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A topologi
al 
hara
terization of holomorphi
paraboli
 germs in the planebyFrédéri
 Le Roux (Orsay)
Abstra
t. J.-M. Gambaudo and É. Pé
ou introdu
ed the �linking property� in thestudy of the dynami
s of germs of planar homeomorphisms in order to provide a new proofof Naishul's theorem. In this paper we prove that the negation of the Gambaudo�Pé
ouproperty 
hara
terizes the topologi
al dynami
s of holomorphi
 paraboli
 germs. As a
onsequen
e, a rotation set for germs of surfa
e homeomorphisms around a �xed point 
anbe de�ned, and it turns out to be non-trivial ex
ept for 
ountably many 
onjuga
y 
lasses.1. Introdu
tion. Let H+ be the set of orientation preserving homeo-morphisms of the plane that �x 0, and let h ∈ H+. We are interested in thedynami
s of the germ of h at 0. Imagine one wants to evaluate the �amountof rotation� in a neighbourhood V of 0 by looking at the way the orbit ofsome point x ∈ V rotates around 0. Then two kinds of di�
ulties 
an arise:
• if the orbit of x leaves V after a small number of iterations, then thebehaviour of x is not signi�
ant with respe
t to the lo
al dynami
s;
• if the orbit of x tends to the �xed point 0, then the rotation of xaround 0 is not signi�
ant either, be
ause it is not invariant under a
ontinuous 
hange of 
oordinates.These di�
ulties have led Gambaudo and Pé
ou to introdu
e the �linkingproperty� (see [GP, Pé℄) whi
h demands that inside ea
h neighbourhood of

0 there exist arbitrarily long segments of orbits starting and ending not too
lose to 0. In this paper we prove that the only germs that do not share thelinking property are the 
ontra
tion, dilatation and holomorphi
 paraboli
germs. To be more pre
ise, let us de�ne the short trip property, whi
h is thenegation of the Gambaudo�Pé
ou property, as follows.Definition 1. Let f ∈ H+. We say that f has the short trip propertyif there exists a neighbourhood V of the �xed point 0 su
h that for every2000 Mathemati
s Subje
t Classi�
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78 F. Le Rouxneighbourhood W of 0, there exists an integer NW > 0 su
h that for ev-ery segment of orbit (x, f(x), . . . , fn(x)) whi
h is in
luded in V , and whoseendpoints x, fn(x) are outside W , the length n is less than NW .Two homeomorphisms f1, f2 ∈ H+ are said to be lo
ally topologi
ally
onjugate if there exists a homeomorphism ϕ ∈ H+ su
h that f2 = ϕf1ϕ
−1on some neighbourhood of 0. We are interested in the lo
al dynami
s nearthe �xed point 0, thus we 
onsider maps up to lo
al 
onjuga
y. Note thatany lo
al homeomorphism lo
ally 
oin
ides with a homeomorphism de�nedon the whole plane, so that working with globally de�ned homeomorphismsis just a matter of 
onvenien
e and does not alter the results (see [Ham℄or [LR1, 
hapitre 2℄). As a 
onsequen
e, to prove that two homeomorphismsare lo
ally topologi
ally 
onjugate it su�
es to 
onstru
t the 
onjuga
y ona neighbourhood of 0.Definition 2. Let f ∈ H+, and identify the plane with the 
omplexplane C. We say that f is a lo
ally holomorphi
 paraboli
 homeomorphism(or just paraboli
) if f is holomorphi
 on some neighbourhood of 0, f ′(0) isa root of unity, and for every positive n the map fn is not lo
ally equal tothe identity.Note that the hypothesis on f ′(0) amounts to saying that the di�erentialof f is a rational rotation, and then the last hypothesis is equivalent to sayingthat f is not lo
ally topologi
ally 
onjugate to its di�erential. A

ording toCama
ho's version of the Leau�Fatou theorem, if f ∈ H+ is paraboli
, then

f is lo
ally topologi
ally 
onjugate to some map
z 7→ e2iπp/qz(1 + zqr) with p/q ∈ Q, q, r ≥ 1.See [Cam℄, and Figure 1.We 
an now state our theorem.Theorem 3. Let f be an orientation preserving homeomorphism of theplane that �xes the point 0. Then f has the short trip property if and only if itis lo
ally topologi
ally 
onjugate to the 
ontra
tion z 7→ 1

2
z, to the dilatation

z 7→ 2z, or to a lo
ally holomorphi
 paraboli
 homeomorphism.As a 
onsequen
e there are only 
ountably many 
onjuga
y 
lasses failingto have the Gambaudo�Pé
ou property.In order to explain where Theorem 3 
omes from, let us �rst dis
uss theNaishul theorem. In [GP℄ it was shown that the Gambaudo�Pé
ou propertyholds when f preserves area, and then this property is used to prove theNaishul theorem: among area preserving homeomorphisms �xing 0 that aredi�erentiable at 0 and whose di�erential is a rotation, the angle of the rota-tion is invariant under a lo
al topologi
al 
onjuga
y. Then the following ni
egeneralization of the Naishul theorem is given by Gambaudo, Le Calvez and
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Fig. 1. Lo
al topologi
al dynami
s of f : z 7→ e2iπp/qz(1 + zqr); here q = 3, p = 1, r = 2,so that there are two orbits of attra
ting petals and two orbits of repulsive petals.Pé
ou in [GLP℄. As a generalization of di�erentiability at 0, they 
onsiderthe homeomorphisms f for whi
h the �xed point 
an be �blown up�, i.e. re-pla
ed by an ideal 
ir
le in su
h a way that f 
an be extended to a 
ir
lehomeomorphism (see the pre
ise de�nition in [GLP℄). They prove that forsu
h homeomorphisms, the Poin
aré rotation number of the extended 
ir
lehomeomorphism is invariant under a lo
al topologi
al 
onjuga
y, unless f isa 
ontra
tion or a dilatation. The strategy of their proof is the following.If f has the Gambaudo�Pé
ou property, then one 
an use the argumentsin [GP℄. Now assume that f is indi�erent, that is, f admits arbitrarily smallnon-trivial invariant 
ompa
t 
onne
ted sets K 
ontaining 0; then one 
anuse Carathéodory's prime ends theory to asso
iate a 
ir
le homeomorphism
fK to ea
h su
h K, and use the rotation number of fK to prove the topolog-i
al invarian
e. Then one proves a last lemma asserting that a germ whi
his not indi�erent and does not have the Gambaudo�Pé
ou property must bea 
ontra
tion or a dilatation.As a 
onsequen
e of the Leau�Fatou theorem, paraboli
 maps are indif-ferent. Thus Theorem 3 
an be seen as a generalization of this last lemma.Furthermore, it provides an alternative proof of the generalized Naishul the-orem, avoiding the use of prime ends, as follows: we keep the argumentsin [GP℄ to ta
kle homeomorphisms with the Gambaudo�Pé
ou property;then, in view of Theorem 3, it only remains to deal with paraboli
 homeo-morphisms, for whi
h the proof is easy be
ause the lo
al dynami
s is fullyunderstood.More generally, in [LR2℄ we will de�ne a lo
al rotation set for any hom-eomorphism f in H+. This set is a subset of the extended line R ∪ {±∞},modulo integer translation, and it is a lo
al topologi
al 
onjuga
y invariant.



