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Killing GCH everywhere by a cofinality-preserving forcing
notion over a model of GCH

by

Sy-David Friedman (Wien) and Mohammad Golshani (Tehran)

Abstract. Starting from large cardinals we construct a pair V3 C V2 of models of ZFC
with the same cardinals and cofinalities such that GCH holds in V; and fails everywhere in V.

1. Introduction. Easton’s classical result showed that over any model
of GCH, one can force any reasonable pattern of the power function A — 2*
on the regular cardinals A, preserving cardinals and cofinalities. Subse-
quently, much work has been done on the singular cardinal problem, whose
aim is to characterize the patterns of the power function on all cardinals,
including the singular ones. Typically in this work, large cardinals are used
to obtain patterns of power function behaviour at singular cardinals after
applying subtle forcings which change cofinalities or even collapse cardinals.
This leads one to ask: Is it possible to obtain a failure of GCH everywhere
by forcing over a model of GCH without changing cofinalities? If so, can one
have a fixed finite gap in the resulting model, meaning that 2* = \*" for
some finite n > 1 for all A?

In this paper we prove the following theorem.

THEOREM 1.1. Assume GCH + there exists a (k + 4)-strong cardinal k.
Then there is a pair Vi3 C Vo of models of ZFC' such that:

(a) Vi and Vi have the same cardinals and cofinalities,
(b) GCH holds in V7,
(€) Val= “VA, 2 = A37,

REMARK 1.2. In fact it suffices to have a Mitchell increasing sequence of
extenders of length k™, each of them (k+ 3)-strong. Thus the exact strength
that we need for a fixed gap of 3 is a cardinal s with o(k) = k™2 + kT, It is
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also easy to extend our result to an arbitrary finite gap n instead of 3. Then
what we need is a cardinal x with o(k) = k1" 4+ k*. We focus on the case
n = 3 as it is typical of all cases n > 3 (the case n = 2 is easier).

The rest of this paper is devoted to the proof of this theorem. The proof
is based on the extender-based Radin forcing developed by C. Merimovich in
[MI1], [M2]. We try to make the proof self-contained, thus we start with some
preliminaries and facts from those papers, suitably modified for our purposes.

We now summarise the modifications of [M2] which are necessary to
achieve our result. In [M2], one begins with a model V* with a (x+4)-strong
cardinal k and performs a (cofinality-preserving) reverse Easton preparation,
which forces 2¢ = a*3 for the first three successors of each inaccessible
< k. In the resulting model V' = V*[G] one can construct suitable “guiding
generics” for later use, which are in fact generics over a suitable inner model
M of V which blow up the power sets of the first three successors of £ and
which collapse the image i(x) of k to k1%, where i : V' — M is a suitable
elementary embedding. After this preparation, one performs an extender-
based Radin forcing with interleaved collapses, using the guiding generics
obtained through preparation. The result is a model with gap 3 everywhere
below & (i.e., 2% = a3 for all @ < k). By truncating the universe at x, one
obtains gap 3 everywhere.

We would like to use a similar method, but we need to perform a prepa-
ration which preserves GCH below k. Thus our first step is to obtain a model
V = V*[G] which only forces 2% = a3 at the first three successors of x and
adds no new subsets of k. Extra work is now required to show that in this
model suitable guiding generics can be found to carry out the second step of
Merimovich’s construction. The result is again a model Vo = V[G][H] with
gap 3 everywhere below k (keeping x inaccessible). We now form a model
V1 intermediate between V[G] and V3, essentially obtained by using the or-
dinary Radin forcing with interleaved collapses (using the collapsing part
of the guiding generics). The model V; satisfies GCH below k but has the
same cofinalities below s as the model V5. This is verified using a suitable
projection from Merimovich’s extender-based Radin forcing with collapses
into the ordinary Radin forcing with collapses.

We should mention that obtaining models Vi C V5 with the same car-
dinals (not the same cofinalities) and with GCH holding in V; but failing
everywhere in V5 is an easier result, as then we only need guiding generics
for Cohen forcings, not for Lévy colllapses, and the second step of the forcing
can consist of a cardinal-preserving (but of course not cofinality-preserving)
Radin forcing. But to preserve cofinalities or to obtain the gap 3 behaviour
of the power function it appears that the methods of this paper are needed
to handle the necessary collapses.
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2. Extender sequences. Suppose j: V* — M* D V" with crit j = k.
Define an extender (with projections)

B(0) = ((Ea(0): 0 € A), (ms0: Boa € A, B>, a)
on k by:

e A=k ),
o Va € A, E,(0) is the k-complete ultrafilter on « defined by

X € E,(0) & a € j(X).

We write E,(0) as U,.
e Va,B € A,

B >; a< B> aand for some f € "k, j(f)(B) = a.
o 3>;a=Tg,: Kk — kK issuch that j(m3,4)(8) = .
Let us recall the main properties of E(0) (see [G]):

(1) (A, <;) is a kT -directed partial order,

(2) Vo, k < a,

(3) Uy isa normal measure on £,

(4) Ya, U, is a P-point ultrafilter over &, i.e. for any f : Kk — & there
is X € U, such that Vv < k, | X N f~ 1”( )| < &,

(5) T (X) €Us & X € UL,

(6) Vo, ma,q =id,

(7) Yy >; B >; « there is X € U, such that Vv € X, my,(v) =

78,0(7y,8(1)),
(8) Vv >, «,f where o # 3 there is X € U, such that Vv € X,

Tya(v) # my,5(1),

Moreover the 7, ,’s can be chosen so that:

(9) VB> a, Vv < K, 3 4(V) = Takx(m8,a(V)),
(10) Ve, B, Vv < k, o x(v) = m5x(v); we denote the latter by /0.

