π(χU ) = Iπ }. Here Iπ is the unit of B(K) and
χU is the element of B defined by χU (x) = Ix for x ∈ U and χU (x) = 0
for x 6∈ U , where Ix is the unit of B(Kx). We show (Lemma 2.3) that Fπ
is a σ-complete ultrafilter over X. In fact, in Theorem 2.6 we establish our
second main result, which states that the assignment π 7→ Fπ induces a
bijection between the equivalence classes of irreducible representations of
B on Banach spaces and the σ-complete ultrafilters over X. This result is
true for an arbitrary index set X. However, it is known (see Lemma 2.5
and the paragraph preceding that lemma) that whenever X is of less than
measurable cardinality, then every such filter has to be principal. This way
an irreducible representation π of B singles out a point in X (over which
the maximal principal filter is based), and the representation obtained by
projecting down on the factor of B corresponding to this point is equiva-
lent to π.

We remark that in a very particular case our results are already known,
namely when the spaces Kx are one-dimensional. In this case B is abelian,
hence its representations are 1-dimensional. Therefore our results imply that
all multiplicative linear functionals on C(X) are in 1 : 1 correspondence with
σ-complete ultrafilters onX. As a consequence, all multiplicative linear func-
tionals are given by Dirac measures if and only if X has less than measurable
cardinality. This result is contained in [1], where it was generalized in a di-
rection different from ours: the fibers of the direct product were allowed to
be arbitrary algebras over an arbitrary field (with some assumptions on the
cardinality of the field) but only one-dimensional representations, namely
multiplicative linear functionals, were studied (1).

Even this particular case cannot be easily guessed from analogous results.
For instance, the set of characters of the algebra of complex-valued functions
on X with finite support (or vanishing at infinity) can be identified with the
points of X. This is a particular case of the result that every character on
the C∗-algebra of continuous complex-valued functions vanishing at infinity
on a locally compact Hausdorff space is a Dirac measure (cf. [6]). If instead
we consider the algebra of bounded complex-valued functions on X, then
the set of characters is the Stone–Čech compactification of the space X
equipped with the discrete topology (cf. [2]). Thus in this case the characters
are Dirac measures only when X is finite. It is remarkable that passing from

(1) Indeed we became aware of [1] when this paper was already finished.
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bounded to unbounded functions amounts to passing from finite to less than
measurable sets.

The idea of interpreting noncommutative algebras as noncommutative
or quantum spaces has proved fruitful. We only mention the theory of non-
commutative differential geometry developed by A. Connes (cf. [3]), and
the theory of quantum groups (cf. [9]). In view of this one may conceive
Corollary 3.4 as a first humble step towards “noncommutative set theory”
with the role of “points” played by irreducible representations of the non-
commutative product algebra B. Finally, notice that such product algebras
appear in the theory of discrete quantum groups (cf. [10]). The index set
is then the equivalence classes of a complete family of the dual compact
quantum group, or if you like, the equivalence classes of irreducible objects
in a concrete tensor C∗-category with conjugates (see [11]).

2. Filters and irreducible representations. Let X be an arbitrary
set, x 7→ Kx a map associating with any point x ∈ X a Banach space Kx,
and let B(Kx) be the Banach algebra of bounded operators on Kx. Denote
by B the (unrestricted) algebraic direct product B =

∏
x∈X B(Kx), i.e.,

b ∈ B if b is a function b : X → ⋃
x∈X B(Kx) such that b(x) ∈ B(Kx) for all

x ∈ X. Clearly B is a unital algebra with pointwise operations. Whenever
the Banach spaces Kx are in addition Hilbert spaces, the algebra B is a
∗-algebra. When all the Banach spaces Kx are the complex numbers C, we
denote the commutative unital algebra B by C(X), which is all the complex-
valued functions on the set X. A representation π of B on a Banach space K
is a unital homomorphism π : B → B(K). Two representations are equiv-
alent if there is an invertible intertwiner between them. A representation is
said to be irreducible if the only idempotents intertwining it are zero or the
identity. If K is a Hilbert space and π(B) is a ∗-algebra (e.g. when B is a
∗-algebra and π is a ∗-representation), then the commutator π(B)′ of π(B) in
B(K) is a von Neumann algebra. Hence it is generated by its (self-adjoint)
projections. Therefore irreducibility of π is equivalent to the triviality of
all (self-adjoint) projections intertwining it. However, when π(B) is not a
∗-algebra (and K is a Hilbert space), the two notions of irreducibility do
not coincide as the following example shows.

