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An ordered struture of rank tworelated to Dula's ProblembyA. Dolih (Chiago, IL) and P. Speissegger (Hamilton)
Abstrat. For a vetor �eld ξ on R

2 we onstrut, under ertain assumptions on ξ,an ordered model-theoreti struture assoiated to the �ow of ξ. We do this in suh a waythat the set of all limit yles of ξ is represented by a de�nable set. This allows us to givetwo restatements of Dula's Problem for ξ�that is, the question whether ξ has �nitelymany limit yles�in model-theoreti terms, one involving the reently developed notionof U
þ-rank and the other involving the notion of o-minimality.Introdution. Let ξ = a1

∂
∂x

+ a2
∂
∂y

be a vetor �eld on R
2 of lass C1,and let

S(ξ) := {(x, y) ∈ R
2 : a1(x, y) = a2(x, y) = 0}be the set of singularities of ξ. By the existene and uniqueness theoremsfor ordinary di�erential equations (see Camaho and Lins Neto [2, p. 28℄ fordetails), ξ indues a C1-foliation Fξ on R

2 \ S(ξ) of dimension 1. Abusingterminology, we simply all a leaf of this foliation a leaf of ξ. A yle of ξ isa ompat leaf of ξ; a limit yle of ξ is a yle L of ξ for whih there existsa nonompat leaf L′ of ξ suh that L is ontained in the losure of L′.Dula's Problem is the following statement: �if ξ is polynomial, then ξ has�nitely many limit yles�. It is a weakening of the seond part of Hilbert's16th problem, whih states that �there is a funtion H : N → N suh that forall d ∈ N, if ξ is polynomial of degree d then ξ has at most H(d) limit yles�.Both problems have an interesting history, and while Dula's Problem wasindependently settled in the 1990s by Éalle [4℄ and Il'yashenko [6℄, Hilbert's16th Problem remains open; see [6℄ for more details.In this paper, we attempt to reformulate Dula's Problem in model-theoreti terms. Our motivation to do so is twofold: we want to2000 Mathematis Subjet Classi�ation: 37C27, 03C64.Key words and phrases: vetor �elds, limit yles, model theory, ordered strutures.Supported in parts by NSERC and NSF.[17℄ © Instytut Matematyzny PAN, 2008



18 A. Dolih and P. Speissegger(i) �nd a model-theoreti struture naturally assoiated to ξ in whihthe �ow of ξ and the set of limit yles of ξ are represented byde�nable sets;(ii) know to what extent the geometry of suh a struture is determinedby Dula's Problem.Our starting point for (i) is motivated by the pieewise triviality ofRolle foliations assoiated to analyti 1-forms as desribed by Chazal [3℄.Let U ⊆ R
2 be open; a leaf L of ξ|U is a Rolle leaf of ξ|U if for every

C1-urve δ : [0, 1] → U with δ(0) ∈ L and δ(1) ∈ L, there is a t ∈ [0, 1]suh that δ′(t) is tangent to ξ(δ(t)). Based on Khovanski�� theory [7℄ over ano-minimal expansion of the real �eld [14℄, we establish (Proposition 1.5 andTheorem 3.4):
Theorem A. Assume that ξ is de�nable in an o-minimal expansion ofthe real �eld. Then there is a ell deomposition C of R

2 ompatible with
S(ξ) suh that , with Creg := {C ∈ C : C ∩ S(ξ) = ∅},(1) every 1-dimensional C ∈ Creg is either transverse to ξ or tangentto ξ;(2) for every open C ∈ Creg, every leaf of ξ|C is a Rolle leaf of ξ|C ;(3) for every open C ∈ Creg, the �ow of ξ in C is represented by a lexi-ographi ordering of C.Part (3) of this theorem needs some explanation, as it represents ourunderstanding of the �triviality� of the �ow of ξ in C. Given an open C ∈ Creg,it follows from part (2) that the diretion of ξ indues a linear ordering <Γon every leaf L of ξ|C . We an furthermore de�ne a relation on the set
L(C) of all leaves of ξ|C as follows: given a leaf L of ξ|C , the fat that
L is a Rolle leaf of ξ|C implies (see Remark 1.2 below) that L separates
C \ L into two onneted omponents UL,1 and UL,2 suh that the vetor
ξ⊥(z) := (a2(z),−a1(z)) points into UL,2 for all z ∈ L. Thus, for a leaf L′of ξ|C di�erent from L, we de�ne L ≪C L′ if L′ ⊆ UL,2 and L′ ≪C L if
L′ ∈ UL,1. In general, though, the relation ≪C does not always de�ne anordering, even if every leaf of ξ|C is Rolle; see Example 2.2 below.Part (3) now means that the ell deomposition C may be hosen insuh a way that for every open C ∈ Creg, the ordering ≪C on L(C) is alinear ordering. (See Example 3.2 for suh a deomposition in the situation ofExample 2.2.) This leads to lexiographi orderings as follows: given C ∈ Cregand z ∈ C, we denote by Lz the leaf of ξ|C ontaining z. If C ∈ Creg is open,we de�ne a linear ordering <C on C by x <C y if and only if either Lx ≪C Ly,or Lx = Ly and x <Lx y. Letting EC be a set of representatives of L(C),it is not hard to see that the strutures (C,<C , EC) and (R2, <lex, {y = 0})are isomorphi, where <lex is the usual lexiographi ordering of R

2.



An ordered struture of rank two 19To omplete the piture, we also de�ne an ordering <C on eah 1-dimen-sional C ∈ Creg: if C is tangent to ξ, we let <C be the linear ordering induedon C by the diretion of ξ, and if C is transverse to ξ, we let <C be the linearordering indued on C by the diretion of ξ⊥. For eah open C ∈ Creg, wealso let <EC
be the restrition of <C to EC . Eah of these orderings induesa topology on the orresponding set that makes it homeomorphi to the realline. Finally, for eah 1-dimensional C ∈ Creg tangent to ξ, we �x an element

eC ∈ C.In the situation of Theorem A, we reonnet the piees of C aording tothe �ow of ξ as follows: let B be the union of
• all 1-dimensional ells in Creg transverse to ξ,
• the sets EC for all open ells C ∈ Creg,
• all 0-dimensional ells in Creg,
• the singletons {eC} for all 1-dimensional C ∈ Creg tangent to ξ.We de�ne the forward progression map f : B ∪ {∞} → B ∪{∞} by (roughlyspeaking) putting f(x) equal to the next point in B on the leaf of ξ through

x if x 6= ∞ and if suh a point exists; otherwise we put f(x) := ∞. In thissituation, a point x ∈ B belongs to a yle of ξ if and only if there is anonzero n ∈ N suh that fn(x) = x, where fn denotes the nth iterate of f.In fat, only �nitely many iterates of f are neessary to apture all ylesof ξ (Proposition 5.3): sine a yle of ξ is a Jordan urve in R
2, it is a Rolleleaf of ξ and therefore intersets eah C ∈ C of dimension at most 1 in atmost one onneted omponent. Hene there is an N ∈ N suh that for all

x ∈ B, x belongs to a yle of ξ if and only if fN (x) = x.To see how we an use this to detet limit yles of ertain ξ, we �rstde�ne a yle L of ξ to be a boundary yle if, for every x ∈ L and everyneighborhood V of x, the set V intersets some nonompat leaf of ξ. Bound-ary yles and limit yles are the same if ξ is real-analyti, beause of thefollowing theorem of Poinaré's [12℄ (see also Perko [11, p. 217℄):
Fact 1. If ξ is real-analyti, then ξ annot have an in�nite number oflimit yles that aumulate on a yle of ξ.On the other hand, it follows from the previous paragraph that for every

x ∈ B, the point x belongs to a boundary yle of ξ if and only if x is in theboundary (relative to B onsidered with the topology indued on it by thevarious orderings de�ned above) of the set of all �xed points of fN .Based on the observations mentioned in the preeding paragraphs (anda few related observations), we assoiate to eah deomposition C as in The-orem A a �ow on�guration Φξ = Φξ(C) of ξ, intended to ode how the ellsin C are linked together by the �ow of ξ. To eah �ow on�guration Φ, weassoiate in turn a unique �rst-order language L(Φ) in suh a way that the



20 A. Dolih and P. Speisseggersituation desribed in the preeding paragraphs naturally yields an L(Φξ)-struture Mξ in whih the lexiographi orderings of Theorem A, the asso-iated forward progression map f : B ∪ {∞} → B ∪ {∞} and the set of all
x ∈ B that belong to some boundary yle of ξ are de�nable.If, in the situation of Theorem A, there is an open C ∈ Creg, then theindued struture on C in Mξ is not o-minimal (beause the struture
(C,<C , EC) desribed above is de�nable in Mξ). Thus, to answer (ii) weneed to work with notions weaker than o-minimality. A weakening that in-ludes lexiographi orderings is provided by the rosy theories introdued byOnshuus [9℄.To reall this rather tehnial de�nition, we �x a omplete �rst order the-ory T and a su�iently saturated model M of T , and we work in Meq. (Forstandard model-theoreti terminology, we refer the reader to Marker [8℄.)The de�nition of þ-forking is muh like that of forking in the stable or simpleontext: A formula φ(x, a) strongly divides over a set A if tp(a/A) is nonal-gebrai and the set {φ(x, b) : b |= tp(a/A)} is k-inonsistent for some k ∈ N.The formula φ(x, a) þ-divides over A if for some tuple c, φ(x, a) stronglydivides over A ∪ {c}. The formula φ(x, a) þ-forks over A if φ(x, a) impliesa �nite disjuntion of formulas all of whih þ-divide over A. A ompletetype p(x) þ-forks over A if there is some formula φ(x) in p(x) that þ-forksover A.For a theory T to be rosy means, roughly speaking, that in models of T ,þ-forking has many desirable properties, muh like forking in the stable orsimple ontexts. For the formal de�nition we need only fous on a single oneof these: T is rosy if for any omplete type p(x) over a parameter set B, thereexists B0 ⊆ B with ‖B0‖ ≤ ‖T‖ suh that p(x) does not þ-fork over B0.The �degree of rosiness� of a theory is measured by the Uþ-rank, de�nedanalogously to the U -rank in stable theories. For an ordinal α and a ompletetype p(x) with parameter set A, we de�ne Uþ(p) ≥ α by ordinal indution:(i) Uþ(p) ≥ 0 if p is onsistent;(ii) if α is a limit ordinal, then Uþ(p) ≥ α if Uþ(p) ≥ β for all β < α;(iii) Uþ(p) ≥ α+1 if there is a omplete type q(x) so that p ⊆ q, q þ-forksover A and Uþ(q) ≥ α.For an ordinal α, we say that Uþ(p) = α if Uþ(p) ≥ α and Uþ(p) 6≥ α + 1.Finally, Uþ(T ) is de�ned to be the supremum of Uþ(p) for all one-types pwith parameters over the empty set. One of the fundamental fats aboutrosy theories is that T is rosy if Uþ(T ) is an ordinal [9℄.For example, every o-minimal theory is rosy of Uþ-rank one. On the otherhand, the theory T of the struture (C,<C , EC) above has Uþ-rank at leasttwo. To see the latter, let M |= T be ℵ1-saturated and write Cz := {x ∈ C :
z1 <C x <C z2 for all z1, z2 ∈ EC suh that z1 <C z <C z2}. Sine EM

C is a



An ordered struture of rank two 21dense linear ordering without endpoints, there are in�nitely many a ∈ EM
Csuh that a /∈ al(∅). For any two suh a, b ∈ EM

C , the �bers CM
a and CM

bare disjoint, in�nite de�nable sets. Hene Uþ(M) ≥ 2.In this paper, we use the argument of the previous example to establishlower bounds on Uþ-rank for the theories we are interested in. For upperbounds, we need a speial ase of the Coordinatization Theorem [10, Theo-rem 2.2.2℄:
Fact 2. Assume that T de�nes a dense linear ordering without end-points, and let M |= T be saturated. Let also n ∈ N and assume thatfor all a ∈ M , there are a1, . . . , an ∈ M suh that a = an and for eah

i ∈ {1, . . . , n}, the type of (a1, . . . , ai) over (a1, . . . , ai−1) is implied in T bythe order type of (a1, . . . , ai) over (a1, . . . , ai−1). Then Uþ(T ) ≤ n.Note that our disussion above and the previous example imply that
Uþ(Mξ) ≥ 2. The main result of this paper is the following restatement ofDula's Problem:
Theorem B. Assume that ξ is de�nable in an o-minimal expansion ofthe real �eld , and let Mξ be the L(Φξ)-struture assoiated to some �owon�guration Φξ of ξ. Then:(1) ξ has �nitely many boundary yles if and only if Uþ(Mξ) = 2;(2) if ξ is real-analyti, then ξ has �nitely many limit yles if and onlyif Uþ(Mξ) = 2.The proof of Theorem B is lengthy, but straightforward: we prove that

Mξ admits quanti�er elimination in a ertain expanded language (Theo-rem 9.11). The main ingredient in this proof is a redution�modulo the the-ory of Mξ in the expanded language, roughly speaking�of general quanti-�er-free formulas to ertain quanti�er-free order formulas, whih allows usto dedue the quanti�er elimination for Mξ from quanti�er elimination ofthe theory of (R2, <lex, {y = 0}, π), where π : R
2 → {y = 0} is the anonialprojetion on the x-axis. Under the assumption of having only �nitely manyboundary yles, the new prediates of the expanded language are easily seento de�ne subsets of the various ells obtained by Theorem A that are �niteunions of points and intervals. Su�ieny in Theorem B then follows fromFat 2; neessity follows by general Uþ-rank arguments.As a orollary of Theorem B, Éalle's and Il'yashenko's solutions of Du-la's Problem imply the following:

Corollary. Assume ξ is polynomial , and let Mξ be the L(Φξ)-strutureassoiated to some �ow on�guration Φξ of ξ. Then Uþ(Mξ) = 2.It remains an open question whether, in the situation of the Corollary,the strutures are de�nable in some o-minimal expansion of the real line.



22 A. Dolih and P. SpeisseggerAn answer to this question, however, seems to go far beyond our urrentknowledge surrounding Dula's Problem.Finally, our proof of Theorem B gives rise to a seond restatement ofDula's Problem that does not involve Uþ-rank: Let G be the union of all
1-dimensional C ∈ Creg that are transverse to ξ, all 0-dimensional C ∈ Cregand {∞}. Let Gξ be the expansion of G by all orresponding orderings <Cand by the map f2|G. (Note that f2|G maps G into G.) We may view Gξ asa graph whose verties are the elements of G and whose edges are de�nedby f2.
Theorem C. Assume that ξ is de�nable in an o-minimal expansion ofthe real �eld , and let Gξ be as above. Then:(1) ξ has �nitely many boundary yles if and only if the struture in-dued by Gξ on eah 1-dimensional C ⊆ G is o-minimal;(2) if ξ is real-analyti, then ξ has �nitely many limit yles if andonly if the struture indued by Gξ on eah 1-dimensional C ⊆ Gis o-minimal.Our paper is organized as follows: in Setions 1�3, we establish Theo-rem A: In Setion 1, we ombine basi o-minimal alulus with Khovanski��'sLemma to obtain a ell deomposition satisfying (1) and (2) of Theorem A.To re�ne this deomposition so that (3) holds, we need to study what setswe obtain as Hausdor� limits of a sequene of leaves of ξ|C (Proposition 2.5).The re�nement is then given in Setion 3, where (3) is established as Theo-rem 3.4. In Setions 4 and 5, we de�ne the relevant orderings and progressionmaps assoiated to ξ as mentioned earlier. Inspired by the latter, we thenintrodue the notion of a �ow on�guration and the assoiated �rst-orderlanguage in Setion 6, where we also give an axiomatization of the ru-ial properties satis�ed by the models Mξ above. Some basi fats aboutthe iterates of the forward progression map are dedued from these axiomsin Setion 7. In Setion 8, we extend our axioms to re�et the additionalassumption that there are only �nitely many boundary yles, and we in-trodue additional prediates for ertain de�nable sets related to the setsof �xed points of the iterates of the forward progression map. The quanti-�er elimination result is then given in Setion 9, and we prove Theorems Cand B in Setion 10. We �nish with a few questions and remarks in Se-tion 11.
Global conventions. We �x an o-minimal expansion R of the real�eld; �de�nable� means �de�nable in R with parameters�.For 1 ≤ m ≤ n, we denote by Πm : R

n → R
m the projetion on the �rst

m oordinates.Given (x, y) ∈ R
2, we put (x, y)⊥ := (y,−x).