Now suppose that we have defined the sequence (E(7') : 7/ < 7). If
(E(T"): 7' < 1) ¢ M* we stop the construction and set

Va€ A, E,=(a,E0),...,E(T),...:7 <7)

and call E, an extender sequence of length 7 (1(Ey) = 7).
If (E(7) : 7/ < 1) € M* then we define an extender (with projections)

E(T) = <<E<O¢,E(T’):T’<T> (T) HEeS A>7 <7T<ﬁ,E(T/)IT/<T>7(()!,E(T’)IT/<T> : B,OZ € A)
B >; a)) on V. by:
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e X € E<OL,E(‘{")ZT’<T>(7—) <~ <Oé,E(T) T < T> (X)
o for B Zj Q1 A? T(B,E(T"):7' <7 (o, E(T!):1! <) (< d>) <7T57Ct(1/)7d>'

Note that F, g(r/):r'<7)(T) concentrates on pairs of the form (v, d) where
v < k and d is an extender sequence. This makes the above definition correct.

We let the construction run until it stops due to the extender sequence
not being in M*.

DEFINITION 2.1.

(1) @ is an extender sequence if there are j : V* — M* and v such that
7 is an extender sequence derived from j as above (i.e. 7 = E, for
some «) and g = v[7 for some 7 < 1(v).

(2) k(jz) is the ordinal of the beginning of the sequence (i.e. k(Ey) = ).

(3) (i) = (k(1)° (ie. K%(Ea) = K)).

(4) The sequence (fi1, ..., fi,) of extender sequences is
RO(1) < -+ < KO(fin)-

(5) The extender sequence [ is permitted to a C-increasing sequence
(fi1, ..., fin) of extender sequences if k%(fi,) < £"(f).

(6) Notation: We write X € E, iff V&€ < 1(E,), X € E,(£).

(7) E = (B, : a € A) is an extender sequence system if there is j :
V* — M?* such that each E, is derived from j as above and Va,
B € A, 1(E,) = 1(Eg). Call this common length the length of E,
1(B).

(8) For an extender sequence ji, we use E(j1) for the extender sequence
system containing ji (i.e. E(E,) = E).

(9) dom(E) = A.

(10) Eg ZE E’a S 6 > Q.

O_increasing if

3. Finding generic filters. Using GCH in V* we construct an extender
sequence system £ = (E, : a € dom E) with dom E =[x, x™®) and |(E)=x*
such that the ultrapower jp : V* — MZ (defined below) contains V7, 5
Suppose that E is derived from an elementary embedding j : V* — M*.
Consider the following elementary embeddings V7' < 7 < 1(E):

V= M = UV, E(7)) = {j:(f)(BalT) : f €V},
kT(jT(f)(EOé 7)) = ()( alT)s

i 7 (Jr (F)(Eal ™) = jr (f)(Eal),
(Mg, i, g) = lim dir((M] : 7 < I(E ), (i 70 T < T <1(E))).

We demand that E|7 € M for all 7 < 1(E).
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Thus we get the following commutative diagram:

V*

Y T MY = UV, E(r))

,T/

i.r/,.,_

Note that

e the critical point of those elementary embeddings originating in V*
is K,

e the critical point of those elementary embeddings originating in other
models is kT as computed in that model.

Thus we get
crit ip ;= crit ky = criti p = ()

+4

M7,
critkh; = criti, g = (K
+4)

)M.,‘fa
critkp = (fi M-

Each of these models catches Vé‘f; = V¥ ., hence computes kT3 to be the
same ordinal in all models. The larger 7 is the more resemblance there is
between M* and M*. This can be verified by noting that
/@Xf*/ < jr (k) < /6;14: < jr(k) < mﬁﬁ* < Kih <k
We also factor through the normal ultrafilter to get the commutative diagram
. JE *
Vi ———— My y—E\0),
iy V¥ = N*~Ul(V*,U),
(i (k) = 5-(F)(K),

N* ~ Ult(V*,U) v M iy s (f)(k) = ip(f)(K).

N* catches V* only up to V7 ; and we have
KT < critiy, = critip g = kT <iy(k) <k
We now define the forcings for which we will need “guiding generics”.
DEFINITION 3.1. Let
(1) RE! = Col(k*9, iy (k) N+,
(2) RO = Add(kT, k) n,
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(3) RyM? = Add (kT k15) -
(4) RSMS — Add(kT3, k16) y,
(5) Ry™! = (Add(x™, it (k) ) x Add(x*®, (i () ) x-2)
x Add(k15, (i (k) T3) y+2)) v+, where N*2 is the second iterate of V*

by U,
(6) RAM — Rgdd,l o RAd2 Rgdd,{% y RéddA,

(7) RU RAdd x REOL

REMARK 3.2. We have (j, (k)T )az = (jr (k) 1) a2 and (- (1) P2z =
(jT(Ii)+3)M:2, where M?? is the second iterate of V* by E(7). Similarly
Ge(R) sy = G ae and (Gp(e) gy = (p(0)*) a2, where
MEQ is the second iterate of V* by E

DEFINITION 3.3. Let

(1) RCO] CO]( 7jT('L€))M7’f’

(2) R AL Add(wF, k) ars,

(3) R = Add(wT, k%) as,

(4) Add3 Add( +3 KJ+6)M*7

(5) R Add4 (Add(n+4, G- (k)F) x Add (K75, - (k) FF)

X Add(/@Jr6 (K )+3))M;
(6) RA — RTAdd,1 « RAMS | pAdd3 | pAddd

(7) R, = RAdd » RCL
DEFINITION 3.4. Let

(1) RE = Col(kF6, jp (),

2) R Add U= Add(x™, H+4)M§,

3) R Add 2 = Add(kt, /€+5)ng

4) R Add3 = Add(k*3, 510 ape,

(5) R Add4 = (Add(s™,j5(k)T) x Add(kT?, jp(k)tTT)

x Add(/i%,JE( K)F))

(6) R%dd _ RAEdd,l o RAAZ | pAdd3 | pAddd

(7) Rp = R34 x RS

Also define the forcing notion P as follows:

P= ]Pl X PQ X Pg

— AAA(F, () ) ¢ A( T, (579)ar2) ¢ Add(+, (79002 [
and let G = G x G X G be P-generic over V*. It is clear that V*[G] is a
cofinality-preserving generic extension of V* and that GCH holds in V*[G]

(*) Hence P is forcing isomorphic to Add(x™, s73) x Add(s+T, k13) x Add(x T3, kT3).
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below and at k. The forcing P is our (weak) “preparation forcing” (which
preserves the GCH below k). We set V = V*[G].

