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Forcing relation on minimal interval patterns

by

Jozef Bobok (Praha)

Abstract. Let M be the set of pairs (T, g) such that T ⊂ R is compact, g : T → T
is continuous, g is minimal on T and has a piecewise monotone extension to conv T . Two
pairs (T, g), (S, f) from M are equivalent if the map h : orb(minT, g) → orb(minS, f)
defined for each m ∈ N0 by h(gm(minT )) = fm(minS) is increasing on orb(minT, g).
An equivalence class of this relation—a minimal (oriented) pattern A—is exhibited by a
continuous interval map f : I → I if there is a set T ⊂ I such that (T, f |T ) = (T, f) ∈ A.
We define the forcing relation on minimal patterns: A forces B if all continuous interval
maps exhibiting A also exhibit B. In Theorem 3.1 we show that for each minimal pattern
A there are maps exhibiting only patterns forced by A. Using this result we prove that
the forcing relation on minimal patterns is a partial ordering. Our Theorem 3.2 extends
the result of [B], where pairs (T, g) with T finite are considered.

0. Introduction. The question of coexistence of different types of
closed invariant sets arises in the theory of discrete dynamical systems. In
dimension one for interval maps different types of such sets have been in-
vestigated. Using the equivalence relation on cycles (finite invariant sets),
the notion of a pattern (generalized pattern) has been defined and a law
of coexistence of different patterns, now usually called the forcing relation,
has been studied [B], [ALM]. Furthermore, recent results [Bl1], [Bl2], [Y]
show that the essential parts of the theory of forcing of finite invariant sets
could be extended to the more general case of infinite minimal sets exhib-
ited by interval maps. The aim of this paper is to make a few steps in this
direction.

In order to achieve our goal we define an equivalence relation on the
set of all minimal pairs exhibited by interval maps and consider a minimal
(oriented) pattern as an equivalence class of this relation. Our main results
generalizing Theorems 2.6.13 and 2.5.1 from [ALM] are the following.
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Theorem 3.1. Let A,B be minimal patterns. Then the following condi-
tions are equivalent.

(i) A forces B.
(ii) For some (T, g) ∈ A, gT exhibits the pattern B.

Theorem 3.2. The forcing relation on minimal patterns is a partial or-
dering.

The paper is organized as follows: In Section 1 we give some basic no-
tation and definitions. Section 2 is devoted to the lemmas used throughout
the paper. The main result of this section is Lemma 2.6. In Section 3 we
prove Theorems 3.1 and 3.2.

Acknowledgements. The author thanks Milan Kuchta for useful dis-
cussions and remarks.

1. Notation and definitions. By R,N,N0 we denote the sets of real,
positive and nonnegative integer numbers respectively. Let I be a closed
finite subinterval of R. We consider the space C(I) of all continuous maps f
which are defined on I and map it into itself. For f ∈ C(I) and an interval
(maybe degenerate) J ⊂ I the set orb(J, f) = {f i(J) : i ∈ N0} is called
the orbit of J . We will write orb(x, f) if J = {x}. A point x ∈ I is called
periodic if fn(x) = x for some n ∈ N. The minimal such n is called the
period of x and the set orb(x, f) is called a cycle. The union of all cycles of
f is denoted by Per(f). For T ⊂ R, we say that g : T → T is minimal on T
if for each x ∈ T , orb(x, g) is dense in T . We denote by convX the convex
hull of a set X ⊂ R.

(T, g)-monotone maps. For a pair (T, g), where T ⊂ R is compact and
g : T → T is continuous, a map g̃ ∈ C(conv T ) is said to be (T, g)-monotone
if g̃|T = g and g̃|J is strictly monotone or constant for any interval J ⊂
conv T such that J ∩ T = ∅. In particular, the (T, g)-monotone map which
is affine on each component of conv T \ T is denoted by gT . We use the
notation C(T, g) for the set of all (T, g)-monotone maps. A pair (T, g) is
said to be piecewise monotone if there are k ∈ N and points minT = c0 <
c1 < . . . < ck < ck+1 = maxT such that gT is monotone on each [ci, ci+1],
i = 0, . . . , k. The least k with this property is called the modality of (T, g).

The set M of minimal pairs. We define M as the set of all piecewise
monotone pairs (T, g) such that T ⊂ R is compact, g : T → T is continuous
and g is minimal on T . It is well known that for (T, g) ∈ M exactly one of
the following two possibilities is satisfied [BCp]: (i) T is finite and so a cycle;
(ii) T is a Cantor set. We denote the sets of pairs corresponding to (i), (ii)
by Mp,M∞ respectively. Thus, M =Mp ∪M∞.
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Let f ∈ C(I = [a, b]). Following [P], we consider open sets Z(f), C(f),
R(f), where

Z(f) = {x ∈ (a, b) : there is ε > 0 such that fn is strictly monotone

on (x− ε, x+ ε) for all n ∈ N0},
C(f) = {x ∈ (a, b) : there is ε > 0 such that fn is constant

on (x− ε, x+ ε) for some n ∈ N0}
and R(f) = Z(f) ∪ C(f). Clearly, Z(f) ∩ C(f) = ∅.

