Almost-free $E(R)$-algebras and $E(A, R)$-modules

by
Rüdiger Göbel and Lutz Strüngmann (Essen)

Abstract

Let R be a unital commutative ring and A a unital R-algebra. We introduce the category of $E(A, R)$-modules which is a natural extension of the category of E-modules. The properties of $E(A, R)$-modules are studied; in particular we consider the subclass of $E(R)$-algebras. This subclass is of special interest since it coincides with the class of E-rings in the case $R=\mathbb{Z}$. Assuming diamond \diamond, almost-free $E(R)$-algebras of cardinality κ are constructed for any regular non-weakly compact cardinal $\kappa>\aleph_{0}$ and suitable R. The set-theoretic hypothesis can be weakened.

1. Introduction. In 1958 Fuchs [F2, Problem 45] raised the problem to characterize those rings R for which $\operatorname{End}_{\mathbb{Z}}\left(R^{+}\right) \cong R$, where R^{+}is the additive group of R. Introducing the class of E-rings Schultz $[\mathrm{S}]$ gave a partial solution. Recall that a ring R is an E-ring if the evaluation map ε : $\operatorname{End}_{\mathbb{Z}}\left(R^{+}\right) \rightarrow R$ given by $\varphi \mapsto \varphi(1)$ is a bijection. First examples are subrings of \mathbb{Q} and pure subrings of the ring of p-adic integers. Schultz characterized E rings of finite rank. The books by Feigelstock [Fe1], [Fe2] and the article [PV] survey the results obtained in the eighties (see also $[\mathrm{Re}],[F]$). In a natural way the notion of E-rings extends to modules by calling a left R-module M an $E(R)$-module or just E-module if $\operatorname{Hom}_{\mathbb{Z}}(R, M)=\operatorname{Hom}_{R}(R, M)$ (see $[\mathrm{BS}])$. It turned out that a unital ring R is an E-ring if and only if it is an E-module.
E-rings and E-modules have played an important role in the theory of torsion-free abelian groups of finite rank. For example Niedzwecki and Reid [NR] proved that a torsion-free abelian group G of finite rank is cyclic projective over its endomorphism ring if and only if $G=R \oplus A$, where R is an E-ring and A is an $E(R)$-module. Moreover, Casacuberta and Rodríguez

[^0]$[\mathrm{R}],[\mathrm{CRT}]$ noticed the role of E-rings in homotopy theory and further results on E-modules are in [DG2], $[\mathrm{MV}]$ and $[\mathrm{P}]$.

We want to consider these objects in a more general context of unital algebras A over commutative unital rings R with the same 1, different from 0 , which we keep fixed throughout.

A left A-module M is called an $E(A, R)$-module if $\operatorname{Hom}_{R}(A, M)=$ $\operatorname{Hom}_{A}(A, M)$. If $R=\mathbb{Z}$ then this category $E(A, R)$-Mod becomes $E(A)$ Mod. In particular, A is an $E(R)$-algebra if ${ }_{R} A$ is in $E(A, R)$-Mod. This is equivalent to saying that the evaluation map $\varepsilon: \operatorname{End}_{R}(A) \rightarrow A$ given by $\varphi \mapsto \varphi(1)$ is an isomorphism (see Theorem 2.2). Therefore $E(R)$-algebras are natural generalizations of E-rings and we will extend results on E-rings to $E(R)$-algebras, e.g. any $E(R)$-algebra has to be commutative (see Theorem 3.3).

Often $E(R)$-algebras can be described by tensor products. This is the case for so-called $T(R)$-algebras which extend T-rings (see [Fe1, p. 85]). Recall that A is a $T(R)$-algebra if the multiplication map $m: A \otimes A \rightarrow A$ is bijective and note that any $T(R)$-algebra is an $E(R)$-algebra. The converse does not hold.

After having discussed the basic properties of $E(R)$-algebras and $E(A, R)$-modules and their relationship in Sections 2,3 and 4 it is clear that large $E(R)$-algebras are far from being free as R-modules. Therefore it is natural to ask whether there exist $E(R)$-algebras A which are almost-free, i.e. for which every R-submodule of cardinality $<|A|$ can be embedded into a free R-submodule of A. A first step was already done by Dugas, Mader and Vinsonhaler. They proved in [DMV] that any torsion-free p-reduced p-cotorsion-free commutative ring S may be embedded into an E-ring of cardinality λ whenever λ is any cardinal such that $\lambda^{|S|}=\lambda$. It can be easily seen (see $[\mathrm{St}]$) that the constructed E-rings are \aleph_{1}-free provided S is \aleph_{1}-free. Thus, assuming the continuum hypothesis, we derive the existence of \aleph_{1}-free E-rings of cardinality \aleph_{1}.

In general, we show that, assuming the diamond axiom, for any reduced countable domain R which is not a field and for any regular non-weakly compact cardinal $\kappa>\aleph_{0}$ there exist 2^{κ} non-isomorphic almost-free $E(R)$ algebras A of cardinality κ (see Theorem 5.6). Moreover, it is shown that any free R-module can be embedded into an $E(A, R)$-module M of arbitrary large cardinality which is almost-free in the sense that any R-submodule $U \subseteq M$ with $|U|<|M|$ is a submodule of a free R-module $F \subseteq M$ (see Theorem 5.9). This proves that even almost-free $E(A, R)$-modules are quite complex and do not constitute a set, a result parallel to E-modules from [D].
2. The category of $E(A, R)$-modules. In this section we study the category of $E(A, R)$-modules as a natural extension of the category of E -
modules which has been studied extensively in [D] and [MV]. If A is an R algebra then $\operatorname{Hom}_{R}(A, M)$ admits an A-module structure for any A-module M. This leads to the following definition:

Definition 2.1. A left A-module M is called an $E(A, R)$-module if $\operatorname{Hom}_{R}(A, M)=\operatorname{Hom}_{A}(A, M)$.

Recall that an abelian group G is p-local for some prime p if $G \otimes \mathbb{Q}_{(p)}=G$ and $\mathbb{Q}_{(p)}=\{z / q \mid q, z \in \mathbb{Z},(q, p)=1\}$. Hence, by Definition 2.1 any p-local abelian group is an example of an $E\left(\mathbb{Q}_{(p)}, \mathbb{Z}\right)$-module. We want to show the abundance of almost-free $E(A, R)$-modules, in particular we will see that they form a proper class. Following $[\mathrm{P}],[\mathrm{MV}]$ and $[\mathrm{S}]$ we first extend basic properties from E-modules to $E(A, R)$-modules.

Theorem 2.2. For a left A-module M the following statements are equivalent:
(i) M is an $E(A, R)$-module.
(ii) The evaluation map $\varepsilon: \operatorname{Hom}_{R}(A, M) \rightarrow M$ via $\varphi \mapsto \varphi(1)$ is a bijection.
(iii) For all $\varphi \in \operatorname{Hom}_{R}(A, M), \varphi=0$ if and only if $\varphi(1)=0$.
(iv) $\operatorname{Hom}_{R}(A / R 1, M)=0$.

Proof. First we prove the equivalence of (i) and (ii). If M is an $E(A, R)$ module, then each R-homomorphism from A to M is uniquely determined by the image of 1 . Hence the evaluation map ε is a bijection. Conversely, if ε is a bijection and $\varphi \in \operatorname{Hom}_{R}(A, M)$, then choose any $a \in A$ and define two R-homomorphisms φ_{1}, φ_{2} from A to M by

$$
\varphi_{1}(x)=x \varphi(a) \quad \text { and } \quad \varphi_{2}(x)=\varphi(x a)
$$

for all $x \in A$. Hence $\varphi_{1}(1)=\varphi_{2}(1)$ and $\varphi_{1}=\varphi_{2}$. Since a was chosen arbitrary we obtain $\varphi(x a)=x \varphi(a)$ for all $a, x \in A$ and thus φ is A-linear and M is an $E(A, R)$-module.

The equivalence of (i) and (iii) is easy to check and left to the reader.
It remains to show the equivalence of (i) and (iv). The exact sequence $0 \rightarrow R 1 \rightarrow A \rightarrow A / R 1 \rightarrow 0$ induces the sequence
$(*) \quad 0 \rightarrow \operatorname{Hom}_{R}(A / R 1, M) \rightarrow \operatorname{Hom}_{R}(A, M) \rightarrow \operatorname{Hom}_{R}(R 1, M) \rightarrow 0$,
which is exact by (i) and (ii). The equivalence of (i) and (iv) is now clear.
Theorem 2.2 is an easy test for being an $E(A, R)$-module. Additionally, it follows that the full subcategory of A-modules formed by $E(A, R)$-modules is closed under taking A-submodules. The next lemma shows that this category is also closed under taking direct sums and extensions.