Example 2.1. Consider B = C2. Denote by 〈a〉 the universal unital
complex algebra generated by the element a satisfying the relation a2 = I,
where I is the identity. Denote by 〈b〉 the unital universal complex algebra
generated by the element b satisfying the relation b2 = b. It is easy to
see that b 7→ a = I − 2b extends to an isomorphism between 〈b〉 and 〈a〉.
Now every element of 〈b〉 is of the form αI + βb for α, β ∈ C, thus 〈a〉 is
isomorphic to C2. Let M2(C) be the unital complex algebra of 2×2-matrices
with complex entries. Pick a number h 6∈ {0, 1}, and define the 2× 2-matrix
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π(a) =
(

0 h−1

h 0

)
.

We have π(a)2 = I, so by the universal property of 〈a〉 we get a represen-
tation π : C2 → M2(C). There are no nontrivial (self-adjoint) projections
intertwining it. However, π is not irreducible (in our stronger sense) as the
(non-self-adjoint) idempotent 1

2 (I − π(a)) is nontrivial and intertwines π.

Lemma 2.2. Let π : C(X) → B(K) be a representation, and let
χA ∈ C(X) be the characteristic function of A ⊂ X. If e = π(χA) is differ-
ent from zero and the identity , then the spectrum σ(e) of e equals {0, 1}.
If f ≥ 0 for f ∈ C(X), then σ(π(f)) ⊂ [0,∞).

Proof. Suppose that λ 6∈ {0, 1}. Then χA − λI is invertible in C(X), so
e−λI is invertible, and thus λ 6∈ σ(e), showing that σ(e) ⊂ {0, 1}. As e 6= 0
pick a nonzero vector ξ ∈ eK ⊂ K. Then eξ = ξ, so 1 ∈ σ(e). And similarly,
as e 6= I, pick a nonzero ξ ∈ (I − e)K. Then eξ = 0, so 0 ∈ σ(e), which
proves the first assertion.

For the second assertion suppose first that a > 0 and −a ∈ σ(π(f)).
Then, by definition of spectrum, π(f + aI) = π(f) + aI is not invertible.
But f + aI ∈ C(X) is strictly positive, and therefore invertible, showing
that π(f+aI) is invertible, a contradiction. Therefore there are no (strictly)
negative numbers in σ(π(f)). Next suppose that the imaginary part of a ∈
σ(π(f)) is nonzero. Then we may write a + 1 = % exp(iθ) for numbers %, θ
with % > 0 and sin θ 6= 0. Thus by spectral calculus (see [8]), −4 sin2 θ < 0
belongs to

σ(π(((f + I)%−1 − (f + I)−1%)2))

and clearly
((f + I)%−1 − (f + I)−1%)2 ≥ 0,

which is impossible according to the previous part of the proof. Therefore
the imaginary part of a ∈ σ(π(f)) cannot be nonzero, nor can a be negative,
so a ≥ 0, as desired.

Recall that a filter over a set X is a collection F of nonempty subsets
of X containing X, closed under finite intersections, and such that V ∈ F
whenever U ∈ F and U ⊂ V ⊂ X. A filter F is called an ultrafilter if
for every U ∈ X either U ∈ F or its complement U c ∈ F . This happens
if and only if F is a maximal filter. A filter F is called σ-complete if it
is closed under countable intersections. More generally, if κ is any regular
uncountable cardinal (cf. [5]), we say that a filter F is κ-complete if it is
closed under intersections of less than κ sets. It is known that an ultrafilter
F is σ-complete if and only if there is no countable partition {Un}∞n=0 of
X such that Un 6∈ F for all n. In fact, a similar result holds for κ-complete
ultrafilters (see Exercise 27.2 in [5]), namely an ultrafilter is κ-complete if
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and only if for any partition of X consisting of less than κ elements, there
exists a unique element of the partition belonging to the ultrafilter.

We will now see how an irreducible representation ofB gives a σ-complete
ultrafilter over X. Let U ⊂ X and define the element χU ∈ B by χU (x) = Ix
if x ∈ U and χU (x) = 0 if x ∈ U c, where Ix is the identity element of B(Kx).
Let π : B → B(K) be an irreducible representation of B on a Banach
space K, and define Fπ to be the collection of subsets of X given by

Fπ = {U ⊂ X | π(χU) = Iπ},
where Iπ is the unit in B(K).