Canonical pairs. A pair (T, g) ∈ M is said to be canonical if there is a
(T, g)-monotone map g̃ ∈ C(conv T ) such that R(g̃) = ∅.

Let I be the set of all closed finite subintervals of R. In what follows we
use the notation C(I) =

⋃
I∈I C(I). For two closed sets K,L ⊂ R we write

K < L if maxK < minL.

Sequences of the same order. Assume there are sequences {K1
i }i∈N0 ,

{K2
i }i∈N0 such that

(i) Kj
i is a point or a closed interval,

(ii) either Kj
i(1) ∩K

j
i(2) = ∅ or Kj

i(1) = Kj
i(2) for i(1) 6= i(2).

We say that the sequences {K1
i }i∈N0 , {K2

i }i∈N0 have the same order if

K1
i(1) < K1

i(2) ⇔ K2
i(1) < K2

i(2), i(1), i(2) ∈ N0.

In particular, for f1, f2 ∈ C(I) and closed (degenerate) intervals J,K, the
orbits orb(J, f1), orb(K, f2) have the same order if it is true for the sequences
{f i1(J)}i∈N0 , {f i2(K)}i∈N0 .

Minimal patterns. Pairs (T, g), (S, f) ∈ M are said to be equivalent if
the orbits orb(minT, g), orb(minS, f) have the same order. An equivalence
class A of this relation will be called a minimal (oriented) pattern or briefly
a pattern. If A is a pattern and (T, g) ∈ A we say that the pair (T, g) has
pattern A and we use the symbol [(T, g)] to denote the pattern A. If (T, g)
is a cycle then [(T, g)] is called a periodic pattern. Note that all pairs of a
pattern A have the same modality.

A function f ∈ C(I) has a pair (T, g) ∈ M if f |T = g. In this case we
say that f exhibits the pattern A = [(T, g)] and we often write (T, f) ∈ A.

Now we define the forcing relation on minimal patterns.

Forcing relation. A pattern A forces a pattern B if all maps in C(I)
exhibiting A also exhibit B. Sometimes we use the symbol A ↪→ B.

A relation which is reflexive, transitive and weakly antisymmetric (A ↪→
B and B ↪→ A implies A = B) is called a partial ordering.

Concerning the forcing relation the following result is known.
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Theorem 1.1 ([B], [ALM]). The forcing relation on periodic patterns is
a partial ordering.

2. Lemmas. In the first lemma we recall known properties of minimal
dynamical systems that will be useful when proving our results. These as-
sertions are valid for any minimal dynamical system (X, f), where X is a
compact metric space and f : X → X is continuous.

Lemma 2.1. (i) If (T, g) ∈ M and R ⊂ T is open in T then there is a
positive integer k with the property

⋃k
l=0 g

l(R) = T .
(ii) ([BCp]) A pair (T, g) is minimal if and only if T =orb(t = minT, g),

where t is strongly recurrent , i.e. for any open neighborhood [t, t + ε) of t
in T there is a positive integer n0 such that {gi(t)}j−1+n0

i=j−1 ∩ [t, t + ε) 6= ∅
for each j ∈ N.

Proof. (i) It follows directly that there is k ∈ N for which
⋃k
l=0 g

−l(R)
= T . Now T = gk(

⋃k
l=0 g

−l(R)) =
⋃k
l=0 g

k−l(gl(g−l(R))).

In order to study the forcing relation on minimal patterns we need some
method that will help us to recognize that a fixed map f ∈ C(I) exhibits a
minimal pattern A. The following lemma satisfies this requirement.

Lemma 2.2. Let f ∈ C(I) and (T, g) ∈ M. Assume there is a sequence
{Ki}i∈N0 such that

(i) Ki ⊂ I is a point or a closed interval ,
(ii) either Ki(1) ∩ Ki(2) = ∅ or Ki(1) = Ki(2) for i(1) 6= i(2),
(iii) f i(K0) = Ki, and for some t ∈ T the orbits orb(K0, f), orb(t, g)

have the same order.

Then there is T ∗ ⊂ I such that maxK0 ≤ minT ∗ and (T ∗, f) ∈ [(T, g)].

Proof. The conclusion is well known when (T, g) ∈ Mp [ALM]. So sup-
pose that (T, g) ∈ M∞.