An ordered struture of rank two 23For a subset A ⊆ R
n, we let cl(A), int(A), bd(A) := cl(A) \ int(A) and

fr(A) := cl(A) \ A denote the topologial losure, interior, boundary andfrontier, respetively.For n ∈ N, we de�ne the analyti di�eomorphism φn : R
n → (−1, 1)n by

φn(x1, . . . , xn) := (x1/
√

1 + x2
1, . . . , xn/

√

1 + x2
n). Given X ⊆ R

n, we write
X∗ := φn(X), and given a vetor �eld η on R

n of lass C1, we write η∗ forthe push-forward (φn)∗ η of η to (−1, 1)n.Aknowledgements. We thank Lou van den Dries and Chris Miller fortheir suggestions and omments on the earlier versions of this paper.1. Rolle deomposition. Let U ⊆ R
2 be open and p ≥ 1 be an integer.Let ξ = a1

∂
∂x

+a2
∂
∂y

be a de�nable vetor �eld on U of lass Cp (that is, thefuntions a1, a2 : U → R are de�nable and of lass Cp), and let
S(ξ) := {z ∈ U : a1(z) = a2(z) = 0}be the set of singularities of ξ. By the existene and uniqueness theoremsfor ordinary di�erential equations [2, p. 28℄, ξ indues a Cp-foliation Fξ on

U \ S(ξ) of dimension 1. Abusing terminology, we simply all a leaf of thisfoliation a leaf of ξ.
Remark. Put ω := a2dx− a1dy; then S(ξ) is the set of singularities of

ω, and the foliation Fξ is exatly the foliation on U \ S(ξ) de�ned by theequation ω = 0. Below, we will use this observation (mainly in onnetionwith some itations) without further mention.Definition 1.1. Let γ : I → U be of lass Cp, where I ⊆ R is aninterval. We all γ a Cp-urve in U and usually write Γ := γ(I). If t ∈ I issuh that ξ⊥(γ(t))·γ′(t) 6= 0, we say that γ is transverse to ξ at t; otherwise, γis tangent to ξ at t. The urve γ is transverse (tangent) to ξ if γ is transverse(tangent) to ξ at every t ∈ I.A leaf L of ξ is a Rolle leaf of ξ if for every C1-urve γ : [0, 1] → U with
γ(0) ∈ L and γ(1) ∈ L, there is a t ∈ [0, 1] suh that ξ⊥(γ(t)) · γ′(t) = 0.A yle of ξ is a ompat leaf of ξ. A yle L of ξ is a limit yle of ξ ifthere is a nonompat leaf L′ of ξ suh that L ⊆ cl(L′). A yle L of ξ is aboundary yle of ξ if for every open set V ⊆ R

2 with V ∩ L 6= ∅, there is anonompat leaf L′ of ξ suh that V ∩ L′ 6= ∅.Remark 1.2. Sine ξ is integrable in U \ S(ξ), every Rolle leaf L of
ξ is an embedded submanifold of U \ S(ξ) that is losed in U \ S(ξ). Inpartiular, by Theorem 4.6 and Lemma 4.4 of Chapter 4 in [5℄, if U \ S(ξ)is simply onneted, then U \ (S(ξ) ∪ L) has exatly two onneted om-ponents suh that L is equal to the boundary in U \ S(ξ) of eah of theseomponents.



24 A. Dolih and P. SpeisseggerLemma 1.3 (Khovanski�� [7℄).(1) Assume that U \ S(ξ) is simply onneted , and let L ⊆ U \ S(ξ) bean embedded leaf of ξ that is losed in U \ S(ξ). Then L is a Rolleleaf of ξ in U .(2) Let L be a yle of ξ. Then L is a Rolle leaf of ξ.Sketh of proof. (1) Arguing as in the preeding remark, we see that theset U \ S(ξ) has exatly two onneted omponents U1 and U2, suh that
bd(Ui) ∩ (U \ S(ξ)) = L for i = 1, 2. The argument of Example 1.3 in [14℄now shows that L is a Rolle leaf of ξ.(2) Sine L is ompat, L is an embedded and losed submanifold of R

2.Now onlude as in part (1).Definition 1.4. We all ξ Rolle if S(ξ) = ∅, ξ is of lass C1 and everyleaf of ξ is a Rolle leaf of ξ.We now let C be a Cp-ell deomposition of R
2 ompatible with U and

S(ξ), and we put CU := {C ∈ C : C ⊆ U}. Re�ning C, we may assume that
ξ|C is of lass Cp for every C ∈ CU , and that every C ∈ CU of dimension 1is either tangent or transverse to ξ. Re�ning C again, we also assume that(I) a1 and a2 have onstant sign on every C ∈ CU .Suh a deomposition C is alled a Rolle deomposition for ξ, beause of thefollowing:Proposition 1.5. Let C ∈ CU be open suh that C ∩ S(ξ) = ∅. Then
ξ|C is Rolle. Moreover , if both a1 and a2 have nonzero onstant sign on C,then either every leaf of ξ|C is the graph of a stritly inreasing Cp-funtion
f : I → R, or every leaf of ξ|C is the graph of a stritly dereasing Cp-funtion f : I → R, where I ⊆ R is an open interval depending on f .Proof. If a1|C = 0 or a2|C = 0, the onlusion is obvious. So we assumethat a1|C and a2|C have onstant positive sign, say; the remaining threeases are handled similarly. Let L be a leaf of ξ|C ; we laim that L is thegraph of a stritly inreasing Cp-funtion f : I → R, where I := Π1(L).To see this, assume �rst that there are x, y1, y2 ∈ R suh that (x, yi) ∈ Lfor i = 1, 2 and y1 6= y2. Sine ξ|C is of lass Cp, the leaf L is a Cp-urve, soby Rolle's Theorem, there is an a ∈ L suh that L is tangent at a to ∂/∂y.But this means that a1(a) = 0, a ontradition. Thus, L is the graph of astritly inreasing Cp-funtion f : I → R.It follows from the laim that L is an embedded submanifold of C and,sine C ∩ S(ξ) = ∅, that L is a losed subset of C. Thus by Lemma 1.3(1),
L is a Rolle leaf of ξ|C .



An ordered struture of rank two 252. Rolle foliations and Hausdor� limits of Rolle leaves. We on-tinue working with ξ as in Setion 1, and we �x a Rolle deomposition Cfor ξ. We �x an open C ∈ CU suh that C ∩ S(ξ) = ∅.To simplify notation, we write ξ in plae of ξ|C throughout this setion.Let L be a leaf of ξ. Sine L is a Rolle leaf of ξ, C \L has two onnetedomponents UL,1 and UL,2, and L is the boundary of UL,i in C for i = 1, 2.Sine ξ⊥(z) 6= (0, 0) for all z ∈ C and L is onneted, there is an i ∈ {1, 2}suh that ξ⊥(z) points inside UL,i for all z ∈ L; reindexing if neessary, wemay assume that ξ⊥(z) points inside UL,2 for every leaf L of ξ.Definition 2.1. For a point z ∈ C, we let Lξ
z be the unique leaf of ξsuh that z ∈ Lξ

z. For any subset X ⊆ C, we de�ne
F ξ(X) :=

⋃

z∈X

Lξ
z,alled the ξ-saturation of X, and we put

Lξ(X) := {Lξ
z : z ∈ X}.For X ⊆ C, we de�ne a relation ≪ξ

X on the set Lξ(X) as follows: L≪ξ
X Mif and only if L ⊆ UM,1 (if and only if M ⊆ UL,2).Whenever ξ is lear from ontext, we omit �ξ� in the de�nitions andnotations above.Note that in general the relation ≪C may not de�ne an order relationon L(C):Example 2.2. Let ζ := −y ∂

∂x
+ x ∂

∂y
, and let g : R

2 → R be de�nedby g(x, y) := (y − (x − 2))2. Then gζ is a real-analyti vetor �eld on R
2and S(gζ) = {0} ∪ {(x, y) : y = x− 1}. Let also C be the ell (α, β), where

α, β : (0, 1) → R are de�ned by α(x) := x− 2 and β(x) := x− 1.Then C ∩ S(gζ) = ∅, and sine every leaf of ζ is a Rolle leaf of ζ, thevetor �eld gζ|C is Rolle. However, ≪gζ
C is not an ordering of L(C): Pik aleaf L of ξ (that is, a irle with enter (0, 0)) suh that L ∩ gr(α) ontainstwo points. Then L ∩ C onsists of two distint leaves L1 and L2 of gζ|C .Sine ζ⊥(z) points outside the irle L for every z ∈ L, we get L1 ⊆ UL2,1and L2 ⊆ UL1,1, that is, L1 ≪gζ

C L2 and L2 ≪gζ
C L1.However, for ertain X the relation ≪X is a linear ordering of L(X), asdisussed in the following lemma. For a urve γ : I → C, we write

L(t) := Lγ(t) for all t ∈ I;in this situation, we have F (Γ ) =
⋃

t∈I L(t).Lemma 2.3. Let γ : I → C be a Cp-urve transverse to ξ, where I ⊆ Ris an interval.



26 A. Dolih and P. Speissegger(1) If I is open, then F (Γ ) is open.(2) The relation ≪Γ is a linear ordering of L(Γ ), and the map t 7→ L(t) :
I → L(Γ ) is order-preserving if ξ⊥(γ(t)) · γ′(t) > 0 for all t ∈ I andorder-reversing if ξ⊥(γ(t)) · γ′(t) < 0 for all t ∈ I.Proof. (1) Assume that I is open, and let t ∈ I. Beause ξ is Cp andnonsingular and γ is transverse to ξ, by a variant of Piard's Theorem (seeTheorem 8-2 of [1℄), there is an open set Bt ⊆ C ontaining γ(t) suh that

Bt ⊆ F (Γ ). Put B :=
⋃

t∈I Bt; then Γ ⊆ B ⊆ F (Γ ), so F (Γ ) = F (B). Sine
B is open, it follows from Theorem III.1 in [2℄ that F (Γ ) is open.(2) Sine γ is transverse to ξ and eah L(t) is Rolle, the map t 7→ L(t) :
I → L(Γ ) is injetive. It therefore su�es to show that either

s < t⇔ L(s) ≪Γ L(t) for all s, t ∈ I,or
s < t⇔ L(t) ≪Γ L(s) for all s, t ∈ I.Sine γ is transverse to ξ, the ontinuous map t 7→ ξ⊥(γ(t)) · γ′(t) : I → Rhas onstant positive or negative sign. Assume it has onstant positive sign;the ase of onstant negative sign is handled similarly. Then for every t ∈ I,the set

Γ<t := {γ(s) : s ∈ I, s < t}is ontained in UL(t),1. Hene L(s) ⊆ UL(t),1 for all s ∈ I with s < t, that is,
L(s) ≪Γ L(t) for all s ∈ I with s < t. Similarly, L(t) ≪Γ L(s) for all s ∈ Iwith s > t, and sine t ∈ I was arbitrary, the lemma follows.We assume for the rest of this setion that C is bounded. Let ξC be the
1-form on C de�ned by

ξC :=
ξ|C

‖ξ|C‖
.Then ξC is a bounded, de�nable Cp-map on C, so by o-minimality, there isa �nite set FC ⊆ fr(C) suh that ξC extends ontinuously to cl(C) \ FC ; wedenote this ontinuous extension by ξC as well.Let c, d ∈ R and α, β : (c, d) → R be de�nable and Cp suh that

C = (α, β). Beause C is bounded, the limits α(c) := limx→c α(x), α(d) :=
limx→d α(x), β(c) := limx→c β(x) and β(d) := limx→d β(x) exist in R. Thepoints of the set

VC := {(c, α(c)), (d, α(d)), (c, β(c)), (d, β(d))}are alled the orners of C.Example 2.4. In Example 2.2, we have FC ⊆ VC and both gζ · (∂/∂x)and gζ · (∂/∂y) have onstant nonzero sign. The next proposition shows thatunder the latter assumptions, the situation of Example 2.2 is as bad as itgets.



An ordered struture of rank two 27Proposition 2.5. Suppose that FC ⊆ VC , a1|C 6= 0 and a2|C 6= 0. Let
γ : [0, 1] → C be a Cp-urve transverse to ξ, and let ti ∈ (0, 1) be suh that
t0 < t1 < t2 < · · · and ti → 1. Then the sequene (cl(L(ti))) onverges inthe Hausdor� metri to a ompat set K := lim cl(L(ti)) ⊆ cl(C) suh that(i) Π1(K) = [a, b] with c ≤ a < b ≤ d;(ii) eah omponent of K ∩ C is a leaf of ξ;(iii) K ∩Π−1

1 (a, b) = gr(f) for some ontinuous funtion f : (a, b) → R.Proof. By Proposition 1.5, we may assume that for every t ∈ [0, 1], theleaf L(t) is the graph of a stritly inreasing Cp-funtion ft : (a(t), b(t)) →
R (the other ases are handled similarly). Sine C is bounded, the limits
ft(a(t)) := limx→a(t) ft(x) and ft(b(t)) := limx→b(t) ft(x) exist, and we alsodenote by ft : [a(t), b(t)] → R the orresponding ontinuous extension of ft.Then cl(L(t)) = gr(ft). By Lemma 2.3, we may also assume that the map
t 7→ L(t) : [0, 1] → L(Γ ) is order-preserving (again, the other ase is handledsimilarly). Finally, sine eah ft is stritly inreasing and the map t 7→ L(t) :
[0, 1] → L(Γ ) is order-preserving, it follows that fs(x) > ft(x) for all s, t ∈
[0, 1] suh that s < t and x ∈ (a(s), b(s)) ∩ (a(t), b(t)).Sine eah cl(L(ti)) is onneted, the set K is onneted, so Π1(K) isan interval [a, b], whih proves (i). It follows in partiular that for every
x ∈ (a, b), there is an open interval Ix ⊆ (a, b) ontaining x suh that
Ix ⊆ (a(ti), b(ti)) for all su�iently large i. Thus by our assumptions,(∗) for every x ∈ (a, b) we have fti |Ix > fti+1

|Ix for su�iently large i.Next, we show that K ∩ C is an integral manifold of ξ. Fix a point
(x, y) ∈ K∩C; it su�es to show that there is an open box B ⊆ C ontaining
(x, y) suh that K ∩ B is an integral manifold of ξ. Let B = I × J be anopen box ontaining (x, y) suh that I ⊆ Ix. Sine a1(x, y) 6= 0, we may alsoassume (after shrinking B) that there is an ε > 0 suh that |a1(x

′, y′)| ≥ ε forall (x′, y′) ∈ B; in partiular, there is anM > 0 suh that fti |I isM -Lipshitzfor all su�iently large i. Hene by (∗), the funtion f : I → R de�ned by
f(x′) := limi→∞ fti(x

′) is Lipshitz and satis�esK∩(I×R) = K∩B = gr(f).Finally, shrinking B again if neessary, we see that Fξ being a foliationimplies that K ∩B is an integral manifold of ξ, as required.Sine K is ompat and K ∩ C is an integral manifold of ξ, every om-ponent of K ∩ C is a leaf of ξ. It also follows from the previous paragraphthat K ∩C is the graph of a ontinuous funtion g : Π1(K ∩C) → R, whihproves (ii).Let now x ∈ (a, b) be suh that x /∈ Π1(K∩C). Then (x, α(x)) or (x, β(x))belongs to K, beause (a, b) ⊆ Π1(K); by (∗) we have (x, β(x)) /∈ K, so
(x, α(x)) ∈ K. If (

ξC · ∂
∂x

)