Lemma 2.3. Let notation be as above. The collection Fπ is a σ-complete
ultrafilter over X.

Proof. First note that π(0) = 0 and π(χX) = π(I) = Iπ assure that Fπ
is a collection of nonempty subsets of X containing X. If U, V ∈ Fπ, then
U ∩V ∈ Fπ, because χU∩V = χUχV , so π(χU∩V ) = π(χU )π(χV ) = I2

π = Iπ.
Let U ⊂ X. Note that χUb = bχU , so π(χU)π(b) = π(b)π(χU) for all
b ∈ B, and furthermore π(χU)2 = π(χU ) as χ2

U = χU . Therefore π(χU),
being an idempotent intertwining the (strongly) irreducible π, has to be
either 0 or Iπ. Let U ∈ Fπ and suppose that U ⊂ V . Then V ∈ Fπ, because
χV − χU = χV \U and so

π(χV )− Iπ = π(χV \U ) ∈ {0, Iπ},
having π(χV ) = Iπ as the only solution within {0, Iπ}. Thus V ∈ Fπ as
well. If I : x 7→ Ix, x ∈ X, is the unit of B, then I − χU = χUc , and thus
Iπ − π(χU ) = π(χUc) for any U ⊂ X. Hence U ∈ Fπ or U c ∈ Fπ, because if
U 6∈ Fπ, then π(χU) = 0, meaning that π(χUc) = Iπ − π(χU) = Iπ, and so
U c ∈ Fπ. We have thus shown that Fπ is an ultrafilter over X.

It remains to show that it is in fact σ-complete. Suppose by contradic-
tion that we have a countable (disjoint) partition {Un}∞n=0 of X such that
Un 6∈ Fπ, i.e., π(χUn) = 0 for all n. Define b∞, bn ∈ B by b∞(x) = nIx
for x ∈ Un, n ∈ {0, . . . ,∞}, and bn(x) = kIx for x ∈ Uk, k ∈ {0, . . . , n},
whereas bn(x) = nIx for x ∈ Uk and k ∈ {n+ 1, . . . ,∞}. Then

bn − nI =
n−1∑

k=0

(k − n)χUk ,

and so

π(bn − nI) =
n−1∑

k=0

(k − n)π(χUk) =
n−1∑

k=0

(k − n)0 = 0,

which shows that π(bn) = π(nI) = nIπ for all n. But b∞(x) = α(x)Ix and
bn(x) = β(x)Ix with α, β ∈ C(X). Hence we may identify b∞(x) with α and
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bn(x) with β, and using spectral calculus and Lemma 2.2, we deduce for all
n that

σ(π(b∞))− n = σ(π(b∞ − bn)),

which is impossible, as the spectrum of any element in a Banach algebra is
nonempty [8], and as Lemma 2.2 says, both σ(π(b∞)) and σ(π(b∞ − bn))
consist solely of positive numbers.

Remark 2.4. The previous lemma is the key step which allows us to
pass from ultrafilters to σ-complete ultrafilters, hence to γ-complete ones,
γ being the least measurable cardinal, as shown below. It is also the only
place where the existence of unbounded elements in B is used. Things do not
change if we consider a Hilbert space H and allow unbounded elements of B
to be represented by unbounded closed linear operators on H. Indeed, in this
case the previous lemma also holds, hence again irreducible representations
give rise to γ-complete ultrafilters.

Recall that a filter F over X is principal if there is a V ⊂ X such that

F = {U ⊂ X | V ⊂ U}.
In case this F is an ultrafilter, it is maximal, so V has to be a one-point
set. An uncountable set X is of measurable cardinality if there exists a
nonprincipal X-complete ultrafilter over it (cf. p. 297 in [5]). In particular
the least cardinal (if any!) on which there is a σ-complete nonprincipal
ultrafilter is measurable. We identify here the set X with its cardinality. We
shall say that a set has less than measurable cardinality if its cardinality is
smaller than the first measurable cardinal.

Lemma 2.5. Let F be a σ-complete ultrafilter over X. If γ is the least
measurable cardinal , then F is a γ-complete ultrafilter over X. In particu-
lar , if X has less than measurable cardinality , then F is principal.

Proof. Let {Xi}i∈κ be a partition of X, κ < γ. We must show that there
exists j ∈ κ such that Xj ∈ F . Define a collection of subsets of κ by

Fκ =
{
I ⊂ κ

∣∣∣
⋃

i∈I
Xi ∈ F

}
.