We start our proof by choosing a point t∗ which will be useful when
defining T ∗. Without loss of generality we can assume that t ∈ T is a
right-side limit point of T . Consider a sequence {mi}i∈N of positive integers
for which the sequence {gmi(t)} is decreasing and limi g

mi(t) = t, and put
t∗ = inf

⋃
i∈N f

mi(K0). Clearly maxK0 ≤ t∗. We show that

(iv) the map h : orb(t∗, f) → orb(t, g) defined by h(fm(t∗)) = gm(t),
m ∈ N0, is increasing on orb(t∗, f).

First we prove that orb(t∗, f) is infinite and t∗ is its limit point. Notice
that by (i)–(iii), limi diam(Kmi) = 0, hence the continuity of f gives for
each j ∈ N0,

(1) lim
i
Kmi+j = f j(t∗).
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Since (T, g) ∈ M, we can consider a sequence {kn}n∈N for which limn g
kn(t)

= t,
. . . < gkn+1(t) < gkn(t) < . . . < gk2(t) < gk1(t)

and each intersection (gkn+1(t), gkn(t)) ∩ T is infinite. Fix m ∈ N. Then
gj(t) ∈ (gkm+1(t), gkm(t)) for some j ∈ N and since limi g

mi(t) = t, for each
i ≥ i0 we also have gmi+j(t) ∈ (gkm+1(t), gkm(t)). By (i)–(iii) again the
situation is similar for orb(K0, f). We have limnKkn = t∗,

. . . < Kkn+1 < Kkn < . . . < Kk2 < Kk1

and for each i ≥ i0,

(2) Kkm+1 < Kmi+j < Kkm .
Using (1), (2) we can see that f j(t∗) ∈ [maxKkm+1 ,minKkn ]. Since m

was arbitrary, orb(t∗, f) is infinite and t∗ is a limit point of orb(t∗, f). Let
us show (iv). If for some k, l ∈ N0 we have gk(t) < gl(t) then for each i ≥ i0,
gmi+k(t) < gmi+l(t) and from (i)–(iii) also Kmi+k < Kmi+l. It follows from
(1) that fk(t∗) ≤ f l(t∗). But we already know that orb(t∗, f) is infinite. This
implies fk(t∗) < f l(t∗). Summarizing, the map h : orb(t∗, f) → orb(t, g)
defined by h(fm(t∗)) = gm(t), m ∈ N0, is increasing on orb(t∗, f), which
proves (iv).

Put T ∗ = orb(t∗, f). By (iv), the orbits orb(t∗, f), orb(t, g) have the same
order.

Let us show that (T ∗, f) ∈ M. By Lemma 2.1(ii) it is sufficient to show
that t∗ ∈ T ∗ is a strongly recurrent point in the system (T ∗, f). Consider
a neighborhood Uε = [t∗, t∗ + ε) of t∗ in T ∗. Then fk(t∗) ∈ Uε for some k.
Since t is strongly recurrent in (T, g), for an open neighborhood [t, gk(t)) of
t in T there is a positive integer n0 such that {gi(t)}j−1+n0

i=j−1 ∩ [t, gk(t)) 6= ∅
for each j ∈ N. By (iv) we know that the orbits orb(t, g) and orb(t∗, f) have
the same order. It follows immediately that for the same value n0 we have
{f i(t∗)}j−1+n0

i=j−1 ∩ [t∗, fk(t∗)) 6= ∅ for each j ∈ N. Thus (T ∗, f) ∈ M.
Similarly we can prove that orb(minT, g) and orb(minT ∗, f) have the

same order. Thus (T ∗, f) ∈ [(T, g)].
The proof of Lemma 2.2 is finished.

Let A be a minimal pattern. In what follows we outline the procedure
that allows us to show that A contains canonical pairs. The reason for being
brief is that in order to develop the whole procedure in a systematic way,
we would have to repeat (often with small modifications) the proofs from
[P] and the amount of space necessary for doing that would be too large
compared to the advantages.

Let J,K be two compact subintervals of R; we denote by H(J,K), resp.
H(J) the set of all continuous nondecreasing maps mapping J onto K,
resp. J . For h ∈ H(J,K) we put
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supp(h) = {x ∈ J : h(L) is nondegenerate for each open interval

L ⊂ J with x ∈ L}.
Let (T, g) ∈ M∞ and g̃ ∈ C(T, g). Then if conv T \ R(g̃ ) is perfect,

one can find maps h ∈ H(convT ) with supp(h) = conv T \ R(g̃ ) and f ∈
C(conv T ) with R(f) = ∅, f ∈ C(h(T ), f) and such that

(∗) f ◦ h = h ◦ g̃ on conv T.