Lemma 2.3. The full subcategory of A-modules formed by the $E(A, R)$ modules is closed under submodules, direct summands, arbitrary direct sums and extensions.

Proof. By Theorem 2.2 and an easy projection argument it is easily seen that the $E(A, R)$-modules are closed under submodules, direct summands and arbitrary direct sums. Moreover, if $0 \rightarrow B \rightarrow C \rightarrow D \rightarrow 0$ is an exact sequence, where B and D are $E(A, R)$-modules, then it is almost obvious to see that also C is an $E(A, R)$-module by using the evaluation map or applying the five-lemma (see [F1, Lemma 2.3] or [CE]).

By Lemma 2.3 the category of $E(A, R)$-modules is also closed under A-isomorphism but in general it is not closed under taking quotients as the following example shows.

Example 2.4. Let $R=\mathbb{Z}[x]$ and choose any homomorphism $\varphi: R \rightarrow R$ which is not $\mathbb{Z}[x]$-linear. By Theorem 5.5 there exists an $E(R)$-algebra A containing R and we let D be the completion of $\mathbb{Z}[x] \otimes A$. Take any A-free resolution

$$
0 \rightarrow B \rightarrow C \rightarrow D \rightarrow 0
$$

of D. Then B and C are $E(A, R)$-modules by Lemma 4.1. However D is a pure injective abelian group and R is pure in A, hence φ lifts to $\widehat{\varphi}: A \rightarrow D$ which is not A-linear by choice of φ. Hence D is not an $E(A, R)$-module.

To get further insight into the category of $E(A, R)$-modules we first have to consider a proper subclass of the $E(A, R)$-modules.
3. The class of $E(R)$-algebras. The notion of E-ring (see [S] or [BS]) extends naturally to $E(R)$-algebras.

Definition 3.1. An R-algebra A is called an $E(R)$-algebra if

$$
\operatorname{End}_{R}(A)=\operatorname{End}_{A}(A) \cong A
$$

Note that an R-algebra A is an $E(R)$-algebra if and only if A is an $E(A, R)$-module, and $E(\mathbb{Z})$-algebras are E-rings. But obviously an $E(R)$ algebra need not be an E-ring. This is illustrated by

Example 3.2. The quotient field Q of the p-adic integers J_{p} for some prime p satisfies

$$
\operatorname{End}_{J_{p}}(Q) \cong Q \nsubseteq \operatorname{End}_{\mathbb{Z}}(Q)
$$

and $\left|\operatorname{End}_{\mathbb{Z}}(Q)\right|>|Q|$. Hence Q is an example of an $E\left(J_{p}\right)$-algebra which is not an E-ring.

Our first result is a natural generalization from E-rings to $E(R)$-algebras (see also [R] or [CRT]).

Theorem 3.3. For an R-algebra A the following are equivalent:
(i) A is an $E(R)$-algebra.
(ii) The evaluation map $\varepsilon: \operatorname{End}_{R}(A) \rightarrow A(\varphi \mapsto \varphi(1))$ is an R-algebra isomorphism.
(iii) The R-algebra $\operatorname{End}_{R}(A)$ is commutative.
(iv) The multiplication map $\mu: A \rightarrow \operatorname{End}_{R}(A)$ given by $\mu(a)(x)=a x$ is a bijection.

Moreover, any $E(R)$-algebra is commutative.
Proof. The equivalence of (i) and (ii) follows easily from Theorem 2.2. Moreover, (i) and (iv) are equivalent since μ is a right inverse of the evaluation map ε. To prove that (i) and (iii) are equivalent we first show the last claim, i.e. any $E(R)$-algebra A is commutative. If $a \in A$, then we define two R-endomorphisms φ_{1}, φ_{2} of A by

$$
\varphi_{1}(x)=x a \quad \text { and } \quad \varphi_{2}(x)=a x
$$

for each $x \in A$. Hence $\varphi_{1}(1)=\varphi_{2}(1)$ and $\varphi_{1}=\varphi_{2}$ by (ii), which implies the commutativity of A. We are now able to prove the equivalence of (i) and (iii). By the above any $E(R)$-algebra is commutative and by (ii) the evaluation map ε is an R-algebra isomorphism. Hence $\operatorname{End}_{R}(A)$ is commutative. Conversely, let $\operatorname{End}_{R}(A)$ be commutative and define $m_{a} \in \operatorname{End}_{R}(A)$ for any $a \in A$ by $m_{a}(x)=x a$. We have to show that the evaluation map ε is a bijection and it is enough to show injectivity. If $\varepsilon\left(\psi_{1}\right)=\varepsilon\left(\psi_{2}\right)$, then $\psi_{1}(1)=\psi_{2}(1)$ and for any $x \in A$ we have
$\psi_{1}(x)=\left(\psi_{1} \circ m_{x}\right)(1)=\left(m_{x} \circ \psi_{1}\right)(1)=\left(m_{x} \circ \psi_{2}\right)(1)=\left(\psi_{2} \circ m_{x}\right)(1)=\psi_{2}(x)$, hence $\psi_{1}=\psi_{2}$ and ε is injective.

It is important to know that R-summands of an $E(R)$-algebra are also A-summands. For this we state

Corollary 3.4. Let A be an $E(R)$-algebra.
(i) If φ is an R-endomorphism of A, then $\varphi(A)$ is a principal ideal in A;
(ii) Any direct sum decomposition of A as an R-module is a decomposition as an A-module.
(iii) Let S be an R-algebra. If $A \cong S$ as R-modules, then S is an $E(R)$ algebra.

Proof. All facts are easily checked by standard arguments.
Examples of $E(R)$-algebras follow more easily from the following
Remark 3.5. It is easy to see that if the multiplication map of A is surjective then A is an $E(R)$-algebra. These algebras are called $T(R)$-algebras.

Note that the (divisible) Prüfer group $C_{p^{\infty}}$ can be expressed as a quotient of two E-rings $\mathbb{Q}^{(p)} / \mathbb{Z}$, but $\operatorname{End}_{\mathbb{Z}}\left(C_{p^{\infty}}\right)=J_{p}$, hence $C_{p^{\infty}}$ is not an E-ring. This shows that the class of E-rings (in particular of $E(R)$-algebras) is not closed under taking quotients. However, the class of $T(R)$-algebras is closed under taking quotients (see [Fe1, Observation 4.7.27]). Moreover, the p-adic integers J_{p} form an E-ring but not a T-ring. Nevertheless, the classes
coincide if we restrict to torsion rings (see [Fe1, Theorem 4.7.25]). It is still open whether $\operatorname{End}_{R}(A) \cong A$ implies that A is an $E(R)$-algebra. Partial results were obtained e.g. in [GS].
4. Connecting the E-structure of algebras and modules. From Definition 3.1 it follows that any algebra which is an $E(A, R)$-module is an $E(R)$-algebra as well. We want to strengthen this implication and establish some converse. From this point of view we consider first A-modules over an $E(R)$-algebra A. Since any projective A-module is a summand of a free A-module (see [EM, Lemma 2.3]), we may apply Theorem 2.2 to obtain the following

Lemma 4.1. Let A be an $E(R)$-algebra and M a projective left A-module. Then M is an $E(A, R)$-module.

This result can be applied to almost-free A-modules.
Definition 4.2. Let M be any R^{\prime}-module over some $\operatorname{ring} R^{\prime}$. If κ is any cardinal, then M is called κ-free if every submodule $N \subseteq M$ of cardinality $|N|<\kappa$ can be embedded into a free submodule of N. In particular, M is called almost-free if M is $|M|$-free.

Theorem 4.3. Let A be an $E(R)$-algebra of cardinality κ. Any κ^{+}-free left A-module is also an $E(A, R)$-module.

Proof. The proof is easy and left to the reader. -
Next we will show that it is no restriction to assume for an $E(A, R)$ module that the underlying algebra is already an $E(R)$-algebra. Therefore let $\mathfrak{J}(A)$ be the set of all two-sided ideals I of A such that A / I is an $E(A, R)$ module.

Lemma 4.4. Let M be an $E(A, R)$-module. Then the annihilator $\operatorname{Ann}_{A}(M)$ is an element of $\mathfrak{J}(A)$.