(x, α(x)) 6= 0, then by the same arguments asused for (ii), we onlude that there are open intervals I, J ⊆ R suh that
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(x, α(x)) ∈ I×J and K∩(I×J) is the graph of a ontinuous funtion de�nedon I. Therefore, part (iii) is proved one we show that (

ξC · ∂
∂x

)

(x, α(x)) 6= 0for all x ∈ (a, b) \Π1(K ∩ C).Assume for a ontradition that there is an x ∈ (a, b) \Π1(K ∩ C) suhthat (

ξC · ∂
∂x

)

(x, α(x)) = 0. Let M > |α′(x)|, and let I, J ⊆ R be openintervals suh that I ⊆ Ix and |a2/a1| > M on B := I × J . Sine fti(x) →
α(x), it follows from the fundamental theorem of alulus for all su�ientlylarge i that fti(xi) = α(xi) for some xi ∈ I, a ontradition.3. Pieewise trivial deomposition. We ontinue working with ξ asin Setion 1, and we adopt the notations used there. Note that ξ∗ (as de�nedat the end of the Introdution) is a de�nable vetor �eld on U∗ of lass Cp,and that C is a Rolle deomposition of R

2 for ξ if and only if C∗ := {C∗ :
C ∈ C} is a Rolle deomposition of (−1, 1)2 for ξ∗.Let C ⊆ U be a bounded, open, de�nable Cp-ell suh that ξ|C is Rolle.To detet situations like the one desribed in Example 2.2, we assoiate thefollowing notations to suh a C. There are real numbers c < d and de�nable
Cp-funtions α, β : (c, d) → R suh that C = (α, β). Given a C1-funtion
δ : (c, d) → R suh that α(x) ≤ δ(x) ≤ β(x) for all x ∈ (c, d), we de�ne
σδ : C → R by

σδ(x, y) := ξ⊥(x, y) ·

(

1

δ′(x)

)

.Note that for eah x ∈ (c, d), there are by o-minimality a maximal αC
0 (x) ∈

(α(x), β(x)] and a minimal βC
0 (x) ∈ [α(x), β(x)) suh that the funtion σαhas onstant sign on {x} × (α(x), αC

0 (x)) and the funtion σβ has onstantsign on {x}×(βC
0 (x), β(x)); we omit the supersript �C� whenever C is learfrom ontext. Note that α0, β0 : (c, d) → R are de�nable.Definition 3.1. A Cp-ell deomposition of R

2 ompatible with U ,
bd(U) and S(ξ) is alled almost pieewise trivial for ξ if(I) every C ∈ CU of dimension 1 is either tangent or transverse to ξ;(II) the omponents of ξ have onstant sign on every C ∈ CU ;and for every open, bounded C ∈ CU suh that C ∩ S(ξ) = ∅, the followinghold:(III) FC ⊆ VC ;(IV) the maps α0, β0 : (c, d) → R are ontinuous;(V) the map σα has onstant sign on the ell (α, α0), and the map σβhas onstant sign on the ell (β0, β).We all C pieewise trivial for ξ if C∗ is almost pieewise trivial for ξ∗.



An ordered struture of rank two 29Example 3.2. Let ζ := −y ∂
∂x

+x ∂
∂y
, and let C be the ell deompositionof R

2 onsisting of the sets of the form {(x, y) : x ∗ 0, y ⋆ 0} with ∗, ⋆ ∈
{=, <,>}. Then C is pieewise trivial for ζ.Remarks 3.3.(1) Any pieewise trivial deomposition for ξ is a Rolle deompositionfor ξ.(2) If U is bounded, then C is almost pieewise trivial for ξ if and onlyif C is pieewise trivial for ξ.(3) We obtain a pieewise trivial deomposition for ξ in the followingway: First, obtain a Cp-ell deomposition C ompatible with U ,

bd(U) and S(ξ) satisfying (I) and (II). Then, to satisfy (III)�(V), weonly need to re�ne Π1(C) := {Π1(C) : C ∈ C}.We now �x a pieewise trivial deomposition C of R
2 for ξ. The name�pieewise trivial� is justi�ed by:Theorem 3.4. Let C ∈ CU be open suh that C ∩ S(ξ) = ∅. Then therelation ≪C on L(C) is a linear ordering.To prove the theorem, we �x a bounded, open C ∈ CU suh that C ∩S(ξ)

= ∅. Establishing the theorem for this C su�es: if the theorem holds forevery bounded, open D ∈ C suh that D∩S(ξ) = ∅, then the theorem holdswith C∗ and ξ∗ in plae of C and ξ (beause every D ∈ C∗ is bounded). Sine
φ2 is an analyti di�eomorphism, it follows that the theorem holds for everyopen D ∈ C suh that D ∩ S(ξ) = ∅.We need quite a bit of preliminary work (see the end of this setion forthe proof of the theorem). For Lemma 3.5 and Corollary 3.6 below, we �x a
Cp-urve γ : [0, 1] → C transverse to ξ.Lemma 3.5. Let ti ∈ (0, 1) for i ∈ N be suh that ti → t ∈ [0, 1]. Then
C ∩ lim cl(L(ti)) = L(t).Proof. From Proposition 2.5 we know that C ∩ K is a union of leavesof ξ|C , where K := lim cl(L(ti)). Thus, sine γ(ti) → γ(t) and γ(t) ∈ L(t),it follows that L(t) ⊆ C ∩ K. To prove the opposite inlusion, we mayassume by Proposition 1.5 that every leaf of ξ|C is the graph of a stritlyinreasing funtion (the other ase is handled similarly). By Proposition 2.5again, Π1(K) = [a, b] with c ≤ a < b ≤ d, and there is a ontinuous funtion
f : (a, b) → R suh that K ∩

(

(a, b) × R
)

= gr(f).Assume for a ontradition that there is a leaf M of ξ|C suh that M 6=
L(t) and M ⊆ C ∩K. Then L(t) and M are disjoint subsets of gr(f); say
L(t) = gr(ft), where ft : (a(t), b(t)) → R, andM = gr(g), where g : (a′, b′) →
R. We assume here that a′ < b′ ≤ a(t) < b(t); the other ase is againhandled similarly. By our assumption, c < a(t) and hene limx→a(t)+ ft(x) ∈



30 A. Dolih and P. Speissegger
{α(a(t)), β(a(t))}. We assume here limx→a(t)+ ft(x) = α(a(t)), the otherase being handled similarly. Then by the Mean Value Theorem, for every
ε > 0 there is an x ∈ (a(t), a(t) + ε) suh that f ′t(x) > α′(x), that is,
σα(x, ft(x)) < 0. It follows from (V) that(∗) the map σα has onstant negative sign on (α, α0).On the other hand, b′ < d, and we may assume that limx→b′− g(x) = α(b′):otherwise, limx→b′− g(x) = β(b′), and sine

lim
x→a(t)

f(x) = lim
x→a(t)+

ft(x) = α(a(t)),we an replae M by a leaf of ξ|C that is ontained in gr(f) and has thedesired property. But limx→b′− g(x) = α(b′) means (as above) that for ev-ery ε > 0 there is an x ∈ (b′ − ε, b′) suh that g′(x) < α′(x), that is,
σα(x, g(x)) > 0. This ontradits (∗), so the lemma is proved.Put F := F (γ((0, 1))); note that F is open by Lemma 2.3(1).Corollary 3.6. C ∩ bd(F ) = L(0) ∪ L(1); in partiular , there are dis-tint j0, j1 ∈ {1, 2} suh that C \ cl(F ) = UL(0),j0 ∪ UL(1),j1.Proof. Let z ∈ cl(F ) ∩ C, and let zi ∈ F be suh that zi → z. Let
ti ∈ (0, 1) be suh that zi ∈ L(ti); passing to a subsequene if neessary, wemay assume that ti → t ∈ [0, 1]. Then z ∈ C ∩ lim cl(L(ti)), so z ∈ L(t) byLemma 3.5. Sine F is open by Lemma 2.3(1), it follows that C ∩ bd(F ) ⊆
L(0)∪L(1). On the other hand, by Lemma 2.3(2), there is a j ∈ {1, 2} suhthat L(t) ⊆ UL(0),j for all t ∈ (0, 1] and L(t) ⊆ U1,j′ for all t ∈ [0, 1), where
j′ ∈ {1, 2} \ {j}. Hene L(0) ∪ L(1) ⊆ C ∩ bd(F (Γ )), and the orollary isproved.Definition 3.7. Let τ : [0, 1] → U be ontinuous. We all τ pieewise
Cp-monotone in ξ if there are t0 := 0 < t1 < t2 < · · · < tk < tk+1 := 1 and
∗ ∈ {<,>} suh that for all i = 0, . . . , k, the restrition τ |(ti,ti+1) is Cp, andeither ξ⊥(τ(t)) · τ ′(t) = 0 for all t ∈ (ti, ti+1) or ξ⊥(τ(t)) · τ ′(t) ∗ 0 for all
t ∈ (ti, ti+1). In this situation, we also say that τ is ∗-pieewise Cp-monotonein ξ. We all suh a τ tangent to ξ if eah τ |(ti,ti+1) is tangent to ξ.Lemma 3.8. Let v, w ∈ C. Then there is a urve τ : [0, 1] → C that ispieewise Cp-monotone in ξ and satis�es τ(0) = v and τ(1) = w.Proof. If Lv = Lw, then there is a Cp-urve τ : [0, 1] → Lv suh that
τ(0) = v and τ(1) = w, and we are done. So we assume from now on that
Lv 6= Lw. Let jvw ∈ {1, 2} be suh that w ∈ ULv,jvw , and put

∗vw :=

{

< if jvw = 1,
> if jvw = 2.By o-minimality, there is a de�nable Cp-urve τ : [0, 1] → C suh that



An ordered struture of rank two 31(I) τ(0) = v and τ(1) = w.Again by o-minimality, there are t0 := 0 < t1 < · · · < tk < tk+1 := 1 suhthat for eah i = 0, . . . , k,(II) the map t 7→ ξ⊥(τ(t)) · τ ′(t) has onstant sign on (ti, ti+1).By Khovanski�� theory [14℄, we may also assume that for every i = 0, . . . , k,(III) either τ((ti, ti+1)) ∩ (Lv ∪ Lw) = ∅ or τ((ti, ti+1)) ⊆ Lv ∪ Lw.We now proeed by indution on k, simultaneously for all v, w ∈ C and τsatisfying (I)�(III), to prove that τ an be hanged into a urve that is ∗vw-pieewise Cp-monotone in ξ. If k = 0, then τ is ∗vw-pieewise Cp-monotonein ξ, so we are done. Therefore, we assume that k > 0 and that the laimholds for lower values of k.Sine τ(1) = w /∈ Lv and Lv is losed in C, there is a maximal t ∈ [0, 1)suh that τ(t) ∈ Lv, and by our hoie of t1, . . . , tk, we have t = ti for some
i ∈ {0, . . . , k}. If i > 1, we replae τ |[0,ti] by a Cp-urve τ1 : [0, ti] → Lvsuh that τ1(0) = v and τ1(ti) = τ(ti), and we reindex ti, . . . , tk+1 as
t1, . . . , tk−i+2. Hene by the indutive hypothesis, we may assume that i ≤ 1and τ([0, 1]) ⊆ Lv ∪ ULv,jvw . Put v′ := τ(t1); we now distinguish two ases:
Case 1: v′ ∈ Lv. Then ∗v′w = ∗vw, so by the indutive hypothesis (andresaling), there is a urve τ1 : [t1, 1] → C that is ∗vw-pieewise Cp-monotonein ξ and satis�es τ1(t1) = v′ and τ1(1) = w. Now replae τ |[t1,1] by τ1.
Case 2: v′ /∈ Lv. Then we must have ξ⊥(τ(t))·τ(t)∗vw0 for all t ∈ (0, t1).If v′ ∈ Lw, the lemma follows by a similar argument to that in Case 1, so weassume that v′ /∈ Lw. We laim again that ∗v′w = ∗vw in this situation, fromwhih the lemma then follows by the indutive hypothesis as in Case 1.To see the laim, we note that by Corollary 3.6 the omplement of

F (τ([0, t1])) in C has two onneted omponents ULv ,j and ULv′,j′
, where

j, j′ ∈ {1, 2} are distint. By the above, j must be di�erent from jvw, so
w ∈ ULv′,j′

, that is, j′ = jv′w, whih implies jvw = jv′w as required.Lemma 3.9. Let τ : [0, 1] → C be pieewise Cp-monotone in ξ suh that
τ is not tangent to ξ. Then there is a Cp-urve γ : [0, 1] → C suh that γ istransverse to C, γ(0) = τ(0) and γ(1) = τ(1).Proof. Let t0 := 0 < t1 < t2 < · · · < tk < tk+1 := 1 be as in De�nition3.7. We work by indution on k. If k = 0, then by hypothesis τ is transverseto ξ, and we take γ := τ . So we assume that k > 0; for the indutive step,it su�es to onsider the ase k = 1. The hypothesis on τ then implies thatat least one of τ |(0,t1) and τ |(t1,1) is transverse to ξ; so we distinguish threeases:



32 A. Dolih and P. Speissegger
Case 1: Both τ |(0,t1) and τ |(t1,1) are transverse to ξ. By Piard's The-orem, there are an open neighborhood W ⊆ C of τ(t1) and a Cp-di�eo-morphism f : R

2 → W suh that f(0) = τ(t1) and f∗ξ = ∂/∂x, where
f∗ξ is the pull-bak of ξ via f . Then for some ε > 0, the ontinuous urve
f−1 ◦ τ |(t1−ε,t1+ε) is Cp and transverse to ∂/∂x on (t1 − ε, t1) ∪ (t1, t1 + ε).Using standard smoothing arguments from analysis, we an now �nd a Cp-urve η : (t1 − ε, t1 + ε) → R

2 that is transverse to ∂/∂x and satis�es
η(t) = f−1(τ(t)) for all t ∈ (t1 − ε, t1 − ε/2) ∪ (t1 + ε/2, t1 + ε). Now de�ne
γ : [0, 1] → C by

γ(t) :=

{

τ(t) if 0 ≤ t < t1 − ε or t1 + ε < t ≤ 1,

f(η(t)) if t1 − ε ≤ t ≤ t1 + ε.