We claim that Fκ is a σ-complete ultrafilter over κ: Clearly X ∈ F implies
that κ ∈ Fκ, and Fκ consists of nonempty subsets only. If I, J ∈ Fκ, then
as {Xi}i∈κ is a partition of X, we have

⋃

i∈I∩J
Xi =

⋃

i∈I
Xi ∩

⋃

i∈J
Xi ∈ F,

so I ∩J ∈ Fκ. If J ∈ Fκ and I ⊃ J , then I ∈ Fκ as
⋃
i∈I Xi ⊃

⋃
i∈J Xi ∈ F .
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Furthermore, if J 6∈ Fκ then Jc ∈ Fκ, because
⋃

i∈Jc

Xi =
( ⋃

i∈J
Xi

)c

as {Xi}i∈κ is a partition. Finally, if {κn}∞n=0 is a countable partition of
κ, then {Yn}∞n=0 with Yn =

⋃
i∈κn Xi is a countable partition of X. Thus

there exists a number m such that
⋃
i∈κm Xi ∈ F , i.e., κm ∈ Fκ, so Fκ is

a σ-complete ultrafilter over κ. We conclude that Fκ is a principal filter.
Indeed, according to Lemma 27.1 of [5], the least cardinality for which there
exists a nonprincipal σ-complete ultrafilter is measurable; therefore Fκ is
principal, hence there exists j ∈ κ such that Xj ∈ F as desired.

Now suppose that 0 < dimKx < ∞ for all x ∈ X. We will see how a
σ-complete ultrafilter F over X together with a collection of bases, one for
each Kx, x ∈ X, give rise to a finite-dimensional irreducible representation
πF of B. Define for any natural number n the set

Ωn = {x ∈ X | dimKx = n} ⊂ X.
Clearly, the collection {Ωn}∞n=0 is a countable partition of X, and thus there
exists a natural number n(F ) such that Ωn(F ) ∈ F . This number n(F ) is
also unique, since if any other member of the partition would belong to
F , so would their intersection, which is empty, a contradiction. For any
M ∈ B(Cm) we denote by Mij the matrix coefficients of M with respect to
the standard basis of Cm. Let b ∈ B and denote by b(x)ij the entries of the
matrix b(x) with respect to the chosen basis of Kx. Define IM ⊂ X by

IM = {x ∈ Ωn(F ) | b(x)ij = Mij}.
Note that Ωc

n(F ) (which does not belong to F ) together with the collection

{IM | M ∈ B(Cn(F ))} form a partition of X into as many parts as there
are real numbers. We now use the fact that a σ-complete ultrafilter is also
γ-complete, where γ is the least measurable cardinal (see Lemma 2.5). So in
particular, for the partition above we know that there is a unique M(b) ∈
B(Cn(F )) such that IM(b) ∈ F . Define

πF (b) = M(b),

and so we get a map πF : B → B(Cn(F )). We show that πF is indeed
an irreducible representation of B on Cn(F ): In proving this let us first
agree on considering the operators as matrices with respect to the given
bases, to avoid confusion with identifications. Then note that if Ω ∈ F
and b(x) = b(y) (as matrices) for all x, y ∈ Ω, then πF (b) = b(x) for all
x ∈ Ω, because πF (b) = M(b) = b(x) for x ∈ Ω ∩ IM(b) 6= ∅. Consider now
b1, b2 ∈ B and form IM(b1) and IM(b2) in F as described above. As F is a
filter, Ω = IM(b1) ∩ IM(b2) ∈ F , so bi(x) = bi(y) for all x, y ∈ Ω. Thus for
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x ∈ Ω it follows from the previous argument that

πF (b1b2) = (b1b2)(x) = b1(x)b2(x) = πF (b1)π(b2).

Similarly one proves that π is additive, and it is clearly unital. Finally,
πF (B) = B(Cn(F )): indeed, if M ∈ B(Cn(F )), define b ∈ B by

b(x) =
{
M, x ∈ Ωn(F ),
0, otherwise.

Clearly πF (b) = M , so πF is an irreducible representation. In fact, we have
the following result.

Theorem 2.6. Let X be an arbitrary set. Suppose that the spaces Kx are
nonzero and finite-dimensional for all x ∈ X. The set of equivalence classes
of irreducible representations of B is in 1-1 correspondence with the set of
σ-complete ultrafilters on X. More precisely , denote by [π] the equivalence
class of an irreducible representation π of B on a Banach space K, and let
E be the set of all such equivalence classes (for all Banach spaces K). Denote
by F the set of all σ-complete ultrafilters over X. Then the assignments

[π] 7→ Fπ

from E to F and
F 7→ [πF ]

from F to E, where Fπ is defined as in Lemma 2.3 and πF as above, are
well defined , and they are inverse to each other.