80 F. Le RouxThen Theorem 3 will entail that the lo
al rotation set is non-void as soon as
f does not fall into the 
ountably many 
onjuga
y 
lasses des
ribed by thetheorem.One 
an also think of Theorem 3 as a lo
al analogue of previous re-sults showing that a simple dynami
al property 
an imply a strong rigidity.The most striking result here is probably the Hiraide�Lewowi
z theorem: anexpansive homeomorphism on a 
ompa
t surfa
e is 
onjugate to a pseudo-Anosov homeomorphism (see [Hi, Le℄). Closer to our setting, Kerékjártó hasshown that an orientation preserving homeomorphism of a 
losed orientablesurfa
e whose singular set is totally dis
onne
ted is topologi
ally 
onjugateto a 
onformal transformation (see [BK, Ke34a, Ke34b℄). Thus, for instan
e,an orientation preserving homeomorphism f of the plane is 
onjugate to atranslation if and only if it has no �xed point and the family (fn)n≥0 isequi
ontinuous at ea
h point for the spheri
al metri
.In some sense, Theorem 3 highlights that it is easy to be lo
ally 
onju-gate to a lo
ally paraboli
 homeomorphism: a homeomorphism that �lookslike� a paraboli
 map will be 
onjugate to it. In 
ontrast, the examples givenin [BLR℄ reveal how di�
ult it is to be 
onjugate to the saddle homeo-morphism (2x, y/2), and in parti
ular that it is not enough to preserve thehyperboli
 foliation. A topologi
al 
hara
terization 
an be given, but it musttake into a

ount the sophisti
ated os
illating set (see, in [BLR℄, the remarkon Fig. 3 as well as part III).2. Dynami
s of paraboli
 germs. Propositions 12 and 13 below pro-vide a �rst (
lassi
al) 
hara
terization of paraboli
 germs in terms of attra
t-ing and repulsive se
tors and invariant petals.2.1. Contra
tions and attra
ting se
tors. We begin by 
hara
terizing thedynami
s of 
ontra
tions. Then we des
ribe attra
ting se
tors. Of 
ourse,similar results hold for dilatations and repulsive se
tors, although we willnot state them expli
itly.Let f ∈ H+. We will say that a sequen
e (En)n≥0 of subsets of the plane
onverges to 0 if for every neighbourhood W of 0, all but �nitely many termsof the sequen
e are in
luded in W . The following result is very 
lassi
al.Proposition 4. Let f ∈ H+. Let D be a topologi
al 
losed dis
 (1) whi
his a neighbourhood of 0, and suppose that the orbit (fn(D))n≥0 
onverges to 0.Then f is lo
ally topologi
ally 
onjugate to the 
ontra
tion z 7→ 1

2
z.Proof. By hypothesis there exists n > 0 su
h that fn(D) ⊂ Int(D).Choose some de
reasing �nite sequen
e of topologi
al 
losed dis
s Di with

D0 = D, Int(Di) ⊃ Di+1, and Int(Dn−1) ⊃ fn(D0). Consider the set
(1) A topologi
al 
losed dis
 is a set homeomorphi
 to the 
losed unit dis
.



Chara
terization of holomorphi
 paraboli
 germs 81
O = Int(Dn−1) ∩ Int(f(Dn−2)) ∩ · · · ∩ Int(fn−1(D0)).Let U be the 
onne
ted 
omponent of O 
ontaining the �xed point 0. Thehypotheses on the Di's entail that Clos(f(O)) ⊂ O. Sin
e Clos(f(U)) is
onne
ted and 
ontains 0, we dedu
e that Clos(f(U)) ⊂ U . Furthermore,a

ording to a theorem of Kerékjártó, the set D′ = Clos(U) is a 
losedtopologi
al dis
 (see [Ke23, LCY℄). This dis
 satis�es f(D′) ⊂ Int(D′).Now the annulus D′ \ Int(f(D′)) is a �fundamental domain� for f , and
an be used to 
onstru
t a lo
al topologi
al 
onjuga
y between f and the
ontra
tion.We will say that two sets S and S′ 
oin
ide in a neighbourhood of 0,or have the same germ at 0, and we will write S

0
= S′, if there exists aneighbourhood V of 0 su
h that S ∩ V = S′ ∩ V .Definition 5 (see Figure 2). An attra
ting se
tor is a topologi
al 
loseddis
 S whose boundary 
ontains 0, whi
h 
oin
ides in a neighbourhood of

0 with its image f(S), and whose orbit (fn(S))n≥0 
onverges to 0. Theattra
ting se
tor is said to be ni
e if f(S) ⊂ S and S \ f(S) is 
onne
ted.A (ni
e) repulsive se
tor is a (ni
e) attra
ting se
tor for f−1.
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Fig. 2. Attra
ting and ni
e attra
ting se
tors
Claim 6.1. If S is an attra
ting se
tor then there exists a ni
e attra
ting se
tor S′,in
luded in S, and having the same germ as S at 0.2. If S′ is a ni
e attra
ting se
tor for f , then there exists a homeo-morphism Φ between S′ and the half-dis
 S0 = {|z| ≤ 1, y ≥ 0} su
hthat the 
onjuga
y relation Φf = 1

2
Φ between f and the 
ontra
tion

z 7→ 1

2
z holds on S′.Remark 7. Here are some easy 
onsequen
es of item 2 of the 
laim.1. The sets Φ−1([−1, 0]), Φ−1([0, 1]) are 
alled the sides of the ni
e at-tra
ting se
tor; they do not depend on the 
hoi
e of Φ.