Case 2: τ |(0,t1) is transverse to ξ and τ |(t1,1) is tangent to ξ. Sine
τ([t1, 1]) is ompat, there are (by Piard's theorem again) s0 := t1 <
s1 < · · · < sl < sl+1 := 1, open neighborhoods Wi ⊆ U of τ(si) and
Cp-di�eomorphisms fi : R

2 → Wi for i = 0, . . . , l + 1 suh that τ([t1, 1]) ⊆
W0 ∪ · · · ∪Wl+1, fi(0) = τ(si) and f∗i ξ = ∂/∂x for eah i. We assume that
l = 0, so that s0 = t1 and s1 = 1; the general ase then follows by indutionon l.Let u ∈ (t1, 1) be suh that τ(u) ∈ W0 ∩ W1. Working with f0 as inCase 1, we an replae τ |[0,u] by a Cp-urve η : [0, u] → C transverse to ξsuh that η(0) = τ(0) and η(u) = τ(u). De�ne η(t) := τ(t) for t ∈ (u, 1];repeating the proedure with η and f1 in plae of τ and f0, we obtain a
Cp-urve γ : [0, 1] → C that is transverse to ξ and satis�es γ(0) = τ(0) and
γ(1) = τ(1), as desired.
Case 3: τ |(0,t1) is tangent to ξ and τ |(t1,1) is transverse to ξ. This aseis similar to Case 2.Combining Lemmas 3.8 and 3.9, we obtain:Corollary 3.10. Let u, v ∈ C be suh that Lu 6= Lv. Then there is a

Cp-urve γ : [0, 1] → C suh that γ(0) = u, γ(1) = v and γ is transverseto ξ.Proof of Theorem 3.4. Let M,L ∈ L(C) be distint and hoose v ∈ Mand w ∈ L. By Corollary 3.10, there is a Cp-urve γ : [0, 1] → C suh that
γ(0) = v, γ(1) = w and γ is transverse to ξ. Hene t 7→ ξ⊥(γ(t)) · γ′(t) hasonstant nonzero sign on [0, 1]; this shows that ≪C is irre�exive. Transitivityfollows by a similar argument.4. Foliation orderings. Let ξ = a1

∂
∂x

+a2
∂
∂y

be a de�nable vetor �eldof lass C1 on R
2. We �x a pieewise trivial deomposition C of R

2 for ξ;re�ning C if neessary, we may assume that C is a strati�ation. To simplify
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Creg := {C ∈ C : C ∩ S(ξ) = ∅}.For instane, in Example 3.2, the pieewise trivial deomposition C is astrati�ation and Creg = C \ {0}.Remark 4.1. C being a strati�ation has the following onsequene: forevery 1-dimensional C ∈ C, there are exatly two distint open D ∈ C suhthat C ∩ fr(D) 6= ∅, and for eah of these D we have C ⊆ fr(D).Let V ⊆ R

2 \ S(ξ) be an integral manifold of ξ, that is, a 1-dimensionalmanifold tangent to ξ. Given u, v ∈ V , we de�ne u <ξ
V v if and only if there isa C1-path γ : [0, 1] → V suh that γ(0) = u, γ(1) = v and ξ(γ(t)) · γ′(t) > 0for all t ∈ [0, 1].Lemma 4.2. Assume that V is onneted and not a ompat leaf. Thenthe relation <ξ

V de�nes a dense linear ordering of V without endpoints.Proof. Let u, v ∈ V be suh that u 6= v. Sine V is onneted, we get
u <ξ

V v or v <ξ
V u. On the other hand, if there are C1-paths γ, δ : [0, 1] → Vsuh that γ(0) = δ(1) = u, γ(1) = δ(0) = v and ξ(γ(t)) · γ′(t) > 0 and

ξ(δ(t)) · δ′(t) > 0 for all t ∈ [0, 1], then γ([0, 1])∪ δ([0, 1]) is a ompat leaf of
ξ ontained in V ; sine V is onneted, it follows that V is a ompat leaf,a ontradition.We now �x a C ∈ Creg suh that dim(C) > 0.Definition 4.3. The foliation of ξ indues an ordering <ξ

C on C asfollows:
• Suppose that C is open, and let u, v ∈ C. Then every leaf of ξ|C isnonompat by Proposition 1.5. Thus, we de�ne u <ξ

C v if and only if
Lu ≪ξ

C Lv or Lu = Lv and u <ξ
Lu

v.
• Suppose that dim(C) = 1 and C is tangent to ξ. Then C is a on-neted, nonompat integral manifold of ξ, so we de�ne <ξ

C as beforeLemma 4.2.
• Suppose that dim(C) = 1 and C is transverse to ξ. Let u, v ∈ C; wede�ne u <ξ

C v if and only if there is a C1-urve γ : [0, 1] → C suhthat ξ⊥(γ(t)) · γ′(t) > 0 for all t ∈ [0, 1].As before, we omit the supersript ξ whenever it is lear from ontext.A <C-interval is a set A of the form (a, b) := {c ∈ C : a ∗1 c ∗2 b} with
a, b ∈ C, or (a,∞) := {c ∈ C : a∗c} with a ∈ C, or (−∞, b) := {c ∈ C : c∗c}with b ∈ C, where ∗, ∗1, ∗2 ∈ {<C ,≤C}; we all A open if ∗ = ∗1 = ∗2 = <C .Lemma 4.4. The ordering <C is a dense linear ordering on C withoutendpoints. Moreover , if dim(C) = 1, then every <C-bounded subset of C hasa least upper bound.



34 A. Dolih and P. SpeisseggerProof. It is lear from the de�nition that C has no endpoints with respetto <C . Density and linearity follow from Lemmas 2.3 and 4.2 if dim(C) = 1,and if C is open, they follow from Lemma 4.2 and Theorem 3.4.For the seond statement, assume that dim(C) = 1 and let α : (0, 1)→R
2be C1 and injetive suh that C = α((0, 1)). If C is tangent to ξ, then themap t 7→ ξ(α(t)) · α′(t) has onstant nonzero sign, and if C is transverseto ξ, then the map t 7→ ξ⊥(α(t)) · α′(t) has onstant nonzero sign. Thus inboth ases, the map α : ((0, 1), <) → (C,<C) is either order-preserving ororder-reversing; the seond statement follows.We assume for the remainder of this setion that either C is open, or Cis 1-dimensional and tangent to ξ.Definition 4.5. For eah leaf L of ξ|C , it follows from Proposition 1.5that fr(L) onsists of exatly two points P>

L , P
<
L ∈ fr(C) ∪ {∞}, where, for

∗ ∈ {>,<}, P ∗
L is the unique of these two points with the property that forevery C1-urve γ : [0, 1) → L satisfying γ(0) ∈ L and limt→1 γ(t) = P ∗

L,we have ξ(γ(t)) · γ′(t) ∗ 0 for all t ∈ [0, 1). In this situation, we de�ne theforward projetion fC : C → fr(C) ∪ {∞} and the bakward projetion bC :
C → fr(C) ∪ {∞} as

fC(z) := P>
Lz

and bC(z) := P<
Lz

for all z ∈ C.From now on we assume that C is open, and we let D ∈ Creg be ofdimension 1 and ontained in fr(C) suh that D is transverse to ξ.Lemma 4.6. Either D ⊆ fC(C) and D ∩ bC(C) = ∅, or D ⊆ bC(C) and
D ∩ fC(C) = ∅.Proof. Let α : (0, 1) → R

2 be a de�nable C1-map suh thatD = α((0, 1))and ξ⊥(α(t)) · α′(t) > 0 for all t ∈ (0, 1). Thus, either ξ(α(t)) points into
C for all t, or ξ(α(t)) points out of C for all t. In the �rst ase, we have
fC(C)∩D = ∅, and in the seond ase bC(C)∩D = ∅. Moreover, by Piard'sTheorem, for every w ∈ D there is an integral manifold V ⊆ R

2 of ξ suhthat V ∩D = {w}; hene, either w ∈ fC(C) or w ∈ bC(C).Lemma 4.7. The maps fC |f−1
C

(D) and bC |b−1
C

(D) are inreasing.Proof. We prove the lemma for fC . Let u, v ∈ C with u <C v be suhthat fC(u), fC(v) ∈ D; we may learly assume that Lu ≪C Lv, and hene(by Piard's Theorem) that fC(u) 6= fC(v).We assume here that D = gr(α), where α : (a, b) → R is a de�nable C1-funtion; the aseD = {a}×(b, c) is handled similarly. Let also β : (a, b) → Rbe a de�nable C1-funtion suh that C = (α, β) or C = (β, α); we assumehere the former, the latter being handled similarly. For s ∈ [0, 1], we put
αs(t) := (1 − s)α(t) + sβ(t), a < t < b.



An ordered struture of rank two 35Then for every t ∈ (a, b), we have lims→0 αs(t) = α(t) and lims→0 α
′
s(t) =

α′(t).Let now a < a′ < b′ < b be suh that fC(u), fC(v) ∈ grα|(a′,b′). Sine Dis transverse to ξ, there is an ε > 0 suh that grαs|(a′,b′) is transverse to ξfor all s ∈ [0, ε). It follows from the previous paragraph that the map t 7→
σα(t, α(t)) has the same onstant nonzero sign as the map t 7→ σαs(t, αs(t))for all s ∈ (0, ε). Therefore by Lemma 2.3(2) and the de�nition of <D, wehave fC(u) <D fC(v), as required.Corollary 4.8. Let I ⊆ C be a <C-interval. Then eah of fC(I) ∩ Dand bC(I) ∩D is either empty , a point or an open <D-interval.Proof. Assume that a, b ∈ fC(I)∩D are suh that a <D b, and let c ∈ Dbe suh that a <D c <D b; it su�es to show that c ∈ fC(I). By Lemma 4.6,
c ∈ fC(C). Let u, v, w ∈ C be suh that a = fC(u), b = fC(v), c = fC(w) and
u, v ∈ I. Then u <C w <C v by Lemma 4.7, as required.We �x a set EC ⊆ C suh that |EC ∩L| = 1 for every L ∈ L(C) and put
<EC

:= <C |EC
, and we denote by eL the unique element of E ∩L, for every

L ∈ L(C).
Remark. The map L 7→ L ∩ EC : (L(C),≪C) → (EC , <EC

) is anisomorphism of ordered strutures.Proposition 4.9. Let g ∈ {f, b}. If D ⊆ gC(C), then Dg := g−1
C (D)∩ECis an <EC

-interval , and the map gC |Dg : (Dg, <EC
|Dg ) → (D,<D) is anisomorphism of ordered strutures.Proof. The transversality of D to ξ implies that if u ∈ D and L1, L2 ∈

L(C) are suh that u = P>
L1

= P>
L2

or u = P<
L1

= P<
L2
, then L1 = L2. Thusby Lemma 4.7, the map gC |Df

is stritly inreasing, so the lemma follows.5. Progression map. We ontinue working with ξ and C as in Setion 4,and we adopt all orresponding notations. We let(i) Copen be the olletion of all open ells in Creg;(ii) Ctan be the olletion of all ells in Creg that are of dimension 1 andtangent to ξ;(iii) Ctrans be the olletion of all ells in Creg that are of dimension 1 andtransverse to ξ;(iv) Csingle be the olletion of all p ∈ R
2 suh that {p} ∈ Creg.By Lemma 4.6 and sine C is a strati�ation, there are, for eah C ∈

Ctrans, distint and unique ells Cb, Cf ∈ Copen suh that C ∩ cl(Cb) 6= ∅,
C ∩ cl(Cf) 6= ∅ and

C ⊆ fCb (Cb) and C ⊆ bCf (Cf).



36 A. Dolih and P. SpeisseggerSimilarly, there are, for eah p ∈ Csingle, distint and unique ells pb, pf ∈
Copen ∪ Ctan suh that p ∈ cl(pb), p ∈ cl(pf) and

p ∈ fpb (pb) and p ∈ bpf (pf).(For p ∈ Csingle, we use the fat that there is an open box B ontaining p suhthat the leaf of ξ|B passing through p is a Rolle leaf.) For eah C ∈ Ctan, we�x an arbitrary element eC ∈ C; note that for eah z ∈ C, C is the uniqueleaf Lz of ξ|C ontaining z.We now de�ne f′, b′ : R
2 → R

2 ∪ {∞} by
f′(z) :=



















fC(z) if z ∈ C ∈ Copen ∪ Ctan and eLz ≤Lz z,

eLz if z ∈ C ∈ Copen ∪ Ctan and z <Lz eLz ,

(bCf |E
Cf

)−1(z) if z ∈ C ∈ Ctrans ∪ Csingle,

z if z ∈ S(ξ)and
b′(z) :=



















bC(z) if z ∈ C ∈ Copen ∪ Ctan and z ≤Lz eLz ,

eLz if z ∈ C ∈ Copen ∪ Ctan and eLz <Lz z,

(fCb |E
Cb

)−1(z) if z ∈ C ∈ Ctrans ∪ Csingle,

z if z ∈ S(ξ).Definition 5.1. We de�ne f, b : R
2 ∪ {∞} → R

2 ∪ {∞} by
f(z) :=

{

f′(z) if z ∈ R
2 and f′(z) /∈ S(ξ),

∞ otherwiseand
b(z) :=

{

b′(z) if z ∈ R
2 and b′(z) /∈ S(ξ),

∞ otherwise.We all f a progression map assoiated to ξ and b a reverse progression mapassoiated to ξ. We put
C1 = Ctrans ∪ Csingle ∪

⋃

{EC : C ∈ Copen} ∪ {{eC} : C ∈ Ctan}and let B :=
⋃

C1; note that f(R2) ⊆ B∪{∞} and b(R2) ⊆ B∪{∞}. Finally,we de�ne f0 : R
2 ∪ {∞} → R

2 ∪ {∞} by f0(x) := x, and for k > 0 we de�ne
fk : R

2 ∪ {∞} → R
2 ∪ {∞} indutively on k by fk(x) := f(fk−1(x)).Proposition 5.2. Let X ∈ C1 and L be a ompat leaf of ξ. Then

|X ∩ L| ≤ 1.Proof. If X ∈ Csingle or X = {eC} for some C ∈ Ctan, the onlusion istrivial. By Lemma 1.3(2), L is a Rolle leaf of ξ; in partiular, |X ∩ L| ≤ 1if X ∈ Ctrans. So we may assume that X = EC for some C ∈ Copen. Thenthere is at most one L′ ∈ L(C) ontained in L: otherwise by Corollary 3.10,there is a C1-urve γ : [0, 1] → C transverse to ξ suh that γ(0), γ(1) ∈ L, aontradition. It follows again that |X ∩ L| ≤ 1.



An ordered struture of rank two 37Proposition 5.3. There is an N ∈ N suh that for every x ∈ B, theleaf of ξ through x is ompat if and only if fN (x) = x.Proof. Let x ∈ B; if fk(x) = x for some k > 0, then the leaf of ξthrough x is ompat. For the onverse, we assume that the leaf L of ξthrough x is ompat. Sine L is ompat, we have L ∩ S(ξ) = ∅, that is,
fk(x) ∈ B for every k > 0. Thus with n := |Creg|+1, there are a C ∈ Creg and
0 ≤ k1 < k2 ≤ n suh that fk1(x), fk2(x) ∈ C. It follows from Proposition 5.2that fk1(x) = fk2(x), and hene that

x = bk1 ◦ fk1(x) = bk1 ◦ fk2(x) = fk2−k1(x).Sine n is independent of x ∈ B, the number N := n! will do.6. Flow on�guration theories. Inspired by the previous setions, wenow de�ne a �rst-order theory as desribed in the introdution. Our maingoal, reahed in Setion 9, is to show that this theory admits quanti�erelimination in a language suitable to our purposes.Definition 6.1. A �ow on�guration is a tuple
Φ = (Φopen, Φtan, Φtrans, Φsingle, φ

b, φf,min,max, NΦ)suh that Φopen, Φtan, Φtrans and Φsingle are pairwise disjoint, �nite sets,
φb, φf : Φtrans ∪ Φsingle → Φopen ∪ Φtan,

min,max : Φopen ∪ Φtan ∪ Φtrans → Φsingle ∪ {∞}and NΦ ∈ N. In this situation, we shall write ab and af instead of φb(a) and
φf(a) for a ∈ Φtrans ∪ Φsingle.Example 6.2. Let ξ be a vetor �eld on R

2 of lass C1 and de�nablein an o-minimal expansion of the real �eld, and let C be a pieewise trivialell deomposition of R
2 that is also a strati�ation. We de�ne Copen, Ctan,

Ctrans, Csingle and b, f : Ctrans ∪ Csingle → Copen ∪ Ctan as in Setion 5, and welet N ∈ N be as in Proposition 5.3.Let C ∈ Copen ∪Ctan∪Ctrans. If there is a point in Csingle that is ontainedin the losure of every set {x ∈ C : x <ξ
C a} with a ∈ C, we let min(C) beany suh point; otherwise, we put min(C) := ∞. Similarly, if there is a pointin Csingle that is ontained in the losure of every set {x ∈ C : a <ξ

C x} with
a ∈ C, we let max(C) be any suh point; otherwise, we put max(C) := ∞.Then the tuple

Φξ = Φξ(C) := (Copen, Ctan, Ctrans, Csingle,
b, f,min,max, N)is a �ow on�guration assoiated to ξ.For the remainder of this setion, we �x a �ow on�guration Φ.



