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Killing GCH everywhere by a cofinality-preserving forcing
notion over a model of GCH
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Sy-David Friedman (Wien) and Mohammad Golshani (Tehran)

Abstract. Starting from large cardinals we construct a pair V1 ⊆ V2 of models of ZFC
with the same cardinals and cofinalities such that GCH holds inV1 and fails everywhere inV2.

1. Introduction. Easton’s classical result showed that over any model
of GCH, one can force any reasonable pattern of the power function λ 7→ 2λ

on the regular cardinals λ, preserving cardinals and cofinalities. Subse-
quently, much work has been done on the singular cardinal problem, whose
aim is to characterize the patterns of the power function on all cardinals,
including the singular ones. Typically in this work, large cardinals are used
to obtain patterns of power function behaviour at singular cardinals after
applying subtle forcings which change cofinalities or even collapse cardinals.
This leads one to ask: Is it possible to obtain a failure of GCH everywhere
by forcing over a model of GCH without changing cofinalities? If so, can one
have a fixed finite gap in the resulting model, meaning that 2λ = λ+n for
some finite n > 1 for all λ?

In this paper we prove the following theorem.

Theorem 1.1. Assume GCH + there exists a (κ+ 4)-strong cardinal κ.
Then there is a pair V1 ⊆ V2 of models of ZFC such that:

(a) V1 and V2 have the same cardinals and cofinalities,
(b) GCH holds in V1,
(c) V2 |= “ ∀λ, 2λ = λ+3”.

Remark 1.2. In fact it suffices to have a Mitchell increasing sequence of
extenders of length κ+, each of them (κ+3)-strong. Thus the exact strength
that we need for a fixed gap of 3 is a cardinal κ with o(κ) = κ+3 + κ+. It is
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also easy to extend our result to an arbitrary finite gap n instead of 3. Then
what we need is a cardinal κ with o(κ) = κ+n + κ+. We focus on the case
n = 3 as it is typical of all cases n ≥ 3 (the case n = 2 is easier).

The rest of this paper is devoted to the proof of this theorem. The proof
is based on the extender-based Radin forcing developed by C. Merimovich in
[M1], [M2]. We try to make the proof self-contained, thus we start with some
preliminaries and facts from those papers, suitably modified for our purposes.

We now summarise the modifications of [M2] which are necessary to
achieve our result. In [M2], one begins with a model V ∗ with a (κ+4)-strong
cardinal κ and performs a (cofinality-preserving) reverse Easton preparation,
which forces 2α = α+3 for the first three successors of each inaccessible
≤ κ. In the resulting model V = V ∗[G] one can construct suitable “guiding
generics” for later use, which are in fact generics over a suitable inner model
M of V which blow up the power sets of the first three successors of κ+3 and
which collapse the image i(κ) of κ to κ+6, where i : V → M is a suitable
elementary embedding. After this preparation, one performs an extender-
based Radin forcing with interleaved collapses, using the guiding generics
obtained through preparation. The result is a model with gap 3 everywhere
below κ (i.e., 2α = α+3 for all α < κ). By truncating the universe at κ, one
obtains gap 3 everywhere.

We would like to use a similar method, but we need to perform a prepa-
ration which preserves GCH below κ. Thus our first step is to obtain a model
V = V ∗[G] which only forces 2α = α+3 at the first three successors of κ and
adds no new subsets of κ. Extra work is now required to show that in this
model suitable guiding generics can be found to carry out the second step of
Merimovich’s construction. The result is again a model V2 = V [G][H] with
gap 3 everywhere below κ (keeping κ inaccessible). We now form a model
V1 intermediate between V [G] and V2, essentially obtained by using the or-
dinary Radin forcing with interleaved collapses (using the collapsing part
of the guiding generics). The model V1 satisfies GCH below κ but has the
same cofinalities below κ as the model V2. This is verified using a suitable
projection from Merimovich’s extender-based Radin forcing with collapses
into the ordinary Radin forcing with collapses.

We should mention that obtaining models V1 ⊆ V2 with the same car-
dinals (not the same cofinalities) and with GCH holding in V1 but failing
everywhere in V2 is an easier result, as then we only need guiding generics
for Cohen forcings, not for Lévy colllapses, and the second step of the forcing
can consist of a cardinal-preserving (but of course not cofinality-preserving)
Radin forcing. But to preserve cofinalities or to obtain the gap 3 behaviour
of the power function it appears that the methods of this paper are needed
to handle the necessary collapses.
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2. Extender sequences. Suppose j : V ∗ → M∗ ⊇ V ∗λ with crit j = κ.
Define an extender (with projections)

E(0) = 〈〈Eα(0) : α ∈ A〉, 〈πβ,α : β, α ∈ A, β ≥j α〉〉

on κ by:

• A = [κ, λ),
• ∀α ∈ A, Eα(0) is the κ-complete ultrafilter on κ defined by

X ∈ Eα(0)⇔ α ∈ j(X).

We write Eα(0) as Uα.
• ∀α, β ∈ A,

β ≥j α⇔ β ≥ α and for some f ∈ κκ, j(f)(β) = α.

• β ≥j α⇒ πβ,α : κ→ κ is such that j(πβ,α)(β) = α.

Let us recall the main properties of E(0) (see [G]):

(1) 〈A,≤j〉 is a κ+-directed partial order,
(2) ∀α, κ ≤j α,
(3) Uκ is a normal measure on κ,
(4) ∀α, Uα is a P -point ultrafilter over κ, i.e. for any f : κ → κ there

is X ∈ Uα such that ∀ν < κ, |X ∩ f−1′′(ν)| < κ,

(5) π−1′′

β,α (X) ∈ Uβ ⇔ X ∈ Uα,
(6) ∀α, πα,α = id,
(7) ∀γ ≥j β ≥j α there is X ∈ Uγ such that ∀ν ∈ X, πγ,α(ν) =

πβ,α(πγ,β(ν)),
(8) ∀γ ≥j α, β where α 6= β there is X ∈ Uγ such that ∀ν ∈ X,

πγ,α(ν) 6= πγ,β(ν),

Moreover the πα,κ’s can be chosen so that:

(9) ∀β ≥j α, ∀ν < κ, πβ,κ(ν) = πα,κ(πβ,α(ν)),
(10) ∀α, β, ∀ν < κ, πα,κ(ν) = πβ,κ(ν); we denote the latter by ν0.

Now suppose that we have defined the sequence 〈E(τ ′) : τ ′ < τ〉. If
〈E(τ ′) : τ ′ < τ〉 /∈M∗ we stop the construction and set

∀α ∈ A, Ēα = 〈α,E(0), . . . , E(τ ′), . . . : τ ′ < τ〉

and call Ēα an extender sequence of length τ (l(Ēα) = τ).

If 〈E(τ ′) : τ ′ < τ〉 ∈ M∗ then we define an extender (with projections)
E(τ) = 〈〈E〈α,E(τ ′):τ ′<τ〉(τ) : α ∈ A〉, 〈π〈β,E(τ ′):τ ′<τ〉,〈α,E(τ ′):τ ′<τ〉 : β, α ∈ A,
β ≥j α〉〉 on Vκ by:
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• X ∈ E〈α,E(τ ′):τ ′<τ〉(τ)⇔ 〈α,E(τ ′) : τ ′ < τ〉 ∈ j(X),
• for β ≥j α in A, π〈β,E(τ ′):τ ′<τ〉,〈α,E(τ ′):τ ′<τ〉(〈ν, d〉) = 〈πβ,α(ν), d〉.

Note that E〈α,E(τ ′):τ ′<τ〉(τ) concentrates on pairs of the form 〈ν, d〉 where
ν < κ and d is an extender sequence. This makes the above definition correct.

We let the construction run until it stops due to the extender sequence
not being in M∗.

Definition 2.1.

(1) µ̄ is an extender sequence if there are j : V ∗ →M∗ and ν̄ such that
ν̄ is an extender sequence derived from j as above (i.e. ν̄ = Ēα for
some α) and µ̄ = ν̄�τ for some τ ≤ l(ν̄).