Proof. The first assignment is well defined, as Fπ = Fπ′ for two equiva-
lent representations π and π′ of B. For the second assignment, notice that
πF is defined using F and a chosen collection of bases for each Kx. To prove
that it is well defined, we therefore need to prove that [πF ] is independent
of this choice of bases. Say we have two collections (1) and (2) of bases for
the spaces Kx and form the two associated irreducible representations π1

F

and π2
F of B on Cn(F ). We need to prove that they are equivalent. As (1)

and (2) are collections of bases, we know that for each x ∈ X there exists
an invertible matrix S(x) ∈ B(Kx) taking the basis in Kx from (1) to the
basis in Kx from (2). For any (finite-dimensional complex) square matrix S
define the set

XS = {x ∈ X | S(x) = S}.
The collection {XS} of subsets of X, where the index S ranges over all
quadratic matrices S ∈ ⋃∞n=0 Mn(C), is clearly a partition of X into no
more parts than there are real numbers. As F is a σ-complete ultrafilter,
it follows from Lemma 2.5 that there exists a square matrix S(F ) such
that XS(F ) ∈ F . Let b ∈ B and consider the operators πiF (B) ∈ B(Cn(F )),
i = 1 or i = 2, as matrices with respect to the standard bases (1) and (2).
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Furthermore, let I iM(b) ∈ F be as in the definition of the representations πiF .
Then as F is a filter, we have

Ω = XS(F ) ∩ I1
M(b) ∩ I2

M(b) ∈ F.
As noted just before Theorem 2.6, we thus conclude that for any x ∈ Ω,
with bi(x) the matrices with respect to the bases for Kx from (i),

π2
F (b) = b2(x) = S(x)b1(x)S(x)−1

= S(F )b1(x)S(F )−1 = S(F )π1
F (b)S(F )−1.

Hence we have proved that π1
F and π2

F are equivalent, and thus that the
second assignment in the theorem is well defined.

We now prove that these assignments are inverse to each other. If we
start with F ∈ F , form [πF ] ∈ E and FπF ∈ F , then we clearly end up
with F . Thus we only need to see that going in the other direction gives us
the identity map on E . Let [π] ∈ E , and form Fπ ∈ F as prescribed:

Fπ = {U ⊂ X | π(χU) = Iπ},
where now π is an irreducible representation of B on K. To construct the
irreducible representation πFπ , we choose and fix a collection of bases for all
the spaces Kx. Denote by n(π) the natural number n(Fπ) associated with
the σ-complete ultrafilter Fπ such that Ωn(π) ∈ Fπ. Define Bn(π) by

Bn(π) =
∏

x∈Ωn(π)

B(Kx).

We complete the proof by showing that [πFπ ] = [π], and we proceed in five
steps:

First 1), we claim that

π(B) = π(Bn(π)).

To see this notice that for b ∈ B, we have

b = χΩn(π)b+ (1− χΩn(π))b,

thus π(b) = π(χΩn(π)b) and χΩn(π)b ∈ Bn(π).
Secondly 2), obviously B(Cn(π)) equals

C = {b ∈ Bn(π) | ∃c,∀x, b(x)ij = cij},
when the operators are considered as matrices with respect to the bases for
the spaces Kx and Cn(π).

Thirdly 3), we have
π(Bn(π)) = π(C).

For let b ∈ Bn(π), define for m ∈ B(Cn(π)), with respect to bases for Kx and
Cn(π), the set

Xm = {x ∈ Ωn(π) | b(x)ij = mij},
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and consider the partition

{Xm | m ∈ B(Cn(π))}
of Ωn(π). By adding Ωc

n(π) 6∈ Fπ to this partition, we get a partition of X into
no more parts than there are real numbers. It then follows from Lemma 2.5
that there exists a unique m(b) such that Xm(b) ∈ Fπ. Then π(b) = π(m(b)),
because

b−m(b) = (b−m(b))χXm(b) + (b−m(b))(1− χXm(b))

= (b−m(b))χXc
m(b)

.

Now Xc
m(b) 6∈ Fπ, so

π(b−m(b)) = π(b−m(b))π(χXc
m(b)

) = 0.