REMARK 3.5. (a) It is also possible to work with P = Add(x™, x*%) x
Add(ktH, k1) x Add(k3, k16).

(b) We also require that Ga x G contains some special element, that we
will specify later (see the notes after Claim 3.13). The element will play the
role of a master condition, and it will be used in the proof of Lemma 3.8(d).

LEMMA 3.6.

(a) Gy = (if,G1) x (i;Ga) x (if;G3) is Py = iy (P)-generic over N*,
(b) G = (jIG1) x (jLG2) x (§2G3) is Pr = j,(P)-generic over M},
(c) Gg = U,«p i’T’EGT> is P = jp(IP)-generic over M.

Proof. (a) Suppose D € N* is dense open in Py. Let D = iy (f)(k) for
some function f € V on k. Then

D* ={a < k: f(«) is dense open in P} € U.
Since P is k*-closed, (), cp~ f(c) is dense open in P. Let p € GN(,cp- f(a).
Then iy (p) € Gy N D.

(b) Suppose D € M* is dense open in P,. Let D = j.(f)(FEq|7) for some
function f € V on V,. Then

D* ={v eV, : f(v) is dense open in P} € E, (7).

Since P is kT-closed, (¢ p+ f(7) is dense open in P. Let p € GN(,cp- (7).
Then j,(p) € G- N D.

(c) Suppose D € M7 is dense open in Pg. Let 7 < I(E) and D, € M}
be such that D = i, p(D;). By elementarity, D. is dense open in P. Let
p€G;ND;. Theni_p(p) €GgND. =

The following lemma is now trivial.

LEMMA 3.7. The generic filters above are such that

(a) /[G) € G,
(b) j2[C] € G-,
(c) 74lG) € G,
(
(
(

B
It then follows that we have the following lifting diagram.
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V = VG ’ — My = M3[Gp]

iUl \ ; TiﬂE
D! Jr

iyt Tl .
N = N*[Gy] —= M. = M5[Gy] —25 M, = M*[G,]

T

LEMMA 3.8. In V*[G] there are Iy7, I, and Ig such that

(a) Iy is Ry-generic over N*[Gyl,

(b) I is Rr-generic over M*[G],

(¢) Ip is Rg-generic over ME[G gl

(d) the generics are such that we have the lifting diagram

3

/LU,T/ 7,
N[Iy] —— M.[I/] —— M,[I,]
Proof. We will prove the lemma in a sequence of claims.

Cram 3.9. Igdd’l =GN ]R%dd’l 18 ]R%dd’l—generic over Mz,
Proof. Suppose A is a maximal antichain of R%dd’l in M. Let X =
U{dom(p) : p € A}. As |A| < kT, we have | X| < kT, and of course A is a

maximal antichain of Add(x™, X)asx . For simplicity let us assume [ X| = x7.

Now we have Add(/@"‘r,X)M% = Add(x",X) and hence A is a maximal
antichain of Add(xk™*, X). It then follows that A is a maximal antichain of
Add(kt, k). Let p€ G1 N A. Then p € Igdd’l NA. =

Cramm 3.10. Igd(w =GoN R%ddg 18 Rgdd’2-generz’c over M.

Proof. Suppose A is a maximal antichain of R%ddg in Mz. Let X =
U{dom(p) : p € A}. As |A] < xk*T, we have |X| < xTT, and of course
A is a maximal antichain of Add(k™", X)y; . For simplicity let us assume
| X| = k. Now we have Add(/@*"ﬂX)ME = Add(xk*T, X) and hence A is
a maximal antichain of Add(x**, X). It then follows that A is a maximal

antichain of Add(s*+, k™). Let p € Ga N A. Then p € Igdd’Q NA. =

CrLamm 3.11. Igdd,s =G3N ]RAEdd’3 18 R%dd’?’—generic over M.

Proof. Suppose A is a maximal antichain of R%dd’?’ in Mz. Let X =
U{dom(p) : p € A}. As |A| < kT3, we have |X| < kT3, and of course
A is a maximal antichain of Add(x*3, X) M- For simplicity let us assume

|X| = k3. Now we have Add(/ﬁ+3,X)M% = Add(x*3, X) and hence A is
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a maximal antichain of Add(k*3, X). It then follows that A is a maximal
antichain of Add(k™3, k7). Let p € G3 N A. Then p € Igdd’?’ NA. =

It follows from the above claims that we have
Add,1 _ ;Add2 _ 7Add,3 . pAdd,l _ pAdd2 _ pAdd,3 .
Cramv 3.12. I x Iy x Iy is R xR xR -generic
over ME

CrLam 3.13. Iédd’l (1 L_[lEN(I‘édd H) s Rgdd’l—generic over N*.

Proof. Let A be a maximal antichain of R;}dd’l in N*. Then ij; p(A) is

Add, L in M%. Since |A| < kT and critiyz = m37

(A). Then Igdd’l N i&E(A) # (0, which implies

a maximal antichain of ]R
> 1, we have iy 5(A) =
I3 N A#D. .

Now consider the forcing notion Rédd’z X Réddﬁ X R?}ddA X R[(}Ol. Working
in M, this forcing notion is k+-closed and there are only x™-many maximal
antichains of it which are in N*. Thus we can define a descending sequence
((P(,Add,2) Pla,Add,3)s Pla,Add 4)> Pla,Coly) * @ < KT) of conditions such that
[Add2 I[/]xdd,?) w Addd ISO] —{pe Réddz y RAdd,?; RAdd4 ]RCOI :

U U
Add,2 "l 8
Jor < K, (Pra,Add,2) > Pla,Add,3) s Pla, Add,4) Pla,Col)) < P} is Ry, " xRy,

RgddA X Rg‘)l—generic over N*. Also note that this generic filter is in M.