Proof. If $S:=A / \operatorname{Ann}_{A}(M)$ then choose $\varphi \in \operatorname{Hom}_{R}(A, S)$. We will show that φ is A-linear. Fix any $m \in M$ and for any $s \in S$ let $a_{s} \in A$ be such that $s=\left[a_{s}\right]=a_{s}+\operatorname{Ann}_{A}(M) \in S$. We define

$$
\varphi_{m}: A \rightarrow M, \quad a \mapsto m a_{\varphi(a)} .
$$

First we show that $\varphi_{m} \in \operatorname{Hom}_{R}(A, M)$ is well defined. If $s=\left[a_{s}\right]=\left[\widetilde{a}_{s}\right]$ then $a_{s}-\widetilde{a}_{s} \in \operatorname{Ann}_{A}(M)$ and hence $m a_{s}=m \widetilde{a}_{s}$. Thus the definition of φ_{m} is independent of the choice of the representative $a_{\varphi(a)}$ and therefore φ_{m} is well defined. Obviously, φ_{m} is an R-homomorphism. Hence φ_{m} is A-linear by assumption for all $m \in M$. We obtain

$$
m a_{\varphi(a \widetilde{a})}=\varphi_{m}(a \widetilde{a})=\varphi_{m}(a) \widetilde{a}=m a_{\varphi(a)} \widetilde{a}
$$

and thus $m\left(a_{\varphi(a \widetilde{a})}-a_{\varphi(a)} \widetilde{a}\right)=0$ for all $m \in M$, hence

$$
\left(a_{\varphi(a \widetilde{a})}-a_{\varphi(a)} \widetilde{a}\right) \in \operatorname{Ann}_{A}(M)
$$

for all $a, \widetilde{a} \in A$. Therefore

$$
\left.\varphi(a \widetilde{a})=\left[a_{\varphi(a \widetilde{a})}\right]=\left[a_{\varphi(a)} \widetilde{a}\right)\right]=\left[a_{\varphi(a)}\right] \widetilde{a}=\varphi(a) \widetilde{a},
$$

which proves that φ is A-linear and hence S is an $E(A, R)$-module. -
Lemma 4.5. If $I \in \mathfrak{J}(A)$ and M is an $E(A, R)$-module as well as an A / I-module, then M is an $E(A / I, R)$-module.

Proof. If $I \in \mathfrak{J}(A)$ and $\pi: A \rightarrow A / I$ is the canonical homomorphism, then π induces a surjection $A / R 1 \rightarrow(A / I) / R(1+I)$. Let $A_{0}=A / R 1$ and $I_{0}=(A / I) / R(1+I)$. Now, if M is an $E(A, R)$-module we obtain, by Theorem 2.2, the sequence

$$
0 \rightarrow \operatorname{Hom}_{R}\left(I_{0}, M\right) \rightarrow \operatorname{Hom}_{R}\left(A_{0}, M\right)=0
$$

Thus $\operatorname{Hom}_{R}\left(I_{0}, M\right)=0$ and M is an $E(A / I, R)$-module by Theorem 2.2.
Corollary 4.6. If $I \in \mathfrak{J}(A)$, then A / I is an $E(R)$-algebra.
Proof. Follows from Lemma 4.5.
Corollary 4.7. If M is an $E(A, R)$-module then $A / \operatorname{Ann}_{A}(M)$ is an $E(R)$-algebra.

Proof. Follows from Lemma 4.4 and Corollary 4.6.
Note that by Corollary 4.7 the algebra A is an $E(R)$-algebra if a faithful $E(A, R)$-module exists. Moreover, in view of Lemma 4.5 and Corollary 4.7 any $E(A, R)$-module can be considered as an $E\left(A / \operatorname{Ann}_{A}(M), R\right)$-module over the $E(R)$-algebra $A / \operatorname{Ann}_{A}(M)$. So by a change of the algebra argument we may assume that A is an $E(R)$-algebra.
5. Almost-free $E(R)$-algebras and $E(A, R)$-modules. In the previous sections we have seen that $E(R)$-algebras must have commutative endomorphism ring, which shows non-freeness in a strong sense. Hence it is interesting to find almost-free $E(R)$-algebras. This question cannot be decided in ZFC as there are models of ZFC and Martin's axiom in which \aleph_{2}-free modules of cardinality \aleph_{2} are free (see [GS, Theorem 5.1]). Assuming the continuum hypothesis the existence of \aleph_{1}-free E-rings of cardinality \aleph_{1} follows immediately from [DMV] and [St, Theorem 3.3]. Next we want to find almost-free $E(R)$-algebras of larger cardinality under a suitable set-theoretic assumption. As in [DG1] we want to apply a weak version of the diamond principle which will be explained first. For standard notations we refer to [EM]. Recall that a subset $S \subset \kappa$ is sparse if $S \cap \alpha$ is not stationary in α for all limit ordinals $\alpha<\kappa$. A κ-filtration of a set A of cardinality κ is a set $\left\{A_{\alpha} \mid \alpha<\kappa\right\}$ of subsets of A such that $A=\bigcup_{\alpha<\kappa} A_{\alpha}$ and
(i) $\left\{A_{\alpha} \mid \alpha<\kappa\right\}$ is a smooth chain, i.e. $A_{\lambda}=\bigcup_{\nu<\lambda} A_{\nu}$ for all limit ordinals $\lambda<\kappa$;
(ii) $\left|A_{\alpha}\right|<\kappa$ for all $\alpha<\kappa$.

Now let $E \subseteq \kappa$ and $\left\{A_{\alpha} \mid \alpha<\kappa\right\}$ be a κ-filtration of A. Then we consider two prediction principles.
$\diamond_{\kappa}(E)($ diamond $)$: there is a family $\left\{S_{\alpha} \mid \alpha<\kappa\right\}$ such that $S_{\alpha} \subseteq A_{\alpha}$ and, for all $X \subseteq A$, the set $\left\{\alpha \in E \mid X \cap A_{\alpha}=S_{\alpha}\right\}$ is stationary in κ.
$\Phi_{\kappa}(E)$ (weak-diamond): If $P_{\alpha}: \mathcal{P}\left(A_{\alpha}\right) \rightarrow\{0,1\}(\alpha \in E)$ is a partition, then there is a function $\varphi: E \rightarrow\{0,1\}$ such that, for all $X \subseteq A$, the set $\left\{\alpha \in E \mid P_{\alpha}\left(X \cap A_{\alpha}\right)=\varphi(\alpha)\right\}$ is stationary in κ.

Sets E which satisfy $\Phi_{\kappa}(E)$ are called non-small and in particular $\Phi_{\aleph_{1}}\left(\aleph_{1}\right)$ is equivalent to $2^{\aleph_{0}}<2^{\aleph_{1}}$ (see Devlin and Shelah [DS]). Also recall from Jensen [J] that $\diamond_{\kappa}(E)$ holds in $V=L$ for all non-weakly compact cardinals κ and all stationary sets E. We combine these results with some from [Sh] and define
$\nabla_{\kappa}(S)$ (half diamond): S is non-small and sparse if $\kappa>\aleph_{1}$ and $\operatorname{cf}(\lambda)=\omega$ for any $\lambda \in S$.

Moreover, ∇_{κ} will mean that there exists a subset $S \subseteq \kappa$ such that $\nabla_{\kappa}(S)$ holds. Hence we summarize the results on ∇_{κ} as follows (see also [DG1]).

Lemma 5.1. The following hold:
(i) $(Z F C+V=L) \nabla_{\kappa}$ holds for all uncountable regular non-weakly compact cardinals $\kappa>\aleph_{0}$.
(ii) $\left(Z F C+2^{\aleph_{0}}<2^{\aleph_{1}}\right) \nabla \aleph_{1}$ holds.
(iii) $\left(Z F C+\nabla_{\kappa}\right)$ There are κ disjoint subsets $S_{\beta}(\beta<\kappa)$ such that $\nabla_{\kappa}\left(S_{\beta}\right)$ holds for all $\beta<\kappa$ and $\bigcup_{\beta<\kappa} S_{\beta}$ is sparse in κ.