38 A. Dolih and P. SpeisseggerDefinition 6.3. Let L(Φ) be the �rst-order language onsisting of(i) a unary prediate C and a binary prediate <C for eah C ∈ Φopen∪
Φtan ∪ Φtrans;(ii) a unary prediate EC for eah C ∈ Φopen and a onstant symbol eCfor eah C ∈ Φtan;(iii) a onstant symbol s, and a onstant symbol c for eah c ∈ Φsingle;(iv) unary funtion symbols f and b;(v) onstant symbols rg

C and sg
C for eah C ∈ Φtrans and g ∈ {f, b}.Throughout the rest of this paper, for m ∈ N we write fm for the L(Φ)-wordonsisting of m repetitions of the symbol f, and similarly for bm.Example 6.4. Let ξ and C be as in Example 6.2; we adopt the notationsused there. We assoiate to ξ a unique L(Φξ)-struture Mξ = Mξ(C) asfollows:(i) the universe Mξ of Mξ is R
2 \ S(ξ) ∪ {∞};(ii) for eah C ∈ Copen∪Ctan∪Ctrans, the prediate C is interpreted by theorresponding ell in C, and the prediate <C is interpreted by theunion of <ξ

C with {(min(C), a) : a ∈ C} and {(a,max(C)) : a ∈ C};(iii) for eah C ∈ Copen, the prediate EC is interpreted by the set ECdesribed in Setion 5, and for eah C ∈ Ctan, the onstant eC isinterpreted by the element eC ∈ C piked in Setion 5;(iv) the onstant s is interpreted as ∞, and for eah c ∈ Csingle, theonstant c is interpreted as the orresponding element of Csingle;(v) the funtions f and b are interpreted by the orresponding forwardprogression and reverse progression maps;(vi) for eah C ∈ Ctrans and g ∈ {f, b}, the onstants rg
C and sg

C areinterpreted as the lower and upper endpoints, respetively, of theinterval g(C) in ECg ∪ {min(Cg),max(Cg)}.Definition 6.5. We put Φ0 := Φopen∪Φtan∪Φtrans; intending to apturethe theory of the previous example, we let T (Φ) be the L(Φ)-theory onsistingof the universal losures of the formulas in the axiom shemes (F1)�(F15)below.(F1) The formulas(a) ∧

c,d∈Φsingle, c6=d

¬c = d ∧
∧

c∈Φsingle, C∈Φ0

¬C(c),(b) ∧

c∈Φsingle

¬c = s ∧
∧

C∈Φ0

¬C(s),
() x = s ∨

∨

c∈Φsingle

x = c ∨
∨

C∈Φ0

(

C(x) ∧
∧

D∈Φ0,D 6=C

¬D(x)
).



An ordered struture of rank two 39(F2) For eah C ∈ Φ0 the sentenes stating that <C is a dense linear or-dering of C, together with C(x)→(x <C max(C)∧min(C) <C x).
Remark. We do not wish to state that <C is a linear order on all of

C ∪ {min(C),max(C)}, beause it is possible that min(C) = max(C). Theaxioms (F2) su�e for our purpose, whih is to be able to refer to C as the
<C -interval between min(C) and max(C).(F3) The formula ∧

C∈Φtan

C(eC) ∧
∧

C∈Φopen

EC(x) → C(x).(F4) For eah C ∈ Φopen the sentenes stating that the restrition of <Cto EC is a dense linear ordering.(F5) For eah (g, h) ∈ {(f, b), (b, f)} and ∗ ∈ {≤,≥} the formulas(a) g(s) = s ∧ (¬x = s→ ¬g(x) = x),(b) ∧

c∈Φsingle

(¬g(c) = s→ h(g(c)) = c),() ∧

C∈Φopen

Cg(x) → EC(g(x)) ∧
∧

C∈Φtan

C(g(x)) → g(x) = eC ,(d) ∧

C∈Φtan

(C(x) ∧ eC ∗C x ∗C g(eC)) → g(x) = g(eC),(e) ∧

C∈Φtan

(C(x) ∧ eC ∗C x ∗C h(eC)) → g(x) = eC .(F6) For eah C ∈ Copen and g ∈ {f, b} the formula
(EC(x) ∧ EC(y) ∧ g(x) = g(y)) → (g(x) = s ∨ x = y).(F7) For eah c ∈ Φsingle and g ∈ {f, b}, the sentenes g(c) = ecg if

cg ∈ Φtan and Ecg (g(c)) if cg ∈ Φopen.(F8) For eah C ∈ Φtrans and (g, h) ∈ {(f, b), (b, f)} the sentenes statingthat g(C) is an interval I1 in ECg and g|C : C → I1 is an order-isomorphism.(F9) For eah C ∈ Φopen and (g, h) ∈ {(f, b), (b, f)} the formula
EC(x) →

(

g(x) = s ∨
∨

D∈Φtrans, C=Dh

D(g(x)) ∨
∨

d∈Φsingle, C=dh

g(x) = d
)

.

We need more axioms desribing the ordering <C and the behavior of
f and b on C for C ∈ Φopen. For example, if x ∈ C \ EC , we want that
x has either a unique predeessor or a unique suessor in EC . Also, forany y ∈ EC , the set of points x for whih y is either the predeessor orthe suessor is in�nite and densely ordered by <C . For onveniene, we let
φf

C(x, y) be the formula
C(x) ∧ ¬EC(x) ∧ EC(y) ∧ x <C y ∧ ¬∃z(EC(z) ∧ x <C z <C y)



40 A. Dolih and P. Speisseggerand φb
C(x, y) be the formula
C(x) ∧ ¬EC(x) ∧EC(y) ∧ y <C x ∧ ¬∃z(EC(z) ∧ y <C z <C x).(F10) For eah C ∈ Φopen the formulas(a) C(x) ∧ ¬EC(x) → ∃y(φf

C(x, y) ∨ φb
C(x, y)),(b) ∃yφf

C(x, y) → ¬∃yφb
C(x, z),() ∃yφb

C(x, y) → ¬∃yφf
C(x, y),and the formula sheme EC(y) → ∃∞xφf

C(x, y) ∧ ∃∞xφb
C(x, y).(F11) For eah C ∈ Φopen the sentenes stating that for every y ∈ EC , therestrition of <C to the set Cy := {x : φb

C(x, y)∨φf
C(x, y)∨x = y}is a dense linear ordering, together with Cy(x) → (x <C f(y) ∧

g(y) <C x).(F12) For eah C ∈ Φopen and (g, h) ∈ {(f, b), (b, f)} the formulas(a) C(x) ∧ ¬EC(x) ∧ ∃yφg
C(x, y) → ∀z(φg

C(x, z) → g(x) = z),(b) C(x) ∧ ¬EC(x) ∧ ∃yφh
C(x, y) → ∀z(φh

C(x, z) → g(x) = g(z)).(F13) For eah C ∈ Φtrans and (g, h) ∈ {(f, b), (b, f)} the formulas(a) ECg (rg
C) ∨ rg

C = min(Cg) ∨ rg
C = max(Cg),(b) ECg (sg

C) ∨ sg
C = min(Cg) ∨ sg

C = max(Cg),() rg
C ≤Cg sg

C ,(d) ECg (x) → (C(h(x)) ↔ rg
C <Cg x <Cg sg

C).(F14) For eah m,n ∈ N, C ∈ Φopen, D ∈ Φtrans and g ∈ {f, b} theformulas(a) EC(x) ∧ EC(gm(x)) ∧ gn(x) = x→ gm(x) = x,(b) D(x) ∧D(gm(x)) ∧ gn(x) = x→ gm(x) = x.(F15) For eah m ∈ N and g ∈ {f, b} the formula gm(x) = x →
gNΦ(x) = x.This ompletes our list of axioms for T (Φ).Our hoie of axioms above and Setions 4 and 5 imply the following:Proposition 6.6. Let ξ be a vetor �eld on R

2 of lass C1 and de�nablein an o-minimal expansion of the real �eld , and let Mξ be an L(Φξ)-strutureassoiated to ξ as in Example 6.4. Then Mξ |= T (Φξ).Definition 6.7. We write
Φ1 := Φtrans ∪ {EC : C ∈ Φopen}.The following L(Φ)-formulas are of partiular interest: for C ∈ Φ1, we let

FixC(x) be the formula C(x) ∧ fNΦ(x) = x and FixC(x, y) be the formula
∃z((x ≤C z ≤C y ∨ y ≤C z ≤C x) ∧ FixC(z)).



An ordered struture of rank two 41Next, we let BdC(x) be the formula
FixC(x) ∧ ∀y∀z

(

y <C x <C z → ∃w(y <C w <C z ∧ ¬FixC(w))
)

,and let LimC(x) be the formula
FixC(x) ∧ ∃y(C(y) ∧ y 6= x ∧ ¬FixC(x, y)).Example 6.8. Let ξ be a vetor �eld on R

2 of lass C1 and de�nable inan o-minimal expansion of the real �eld, and let Mξ be an L(Φξ)-strutureassoiated to ξ as in Example 6.4. Let also C ∈ C1 := Ctrans ∪ {EF : F ∈
Copen}. Then FixC(M) is the set of points in C that belong to a yle of ξ;
BdC(M) is the set of points in C that belong to a boundary yle of ξ; and
LimC(M) is the set of points in C that belong to a limit yle of ξ. Notethat if ξ is analyti, then the set BdC(M) is disrete by Poinaré's Theorem[12℄ (see also [11, p. 217℄); in partiular, BdC(M) = LimC(M) in this ase.In general, by Proposition 5.3, the ardinality of BdC(M) is equal tothe number of boundary yles of ξ that interset C. Sine every yle of
ξ intersets the set ⋃

Ctan ∪
⋃

Ctrans ∪
⋃

Csingle, it follows that, with b(ξ)denoting the ardinality of the set of all boundary yles of ξ, we have
|BdC(M)| ≤ b(ξ) ≤ |Ctan| + |Csingle| +

∑

D∈Ctrans

|BdD(M)|.

7. Iterating the progression maps. We ontinue to work with a �owon�guration Φ as in De�nition 6.1. Throughout this setion, we �x (g, h) ∈
{(f, b), (b, f)}.For the next lemma, we denote by Θ(g,h) the universal losure of theonjuntion of the formulas (

∧

C∈Φ0
¬C(x)) → g(h(x)) = x,

(C(x) ∧EC(h(x))) → g(h(x)) = g(x)and
(EC(x) ∧ h(x) 6= s) → g(h(x)) = xfor eah C ∈ Φopen,

(C(x) ∧ h(x) = eC) → g(h(x)) = g(x)and
(x = eC ∧ h(x) 6= s) → g(h(x)) = xfor eah C ∈ Φtan, and C(x) → g(h(x)) = x for eah C ∈ Φtrans ∪ Φsingle.Lemma 7.1. T (Φ) ⊢ Θ(g,h).Proof. Let M |= T (Φ), and let a ∈ M be suh that a /∈ ⋃

C∈Φ0
C. Thenby (F1), either a = c for some c ∈ Φsingle, or a = s. In the latter ase, wehave g(h(a)) = h(g(a)) = a by (F5), so we may assume that a = c for some

c ∈ Φsingle. Then h(g(a)) = g(h(a)) = a by (F7)�(F9).



42 A. Dolih and P. SpeisseggerThe proofs of the other onjunts are similar, using also (F12); we leavethe details to the reader.Corollary 7.2. Let φ be any quanti�er-free L(Φ)-formula. Then φ isequivalent in T (Φ) to a quanti�er-free formula φ′ suh that no term ourringin φ′ ontains both the symbols f and b.Proof. By indution on l := max{length(t) : t is a term ourring in φ},using Lemma 7.1.For the remainder of this setion, we �x an arbitrary model M of T (Φ).To simplify notation, we omit the supersript M below and write C :=
C ∪ {min(C),max(C)} for C ∈ Φ1.Definition 7.3. Let C ∈ Φ1 and k ∈ N. We de�ne

Gk
C := {gl(z) : z is a onstant, 0 ≤ l ≤ k and gl(z) ∈ C},and we let Ok

C be the olletion of all possible order types of pairs (a, b) ∈ C2over Gk
C . In addition, for ζ0, ζ1 ∈ C and D ∈ Φ1, we put

g−k
D (ζ0, ζ1) := {x ∈ D : ζ0 <C gk(x) <C ζ1}and

Hk
D(ζ0, ζ1) := {hl(z) : z ∈ {ζ0, ζ1} or z is a onstant,

0 ≤ l ≤ k and hl(z) ∈ D}.Note that Gk
C and Hk

D(ζ0, ζ1), and hene Ok
C , are �nite sets whose ardi-nality is bounded by a number depending only on the language and k, butindependent of M, C, D, ζ0 or ζ1.Proposition 7.4. Let C,D ∈ Φ1, ζ0, ζ1 ∈ C and k ∈ N.(1) The set g−k

D (ζ0, ζ1) is a union of points in Hk
D(ζ0, ζ1) and open inter-vals with endpoints in Hk

D(ζ0, ζ1).(2) For eah ϑ ∈ Ok
C , there is a onjuntion σϑ(x, y0, y1) of atomi for-mulas with free variables x, y0 and y1 suh that whenever (ζ0, ζ1) hasorder type ϑ over Gk

C , the set g−k
D (ζ0, ζ1) is de�ned by the formula

σϑ(x, ζ0, ζ1).(3) gk restrited to g−k
D (ζ0, ζ1) is ontinuous.Proof. For every x ∈ g−k

D (ζ0, ζ1), there is a sequene E = (E0, . . . , Ek)of elements of Φ2 := Φ1 ∪ {{c} : c ∈ Φsingle} ∪ {{eC} : C ∈ Φtan} suh that
E0 = D, Ek = C and gi(x) ∈ Ei for i = 0, . . . , k. Thus, we �x a sequene
E = (E0, . . . , Ek) ∈ Φk+1

2 with Ek = C, and we de�ne the set
g−k

E (ζ0, ζ1) := {x ∈M : gi(x) ∈ Ei for i = 0, . . . , k, ζ0 <C gk(x) <C ζ1};it su�es to prove the proposition with g−k
E (ζ0, ζ1) and Hk

E0
(ζ0, ζ1) in plaeof g−k

D (ζ0, ζ1) and Hk
D(ζ0, ζ1).