82 F. Le Roux2. There exist arbitrarily small ni
e attra
ting se
tors within S′; more-over, any pair of points x, y on both sides of S′ are the endpoints ofthe sides of some ni
e attra
ting se
tor in
luded in S′.3. Any homeomorphism Φ between the union of the sides of S′ and thesegment [−1, 1], satisfying the 
onjuga
y relation Φf = 1

2
Φ, 
an beextended to a homeomorphism between S′ and S0 
onjugating f and

z 7→ 1

2
z as in item 2 of the 
laim.Proof of Claim 6. Let S be an attra
ting se
tor. We �rst noti
e thatthere exists an ar
 α in
luded in the boundary of S, whose interior (2) Int(α)
ontains the �xed point 0, and su
h that f(α) ⊂ Int(α). Indeed, 
onsider aone-to-one 
ontinuous map ϕ : (−1, 1) → ∂S su
h that ϕ(0) = 0, and let f̂ =

ϕ−1fϕ. Sin
e f(S)
0
= S, this map f̂ is well de�ned on some neighbourhood

V of 0 in (−1, 1), it is a homeomorphism from V to f̂(V ) ⊂ (−1, 1), andit �xes 0. Sin
e f preserves the orientation, and f(S)
0
= S, f̂ also preservesthe orientation. Furthermore, for every positive x ∈ V , we have f̂(x) < x:otherwise the sequen
e (f̂−n(x))n≥0 would be well de�ned and in
luded in V ,and then ϕ(x) would be in
luded in fn(∂S) for every positive n, 
ontradi
tingthe hypothesis that (fn(S))n≥0 
onverges to 0. Similarly we get f̂(x) > xfor every negative x, so f̂(Clos(V )) ⊂ V . Finally, the ar
 α is obtained as

ϕ(Clos(V )).Consider the set
A :=

⋃

n≥0

f−n(α).This is 
learly a 
ontinuous one-to-one image of the real line, and f(A) = A.By de�nition of an attra
ting se
tor, there exists an integer n0 su
h that forevery n ≥ n0, fn(S) is disjoint from the 
ompa
t set f−1(α) \ Int(α). Then
A ∩ S = f−n0(α) ∩ S. In parti
ular, we 
an �nd a simple ar
 β su
h that
α∪β is a Jordan 
urve in
luded in S, and whose interse
tion with A redu
esto α.Let D0 be the topologi
al 
losed dis
 bounded by α ∪ β. Then D0 isin
luded in S and 
oin
ides with S in a neighbourhood of 0, and D0∩A = α.Note that for every n, fn(D0) ∩ A = fn(D0 ∩ A) = fn(α). The dis
 D0 is
learly an attra
ting se
tor. Let n0 be a positive integer su
h that for every
n ≥ n0, fn(D0) does not meet β. Thus fn(D0) ⊂ Int(D0) ∪ fn(α).We 
an now �nd a 
losed topologi
al dis
 S′ ⊂ D0, having the samegerm at 0 as D0, whi
h is a ni
e attra
ting se
tor for f . For this we 
anmake a 
onstru
tion similar to the proof of Proposition 4, with the followingadaptations. Now we 
hoose the topologi
al dis
s Di having the same germat 0, 
ontaining α, and su
h that Int(Di)∪α ⊃ Di+1 and Int(Dn−1)∪ fn(α)

(2) The interior of a 
urve is de�ned to be the 
urve minus its endpoints.



Chara
terization of holomorphi
 paraboli
 germs 83
⊃ fn(D0). As before, we 
onsider the set

O = Int(Dn−1) ∩ Int(f(Dn−2)) ∩ · · · ∩ Int(fn−1(D0)).Now the open set U is de�ned to be the unique 
onne
ted 
omponent of
O that has the same germ at 0 as the Di's, and S′ is the 
losure of U .Then f(S′) ⊂ U ∪ fn(α), and fn(S′) 
ontains fn(α); and thus S′ \ f(S′) is
onne
ted. The details are left to the reader.The proof of item 2 is straightforward by using the fundamental domain
Clos(S′ \ f(S′)).2.2. Regular invariant petals. We �rst re
all a theorem of Kerékjártó([Ke34b℄).Theorem 8 (Kerékjártó). Let f be a homeomorphism of the plane thatpreserves the orientation, and suppose that for any 
ompa
t set K the orbit
(fn(K))n≥0 
onverges to the point at in�nity in the sphere R2 ∪ {∞}. Then
f is topologi
ally 
onjugate to the translation z 7→ z + 1.Sket
h of proof. By 
onsidering the spa
e of orbits, the problem 
an bebrought into the realm of the 
lassi�
ation of surfa
es; then the 
on
lusionfollows from the fa
t that any (Hausdor�) surfa
e without boundary, whosefundamental group is the group of integers, is homeomorphi
 to an in�nite
ylinder (see for example [AS℄).Definition 9. An invariant petal for f is a topologi
al 
losed dis
 Pwhose boundary 
ontains the �xed point 0, and su
h that f(P ) = P . Aninvariant petal is 
alled regular if for every 
ompa
t set K ⊂ P \ {0}, thesequen
e (fn(K))n≥0 
onverges to 0.Remark 10. If P is a regular invariant petal then f has no �xed point onthe topologi
al line ∂P \{0}. Thus we may endow this line with a dynami
alorder su
h that f(x) > x for any x 6= 0 on ∂P . The petal will be 
alled dire
tif this dynami
al order is 
ompatible with the topologi
al (usual) orientationof ∂P as a Jordan 
urve of the oriented plane (for whi
h the interior of P is�on the left� of ∂P ); in the opposite 
ase it will be 
alled indire
t.An adaptation of the proof of Kerékjártó's theorem yields the following.Claim 11. Let P be a regular invariant petal for f ∈ H+. If P is dire
tthen the restri
tion f|P is topologi
ally 
onjugate, via an orientation preserv-ing homeomorphism, to the restri
tion of the translation z 7→ z + 1 to the
losed half-sphere {x + iy : y ≥ 0} ∪ {∞} of the Riemann sphere Ĉ. Thesame is true if P is indire
t with z + 1 repla
ed by z − 1.2.3. Chara
terization of paraboli
 homeomorphisms. We 
an now 
har-a
terize the lo
al dynami
s of paraboli
 homeomorphisms. For any set D themaximal invariant subset of D is the set ⋂