By Lemma 5.1 the construction of almost-free $E(R)$-algebras reduces to a Step Lemma which we will prove next. It is based on the S-topology of a free R-module. For the rest of this paper we restrict ourselves to countable torsion-free domains which are not fields. They are cotorsion-free as explained shortly. Let S be a countable multiplicatively closed subset S of R such that $1 \in S$. An R-module M is reduced if $\bigcap_{s \in S} M s=0$, and M is torsion-free if $m s=0$ implies $m=0$ for $m \in M$ and $0 \neq s \in S$. We assume that R_{R} is reduced and torsion-free, hence S induces a Hausdorff S-topology on M by enumerating $S=\left\{s_{n} \mid n \in \omega\right\}$ and putting

$$
q_{0}=1 \quad \text { and } \quad q_{n+1}=q_{n} s_{n} \quad \text { for all } n \in \omega
$$

The system $q_{n} M(n \in \omega)$ generates the S-topology on M and M is naturally a submodule of its S-adic completion \widehat{M}. Recall that an R-module M is
cotorsion-free if $\operatorname{Hom}(\widehat{R}, M)=0($ cf. [EM, p. 134]). A submodule U of M is S-pure if $U \cap s M=s U$ for all $s \in S$, hence the S-topology on M induces the S-topology on U. If U is any submodule of M, then U_{*} denotes the smallest (in this case unique) pure submodule of M containing U. Similarly U is S-divisible if $s U=U$ for all $s \in S$. In Section 2 we discussed almostfree modules. However, we will use a stronger version of almost freeness and say that an R-algebra is polynomial-almost-free if all its subalgebras of smaller cardinality are contained in a polynomial ring over R. Note that polynomial-almost-free implies almost-free. The following is the first step of the final Step Lemma.

Lemma 5.2. Assume that R is a countable torsion-free domain which is not a field. Let $F=R[X]$ be the polynomial ring over R in a countable set $X=\left\{x_{i} \mid i \in \omega\right\}$ of commuting variables, and let $b \in{ }_{R} F$ be a basic element. Moreover, let $X_{n}=\left\{x_{0}, \ldots, x_{n}\right\}$ and $F_{n}:=R\left[X_{n}\right] \subseteq F$ canonically. Then there exist two ring extensions F^{ε} of F with the following properties for $\varepsilon=0,1$:
(i) $F \subset F^{\varepsilon}$ and F^{ε} / F is S-divisible.
(ii) F^{ε} is a polynomial ring over the ring F_{n} for each $n \in \omega$.
(iii) F^{ε} is a polynomial ring over R.
(iv) If $\varphi \in \operatorname{End}_{R}(F)$ extends to both $\varphi^{\varepsilon} \in \operatorname{End}_{R}\left(F^{\varepsilon}\right)$ for $\varepsilon=0,1$, then $\varphi(b)=\varphi(1) b$.

Proof. By topology any element $x \in \widehat{F}$ has a unique representation

$$
x=\sum_{m \in T} s_{m} m,
$$

where T is a countable set of monomials in X and $s_{m} \in \widehat{R}$ are such that, for all $n \in \omega, s_{m} \in q_{n} \widehat{R}$ for almost all $M \in T$. The support $[x]$ of x is defined to be

$$
[x]=\left\{m \in T \mid s_{m} \neq 0\right\} .
$$

Note that $x=0$ if and only if $[x]=\emptyset$. If x_{n} is some variable and $x \in m$, then we write $x_{n} \in_{*}[x]$ if there is a monomial $m \in[x]$ such that x_{n} divides m. If there is no such monomial in $[x]$ we write $x_{n} \not \not_{*}[x]$. Furthermore, if we restrict some equation to a monomial that is divisible by x_{n}, then we say for short that we restrict to x_{n}. By [GM] we can find an S-adic integer $\pi \in \widehat{R}$ which is algebraically independent over R. Since $F=R[X]$ is a free R-module we see that π is also algebraically independent over F, i.e.
whenever $\quad \sum_{i=0}^{n} f_{i} \pi^{i}=0$ where $f_{i} \in F \quad$ then $\quad f_{i}=0$ for all $i \leq n$.
Now let n_{0} be the least integer such that $x_{n_{0}+n} \not \not_{*}[b]$. We define a "branch"
element

$$
\begin{equation*}
e:=\sum_{k \in \omega} q_{k} x_{n_{0}+k} \tag{1}
\end{equation*}
$$

in the S-adic completion \widehat{F} of F. Obviously $[e] \cap[b]=\emptyset$. We want to show that the following two pure subrings of \widehat{F} satisfy our claims (here $*$ denotes purification):

$$
F^{0}:=F[e]_{*} \subseteq \widehat{F} \quad \text { and } \quad F^{1}:=F\left[e+\pi b+\pi^{2} 1\right]_{*} \subseteq \widehat{F}
$$

First we prove (iv). If $\varphi \in \operatorname{End}_{R}(F)$ extends to $\operatorname{both} \varphi^{\varepsilon} \in \operatorname{End}_{R}\left(F^{\varepsilon}\right)$ for $\varepsilon=0,1$, then we have representations

$$
\begin{align*}
q_{k} \varphi^{0}(e) & =\sum_{i=0}^{n} f_{i} e^{i} \tag{2}\\
q_{l} \varphi^{1}\left(e+\pi b+\pi^{2} 1\right) & =\sum_{i=0}^{m} g_{i}\left(e+\pi b+\pi^{2} 1\right)^{i} \tag{3}
\end{align*}
$$

for some $k, l, m, n \in \mathbb{Z}$. Absorbing multiples we may assume $k=l$. Subtracting (2) and (3) we get

$$
\begin{equation*}
q_{k} \varphi^{1}\left(\pi b+\pi^{2} 1\right)=\sum_{i=0}^{m} g_{i}\left(e+\pi b+\pi^{2} 1\right)^{i}-\sum_{i=0}^{n} f_{i} e^{i} \tag{4}
\end{equation*}
$$

If $T:=\bigcup_{i=0}^{n}\left[f_{i}\right] \cup \bigcup_{i=0}^{m}\left[g_{i}\right]$, then T is finite and hence we can choose $x_{j} \in_{*}[e]$ such that $x_{j}^{l} \not \not_{*} T$ and $x_{j}^{l} \not \notin *[b] \cup\left[\varphi^{1}\left(\pi b+\pi^{2} 1\right)\right]$ for all $l \in \omega$.

If $n>m$ then $x_{j}^{n} \epsilon_{*}\left[e^{n}\right]$ but it does not appear in the support of any other element in (4) by the choice of x_{j}. Restricting to x_{j}^{n} shows $f_{n}=0$. If $m>n$ we argue similarly and $n=m$ follows. It is easy to see that in this case $f_{n}=g_{n}$ and restricting to x_{j}^{n-1} shows

$$
\begin{equation*}
g_{n}\left(\pi b+\pi^{2} 1\right)+g_{n-1}-f_{n-1}=0 \quad \text { if } n>1 \tag{5}
\end{equation*}
$$

By algebraic independence of π over F we obtain $g_{n-1}=f_{n-1}$ and $f_{n}=g_{n}$ $=0$. Inductively $f_{i}=g_{i}=0$ for all $i>1$ and $f_{1}=g_{1}$. Hence (4) reduces to

$$
q_{k} \varphi^{1}\left(\pi b+\pi^{2} 1\right)=g_{1}\left(e+\pi b+\pi^{2} 1\right)+g_{0}-g_{1} e-f_{0}
$$

Since φ^{1} viewed as a homomorphism from \widehat{F} to \widehat{F} is \widehat{R}-linear we get

$$
\pi q_{k} \varphi^{1}(b)+\pi^{2} q_{k} \varphi^{1}(1)=g_{1} \pi b+g_{1} \pi^{2}+g_{0}-f_{0}
$$

Using algebraic independence of π over F also $g_{0}=f_{0}, g_{1}=q_{k} \varphi^{1}(1)=$ $q_{k} \varphi(1)$, and $q_{k} \varphi^{1}(b)=q_{k} \varphi(b)=g_{1} b$. Therefore $\varphi(b)=\varphi(1) b$ by the torsionfreeness of \widehat{F} and thus (iv) holds.

Next we show (ii) and (iii). By definition

$$
e=\sum_{n \in \omega} q_{n} x_{n_{0}+n} \quad \text { and } \quad a:=e+h=\sum_{n \in \omega} q_{n} x_{n_{0}+n}+h
$$

where $h=\pi b+\pi^{2} 1$. Write $h=\sum_{i \in \omega} q_{i} \widetilde{h}_{i}$ as an S-adic limit. Then let $e_{k}:=\sum_{i \geq k}\left(q_{i} / q_{k}\right) x_{n_{0}+i}$ and $a_{k}:=e_{k}+\left(1 / q_{k}\right) h_{k}$ where $h_{k}:=\sum_{i \geq k} \widetilde{h}_{i}$ is the q_{k}-divisible part of h. It follows that

$$
\begin{gather*}
q_{k} e_{k}+\sum_{n<k} q_{n} x_{n_{0}+n}=e \tag{6}\\
q_{k} a_{k}+\sum_{n<k} q_{n} x_{n_{0}+n}+\left(h-h_{k}\right)=a \tag{7}
\end{gather*}
$$

Note that $h-h_{k} \in F$ for all $k \in \omega$ and hence it is easy to check that $F[e]_{*}=\bigcup_{k \in \omega} F\left[e_{k}\right]$ and $F[a]_{*}=\bigcup_{k \in \omega} F\left[a_{k}\right]$.