We may also note that {iy; 5(P(a,Add.2)s Pla,add3)) * @ < KT} C R%dd’Q X
RAdd3

U,E

, and since this forcing is £ *-closed, there is (p(add,2),P(add,3)) €

Add;2 | pAdd3 .
RE7 x R such that (piadd,2)s P(ada3)) < i, 5(Pla,Add,2)s Pla,Add,3)) for

all @ < k. We may suppose that (pada,2), P(add,3)) € G2 X G'3 (see Remark
3.5(b)).

Let Iy = I x 15942 5 093 5 199 5 1891 Tt follows from the
above results that Iy is Ry-generic over N*.

CLAM 3.14.
(a) AL <i;g([§dd’1)> is RA_generic over M?Z,
(b) [Add2 (i;g([gdd’2)> is RA2_generic over M,

(c) A3 (i;g(_fgdd’?’» s R _generic over M.

Proof. (a) Let A be a maximal antichain of RALL 5 M. Then i (A)
is a maximal antichain of ]R%dd’l in MF. Since |A] < &% and criti, 5 =
/{j\rf* > w*, we have i, 5(A) = Z’T’E(A) Then Igdd’l N ’LZE(A) # (), which
implies 7291 N A # 0.

(b) Let A be a maximal antichain of RAA2Z 5 M. Then i, p(A) is a max-
imal antichain of R%dd’Z in M. Since |A| < k% and criti, 5 = Kig >kt
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we have i, g(A)=1"

i
# 0.

(c) Let A be a maximal antichain of RAAD3 4y M. Then i_g(A) is a
maximal antichain of ]RAdd % in M. Since [A| < kT3 and crit iy B = K >
kT3, we have i, (A) = i (A). Then Igdd?’ N’ =(A) # 0, which implies
YN AED. -

As U € M} and E(r) € Mg for all 7 < 1(E), we have the following
diagram:

A). Then Igdd’ZﬂiZE(A) #(), which implies 742 4

U = E,(0),

.E . * «F *

i Mg — N** ~ Ult(M, U),

GE o M — MEF ~ Ul(M3, E(7)),

_ g, . E ,.E B
NE s B g, (G (f)(8) = 57 () (k).
Recall that I éddA x I 501 € My, which is ]RigddA X Rg"l—generic over N*E.

CrLAIM 3.15. There is I}Add"l X ITCO1 e ME which s Rfdd’zl X Rg"l—genem’c
over M?Z.

Proof. We follow the idea from [M2]. For this set
RECl = Col(wt6, jF (k)
RPAI = (Add(k ™, jF (r)7) x Add(x™°, 5F (1))
X A0, B (1)) et

M:E
Yo+n Vi

are determined by V.V, ,ﬁ3 (and E(7), of

B,Add,4 B,Col Add,4
REAddA o RECoL 4hq A x R are coded in V
M:E
30 ViB() 43

M*
course). As E(7) € MF and VY5 =V, 5 we see that Ry
RAddA X RCOI

re-

spectively. V (T )

E,Add,4 w« RECOl

By the same reasoning, each antichain of ]RAdd4

RSOI appearing in
E,Add 4 % RE Col

M?* is also an anti-chain of R~ appearing in M*¥. Hence, if

Ir Add.s x IS € M% is an REAdA o RECO goneric filter over M:E then it

is also R4 RE°lgeneric over M.

Let [Add4 x I€° = (4 5’;([3“’4 x I5°Y)). We show that it is as required.

Solet D € M:E be dense open in RE’AddA X R?’COI. Then D = ]fj(f)(Ea I7)
for some function f € My on V. It then follows that in M,

D* ={v €V, : f(v) is dense open in RAdd4 R%‘)l} € Eq(7).
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It is easily seen that
B={u:|{pe D" w(5) = u}l < 4} € Ea(0).

Thus for each 4 € B we can find f*(u) such that for all v € D* with
k%(D) = p the set f*(u) is a dense open subset of f(7) (in M7). Hence

N*E = “g(f*)( ) is dense open”,

MP = GE(F) (k) S 3F(F)(Ealr).
So there is g € M7, such that ZU(g)(K]) € (IAdd4 x IS ﬁzg(f*)(/@) It then
follows that j: (g)(h;) € g/;(fl/}dd4 x I$°) N ji E(f*)(x). This means that
(12444 1G9 M GE(f)(Eal7) # 0. The result follows. m

Now let I, = [241  pAdd2 pAdd3 o pAddd  rCol Tt follows that I,
is R;-generic over M.

Cram 3.16. T2 IC! = (U, Ly gy it p(IF X IEN) is R xREOL

~

generic over ME.

Proof. Let D be a dense open subset of R%ddA XR%OI in M. Let 7 < 1(E)
and D, € M7 be such that D =i (D). By elementarity, D is dense open

in RPY x RO Let (p, q) € (179 x 1991 N D Then (i, 5(p), i, 5(q)) €

(12 < IS N D. w

Let I = I3 x 12902 5 12993 5 12944 5 191 Tt follows that I is
R z-generic over M7

To summarize, so far we have shown the following:
o [y is Ry-generic over N*
e [, is R,-generic over M},
- 1Q _ ] *
e [ is Ry-generic over Mz.
Before continuing we recall Easton’s lemma.

LEMMA 3.17 (Easton’s lemma). Let \ be regular uncountable, and sup-
pose that P satisfies the A-c.c. and Q is A-closed. Then

(a) lFpxg “\ is a regular uncountable cardinal”,

(b) l-q “P satisfies the A-c.c.”,

(€) |Fp “Q is A-distributive”.

Cramm 3.18. Iy is Ry-generic over N*[Gyl].