An ordered struture of rank two 43Next, we note that if Ei ∈ {{c} : c ∈ Φsingle} ∪ {{eC} : C ∈ Φtan} forsome i ∈ {1, . . . , k−1}, then a ∈ g−k
E (ζ0, ζ1) if and only if gi(a) is the uniqueonstant in Ei and ζ0 <C gk(a) <C ζ1, so the proposition follows in thisase.We therefore assume from now on that Ei ∈ Φ1 for eah i = 0, . . . , k, andin this ase we prove the proposition with part (1) replaed by

(1)′ The set g−k
E (ζ0, ζ1) is an open interval with endpoints in Hk

E0
(ζ0, ζ1).We proeed by indution on k. The ase k = 0 is trivial, so we assumethat k > 1. By axiom (F8), the set g−1

(Ek−1,Ek)(ζ0, ζ1) is an open intervalwhose endpoints η0, η1 belong to the set H1
Ek−1

(ζ0, ζ1) and are determinedby the order type of (ζ0, ζ1) over G1
Ek
. In fat, we laim that the order typeof (η0, η1) over Gk−1

Ek−1
is determined by the order type of (ζ0, ζ1) over Gk

Ek
;together with the indutive hypothesis applied to gk−1

(E0,...,Ek−1)
(η0, η1), theproposition then follows, beause Hk−1

E0
(c, d) is ontained in Hk

E0
(ζ0, ζ1) forall c, d ∈ H1

Ek−1
(ζ0, ζ1).To see the laim, assume �rst that Ek = EC for some C ∈ Φopen. Thenby axiom (F8), the set {g(z) : z ∈ Gk−1

Ek−1
} is ontained in Gk

Ek
and the laimfollows in this ase. So we assume that Ek ∈ Φtrans. Then by axiom (F13),

Ek−1 = EC for some C ∈ Φopen and there are onstants a and b suh that
(η0, η1) ⊆ (a, b) = g−1(Ek) = h(Ek) (as intervals).Hene the order type of (η0, η1) over Gk−1

EC
is determined by the order typeof (η0, η1) over the set G′ := {z ∈ Gk−1

EC
: a <C z <C b}. Then again byaxiom (F8), the set {g(z) : z ∈ G′} is ontained in Gk

Ek
and the laim alsofollows in this ase.Corollary 7.5. Let C ∈ Φ1 and put G := g−N

C (min(C),max(C)).(1) The set BdC(M) is a losed and nowhere dense subset of G.(2) Assume that Φ = Φξ and M ≡ Mξ for some de�nable vetor �eld ξof lass C1 on R
2. Then for every c ∈ G\BdC(M), there are a, b ∈ Csuh that

a = sup{x ∈ BdC(M) ∪ (C \G) : x <C c},

b = inf{x ∈ BdC(M) ∪ (C \G) : c <C x}.Proof. Part (1) follows from the ontinuity of gN |G and the de�nition ofthe set BdC(M). Part (2) follows from part (1) and the fat that CMξ isomplete.Finally, for eah C ∈ Φ1 we let C(x) abbreviate C(x) ∨ x = min(C) ∨
x = max(C). We let Gk be the set of all L(Φ)-terms gjc suh that 0 ≤ j ≤ k



44 A. Dolih and P. Speisseggerand c is a onstant symbol, and we let Ok be the set of all formulas of theform
(C(y0) ∧ C(y1)) ∧

∧

{τ,̺}⊆Gk∪{y0,y1}

(τ ∗{τ,̺} ̺),

where C ∈ Φ1 and ∗{τ,̺} ∈ {<C , >C ,=, 6=}. The ardinalities of Gk and Okare bounded by a number depending only on k (and on L(Φ)). Moreover, in
M, eah formula ϑ ∈ Ok determines an order type in Ok

C for some C ∈ Φ1;and onversely, every order type in Ok
C with C ∈ Φ1 is determined by someformula ϑ ∈ Ok. Thus we obtain the following from Proposition 7.4:Corollary 7.6. Let k ∈ N. Then there are l = l(k) ∈ N and quanti�er-free formulas ϑk

1(y0, y1), . . . , ϑ
k
l (y0, y1) with free variables y0 and y1 suh that

(1) T (Φ) ⊢
l

∨

i=1

ϑk
i (y0, y1) ↔

∨

C∈Φ1

(C(y0) ∧ C(y1));(2) for every D ∈ Φ1 there are quanti�er-free formulas σD,k
i (x, y0, y1)with free variables x, y0 and y1, i = 1, . . . , l, suh that if M |=

ϑk
i (ζ0, ζ1) for ζ0, ζ1 ∈M and some i, then the set g−k

D (ζ0, ζ1) is de�nedby the formula σD,k
i (x, ζ0, ζ1).Remark 7.7. We obtain analogous statements to Proposition 7.4 andCorollary 7.6 if we replae the open interval (ζ0, ζ1) by a half-open or losedinterval.8. Dula �ow on�gurations. It is lear from Example 6.8 that, fora vetor �eld ξ on R

2 de�nable in R, the set of boundary yles of ξ isrepresented in Mξ by the de�nable sets BdC(M). The following exampleshows that the theory T (Φ) has hardly any impliations for the nature ofthese sets.Example 8.1. Consider the vetor �eld ζ of Example 3.2, and let C bethe pieewise trivial deomposition obtained there. We denote by Φζ the �owon�guration orresponding to this C and write
C0 := {(x, y) : x > 0, y = 0} ∈ C.We show here how to de�ne, given any losed and nowhere dense subset Fof C0, a vetor �eld ζ ′ of lass C∞ for whih Φζ is still a �ow on�gurationand suh that BdC0

(Mζ′) = F .First, given 0 < a < b < ∞, we let d(a,b) : R
2 → R be the funtion

d(a,b)(x, y) := (b2−(x2+y2))((x2+y2)−a2), and we let e(a,b) : R
2 → R be the

C∞-funtion de�ned by e(a,b)(x, y) := exp(−1/d(a,b)(x, y)). We let ζ(a,b) bethe vetor �eld of lass C∞ on the annulus A(a,b) := {(x, y) : d(a,b)(x, y) > 0}
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ζ(a,b) := −(y + e(a,b)(x, y)x)

∂

∂x
+ (x− e(a,b)(x, y)y)

∂

∂y
.Seond, let F ⊆ C0 be an arbitrary losed and nowhere dense subset.Then C0 \ F is open in C0 and hene the union of ountably many disjointopen intervals I0, I1, I2, . . . . We let ζ ′ be the vetor �eld on R

2 of lass C∞de�ned by
ζ ′(x, y) :=

{

ζIj
(x, y) if (x, y) ∈ AIj

for some j ∈ N,

ζ(x, y) otherwise.(Note that by Wilkie's Theorem [15℄, ζ ′ is de�nable in some o-minimal ex-pansion of the real �eld if and only if F is �nite.)In view of the previous example, we now introdue a strengthening of thesetting desribed in Setion 6.Definition 8.2. A Dula �ow on�guration Ψ is a pair (Φ, ν) suh that
Φ is a �ow on�guration and ν ∈ N.Example 8.3. Let ξ be a de�nable vetor �eld on R

2 of lass C1. Let
Φ = Φξ be a �ow on�guration assoiated to ξ as in Example 6.2 and let Mξbe the assoiated L(Φξ)-struture desribed in Example 6.4. Assume thatthere is a ν ∈ N suh that for eah C ∈ Φ1, the set BdC(Mξ) has ardinalityat most ν. Then Ψξ := (Φξ, ν) is alled a Dula �ow on�guration assoiatedto ξ.For the remainder of this setion, we �x a Dula �ow on�guration Ψ =
(Φ, ν).Definition 8.4. The language L(Ψ) onsists of the symbols of L(Φ)together with the following symbols for eah C ∈ Φ1:(i) binary prediates RC and Sf

m,C , Bf
m,C , Sb

m,C and Bb
m,C for eah

m ∈ N;(ii) onstant symbols γ1
C , . . . , γ

ν
C .We put Γ = Γ (Ψ) := {γj

C : C ∈ Φ1, j = 1, . . . , ν}.Example 8.5. Let ξ be a de�nable vetor �eld on R
2 of lass C1, and let

Mξ be an L(Φξ)-struture assoiated to ξ as in Example 6.4. Assume thatthere is a ν ∈ N suh that for eah C ∈ Ctrans ∪ Copen, the set BdC(Mξ) hasardinality at most ν, and let Ψξ be a Dula �ow on�guration assoiated to
ξ as in Example 8.3. We expand Mξ into an L(Ψξ)-struture MD

ξ as follows:for eah C ∈ Φ1,(i) RC is interpreted as the set
{(x, y) ∈ C2 : ∃z(x <C z <C y ∧ FixC(z)) ∨ (x = y ∧ FixC(x))};



46 A. Dolih and P. Speissegger(ii) for m ∈ N, g ∈ {f, b} and G ∈ {Sg
m,C , B

g
m,C}, we put

∗ :=

{

<C if G is Sg
m,C ,

>C if G is Bg
m,C ,and we interpret G as the union of the sets

{(x, y) ∈ C2 : ∃z
(

C(z) ∧ x <C z <C y ∧ C(gm(z)) ∧ gm(z) ∗ z
)

}and the set {(x, x) : C(x) ∧ C(gm(x)) ∧ gm(x) ∗ x};(iii) if a1 <C · · · <C am are the points in C that lie on boundary ylesof ξ, we interpret γj
C as aj if 1 ≤ j ≤ m and as max(C) ifm < j ≤ ν.This ompletes the desription of MD

ξ .Definition 8.6. Inspired by the previous example, we let T (Ψ) be the
L(Ψ)-theory onsisting of T (Φ) and the universal losures of the formulas inthe axiom shemes (D1)�(D6):(D1) For eah C ∈ Φ1, m ∈ N and G ∈ {RC , S

f
m,C , B

f
m,C , S

b
m,C , B

b
m,C},the formulas(a) G(x, y) → (C(x) ∧ C(y)),(b) G(x, y) → (x ≤C y ∨ (x = min(C) ∧ y = max(C))).(D2) For eah C ∈ Φ1 the formulas(a) RC(x, y) ↔ ∃z(x <C z <C y ∧ FixC(z)), and(b) RC(x, x) ↔ FixC(x).(D3) For eah m ∈ N, C ∈ Φ1 and g ∈ {f, b} the formulas(a) Sg

m,C(x, y) ↔ ∃z(x <C z <C y ∧ gm(z) <C z),(b) Sg
m,C(x, x) ↔ (C(x) ∧ gm(x) <C x),() Bg
m,C(x, y) ↔ ∃z(x <C z <C y ∧ z <C gm(z)),(d) Bg
m,C(x, x) ↔ (C(x) ∧ x <C gm(x)).(D4) For eah m ∈ N, C ∈ Φ1, g ∈ {f, b} and G ∈ {RC , B

g
m,C , S

g
m,C} theformula

[G(x, y) ∧ ∀z(x <C z <C y → C(gm(z)))

∧ ¬∃z(x <C z <C y ∧ BdC(z))]

→ ∀z(x <C z <C y → G(z, z)).(D5)ν For eah C ∈ Φ1 the formulas(a) C(γj
C) ∧ (C(γj

C) → FixC(γj
C)) for j = 0, . . . , ν,(b) γj

C ≤C γj+1
C ∧ (γj

C = γj+1
C → γj

C = max(C)) for j = 0, . . . ,
ν − 1.
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(C(x) ∧ BdC(x)) ↔

ν
∨

j=1

(x = γj
C ∧ C(γj

C)).This ompletes the desription of the axioms.Proposition 8.7. If ξ is a de�nable vetor �eld on R
2 of lass C1 with�nitely many boundary yles, then MD

ξ |= T (Ψξ).Proof. This is almost immediate from the de�nition of MD
ξ and Propo-sition 6.6, exept perhaps for axiom (D4), whih follows from Proposition7.4 and the fat that every bounded subset of R has an in�mum.Remark 8.8. Let T (Φ)′ be the union of T (Φ) with axioms (D1)�(D4)only. Sine (D1)�(D3) just extend T (Φ) by de�nitions in the sense of Setion4.6 in Shoen�eld [13℄, the argument in the proof of the previous proposi-tion shows that any L(Φξ)-struture Mξ as de�ned in Example 6.4 an beexpanded to a model M′

ξ of T (Φ)′.9. Quanti�er elimination for T (Ψ). We �x a Dula �ow on�guration
Ψ = (Φ, ν); our ultimate goal is to show that T (Ψ) eliminates quanti�ers.Most of the work in this setion goes towards showing that, in order toeliminate quanti�ers, we need only onsider formulas of the form ∃yφ(x, y)where φ is of a speial form.Terminology. Let x = (x1, . . . , xm) be a tuple of variables and y and
z single variables. To simplify terminology, we write �term� and �formula�for �L(Ψ)-term� and �L(Ψ)-formula�. For a formula φ, we write φ(x, y) toindiate that the free variables of φ are among x1, . . . , xm and y. A binaryatomi formula is a formula of the form At1t2, where A is a binary relationsymbol in L(Ψ) and t1 and t2 are terms.For this setion �x an arbitrary model M of T (Ψ); again, we omit thesupersript M when interpreting prediates in M.Definition 9.1. An order formula is a quanti�er-free L(Φ)∪Γ -formula.A z-order formula is a quanti�er-free formula φ suh that every atomi sub-formula of φ ontaining z is an L(Φ) ∪ Γ -formula.A z-order formula φ is minimal if the only subterm of φ ontaining z is
z itself and every binary atomi subformula At1t2 of φ is suh that at mostone of t1 and t2 ontains z.Our �rst goal is to show that we may, in order to prove quanti�er elim-ination, restrit our attention to y-order formulas. This argument is basedon the following lemma, whih will also be of use later.



48 A. Dolih and P. SpeisseggerLemma 9.2. Let G ∈ L(Ψ) \ L(Φ).(1) The formula Gyy is equivalent in T (Ψ) to a minimal y-order formula
ψ(y).(2) The formula Gyz is equivalent in T (Ψ) to a formula ψ(y, z) that isboth a minimal y-order formula and a minimal z-order formula.Proof. Let C ∈ Φ1, m ∈ N and g ∈ {f, b} be suh that G is one of RC ,

Sg
m,C or Bg

m,C . In this proof, we write < instead of <C ; if G is RC , we assume
m = N = NΦ. By Corollary 7.6(1), any formula φ is equivalent in T (Ψ) tothe onjuntion of the formulas ϑi → φ, where i ∈ {1, . . . , l(m)} and ϑi is theformula ϑm

i (min(C),max(C)). Hene it su�es to prove the lemma with eah
ϑi → G(y, y) in plae of G(y, y) and eah ϑi → G(y, z) in plae of G(y, z);so we also �x an i below and write ϑ in plae of ϑi. Now by Corollary 7.6(2),there are �nitely many terms α0

j , α
1
j for 1 ≤ j ≤ r, built up exlusively fromonstants, suh that whenever M |= ϑ the set {z ∈ C : gm(z) ∈ C} is theunion of the open intervals Ij = (α0
j , α

1
j ) and points α0

j = α1
j .(1) We laim that the formula ϑ → G(y, y) is equivalent to ϑ → ψG,where ψG is of the form

C(y) ∧
(

∨

1≤j≤r

(α0
j < y < α1

j ∨ α
0
j = y = α1

j )
)

∧
(

∨

β∈Y

ψG
β ∨

∨

β0,β1∈Y

ψG
β0,β1

)

with Y := Γ ∪ {αl
j : l ∈ {0, 1} and 1 ≤ j ≤ r}, and for eah β ∈ Y , theformula ψG

β is C(y) ∧ ((y = β ∧G(β, β)) ∨ y = tG) with
tG the term 









y if G is RC ,

hm min(C) if G is Sg
m,C ,

hm max(C) if G is Bg
m,C ,and for eah β0, β1 ∈ Y , the formula ψG

β0,β1
is of the form

(C(β0) ∨ β0 = min(C)) ∧ (C(β1) ∨ β1 = max(C)) ∧ β0 < y < β1 ∧ η
G
β0,β1

,where
ηG

β0,β1
is 









¬Sg
N,C(β0, β1) ∧ ¬Bg

N,C(β0, β1) if G is RC ,

¬Bg
m,C(β0, β1) ∧ ¬RC(β0, β1) if G is Sg

m,C ,
¬Sg

m,C(β0, β1) ∧ ¬RC(β0, β1) if G is Bg
m,C .Note that ϑ→ ψG is a minimal y-order formula; thus, the proof of part (1)is �nished one we prove the laim.We prove the laim for RC ; the other ases of G are similar and left to thereader. Suppose that M |= ϑ and pik an a ∈ M suh that M |= RC(a, a).Then M |= α0

j ≤ a ≤ α1
j for some j ∈ {1, . . . , r}. If a = β for some

β ∈ Y , we are done, so we assume a 6= β for all β ∈ Y . Then there are
β0, β1 ∈ Y suh that M |= β0 < a < β1 and M |= ¬(β0 < β < β1) for



An ordered struture of rank two 49every β ∈ Y . Hene by axiom (D4), M |= RC(b, b) for every b ∈ (β0, β1), so
M |= ¬Sg

m,C(β0, β1) ∧ ¬Bg
m,C(β0, β1) as required. The onverse of the laimis immediate.(2) The formula ϑ→ G(y, z) is in turn equivalent in T (Ψ) to

ϑ→ (G(y, z) ∧ (y = min(C) ∨ y = max(C) ∨ C(y)));sine the lemma is immediate for the formulas ϑ → (G(y, z) ∧ y = min(C))and ϑ→ (Gyz ∧ y = max(C)), we need only onsider ϑ→ (G(y, z)∧C(y)).We laim that the latter is equivalent to ϑ→ ψG, where ψG is of the form
C(y) ∧ (C(z) ∨ z = max(C)) ∧ y ≤ z ∧ ((y = z ∧G(y, y)) ∨ (y < z ∧ ηG)),