From 1), 2) and 3) above we have π(B) = π(B(Cn(π))). By nontriviality
of π, we find that π(B(Cn(π))) is isomorphic to B(Cn(π)), as otherwise kerπ
would be a nontrivial ideal in the simple algebra B(Cn(π))). Thus π(B) is
isomorphic to the algebra B(Cn(π))), and as π is irreducible, K is isomorphic
to Cn(π). We can now add the final step of the proof. By definition of the
representation πFπ we know that for b ∈ B,

πFπ(b) = M(b),

where
{x ∈ Ωn(π) | b(x)ij = M(b)ij} ∈ Fπ.

But from the above, we see that

π(b) = π(M(b)) = M(b),

by the identification of π(B) with B(Cn(π)), so π(b) = πFπ(b) and [π] = [πFπ ]
as required.

Remark 2.7. We may obviously generalize this results to the case where
the spaces Kx are Hilbert spaces with less than measurable dimension. More
precisely, there is a 1-1 correspondence between equivalence classes of irre-
ducible representations of B (= algebraic product of the B(Kx)’s for x ∈ X)
and σ-complete ultrafilters over X.

3. Characterization of representations on B. Our main result in
this section is Theorem 3.3. It says that whenever the index set over which
the product in B is taken is of less than measurable cardinality, then the
only representations of B on Banach spaces are finite sums of those one gets
by projecting down on the factors in the product.

Theorem 3.1. Let X be a set of less than measurable cardinality , and let
π be a representation of B on a Banach space K. Then π is determined by
the representations of the algebras B(Kx) for a finite number of x’s. More
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precisely , define for Z ⊂ X the subalgebra BZ =
∏
x∈Z B(Kx) of B, and

let πZ be the representation of B on K obtained by projecting down B →
BZ ⊂ B and then restricting π to BZ : πZ(b) = π(χZb). Define Y ⊂ X by

Y = {x ∈ X | πx 6= 0}.
Then 1) Y is a finite set , and 2) πY is equivalent to π.

Proof. Define a collection Uπ of subsets of X by

Uπ = {U ⊂ X | π(χU) 6= 0}.
The collection Uπ has the inclusion property, because if we had a set A ∈ Uπ
and a set B with A ∩ B = ∅ such that A ∪ B 6∈ Uπ, then 0 = π(χA∪B) =
π(χA) +π(χB), so π(χB) = −π(χA), which is impossible as both π(χA) 6= 0
and π(χB) are idempotents. But Uπ is not necessarily an ultrafilter (it is
only when π is irreducible). However, there exists a finite maximal partition
{Xi}ni=1 of X with the property that π(χXi) 6= 0 for all i, and furthermore,
such that the collections

Fi = {U ∈ Uπ | U ⊂ Xi}
are all σ-complete ultrafilters over Xi. Assume for the moment that we
have such a partition of X. Observe first that U ∈ Uπ if and only if there
exists i such that U ∩ Xi ∈ Fi. As X is a set of less than measurable
cardinality, so are the sets Xi, and so by Lemma 2.5 all filters Fi are based
on (unique) points xi ∈ Xi. Thus U ∈ Uπ if and only if there exists i such
that xi ∈ U . Now set W = {xi}ni=1. Certainly W is a finite subset of X.
As W c ∩ Xi = Xi\{xi} 6∈ Uπ and Xi ∈ Uπ, it follows by the intersection
property of Uπ that W c 6∈ Uπ, so π(χW c) = 0. For b ∈ B we thus get

π(b) = π((χW + χW c)b) = π(χW b) = πW (b),

so π is equal (and so a fortiori equivalent) to πW and W = Y . Therefore we
are done if we can prove that a finite partition {Xi}ni=1 of X as described
above does indeed exist. We first prove that if

(1) there is a finite maximal partition {Xi}ni=1 of X

such that π(χXi) 6= 0,

then the collections Fi are all σ-complete ultrafilters over Xi. To this end
we first note that if U ⊂ Xj with π(χU ) 6= 0, then π(χU) = π(χXj ). This
follows because

π(χXj − χU ) = π(χXj∩Uc) = 0,

as otherwise {Xi}i6=j , U and Xj ∩ U would be a partition of X satisfying
(1) and strictly larger than the maximal one. Hence for any U ⊂ Xi, we
have either π(χU ) = 0 or π(χU) = π(χXi). Now proceed as in the proof of
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Lemma 2.3 with Iπ replaced by π(χXi), to prove that the collections Fi are
all σ-complete ultrafilters over Xi.

