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A topological characterization of holomorphic
parabolic germs in the plane

by

Frédéric Le Roux (Orsay)

Abstract. J.-M. Gambaudo and E. Pécou introduced the “linking property” in the
study of the dynamics of germs of planar homeomorphisms in order to provide a new proof
of Naishul’s theorem. In this paper we prove that the negation of the Gambaudo—Pécou
property characterizes the topological dynamics of holomorphic parabolic germs. As a
consequence, a rotation set for germs of surface homeomorphisms around a fixed point can
be defined, and it turns out to be non-trivial except for countably many conjugacy classes.

1. Introduction. Let H* be the set of orientation preserving homeo-
morphisms of the plane that fix 0, and let h € H'. We are interested in the
dynamics of the germ of h at 0. Imagine one wants to evaluate the “amount
of rotation” in a neighbourhood V of 0 by looking at the way the orbit of
some point z € V rotates around 0. Then two kinds of difficulties can arise:

e if the orbit of x leaves V after a small number of iterations, then the
behaviour of z is not significant with respect to the local dynamics;

e if the orbit of x tends to the fixed point 0, then the rotation of x
around 0 is not significant either, because it is not invariant under a
continuous change of coordinates.

These difficulties have led Gambaudo and Pécou to introduce the “linking
property” (see [GP, P¢é|) which demands that inside each neighbourhood of
0 there exist arbitrarily long segments of orbits starting and ending not too
close to 0. In this paper we prove that the only germs that do not share the
linking property are the contraction, dilatation and holomorphic parabolic
germs. To be more precise, let us define the short trip property, which is the
negation of the Gambaudo—Pécou property, as follows.

DEFINITION 1. Let f € HT. We say that f has the short trip property
if there exists a neighbourhood V of the fixed point 0 such that for every
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78 F. Le Roux

neighbourhood W of 0, there exists an integer Ny > 0 such that for ev-
ery segment of orbit (z, f(x),..., f*(z)) which is included in V', and whose
endpoints z, f"(z) are outside W, the length n is less than Nyy.

Two homeomorphisms f1, fo € HT are said to be locally topologically
conjugate if there exists a homeomorphism ¢ € H*' such that fo = pfip~!
on some neighbourhood of 0. We are interested in the local dynamics near
the fixed point 0, thus we consider maps up to local conjugacy. Note that
any local homeomorphism locally coincides with a homeomorphism defined
on the whole plane, so that working with globally defined homeomorphisms
is just a matter of convenience and does not alter the results (see [Ham)]
or [LR1, chapitre 2|). As a consequence, to prove that two homeomorphisms
are locally topologically conjugate it suffices to construct the conjugacy on
a neighbourhood of 0.

DEFINITION 2. Let f € H™', and identify the plane with the complex
plane C. We say that f is a locally holomorphic parabolic homeomorphism
(or just parabolic) if f is holomorphic on some neighbourhood of 0, f/(0) is
a root of unity, and for every positive n the map f™ is not locally equal to
the identity.

Note that the hypothesis on f/(0) amounts to saying that the differential
of f is a rational rotation, and then the last hypothesis is equivalent to saying
that f is not locally topologically conjugate to its differential. According to
Camacho’s version of the Leau-Fatou theorem, if f € H ™ is parabolic, then
f is locally topologically conjugate to some map

N e2i7rp/qz(1 +29")  with p/q € Q, ¢, > 1.

See [Cam], and Figure 1.
We can now state our theorem.

THEOREM 3. Let f be an orientation preserving homeomorphism of the
plane that fizes the point 0. Then f has the short trip property if and only if it
18 locally topologically conjugate to the contraction z +— %z, to the dilatation
z+ 2z, or to a locally holomorphic parabolic homeomorphism.

As a consequence there are only countably many conjugacy classes failing
to have the Gambaudo—Pécou property.

In order to explain where Theorem 3 comes from, let us first discuss the
Naishul theorem. In |GP] it was shown that the Gambaudo—Pécou property
holds when f preserves area, and then this property is used to prove the
Naishul theorem: among area preserving homeomorphisms fixzing 0 that are
differentiable at O and whose differential is a rotation, the angle of the rota-
tion is 1nvariant under a local topological conjugacy. Then the following nice
generalization of the Naishul theorem is given by Gambaudo, Le Calvez and
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*

qr periodic petals for f action of f?

Fig. 1. Local topological dynamics of f : z +— 62””/‘12(1 +2z9); hereq=3,p=1,r =2,
so that there are two orbits of attracting petals and two orbits of repulsive petals.