We claim that

$$
\begin{align*}
& F[e]_{*}=\bigcup_{k \in \omega} F\left[e_{k}\right]=R\left[x_{0}, \ldots, x_{n_{0}-1}, e_{0}, e_{1}, \ldots\right] \tag{8}\\
& F[a]_{*}=\bigcup_{k \in \omega} F\left[a_{k}\right]=R\left[x_{0}, \ldots, x_{n_{0}-1}, a_{0}, a_{1}, \ldots\right] \tag{9}
\end{align*}
$$

By (6), (7) and $h-h_{k} \in F$ it is clear that $R\left[x_{0}, \ldots, x_{n_{0}-1}, e_{0}, e_{1}, \ldots\right] \subseteq F[e]_{*}$ and also $R\left[x_{0}, \ldots, x_{n_{0}-1}, a_{0}, a_{1}, \ldots\right] \subseteq F[a]_{*}$. To prove the converse it remains to show that $F \subset R\left[x_{0}, \ldots, x_{n_{0}-1}, e_{0}, e_{1}, \ldots\right]$ and $F \subset R\left[x_{0}, \ldots, x_{n_{0}-1}\right.$, $\left.a_{0}, a_{1}, \ldots\right]$. By easy calculations

$$
x_{n_{0}+n}=e_{n}-s_{n} e_{n+1} \in R\left[x_{0}, \ldots, x_{n_{0}-1}, e_{0}, e_{1}, \ldots\right]
$$

for all $n \in \omega$ and thus $F \subseteq R\left[x_{0}, \ldots x_{n_{0}-1}, e_{0}, e_{1}, \ldots\right]$. Hence (8) holds. Similarly,

$$
a_{n}-s_{n} a_{n+1}=x_{n_{0}+n}+\frac{1}{q_{n}}\left(h_{n}-h_{n+1}\right) .
$$

As $h_{n}-h_{n+1} \in F$ and $\left[h_{n}-h_{n+1}\right] \subseteq X_{n_{0}}$, we now obtain $x_{n_{0}+n} \in R\left[x_{0}, \ldots\right.$ $\left.\ldots, x_{n_{0}-1}, a_{0}, a_{1}, \ldots\right]$, which implies $F \subseteq R\left[x_{0}, \ldots, x_{n_{0}-1}, a_{0}, a_{1}, \ldots\right]$ and thus (9) holds.

It remains to show that $R\left[x_{0}, \ldots, x_{n_{0}-1}, e_{0}, e_{1}, \ldots\right]$ and $R\left[x_{0}, \ldots, x_{n_{0}-1}\right.$, $\left.a_{0}, a_{1}, \ldots\right]$ are polynomial rings. Assume that

$$
\begin{equation*}
\sum_{i=0}^{n} r_{i} \mu_{i}=0 \tag{*}
\end{equation*}
$$

where $\mu_{i} \neq \mu_{j}(i \neq j)$ are monomials in the variables $\left\{x_{0}, \ldots, x_{n_{0}-1}, e_{0}, e_{1}, \ldots\right\}$ and $r_{i} \in R$ such that each $r_{i} \neq 0$. Write μ_{i} as

$$
\mu_{i}=\prod_{j=0}^{n_{0}-1} x_{j}^{n_{j, i}} \prod_{j \in \omega} e_{j}^{m_{j, i}}
$$

where $m_{j, i}=0$ for almost all j. If $\prod_{j \in \omega} e_{j}^{m_{j, i}}=1$ for all $i \leq n$, then $(*)$ is a non-trivial linear combination in $R\left[X_{n_{0}-1}\right]$-a contradiction. Therefore assume the existence of an i such that $\prod_{j \in \omega} e_{j}^{m_{j, i}} \neq 1$. Let j_{0} be the least
integer such that $m_{j_{0}, i} \neq 0$ for at least one $i \leq n$. Then a power of $x_{n_{0}+j_{0}}$ does not appear in those $\left[e_{j}^{m_{j, i}}\right]$ with $j \neq j_{0}$ but it appears in $\left[e_{j_{0}}^{m_{j_{0}, i}}\right]$ for all i with $m_{j_{0}, i} \neq 0$. If there exists a unique i_{0} such that

$$
m_{j_{0}, i_{0}}=\max \left\{m_{j_{0}, i} \mid i \leq n\right\}=: \max _{0}
$$

then restricting $(*)$ to $\prod_{j=0}^{n_{0}-1} x_{j}^{n_{j, i}} x_{j_{0}}^{m_{j_{0}, i_{0}}} t$, where t is any element in the support of $\prod_{j \neq j_{0}} e_{j}^{m_{j, i_{0}}}$, forces $r_{i_{0}}=0$-a contradiction.

Suppose $I:=\left\{i \leq n \mid m_{j_{0}, i}=\max _{0}\right\}$ is a set of at least two elements. Then choose the least integer $j_{1}>j_{0}$ such that $m_{j_{1}, i} \neq 0$ for some $i \in I$. If there is a unique $i_{1} \in I$ such that

$$
m_{j_{1}, i_{1}}=\max \left\{m_{j_{1}, i} \mid i \in I\right\}=: \max _{1}
$$

then we restrict $(*)$ to $\prod_{j=0}^{n_{0}-1} x_{j}^{n_{j, i_{1}}} x_{j_{0}}^{m_{j_{0}, i_{1}}} x_{j_{1}}^{m_{j_{1}, i_{1}}} t$, where t is any element in the support of $\prod_{j \neq j_{0}, j \neq j_{1}} e_{j}^{m_{j_{1}, i_{1}}}$, leading to $r_{i_{1}}=0$, again a contradiction.

If i_{1} is not unique we repeat the above process and since all μ_{i} are different we always end up with a contradiction. Therefore $R\left[x_{0}, \ldots, x_{n_{0}-1}, e_{0}\right.$, $\left.e_{1}, \ldots\right]$ is a polynomial ring and similarly $R\left[x_{0}, \ldots, x_{n_{0}-1}, a_{0}, a_{1}, \ldots\right]$.

By the same arguments as above, we see that

$$
\begin{aligned}
F[e]_{*} & =F_{n}\left[X_{n_{0}} \backslash X_{n}, e_{i}: i \geq m_{n}\right] \\
F[a]_{*} & =F_{n}\left[X_{n_{0}} \backslash X_{n}, a_{i}: i \geq m_{n}\right]
\end{aligned}
$$

where $m_{n}:=\max \left\{0, n-n_{0}\right\}$ and thus (ii) holds.
By (6) and (7),

$$
e \equiv q_{k} e_{k} \quad \text { and } \quad a \equiv q_{k} a_{k} \text { modulo } F
$$

for all $k \in \omega$. Thus $F[e]_{*} / F$ and $F[a]_{*} / F$ are S-divisible, hence (i) holds.
We bring Lemma 5.2 into a form suitable for immediate application. Here the rank of a countable torsion-free domain is the rank of its additive group.

Reduction Lemma 5.3. Assume that R is a countable torsion-free domain which is not a field. Let $F=R[V]$ be a polynomial ring over R of rank $\kappa \geq|R|$ and V be a set of commuting variables. Furthermore, let $\varphi \in \operatorname{End}_{R}(F) \backslash F$, i.e. $\varphi-\varphi(1) \mathrm{id}_{F} \neq 0$. Then there exists a subring G of F with the following properties:
(i) G is a polynomial ring over R.
(ii) F is a polynomial ring over G.
(iii) The rank of G is less than or equal to $|R|$.
(iv) $\varphi \upharpoonright G \in \operatorname{End}_{R}(G) \backslash G$.