(2) κ(µ̄) is the ordinal of the beginning of the sequence (i.e. κ(Ēα) = α).
(3) κ0(µ̄) = (κ(µ̄))0 (i.e. κ0(Ēα) = κ)).
(4) The sequence 〈µ̄1, . . . , µ̄n〉 of extender sequences is 0-increasing if

κ0(µ̄1) < · · · < κ0(µ̄n).
(5) The extender sequence µ̄ is permitted to a 0-increasing sequence
〈µ̄1, . . . , µ̄n〉 of extender sequences if κ0(µ̄n) < κ0(µ̄).

(6) Notation: We write X ∈ Ēα iff ∀ξ < l(Ēα), X ∈ Eα(ξ).
(7) Ē = 〈Ēα : α ∈ A〉 is an extender sequence system if there is j :

V ∗ → M∗ such that each Ēα is derived from j as above and ∀α,
β ∈ A, l(Ēα) = l(Ēβ). Call this common length the length of Ē,
l(Ē).

(8) For an extender sequence µ̄, we use Ē(µ̄) for the extender sequence
system containing µ̄ (i.e. Ē(Ēα) = Ē).

(9) dom(Ē) = A.
(10) Ēβ ≥Ē Ēα ⇔ β ≥j α.

3. Finding generic filters. Using GCH in V ∗ we construct an extender
sequence system Ē = 〈Ēα : α ∈ dom Ē〉 with dom Ē=[κ, κ+3) and l(Ē)=κ+

such that the ultrapower jĒ : V ∗ → M∗
Ē

(defined below) contains V ∗κ+3.

Suppose that Ē is derived from an elementary embedding j : V ∗ → M∗.
Consider the following elementary embeddings ∀τ ′ < τ < l(Ē):

jτ : V ∗ →M∗τ ' Ult(V ∗, E(τ)) = {jτ (f)(Ēα�τ) : f ∈ V ∗},
kτ (jτ (f)(Ēα�τ)) = j(f)(Ēα�τ),

iτ ′,τ (jτ ′(f)(Ēα�τ
′)) = jτ (f)(Ēα�τ

′),

〈M∗Ē , iτ,Ē〉 = lim dir〈〈M∗τ : τ < l(Ē)〉, 〈iτ ′,τ : τ ′ ≤ τ < l(Ē)〉〉.

We demand that Ē�τ ∈M∗τ for all τ < l(Ē).
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Thus we get the following commutative diagram:

V ∗ M∗

M∗Ē

M∗τ ′ M∗τ = Ult(V ∗, E(τ))

//
j

��

jτ ′

''

jτ
,,

jĒ

OO

kĒ

77

kτ ′

33

iτ ′,Ē

//

iτ ′,τ

77

iτ,Ē

??

kτ

Note that

• the critical point of those elementary embeddings originating in V ∗

is κ,
• the critical point of those elementary embeddings originating in other

models is κ+4 as computed in that model.

Thus we get

crit iτ ′,τ = crit kτ ′ = crit iτ ′,Ē = (κ+4)M∗
τ ′
,

crit kτ = crit iτ,Ē = (κ+4)M∗τ ,

crit kĒ = (κ+4)M∗
Ē
.

Each of these models catches VM∗

κ+3 = V ∗κ+3, hence computes κ+3 to be the
same ordinal in all models. The larger τ is the more resemblance there is
between M∗τ and M∗. This can be verified by noting that

κ+4
M∗
τ ′
< jτ ′(κ) < κ+4

M∗τ
< jτ (κ) < κ+4

MĒ∗
≤ κ+4

M∗ ≤ κ
+4.

We also factor through the normal ultrafilter to get the commutative diagram

V ∗ M∗Ē

N∗ ' Ult(V ∗, U) M∗τ

//
jĒ

$$

jτ

��

iU

//
iU,τ

::

iU,Ē

OO

iτ,Ē

U = Eκ(0),

iU : V ∗ → N∗ ' Ult(V ∗, U),

iU,τ (iU (f)(κ)) = jτ (f)(κ),

iU,Ē(iU (f)(κ)) = jĒ(f)(κ).

N∗ catches V ∗ only up to V ∗κ+1 and we have

κ+ < crit iU,τ = crit iU,Ē = κ++
N∗ < iU (κ) < κ++.

We now define the forcings for which we will need “guiding generics”.

Definition 3.1. Let

(1) RCol
U = Col(κ+6, iU (κ))N∗ ,

(2) RAdd,1
U = Add(κ+, κ+4)N∗ ,
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(3) RAdd,2
U = Add(κ++, κ+5)N∗ ,

(4) RAdd,3
U = Add(κ+3, κ+6)N∗ ,

(5) RAdd,4
U = (Add(κ+4, iU (κ)+)×Add(κ+5, (iU (κ)++)N∗2)
×Add(κ+6, (iU (κ)+3)N∗2))N∗ , where N∗2 is the second iterate of V ∗

by U ,
(6) RAdd

U = RAdd,1
U × RAdd,2

U × RAdd,3
U × RAdd,4

U ,
(7) RU = RAdd

U × RCol
U .

Remark 3.2. We have (jτ (κ)++)M∗τ = (jτ (κ)++)M∗2τ and (jτ (κ)+3)M∗τ =

(jτ (κ)+3)M∗2τ , where M∗2τ is the second iterate of V ∗ by E(τ). Similarly

(jĒ(κ)++)M∗
Ē

= (jĒ(κ)++)M∗2
Ē

and (jĒ(κ)+3)M∗
Ē

= (jĒ(κ)+3)M∗2
Ē

, where

M∗2
Ē

is the second iterate of V ∗ by Ē.

Definition 3.3. Let

(1) RCol
τ = Col(κ+6, jτ (κ))M∗τ ,

(2) RAdd,1
τ = Add(κ+, κ+4)M∗τ ,

(3) RAdd,2
τ = Add(κ++, κ+5)M∗τ ,

(4) RAdd,3
τ = Add(κ+3, κ+6)M∗τ ,

(5) RAdd,4
τ = (Add(κ+4, jτ (κ)+)×Add(κ+5, jτ (κ)++)
×Add(κ+6, jτ (κ)+3))M∗τ ,

(6) RAdd
τ = RAdd,1

τ × RAdd,2
τ × RAdd,3

τ × RAdd,4
τ ,

(7) Rτ = RAdd
τ × RCol

τ .

Definition 3.4. Let

(1) RCol
Ē

= Col(κ+6, jĒ(κ))M∗
Ē
,

(2) RAdd,1
Ē

= Add(κ+, κ+4)M∗
Ē
,

(3) RAdd,2
Ē

= Add(κ++, κ+5)M∗
Ē
,

(4) RAdd,3
Ē

= Add(κ+3, κ+6)M∗
Ē
,

(5) RAdd,4
Ē

= (Add(κ+4, jĒ(κ)+)×Add(κ+5, jĒ(κ)++)

×Add(κ+6, jĒ(κ)+3))M∗
Ē
,

(6) RAdd
Ē

= RAdd,1
Ē

× RAdd,2
Ē

× RAdd,3
Ē

× RAdd,4
Ē

,

(7) RĒ = RAdd
Ē
× RCol

Ē
.

Also define the forcing notion P as follows:

P = P1 × P2 × P3

= Add(κ+, (κ+4)M∗
Ē

)×Add(κ++, (κ+5)M∗
Ē

)×Add(κ+3, (κ+6)M∗
Ē

) (1)

and let G = G1 ×G2 ×G3 be P-generic over V ∗. It is clear that V ∗[G] is a
cofinality-preserving generic extension of V ∗ and that GCH holds in V ∗[G]

(1) Hence P is forcing isomorphic to Add(κ+, κ+3)×Add(κ++, κ+3)×Add(κ+3, κ+3).
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below and at κ. The forcing P is our (weak) “preparation forcing” (which
preserves the GCH below κ). We set V = V ∗[G].

Remark 3.5. (a) It is also possible to work with P = Add(κ+, κ+4) ×
Add(κ++, κ+5)×Add(κ+3, κ+6).

(b) We also require that G2×G3 contains some special element, that we
will specify later (see the notes after Claim 3.13). The element will play the
role of a master condition, and it will be used in the proof of Lemma 3.8(d).

Lemma 3.6.