Pécou in [GLP|. As a generalization of differentiability at 0, they consider
the homeomorphisms f for which the fixed point can be “blown up”, i.e. re-
placed by an ideal circle in such a way that f can be extended to a circle
homeomorphism (see the precise definition in |[GLP]). They prove that for
such homeomorphisms, the Poincaré rotation number of the extended circle
homeomorphism is invariant under a local topological conjugacy, unless f is
a contraction or a dilatation. The strategy of their proof is the following.
If f has the Gambaudo—Pécou property, then one can use the arguments
in |[GP|. Now assume that f is indifferent, that is, f admits arbitrarily small
non-trivial invariant compact connected sets K containing 0; then one can
use Carathéodory’s prime ends theory to associate a circle homeomorphism
fi to each such K, and use the rotation number of fx to prove the topolog-
ical invariance. Then one proves a last lemma asserting that a germ which
1s not indifferent and does not have the Gambaudo—Pécou property must be
a contraction or a dilatation.

As a consequence of the Leau—Fatou theorem, parabolic maps are indif-
ferent. Thus Theorem 3 can be seen as a generalization of this last lemma.
Furthermore, it provides an alternative proof of the generalized Naishul the-
orem, avoiding the use of prime ends, as follows: we keep the arguments
in |[GP| to tackle homeomorphisms with the Gambaudo—Pécou property;
then, in view of Theorem 3, it only remains to deal with parabolic homeo-
morphisms, for which the proof is easy because the local dynamics is fully
understood.

More generally, in [LR2| we will define a local rotation set for any hom-
eomorphism f in HT. This set is a subset of the extended line R U {+oc},
modulo integer translation, and it is a local topological conjugacy invariant.
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Then Theorem 3 will entail that the local rotation set is non-void as soon as
f does not fall into the countably many conjugacy classes described by the
theorem.

One can also think of Theorem 3 as a local analogue of previous re-
sults showing that a simple dynamical property can imply a strong rigidity.
The most striking result here is probably the Hiraide-Lewowicz theorem: an
expansive homeomorphism on a compact surface is conjugate to a pseudo-
Anosov homeomorphism (see [Hi, Le]). Closer to our setting, Kerékjarté has
shown that an orientation preserving homeomorphism of a closed orientable
surface whose singular set is totally disconnected is topologically conjugate
to a conformal transformation (see |[BK, Ke34a, Ke34b]). Thus, for instance,
an orientation preserving homeomorphism f of the plane is conjugate to a
translation if and only if it has no fixed point and the family (f"),>0 is
equicontinuous at each point for the spherical metric.

In some sense, Theorem 3 highlights that it is easy to be locally conju-
gate to a locally parabolic homeomorphism: a homeomorphism that “looks
like” a parabolic map will be conjugate to it. In contrast, the examples given
in [BLR| reveal how difficult it is to be conjugate to the saddle homeo-
morphism (2z,y/2), and in particular that it is not enough to preserve the
hyperbolic foliation. A topological characterization can be given, but it must
take into account the sophisticated oscillating set (see, in [BLR], the remark
on Fig. 3 as well as part III).

2. Dynamics of parabolic germs. Propositions 12 and 13 below pro-
vide a first (classical) characterization of parabolic germs in terms of attract-
ing and repulsive sectors and invariant petals.

2.1. Contractions and attracting sectors. We begin by characterizing the
dynamics of contractions. Then we describe attracting sectors. Of course,
similar results hold for dilatations and repulsive sectors, although we will
not state them explicitly.

Let f € HT. We will say that a sequence (E,,),>0 of subsets of the plane
converges to 0 if for every neighbourhood W of 0, all but finitely many terms
of the sequence are included in W. The following result is very classical.

PROPOSITION 4. Let f € Ht. Let D be a topological closed disc () which
is a neighbourhood of 0, and suppose that the orbit (f™(D))n>0 converges to 0.
Then f is locally topologically conjugate to the contraction z — %z.

Proof. By hypothesis there exists n > 0 such that (D) C Int(D).
Choose some decreasing finite sequence of topological closed discs D; with

Dy = D, Int(D;) D D41, and Int(D,,—1) D f*(Do). Consider the set

(1) A topological closed disc is a set homeomorphic to the closed unit disc.
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O =Tnt(Dy,_1) NInt(f(Dy_2)) N---NInt(f*H(Dy)).

Let U be the connected component of O containing the fixed point 0. The
hypotheses on the D;’s entail that Clos(f(O)) C O. Since Clos(f(U)) is
connected and contains 0, we deduce that Clos(f(U)) C U. Furthermore,
according to a theorem of Kerékjarto, the set D' = Clos(U) is a closed
topological disc (see [Ke23, LCY]). This disc satisfies f(D’) C Int(D’).

Now the annulus D"\ Int(f(D’)) is a “fundamental domain” for f, and
can be used to construct a local topological conjugacy between f and the
contraction. =

We will say that two sets S and S’ coincide in a neighbourhood of 0,

or have the same germ at 0, and we will write S 2 S’, if there exists a

neighbourhood V' of 0 such that SNV =58 NV,

DEFINITION 5 (see Figure 2). An attracting sector is a topological closed
disc .S whose boundary contains 0, which coincides in a neighbourhood of
0 with its image f(S), and whose orbit (f™(S)),>0 converges to 0. The
attracting sector is said to be nice if f(S) C S and S\ f(S) is connected.
A (nice) repulsive sector is a (nice) attracting sector for f~1.

f()
f(9)
0
Fig. 2. Attracting and nice attracting sectors
CLAIM 6.