Proof. Let H be a subring of F such that H is a polynomial ring over R and F is a polynomial ring over H. We define the φ-closure of H as follows: Let $H_{0}:=H$ and denote by H_{1} the ring $\operatorname{pol}\left(H_{0} \varphi\right)$ which is the smallest polynomial ring T over R containing $H_{0} \varphi$ such that F is a polynomial ring
over T. Inductively, we define $H_{i+1}:=\operatorname{pol}\left(H_{i} \varphi\right)$. Moreover, we can write each H_{i} as a polynomial ring over R in the form $H_{i}=R\left[V_{i}\right]$ where V_{i} is a subset of V. Let $I_{0}:=V_{0}$ and $I_{i+1}:=I_{i} \cup V_{i+1}$. Then the φ-closure of H is the polynomial ring

$$
H^{\mathrm{cl}(\varphi)}:=R[I], \quad \text { where } \quad I:=\bigcup_{i \in \omega} I_{i}
$$

Clearly $H^{\mathrm{cl}(\varphi)}$ is a polynomial ring over R and F is a polynomial ring over $H^{\mathrm{cl}(\varphi)}$ in the variables $V \backslash I$ which contains H. Moreover, $H^{\mathrm{cl}(\varphi)}$ is invariant under φ and hence $\varphi \upharpoonright H^{\operatorname{cl}(\varphi)} \in \operatorname{End}_{R}\left(H^{\operatorname{cl}(\varphi)}\right)$. If the lemma does not hold and G_{0} is any polynomial ring over R such that $\operatorname{rk}\left(G_{0}\right) \leq|R|$ and F is a polynomial ring over G_{0}, then let G_{0}^{c} be the φ-closure of G_{0}; hence (i)-(iii) hold for G_{0}^{c} and $\varphi \upharpoonright G_{0}^{\mathrm{c}} \in \operatorname{End}_{R}\left(G_{0}^{\mathrm{c}}\right)$. By assumption, $\varphi \upharpoonright G_{0}^{\mathrm{c}}=g$ for some $g \in G_{0}^{\mathrm{c}}$. But, since $\varphi \in \operatorname{End}_{R}(F) \backslash F$, there exists an element $f \in F$ such that $(\varphi-g)(f) \neq 0$. Let $G_{1}=\operatorname{pol}\left(\left\langle G_{0}, f\right\rangle\right)$ and $G_{1}^{\mathrm{c}}=G_{1}^{\mathrm{cl}(\varphi)}$, a summand of F which is again a polynomial ring over R such that $\operatorname{rk}\left(G_{1}^{\mathrm{c}}\right) \leq|R|$ and $\varphi \upharpoonright G_{1}^{\mathrm{c}} \in \operatorname{End}\left(G_{1}^{\mathrm{c}}\right)$. By the same arguments $\varphi \upharpoonright G_{1}^{\mathrm{c}} \in G_{1}^{\mathrm{c}}$ and, since $G_{0}^{\mathrm{c}} \subset G_{1}^{\mathrm{c}}$, we conclude $\varphi \upharpoonright G_{1}^{\mathrm{c}}=g$. But then $(\varphi-g)(f)=0$-a contradiction.

We combine the Reduction Lemma 5.3 and Lemma 5.2 to get the desired
Step Lemma 5.4. Assume that R is a countable torsion-free domain which is not a field. Let $F=\bigcup_{n \in \omega} F_{n}$ be the union of a chain of polynomial rings F_{n} over R of rank $\kappa>\aleph_{0}$ such that F is a polynomial ring over R and each F_{n+1} is a polynomial ring over F_{n}. If $b \in{ }_{R} F$ is a basic element, then there exist two ring extensions F^{ε} of F with the following properties for $\varepsilon=0,1$:
(i) $F \subseteq F^{\varepsilon}$ and F^{ε} / F is S-divisible.
(ii) F^{ε} is a polynomial ring over the ring F_{n} for each $n \in \omega$.
(iii) F^{ε} is a polynomial ring over R.
(iv) If $\varphi \in \operatorname{End}_{R}(F)$ extends to both $\varphi \in \operatorname{End}_{R}\left(F^{\varepsilon}\right)$ for $\varepsilon=0,1$, then $\varphi(b)=\varphi(1) b$.
5.1. The polynomial-almost-free $E(R)$-algebras. Using Step Lemma 5.4 and ∇_{κ} we will prove the existence of polynomial-almost-free $E(R)$-algebras of cardinality κ for every regular non-weakly compact cardinal $\kappa>\aleph_{0}$.

Theorem 5.5. $\left(Z F C+\nabla_{\kappa}\right)$ Assume that R is a countable torsion-free domain which is not a field. For any regular non-weakly compact cardinal $\kappa>\aleph_{0}$ there exists a polynomial-almost-free $E(R)$-algebra A of cardinality κ.

Proof. We apply Lemma 5.1 to find a set $E \subseteq \kappa$ satisfying $\nabla_{\kappa}(E)$. Moreover, E decomposes into $E=\bigcup_{\beta<\kappa} E_{\beta}$, where each E_{β} is sparse and satisfies $\nabla_{\kappa}\left(E_{\beta}\right)$.

Now let $A=\bigcup_{\nu \in \kappa} A_{\nu}$ be a κ-filtration of a set A of cardinality κ. Inductively we must define a ring structure on A_{ν} for all $\nu \in \kappa$ such that any endomorphism is ring multiplication on many layers. We enumerate $A=\left\{a_{\nu} \mid \nu \in \kappa\right\}$ so that $a_{\beta} \in A_{\beta}$ for all $\beta \in \kappa$; we may assume that $\left|A_{\nu}\right|=|\nu|+|R|=\left|A_{\nu+1} \backslash A_{\nu}\right|$ for all $\nu \in \kappa$. Let $\nu \in E$. Then $\operatorname{cf}(\nu)=\omega$ and hence there exists an increasing sequence $\nu_{n}<\nu$ such that $\sup _{n \in \omega} \nu_{n}=\nu$ and each ν_{n} is a successor ordinal, i.e. $\nu_{n} \notin E$.

The definition of the ring structure is standard and can be found in [DG1]. Hence we restrict to $\varphi \in \operatorname{End}\left(A_{\nu}\right)$. We define $P_{\nu}^{\beta}(\varphi) \in\{0,1\}$ and let $P_{\nu}^{\beta}(\varphi)=0$ if the following hold:
(1) A_{ν} is a polynomial ring over R of rank $>\omega$.
(2) $A_{\nu_{n}}$ is a polynomial ring over R, A_{ν} is a polynomial ring over $A_{\nu_{n}}$ for all n and $A_{\nu_{n}} / a_{\beta} R$ is a free R-module for almost all n.
(3) φ does not extend to F^{0} if we apply the Step Lemma to $F_{n}=A_{\nu_{n}}$, $b=a_{\beta}$ and φ.

Otherwise we let $P_{\nu}^{\beta}(\varphi)=1$.
Since all E_{β} are non-small we derive, by $\nabla_{\kappa}\left(E_{\beta}\right)$, functions $\chi_{\beta}: E_{\beta} \rightarrow 2$ such that

$$
\chi_{\beta}(\varphi):=\left\{\nu \in E_{\beta} \mid P_{\nu}^{\beta}\left(\varphi \upharpoonright A_{\nu}\right)=\chi_{\beta}(\nu)\right\}
$$

is stationary in κ for all φ and $\beta<\kappa$.
Following a routine construction we define inductively a ring structure on A_{ν} such that
(i) A_{ν} is a polynomial ring over R;
(ii) if $\varrho \leq \nu$ and $\nu \notin E$ then A_{ν} is a polynomial ring over A_{ϱ};
(iii) if $\varrho \in E_{\beta}, \sup _{n \in \omega} \varrho_{n}=\varrho$, and $A_{\varrho_{n}} / a_{\beta} R$ is a free R-module for some $n \in \omega$ then we apply the Step Lemma for $F_{n}=A_{\varrho_{n}}, b=a_{\beta}$ and let $A_{\varrho+1}=F^{\chi}{ }_{\beta}(\varrho)$.

If τ is a limit ordinal, then $A_{\tau}=\bigcup_{\nu \in \tau} A_{\nu}$. Since E is sparse there are ordinals $\tau_{\nu} \in \tau \backslash E$ such that $A_{\tau}=\bigcup_{\nu<\operatorname{cf}(\tau)} A_{\tau_{\nu}}$. By (ii) we conclude that $A_{\tau_{\mu}}$ is a polynomial ring over $A_{\tau_{\nu}}$ for all $\nu<\mu<\operatorname{cf}(\tau)$. Therefore A_{τ} is a polynomial ring over $A_{\tau_{\nu}}$ for all $\nu<\operatorname{cf}(\tau)$ and thus A_{τ} is a polynomial ring over R since (i) implies that $A_{\tau_{\nu}}$ is a polynomial ring over R.