Proof. First note that in N* the forcing notions Ry and Py are iy (k)™ -
c.c. and iy (k) T-closed respectively. Now let A be a maximal antichain of Ry
in N*[G]. By Easton’s lemma |A| < iy(k), hence again by Easton’s lemma

A € N*. It follows that Iy N A # (), as Iy is Ry-generic over N*. The result
follows. m
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By similar arguments we obtain
Cramm 3.19. I, is R--generic over M}[G,].
Cram 3.20. I is Rg-generic over M%[G g].

It remains to prove part (d) of Lemma 3.8. Before going into details let
us recall a simple observation.

CLAIM 3.21.

N*E . N*
(@) Vieors = Viotors:

*F *
(b) ZUT rVN( )+3 lUvT H/;JUV(H)-HS’

E N*E . N*
(c) i, Vg1 = o Vigora:

Cramv 3.22. it . (Iy) C L.

Proof. (1) i’[’LT,(Igde) C IAdd1 This follows from if; (I59 =

U
. 1 Add71 1 Addl Add71
7'/(}77"(<ZU,1E' (IE_' )>> - <Z /IE(IE )> = I .

(2) i?}?T,(I[/}ddg) C IAdd %: Tt suffices to show Yoo < K7, iy (P(a,Add,2)) €

Add,2 d,2 .
777, But we have pjagq,2) € I— and Vo < k7, P(Add2) < iy p(Pla,Add,2))-

It then follows that Va < /<;+, iU (Pia,Add,2)) = i_l—('UE(p<a Add2))) =
i_l 7(P(ada,2))- But now note that by our definition i /E(p<Add 2)) € 14442,

»
It then follows that iy, (p(a,Add,2)) € 1 Add,2

(3) if; T/(Igdd %) C IAdd %, By the same argument as in (2) using the fact
Add,3
that D(Add,3) € IE .
(4) @, (I <150 € 159 % 1S9 Trivial by the definition of 159" x

I SOI and the previous claim.

The result follows. =

Cram 3.23. i, (1) C I;.

Proof. (1) i, (IAdd’l) C 1%L This follows from i’ (IAdd’l) =

T ,T T/
/LZ/’T(< 71// (Iédd 1)>) <7ljl(1édd71)> _ ITAddl
(2) 4 " ( 1544 2) C [Add 2, By the same argument as in (1),
(3) i’ ” S Add 3) C [fdd3, By the same argument as in (1),

(4) 7, T(IAdd4 x IS C 72444 5 100l Because il (If,dd’4 x IS =

. n - Add,4 Add 4 Add 4
i, (L (IR0 IG0))) © B/ (I s 1G00) = A% 10
The result follows. =

CLAIM 3.24. iZ,E(IT) CIp.
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Proof. (1) i’ (IAdd h ¢ Iédd ': Trivial because we have i/ 7(Ifdd7l) =

E K
. .—1” / yAdd,1 Addl

iy IZ9) €

d,2

)
(2) i (11 )czAd“ Asin (1),
(3) @ (1Y) € 12 Asin (1).
(

7—7
4)i" (IAdd A ICOI) - IAdd 4 ICO1 Trivial by the definition of IAdd 4

Igeh
The result follows. =

/ —
)

This completes the proof of Lemma 3.8. u

We iterate jz w-many times and consider the diagram

U, z% o 2 i%,f3 3

where
.0 - .n __ .0n .m,n n—1n -m+1,m+2 -m,m+1
Jp=1d,  Jp=ijg, Jg =ig "o °ig °Jg -

Let R(—,—) = RAd(— —) x R®!(— —) be a function such that
ity (R (k,iv (k) = Rg™,  if (RO (k,iv(r)) = Rp®,
where 12U is the second iterate of i;;. Then we will have
ity(R)(r,iv (k) = Ry.

The following is trivial.

LEMMA 3.25.

(a) JR(R(k, jp(r)) = R3Y,

(b) JE(RO(k,jp(r)) = RE,

(¢) Jz(R)(k,jp(k) = Rg.

Cardinal structure and the power function in N*[[;7]. The fol-
lowing lemma gives us everything that we need about the model N*[Iy].

LEMMA 3.26.

(a) In N*[Iy] there are no cardinals in [+, iy (k)] and all other N*-
cardinals are preserved.

(b) The power function differs from the power function of N* at the fol-
lowing points: P LA L or 't = k16, ortt — iv(k)T,
257 = (k)T 2670 = iy (k) TR,
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Cardinal structure in M7 [I;] and M;[I]. The following lifting says
everything which we can possibly say:

i i,

N*[Iy] " MEL) —" ML

The forcing notion P, due to Merimovich, which we define later, adds a
club to k. For each pair v1, 5 of successive points in the club the cardinal
structure and power function in the range [v]", vy 3] of the generic exten-
sion is analogous to the cardinal structure and power function in the range

(KT, ip(Kk) T3] of MX[Ig].

Cardinal structure in N* [I[(}Ol]. The following lemma gives us every-
thing that we need about the model N*[I5°!].

LEMMA 3.27.

(a) In N*[I5°!] there are no cardinals in k%7, iy (k)] and all other N*-
cardinals are preserved.
(b) GCH holds in N*[I5°].

Cardinal structure in M7 [I°°] and M3[IS"]. The following lifting
says everything which we can possibly say.

M [I5°

* =
T E
Sk
-
T, FE
Sk s

v ! 717" T
NG — ML) — ML)

The forcing notion Rz , which we define later, adds a club to . For each
pair v1, v9 of successive points in the club the cardinal structure and power
function in the range [v]", 5] of the generic extension is the same as the

cardinal structure and power function in the range [, jz () T3] of ME[IE)).