n∈Z
fn(D) of points whose wholeorbit is in
luded in D.



84 F. Le RouxProposition 12 (see Figure 1). Let f ∈ H+. Fix some integer l ≥ 1.Then f is lo
ally topologi
ally 
onjugate to z 7→ z(1 + zl) if and only if thereexists a neighbourhood of 0 whi
h is a topologi
al 
losed dis
 D, 
alled a ni
edis
, su
h that1. the maximal invariant subset of D is the union of 2l regular invariantpetals P1, . . . , P2l whose pairwise interse
tions are {0};2. the sets ∂D∩Pi are 
onne
ted , and the 
y
li
 order of these sets along
∂D 
oin
ides with the order of the indi
es i ∈ Z/2lZ;3. for every i, let Si be the 
losure of the 
onne
ted 
omponent of
D \ (P1 ∪ · · · ∪ P2l) meeting both Pi and Pi+1; then Si is a ni
e at-tra
ting se
tor for i odd and a ni
e repulsive se
tor for i even.The next statement takes into a

ount a possible permutation of thepetals.Proposition 13. Let f ∈ H+ and suppose that for some positive inte-ger n0 the map fn0 is lo
ally topologi
ally 
onjugate to a paraboli
 homeo-morphism. Then so is f .The proofs are delayed until Se
tion 4.3. Proof of the theorem. From now on, f denotes an orientationpreserving homeomorphism of the plane that �xes 0 and has the short tripproperty. For every set V we de�ne the sets

W s(V ) =
⋂

n≥0

f−n(V ) and W u(V ) =
⋂

n≤0

f−n(V ).We �x some open neighbourhood V of 0 as in the de�nition of the shorttrip property. Sin
e our hypothesis is symmetri
 in time, both the above setsshare the same properties, and we will usually restri
t the study to W s(V ).3.1. Orbits. The following lemma shows in parti
ular that the orbits ofpoints near 0 
an only 
onverge to 0 or es
ape from the neighbourhood V .Note that this lemma still holds in any dimension.Lemma 14.1. For every 
ompa
t subset K of W s(V )\{0}, the sequen
e (fn(K))n≥0
onverges to 0.2. The set W s(V ) \ {0} is open.3. The set W s(V ) ∪ W u(V ) is a neighbourhood of 0.4. If W s(V ) is a neighbourhood of 0 then f is lo
ally topologi
ally 
on-jugate to z 7→ 1

2
z; if W u(V ) is a neighbourhood of 0 then f is lo
allytopologi
ally 
onjugate to z 7→ 2z.Proof. Let K be a 
ompa
t subset of W s(V ) \ {0}, and let W be someneighbourhood of 0 disjoint from K. Note that by de�nition of W s(V ), for
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es fn(K) ⊂ W for every n > NW . This proves item1 of the lemma.Let x 6= 0 be some point in W s(V ), and W a neighbourhood of 0 whose
losure does not 
ontain x, and su
h that W ∪ f(W ) ⊂ V . Let NW be givenby the short trip property. Let
O =

(

NW
⋂

n=0

f−n(V )
)

\ Clos(W ).This is an open set that 
ontains x. We prove item 2 of the lemma by showingthat O ⊂ W s(V ). To see this, let y ∈ O. By de�nition of NW in the short tripproperty we have fNW (y) ∈ W . Then we 
laim that fn(y) ∈ W for every
n ≥ NW , whi
h will entail y ∈ W s(V ) as desired. Assume otherwise and let
n0 be the least integer after NW su
h that fn0(y) 6∈ W . Sin
e f(W ) ⊂ Vwe have fn0(y) ∈ V . The segment of orbit y, . . . , fn0(y) 
ontradi
ts thede�nition of NW . This 
ompletes the proof of item 2.We 
onsider again a neighbourhood W of 0 su
h that W ∪ f(W ) ∪
f−1(W ) ⊂ V and NW given by the short trip property. We de�ne the fol-lowing neighbourhood of 0:

Z =

NW
⋂

n=−NW

f−n(W ).We prove by 
ontradi
tion that Z ⊂ W s(V ) ∪ W u(V ). Assume some x ∈ Zbelongs neither to W s(V ) nor to W u(V ). Sin
e W ⊂ V , the orbit (fn(x)) of xleaves W both in the past and in the future; but by de�nition of Z this 
annothappen for n between −NW and NW . Let r, s be the least positive integerssu
h that f−r(x) and f s(x) do not belong to W ; sin
e f(W )∪f−1(W ) ⊂ V ,both points belong to V \W and again we have found a segment of orbit oflength r + s > 2NW 
ontradi
ting the de�nition of NW .Finally, we noti
e that item 4 is a 
onsequen
e of item 1 and the topo-logi
al 
hara
terization of 
ontra
tions (Proposition 4 above).3.2. Constru
tion of the petals. We still 
onsider a homeomorphism
f ∈ H+ with the short trip property, and from now on we assume that fis lo
ally 
onjugate neither to the 
ontra
tion z 7→ 1