It remains to show (ii) for a limit ordinal τ. For $\varrho \leq \tau \notin E$ there is τ_{ν} such that $A_{\varrho} \subseteq A_{\tau_{\nu}}$. Hence $A_{\tau_{\nu}}$ is a polynomial ring over A_{ϱ} by (ii) and, as we have seen above, A_{τ} is a polynomial ring over $A_{\tau_{\nu}}$, which implies that A_{τ} is also a polynomial ring over A_{ϱ}.

If $\tau=\mu+1$ is a successor ordinal and $\mu \notin E_{\beta}$ for all $\beta<\tau$ then choose a set V_{μ} of new commuting variables of cardinality μ and define

$$
A_{\tau}=A_{\mu}\left[V_{\mu}\right] .
$$

If $\mu \in E_{\beta}$ for some $\beta \in \tau$ then $\operatorname{cf}(\mu)=\omega$. If $A_{\mu_{n}} / a_{\beta} R$ is not a free R-module for all $n \in \omega$ then again set $A_{\tau}=A_{\mu}\left[V_{\mu}\right]$. Now conditions (i) to (iii) hold trivially. Therefore assume $A_{\mu_{n}} / a_{\beta} R$ is a free R-module for some $n \in \omega$ and hence for almost all $n \in \omega$. In this case we apply the Step Lemma to $F_{n}=A_{\mu_{n}}$ and $b=a_{\beta}$ and define $A_{\tau}=F^{\chi_{\beta}(\mu)}$. We have to verify (ii). Take $\varrho \in \tau \backslash E$; then $\varrho<\mu_{n}<\mu$ for almost all $n \in \omega$. By induction hypothesis $A_{\mu_{n}}$ is a polynomial ring over A_{ϱ} and the Step Lemma ensures that A_{τ} is a polynomial ring over $A_{\mu_{n}}$. Therefore A_{τ} is a polynomial ring over A_{ϱ}.

Clearly $A=\bigcup_{\nu \in \kappa} A_{\nu}$ is a polynomial-almost-free R-algebra of cardinality κ by (i) to (iii). It remains to show that $\operatorname{End}_{R}(A)=\operatorname{End}_{A}(A)$. Otherwise there is $\varphi \in \operatorname{End}_{R}(A) \backslash A$. The set

$$
C:=\left\{\nu \in \kappa \mid \varphi \upharpoonright A_{\nu} \in \operatorname{End}_{R}\left(A_{\nu}\right) \backslash A_{\nu}\right\}
$$

is a cub. Furthermore, $\varphi(b) \neq \varphi(1) b$ for some fixed basic element $b=a_{\beta} \in A_{\nu}$ $(\nu \in C)$. Now let $\nu \in C \cap \chi_{\beta}\left(\varphi \upharpoonright A_{\nu}\right)$ and observe that $\varphi \upharpoonright A_{\nu}$ obviously extends to $A_{\nu+1}$.

By (iii), $A_{\nu+1}=F^{\chi{ }_{\beta}(\nu)}$ (as in the Step Lemma) and (3) tells us that $\chi_{\beta}(\nu)=1$ and that $\varphi \upharpoonright A_{\nu}$ also extends to F^{0}. The Step Lemma now shows that $\varphi(b)=\varphi(1) b$-a contradiction, and A is an $E(R)$-algebra.

By an obvious modification of the proof of Theorem 5.5 (see [E] for details) we derive the following result:

Theorem 5.6. $\left(Z F C+\nabla_{\kappa}\right)$ Assume that R is a countable torsion-free domain which is not a field. For any uncountable regular non-weakly compact cardinal κ there exist 2^{κ} non-isomorphic polynomial-almost-free $E(R)$ algebras A of cardinality κ.

REmark 5.7. Theorem 5.6 shows that for any regular non-weakly compact cardinal $\kappa>\aleph_{0}$ there exist 2^{κ} non-isomorphic polynomial-almost-free E-rings.
5.2. Almost-free $E(A, R)$-modules. Next we will construct almost-free $E(A, R)$-modules which extend a given free R-module M. We must improve the Step Lemma 5.4.

Extended Step Lemma 5.8. Assume that R is a countable torsion-free domain which is not a field. Let $F=R[X]$ be the polynomial ring over R in a set $X=\left\{x_{i} \mid i \in \omega\right\}$ of commuting variables, and let $b \in{ }_{R} F$ be a basic element. If $X_{n}=\left\{x_{0}, \ldots, x_{n}\right\}$ then consider $F_{n}:=R\left[X_{n}\right]$ as a canonical subring of F. Let $H=\bigcup_{n \in \omega} H_{n}$ be a chain of free F_{n}-modules H_{n} and H a free F-module of countable rank such that H / H_{n} is a free F_{n}-module for each $n \in \omega$. Then there exist two ring extensions F^{ε} of F and two module extensions H^{ε} of H with the following properties for $\varepsilon=0,1$:
(i) $F \subset F^{\varepsilon}$ and F^{ε} / F is S-divisible.
(ii) F^{ε} is a polynomial ring over F_{n} for each $n \in \omega$.
(iii) F^{ε} is a polynomial ring over R.
(iv) If $\varphi \in \operatorname{End}_{R}(F)$ extends to both $\varphi^{\varepsilon} \in \operatorname{End}_{R}\left(F^{\varepsilon}\right)$ for $\varepsilon=0$, 1, then $\varphi(b)=\varphi(1) b$.
(v) H^{ε} is a free F^{ε}-module such that H^{ε} / H_{n} is a free F_{n}-module for all $n \in \omega$.
(vi) If $\psi \in \operatorname{Hom}_{R}(F, H)$ extends to $\psi^{\varepsilon} \in \operatorname{Hom}_{R}\left(F^{\varepsilon}, H^{\varepsilon}\right)$ for $\varepsilon=0,1$ then $\psi(b)=\psi(1) b$.

Proof. The existence of the two ring extensions with (i) to (iv) follows from Lemma 5.2. Therefore it remains to construct H^{ε} as in the lemma. If $H^{\varepsilon}:=H \otimes F^{\varepsilon}$, then H^{ε} is a free F^{ε}-module for $\varepsilon=0,1$. Moreover, H^{ε} / H_{n} is a free F_{n}-module by (ii) since H / H_{n} is a free F_{n}-module. This shows (v) and it remains to prove (vi).

Suppose $\psi \in \operatorname{Hom}_{R}(F, H)$ extends to both $\psi^{\varepsilon} \in \operatorname{Hom}_{R}\left(F^{\varepsilon}, H^{\varepsilon}\right)$ for $\varepsilon=0,1$. We can write $H=\bigoplus_{i \in \omega} h_{i} F$, and let $\pi_{i}: H \rightarrow F$ be the projection onto the i th summand. Then $\psi=\bigoplus_{i \in \omega} \pi_{i} \psi$ where each $\pi_{i} \psi \in$ $\operatorname{End}_{R}(F)$. Hence $H^{\varepsilon}=\bigoplus_{i \in \omega} h_{i} F^{\varepsilon}$ and let π_{i}^{ε} be the corresponding projection with $\pi_{i}^{\varepsilon} \psi^{\varepsilon} \in \operatorname{End}_{R}\left(F^{\varepsilon}\right)$ which extends $\pi_{i} \psi$ for $\varepsilon=0,1$. By (iv) we derive $\pi_{i} \psi(b)=\pi_{i} \psi(1) b$, hence $\psi(b)=\bigoplus_{i \in \omega} \pi_{i} \psi(b)=\bigoplus_{i \in \omega} \pi_{i} \psi(1) b=\psi(1) b$, which proves (vi).

The Extended Step Lemma 5.8 is used to improve Theorem 5.5.
Theorem 5.9. $\left(Z F C+\nabla_{\kappa}\right)$ Assume that R is a countable torsion-free domain which is not a field. If H is a free R-module of rank $\lambda \geq \aleph_{0}$ and $\kappa>\lambda$ is a regular non-weakly compact cardinal, then there exist a polynomial-almost-free $E(R)$-algebra A of cardinality κ and an $E(A, R)$-module M of cardinality κ which is κ-free as an R-submodule and extends H.