(a) GU = 〈i′′UG1〉 × 〈i′′UG2〉 × 〈i′′UG3〉 is PU = iU (P)-generic over N∗,
(b) Gτ = 〈j′′τG1〉 × 〈j′′τG2〉 × 〈j′′τG3〉 is Pτ = jτ (P)-generic over M∗τ ,
(c) GĒ = 〈

⋃
τ<l(Ē) i

′′
τ,Ē
Gτ 〉 is PĒ = jĒ(P)-generic over M∗

Ē
.

Proof. (a) Suppose D ∈ N∗ is dense open in PU . Let D = iU (f)(κ) for
some function f ∈ V on κ. Then

D∗ = {α < κ : f(α) is dense open in P} ∈ U.

Since P is κ+-closed,
⋂
α∈D∗ f(α) is dense open in P. Let p ∈ G∩

⋂
α∈D∗ f(α).

Then iU (p) ∈ GU ∩D.
(b) Suppose D ∈M∗τ is dense open in Pτ . Let D = jτ (f)(Ēα�τ) for some

function f ∈ V on Vκ. Then

D∗ = {ν̄ ∈ Vκ : f(ν̄) is dense open in P} ∈ Eα(τ).

Since P is κ+-closed,
⋂
ν̄∈D∗ f(ν̄) is dense open in P. Let p ∈ G∩

⋂
ν̄∈D∗ f(ν̄).

Then jτ (p) ∈ Gτ ∩D.
(c) Suppose D ∈ M∗

Ē
is dense open in PĒ . Let τ < l(Ē) and Dτ ∈ M∗τ

be such that D = iτ,Ē(Dτ ). By elementarity, Dτ is dense open in Pτ . Let
p ∈ Gτ ∩Dτ . Then iτ,Ē(p) ∈ GĒ ∩D.

The following lemma is now trivial.

Lemma 3.7. The generic filters above are such that

(a) i′′U [G] ⊆ GU ,
(b) j′′τ [G] ⊆ Gτ ,
(c) j′′

Ē
[G] ⊆ GĒ ,

(d) i′′U,τ ′ [GU ] ⊆ Gτ ,
(e) i′′τ ′,τ [Gτ ′ ] ⊆ Gτ ,
(f) i′′

τ,Ē
[Gτ ] ⊆ GĒ .

It then follows that we have the following lifting diagram.
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V = V ∗[G] MĒ = M∗Ē [GĒ ]

N = N∗[GU ] Mτ ′ = M∗τ ′ [Gτ ′ ] Mτ = M∗τ [Gτ ]

//
jĒ

��

iU

''
jτ ′

++

jτ

//
iU,τ ′

77iτ ′,Ē

//
iτ ′,τ

OO

iτ,Ē

Lemma 3.8. In V ∗[G] there are IU , Iτ and IĒ such that

(a) IU is RU -generic over N∗[GU ],
(b) Iτ is Rτ -generic over M∗τ [Gτ ],
(c) IĒ is RĒ-generic over M∗

Ē
[GĒ ],

(d) the generics are such that we have the lifting diagram

MĒ [IĒ ]

N [IU ] Mτ ′ [Iτ ′ ] Mτ [Iτ ]//
i∗
U,τ ′

::
i∗
τ ′,Ē

//
i∗
τ ′,τ

OO

i∗
τ,Ē

Proof. We will prove the lemma in a sequence of claims.

Claim 3.9. IAdd,1
Ē

= G1 ∩ RAdd,1
Ē

is RAdd,1
Ē

-generic over M∗
Ē
.

Proof. Suppose A is a maximal antichain of RAdd,1
Ē

in M∗
Ē
. Let X =⋃

{dom(p) : p ∈ A}. As |A| ≤ κ+, we have |X| ≤ κ+, and of course A is a
maximal antichain of Add(κ+, X)M∗

Ē
. For simplicity let us assume |X| = κ+.

Now we have Add(κ+, X)M∗
Ē

= Add(κ+, X) and hence A is a maximal

antichain of Add(κ+, X). It then follows that A is a maximal antichain of

Add(κ+, κ+4). Let p ∈ G1 ∩A. Then p ∈ IAdd,1
Ē

∩A.

Claim 3.10. IAdd,2
Ē

= G2 ∩ RAdd,2
Ē

is RAdd,2
Ē

-generic over M∗
Ē
.

Proof. Suppose A is a maximal antichain of RAdd,2
Ē

in M∗
Ē
. Let X =⋃

{dom(p) : p ∈ A}. As |A| ≤ κ++, we have |X| ≤ κ++, and of course
A is a maximal antichain of Add(κ++, X)M∗

Ē
. For simplicity let us assume

|X| = κ++. Now we have Add(κ++, X)M∗
Ē

= Add(κ++, X) and hence A is

a maximal antichain of Add(κ++, X). It then follows that A is a maximal

antichain of Add(κ++, κ+5). Let p ∈ G2 ∩A. Then p ∈ IAdd,2
Ē

∩A.

Claim 3.11. IAdd,3
Ē

= G3 ∩ RAdd,3
Ē

is RAdd,3
Ē

-generic over M∗
Ē
.

Proof. Suppose A is a maximal antichain of RAdd,3
Ē

in M∗
Ē
. Let X =⋃

{dom(p) : p ∈ A}. As |A| ≤ κ+3, we have |X| ≤ κ+3, and of course
A is a maximal antichain of Add(κ+3, X)M∗

Ē
. For simplicity let us assume

|X| = κ+3. Now we have Add(κ+3, X)M∗
Ē

= Add(κ+3, X) and hence A is
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a maximal antichain of Add(κ+3, X). It then follows that A is a maximal

antichain of Add(κ+3, κ+6). Let p ∈ G3 ∩A. Then p ∈ IAdd,3
Ē

∩A.
It follows from the above claims that we have

Claim 3.12. IAdd,1
Ē

× IAdd,2
Ē

× IAdd,3
Ē

is RAdd,1
Ē

×RAdd,2
Ē

×RAdd,3
Ē

-generic
over M∗

Ē
.

Claim 3.13. IAdd,1
U = 〈i−1′′

U,Ē
(IAdd,1
Ē

)〉 is RAdd,1
U -generic over N∗.

Proof. Let A be a maximal antichain of RAdd,1
U in N∗. Then iU,Ē(A) is

a maximal antichain of RAdd,1
Ē

in M∗
Ē
. Since |A| ≤ κ+ and crit iU,Ē = κ++

N∗

> κ+, we have iU,Ē(A) = i′′
U,Ē

(A). Then IAdd,1
Ē

∩ i′′
U,Ē

(A) 6= ∅, which implies

IAdd,1
U ∩A 6= ∅.

Now consider the forcing notion RAdd,2
U ×RAdd,3

U ×RAdd,4
U ×RCol

U . Working
in M∗

Ē
, this forcing notion is κ+-closed and there are only κ+-many maximal

antichains of it which are in N∗. Thus we can define a descending sequence
〈〈p〈α,Add,2〉, p〈α,Add,3〉, p〈α,Add,4〉, p〈α,Col〉〉 : α < κ+〉 of conditions such that

IAdd,2
U × IAdd,3

U × IAdd,4
U × ICol

U = {p ∈ RAdd,2
U × RAdd,3

U × RAdd,4
U × RCol

U :

∃α < κ+, 〈p〈α,Add,2〉, p〈α,Add,3〉, p〈α,Add,4〉, p〈α,Col〉〉 ≤ p} is RAdd,2
U × RAdd,3

U ×
RAdd,4
U × RCol

U -generic over N∗. Also note that this generic filter is in M∗
Ē
.

We may also note that {iU,Ē(p〈α,Add,2〉, p〈α,Add,3〉) : α < κ+} ⊆ RAdd,2
Ē

×
RAdd,3
Ē

, and since this forcing is κ++-closed, there is 〈p〈Add,2〉, p〈Add,3〉〉 ∈
RAdd,2
Ē

×RAdd,3
Ē

such that 〈p〈Add,2〉, p〈Add,3〉〉 ≤ iU,Ē(p〈α,Add,2〉, p〈α,Add,3〉) for

all α < κ+. We may suppose that 〈p〈Add,2〉, p〈Add,3〉〉 ∈ G2×G3 (see Remark
3.5(b)).

Let IU = IAdd,1
U × IAdd,2

U × IAdd,3
U × IAdd,4

U × ICol
U . It follows from the

above results that IU is RU -generic over N∗.