2
z nor to the dilatation

z 7→ 2z. We aim to prove that f is lo
ally 
onjugate to a paraboli
 hom-eomorphism by ultimately applying Propositions 12 and 13. The main taskwill be to 
onstru
t the family of periodi
 petals. As a �rst approximation wewill sele
t a �nite number of 
onne
ted 
omponents of W s(V )∩W u(V )\{0},hoping to �nd one petal inside ea
h of these 
omponents.We �x an open neighbourhood V of 0 as before, and we assume Vis simply 
onne
ted. A

ording to item 3 of the previous lemma, we 
an
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hoose a topologi
al 
losed dis
 D whi
h is a neighbourhood of 0 in
ludedin W s(V ) ∪ W u(V ). A

ording to item 4, sin
e we ex
luded the 
ases of
ontra
tions and dilatations, D is in
luded neither in W s(V ) nor in W u(V ).By 
ompa
tness we 
an de
ompose ∂D into the 
on
atenation of 2l ≥ 2 ar
s
α1, . . . , α2l su
h that αi is in
luded in W s(V ) for i odd and in W u(V ) for
i even. We make the following minimality hypothesis: the number l is mini-mal among all su
h 
hoi
es of topologi
al 
losed dis
s D and de
ompositionsof ∂D.For every i (integer modulo 2l) the 
ommon endpoint xi of αi−1 and αibelongs to W s(V ) ∩ W u(V ). We denote by Ci the 
onne
ted 
omponent of
W s(V ) ∩ W u(V ) \ {0} that 
ontains xi. A

ording to item 2 of Lemma 14,
Ci is open. Let D′ be a topologi
al 
losed dis
; sin
e V is simply 
onne
ted,if ∂D′ ⊂ V then D′ ⊂ V . Applying this to the iterates of D′, we see that if
∂D′ ⊂ W s(V ) ∩ W u(V ), then D′ ⊂ W s(V ) ∩ W u(V ). Sin
e W s(V ) is not aneighbourhood of 0, we get the following 
onsequen
e.Lemma 15. Any 
onne
ted 
omponent of W s(V ) ∩W u(V ) \ {0} is openand simply 
onne
ted. In parti
ular , the sets Ci are homeomorphi
 to theplane. Furthermore, any topologi
al 
losed dis
 D whose boundary is in
ludedin Ci ∪ {0} is also in
luded in Ci ∪ {0}.The next lemma is the fundamental step in the 
onstru
tion of the peri-odi
 petals. No dynami
s is involved here; indeed, we will only need proper-ties 2 and 3 from Lemma 14 on the topology of W s(V ) and W u(V ).Lemma 16. For every i, the 
losure of Ci 
ontains the �xed point 0.Proof. For notational simpli
ity we assume i = 1, and we write C = C1and x = x1 ∈ α2l ∩ α1. Using the S
hoen�ies theorem, up to a 
hange of
oordinates, we 
an assume that D is a eu
lidean 
losed dis
.We will argue by 
ontradi
tion. Assuming that 0 does not belong to the
losure of C, we will 
onstru
t a simple ar
 α with the following properties(we denote by ∂α the set of endpoints of α and set Int(α) = α \ ∂α):1. Int(α) ⊂ Int(D), ∂α ⊂ ∂D;2. α separates (3) x from 0 in D;3. either α ⊂ W s(V ) and ∂α ∩ W u(V ) = ∅, or α ⊂ W u(V ) and ∂α ∩

W s(V ) = ∅.From this we will get a 
ontradi
tion as follows (see Figure 3(a)). Assumefor example that the �rst 
ase of the last item holds. Let 1 ≤ i1 ≤ i2 ≤ 2l besu
h that the endpoints of α are respe
tively in αi1 and αi2 . Sin
e ∂α doesnot meet W u(V ), both i1 and i2 are odd, and in parti
ular 1 ≤ i1 ≤ i2 < 2l.
(3) A set A separates two points in a set B if the two points belong to distin
t
onne
ted 
omponents of B \ A.
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 α (b) The sequen
e Γk and the limit set FFig. 3. Proof of Lemma 16Let β ⊂ ∂D be the ar
 with the same endpoints as α and not 
ontain-ing x; then β is 
overed by αi1 ∪ · · · ∪ αi2 , and from the se
ond point wesee that the Jordan 
urve α ∪ β surrounds 0. Sin
e α ∪ αi1 ∪ αi2 ⊂ W s(V ),we 
an write α ∪ β as the 
on
atenation of i2 − i1 ar
s, ea
h in
luded in
W s(V ) or W u(V ). This 
ontradi
ts the minimality hypothesis on l sin
e
i2 − i1 < 2l.We now assume that 0 6∈ Clos(C) and turn to the 
onstru
tion of su
h anar
 α. A

ording to Lemma 15, there exists a homeomorphism Φ : R2 → C.Let (Dk) be the sequen
e of images under Φ of the 
on
entri
 dis
s withradius k and 
entre Φ−1(x). Thus:

• x ∈ D1,
• Dk ⊂ Int(Dk+1),
•

⋃

k≥0
Dk = C.Let y be some point in Int(D) su�
iently near x so that the segment [xy]is in
luded in D1∩D. For every k, the set ∂Dk∩Int(D) is 
losed in Int(D) andseparates y from 0 in Int(D) sin
e 0 6∈ Dk. A

ording to Theorem V.14.3in [New℄, there exists a 
onne
ted 
omponent of ∂Dk ∩ Int(D) that alsoseparates y from 0. Let Γk denotes the 
losure of this 
omponent; thus Γk isa subar
 of the Jordan 
urve ∂Dk with Int(Γk) ⊂ Int(D), ∂Γk ⊂ ∂D, and itseparates x from 0 in D; in other words, it satis�es the �rst two propertiesabove required for the ar
 α.Remember that the spa
e of 
ompa
t 
onne
ted subsets of D is 
ompa
tunder the Hausdor� metri
. Thus, up to taking subsequen
es, we 
an assumethat (Γk) 
onverges to a 
ompa
t 
onne
ted set F ⊂ D (see Figure 3(b)).Sin
e Γk ⊂ ∂Dk, the set F is in
luded in ∂C. By assumption, ∂C does not
ontain 0, so neither does F . Then again F separates y from 0 in Int(D): ifnot, there would exist an ar
 in Int(D) from y to 0 missing F , but then thisar
 would also miss Γk for su�
iently large k, 
ontrary to the property that