4. Redefining extender sequences. As in [M2], in the prepared model
V' = V*[G] we define a new extender sequence system F' = (F, : a €
dom(F)) by:

dom(F') = dom(F),
I(F) =1(E),
<F=<pg

F(0) = E(0),
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o (1) =1,
e V0 < 7 < I(F), F(1) = ((Fa(r) : @ € dom(F)), (754 : B,a €
dom(F), B > «)) is such that
X e Fu (1) & (o, F(0), 1(0),...,F(r"), I(T)),... . 7' < 1) € jp(X),
and

Wﬁ,q((f, d>) = <7T6,a(5)7 d>7

e Va € dom(F), F, = (o, F(7),I(7) : 7 < 1(F)).
Also let I(F) be the filter generated by Ur<ip) i g1(7). Then I(F) is
R z-generic over M. Let us write I(F) = IY99(F) x I COl(F ) corresponding
to R = R34 x RE°L

From now on we work with this new definition of extender sequence
system and use F to denote it.

DEFINITION 4.1.

(1) We write T € E,, iff V€ < I(E,), T € E4(£),

(3) T'lv=Tn Vi

We now define two forcing notions Py and Ry .

5. Definition of the forcing notion Pj;. This forcing notion, defined
in the ground model V' = V*[G], is essentially the forcing notion of [M2].
We give it in detail for completeness and later use. First we define a forcing
notion PZ.

DEFINITION 5.1. A condition p in P% is of the form
p={(7.p") 17 € sy U{(Ea, T, f, F)}
where

(1) s € [E]=F, minE = E € s,
(2) pPr e V* 0(B) is an extender sequence such that x(pf) is inacces-

sible (we allow p®= = )); write p® for p¥~,

(3) V¥ € s\ {min(s)}, p7 € [V:O(E)]<"J is a O-increasing sequence of
extender sequences and max k(p7) is inaccessible,

4) vy € s, fi(p ) < maxr(p?),

5) Vy € s, Eq > 7,

6) T e Ea,

7) Vo €T, |{¥ € s: v is permitted to p7}| < (),

8) V3,57 € s, Vo € T, if B # 4 and ¥ is permitted to pﬁ p7, then

Fa,f ()#WE (),

(
(
(
(
(

:]
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(9) f is a function such that

(9.1) dom(f) ={r e T :1(r) =0},
(9.2) (1) € R(x(p°), 4): if p° = 0, then f() =0,

(10) F is a function such that
(10.1) dom(F) = {(i1, ) € T? : 1(iny) = 1(inn) = 0},
(10.2) F(v1,1n) € R(WY,14),
(10.3) j%(F)(ev, jp(e)) € I(E).

We write mec(p), supp(p), TP, fP and F? for E,, s, T, f and F respectively.

DEFINITION 5.2. For p,q € P%, we say p is a Prikry extension of ¢
(p <* qor p <° q) iff

me(p) >p me(q),
(p) > me(q) = lzn

me (q) € Supp§ )
vy € supp( ) \ sup 7
TP

), max £°(p7) > UUjg(f9)(k(me(q))),

< T1
= mC(p) me(q)” ~
V4 € supp(q), Vo € TP, if ¥ is permitted to p7, then

Tme(p)7(7) = Tme(q) 7 (Tme(p),me(q) (7))

(8> Vi € dom(fp)a fp(Vl) < fq © Tme(p),me(q) (V1>7
(9) v<l/1, V2> S dOHl(Fp), Fp<1/1, UQ) < Filo Wmc(p),mc(q)(yh 1/2).

We are now ready to define the forcing notion Pg.
DEFINITION 5.3. A condition p in Pz is of the form
P=Py .- Do
where
* po € Py, 6°(pg) > £°(fin),
o p1 € P, k0(p}) = KO(a),

e pp€P ,

0

and (fin, ..., [1, E) is a "-increasing sequence of extender sequence systems,

that is, k0(fin) < --- < K2(ji1) < K°(E).
DEFINITION 5.4. For p,q € Py, we say p is a Prikry extension of ¢
(p <* g orp <¥ q) iff
P=p, - Do, 4=Gy .- Q

where
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® Do, q0 € P*Ev bo S* q0,
* pi,q1 € P, 1 < qu,

® Dn,qn € ]P),En’ Pn <* Gn.
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Now let p € Pz and v € TP. We define p(y), a one-element extension of

p by .

DEFINITION 5.5. Let p € P, v € TP, k%(7) > U jg(f7°°) (k(me(p))),

where fPC is the collapsing part of fP. Then P(py = p1 po where

(1) supp(po) = supp(p),
(2) V¥ € supp(po),

Trmc(p),fy(ﬂ) if 7 is permitted to p7 and 1(v) > 0,

()]

p7 otherwise,

(3) mc(po) = mce(p),

(4) TPo =TP\ 1,

(5) Vin GTpo fro(n) = FP(k(v), 1),
(6) Fm =

(7) if I(p) > O then

Trmc(p),fy(ﬁ) if ¥ is permitted to p7, 1(7) =0 and 7 =
pﬁ’\<7rmc(p),,—y(ﬂ)> if 7 is permitted to p7, 1(¥) = 0 and 7 #

E,,
E

supp(p1) ={Tme(p),5(¥) : ¥ E€supp(p) and v is permitted to pT},

Tmo(p),5 (P)
Py )7V :p’y

Tmc( )O(V) _ E’,i
T h=p

We use (p(z))o and (p(py)1 for pg and p1 respectively. We also let p,
(p<ﬁ1>)1ﬁ(]9(171)) 0(72) and so on.

Bay =

The above definition is the key step in the definition of the forcing rela-

tion <.
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DEFINITION 5.6. For p,q € Py, we say p is a 1-point extension of ¢

(p <'q) iff
P=Ppy1-- Do, 4=y - Qo

and there is 0 < k < n such that

o Vi< ka Pis @i € ]P)Eza Di S* qis

o v e T%, (pry1)” vk <* (qk)(5)>

o Vi>k, pit1,4i € Py, pit1 < qi
where fig = E.