Claim 3.14.

(a) IAdd,1
τ = 〈i−1′′

τ,Ē
(IAdd,1
Ē

)〉 is RAdd,1
τ -generic over M∗τ ,

(b) IAdd,2
τ = 〈i−1′′

τ,Ē
(IAdd,2
Ē

)〉 is RAdd,2
τ -generic over M∗τ ,

(c) IAdd,3
τ = 〈i−1′′

τ,Ē
(IAdd,3
Ē

)〉 is RAdd,3
τ -generic over M∗τ .

Proof. (a) Let A be a maximal antichain of RAdd,1
τ in M∗τ . Then iτ,Ē(A)

is a maximal antichain of RAdd,1
Ē

in M∗
Ē
. Since |A| ≤ κ+ and crit iτ,Ē =

κ+4
M∗τ

> κ+, we have iτ,Ē(A) = i′′
τ,Ē

(A). Then IAdd,1
Ē

∩ i′′
τ,Ē

(A) 6= ∅, which

implies IAdd,1
τ ∩A 6= ∅.

(b) Let A be a maximal antichain of RAdd,2
τ in M∗τ . Then iτ,Ē(A) is a max-

imal antichain of RAdd,2
Ē

in M∗
Ē
. Since |A| ≤ κ++ and crit iτ,Ē = κ+4

M∗τ
> κ++,
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we have iτ,Ē(A)= i′′
τ,Ē

(A). Then IAdd,2
Ē

∩i′′
τ,Ē

(A) 6=∅, which implies IAdd,2
τ ∩A

6= ∅.
(c) Let A be a maximal antichain of RAdd,3

τ in M∗τ . Then iτ,Ē(A) is a

maximal antichain of RAdd,3
Ē

in M∗
Ē
. Since |A| ≤ κ+3 and crit iτ,Ē = κ+4

M∗τ
>

κ+3, we have iτ,Ē(A) = i′′
τ,Ē

(A). Then IAdd,3
Ē

∩ i′′
τ,Ē

(A) 6= ∅, which implies

IAdd,1
τ ∩A 6= ∅.

As U ∈ M∗
Ē

and E(τ) ∈ M∗
Ē

for all τ < l(Ē), we have the following
diagram:

M∗Ē

N∗Ē M∗Ēτ

��

iĒU

��

jĒτ

//
iĒU,τ

U = Eκ(0),

iĒU : M∗Ē → N∗Ē ' Ult(M∗Ē , U),

jĒτ : M∗Ē →M∗Ēτ ' Ult(M∗Ē , E(τ)),

iĒU,τ (iĒU (f)(κ)) = jĒτ (f)(κ).

Recall that IAdd,4
U × ICol

U ∈M∗
Ē

, which is RAdd,4
U × RCol

U -generic over N∗Ē .

Claim 3.15. There is IAdd,4
τ ×ICol

τ ∈M∗
Ē

which is RAdd,4
τ ×RCol

τ -generic
over M∗τ .

Proof. We follow the idea from [M2]. For this set

RĒ,Col
τ = Col(κ+6, jĒτ (κ))M∗Ēτ

,

RĒ,Add,4
τ = (Add(κ+4, jĒτ (κ)+)×Add(κ+5, jĒτ (κ)++)

×Add(κ+6, jĒτ (κ)+3))M∗Ēτ
,

RĒ,Add,4
τ × RĒ,Col

τ and RAdd,4
τ × RCol

τ are coded in V
M∗τ
jτ (κ)+3, V

M∗Ēτ
jĒτ (κ)+3

re-

spectively. V
M∗τ
jτ (κ)+3, V

M∗Ēτ
jĒτ (κ)+3

are determined by V V ∗
κ+3, V

M∗
Ē

κ+3 (and E(τ), of

course). As E(τ) ∈ M∗
Ē

and V V ∗
κ+3 = V

M∗
Ē

κ+3 we see that RĒ,Add,4
τ × RĒ,Col

τ =

RAdd,4
τ × RCol

τ .

By the same reasoning, each antichain of RAdd,4
τ × RCol

τ appearing in

M∗τ is also an anti-chain of RĒ,Add,4
τ × RĒ,Col

τ appearing in M∗Ēτ . Hence, if

IAdd,4
τ × ICol

τ ∈ M∗
Ē

is an RĒ,Add,4
τ × RĒ,Col

τ -generic filter over M∗Ēτ then it

is also RAdd,4
τ × RCol

τ -generic over M∗τ .

Let IAdd,4
τ × ICol

τ = 〈iĒ′′U,τ (IAdd,4
U × ICol

U )〉. We show that it is as required.

So let D ∈M∗Ēτ be dense open in RĒ,Add,4
τ ×RĒ,Col

τ . Then D = jĒτ (f)(Ēα�τ)
for some function f ∈M∗

Ē
on Vκ. It then follows that in M∗

Ē
,

D∗ = {ν̄ ∈ Vκ : f(ν̄) is dense open in RAdd,4
Ē

× RCol
Ē } ∈ Eα(τ).
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It is easily seen that

B = {µ : |{ν̄ ∈ D∗ : κ0(ν̄) = µ}| ≤ µ+3} ∈ Eκ(0).

Thus for each µ ∈ B we can find f∗(µ) such that for all ν̄ ∈ D∗ with
κ0(ν̄) = µ the set f∗(µ) is a dense open subset of f(ν̄) (in M∗

Ē
). Hence

N∗Ē |= “iĒU (f∗)(κ) is dense open”,

M∗Ēτ |= “jĒτ (f∗)(κ) ⊆ jĒτ (f)(Ēα�τ)”.

So there is g ∈M∗
Ē

such that iĒU (g)(κ) ∈ (IAdd,4
U × ICol

U )∩ iĒU (f∗)(κ). It then

follows that jĒτ (g)(κ) ∈ iĒ
′′

U,τ (IAdd,4
U × ICol

U ) ∩ jĒτ (f∗)(κ). This means that

(IAdd,4
τ × ICol

τ ) ∩ jĒτ (f)(Ēα�τ) 6= ∅. The result follows.

Now let Iτ = IAdd,1
τ × IAdd,2

τ × IAdd,3
τ × IAdd,4

τ × ICol
τ . It follows that Iτ

is Rτ -generic over M∗τ .

Claim 3.16. IAdd,4
Ē

×ICol
Ē

= 〈
⋃
τ<l(Ē) i

′′
τ,Ē

(IAdd,4
τ ×ICol

τ )〉 is RAdd,4
Ē

×RCol
Ē

-

generic over M∗
Ē
.

Proof. Let D be a dense open subset of RAdd,4
Ē

×RCol
Ē

inM∗
Ē
. Let τ < l(Ē)

and Dτ ∈M∗τ be such that D = iτ,Ē(Dτ ). By elementarity, Dτ is dense open

in RAdd,4
τ × RCol

τ . Let 〈p, q〉 ∈ (IAdd,4
τ × ICol

τ ) ∩Dτ . Then 〈iτ,Ē(p), iτ,Ē(q)〉 ∈
(IAdd,4
Ē

× ICol
Ē

) ∩D.

Let IĒ = IAdd,1
Ē

× IAdd,2
Ē

× IAdd,3
Ē

× IAdd,4
Ē

× ICol
Ē
. It follows that IĒ is

RĒ-generic over M∗
Ē
.

To summarize, so far we have shown the following:

• IU is RU -generic over N∗,
• Iτ is Rτ -generic over M∗τ ,
• IĒ is RĒ-generic over M∗

Ē
.

Before continuing we recall Easton’s lemma.

Lemma 3.17 (Easton’s lemma). Let λ be regular uncountable, and sup-
pose that P satisfies the λ-c.c. and Q is λ-closed. Then

(a) ‖−P×Q“λ is a regular uncountable cardinal”,
(b) ‖−Q“P satisfies the λ-c.c.”,
(c) ‖−P“Q is λ-distributive”.

Claim 3.18. IU is RU -generic over N∗[GU ].