Γk separates y from 0.
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e C is a 
onne
ted 
omponent of the open set W s(V )∩W u(V ) \ {0},its boundary ∂C is disjoint from this set. Thus F is disjoint from W s(V ) ∩
W u(V ); and sin
e it is in
luded in D it is 
overed by the two open sets
W s(V ) \ {0} and W u(V ) \ {0}. Sin
e F is 
onne
ted, it must be in
luded inone of these sets, and disjoint from the other.To �x ideas, suppose that F ⊂ W s(V ) \ W u(V ). The ar
 Γk is in
ludedin W s(V ). Now this ar
 almost satis�es the three properties above requiredfor the ar
 α: it only fails to have its endpoints outside W u(V ). To remedythis we noti
e that, up to taking sequen
es, the two sequen
es of endpoints
(Γk(0)), (Γk(1)) 
onverge to some z0, z1 ∈ F ∩∂D. Sin
e F ⊂ W s(V )\{0} we
an 
hoose ε > 0 so that the eu
lidean balls B0, B1 of radius ε and respe
tive
entres z0, z1 are in
luded in W s(V ). For k large enough, Γk meets both balls,and then we 
onstru
t the desired ar
 α by modifying Γk near its endpoints:we repla
e two small extreme subar
s of Γk, respe
tively in
luded in B0 and
B1, by two eu
lidean segments rea
hing z0 and z1. Note that sin
e D is aeu
lidean dis
, both segments, apart from their endpoints z0, z1, are in
ludedin Int(D). The endpoints z0, z1 of the resulting ar
 α are in F , thus outside
W u(V ), and α has the third property while still satisfying the �rst two. Asexplained at the beginning of the proof, the existen
e of α 
ontradi
ts theminimality of l.3.3. Periodi
ity of the petals. Unfortunately, we are not able to prove di-re
tly that the sets Ci of the previous se
tion are periodi
 for f . To over
omethis di�
ulty we will 
onsider slightly larger sets C′

i whi
h will turn out tobe periodi
. In the next se
tion we will �nd a periodi
 petal inside ea
h C′
i.We suppose that the 
losure of V is in
luded in some neighbourhood

V ′ of 0 whi
h still has the short trip property. In other words, we applythe results of the previous se
tions with V small enough to meet this newassumption. We note that Lemmas 14 and 15 apply to V ′. Obviously thein
lusions W s(V ) ⊂ W s(V ′) and W u(V ) ⊂ W u(V ′) hold. Let the dis
 Dand the sets Ci be de�ned from V as in the previous se
tion. Ea
h Ci is
onne
ted and in
luded in W s(V ′) ∩ W u(V ′) \ {0}, and thus in
luded in a
onne
ted 
omponent of W s(V ′) ∩ W u(V ′) \ {0}, whi
h we denote by C′
i.Lemma 17. The sets C′

i are periodi
: for every i there exists some positiveinteger qi su
h that f qi(C′
i) = C′

i.Proof. We �rst note that the set W s(V ′) ∩ W u(V ′) \ {0} is invariantunder f , and hen
e for every n, fn(C′
i) is a 
onne
ted 
omponent of thatset.We 
laim that for every i there exist in�nitely many n su
h that fn(Ci)meets the 
ir
le ∂D. Assuming the 
laim, we 
hoose some point x, any neigh-bourhood of whi
h 
ontains points of ∂D∩fnk(Ci) for in�nitely many values
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e x is a limit of points whose whole orbits are in
luded in V , its or-bit is in
luded in Clos(V ) ⊂ V ′; in other words, x ∈ W s(V ′)∩W u(V ′) \ {0}.Let O be the 
onne
ted 
omponent of this last set 
ontaining x. A

ordingto Lemma 15, O is open, and thus there exist in�nitely many integers n su
hthat fn(Ci) meets O. For every su
h n, fn(C′
i) is a 
onne
ted 
omponent of

W s(V ′)∩W u(V ′)\{0} that meets O, thus it 
oin
ides with O. Hen
e we 
an�nd two integers n1 < n2 su
h that fn1(C′
i) = fn2(C′

i), whi
h proves that C′
iis periodi
.We prove the 
laim. By Lemma 16 the �xed point 0 belongs to the 
losureof Ci. Sin
e Ci ∪ {0} is not a neighbourhood of 0, this point also belongs tothe 
losure of ∂Ci. Furthermore,

(∂Ci) \ {0} ⊂ ∂(W s(V ) ∩ W u(V )) \ {0}

⊂ (W s(ClosV ) ∩ W u(ClosV )) \ (W s(V ) ∩ W u(V )).Consequently, for any z ∈ ∂Ci \ {0} there exists an integer n su
h that
fn(z) ∈ ∂V . Let (zk) be a sequen
e in ∂Ci 
onverging to 0. Then any sequen
e
nk su
h that fnk(zk) ∈ ∂V is unbounded, be
ause the union of �nitely manyiterates of ∂V is a 
losed set whi
h does not 
ontain 0. For any k the set
fnk(Ci) is 
onne
ted, its 
losure 
ontains 0 and meets ∂V , thus it also meets
∂D. This 
ompletes the proof of the 
laim.3.4. Constru
tion of the lo
al 
onjuga
y. We �nally de�ne the petals.A

ording to the previous lemma we 
an 
hoose some n0 > 0 su
h that
F = fn0 leaves invariant every set C′

i. In view of Proposition 13, Theorem 3will follow from the fa
t that F is lo
ally 
onjugate to a lo
ally holomorphi
paraboli
 homeomorphism. Let us prove this fa
t.Re
all that C′
i is homeomorphi
 to the plane (Lemma 15), and for any
ompa
t set K ⊂ C′

i, the sequen
es (fn(K))n≥0 and (fn(K))n≤0 
onvergeto 0 (Lemma 14). Consequently, Theorem 8 tells us that for every i therestri
tion of F to the invariant set C′
i is 
onjugate to the plane translation