1. If S is an attracting sector then there exists a nice attracting sector S’,
included in S, and having the same germ as S at 0.

2. If S is a nice attracting sector for f, then there exists a homeo-
morphism @ between S’ and the half-disc So = {|z| < 1,y > 0} such
that the conjugacy relation @f = %45 between f and the contraction
Z %z holds on S’.

REMARK 7. Here are some easy consequences of item 2 of the claim.

1. The sets @~ 1([—1,0]),®71([0,1]) are called the sides of the nice at-
tracting sector; they do not depend on the choice of @.
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2. There exist arbitrarily small nice attracting sectors within S’; more-
over, any pair of points z,y on both sides of S’ are the endpoints of
the sides of some nice attracting sector included in S’

3. Any homeomorphism @ between the union of the sides of S’ and the
segment [—1,1], satisfying the conjugacy relation @f = %@, can be
extended to a homeomorphism between S’ and Sy conjugating f and
Z %z as in item 2 of the claim.

Proof of Claim 6. Let S be an attracting sector. We first notice that
there exists an arc o included in the boundary of S, whose interior (?) Int(a)
contains the fized point 0, and such that f(o) C Int(er). Indeed, consider a
one-to-one continuous map ¢ : (—1,1) — A5 such that x(0) = 0, and let f =

oL fp. Since f(9) 2 S, this map f is well defined on some neighbourhood
V of 0 in (—1,1), it is a homeomorphism from V to f(V) c (—1,1), and
it fixes 0. Since f preserves the orientation, and f(5) 2 S, f also preserves
the orientation. Furthermore, for every positive z € V, we have f () < a:
otherwise the sequence (f~"())n>0 would be well defined and included in V,
and then ¢(z) would be included in f(0S) for every positive n, contradicting
the hypothesis that (f"(S))n>0 converges to 0. Similarly we get flx) >z
for every negative x, so f(Clos(V)) C V. Finally, the arc « is obtained as
©(Clos(V)).

Consider the set

A= ().
n>0

This is clearly a continuous one-to-one image of the real line, and f(A) = A.
By definition of an attracting sector, there exists an integer ng such that for
every n > ng, f(S) is disjoint from the compact set f~!(a) \ Int(a). Then
ANS = f7™(a) N S. In particular, we can find a simple arc 5 such that
aUf is a Jordan curve included in S, and whose intersection with A reduces
to «.

Let Dg be the topological closed disc bounded by a U 3. Then Dy is
included in S and coincides with S in a neighbourhood of 0, and DgNA = a.
Note that for every n, f*(Do) N A = f"(DoNA) = f*(«). The disc Dy is
clearly an attracting sector. Let ng be a positive integer such that for every
n > ng, f"(Dy) does not meet 3. Thus f™(Dy) C Int(Dy) U f™ ().

We can now find a closed topological disc S’ C Dy, having the same
germ at 0 as Dy, which is a nice attracting sector for f. For this we can
make a construction similar to the proof of Proposition 4, with the following
adaptations. Now we choose the topological discs D; having the same germ
at 0, containing «, and such that Int(D;) Ua D D41 and Int(D,,—1) U ()

(?) The interior of a curve is defined to be the curve minus its endpoints.
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D f™(Dy). As before, we consider the set
O =Tnt(Dy—1) NInt(f(Dp_2)) N---NInt(f"H(Dy)).

Now the open set U is defined to be the unique connected component of
O that has the same germ at 0 as the D;’s, and S’ is the closure of U.
Then f(S') C UU f"(a), and f™(S’) contains f™(«); and thus S”\ f(S5') is
connected. The details are left to the reader.

The proof of item 2 is straightforward by using the fundamental domain

Clos(S"\ f(5). m

2.2. Regular invariant petals. We first recall a theorem of Kerékjartod

(|Ke34b)).

THEOREM 8 (Kerékjarto). Let f be a homeomorphism of the plane that
preserves the orientation, and suppose that for any compact set K the orbit
(f"(K))n>0 converges to the point at infinity in the sphere R? U {oo}. Then
f s topologically conjugate to the translation z — z + 1.

Sketch of proof. By considering the space of orbits, the problem can be
brought into the realm of the classification of surfaces; then the conclusion
follows from the fact that any (Hausdorff) surface without boundary, whose
fundamental group is the group of integers, is homeomorphic to an infinite
cylinder (see for example [AS]). =

DEFINITION 9. An invariant petal for f is a topological closed disc P
whose boundary contains the fixed point 0, and such that f(P) = P. An
invariant petal is called regular if for every compact set K C P\ {0}, the
sequence (f™(K))n>0 converges to 0.