Proof. First note that in N∗ the forcing notions RU and PU are iU (κ)+-
c.c. and iU (κ)+-closed respectively. Now let A be a maximal antichain of RU
in N∗[G]. By Easton’s lemma |A| ≤ iU (κ), hence again by Easton’s lemma
A ∈ N∗. It follows that IU ∩A 6= ∅, as IU is RU -generic over N∗. The result
follows.
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By similar arguments we obtain

Claim 3.19. Iτ is Rτ -generic over M∗τ [Gτ ].

Claim 3.20. IĒ is RĒ-generic over M∗
Ē

[GĒ ].

It remains to prove part (d) of Lemma 3.8. Before going into details let
us recall a simple observation.

Claim 3.21.

(a) V N∗Ē

iĒU (κ)+3
= V N∗

iU (κ)+3,

(b) iĒU,τ �V
N∗Ē

iĒU (κ)+3
= iU,τ �V N∗

iU (κ)+3,

(c) iĒτ ′,τ �V
N∗Ē

iĒU (κ)+3
= iτ ′,τ �V N∗

iU (κ)+3.

Claim 3.22. i′′U,τ ′(IU ) ⊆ Iτ ′ .

Proof. (1) i′′U,τ ′(I
Add,1
U ) ⊆ IAdd,1

τ ′ : This follows from i′′U,τ ′(I
Add,1
U ) =

i′′U,τ ′(〈i
−1′′

U,Ē
(IAdd,1
Ē

)〉) ⊆ 〈i−1′′

τ ′,Ē
(IAdd,1
Ē

)〉 = IAdd,1
τ ′ .

(2) i′′U,τ ′(I
Add,2
U ) ⊆ IAdd,2

τ ′ : It suffices to show ∀α < κ+, iU,τ ′(p〈α,Add,2〉) ∈
IAdd,2
τ ′ . But we have p〈Add,2〉∈I

Add,2
Ē

and ∀α < κ+, p〈Add,2〉 ≤ iU,Ē(p〈α,Add,2〉).

It then follows that ∀α < κ+, iU,τ ′(p〈α,Add,2〉) = i−1
τ ′,Ē

(iU,Ē(p〈α,Add,2〉)) ≥
i−1
τ ′,Ē

(p〈Add,2〉). But now note that by our definition i−1
τ ′,Ē

(p〈Add,2〉) ∈ I
Add,2
τ ′ .

It then follows that iU,τ ′(p〈α,Add,2〉) ∈ I
Add,2
τ ′ .

(3) i′′U,τ ′(I
Add,3
U ) ⊆ IAdd,3

τ ′ : By the same argument as in (2) using the fact

that p〈Add,3〉 ∈ I
Add,3
Ē

.

(4) i′′U,τ ′(I
Add,4
U ×ICol

U ) ⊆ IAdd,4
τ ′ ×ICol

τ ′ : Trivial by the definition of IAdd,4
τ ′ ×

ICol
τ ′ and the previous claim.

The result follows.

Claim 3.23. i′′τ ′,τ (Iτ ′) ⊆ Iτ .

Proof. (1) i′′τ ′,τ (IAdd,1
τ ′ ) ⊆ IAdd,1

τ : This follows from i′′τ ′,τ (IAdd,1
τ ′ ) =

i′′τ ′,τ (〈i−1′′

τ ′,Ē
(IAdd,1
Ē

)〉) ⊆ 〈i−1′′

τ,Ē
(IAdd,1
Ē

)〉 = IAdd,1
τ ,

(2) i′′τ ′,τ (IAdd,2
τ ′ ) ⊆ IAdd,2

τ : By the same argument as in (1),

(3) i′′τ ′,τ (IAdd,3
τ ′ ) ⊆ IAdd,3

τ : By the same argument as in (1),

(4) i′′τ ′,τ (IAdd,4
τ ′ × ICol

τ ′ ) ⊆ IAdd,4
τ × ICol

τ : Because i′′τ ′,τ (IAdd,4
τ ′ × ICol

τ ′ ) =

i′′τ ′,τ (〈iĒ′′U,τ ′(I
Add,4
U × ICol

U )〉) ⊆ 〈iĒ′′U,τ (IAdd,4
U × ICol

U )〉 = IAdd,4
τ × ICol

τ .

The result follows.

Claim 3.24. i′′
τ,Ē

(Iτ ) ⊆ IĒ .
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Proof. (1) i′′
τ,Ē

(IAdd,1
τ ) ⊆ IAdd,1

Ē
: Trivial because we have i′′

τ,Ē
(IAdd,1
τ ) =

i′′
τ,Ē

(〈i−1′′

τ,Ē
(IAdd,1
τ )〉) ⊆ IAdd,1

Ē
.

(2) i′′
τ,Ē

(IAdd,2
τ ) ⊆ IAdd,2

Ē
: As in (1).

(3) i′′
τ,Ē

(IAdd,3
τ ) ⊆ IAdd,3

Ē
: As in (1).

(4) i′′
τ,Ē

(IAdd,4
τ ×ICol

τ ) ⊆ IAdd,4
Ē

×ICol
Ē

: Trivial by the definition of IAdd,4
Ē

×
ICol
Ē
.
The result follows.

This completes the proof of Lemma 3.8.

We iterate jĒ ω-many times and consider the diagram

V MĒ M2
Ē M3

Ē · · · →

N Mτ1 N2 M2
τ2 N3 M3

τ3

//
jĒ=j

0,1

Ē

��

jτ1

��

iU

//
j
1,2

Ē

��

j2τ2

��

i2U

//
j
2,3

Ē

��

j3τ3

��

i3U

//
iU,τ1

77
iU,Ē

??

iτ1,Ē

//

i2U,τ2

77
i2
U,Ē

??

i2
τ2,Ē

//

i3U,τ3

77i3
U,Ē

??

i3
τ3,Ē

where

j0
Ē = id, jnĒ = j0,n

Ē
, jm,n

Ē
= jn−1,n

Ē
◦ · · · ◦ jm+1,m+2

Ē
◦ jm,m+1

Ē
.

Let R(−,−) = RAdd(−,−)×RCol(−,−) be a function such that

i2U (RAdd)(κ, iU (κ)) = RAdd
U , i2U (RCol)(κ, iU (κ)) = RCol

U ,

where i2U is the second iterate of iU . Then we will have

i2U (R)(κ, iU (κ)) = RU .
The following is trivial.

Lemma 3.25.

(a) j2
Ē

(RAdd)(κ, jĒ(κ)) = RAdd
Ē

,

(b) j2
Ē

(RCol)(κ, jĒ(κ)) = RCol
Ē
,

(c) j2
Ē

(R)(κ, jĒ(κ)) = RĒ .

Cardinal structure and the power function in N∗[IU ]. The fol-
lowing lemma gives us everything that we need about the model N∗[IU ].

Lemma 3.26.

(a) In N∗[IU ] there are no cardinals in [κ+7, iU (κ)] and all other N∗-
cardinals are preserved.

(b) The power function differs from the power function of N∗ at the fol-

lowing points: 2κ
+

= κ+4, 2κ
++

= κ+5, 2κ
+3

= κ+6, 2κ
+4

= iU (κ)+,

2κ
+5

= iU (κ)++, 2κ
+6

= iU (κ)+3.
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Cardinal structure in M∗τ [Iτ ] and M∗
Ē

[IĒ ]. The following lifting says
everything which we can possibly say:

M∗Ē [IĒ ]

N∗[IU ] M∗τ ′ [Iτ ′ ] M∗τ [Iτ ]//
i∗
U,τ ′

::
i∗
τ ′,Ē

//
i∗
τ ′,τ

OO

i∗
τ,Ē

The forcing notion PĒ , due to Merimovich, which we define later, adds a
club to κ. For each pair ν1, ν2 of successive points in the club the cardinal
structure and power function in the range [ν+

1 , ν
+3
2 ] of the generic exten-

sion is analogous to the cardinal structure and power function in the range
[κ+, jĒ(κ)+3] of M∗

Ē
[IĒ ].

Cardinal structure in N∗[ICol
U ]. The following lemma gives us every-

thing that we need about the model N∗[ICol
U ].

Lemma 3.27.

(a) In N∗[ICol
U ] there are no cardinals in [κ+7, iU (κ)] and all other N∗-

cardinals are preserved.
(b) GCH holds in N∗[ICol

U ].

Cardinal structure in M∗τ [ICol
τ ] and M∗

Ē
[ICol
Ē

]. The following lifting
says everything which we can possibly say.