DEFINITION 5.7. For p,q € Pz, we say p is an n-point extension of q
(p <™ q) iff there are p”,...,p" such that

DEFINITION 5.8. For p,q € P, we say p is an extension of ¢ (p < q) iff
there is some n such that p <" q.

Suppose that H is Pg-generic over V = V*[G]. For a € dom(FE) set
Cy = {maxn(pOE“) :p€ H}.
THEOREM 5.9.

(a) V[H] and V have the same cardinals > k,
(b) K remains strongly inaccessible in V[H],
(c) Cf is unbounded in k,
(d) C is a club in K,
(e
(f

) a7 8= Ch #Cl,

) if A= mln(C“) and K is Col(w, A" )y g)-generic over V[H], then
CARDVWIEI s = (lim(CH)U{pT, ..., p™0 pe CHI\ATHU{w),

(8) VIH]K] | “VA <k, 2 =227

Proof. Essentially the same as in [M2]. =

6. Definition of the forcing notion Ry . We now define another
forcing notion Ry . It is essentially the Radin forcing corresponding to Fj
with interleaving collapses (see also [M1]).

DEFINITION 6.1. A condition in Ry _ is of the form
p: <<ﬂ_yn78n7Sn7fn7Fn>7"'7<’707 SO7SO7fO7FO>>

where
(1) ¥n,---,%0 are minimal extender sequences @
(2) Yo = Eli?

(?) An extender sequence 7 is minimal if it has length 1 and x(7) = °(%).
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(3) Vi <n—1, k(Fit1) < K'(%),

(4) Vi <mn, S* €7,

(5) Vi < n, s" € Vyos,) is a minimal extender sequence such that #(s")
is inaccessible,

(6) Vi <n, f'is a function such that

(6.1) dom(f*) = {v € S*: 1(v) = 0},
(6.2) fi(v1) € RN (w(s"), 1),
(7) Vi < n, F'is a function such that
(7.1) dqm(Fi) = {{11, ) € (89?2 : (1) = () = 0},
(7.2) F'((v1,v2)) € R, 1),
(7.3) JE(F) (5(%), 5 (K(%:)) € I7UE).
DEFINITION 6.2. For p,q € Rg_we say p is a Prikry extension of g
(p <* qor p<®q) iff p and q are of the form
p - <<7Ym Sn? STL7 fn7Fn>7 e ey <:Y07 807 Sov f07 F0>>7
q - <<’7n) tn7 Tnu gn7 Gn>7 sty <:}/07 tO) T07go7 G0>>7
where Vi < n,
(1) st =t
(2) §*c T,
(3) fr<g,
(4) F* < G".
DEFINITION 6.3. Let p = ((jn,s", 5™, f", F"), ..., (7,5° 5°, f%, F°)) €
Rz, , and let (7) € S*, k(7)) > UUjp(f*)(k(7:)). We define pgy as follows:
e if I(7) > 0, then
Pwy = <<,7n’sn’5n’f'n’Fn>’.”{ '
(Figr, s S AL FL),
(v,s', S, filo, F'lv), .
<%V s' \V F(/’v( , =), EY),
<’Y7,—17 17511](‘11}77, 1>"'7
<:Y07 07507 f07F0>>7
o 1f1( ):O then
</7 Sn?f'n7Fn>7"'7' )
<’7i+17 SlJrla SZ+17 ferl’ F1+1>a
(@', 0, f(k(2)),0), ,
<:Yiaﬂa S \ ﬂ?FZ(K’(?v _))7FZ>’ )
<:Yi—17 81—17 Sz—l7 ch—l7 Fz—1>7 el
<’_>/07 807 SO’ foa F0>>
DEFINITION 6.4. Let p,q € Rg _, where

q = <<’7n35n?sn’fn?Fn>’ ct </707307SO7f07F0>>'
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We say p is a 1-point extension of q (p <! q) iff there are i and (7) € S°
such that p <* ().

DEFINITION 6.5. Let p,q € Rz . We say p is an n-point extension of ¢
Ex
(p <™ q) iff there are p”, ..., p° such that

p=p" <<l =g
DEFINITION 6.6. Let p,q € Rg . We say p is an extension of ¢ (p < q)
iff there is n such that p <™ q.
Suppose G is Ry -generic over V. Set
C = {k(s%) : s appears in some p € G}.
THEOREM 6.7.
(a) V[G] and V have the same cardinals > K,

(b) K remains strongly inaccessible in V[G],

(c) C isa clubin K,

(d) if A =min(C) and K is Col(w, \")yq)-generic over V|G|, then
CARDVIEIEl A i = (lim(C) U {47, ..., 70y e CP\ M) U {w},

(e) VIG]K] = “GCH”.

Proof. Essentially the same as in [MI] and [M2]. =

7. Projection of Py into Ry . We now define a projection
T PE‘ — RE,{
as follows. Suppose p = p;,...” po where

o po € P, kO(pf) > rO(mn),
o p1re P k0(pY) > wO(faa),

e p, €P; ,

and (fiy, - .., i1, flo), where fig = E, is a %-increasing sequence of extender

sequence systems. For each i < n set fPi = fpiAdd 5 fpiCol gng Fri =
FriAdd 5 ppiCol " which correspond to R = RA4d x RC°L Given p as above,
for each i < n, we have

(1) j(fPCN (k(me(p;))) € V30 (me(p,)); hence there is a function g7 such
that
(PN (s(me(pi))) = §(g7) (5% (me(ps))),
(2) jo(FPHCN (k(me(p;)), j(k(me(p;)))) is in the generic filter construc-
ted through the normal measure; hence there is a stronger condition
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in the filter which is the image of a condition from the generic over
the normal ultrapower, i.e. there is a function HP¢ such that

J2(HP*)(k° (me(ps)), j (x° (me(pi)))
< Ja(FPHC) (k(me(p;)), (K (me(pi)),
and
Ja(HP) (° (me(py)), j (+°(me(py)))) € 19
and there is no weaker function H’ satisfying this.