REMARK 10. If P is a regular invariant petal then f has no fixed point on
the topological line 9P\ {0}. Thus we may endow this line with a dynamical
order such that f(x) > x for any x # 0 on OP. The petal will be called direct
if this dynamical order is compatible with the topological (usual) orientation
of OP as a Jordan curve of the oriented plane (for which the interior of P is
“on the left” of P); in the opposite case it will be called indirect.

An adaptation of the proof of Kerékjarté’s theorem yields the following.

CLAIM 11. Let P be a regular invariant petal for f € H™. If P is direct
then the restriction f|p is topologically conjugate, via an orientation preserv-
ing homeomorphism, to the restriction of the translation z — z + 1 to the
closed half-sphere {x + iy : y > 0} U {cc} of the Riemann sphere C. The
same 1s true if P is indirect with z + 1 replaced by z — 1.

2.3. Characterization of parabolic homeomorphisms. We can now char-
acterize the local dynamics of parabolic homeomorphisms. For any set D the
mazximal invariant subset of D is the set (1), ., f" (D) of points whose whole
orbit is included in D.
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PROPOSITION 12 (see Figure 1). Let f € H™. Fiz some integer [ > 1.
Then f is locally topologically conjugate to z — z(14 2') if and only if there
exists a netghbourhood of 0 which is a topological closed disc D, called a nice
disc, such that

1. the maximal invariant subset of D is the union of 2l reqular invariant
petals Py, ..., Py whose pairwise intersections are {0};

2. the sets 0D N P; are connected, and the cyclic order of these sets along
0D coincides with the order of the indices i € 7/2lZ;

3. for every i, let S; be the closure of the connected component of
D\ (PLU---U Py) meeting both P; and Pji1; then S; is a nice at-
tracting sector for i odd and a nice repulsive sector for i even.

The next statement takes into account a possible permutation of the
petals.

PROPOSITION 13. Let f € H' and suppose that for some positive inte-
ger ng the map ™ is locally topologically conjugate to a parabolic homeo-
morphism. Then so is f.

The proofs are delayed until Section 4.

3. Proof of the theorem. From now on, f denotes an orientation
preserving homeomorphism of the plane that fixes 0 and has the short trip
property. For every set V' we define the sets

WA (V)= () £7"(V) and WH(V) =[] f"(V).
n>0 n<0
We fix some open neighbourhood V of 0 as in the definition of the short
trip property. Since our hypothesis is symmetric in time, both the above sets
share the same properties, and we will usually restrict the study to W3(V).

3.1. Orbits. The following lemma shows in particular that the orbits of
points near 0 can only converge to 0 or escape from the neighbourhood V.
Note that this lemma still holds in any dimension.

LEMMA 14.

1. For every compact subset K of W3(V)\ {0}, the sequence (f"(K))n>0
converges to 0.

2. The set W5(V) \ {0} is open.

The set W5(V) U W™(V) is a neighbourhood of 0.

4. If W8(V) is a neighbourhood of 0 then f is locally topologically con-
jugate to z — %z; if W(V') is a neighbourhood of 0 then f is locally
topologically conjugate to z — 2z.

Proof. Let K be a compact subset of W5(V) \ {0}, and let W be some
neighbourhood of 0 disjoint from K. Note that by definition of WS(V'), for

w
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every positive n, f"(K) C V. Now let Ny be given by the short trip property.
Then the property forces f™(K) C W for every n > Nyy. This proves item
1 of the lemma.

Let x # 0 be some point in W*(V'), and W a neighbourhood of 0 whose
closure does not contain z, and such that WU f(W) C V. Let Ny be given
by the short trip property. Let

0= (?jo f‘”(V)) \ Clos(W).

This is an open set that contains . We prove item 2 of the lemma by showing
that O C W*(V). To see this, let y € O. By definition of Ny in the short trip
property we have f"W(y) € W. Then we claim that f"(y) € W for every
n > Ny, which will entail y € W3(V) as desired. Assume otherwise and let
no be the least integer after Ny such that f™(y) ¢ W. Since f(W) C V
we have f™(y) € V. The segment of orbit y,..., f"(y) contradicts the
definition of Ny. This completes the proof of item 2.

We consider again a neighbourhood W of 0 such that W U f(W) U
f~Y(W) C V and Ny given by the short trip property. We define the fol-
lowing neighbourhood of 0:

Nw
Z= (] £
=—Nw

We prove by contradiction that Z C W*(V) U W"(V). Assume some = € Z
belongs neither to W5(V') nor to W*(V'). Since W C V, the orbit (f"(z)) of x
leaves W both in the past and in the future; but by definition of Z this cannot
happen for n between — Ny and Nyy. Let r, s be the least positive integers
such that f~"(z) and f*(x) do not belong to W; since f(W)U f~Y{(W) C V,
both points belong to V' \ W and again we have found a segment of orbit of
length r 4+ s > 2Ny contradicting the definition of Nyy.