This known statement can be proved using the fact that for each J ⊂ conv T ,
h(J) is nondegenerate if and only if h(g̃(J)) is nondegenerate (see, for ex-
ample, [ALM], [P]).

Our strategy will be to show that the set conv T \R(g̃ ) is really perfect
and then we prove the needed common properties of the maps f, g̃ given
by (∗).

Lemma 2.3. Let (T, g) ∈M∞ and g̃ ∈ C(T, g). Then:

(i) T ∩R(g̃ ) = ∅ and conv T \ R(g̃ ) is a perfect set.
(ii) The maps g̃ = gT and f exhibit the same patterns.
(iii) (h(T ), f) is a canonical pair and [(T, g)] = [(h(T ), f)].

Proof. The conclusions are true if R(g̃ ) = ∅. In this case h = id and
f = g̃. Thus, in the following we suppose that R(g̃ ) 6= ∅.

Recall that the sets Z(g̃ ), C(g̃ ),R(g̃ ) are open. It follows from the def-
inition of Z(g̃ ) that g̃(Z(g̃ )) ⊂ Z(g̃ ). Notice that if J is a component of
Z(g̃ ), then there is a component K of Z(g̃ ) such that g̃(J) ⊂ K. The fact
that g̃ is continuous implies that g̃(J) ⊂ K.

(i) Clearly, T ∩ C(g̃ ) = ∅. Let J ⊂ conv T be open. If T ∩ J 6= ∅, then
by Lemma 2.1(i), J contains a point x ∈ T such that for j ∈ N we have
g̃j(x) ∈ T and the map g̃ is not strictly monotone on (g̃j(x)− ε, g̃j(x) + ε)
for any positive ε. This implies T ∩ Z(g̃ ) = T ∩R(g̃ ) = ∅.

Assume that x ∈ conv T is an isolated point of conv T \ R(g̃ ). Then for
a sufficiently small positive ε′, (x − ε′, x) ∪ (x, x + ε′) ⊂ R(g̃ ) and by the
definition of C(g̃ ), (x−ε′, x)∪(x, x+ε′) * C(g̃ ). If j ∈ N0 is the least such that
g̃j+1 is not strictly monotone on (x−ε, x+ε) then g̃j(x) ∈ T and at least one
of the two intersections g̃−j(T )∩ (x−ε, x)∩Z(g̃), g̃−j(T )∩ (x, x+ε)∩Z(g̃ )
has to be nonempty for each positive ε. This is impossible since T ∩R(g̃ ) = ∅
and g̃(Z(g̃ )) ⊂ Z(g̃ ).

Thus we can consider the maps h ∈ H and f ∈ C(conv T ) satisfying (∗).
(ii) First we prove that if gT exhibits A then so does f . We distinguish

two cases.

Case 1. Let S ⊂ conv T and (S, gT ) ∈ M∞. Put A = [(S, gT )]. By
our definition the map gT exhibits the pattern A. We now show that also
(h(S), f) ∈ A.
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Note that the open set R(gT ) has countably many components. Since T
is a Cantor set and (T, g) is piecewise monotone one can find s ∈ S such
that for each component J of R(gT ) we have orb(s, g) ∩ J = ∅. This means
that the h introduced in (∗) is increasing on orb(s, gT ). Now, using Lemma
2.2 for Ki = h(giT (s)), i ∈ N0, we can verify that t∗ = h(s), T ∗ = h(S),
h(minS) = minh(S) and the orbits orb(minS, gT ) and orb(minh(S), f)
have the same order. We conclude that (h(S), f) ∈ A.

Case 2. Similarly, let S ⊂ conv T , (S, gT ) ∈Mp and A = [(S, gT )]. If for
each component J of Z(gT ) we have #(S ∩ J) ≤ 1, the conclusion follows
directly from (∗). Now we show that in fact the opposite case cannot hold.

Assume to the contrary that there is a component J such that m =
#(S ∩ J) ≥ 2. Then smin = min(S ∩ J) < smax = max(S ∩ J) and there
are components J1 = J, . . . , Jn of Z(gT ) such that S ⊂ ⋃ni=1 J i, gT (J i) ⊂
J i+1 and gT (Jn) ⊂ J1, m = #(S ∩ J i). Since gT is affine on each Ji and
g2n
T (J1) ⊂ J1, the map g2n

T has slope one on J1 and g2n
T (smin) = smin,

g2n
T (smax) = smax. In particular, this implies thatm = 2. Since by (i) we have
T ∩R(gT ) = ∅, we can consider the components K1, . . . ,Kn of conv T \T for
which Ji ⊂ Ki. Clearly gT (Ki) ⊃ Ki+1, hence there is an interval K ⊂ K1

such that g2n
T (K) = K1. We know that g2n

T has slope one on K and hence
K = K1. But this contradicts our choice of the infinite pair (T, g) ∈M∞.