M∗Ē [ICol
Ē ]

N∗[ICol
U ] M∗τ ′ [I

Col
τ ′ ] M∗τ [ICol

τ ]//
i∗
U,τ ′

::i∗
τ ′,Ē

//
i∗
τ ′,τ

OO

i∗
τ,Ē

The forcing notion RĒκ , which we define later, adds a club to κ. For each
pair ν1, ν2 of successive points in the club the cardinal structure and power
function in the range [ν+

1 , ν
+3
2 ] of the generic extension is the same as the

cardinal structure and power function in the range [κ+, jĒ(κ)+3] ofM∗
Ē

[ICol
Ē

].

4. Redefining extender sequences. As in [M2], in the prepared model
V = V ∗[G] we define a new extender sequence system F̄ = 〈F̄α : α ∈
dom(F̄ )〉 by:

• dom(F̄ ) = dom(Ē),
• l(F̄ ) = l(Ē),
• ≤F̄ = ≤Ē ,
• F (0) = E(0),
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• I(τ) = Iτ ,
• ∀0 < τ < l(F̄ ), F (τ) = 〈〈Fα(τ) : α ∈ dom(F̄ )〉, 〈πβ,α : β, α ∈

dom(F̄ ), β ≥F̄ α〉〉 is such that

X ∈ Fα(τ)⇔ 〈α, F (0), I(0), . . . , F (τ ′), I(τ ′), . . . : τ ′ < τ〉 ∈ jĒ(X),

and

πβ,α(〈ξ, d〉) = 〈πβ,α(ξ), d〉,
• ∀α ∈ dom(F̄ ), F̄α = 〈α, F (τ), I(τ) : τ < l(F̄ )〉.

Also let I(F̄ ) be the filter generated by
⋃
τ<l(F̄ ) i

′′
τ,Ē
I(τ). Then I(F̄ ) is

RĒ-generic over MĒ . Let us write I(F̄ ) = IAdd(F̄ )× ICol(F̄ ) corresponding
to RĒ = RAdd

Ē
× RCol

Ē
.

From now on we work with this new definition of extender sequence
system and use Ē to denote it.

Definition 4.1.

(1) We write T ∈ Ēα iff ∀ξ < l(Ēα), T ∈ Eα(ξ),
(2) T \ ν̄ = T \ V ∗κ0(ν̄),

(3) T �ν̄ = T ∩ V ∗κ0(ν̄).

We now define two forcing notions PĒ and RĒκ .

5. Definition of the forcing notion PĒ. This forcing notion, defined
in the ground model V = V ∗[G], is essentially the forcing notion of [M2].
We give it in detail for completeness and later use. First we define a forcing
notion P∗

Ē
.

Definition 5.1. A condition p in P∗
Ē

is of the form

p = {〈γ̄, pγ̄〉 : γ̄ ∈ s} ∪ {〈Ēα, T, f, F 〉}
where

(1) s ∈ [Ē]≤κ, min Ē = Ēκ ∈ s,
(2) pĒκ ∈ V ∗

κ0(Ē)
is an extender sequence such that κ(pĒκ) is inacces-

sible (we allow pĒκ = ∅); write p0 for pĒκ ,
(3) ∀γ̄ ∈ s \ {min(s)}, pγ̄ ∈ [V ∗

κ0(Ē)
]<ω is a 0-increasing sequence of

extender sequences and maxκ(pγ̄) is inaccessible,
(4) ∀γ̄ ∈ s, κ(p0) ≤ maxκ(pγ̄),
(5) ∀γ̄ ∈ s, Ēα ≥ γ̄,
(6) T ∈ Ēα,
(7) ∀ν̄ ∈ T , |{γ̄ ∈ s : ν̄ is permitted to pγ̄}| ≤ κ0(ν̄),

(8) ∀β̄, γ̄ ∈ s, ∀ν̄ ∈ T, if β̄ 6= γ̄ and ν̄ is permitted to pβ̄, pγ̄ , then
πĒα,β̄(ν̄) 6= πĒα,γ̄(ν̄),
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(9) f is a function such that

(9.1) dom(f) = {ν̄ ∈ T : l(ν̄) = 0},
(9.2) f(ν1) ∈ R(κ(p0), ν0

1); if p0 = ∅, then f(ν1) = ∅,
(10) F is a function such that

(10.1) dom(F ) = {〈ν̄1, ν̄2〉 ∈ T 2 : l(ν̄1) = l(ν̄2) = ∅},
(10.2) F (ν1, ν2) ∈ R(ν0

1 , ν
0
2),

(10.3) j2
Ē

(F )(α, jĒ(α)) ∈ I(Ē).

We write mc(p), supp(p), T p, fp and F p for Ēα, s, T, f and F respectively.

Definition 5.2. For p, q ∈ P∗
Ē
, we say p is a Prikry extension of q

(p ≤∗ q or p ≤0 q) iff

(1) supp(p) ⊇ supp(q),
(2) ∀γ̄ ∈ supp(q), pγ̄ = qγ̄ ,
(3) mc(p) ≥Ē mc(q),
(4) mc(p) >Ē mc(q)⇒ mc(q) ∈ supp(p),
(5) ∀γ̄ ∈ supp(p) \ supp(q), maxκ0(pγ̄) >

⋃⋃
jĒ(f q)(κ(mc(q))),

(6) T p ≤ π−1′′

mc(p),mc(q)T
q,

(7) ∀γ̄ ∈ supp(q), ∀ν̄ ∈ T p, if ν̄ is permitted to pγ̄ , then

πmc(p),γ̄(ν̄) = πmc(q),γ̄(πmc(p),mc(q)(ν̄)),

(8) ∀ν1 ∈ dom(fp), fp(ν1) ≤ f q ◦ πmc(p),mc(q)(ν1),
(9) ∀〈ν1, ν2〉 ∈ dom(F p), F p(ν1, ν2) ≤ F q ◦ πmc(p),mc(q)(ν1, ν2).

We are now ready to define the forcing notion PĒ .

Definition 5.3. A condition p in PĒ is of the form

p = p_n . . ._ p0

where

• p0 ∈ P∗
Ē

, κ0(p0
0) ≥ κ0(µ̄1),

• p1 ∈ P∗µ̄1
, κ0(p0

1) ≥ κ0(µ̄2),
...
• pn ∈ P∗µ̄n ,

and 〈µ̄n, . . . , µ̄1, Ē〉 is a 0-increasing sequence of extender sequence systems,
that is, κ0(µ̄n) < · · · < κ0(µ̄1) < κ0(Ē).

Definition 5.4. For p, q ∈ PĒ , we say p is a Prikry extension of q
(p ≤∗ q or p ≤0 q) iff

p = p_n . . ._ p0, q = q_n . . ._ q0

where
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• p0, q0 ∈ P∗
Ē

, p0 ≤∗ q0,
• p1, q1 ∈ P∗µ̄1

, p1 ≤∗ q1,
...
• pn, qn ∈ P∗µ̄n , pn ≤∗ qn.

Now let p ∈ PĒ and ν̄ ∈ T p. We define p〈ν̄〉, a one-element extension of
p by ν̄.

Definition 5.5. Let p ∈ PĒ , ν̄ ∈ T p, κ0(ν̄) >
⋃⋃

jĒ(fp,Col)(κ(mc(p))),
where fp,Col is the collapsing part of fp. Then p〈ν̄〉 = p_1 p0 where

(1) supp(p0) = supp(p),
(2) ∀γ̄ ∈ supp(p0),

pγ̄0 =


πmc(p),γ̄(ν̄) if ν̄ is permitted to pγ̄ and l(ν̄) > 0,

πmc(p),γ̄(ν̄) if ν̄ is permitted to pγ̄ , l(ν̄) = 0 and γ̄ = Ēκ,

pγ̄_〈πmc(p),γ̄(ν̄)〉 if ν̄ is permitted to pγ̄ , l(ν̄) = 0 and γ̄ 6= Ēκ,

pγ̄ otherwise,

(3) mc(p0) = mc(p),
(4) T p0 = T p \ ν̄,
(5) ∀ν1 ∈ T p0 , fp0(ν1) = F p(κ(ν̄), ν1),
(6) F p0 = F p,
(7) if l(ν̄) > 0 then

(7.1) supp(p1)={πmc(p),γ̄(ν̄) : γ̄∈supp(p) and ν̄ is permitted to pγ̄},
(7.2) p

πmc(p),γ̄(ν̄)

1 = pγ̄ ,
(7.3) mc(p1) = ν̄,
(7.4) T p1 = T p�ν̄,
(7.5) fp1 = fp�ν̄,
(7.6) F p1 = F p�ν̄,

(8) if l(ν̄) = 0 then

(8.1) supp p1 = {πmc(p),0(ν̄)},
(8.2) p

πmc(p),0(ν̄)

1 = pĒκ ,
(8.3) mc(p1) = ν̄0,
(8.4) T p1 = ∅,
(8.5) fp1 = fp(κ(ν̄)),
(8.6) F p1 = ∅.