τ : z 7→ z + 1. Observe that any point is on a horizontal line
∆′ =

⋃

n∈Z

τn(δ′)with 
ompa
t δ′ (a horizontal segment). Bringing this line ba
k under the
onjuga
y, we see that any point xi ∈ C′
i is on a set ∆i ⊂ C′

i whi
h is theunion of the iterates under F of a 
ompa
t set (an ar
) in
luded in C′
i. ByLemma 14, ∆i ∪ {0} is a Jordan 
urve. Let Pi be the 
losed topologi
aldis
 bounded by this 
urve (here we use the S
hoen�ies theorem). The lastsenten
e of Lemma 15 entails that Pi is in
luded in C′

i, and then Lemma 14shows that Pi is a regular invariant petal for F .The 
urve αi meets both petals Pi and Pi+1. Furthermore for i oddwe have αi ⊂ W s(V ), so by Lemma 14, (Fn(αi))n≥0 
onverges to 0, and
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(Fn(αi))n≤0 
onverges to 0 for i even. Thus the 
onstru
tion of a lo
al 
on-juga
y between F and z 7→ z(1+zl) now boils down to the following lemma.Lemma 18 (see Figure 1). Let f ∈ H+. Fix some integer l ≥ 1. Assumethe following hypotheses.1. There exist 2l regular invariant petals P1, . . . , P2l whose pairwise in-terse
tions are {0}.2. There exists a topologi
al 
losed dis
 D whi
h is a neighbourhood of 0,and whose boundary is the 
on
atenation of 2l ar
s α1, . . . , α2l, ea
hhaving one endpoint on Pi and the other on Pi+1.3. For i odd the sequen
e (fn(αi))n≥0 
onverges to 0, and for i even thesequen
e (fn(αi))n≤0 
onverges to 0.Then f is lo
ally 
onjugate to z 7→ z(1 + zl).Note that we do not suppose that ∂D∩Pi is 
onne
ted, nor that αi doesnot meet some petal Pj with j 6= i, i + 1, in 
ontrast to Proposition 12.An important step of the proof will be to 
he
k that the petal indexation
oin
ides with their 
y
li
 order around 0.Proof of Lemma 18. Consider a homeomorphism f ∈ H+ satisfying thehypotheses of the lemma. The ar
 αi 
ontains a minimal subar
 α′

i 
onne
ting
Pi to Pi+1; the endpoints of α′

i are respe
tively on Pi and Pi+1, and itsinterior Int(α′
i) is disjoint from Pi and Pi+1. Let i be odd, so that (fn(α′

i))n≥0
onverges to 0. Then we de�ne an attra
ting se
tor S′
i as follows. We 
onsiderthe 
urve obtained by 
on
atenating the ar
 α′

i, the subar
 of ∂Pi fromthe endpoint of α to 0 following the dynami
al orientation of ∂Pi, and thesimilar subar
 on Pi+1 (see Remark 10). This is a Jordan 
urve, it bounds atopologi
al 
losed dis
 S′
i. Clearly (fn(∂S′

i))n≥0 
onverges to 0, and thus sodoes (fn(S′
i))n≥0; in other words, S′

i is indeed an attra
ting se
tor. Note thatas a 
onsequen
e, it 
an 
ontain neither Pi nor Pi+1, be
ause an attra
tingse
tor 
ontains no invariant set. We apply item 1 of Claim 6 to get a ni
eattra
ting se
tor Si ⊂ S′
i having the same germ as S′

i at 0. For i even wesymmetri
ally de�ne a repulsive se
tor S′
i and a ni
e repulsive se
tor Si.Sin
e the petals are topologi
al 
losed dis
s whose pairwise interse
tionis {0}, the S
hoen�ies theorem shows that the union of the petals is hom-eomorphi
 to the model pi
tured on the left of Figure 1; but we still haveto prove that their 
y
li
 order is as shown on the right of the �gure (orthe reverse one). For this we argue by 
ontradi
tion. Suppose there existssome i su
h that the petals Pi and Pi+1 are not adja
ent: they are lo
allyseparated near 0 by the union of the other petals. Then there exists anotherpetal Pj su
h that the se
tor Si 
ontains a neighbourhood of 0 in Pj ; in otherwords, Clos(Pj \ Si) is a 
ompa
t subset of Pj \ {0}. Using Claim 11 that
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ribes the dynami
s of f on Pj , we �nd a point x 6= 0 whose full orbit
{fn(x) : n ∈ Z} is in
luded in Pj ∩ Si. But an attra
ting or repulsive se
tor
ontains no full orbit, whi
h provides the desired 
ontradi
tion.Up to reversing the indexation, we may now assume that the petals areindexed in the positive 
y
li
 order around 0 (so that the S
hoen�ies theoremprovides an orientation preserving homeomorphism that sends ea
h Pi ontothe model of Figure 1). Sin
e Si 
ontains neither Pi nor Pi+1, the dynami
alorder on the boundaries of the petals is as indi
ated in Figure 1: the petal
Pi is dire
t for i odd and indire
t for i even.Up to repla
ing Si with some smaller ni
e se
tor, we dedu
e that1. for any i, j with j 6= i, i + 1, we have Pi ∩ Sj = {0};2. for any i 6= j, we have Si ∩ Sj = {0} = f−1(Si) ∩ Sj .Consider the set D = P1∪S1 ∪· · ·∪P2l ∪S2l. Thanks to item 2 the maximalinvariant subset of D is the union of the petals Pi. Thus D is a topologi-
al 
losed dis
 satisfying the hypotheses of Proposition 12. Now the lemmafollows from the proposition.4. Proof of Propositions 12 and 13Proof of Proposition 12. The fa
t that for the map z 7→ z(1 + zl) thereexists a topologi
al 
losed dis
 D with properties 1�3 of the proposition ispart of the proof of the Cama
ho�Leau�Fatou theorem (see [Cam, Mil℄).We turn to the proof of the reverse impli
ation. We 
onsider a homeo-morphism f ∈ H+ and a dis
 D with properties 1�3 of the proposition. Wehave to prove that if f ′ ∈ H+ and a dis
 D′ has the same properties (withthe same l) then f and f ′ are lo
ally topologi
ally 
onjugate. Note that theunion of all se
tors Si and petals Pi is equal to D.Let i be an odd integer. Sin
e Si is an attra
ting se
tor between Pi and
Pi+1, the petal Pi is dire
t, while Pi+1 is indire
t (see Remark 10). The sameis true for f ′. Thus a