Let (T%")* be obtained from T?¢ by replacing extender sequences in T?¢ of
length 0 with

{veT? :1(v) =0, ") = ¢" (Tmc(p)0 (V) }-
It follows from (1) that (TP)* € mc(p;). Now let (TP)** be obtained from
(TPi)* by restricting extender sequences in (77)* of length 0 to those v; €
(TP)* with 1(r1) = 0 such that
{VQ € (sz)* : I(VQ) =0, Hpi(ﬂmc(pi),ﬂ(yl)7 7Tmc(m),l)(VQ)) < Fpi,COI(Vlv VZ)}
has measure one with respect to the normal measure determined by mc(p;).
Then by (2) we have (1T7)** € mc(p;). Let
m(p) = ((min fin, i, AP, gP", HP"), .. (Ep, pg, AP, g7°, H™)),
where AP = {Tpc(p),0(7) 1 ¥ € (ITP))*™}. Note that m(p) € Rp_and 7 is
well-defined.
LEMMA 7.1. 7 is a projection, i.e.

(a) W(lPE) = 1RE,€’

(b) 7 is order preserving,

(c) ifpePg,q € Rg and q < 7(p) then there is r < p in Pg such that

m(r) <q.

Proof. Parts (a) and (b) are trivial; let us prove (c). Let p € Pz, ¢ € Rz,
and suppose that ¢ < m(p). Let us suppose for simplicity that p € P%
Let 7(p) = ((E,,p°, AP, gP, HP)). Since q < m(p), there is some k such that
q <* 7(p). We prove the lemma by induction on k.

First suppose that & = 0, so that ¢ is a Prikry extension of 7(p). Let
q= ({E.,t,T,9,G)). Then we have t = p’, T C AP, g < ¢ and G < HP,
Let r € P%, 7 <" p be obtained from p with the following changes:

o T" C{r € (TP)™ : Tmep),0(7) € T}, T" € mc(p),

o frCol < fp.Col ig such that for all v € T of length 0,

gr(ﬂ-mc(p),O(V)) < g(Trrnc(p),O(V))7

() In fact the general case follows from this special case using the factorization prop-
erties of Pz.
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o FrCol < FpCol g guch that for all (1, 1) € (T7)? with 1(v1) =1(v2) =0,

HT(T‘-mc(p),O(Vl)a Trmc(p),O(VQ)) < G(Trmc(p),()(yl)’ 7Tmc(p),O(VZ))'
Then 7(r) = ((Ex,p°, A", g", H")), where A" C T and for all v, v, and 1»
such that their image under ()0 is in A", we have

gT(ﬂ-mc(p),O(V)) < g(ﬂ'mc(p),()(y))
and

H" (Trmc(p),O(Vl)a 7Tmc(p),()(VQ)) < G(Trmc(p),[)(yl)7 71-mc(p),O(VQ))'
It follows that m(r) <* q.

Now suppose that k& = 1 (the general case k > 1 can be proved similarly).
Let 7 € AP be such that ¢ <* (7(p)) . Also let

¢ =((y,t", T, ¢", G"), (30,1°,T°, g%, G7)).

Suppose e.g. that 1(7) > 0 (the case [(7) = 0 can be proved similarly).
Then (7(p)) ) = {((7,p°, A |7, g" 10, H? |), (Ey, 0, AP\ 0, HP (5(, —)), HP)).
Let i € TP be an extender sequence system of size (k°(7))*3, obtained by
the same elementary embedding generating 7, such that ming = v and
let (p)@ = P po. Let r = r{"rg € Pp with 7 <* (p)z be such that for
ie€{0,1}:

e supp(ri) = supp(pi), ,

o M C {17 € (Tpi)** : Wmc(pi),o(ﬁ) € TZ}, Tr ¢ mc(pi),

o fritol < fpiCol ig quch that for all v € T™ with 1(v) = 0,

9" (Tinc(p,0 (V) < 9" (Tame(pi).0 (V)
o FriCol < ppCol ig guch that for all (vy,1) € (T7)? with 1(vy) =
1(r2) =0,
H" (Tane(py).0(#1)s Tane(o).0(#2)) < G (Tme(p),0 (V1) Tme(p),0(V2))-
Then 7(r) = m(r1) " 7(ro) and as above w(r;) <* ((%;,t",T% ¢*,G%)), i €
{0,1}. It follows that m(r) <* q.
The lemma follows. m

8. Completing the proof. Finally in this section we complete the
proof of Theorem 1.1. Let H be Pg-generic over V and let Hy = (7" H), the
filter generated by n”H. Then Hy is Ry _-generic over V. Consider the clubs
C = {k(s") : s" appears in in some p € Hy} and Cf = {k(p)) : p € H}. It
is easily seen that C'= C};. Let A = min(C). Note that the forcing notions
Pg and Rp, add no new bounded subsets to A, hence Col(w, A\*)y(p, =
Col(w, A)y(#), and hence if K is Col(w, A" )y g1-generic over V[H] then K
is Col(w, AT)y(p,)-generic over V[Ho]. Let

vy = VYKL -y, — yVIHIE],
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It follows that V; and V5 are models of ZFC. We show that the pair (V1, V3)
satisfies the requirements of the theorem.
(a) V1 and V5 have the same cardinals: This is trivial, since

CARD" = (lim(C)U {p*, ..., u*0: pe CI\ M) U{w}
= (im(CH) U{pt, ..., p ™0 pe CHIN AT U{w}
= CARD"2.

(b) V4 and V5 have the same cofinalities: This is again trivial, since
changing the cofinalities depends on the length of the extender sequence
system used and not on its size.

(¢) V1 E “GCH”: by Theorem 6.7(e).

(d) Vo = “VA, 2% = AT37: by Theorem 5.9(g).

Theorem 1.1 follows.

PRrROBLEM 8.1. Is it possible to kill GCH everywhere, preserving cofinal-
ities, adding just a single real? (Allowing cofinalities, but not cardinalities,
to change, this was accomplished in [FG].)
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