Finally, we notice that item 4 is a consequence of item 1 and the topo-
logical characterization of contractions (Proposition 4 above). m

3.2. Construction of the petals. We still consider a homeomorphism
f € H™ with the short trip property, and from now on we assume that f
is locally conjugate neither to the contraction z — %z nor to the dilatation
z — 2z. We aim to prove that f is locally conjugate to a parabolic hom-
eomorphism by ultimately applying Propositions 12 and 13. The main task
will be to construct the family of periodic petals. As a first approximation we
will select a finite number of connected components of W*(V)NW"(V)\{0},
hoping to find one petal inside each of these components.

We fix an open neighbourhood V of 0 as before, and we assume V

is simply connected. According to item 3 of the previous lemma, we can



86 F. Le Roux

choose a topological closed disc D which is a neighbourhood of 0 included
in W3(V) U W*(V). According to item 4, since we excluded the cases of
contractions and dilatations, D is included neither in W*(V') nor in W*(V).
By compactness we can decompose dD into the concatenation of 21 > 2 arcs
aq,...,ag such that o; is included in W*(V) for i odd and in W*(V') for
1 even. We make the following minimality hypothesis: the number [ is mini-
mal among all such choices of topological closed discs D and decompositions
of OD.

For every i (integer modulo 2[) the common endpoint z; of a;—; and «;
belongs to W*(V) N W*(V). We denote by C; the connected component of
Ws(V)nw2(V) \ {0} that contains z;. According to item 2 of Lemma 14,
C; is open. Let D’ be a topological closed disc; since V is simply connected,
if 9D C V then D' C V. Applying this to the iterates of D’, we see that if
oD c WS(V)nW™(V), then D' ¢ W5(V) N W*(V). Since W5(V) is not a

neighbourhood of 0, we get the following consequence.

LEMMA 15. Any connected component of W5(V)NW™(V)\ {0} is open
and simply connected. In particular, the sets C; are homeomorphic to the
plane. Furthermore, any topological closed disc D whose boundary ts included
in C; U{0} is also included in C; U {0}.

The next lemma is the fundamental step in the construction of the peri-
odic petals. No dynamics is involved here; indeed, we will only need proper-
ties 2 and 3 from Lemma 14 on the topology of W*(V') and W"(V).

LEMMA 16. For every i, the closure of C; contains the fized point 0.

Proof. For notational simplicity we assume ¢ = 1, and we write C = C;
and x = x1 € ag N ay. Using the Schoenflies theorem, up to a change of
coordinates, we can assume that D is a euclidean closed disc.

We will argue by contradiction. Assuming that 0 does not belong to the
closure of C, we will construct a simple arc a with the following properties
(we denote by O« the set of endpoints of o and set Int(a) = a \ dav):

1. Int(a) C Int(D), 0o C OD;
2. «a separates (®) z from 0 in D;
3. either & € W3(V) and da N W*(V) = 0, or « C W*(V) and da N
Ws(V) = 0.
From this we will get a contradiction as follows (see Figure 3(a)). Assume
for example that the first case of the last item holds. Let 1 <41 < io < 2l be

such that the endpoints of a are respectively in «;, and ay,. Since o does
not meet W*"(V'), both i1 and i are odd, and in particular 1 < iy < ig < 2.

(®) A set A separates two points in a set B if the two points belong to distinct
connected components of B\ A.
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T
2

B I
I3
D
(a) The arc o (b) The sequence Iy and the limit set F'

Fig. 3. Proof of Lemma 16

Let 8 C 9D be the arc with the same endpoints as « and not contain-
ing x; then ( is covered by a;, U--- U ay,, and from the second point we
see that the Jordan curve o U § surrounds 0. Since oo U oy, U oy, C W3(V),
we can write a U 3 as the concatenation of io — i1 arcs, each included in
Ws5(V) or W*(V). This contradicts the minimality hypothesis on [ since
1o — 11 < 2.

We now assume that 0 ¢ Clos(C) and turn to the construction of such an
arc a. According to Lemma 15, there exists a homeomorphism @ : R? — C.
Let (Dy) be the sequence of images under @ of the concentric discs with
radius k and centre ¢~1(x). Thus:

e €D,
o D, C Int(Dk+1),
° Ukzo D, =C.

Let y be some point in Int(D) sufficiently near x so that the segment [zy]
is included in D1ND. For every k, the set 0DNInt(D) is closed in Int(D) and
separates y from 0 in Int(D) since 0 € Dy. According to Theorem V.14.3
in [New]|, there exists a connected component of 9Dy N Int(D) that also
separates y from 0. Let [} denotes the closure of this component; thus I}, is
a subarc of the Jordan curve 0Dy, with Int(I};) C Int(D), 01 C 9D, and it
separates x from 0 in D; in other words, it satisfies the first two properties
above required for the arc a.