ording to Claim 11, the restri
tions of f and f ′ to
Pi and P ′

i are 
onjugate. The 
onjuga
ies 
an be glued together to obtainan orientation preserving homeomorphism Φ :
⋃

Pi →
⋃

P ′
i whi
h sends Pionto P ′

i and is a 
onjuga
y between the restri
tions of f and f ′.The image under Φ of Si∩(Pi∪Pi+1) is not ne
essarily equal to S′
i∩(P ′

i ∪
P ′

i+1). But using item 2 of Claim 6 we 
an repla
e Si and S′
i with smaller ni
eattra
ting se
tors so that this equality be
omes true (see item 2 of Remark 7).We 
an now use item 3 of Remark 7 to extend Φ to a homeomorphismbetween D and D′, sending Si onto S′

i and 
onjugating the restri
tions of
f and f ′. We do this for every attra
ting or repulsive se
tor Si. We furtherextend Φ to a homeomorphism of the plane. The 
onjuga
y relation f ′Φ = Φfis satis�ed on D ∩ f−1(D). This 
ompletes the proof of the proposition.
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laim.Claim 19. Let Q1, Q2 be two invariant petals in
luded in a regular in-variant petal P for F ∈ H+. Then Q1 meets Q2, and there exists a unique
onne
ted 
omponent O of Int(Q1)∩ Int(Q2) su
h that F (O) = O. Further-more, the 
losure of O is a regular invariant petal for F .Proof. The �rst part is easily proved using the translation model given byClaim 11. The only di�
ulty in the se
ond part is to 
he
k that the 
losureof O is indeed a topologi
al 
losed dis
. But this follows from the previouslyquoted result of Kerékjártó ([Ke23, LCY℄).Also note that if Q ⊂ P are two regular invariant petals and P is dire
tthen Q is dire
t.Proof of Proposition 13. Let fn0 = F be 
onjugate to a paraboli
 hom-eomorphism F0. Up to in
reasing n0, we 
an assume that F ′
0(0) = 1, andthus F is lo
ally 
onjugate to z 7→ z(1 + zl) for some integer l. Let D bea ni
e dis
 for F , and let {P1, . . . , P2l} be the family of petals asso
iatedwith D, as given by Proposition 12.For ea
h i we 
hoose a small invariant petal Qi for F in
luded in Pi. Sin
e

fn0 = F and Qi is invariant for F , if Qi is small enough then every iterate
fn(Qi) is in
luded in D. Sin
e fn(Qi)\{0} is 
onne
ted and invariant for F ,it is in
luded in a 
onne
ted 
omponent of the F -maximal invariant subsetof D \ {0}, that is, fn(Qi) is in
luded in some petal Pj. Fix j and 
onsiderthe �nite family of all the petals fn(Qi) for n ∈ Z and i ∈ Z/2lZ whi
h arein
luded in Pj . We denote the interse
tion of their interiors by Oj . ApplyingClaim 19 indu
tively we see that the 
losure of Oj is a regular invariant petalfor F ; let us 
all it P j .By 
onstru
tion the petals in the family {P j} are permuted by f , theirpairwise interse
tions are {0}, and their 
y
li
 order around 0 is given bythe 
y
li
 order on the indi
es j ∈ Z/2lZ. Sin
e f is an orientation preserv-ing homeomorphism, there exists i0 su
h that f(P i) = P i+i0 for every i.Furthermore, sin
e f respe
ts the dynami
al orders indu
ed by F on theboundary of the petals, i0 must be even. The order n′

0 of the permutation
i 7→ i + i0 is a divisor of n0 (maybe proper). It is easy to see that there ex-ists another ni
e dis
 D for F whose maximal invariant subset is the unionof this family of petals. The ni
e attra
tive and repulsive se
tors Si for F ,asso
iated with D, are 
learly also attra
tive or repulsive se
tors for fn′

0 ,and a

ording to Claim 6 we 
an �nd within ea
h Si a ni
e attra
ting orrepulsive se
tor Si for fn′

0 having the same germ at 0. Now the topologi
al
losed dis
 D de�ned as the union of all petals P i and se
tors Si is a ni
e dis
for fn′

0 , the hypotheses of Proposition 12 are satis�ed, and fn′

0 is 
onjugateto F .
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tors we are now in a position to
onstru
t a lo
al 
onjuga
y Φ between f and the model map f0 : z 7→

e2iπi0/2lz(1 + zl). Note that f
n′

0

0
is 
onjugate to z 7→ z(1 + zl) and that f0permutes a family of regular invariant petals for f

n′

0

0
. The 
onstru
tion of the
onjuga
y is similar to the one de�ned in the proof of Proposition 12. Hereis the main di�eren
e: sin
e the petals are permuted by f , we have �rst tode�ne a 
onjuga
y Φ between fn′

0 and f
n′

0

0
on some petal P i, and then thereis a unique way to extend it to the f -orbit of P i to get a 
onjuga
y between

f and f0. We do the same for every f -orbit of petals, and for every f -orbitof a se
tor. This 
ompletes the proof of Proposition 13.
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