In order to finish the proof of (ii) we have to show that any pattern ex-
hibited by f is also exhibited by gT . Take S ⊂ conv T for which (S, f) ∈ M,
and put s = minS. If we define s0 = maxh−1(s), by (∗) we see that
fm(s) = h(gmT (s0)) for each m ∈ N0, hence the map h|orb(s0, gT ) is increas-
ing on orb(s0, gT ) and we can use Lemma 2.2 again putting Ki = giT (s0),
i ∈ N0. We conclude that (orb(s0, gT ), gT ) ∈ [(S, f)].

(iii) We know that R(f) = ∅ and f ∈ C(h(T ), f). Now, put S = T in
the proof of (ii).

The proof of the lemma is finished.

The following lemma can be considered to belong to folklore knowledge.
For the sake of completeness we present its proof (cf. [BCv, Th. 2.1]).

Lemma 2.4. Let (T, g), (S, f) ∈ M∞ be canonical pairs. The following
conditions are equivalent.

(i) [(T, g)] = [(S, f)].
(ii) For each g̃ ∈ C(T, g) and f̃ ∈ C(S, f) with R(g̃ ) = R(f̃ ) = ∅ there

is an increasing map H ∈ H(convT, convS) such that f̃ ◦ H = H ◦ g̃ on
conv T , i.e. the maps g̃, f̃ are topologically conjugate.

Proof. The implication (ii)⇒(i) is clear.
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Take g̃ ∈ C(T, g) and f̃ ∈ C(S, f) such that R(g̃ ) = R(f̃ ) = ∅. Let
h : orb(t = minT, g)→ orb(s = minS, f)

be the map ensured by the equivalence of (T, g), (S, f).
First we show that h extends to a strictly monotone continuous map h̃

on T such that h̃(T ) = S and f ◦ h̃ = h̃ ◦ g on T .
Because of the monotonicity of h on orb(t, g) it is sufficient to prove that

whenever x ∈ T and limi g
mi(t) = x, then limi f

mi(s) = y; in such a case
we put h̃(x) = y. The claim is true if x ∈ T is a one-sided limit point of T .
Suppose that for suitable sequences {mi}, {ni} of positive integers we have

gmi(t) < gmi+1(t) < . . . < x < . . . < gni+1(t) < gni(t),
limi g

mi(t) = limi g
ni(t) = x and at the same time

lim
i
fmi(h(t)) = lim

i
fmi(s) = u < v = lim

i
fni(h(t)) = lim

i
fni(s).

In particular this means that (u, v)∩ orb(s, f) = ∅. Notice that for each j ∈
N0, f̃ j((u, v)) is nondegenerate, otherwise we would have J ⊂ C(f̃ ) for some
nondegenerate interval J ⊂ (u, v). Moreover, if int(f̃ j((u, v)))∩orb(s, f) = ∅
for each j ∈ N0, we get (u, v) ⊂ R(f̃ ), which is impossible again. Thus we can
consider the least positive integer j for which there is k ∈ N such that f k(s) ∈
int(f̃ j((u, v))). By our choice of j, int(f̃ j((u, v))) = int(conv{f̃ j(u), f̃ j(v)})
and if we take a sequence {ki} of positive integers for which limi f

ki(s) =
fk(s), then for each i ≥ i0 and l ≥ l0 (i0, l0 ∈ N are sufficiently large) we get

fki(s) ∈ int(conv{fml+j(s), fnl+j(s)}),
hence from the equivalence of (T, g), (S, f) also

gki(t) ∈ int(conv{gml+j(t), gnl+j(t)}).
This implies gki(t) = gj(x) for each i ∈ N—a contradiction.

From what we proved above, h̃ has the following properties: h̃ : T → S
is a continuous extension of h : orb(t, g)→ orb(s, f), it is nondecreasing and
f ◦ h̃ = h̃ ◦ g on T . Repeating our proof for h−1 : orb(s, f) → orb(t, g) we
see that h̃ is even increasing on T , which finishes the first part of the proof.