Remember that the space of compact connected subsets of D is compact
under the Hausdorff metric. Thus, up to taking subsequences, we can assume
that (I}) converges to a compact connected set F' C D (see Figure 3(b)).
Since [}, C 0Dy, the set F is included in 0C. By assumption, dC does not
contain 0, so neither does F'. Then again F' separates y from 0 in Int(D): if
not, there would exist an arc in Int(D) from y to 0 missing F', but then this
arc would also miss I}, for sufficiently large k, contrary to the property that
I}, separates y from 0.
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Since C is a connected component of the open set W*(V)NW"(V)\ {0},
its boundary OC is disjoint from this set. Thus F' is disjoint from W*5(V) N
WH%(V); and since it is included in D it is covered by the two open sets
Ws(V)\ {0} and W*(V')\ {0}. Since F is connected, it must be included in
one of these sets, and disjoint from the other.

To fix ideas, suppose that ' C W*(V) \ W"*(V). The arc I is included
in W#(V). Now this arc almost satisfies the three properties above required
for the arc a: it only fails to have its endpoints outside W*(V'). To remedy
this we notice that, up to taking sequences, the two sequences of endpoints
(I'(0)), (I'x(1)) converge to some zp, 21 € FNID. Since F' ¢ W3(V)\ {0} we
can choose £ > 0 so that the euclidean balls By, B of radius € and respective
centres z, z1 are included in W95(V'). For k large enough, I, meets both balls,
and then we construct the desired arc a by modifying I} near its endpoints:
we replace two small extreme subarcs of I, respectively included in By and
Bi, by two euclidean segments reaching zy and z;. Note that since D is a
euclidean disc, both segments, apart from their endpoints 2y, 21, are included
in Int(D). The endpoints zg, z; of the resulting arc « are in F, thus outside
WY(V), and « has the third property while still satisfying the first two. As
explained at the beginning of the proof, the existence of o contradicts the
minimality of [. »

3.3. Periodicity of the petals. Unfortunately, we are not able to prove di-
rectly that the sets C; of the previous section are periodic for f. To overcome
this difficulty we will consider slightly larger sets C/ which will turn out to
be periodic. In the next section we will find a periodic petal inside each C..

We suppose that the closure of V is included in some neighbourhood
V' of 0 which still has the short trip property. In other words, we apply
the results of the previous sections with V' small enough to meet this new
assumption. We note that Lemmas 14 and 15 apply to V’. Obviously the
inclusions W5(V) ¢ W3(V') and W*(V) c W*(V’) hold. Let the disc D
and the sets C; be defined from V as in the previous section. Each C; is
connected and included in W5(V') n W*(V’) \ {0}, and thus included in a
connected component of W*(V') n W (V') \ {0}, which we denote by C..

LEMMA 17. The sets C| are periodic: for every i there exists some positive
integer g; such that f%(C}) = C.

Proof. We first note that the set WS(V') n W*(V') \ {0} is invariant
under f, and hence for every n, f"(C) is a connected component of that
set.

We claim that for every i there exist infinitely many n such that f"(C;)
meets the circle 9D. Assuming the claim, we choose some point x, any neigh-
bourhood of which contains points of 0D N f"*(C;) for infinitely many values
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of n. Since x is a limit of points whose whole orbits are included in V, its or-
bit is included in Clos(V') C V’; in other words, x € W3(V')n W (V") \ {0}.
Let O be the connected component of this last set containing x. According
to Lemma 15, O is open, and thus there exist infinitely many integers n such
that f"(C;) meets O. For every such n, f™(C/) is a connected component of
Ws(V)NW=(V")\ {0} that meets O, thus it coincides with O. Hence we can
find two integers ny < ng such that ™ (C;) = f"2(C}), which proves that C;
is periodic.

We prove the claim. By Lemma 16 the fixed point 0 belongs to the closure
of C;. Since C; U {0} is not a neighbourhood of 0, this point also belongs to
the closure of JC;. Furthermore,

(9C;) \ {0} co(W>(V) nW*(V)) \ {0}
C (W*(ClosV) N WY(ClosV)) \ (W3(V) N W (V).

Consequently, for any z € 9C; \ {0} there exists an integer n such that
f"(z) € V. Let (zx) be a sequence in OC; converging to 0. Then any sequence
ng such that ™ (z) € OV is unbounded, because the union of finitely many
iterates of AV is a closed set which does not contain 0. For any k the set
f™(C;) is connected, its closure contains 0 and meets OV, thus it also meets
0D. This completes the proof of the claim. m

3.4. Construction of the local conjugacy. We finally define the petals.
According to the previous lemma we can choose some ng > 0 such that
F = fm leaves invariant every set C.. In view of Proposition 13, Theorem 3
will follow from the fact that F' is locally conjugate to a locally holomorphic
parabolic homeomorphism. Let us prove this fact.