We use (p〈ν̄〉)0 and (p〈ν̄〉)1 for p0 and p1 respectively. We also let p〈ν̄1,ν̄2〉 =
(p〈ν̄1〉)

_
1 (p〈ν̄1〉)0〈ν̄2〉 and so on.

The above definition is the key step in the definition of the forcing rela-
tion ≤ .
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Definition 5.6. For p, q ∈ PĒ , we say p is a 1-point extension of q
(p ≤1 q) iff

p = p_n+1 . . .
_ p0, q = q_n . . ._ q0,

and there is 0 ≤ k ≤ n such that

• ∀i < k, pi, qi ∈ P∗µ̄i , pi ≤
∗ qi,

• ∃ν̄ ∈ T qk , (pk+1)_pk ≤∗ (qk)〈ν̄〉,
• ∀i > k, pi+1, qi ∈ P∗µ̄i , pi+1 ≤∗ qi,

where µ̄0 = Ē.

Definition 5.7. For p, q ∈ PĒ , we say p is an n-point extension of q
(p ≤n q) iff there are pn, . . . , p0 such that

p = pn ≤1 · · · ≤1 p0 = q.

Definition 5.8. For p, q ∈ PĒ , we say p is an extension of q (p ≤ q) iff
there is some n such that p ≤n q.

Suppose that H is PĒ-generic over V = V ∗[G]. For α ∈ dom(Ē) set

CαH = {maxκ(pĒα0 ) : p ∈ H}.
Theorem 5.9.

(a) V [H] and V have the same cardinals ≥ κ,
(b) κ remains strongly inaccessible in V [H],
(c) CαH is unbounded in κ,
(d) CκH is a club in κ,

(e) α 6= β ⇒ CαH 6= CβH ,
(f) if λ = min(CκH) and K is Col(ω, λ+)V [H]-generic over V [H], then

CARDV [H][K]∩κ = (lim(CκH)∪{µ+, . . . , µ+6 : µ ∈ CκH}\λ++)∪{ω},
(g) V [H][K] |= “ ∀λ ≤ κ, 2λ = λ+3”.

Proof. Essentially the same as in [M2].

6. Definition of the forcing notion RĒκ. We now define another
forcing notion RĒκ . It is essentially the Radin forcing corresponding to Ēκ
with interleaving collapses (see also [M1]).

Definition 6.1. A condition in RĒκ is of the form

p = 〈〈γ̄n, sn, Sn, fn, Fn〉, . . . , 〈γ̄0, s
0, S0, f0, F 0〉〉

where

(1) γ̄n, . . . , γ̄0 are minimal extender sequences (2),
(2) γ̄0 = Ēκ,

(2) An extender sequence γ̄ is minimal if it has length 1 and κ(γ̄) = κ0(γ̄).
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(3) ∀i ≤ n− 1, κ(γ̄i+1) < κ0(γ̄i),
(4) ∀i ≤ n, Si ∈ γ̄i,
(5) ∀i ≤ n, si ∈ Vκ0(γ̄i) is a minimal extender sequence such that κ(si)

is inaccessible,
(6) ∀i ≤ n, f i is a function such that

(6.1) dom(f i) = {ν̄ ∈ Si : l(ν̄) = 0},
(6.2) f i(ν1) ∈ RCol(κ(si), ν0

1),

(7) ∀i ≤ n, F i is a function such that

(7.1) dom(F i) = {〈ν̄1, ν̄2〉 ∈ (Si)2 : l(ν̄1) = l(ν̄2) = 0},
(7.2) F i(〈ν1, ν2〉) ∈ RCol(ν0

1 , ν
0
2),

(7.3) j2
Ē

(F i)(κ(γ̄i), jĒ(κ(γ̄i)) ∈ ICol(Ē).

Definition 6.2. For p, q ∈ RĒκ we say p is a Prikry extension of q
(p ≤∗ q or p ≤0 q) iff p and q are of the form

p = 〈〈γ̄n, sn, Sn, fn, Fn〉, . . . , 〈γ̄0, s
0, S0, f0, F 0〉〉,

q = 〈〈γ̄n, tn, Tn, gn, Gn〉, . . . , 〈γ̄0, t
0, T 0, g0, G0〉〉,

where ∀i ≤ n,

(1) si = ti,
(2) Si ⊆ T i,
(3) f i ≤ gi,
(4) F i ≤ Gi.
Definition 6.3. Let p = 〈〈γ̄n, sn, Sn, fn, Fn〉, . . . , 〈γ̄0, s

0, S0, f0, F 0〉〉 ∈
RĒκ , and let 〈ν̄〉 ∈ Si, κ0(ν̄) >

⋃⋃
jĒ(f i)(κ(γ̄i)). We define p〈ν̄〉 as follows:

• if l(ν̄) > 0, then
p〈ν̄〉 = 〈〈γ̄n, sn, Sn, fn, Fn〉, . . . ,

〈γ̄i+1, s
i+1, Si+1, f i+1, F i+1〉,
〈ν̄, si, Si�ν̄, f i�ν̄, F i�ν̄〉,

〈γ̄i, ν̄, Si \ ν̄, F i(κ(ν̄,−)), F i〉,
〈γ̄i−1, s

i−1, Si−1, f i−1, F i−1〉, . . . ,
〈γ̄0, s

0, S0, f0, F 0〉〉,
• if l(ν̄) = 0, then
p〈ν̄〉 = 〈〈γ̄n, sn, Sn, fn, Fn〉, . . . ,

〈γ̄i+1, s
i+1, Si+1, f i+1, F i+1〉,
〈ν̄0, si, ∅, f i(κ(ν̄)), ∅〉,

〈γ̄i, ν̄, Si \ ν̄, F i(κ(ν̄,−)), F i〉,
〈γ̄i−1, s

i−1, Si−1, f i−1, F i−1〉, . . . ,
〈γ̄0, s

0, S0, f0, F 0〉〉.
Definition 6.4. Let p, q ∈ RĒκ , where

q = 〈〈γ̄n, sn, Sn, fn, Fn〉, . . . , 〈γ̄0, s
0, S0, f0, F 0〉〉.
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We say p is a 1-point extension of q (p ≤1 q) iff there are i and 〈ν̄〉 ∈ Si
such that p ≤∗ q〈ν̄〉.

Definition 6.5. Let p, q ∈ RĒκ . We say p is an n-point extension of q
(p ≤n q) iff there are pn, . . . , p0 such that

p = pn ≤1 · · · ≤1 p0 = q.

Definition 6.6. Let p, q ∈ RĒκ . We say p is an extension of q (p ≤ q)
iff there is n such that p ≤n q.

Suppose G is RĒκ-generic over V . Set

C = {κ(s0) : s0 appears in some p ∈ G}.

Theorem 6.7.

(a) V [G] and V have the same cardinals ≥ κ,
(b) κ remains strongly inaccessible in V [G],
(c) C is a club in κ,
(d) if λ = min(C) and K is Col(ω, λ+)V [G]-generic over V [G], then

CARDV [G][K] ∩ κ = (lim(C) ∪ {γ+, . . . , γ+6 : γ ∈ C} \ λ++) ∪ {ω},
(e) V [G][K] |= “GCH”.

Proof. Essentially the same as in [M1] and [M2].