In the second part we need to show that there is an increasing map
H ∈ H(conv T, convS) such that

H|T = h̃, f̃ ◦H = H ◦ g̃ on conv T.
For k ∈ N0 we define a sequence {Tk} by T0 = T , Tk = Tk−1 ∪ (g̃−1(Tk−1)∩
conv T ) and similarly {Sk} from S and f̃ . Notice that T0 ⊂ T1 ⊂ . . . ,

g̃(Tk+1) ⊂ Tk, S0 ⊂ S1 ⊂ . . . and f̃(Sk+1) ⊂ Sk. Put H0 = h̃. Suppose that
we have already defined a mapHk : Tk → Sk which is increasing and f̃◦Hk =
Hk ◦ g̃ on Tk. By our assumption for x ∈ Tk and y = Hk(x) ∈ Sk, if g̃−1(x) =
{t1(x) < . . . < tm(x)} and f̃−1(y) = {s1(y) < . . . < sn(y)} then m = n and
the map Hk+1 : Tk+1 → Sk+1 defined by Hk+1(ti(x)) = si(y) for all ti(x) ∈
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Tk+1 extendsHk, it is increasing and f̃◦Hk+1 = Hk+1◦g̃ on Tk+1. Now, using
the maps Hk we can define an increasing map H̃ :

⋃
Tk →

⋃
Sk by H̃(x) =

Hk(x) for x ∈ Tk. Note that H̃−1 :
⋃
Sk →

⋃
Tk is also increasing and since

R(g̃ ) = R(f̃ ) = ∅, the set
⋃
Tk, resp.

⋃
Sk is dense in conv T , resp. convS.

Now, it follows immediately that H̃ extends to a continuous increasing H de-
fined on conv T such that f̃ ◦H = H ◦ g̃ on conv T . This proves the lemma.

Definition. Let f ∈ C(I) and [x, y] ⊂ I. We define

signf ([x, y]) =
{

+1, f(x) < f(y),
−1, f(x) > f(y).

Lemma 2.5. Let f ∈ C(I), [a, b] ⊂ I, [c, d] ⊂ I, f(a) 6= f(b) and

conv{f(a), f(b)} ⊃ [c, d].

Then there are a∗, b∗ ∈ [a, b] such that f([a∗, b∗]) = [c, d], f({a∗, b∗}) =
{c, d} and signf ([a∗, b∗]) = signf ([a, b]).

Proof. If f(a) > f(b) then a∗ = sup{x ∈ [a, b] : f(x) = d} and b∗ =
inf{x ∈ [a∗, b] : f(x) = c}. The second case is similar.

The key lemma follows. Its “periodic part” was proved in [BK].

Lemma 2.6. Let f ∈ C(I), and assume there is a compact set S ⊂ I with
f(S) ⊂ S. Then for fS ∈ C(S, f) and T ⊂ convS such that (T, fS) ∈ M
there is T ∗ ⊂ convS for which (T ∗, f) ∈ [(T, fS)].

Proof. The case when (T, fS) ∈Mp was proved in [BK, Th. 3.12]. There-
fore we suppose that (T, fS) ∈ M∞.

If T ∩ S 6= ∅, put T ∗ = T . So, we can assume that T ∩ S = ∅. Define
t = minT .

Let f iS(t) ∈ Ji for i ∈ N0 where each Ji is the closure of a component of
convS \ S. Obviously fS is strictly monotone on each Ji and f(Ji) ⊃ Ji+1.
Moreover, since T ∩ S = ∅ we can consider the least finite set {I1, . . . , Ik}
of components of convS \ S such that every Ji is from {I1, . . . , Ik}. Define
the map p : N0 → {1, . . . , k} by

p : i 7→ pi ⇔ Ji = Ipi .

The map p is periodic if there is a positive integer n such that pi = pi+n
for each i ∈ N0. Let us show that such an n does not exist. We know
that f iS(t) ∈ Ji = Ipi . If such an n exists, then fnS (T ∩ Ip0) = T ∩ Ip0

and since fS is affine on each Ipi , f
n
S or f2n

S is increasing on Ip0 . But then
fnS (t) or f2n

S (t) has to be equal to t—a contradiction with our assump-
tion (T, fS) ∈ M∞. So p is not periodic. Notice that this is equivalent to
the fact that for any different i(1), i(2) ∈ N there exists i ∈ N0 for which
f iS(f i(1)

S (t)) ∈ Ipi+i(1) , f
i
S(f i(2)

S (t)) ∈ Ipi+i(2) and int(Ipi+i(1))∩ int(Ipi+i(2)) =
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∅, i.e. the points f i(1)
S (t), f i(2)

S (t) ∈ orb(t, fS) have different trajectories with
respect to {I1, . . . , Ik}.