Proof. The existence of A follows from Theorem 5.5. Hence we must find M. However, due to the combinatorial setting it turns out that we must construct A and M simultaneously. Hence we begin with two κ-filtrations $A=\bigcup_{\beta \in \kappa} A_{\beta}$ and $M=\bigcup_{\beta \in \kappa} M_{\beta}$ with $\left|M_{\nu}\right|=|\nu|+|R|=\left|M_{\nu+1} \backslash M_{\nu}\right|$ for all $\nu \in \kappa$. As in the proof of Theorem 5.5, we will only concentrate on the mapping properties and not on prediction of algebra and module structures.

We adopt the notation on A from the proof of Theorem 5.5 and decompose each E_{β} into stationary disjoint subsets $E_{\beta}^{A}, E_{\beta}^{M}$. The pair (A, M) is constructed inductively on each $\left(A_{\nu}, M_{\nu}\right)$ where A_{ν} is a polynomial ring as before and M_{ν} is a free A_{ν}-module. If $\varphi: A_{\nu} \rightarrow M_{\nu}$, then (as before) we want to define $\widehat{P}_{\nu}^{\beta}(\varphi) \in\{0,1\}$ and let the value be 0 if the following holds (the only interesting case is when $\nu \in E_{\beta}^{M}$ for some β):

There is an increasing sequence ν_{n} with $\sup \nu_{n}=\nu$ such that
(1) $M_{\nu_{n}}$ is a free $A_{\nu_{n}}$-module and $M_{\nu} / M_{\nu_{n}}$ and $A_{\nu_{n}} / a_{\beta} R$ are free R modules for almost all n;
(2) if we identify $F_{n}=A_{\nu_{n}}, H_{n}=M_{\nu_{n}}, b=a_{\beta}$ in the Extended Step Lemma, then $\varphi: A_{\nu} \rightarrow M_{\nu}$ does not extend to H^{0}.

We set $\widehat{P}_{\nu}^{\beta}(\varphi)=1$ otherwise.
By $\nabla_{\kappa}\left(E_{\beta}^{H}\right)$ we obtain choice functions $\chi_{\beta}^{H}: E_{\beta}^{H} \rightarrow 2$ such that

$$
\chi^{H}(\varphi):=\left\{\nu \in E_{\beta}^{H} \mid \widehat{P}_{\nu}^{\beta}\left(\varphi \upharpoonright A_{\nu}\right)=\chi_{\beta}^{H}(\nu)\right\}
$$

is stationary in κ. Now define an R-algebra structure on A_{ν} and an $A_{\nu^{-}}$ module structure on M_{ν} subject to the following conditions:
(i) A_{ν} is a polynomial ring over R.
(ii) If $\varrho \leq \nu$ and $\nu \notin E^{A}:=\bigcup_{\beta<\kappa} E_{\beta}^{A}$ then A_{ν} is a polynomial ring over A_{ϱ}.
(iii) If $\varrho \in E_{\beta}^{A}, \sup _{n \in \omega}\left(\varrho_{n}\right)=\varrho$ and $A_{\varrho_{n}} / a_{\beta} R$ is a free R-module for some n then we apply the Extended Step Lemma for $F_{n}=A_{\varrho_{n}}, H_{n}=M_{\varrho_{n}}$, $b=a_{\beta}$ and let $A_{\varrho+1}=F^{\chi_{\beta}^{A}}(\varrho), M_{\varrho+1}=H^{\chi_{\beta}^{A}}(\varrho)$.
(iv) M_{ν} is a free A_{ν}-module.
(v) If $\varrho \leq \nu$ and $\nu \notin E^{H}$ then M_{ν} / M_{ϱ} is A_{ϱ}-free.
(vi) If $\varrho \in E_{\beta}^{H}$, $\sup _{n \in \omega} \varrho_{n}=\varrho$, and $A_{\varrho_{n}} / a_{\beta} R$ is a free R-module for some n then we apply the Extended Step Lemma for $F_{n}=A_{\varrho_{n}}, H_{n}=M_{\varrho_{n}}$, $b=a_{\beta}$ and let $A_{\varrho+1}=F^{\chi_{\beta}^{H}}(\varrho), M_{\varrho+1}=H^{\chi_{\beta}^{H}}(\varrho)$.

We obtain two κ-filtrations $A=\bigcup_{\beta \in \kappa} A_{\beta}$ and $M=\bigcup_{\beta \in \kappa} M_{\beta}$. A by now routine checking as in Theorem 5.5 shows that A is a polynomial-almostfree $E(R)$-algebra of cardinality κ and M is an almost-free (as R-module) $E(A, R)$-module of cardinality κ which extends H.

References

[BS] R. Bowshell and P. Schultz, Unital rings whose additive endomorphisms commute, Math. Ann. 228 (1977), 197-214.
[CE] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, 1956.
[CRT] C. Casacuberta, J. Rodríguez and J. Tai, Localizations of abelian EilenbergMacLane spaces of finite type, preprint, Universitat Autònoma de Barcelona, 22 (1997).
[DS] K. J. Devlin and S. Shelah, A weak version of \diamond which follows from $2^{\aleph_{0}}<2^{\aleph_{1}}$, Israel J. Math. 29 (1978), 239-247.
[D] M. Dugas, Large E-modules exist, J. Algebra 142 (1991), 405-413.
[DG1] M. Dugas and R. Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. 45 (1982), 319-336.
[DG2] -, 一, Torsion-free nilpotent groups and E-modules, Arch. Math. (Basel) 45 (1990), 340-351.
[DMV] M. Dugas, A. Mader and C. Vinsonhaler, Large E-rings exist, J. Algebra 108 (1987), 88-101.
[E] P. Eklof, Set-Theoretic Methods in Homological Algebra and Abelian Groups, Presses Univ. de Montréal, Montréal, 1980.
[EM] P. C. Eklof and A. Mekler, Almost Free Modules. Set-Theoretic Methods, NorthHolland Math. Library 46, North-Holland, Amsterdam, 1990.
[F] T. Faticoni, Each countable reduced torsion-free commutative ring is a pure subring of an E-ring, Comm. Algebra 15 (1987), 2545-2564.
[Fe1] S. Feigelstock, Additive Groups of Rings, Vol. I, Pitman Adv. Publ. Program, Boston, 1983.
[Fe2] -, Additive Groups of Rings, Vol. II, Pitman Res. Notes in Math. Ser. 169, Longman Sci. \& Tech., 1988.
[F1] L. Fuchs, Infinite Abelian Groups, Vols. I and II, Academic Press, New York, 1970 and 1973.
[F2] -, Abelian Groups, Hungarian Acad. Sci., Budapest, 1958.
[GM] R. Göbel and W. May, Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215-226.
[GS] R. Göbel and S. Shelah, Generalized E-rings, to appear.
[J] T. Jensen, Set Theory, Academic Press, New York, 1978.
[MV] A. Mader and C. Vinsonhaler, Torsion-free E-modules, J. Algebra 115 (1988), 401-411.
[NR] G. Niedzwecki and J. Reid, Abelian groups projective over their endomorphism rings, J. Algebra 159 (1993), 139-149.
[P] R. S. Pierce, E-modules, in: Contemp. Math. 87, Amer. Math. Soc., 1989, 221240.
[PV] R. S. Pierce and C. Vinsonhaler, Classifying E-rings, Comm. Algebra 19 (1991), 615-653.
[Re] J. Reid, Abelian groups finitely generated over their endomorphism rings, in: Lecture Notes in Math. 874, Springer, 1981, 41-52.
[R] J. L. Rodríguez, On homotopy colimits of spaces with a single homology or homotopy group, Ph.D. thesis, Universitat Autònoma de Barcelona, 1997.
[S] P. Schultz, The endomorphism ring of the additive group of a ring, J. Austral. Math. Soc. 15 (1973), 60-69.
[Sh] S. Shelah, On successors of singular cardinals, in: Logic Colloquium 1978, NorthHolland, Amsterdam, 1979, 243-256.
[St] L. Strüngmann, Almost-free $E(R)$-algebras over countable domains, Ph.D. thesis, Universität Essen, 1998.

Fachbereich 6, Mathematik und Informatik
Universität Essen
45117 Essen, Germany
E-mail: R.Goebel@uni-essen.de
lutz.struengmann@uni-essen.de

[^0]: 2000 Mathematics Subject Classification: 20K20, 20K30, 16W20.
 Research of R. Göbel supported by a project No. G-0545-173,06/97 of the GermanIsraeli Foundation for Scientific Research $\mathcal{E}^{\text {B Development. }}$

 Research of L. Strüngmann supported by the Graduiertenkolleg Theoretische und Experimentelle Methoden der Reinen Mathematik of Essen University.