ηG is the formula
∨

β∈Y

(y = β ∧G(β, z)) ∨
∨

β∈Y

(y < β < z ∧G(β, β)) ∨
∨

β0,β1∈Y, 1≤j≤r

ηG
β0,β1,j ,and for eah β0, β1 ∈ Y and j ∈ {1, . . . , r}, the formula ηG

β0,β1,j is
β0 < y ∧ z < β1 ∧ α

0
j ≤ β0 ∧ β1 ≤ α1

j ∧G(β0, β1) ∧ η
G
β0,β1with ηG

β0,β1
de�ned as for part (1).We again prove the laim for RC , leaving the other ases of G to thereader. Suppose that M |= ϑ and M |= RC(a, b)∧C(b) and work inside M.Suppose that a 6= β for all β ∈ Y and that M |= ¬(a < β < b ∧ RC(β, β))for every β ∈ Y . Then fN (d) = d for some d ∈ (a, b), and d ∈ (α0

j , α
1
j )for some j. Moreover, there are β0, β1 ∈ Y suh that d ∈ (β0, β1) and β /∈

(β0, β1) for every β ∈ Y . Hene by axiom (D4), we get M |= ¬Sg
N,C(β0, β1)∧

¬Bg
N,C(β0, β1), as required. The onverse of the laim is straightforward.By symmetry, a similar laim holds with ϑ→ (G(y, z)∧C(z)) in plae of

ϑ→ (G(y, z) ∧ C(y)). Combining these two laims with part (1) now yieldspart (2).Corollary 9.3. Every quanti�er-free formula φ(x, y) is equivalent in
T (Ψ) to a y-order formula ψ(x, y).Proof. It su�es to prove the proposition for all atomi formulas; therelevant atomi formulas are handled in Lemma 9.2.Our seond goal in this setion is to show that we only need to onsider,for quanti�er elimination, y-order formulas in whih the omplexity of anyterm involving y is as low as possible. Minimal y-order formulas are examplesof suh y-order formulas; but we annot always redue to minimal y-orderformulas.Definition 9.4. Let t be a term. The z-height hz(t) of t is de�ned asfollows:



50 A. Dolih and P. Speissegger(i) if z does not our in t, then hz(t) := 0;(ii) hz(z) := 1;(iii) if t is ft′ or bt′ for some term t′ and z ours in t′, then hz(t) :=
hz(t

′) + 1.Let A(t1, t2) be a binary atomi formula; the z-height hz(A(t1, t2)) of
A(t1, t2) is de�ned as the pair (a, b) ∈ N

2, where
a :=

{

1 if z ours in both t1 and t2,
0 otherwise,

b :=

{

min{hz(t1), hz(t2)} if z ours in both t1 and t2,
max{hz(t1), hz(t2)} otherwise.Let B(t) be a unary atomi formula; the z-height hz(B(t)) of B(t) isde�ned by hz(B(t)) := (0, hz(t)) ∈ N

2.Let φ be a quanti�er-free formula; the z-height hz(φ) of φ is the max-imum of the set {hz(ψ) : ψ is an atomi subformula of φ} with respet tothe lexiographi ordering of N
2. We write hz(φ) = (h1

z(φ), h2
z(φ)) below.Finally, a term t is mixed if it ontains both funtion symbols f and b;otherwise t is alled unmixed.Example 9.5. Let φ be a z-order formula. Then hz(φ) ≤ (0, 1) if andonly if φ is minimal.Lemma 9.6. Let φ(x, y) be a y-order formula. Then there is a y-orderformula ψ(x, y) that ontains no mixed terms suh that φ and ψ are equiva-lent in T (Ψ) and hy(ψ) ≤ hy(φ).Proof. Let φ′ be the L(Φ)-formula obtained from φ by replaing eah on-stant γj

C by a new variable zj
C , for C ∈ Φ1 and j = 1, . . . , ν. By Lemma 7.1,

φ′ is equivalent in T (Φ) to a quanti�er-free L(Φ)-formula ψ′ that is a disjun-tion of formulas of the form η ∧ ξ, where ξ is obtained from φ′ by replaingeah mixed subterm by an unmixed term of lower y-height, and where ηis a onjuntion of some of the premises of the impliations ourring in
Θ(f,b) and in Θ(b,f) with x there replaed by various unmixed subterms of φ′.Clearly, hy(ξ) ≤ hy(φ

′) for every suh ξ; sine h1
y(η) = 0 for every suh η, itfollows that hy(ψ

′) ≤ hy(φ
′) if h1

y(φ
′) = 1. On the other hand, if h1

y(φ
′) = 0,then every subterm t of φ′ satis�es hy(t) ≤ h2

y(φ
′); so hy(η) ≤ hy(φ

′) forevery suh η. Therefore, we always have hy(ψ
′) ≤ hy(φ

′) = hy(φ), and welet ψ be the y-order formula obtained from ψ′ by replaing eah variable zj
Cagain by γj

C .Below we let ι(y) denote the formula ∧

C∈Φopen
C(y) → EC(y) and weput

T ′ := T (Ψ) ∪ {ι(y)}.



An ordered struture of rank two 51Lemma 9.7. Let φ(x, y) be a y-order formula. Then there is a y-orderformula ψ(x, y) suh that φ is equivalent in T ′ to ψ and h2
y(ψ) ≤ 1.Proof. By indution on hy(φ); the ase where h2

y(φ) ≤ 1 is trivial, so weassume that h2
y(φ) > 1 and we prove that

(∗) there exists an order formula ψ(x, y) suh that φ is equivalent in T ′to ψ and hy(ψ) < hy(φ).To do so, we �x arbitrary (g, h) ∈ {(f, b), (b, f)}, a unary prediate P , a
C ∈ Φ0 and terms t1 and t2, and we assume that y ours in t1, and either ydoes not our in t2 or hy(t1) < hy(t2). By the de�nition of hy(φ) and axiom(F5), it su�es to prove (∗) with eah of the atomi formulas P (g(t1)),
g(t1) = t2, g(t1) <C t2 and t2 <C g(t1) in plae of φ.
Case 1: φ is P (g(t1)). By axioms (F7)�(F9), the formula φ is equivalentin T ′ to ψ, where ψ is the formula depending on P de�ned as follows:
• if P ∈ Φopen or P is EF for some F ∈ Φopen, then ψ is

∨

D∈Φtrans, P=Dh

D(t1) ∨
∨

d∈Φsingle, P=dh

t1 = d;

• if P ∈ Φtan, then ψ is the formula t1 = h(eP );
• if P ∈ Φtrans, then ψ is the formula EP h (t1).In eah ase of ψ above, we have hy(ψ) < hy(φ), as required.
Case 2: φ is g(t1) = t2. Then by axioms (F5), (F7)�(F9) and (F13) theformula φ is equivalent in T ′ to ψ, where ψ is the onjution of the formulas(i) t2 = s ∨

∨

C∈Φ1

C(t2) ∨
∨

c∈Φsingle

t2 = c ∨
∨

C∈Φtan

t2 = eC ,(ii) t2 = c→ t1 = h(c) for eah onstant c di�erent from s,(iii) t2 = s→
(

(t1 = s)

∨
∨

C∈Φopen

(

EC(t1) ∧
∧

D∈SC

¬(rh
D <C t1 <C sh

D) ∧
∧

c∈Φsingle

(¬t1 = h(c))
)

∨
∨

C∈Φtan

((g(eC) <C t1 ≤C eC ∨ eC ≤C t1 <C g(eC)) ∧ g(eC) = s)
)

with SC := {D ∈ Φtrans : Dh = C},(iv) C(t2) → t1 = h(t2) for C ∈ Φ1.If y does not our in t2, then hy(ψ) < hy(φ); so we assume that y oursin t2. In this ase, the only atomi subformula ξ of ψ with h1
y(ξ) = 1 is

t1 = h(t2), and hy(t1 = h(t2)) = (1, hy(t1)) < (1, hy(g(t1))) = hy(φ) byhypothesis, so hy(ψ) < hy(φ) as well.
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Case 3: φ is g(t1) <C t2. There are various subases depending on C.
• If C ∈ Φtrans, we write D := Ch; then by axioms (F8) and (F13) theformula φ is equivalent in T ′ to ψ, where ψ is the onjuntion of theformulas

(C(t2)∨t2 = max(C))∧((ED(t1)∧r
h
C <D t1 <D rh

C)∨t1 = h(min(C)))and
(ED(t1) ∧ r

h
C <D t1 <D rh

C) → (t1 <D h(t2) ∨ t2 = max(C)).

• If C ∈ Φopen, then by axioms (F2), (F9), (F10), (F12) and (F13) theformula φ is equivalent in T ′ to ψ, where ψ is the onjuntion of theformulas(i) ∨

D∈Φtrans, Dg=C

D(t1) ∨
∨

d∈Φsingle, P=dh

t1 = d,(ii) (C(t2)∧¬EC(t2)∧EC(g(t2)))∨
(

C(t2)∧¬EC(t2)∧EC(h(t2))
)

∨

EC(t2) ∨
(

t2 = max(C)
),(iii) (D(t1)∧EC(t2)) → ((rg

D <C t2 <C sg
D∧t1 <D h(t2))∨(sg

D ≤C t2))for eah D ∈ Φtrans with Dg = C,(iv) (D(t1) ∧ ¬EC(t2) ∧ EC(g(t2))) → ((rg
D <C g(t2) <C sg

D ∧ t1 <D

h(t2)) ∨ (sg
D ≤C g(t2)) for eah D ∈ Φtrans with Dg = C,(v) (D(t1) ∧ ¬EC(t2) ∧ EC(h(t2))) → ((rg

D <C h(t2) <C sg
D ∧ t1 ≤D

h(h(t2))) ∨ (sg
D ≤C h(t2))) for eah D ∈ Φtrans with Dg = C,(vi) t1 = d→ gd <C t2 for d ∈ Φsingle with P = dh.

• If C ∈ Φtan, then by axioms (F2) and (F7) the formula φ is equivalentin T ′ to ψ′, where ψ′ is
(C(t2) ∨ t2 = max(C)) ∧

(

(t1 = h(eC) ∧ eC <C t2) ∨ g(t1) = min(C)
)

.In this ase we let ψ be the formula obtained from ψ′ by replaing thesubformula g(t1) = min(C) by the orresponding formula obtained inCase 2.We leave it to the reader to verify that hy(ψ) < hy(φ) in eah of thesesubases.
Case 4: φ is t2 <C g(t1). This ase is similar to Case 3; we leave thedetails to the reader.Proposition 9.8. Let φ(x, y) be a quanti�er-free formula. Then thereis a minimal y-order formula ψ(x, y) suh that φ is equivalent in T ′ to ψ.Proof. By Corollary 9.3 and Lemma 9.7, we may assume that φ is a

y-order formula suh that h2
y(φ) ≤ 1. By Lemma 9.6, there is a y-orderformula ψ′(x, y) suh that φ is equivalent in T ′ to ψ′, ψ′ ontains no mixedterms and hy(ψ) ≤ hy(φ).



An ordered struture of rank two 53In partiular, for every binary atomi subformula η of ψ′ in whih bothterms ontain y, one of the terms is y itself and the other is either fm(y) or
bm(y) for some m = m(η) ∈ N. We now replae eah suh binary atomisubformula η of ψ′ with m(η) > 1 by the formula η′ de�ned as follows:

• if η is y = gm(y) with g ∈ {f, b}, then η′ is the disjuntion of theformulas y = c∧gm(c) = c, for eah onstant symbol c, and C(gm(y))∧
RC(y, y), for eah C ∈ Φ1;

• if η is y <C gm(y) with g ∈ {f, b}, then η′ is Bg
m,C(y, y);

• if η is gm(y) <C y with g ∈ {f, b}, then η′ is Sg
m,C(y, y).We also replae eah ourrene of y = y by s = s and eah ourreneof y <C y by s 6= s, and we denote by ψ′′ the resulting formula. Clearly,

hy(ψ
′′) ≤ hy(ψ

′), and every binary atomi subformula of ψ′′ in whih bothterms ontain y is of the form G(y, y) for some G ∈ L(Ψ)\L(Φ). Moreover, byaxioms (D1)�(D4), (D5)ν and (D6)ν , the formula ψ′ is equivalent in T ′ to ψ′′.Next, we replae eah subformula of ψ′′ of the form G(y, y), where G ∈
L(Ψ)\L(Φ), by the orresponding minimal y-order formula ψ(y) obtained inLemma 9.2(1). If ψ′′′ is the resulting y-order formula, then ψ′′ is equivalentin T (Ψ) to ψ′′′ and h1

y(ψ
′′′) = 0.Finally, by Lemmas 9.7 and 9.6, there is a y-order formula ψ suh that

hy(ψ) ≤ (0, 1), ψ ontains no mixed terms and ψ is equivalent in T ′ to ψ′′′.Finally, note that
T (Φ) ∪ {C(y)} |= ¬EC(y) ↔ (C(f(y)) ∨ C(b(y)))for eah C ∈ Φopen, by axioms (F5), (F10) and (F12). Hene, for eah C ∈

Φopen and eah g ∈ {f, b}, we put TC,g := T (Ψ) ∪ {C(y) ∧ C(g(y))}; bythe previous proposition, it remains to redue quanti�er-free formulas ineah TC,g. It turns out, however, that we annot entirely redue to minimal
y-order formulas in these situations.Instead, given g ∈ {f, b}, we all a formula φ g-almost minimal if φ isquanti�er-free, the only subterms of φ ontaining z are z and g(z), and everybinary atomi subformula A(t1, t2) of φ is suh that at most one of t1 and
t2 ontains z.Proposition 9.9. Let φ(x, y) be a quanti�er-free formula, C ∈ Φopenand g ∈ {f, b}. Then there is a g-almost minimal y-order formula ψC,g(x, y)suh that φ is equivalent in TC,g to ψC,g.Proof. By Corollary 9.3 and Lemma 9.6, we may assume that φ is a
y-order formula ontaining no mixed terms. On the other hand, we have
T |= ι(f(y)) and T |= ι(b(y)) by axiom (F5). Let η(x, y) be an atomisubformula of φ; it su�es to show that there is a g-almost minimal y-orderformula ξη(x, y) suh that η and ξη are equivalent in TC,g. If h2

y(η) = 0, there



54 A. Dolih and P. Speisseggeris nothing to do, so we assume h2
y(η) > 0, and we distinguish two ases tode�ne ξη.

Case 1: h2
y(η) > 1. We �rst replae eah ourrene of g(y) in η by anew variable z and eah ourrene of h(y) in η by h(z). Denote the resultingatomi formula by η′(x, z); by axiom (F12), η′(x, g(y)) is equivalent in TC,gto η(x, y). By Proposition 9.8, the formula η′(x, z) is equivalent in T ′ to aminimal z-order formula η′′(x, z). Sine T (Ψ) |= ι(g(y)), it follows that ηis equivalent in TC,g to the g-almost minimal y-order formula ξη given by

η′′(x, g(y)).
Case 2: h2

y(η) = 1. In this ase, we take ξη equal to η if η ontains aunary prediate symbol; so we assume that η is a binary atomi formula
A(t1, t2). If η is y = y, we take ξη to be s = s, and if η is y <D y forsome D ∈ Φ0, we take ξη to be s 6= s; so we also assume from now on that
max{h2

y(t1), h
2
y(t2)} > 1. By axiom (F5), the formulas y = gm(y), y = hm(y),

y <D gm(y), y <D hm(y), gm(y) <D y and hm(y) <D y, for m > 0 and
D ∈ Φ0 \ {C}, are all equivalent in TC,g to s 6= s, so we are left with foursubases:(i) if η is y <C gm(y) for some m > 0, then we let η′ be the formula

(y <C g(y) ∧ C(gm(y)) ∧RC(g(y))gy) ∨Bg
m−1,C(g(y), g(y));(ii) if η is y <C hm(y) for some m > 0, then we let η′ be the formula

(y <C g(y) ∧ C(hm(y)) ∧RC(g(y), g(y))) ∨Bh
m,C(g(y), g(y));(iii) if η is gm(y) <C y for some m > 0, then we let η′ be the formula

(g(y) <C y ∧ C(gm(y)) ∧RC(g(y), g(y))) ∨ Sg
m−1,C(g(y), g(y));(iv) if η is hm(y) <C y for some m > 0, then we let η′ be the formula