Hence we are left with the task of proving the existence of a finite parti-
tion {Xi}ni=1 with property (1). As π(χX) 6= 0, this is clearly equivalent to
saying that

sup{n ∈ N | there is a partition {Xi}ni=1 of X such that π(χXi) 6= 0} <∞.

Using the inclusion property of Uπ, one sees that the negation of this state-
ment is equivalent to saying that

(2) for all n ∈ N there is a partition {Xi}ni=1 of X

with π(χXi) 6= 0 for all i.

We complete the proof by showing that property (2) leads to a contradic-
tion. It suffices to construct a countable partition {Xi}∞i=1 of X such that
π(χXi) 6= 0. Indeed, by Lemma 2.2 we then conclude that 1 ∈ σ(π(χXi)) for
all i. Define f ∈ B by f =

∑∞
n=1 nχXn and note that

σ(π(f)) =
∞⋃

n=1

n(σ(π(χXn))).

Thus σ(π(f)) = N, which is a contradiction as the spectrum of an operator
in a Banach space B(K) is bounded.

Thus assume that property (2) holds for X. To construct the desired
countable partition of X, we rely on the following property: if U1 and U2

form a partition of a set U having property (2), then either U1 or U2 has
property (2). Assume by contradiction that neither U1 nor U2 has prop-
erty (2). Then there exist numbers n1, n2 such that {U ij}

nj
i=1 are maximal

partitions of Uj such that π(χUij ) 6= 0 for all i = 1, . . . , n, j = 1, 2. Let N

be max(n1, n2). Thus for n > N there are no partitions {U ij}ni=1 of Uj such
that π(χUij ) 6= 0 for all i = 1, . . . , n, j = 1, 2. Since U has property (2), we

may choose a partition {Xi}2N+1
i=1 of U with π(χXi) 6= 0. Then define the

sets U ij ⊂ Uj by U ij = Uj ∩Xi. They give partitions of U1, U2, respectively,
and, for any i = 1, . . . , 2N + 1 there exists j, depending on i, such that
π(χUij ) 6= 0, namely there exists j = 1, 2 such that at least N+1 elements of

the partition
⋃2N+1
i=1 U ij have the property that π(χUij ) 6= 0. By adding the

complement to one of the elements of the partition and using the inclusion
property for Uπ, we therefore obtain a partition {Ωi}N+1

i=1 of one of the sets
Uj such that π(χΩi) 6= 0 for all i, contrary to the above. Thus either U1 or
U2 has property (2).

Consider now again the set X. It has property (2), so split it up in two
parts, say X0

1 and X0
2 with π(χX0

i
) 6= 0. Then by the above, (at least) one

of them has property (2), say X0
1 , so we may split it up in two parts X1

1 and
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X1
2 with π(χX1

i
) 6= 0. Again one of these must have property (2), say X1

1 ,
so we may split it up in two parts X2

1 and X2
2 with π(χX2

i
) 6= 0, and one

of them must have property (2) again, say X2
1 . This way we construct an

infinite sequence {X i
1}∞i=1 of disjoint subsets of X such that π(χXi2) 6= 0.

Now set

X0 =
( ∞⋃

i=1

Xi
2

)c
.

Clearly X0 ⊃ X0
2 , so, by the inclusion property of Uπ, we have π(χX1) 6= 0.

For i ≥ 1 define the sets Xi = Xi
2. Then clearly the collection {Xi}∞i=0 is a

countable partition of X such that π(χXi) 6= 0 for all i. This concludes the
proof.

We give the following lemma without proof, and refer to standard texts
on C∗-algebras (cf. [4]).

Lemma 3.2. Let A be a finite-dimensional C∗-algebra, so A is isomor-
phic to a finite sum of full matrix algebras Mk(i)(C):

A '
m⊕

i=1

Mk(i)(C).

Define the representations πi of A on Ck(i) by

π
( m⊕

j=1

mk(j)

)
= mk(i).

If π is a representation of A on a Banach space K, then there exist Ba-
nach spaces K(i) such that π is (weakly) equivalent to the representation⊕m

i=1 πi ⊗ IK(i), where IK(i) is the identity operator on the Banach
space K(i).