Recall that C! is homeomorphic to the plane (Lemma 15), and for any
compact set K C C!, the sequences (f"(K))p>0 and (f™(K))n<o converge
to 0 (Lemma 14). Consequently, Theorem 8 tells us that for every i the
restriction of F' to the invariant set C. is conjugate to the plane translation
T : 2z z+ 1. Observe that any point is on a horizontal line

A=)
nes
with compact ¢’ (a horizontal segment). Bringing this line back under the
conjugacy, we see that any point z; € C/ is on a set A; C C] which is the
union of the iterates under F' of a compact set (an arc) included in C]. By
Lemma 14, A; U {0} is a Jordan curve. Let P; be the closed topological
disc bounded by this curve (here we use the Schoenflies theorem). The last
sentence of Lemma 15 entails that P; is included in C], and then Lemma 14
shows that P; is a regular invariant petal for F.

The curve a; meets both petals P; and Pjy;. Furthermore for ¢ odd

we have o C W5(V), so by Lemma 14, (F"™(;))n>0 converges to 0, and
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(F™(j))n<o converges to 0 for ¢ even. Thus the construction of a local con-
jugacy between F and z — z(1+ 2!) now boils down to the following lemma.

LEMMA 18 (see Figure 1). Let f € H'. Fiz some integer | > 1. Assume
the following hypotheses.

1. There exist 2l reqular invariant petals Py, ..., Py whose pairwise in-
tersections are {0}.

2. There exists a topological closed disc D which is a netghbourhood of 0,
and whose boundary is the concatenation of 2l arcs aq, ..., a9, each
having one endpoint on P; and the other on Pji1.

3. For i odd the sequence (f"(cy))n>0 converges to 0, and for i even the
sequence (f™(cu))n<o converges to 0.

Then f is locally conjugate to z — z(1 4 2%).

Note that we do not suppose that 0D N P; is connected, nor that «; does
not meet some petal P; with j # 7,7 + 1, in contrast to Proposition 12.
An important step of the proof will be to check that the petal indexation
coincides with their cyclic order around 0.

Proof of Lemma 18. Consider a homeomorphism f € H™ satisfying the
hypotheses of the lemma. The arc «; contains a minimal subarc o connecting
P; to Piiq; the endpoints of o) are respectively on P; and Piyj, and its
interior Int(o}) is disjoint from P; and P;1;. Let ¢ be odd, so that (f™(c}))n>0
converges to 0. Then we define an attracting sector S, as follows. We consider
the curve obtained by concatenating the arc o}, the subarc of JP; from
the endpoint of o to 0 following the dynamical orientation of OP;, and the
similar subarc on P;;1 (see Remark 10). This is a Jordan curve, it bounds a
topological closed disc S]. Clearly (f"(95}))n>0 converges to 0, and thus so
does (f™(S!))n>0; in other words, S/ is indeed an attracting sector. Note that
as a consequence, it can contain neither P; nor P;y1, because an attracting
sector contains no invariant set. We apply item 1 of Claim 6 to get a nice
attracting sector S; C S/ having the same germ as S! at 0. For ¢ even we
symmetrically define a repulsive sector S, and a nice repulsive sector S;.

Since the petals are topological closed discs whose pairwise intersection
is {0}, the Schoenflies theorem shows that the union of the petals is hom-
eomorphic to the model pictured on the left of Figure 1; but we still have
to prove that their cyclic order is as shown on the right of the figure (or
the reverse one). For this we argue by contradiction. Suppose there exists
some ¢ such that the petals P; and P;;; are not adjacent: they are locally
separated near 0 by the union of the other petals. Then there exists another
petal P; such that the sector S; contains a neighbourhood of 0 in P;; in other
words, Clos(P; \ S;) is a compact subset of P; \ {0}. Using Claim 11 that



Characterization of holomorphic parabolic germs 91

describes the dynamics of f on P;, we find a point = # 0 whose full orbit
{f™(x) : n € Z} is included in P; N S;. But an attracting or repulsive sector
contains no full orbit, which provides the desired contradiction.

Up to reversing the indexation, we may now assume that the petals are
indexed in the positive cyclic order around 0 (so that the Schoenflies theorem
provides an orientation preserving homeomorphism that sends each P; onto
the model of Figure 1). Since S; contains neither P; nor P;y1, the dynamical
order on the boundaries of the petals is as indicated in Figure 1: the petal
P; is direct for ¢ odd and indirect for ¢ even.

Up to replacing S; with some smaller nice sector, we deduce that

1. for any 4,7 with j # 4,7+ 1, we have P, N.S; = {0};
2. for any i # j, we have S; N S; = {0} = f~1(S;) N S;.

Consider the set D = PLUS; U---U Py USy. Thanks to item 2 the maximal
invariant subset of D is the union of the petals P;. Thus D is a topologi-
cal closed disc satisfying the hypotheses of Proposition 12. Now the lemma
follows from the proposition. =

4. Proof of Propositions 12 and 13

Proof of Proposition 12. The fact that for the map z — z(1 + z!) there
exists a topological closed disc D with properties 1-3 of the proposition is
part of the proof of the Camacho—Leau—Fatou theorem (see [Cam, Mil|).