Set I1
i = Ipi for i ∈ N0. We define closed intervals Iji , (i, j) ∈ N0 ×N, by

the conditions Iji ⊂ Ij−1
i and fS(Iji ) = Ij−1

i+1 (clearly fS(Ij−1
i ) ⊃ Ij−1

i+1 ). Put
Ii =

⋂
j∈N I

j
i . We have f iS(t) ∈ Ii for each i ∈ N0; by our definition of the

intervals Iji we even get f iS(I0) = Ii. Clearly Ii is a point or a closed interval.
Now we show that Ii(1) ∩ Ii(2) = ∅ for i(1) 6= i(2). Define n as the least

positive integer for which the trajectories of the points f i(1)
S (t), f i(2)

S (t) dif-
fer. If there is an x ∈ Ii(1) ∩ Ii(2), then {x} = Ii(1) ∩ Ii(2) and fnS (x) ∈ S,
since Iji(1) = Iji(2) for j ∈ {1, . . . , n} and fnS (In+1

i(1) ), fnS (In+1
i(2) ) belong to the

different intervals Ipn+i(1) , Ipn+i(2) with {fnS (x)} = Ipn+i(1) ∩ Ipn+i(2) . So we
have already shown that the intersection of two I’s can be at most one-point.
Since f iS(t) ∈ Ii, this immediately shows that orb(t, fS) and orb(I0, fS) have
the same order. In particular, the minimality of (T, fS) implies that both
orbits have infinitely many elements in every interval from {I1, . . . , Ik}. On
the other hand, by assumption, f(S) ⊂ S, hence also fS(S) ⊂ S. Now the
reader can see that, supposing {x} = Ii(1) ∩ Ii(2) there have to be positive
integers n2 > n1 > n for which In2 ⊃ In1 . Summarizing, Ii(1) ∩ Ii(2) = ∅
for i(1) 6= i(2) and Ii ∩ S = ∅ for each i ∈ N0.

Let K1
i = Ipi for i ∈ N0. By Lemma 2.5, we can choose closed intervals

Kj
i = [aji , b

j
i ], (i, j) ∈ N0 × N, such that

(i) Kj
i ⊂ Kj−1

i ,
(ii) f(Kj

i ) = Kj−1
i+1 and conv{f(aji ), f(bji )} = Kj−1

i+1 ,

(iii) signfS (Iji ) = signf (Kj
i )

(iv) for each j ∈ N, the orders of {Kj
i }i∈N0 and {Iji }i∈N0 are the same.

Put Ki =
⋂
j∈NK

j
i . Clearly Ki is a point or a closed interval. Using (i)–(iv)

we can show as for Ii the following properties:

(v) Ki(1) ∩ Ki(2) = ∅ for i(1) 6= i(2) and Ki ∩ S = ∅, f i(K0) ⊂ Ipi and
f i(K0) = Ki for each i ∈ N0,

(vi) the order of orb(K0, f) is the same as the order of orb(I0, fS), which
is the same as the order of orb(t, fS).

Thus the sequence {Ki}i∈N0 satisfies the assumptions of Lemma 2.2.
Therefore, we can find T ∗ ⊂ convS for which (T ∗, f) ∈ [(T, fS)]. This
proves Lemma 2.6.

3. Main results. Our goal in this section is to use the lemmas developed
in the previous section to prove the main results. We begin with a statement
that extends [ALM, Th. 2.6.13].
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Theorem 3.1. Let A,B be minimal patterns. Then the following condi-
tions are equivalent.

(i) A forces B.
(ii) For some (T, g) ∈ A, gT exhibits the pattern B.

Proof. The implication (i)⇒(ii) is clear. The case when both patterns
A,B are periodic is known [ALM].

Let A,B be minimal patterns, and suppose (ii). Let f ∈ C(I) be any
map that exhibits the pattern A, i.e. there is S ⊂ I such that (S, f) ∈ A.
Consider two maps: fS ∈ C(S, f) and gT ensured by (ii).

If A is a periodic pattern then by [BCv, Th. 2.6] the maps fS and gT
are topologically conjugate, hence they exhibit the same patterns. By (ii),
fS exhibits the pattern B, i.e. there is T ⊂ convS such that (T, fS) ∈ B.
Notice that all assumptions of Lemma 2.6 are satisfied. Hence there exists
T ∗ ⊂ convS such that (T ∗, f) ∈ [(T, fS)] = B, i.e. f exhibits the pattern
B. So A ↪→ B in this case.

Suppose that A is infinite. By assumption, gT exhibits B. In order to
use Lemma 2.6 again, we need to show that fS also exhibits B. By Lemma
2.3, there are maps h1 ∈ H(convS), f̃ ∈ C(h1(S), f̃ ), h2 ∈ H(convT )
and g̃ ∈ C(h2(T ), g̃ ) such that fS , f̃ , resp. gT , g̃ exhibit the same patterns.
Moreover, A = [(S, f)] = [(h1(S), f̃ )] = [(h2(T ), g̃)] = [(T, g)] and the pairs
(h1(S), f̃ ), (h2(T ), g̃ ) are canonical. By Lemma 2.4, the maps f̃ ∈ C(convS)
and g̃ ∈ C(conv T ) are topologically conjugate. This implies that all four
maps fS , f̃ , g̃, gT exhibit the same patterns. In particular so do fS , gT . Now
as above, Lemma 2.6 ensures the existence of T ∗ ⊂ S such that (T ∗, f) ∈
[(T, fS)] = B, i.e. f exhibits the pattern B. Hence also in this case A ↪→ B.