(g(y) <C y ∧ C(hm(y)) ∧RC(g(y), g(y))) ∨ Sh
m,C(g(y), g(y)).We laim that η and η′ are equivalent in TC,g. We prove this for subase (i);the other ases are similar and left to the reader. Let b ∈ M be suh that

M |= C(b)∧C(g(b)). Assume that M |= b <C gm(b)∧¬Bg
m−1,C(g(b), g(b)).Then gm(b) ∈ EC and gm(b) ≤C g(b) by axioms (F2) and (F5). Hene

b <C g(b), so M |= φf(b, g(b)) by axioms (F10) and (F12), whih implies
gm(b) = g(b) as required. Conversely, assume �rst that M |= b <C g(b) ∧
C(gm(b))∧RC(g(b), g(b)); then b <C gm(b) by axioms (D2) and (F14). Nowassume that M |= Bg

m−1,C(g(b), g(b)); then g(b) <C gm(b) by axiom (D3),and hene b <C gm(b) by axioms (F10) and (F12).Finally, by Proposition 9.8, the formulas Bg
k,C(z, z), Sg

k,C(z, z), C(gk(z))∧

RC(z, z) and C(hk(z))∧RC(z, z) are eah equivalent in T ′ to minimal z-orderformulas. It follows from the above laim that we are left with subases(i)�(iv) for m = 1. But by axioms (F5), (F10) and (F12) we have TC,g |=

¬C(h(y)). Hene TC,g |= ¬φh
C(y, h(y)), so from axioms (F10) and (F12) we



An ordered struture of rank two 55get TC,g |= φg
C(y, gy). Therefore, y <C g(y) is equivalent in TC,g to s = s if

g is f, and to ¬s = s if g is b; the other subases follow similarly.The previous two propositions allow us to redue the problem of elimi-nating quanti�ers in T (Ψ) to that of eliminating quanti�ers in two simplertheories: for C ∈ Φ1∪Φtan we let LC be the language {<C ,min(C),max(C)}and TC be the LC -theory onsisting of the universal losures of(A1) the sentenes stating that <C is a dense linear ordering on C, to-gether with the formula x = min(C) ∨ x = max(C) ∨ min(C) <C

x <C max(C).For C ∈ Φopen we let LC be the language {<C , πC , EC ,min(C),max(C)},where πC a unary funtion symbol, and we let TC be the LC -theory onsistingof the universal losures of (A1) as well as(B1) the formula EC(πC(x)) ∧ (EC(x) → πC(x) = x);(B2) the formula πC(x) <C x→ ¬∃y(EC(y) ∧ πC(x) <C y <C x);(B3) the formula x <C πC(x) → ¬∃y(EC(y) ∧ x <C y <C πC(x));(B4) the sentenes stating that for every x ∈ EC , the restrition of <C tothe set {y : πC(y) = x} is a dense linear ordering without endpoints.A routine appliation of a quanti�er elimination test suh as Theorem3.1.4 in [8℄ gives the following result; we leave the details to the reader.Proposition 9.10. For eah unary prediate symbol C of L(Φ), the the-ory TC admits quanti�er elimination in the language LC .Theorem 9.11. The theory T (Ψ) admits quanti�er elimination.Proof. Let φ(x, y) be a quanti�er-free formula; we show that ∃yφ(x, y) isequivalent in T (Ψ) to a quanti�er-free formula. First, note that ∃yφ(x, y) isequivalent in T (Ψ) to the disjuntion of the formulas(1) φ(x, c) for eah onstant c;(2) ∃y(C(y) ∧ φ(x, y)) for eah C ∈ Φ1 ∪ Φtan;(3) ∃y(C(y) ∧ Cg(y) ∧ φ(x, y)) for eah C ∈ Φopen and eah g ∈ {f, b}.We deal with eah disjunt separately; sine formulas of type (1) are trivialto handle, we deal with types (2) and (3).Type (2). Let C ∈ Φ1∪Φtan. Sine T (Ψ) |= C(y) → ι(y), we may assumeby Proposition 9.8 that φ is a minimal y-order formula. Without loss ofgenerality, we may also assume that φ is a onjuntion of atomi formulas,that y ours in eah of the atomi subformulas of φ and, by axiom (F1),that φ ontains only the relation symbols = and <C . Let t1, . . . , tk be allmaximal subterms of φ that do not ontain y, and let φ′(z1, . . . , zk, y) be theformula obtained from φ by replaing eah ti by a new variable zi. Then φ′ is



56 A. Dolih and P. Speisseggera <C -formula without parameters; by Proposition 9.10, there is a quanti�er-free LC -formula ψ′(z1, . . . , zk) suh that ∃yφ′ and ψ′ are equivalent in TC .Let ψ(x) be the L(Ψ)-formula obtained from ψ′ by replaing eah zi by ti;then ∃yφ and ψ are equivalent in T (Ψ), as required.Type (3). Let C ∈ Φopen and g ∈ {f, b}; by Proposition 9.9, we mayassume that φ is a g-almost minimal y-order formula. Without loss of gen-erality, we may also assume that φ is a onjuntion of atomi formulas,that y ours in eah of the atomi subformulas of φ and, by axiom (F1),that φ ontains only the relation symbols =, <C and EC . Let t1, . . . , tk beall maximal subterms of φ that do not ontain y, and let φ′(z1, . . . , zk, y)be the formula obtained from φ by replaing eah ti by a new variable zi.Note that φ′ ontains no parameters. Arguing as for Type (2), it now suf-�es to �nd a quanti�er-free formula ψ′(z1, . . . , zk) equivalent in T (Ψ) to
∃yφ′(z1, . . . , zk, y).To do so, we let πC be a new unary funtion symbol and let T (Ψ)C bethe theory T (Ψ) together with the universal losure of the formula
y = πC(x) ↔ ((EC(x) ∧ y = x)

∨(C(x) ∧ C(f(x)) ∧ y = f(x)) ∨ (C(x) ∧ C(b(x)) ∧ y = b(x))).Sine T (Ψ)C is an extension by de�nitions of T (Ψ) in the sense of [13, Setion4.6℄, it su�es to �nd a quanti�er-free L(Ψ)-formula ψ′(z1, . . . , zk) equivalentin T (Ψ)C to ∃yφ′(z1, . . . , zk, y).Let φ′′ be the LC-formula obtained from φ′ by replaing eah ourreneof g(y) by π(y); then φ′ and φ′′ are equivalent in T (Ψ)C . Sine T (Ψ)C |= TC ,there is by Proposition 9.10 a quanti�er-free LC -formula ψ′′(z1, . . . , zk) thatis equivalent in T (Ψ)C to ∃yφ′′(z1, . . . , zk, y); without loss of generality, wemay assume that the only subterms of ψ′′ are zi and πzi for i = 1, . . . , k.Finally, we let ψ′ be the L(Ψ)-formula obtained from ψ′′ by replaing eahatomi subformula η of ψ′′ by an L(Ψ)-formula η′ determined as follows:(i) if η is EC(πC(zi)), we let η′ be C(zi)∧(EC(zi)∨C(f(zi))∨C(b(zi)));(ii) if η is πC(zi) ∗ zj with ∗ ∈ {=, <C , >C}, we let η′ be
C(zi) ∧ C(zj) ∧

(

∨

g∈{f0,f,b}

EC(g(zi)) ∧ g(zi) ∗ zj

)

;

(iii) if η is πC(zi) <C πC(zj) and ∗ ∈ {=, <C}, we let η′ be
C(zi) ∧ C(zj) ∧

(

∨

g,h∈{f0,f,b}

EC(g(zi)) ∧ EC(h(zj)) ∧ g(zi) ∗ h(zj)
)

;

and if η is not of one of the forms (i)�(iii) above, we let η′ be η. This ψ′ isequivalent in T (Ψ)C to ψ′′ and is of the required form.



An ordered struture of rank two 5710. Consequenes for the model theory of T (Ψ). The quanti�erelimination result established in the previous setion allows us to show thatthe theory T (Ψ) is very well-behaved: it is a theory of �nite rank in the sensedeveloped by Onshuus [10℄.We �rst rephrase the results from the previous setion. For a �ow on-�guration Φ, C ∈ Φopen, M |= T (Ψ) and x ∈ EM
C , we put

CM
x := {y ∈ CM : y = x ∨ f(y) = x ∨ b(y) = x}and CM

x := CM
x ∪ {f(x), g(x)}. The following orollary implies Theorem C:Corollary 10.1. Let Ψ be a Dula �ow on�guration and M |= T (Ψ).(1) For C ∈ Φ1 ∪ Φtan, every de�nable subset of CM is a �nite union ofpoints and open <C-intervals with endpoints in C.(2) For C ∈ Φopen and x ∈ EM

C , every de�nable subset of CM
x is a �niteunion of points and open <C-intervals with endpoints in CM

x .Proof. This follows immediately from Theorem 9.11, Propositions 9.8and 9.9 and axioms (F2) and (F11).Below we use the terminology of rosy theories.Theorem 10.2. Let Ψ be a Dula �ow on�guration and T be any om-pletion of T (Ψ). Then T is rosy with Uþ(T ) ≤ 2.Proof. Let p(x) be a omplete 1-type in T , M |= T and a ∈ M be suhthatM |= p(a). If C(x) ∈ p for some C ∈ Φtan∪Φ1, then by Corollary 10.1(1)the type p is determined by the <C -order type of x over the onstants;hene Uþ(p) ≤ 1. If C(x) ∧ ¬EC(x) ∈ p for some C ∈ Φopen, then byCorollary 10.1(2) the type p is determined by the <C-order type o(x) of aover the onstants and πC(a), where πC : C → EC is given by
πC(z) :=











z if z ∈ EM
C ,

f(z) if f(z) ∈ EM
C ,

b(z) if b(z) ∈ EM
C .Again by Corollary 10.1(1), the type of πC(a) over the onstants is deter-mined by the <C -order type of πC(a) over the onstants.Sine p ontains either one of the above formulas or a formula x = cfor some onstant symbol c, it follows from Fat 2 in the introdution that

Uþ(T ) ≤ 2.In fat, the Uþ-rank in the previous theorem is atually equal to 2:Proposition 10.3. Let Φ be a �ow on�guration and M |= T (Φ), andassume that Φopen 6= ∅. Then Uþ(M) ≥ 2.Proof. Let C ∈ Φopen. Then by the example in the introdution, thetheory of (C,<C , EC) has Uþ-rank at least two. Hene Uþ(M) ≥ 2.



58 A. Dolih and P. SpeisseggerThere is a ertain onverse to Theorem 10.2 based on Remark 8.8: We let
Φ be a �ow on�guration and onsider the theory T (Φ)+ obtained by addingthe universal losures of the following formulas to T (Φ)′ for eah C ∈ Φtrans:(10.1) C(x) → ∃y(C(y) ∧ y = inf{z : x <C z ∧ BdC(z)}),

C(x) → ∃y(C(y) ∧ y = sup{z : z <C x ∧ BdC(z)}).Examples 10.4.(1) Let Ψ be a Dula �ow on�guration. Then any model M of T (Ψ)satis�es (10.1).(2) Let ξ be a de�nable vetor �eld on R
2, and let Mξ be an L(Φξ)-struture assoiated to ξ as in Example 6.4. Then Mξ satis�es (10.1)by Corollary 7.5, and by Remark 8.8 the struture Mξ an be ex-panded to a model M+

ξ of T (Φξ)
+.Below for eah ν ∈ N we abbreviate the formula stating that BdC(x)de�nes a set with at most ν elements by �|BdC(x)| ≤ ν�.Proposition 10.5. Let Φ be a �ow on�guration and T be a ompletionof T (Φ)+, and assume that Uþ(T ) ≤ 2. Then there is a ν ∈ N suh that(1) T |= |BdC(x)| ≤ ν;(2) every model M of T an be expanded to a model of T (Φ, ν).Proof. (1) Assume that T 6|= |BdC(x)| ≤ ν for any ν ∈ N. Then bymodel-theoreti ompatness, there are an M |= T and a C ∈ Φ1 suhthat the set BdC(M) is in�nite; we may assume that M is ℵ1-saturated.Moreover, by axiom (F8), we may assume that C ∈ Φtrans. Also, by axiom(F8) and an argument as in the proof of Proposition 10.3, it su�es to �nda d ∈ CM suh that Uþ(d) ≥ 2.Sine M is ℵ1-saturated, there is an interval I ⊆ CM suh that I ∩al(∅) = ∅ and I ∩ BdC(M) is in�nite. By (10.1) and sine BdC(M) isnowhere dense, there is a c ∈ I \ BdC(M) suh that the elements a :=

sup{x ∈ I : x <C c ∧ BdC(x)} and b := inf{x ∈ C : a <C x ∧ BdC(x)} existin I. Then a <C b, a, b /∈ al(∅), b ∈ dl(a) and
M |= a <C b ∧ BdC(a) ∧ ¬∃x(C(x) ∧ a <C x <C b ∧ BdC(x)).It follows that the formula φ(x) := a <C x <C b strongly divides over ∅;hene Uþ(d) ≥ 2 for some d ∈ CM, as required.Part (2) follows from Proposition 8.7 and part (1).We an now prove our restatement of Dula's Problem:Proof of Theorem B. (1) If ξ has �nitely many boundary yles, thenby Proposition 8.7 the struture Mξ an be expanded into a model MD

ξ of
T (Φξ, ν) for some ν ∈ N. Sine (Φξ)open 6= ∅, it follows that 2 ≤ Uþ(Mξ) ≤
Uþ(MD

ξ ) ≤ 2 by Proposition 10.3 and Theorem 10.2.



An ordered struture of rank two 59Conversely, if Uþ(Mξ) = 2 then by Proposition 10.5, the struture Mξan be expanded into a model of T (Φξ, ν) for some ν ∈ N, so by Example 6.8the vetor �eld ξ has �nitely many boundary yles.(2) follows from (1) and Poinaré's Theorem [12℄ (see also [11, p. 217℄).The �moreover� lause follows from (1) and Theorem 10.2.
11. Final questions and remarks(1) In the situation of Theorem B, is it possible for Mξ to be rosy of

Uþ-rank stritly greater than 2?(2) Can a restatement of Hilbert's 16th Problem be obtained in the spiritof Theorem B?A naïve approah to this question is as follows: Let {ξa : a ∈ A} be afamily of vetor �elds on R
2 de�nable in R. Sine the arguments in Setions1 through 5 are uniform in parameters, we may assume that there is a �owon�guration Φ suh that Φξa

= Φ for all a ∈ A. In this situation, onean readily reformulate the theory T (Φ) for the parametri situation; andif one also assumes the existene of a uniform bound ν ∈ N on the numberof boundary yles of eah ξa, suh a reformulation extends to T (Φ, ν). Wesuspet that under the latter assumption, the orresponding theory is rosyof Uþ-rank 3; however, this does not appear to us to be a ompletely trivialgeneralization of the results in Setion 10, and we plan to pursue it in afuture projet.(3) The struture MD
ξ in Example 8.5 does not de�ne any algebraioperations (by Theorem 9.11). Assume here that S(ξ) = ∅; is it possible toexpand MD

ξ by some (or all) of the sets de�nable in the original o-minimalstruture R without inreasing the Uþ-rank? We know very little about thisquestion. However, if (a) the x-axis, the projetion from R
2 onto the x-axis,and both addition and multipliation are de�nable in an expansion M′ of

MD
ξ , and if (b) the expansion M′ still has Uþ-rank 2, then M′ (and hene

MD
ξ ) would be de�nable in an o-minimal struture. (The assumption that

M′ has Uþ-rank two is neessary here.) Thus, question (3) is related to thefollowing question:(4) Is the struture MD
ξ of Example 8.5 de�nable in some o-minimalexpansion of the real �eld?(5) Consider a Dula �ow on�guration Ψ and M |= T (Ψ). Corollary10.1, Theorem 10.2 and their respetive proofs may be loosely interpretedas indiating that M is built-up from sets D ⊆ M on whih the induedstruture is o-minimal. Is there a theory of strutures built-up from sets withindued o-minimal struture, say in the spirit of Zilber's results on the �nestruture of unountably ategorial theories [16℄?
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