Let X be a set and suppose that all the Banach spaces Kx in the product
algebra B are finite-dimensional. Denote by px the representation of B on
Kx obtained by projecting down on the factor B(Kx), namely px(b) = b(y).
Then, given a finite subset Y of X and a Banach space valued map κ :
x ∈ Y 7→ K(x) , we may consider the following representation of B:

pκ =
⊕

x∈Y
px ⊗ IK(x),

IK(x) being the identity operator on the space K(x). The following theorem
is indeed a generalization (when the field of scalars is C) of the main theorem
in [1]. It may be further generalized to the case where the spaces Kx are
Hilbert spaces with less than measurable dimension (cf. Remark 2.7).
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Theorem 3.3. Let X be a set and suppose that all the Banach spaces
Kx in the product algebra B are nonzero and finite-dimensional. Then the
following two conditions are equivalent :

(a) X has less than measurable cardinality.
(b) Any representation π of B on a Banach space K is equivalent to pκ

for some finite subset Y in X and some map κ as above.

Proof. The implication (a)⇒(b) is an immediate consequence of The-
orem 3.1 and Lemma 3.2. The implication (a)⇐(b) follows from Theo-
rem 2.6.

The corollary below is an immediate consequence of Theorem 3.3. But
as the proof of this theorem is rather long, we add a simplified proof of the
corollary, from which the subsequent corollaries are proved as well.

Corollary 3.4. Let X be a set of less than measurable cardinality and
suppose that all the Banach spaces Kx in the product algebra B are finite-
dimensional. Then any irreducible representation π of B is equivalent to py
for some y ∈ X.

Proof. Let Fπ be the σ-complete ultrafilter over X given by the repre-
sentation π (see Lemma 2.3). According to Lemma 2.5, since X has less
than measurable cardinality, Fπ is principal. Thus for X having less than
measurable cardinality there exists y ∈ X such that

Fπ = {U ⊂ X | y ∈ U}.
For this y ∈ X, we find by definition of Fπ that π(Iy) = Iπ, where we
consider the unit Iy of B(Ky) as an element of B. As I = Iy + Iyc , we have
π(Iyc) = 0, and thus for all b ∈ B,

π(b) = π(bI) = π(b(Iy + Iyc)) = π(b(y)) + π(b)π(Iyc) = π(b(y)),

where b(y) ∈ B(Ky) is considered an element of B and Iyc denotes the
element χ{y}c ∈ B. Thus b(y) 7→ π(b(y)) is a finite-dimensional irreducible
representation of B(Ky) on K. But the finite-dimensional algebra B(Ky)
is isomorphic to a matrix algebra, and we know (cf. for instance [4]) that
every finite-dimensional irreducible representation of a matrix algebra is
equivalent to the identity representation. Therefore there exists an invertible
linear operator S : Ky → K such that π(b(y)) = S ◦ b(y) ◦S−1 for all b ∈ B.
Hence π(b) = S ◦ py(b) ◦ S−1 for all b ∈ B, meaning that π is equivalent to
py, as desired.

Remark 3.5. Let X be a set of less than measurable cardinality. Con-
sider the case where all the spaces Kx are finite-dimensional, and endow
them with a Hilbert space structure. Then since the representations px,



Representations of matrix algebras 159

x ∈ X, are all ∗-representations of B on the Hilbert spaces Kx, every
irreducible representation of B =

∏
x∈X B(Kx) is equivalent to a (finite-

dimensional irreducible) ∗-representation of B on some Hilbert space.

If we choose the Hilbert spaces in B =
∏
x∈X B(Kx) all to be 1-dimen-

sional, then an easy consequence of Theorem 2.6 and Corollary 3.4 is the
result, due to [1] and mentioned in the introduction, that if X is a set of less
than measurable cardinality then all characters on C(X) are Dirac measures.

Remark 3.6. We conclude this paper by observing that even though the
theory of large cardinals is an active field of research concerning important
set-theoretical questions, measurable cardinals are beyond any possibility of
construction. In fact, the following results hold: Firstly, the existence of sets
with measurable cardinality is inconsistent with the axiom of constructibil-
ity (cf. Section 31 of [5]). Secondly, measurable cardinals are all inaccessible
cardinals (cf. Lemma 27.2 of [5]), which means for instance that their exis-
tence is not provable in ZFC (Zermelo–Fraenkel’s set theoretical axioms and
the axiom of choice); cf. Theorem 27 of [5]. Moreover, the same theorem,
proved using Gödel’s second incompleteness theorem, says that it cannot
be shown that the existence of even inaccessible cardinals is consistent with
ZFC. Therefore Corollary 3.4 holds for any “concrete” set X.
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