This proves the theorem.

In [B] it is shown that the forcing relation on periodic (oriented) patterns
is a partial ordering (see also [ALM, Th. 2.5.1]). In the next theorem we show
that this also holds for a larger set of minimal (finite or infinite) patterns.

Theorem 3.2. The forcing relation on minimal patterns is a partial or-
dering.

Proof. Clearly, if A is a pattern, then A ↪→ A (reflexivity); if A, B, C
are patterns such that A ↪→ B and B ↪→ C, then A ↪→ C (transitivity).
Thus it remains to prove the weak antisymmetry of the forcing relation.

Suppose that for patterns A,B, A ↪→ B and B ↪→ A. If both patterns
are periodic, then A = B by Theorem 1.1.

Thus, let A be infinite and A 6= B. Take (S, f) ∈ A. We know that (S, f)
is piecewise monotone. If S̃ ⊂ convS is such that (S̃, fS) ∈ A, then since
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the modalities of the pairs (S, f), (S̃, fS) equal we see that (s0 = minS)

(4) min S̃ < c = max{x ∈ convS : fS is monotone on [s0, c]}.
Using Theorem 3.1 and Lemma 2.6 repeatedly we can consider closed sets
Sj , j ∈ N0, such that S0 = S and

(5)
convSj ⊃ convSj+1, Sj(1) ∩ Sj(2) = ∅ for j(1) 6= j(2),

(Sj , fS) ∈ A.
In particular, all orbits orb(sj = minSj , fS) have the same order. Set

s∞ = sup{min S̃ : (S̃, fS) ∈ A}.
Since for c defined in (4) we have c ∈ S, fkS(c) < s1 = minS1 for some
k ∈ N; this implies s∞ < c. We can consider the sets Sj satisfying (5) and
such that for sj = minSj we have

s0 < s1 < . . . < sj < . . . < s∞ < c, lim
j
sj = s∞.

In any case orb(s∞, fS) ∩ S0 = ∅. Now we distinguish two cases.

Case 1. Let us show orb(s∞, fS) cannot be infinite. If it is, then since
s∞ = limj sj and (Sj , fS) ∈ A, the continuity of fS shows that orb(s∞, fS)
has the same order as orb(s0, fS). If we put Ki = f iS(s∞) in Lemma 2.2,
all conditions of that lemma are satisfied. Hence there is a set T ∗ ⊂ convS
such that maxK0 = s∞ ≤ t∗ = minT ∗ and (T ∗, fS) ∈ A. Using Theorem
3.1 and Lemma 2.6 again we see that there is a set T ⊂ conv T ∗ such that
minT ∗ < minT and (T, fS) ∈ A—a contradiction with the choice of s∞.

Case 2. Finally we show that orb(s∞, fS) cannot be finite. Suppose to
the contrary that # orb(s∞, fS) ∈ N. Then there are k ∈ N0 and n ∈ N such
that fkS(s∞) ∈ Per(fS) and per(fkS(s∞)) = n. Let k, n be the least with this
property. We can write

orb(s∞, fS) = {s∞ = p1 < . . . < pk+n}.
I. First we verify that p1 6∈ Per(fS). If p1 were periodic its period would

be n. Then f2n
S (p1) = p1 and since orb(s∞, fS) ∩ S0 = ∅, the map f2n

S is
affine with slope greater than 1 on some Uε = (p1 − ε, p1). But then for
sufficiently large j we have sj ∈ Uε and also f2n

S (sj) < sj , which contradicts
sj = minSj .

II. Let us show that p2 ∈ Per(fS); indeed, all orbits orb(sj , fS) have the
same order and if p2 6∈ Per(fS) then p2 = f lS(s∞) for 0 < l < k and since
limj sj = s∞, for i > l we have

f iS(s0) > f lS(s0),

which is impossible for (S0, fS) ∈ M∞.
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III. The last situation that we have to disprove is the following: For
0 ≤ m < n, fk+m

S (p1) = p2 ∈ Per(fS) and per(p2) = n. Define M =
{k + m + 2in : i ∈ N0}. In this case as for I we can show that for each
i ∈ N0, l ∈ N \M ,

fk+m+2in
S (s0) < f lS(s0),

and then by the minimality of (S0, fS) either

lim
i
fk+m+2in
S (s0) = s0 or lim

i
fk+m+4in
S (s0) = s0.

Both cases imply s0 ∈ Per(fS)—a contradiction.
Thus, A = B and the proof of Theorem 3.2 is finished.
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