We turn to the proof of the reverse implication. We consider a homeo-
morphism f € H™ and a disc D with properties 1-3 of the proposition. We
have to prove that if f/ € HT and a disc D’ has the same properties (with
the same [) then f and f are locally topologically conjugate. Note that the
union of all sectors S; and petals P; is equal to D.

Let ¢ be an odd integer. Since 5; is an attracting sector between P; and
Pit1, the petal P; is direct, while P;1; is indirect (see Remark 10). The same
is true for f’. Thus according to Claim 11, the restrictions of f and f’ to
P, and P! are conjugate. The conjugacies can be glued together to obtain
an orientation preserving homeomorphism @ : | J P; — |J P/ which sends P,
onto P/ and is a conjugacy between the restrictions of f and f’.

The image under @ of S;N(P;UP;41) is not necessarily equal to S, N (P/U

7 1)- But using item 2 of Claim 6 we can replace S; and S; with smaller nice
attracting sectors so that this equality becomes true (see item 2 of Remark 7).
We can now use item 3 of Remark 7 to extend ¢ to a homeomorphism
between D and D', sending S; onto S; and conjugating the restrictions of
f and f’. We do this for every attracting or repulsive sector S;. We further
extend & to a homeomorphism of the plane. The conjugacy relation f'® = &f
is satisfied on D N f~1(D). This completes the proof of the proposition. =
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To prove Proposition 13 we need a claim.

CLAIM 19. Let Q1,Q2 be two invariant petals included in a regqular in-
variant petal P for F € H™. Then Q1 meets Qo, and there exists a unique
connected component O of Int(Q1) NInt(Q2) such that F(O) = O. Further-
more, the closure of O s a reqular invariant petal for F'.

Proof. The first part is easily proved using the translation model given by
Claim 11. The only difficulty in the second part is to check that the closure
of O is indeed a topological closed disc. But this follows from the previously
quoted result of Kerékjarto ([Ke23, LCY]). =

Also note that if () C P are two regular invariant petals and P is direct
then @ is direct.

Proof of Proposition 13. Let f™ = F be conjugate to a parabolic hom-
eomorphism Fy. Up to increasing ng, we can assume that Fj(0) = 1, and
thus F is locally conjugate to z — z(1 + 2!) for some integer I. Let D be
a nice disc for F, and let {P,..., Py} be the family of petals associated
with D, as given by Proposition 12.

For each ¢ we choose a small invariant petal Q); for F' included in P;. Since
f" = F and Q); is invariant for F, if (); is small enough then every iterate
f™(Q;) is included in D. Since f(Q;)\ {0} is connected and invariant for F,
it is included in a connected component of the F-maximal invariant subset
of D\ {0}, that is, f"(Q;) is included in some petal P;. Fix j and consider
the finite family of all the petals f™(Q;) for n € Z and i € Z/2IZ which are
included in P;. We denote the intersection of their interiors by O;. Applying
Claim 19 inductively we see that the closure of O; is a regular invariant petal
for F'; let us call it 13]-.

By construction the petals in the family {Fj} are permuted by f, their
pairwise intersections are {0}, and their cyclic order around 0 is given by
the cyclic order on the indices j € Z/2I7Z. Since f is an orientation preserv-
ing homeomorphism, there exists i such that f(P;) = Py, for every i.
Furthermore, since f respects the dynamical orders induced by F' on the
boundary of the petals, i9 must be even. The order nj, of the permutation
i+ i+ 1 is a divisor of ng (maybe proper). It is easy to see that there ex-
ists another nice disc D for F whose maximal invariant subset is the union
of this family of petals. The nice attractive and repulsive sectors S; for F,
associated with D, are clearly also attractive or repulsive sectors for f"f),
and according to Claim 6 we can find within each S; a nice attracting or

repulsive sector S; for f”6 having the same germ at 0. Now the topological

closed disc D defined as the union of all petals P; and sectors S; is a nice disc
for f”é), the hypotheses of Proposition 12 are satisfied, and f”6 is conjugate
to F.
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Using these families of petals and sectors we are now in a position to
construct a local conjugacy Q) between f and the model map fy : z —

e?m0/25(1 4 2!). Note that fo is conjugate to z +— z(1 + 2!) and that fy

permutes a family of regular invariant petals for fo 0 The construction of the
conjugacy is similar to the one defined in the proof of Proposition 12. Here
is the main difference: since the petals are permuted by f, we have first to

define a conjugacy @ between f and fo on some petal P;, and then there
is a unique way to extend it to the f-orbit of P; to get a conjugacy between
f and fy. We do the same for every f-orbit of petals, and for every f-orbit
of a sector. This completes the proof of Proposition 13. =
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