7. Projection of PĒ into RĒκ. We now define a projection

π : PĒ → RĒκ
as follows. Suppose p = p_n . . ._ p0 where

• p0 ∈ P∗
Ē
, κ0(p0

0) ≥ κ0(µ̄1),

• p1 ∈ P∗µ̄1
, κ0(p0

1) ≥ κ0(µ̄2),
...
• pn ∈ P∗µ̄n ,

and 〈µ̄n, . . . , µ̄1, µ̄0〉, where µ̄0 = Ē, is a 0-increasing sequence of extender
sequence systems. For each i ≤ n set fpi = fpi,Add × fpi,Col and F pi =
F pi,Add × F pi,Col, which correspond to R = RAdd ×RCol. Given p as above,
for each i ≤ n, we have

(1) j(fpi,Col)(κ(mc(pi))) ∈ Vκ0(mc(pi)); hence there is a function gpi such
that

j(fpi,Col)(κ(mc(pi))) = j(gpi)(κ0(mc(pi))),

(2) j2(F pi,Col)(κ(mc(pi)), j(κ(mc(pi)))) is in the generic filter construc-
ted through the normal measure; hence there is a stronger condition
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in the filter which is the image of a condition from the generic over
the normal ultrapower, i.e. there is a function Hpi such that

j2(Hpi)(κ0(mc(pi)), j(κ
0(mc(pi))))

≤ j2(F pi,Col)(κ(mc(pi)), j(κ(mc(pi)))),

and
j2(Hpi)(κ0(mc(pi)), j(κ

0(mc(pi)))) ∈ ICol

and there is no weaker function H ′ satisfying this.

Let (T pi)∗ be obtained from T pi by replacing extender sequences in T pi of
length 0 with

{ν ∈ T pi : l(ν) = 0, fpi,Col(ν) = gpi(πmc(pi),0(ν))}.
It follows from (1) that (T pi)∗ ∈ mc(pi). Now let (T pi)∗∗ be obtained from
(T pi)∗ by restricting extender sequences in (T pi)∗ of length 0 to those ν1 ∈
(T pi)∗ with l(ν1) = 0 such that

{ν2 ∈ (T pi)∗ : l(ν2) = 0, Hpi(πmc(pi),0(ν1), πmc(pi),0(ν2)) ≤ F pi,Col(ν1, ν2)}
has measure one with respect to the normal measure determined by mc(pi).
Then by (2) we have (T pi)∗∗ ∈ mc(pi). Let

π(p) = 〈〈min µ̄n, p
0
n, A

pn , gpn , Hpn〉, . . . , 〈Ēκ, p0
0, A

p0 , gp0 , Hp0〉〉,
where Api = {πmc(pi),0(ν̄) : ν̄ ∈ (T pi)∗∗}. Note that π(p) ∈ RĒκ and π is
well-defined.

Lemma 7.1. π is a projection, i.e.

(a) π(1PĒ ) = 1RĒκ ,
(b) π is order preserving,
(c) if p ∈ PĒ , q ∈ RĒκ and q ≤ π(p) then there is r ≤ p in PĒ such that

π(r) ≤ q.
Proof. Parts (a) and (b) are trivial; let us prove (c). Let p ∈ PĒ , q ∈ RĒκ ,

and suppose that q ≤ π(p). Let us suppose for simplicity that p ∈ P∗
Ē

(3).

Let π(p) = 〈〈Ēκ, p0, Ap, gp, Hp〉〉. Since q ≤ π(p), there is some k such that
q ≤k π(p). We prove the lemma by induction on k.

First suppose that k = 0, so that q is a Prikry extension of π(p). Let
q = 〈〈Ēκ, t, T, g,G〉〉. Then we have t = p0, T ⊆ Ap, g ≤ gp and G ≤ Hp.
Let r ∈ P∗

Ē
, r ≤∗ p be obtained from p with the following changes:

• T r ⊆ {ν̄ ∈ (T p)∗∗ : πmc(p),0(ν̄) ∈ T}, T r ∈ mc(p),

• f r,Col ≤ fp,Col is such that for all ν ∈ T r of length 0,

gr(πmc(p),0(ν)) ≤ g(πmc(p),0(ν)),

(3) In fact the general case follows from this special case using the factorization prop-
erties of PĒ .
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• F r,Col ≤ F p,Col is such that for all 〈ν1, ν2〉∈(T r)2 with l(ν1)=l(ν2)=0,

Hr(πmc(p),0(ν1), πmc(p),0(ν2)) ≤ G(πmc(p),0(ν1), πmc(p),0(ν2)).

Then π(r) = 〈〈Ēκ, p0, Ar, gr, Hr〉〉, where Ar ⊆ T and for all ν, ν1 and ν2

such that their image under πmc(p),0 is in Ar, we have

gr(πmc(p),0(ν)) ≤ g(πmc(p),0(ν))

and

Hr(πmc(p),0(ν1), πmc(p),0(ν2)) ≤ G(πmc(p),0(ν1), πmc(p),0(ν2)).

It follows that π(r) ≤∗ q.
Now suppose that k = 1 (the general case k ≥ 1 can be proved similarly).

Let ν̄ ∈ Ap be such that q ≤∗ (π(p))〈ν̄〉. Also let

q = 〈〈γ̄1, t
1, T 1, g1, G1〉, 〈γ̄0, t

0, T 0, g0, G0〉〉.
Suppose e.g. that l(ν̄) > 0 (the case l(ν̄) = 0 can be proved similarly).
Then (π(p))〈ν̄〉=〈〈ν̄, p0, Ap�ν̄, gp�ν̄, Hp�ν̄〉, 〈Ēκ, ν̄, Ap \ ν̄, Hp(κ(ν̄,−)), Hp〉〉.
Let µ̄ ∈ T p be an extender sequence system of size (κ0(ν̄))+3, obtained by
the same elementary embedding generating ν̄, such that min µ̄ = ν̄ and
let (p)〈µ̄〉 = p_1 p0. Let r = r_1 r0 ∈ PĒ with r ≤∗ (p)〈µ̄〉 be such that for
i ∈ {0, 1}:
• supp(ri) = supp(pi),
• T ri ⊆ {ν̄ ∈ (T pi)∗∗ : πmc(pi),0(ν̄) ∈ T i}, T ri ∈ mc(pi),

• f ri,Col ≤ fpi,Col is such that for all ν ∈ T ri with l(ν) = 0,

gri(πmc(pi),0(ν)) ≤ gi(πmc(pi),0(ν)),

• F ri,Col ≤ F p,Col is such that for all 〈ν1, ν2〉 ∈ (T ri)2 with l(ν1) =
l(ν2) = 0,

Hri(πmc(pi),0(ν1), πmc(pi),0(ν2)) ≤ Gi(πmc(pi),0(ν1), πmc(pi),0(ν2)).

Then π(r) = π(r1)_π(r0) and as above π(ri) ≤∗ 〈〈γ̄i, ti, T i, gi, Gi〉〉, i ∈
{0, 1}. It follows that π(r) ≤∗ q.

The lemma follows.

8. Completing the proof. Finally in this section we complete the
proof of Theorem 1.1. Let H be PĒ-generic over V and let H0 = 〈π′′H〉, the
filter generated by π′′H. Then H0 is RĒκ-generic over V. Consider the clubs
C = {κ(s0) : s0 appears in in some p ∈ H0} and CκH = {κ(p0

0) : p ∈ H}. It
is easily seen that C = CκH . Let λ = min(C). Note that the forcing notions
PĒ and RĒκ add no new bounded subsets to λ+, hence Col(ω, λ+)V [H0] =
Col(ω, λ+)V [H], and hence if K is Col(ω, λ+)V [H]-generic over V [H] then K
is Col(ω, λ+)V [H0]-generic over V [H0]. Let

V1 = V V [H0][K]
κ , V2 = V V [H][K]

κ .
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It follows that V1 and V2 are models of ZFC. We show that the pair (V1, V2)
satisfies the requirements of the theorem.

(a) V1 and V2 have the same cardinals: This is trivial, since

CARDV1 = (lim(C) ∪ {µ+, . . . , µ+6 : µ ∈ C} \ λ++) ∪ {ω}
= (lim(CκH) ∪ {µ+, . . . , µ+6 : µ ∈ CκH} \ λ++) ∪ {ω}
= CARDV2 .

(b) V1 and V2 have the same cofinalities: This is again trivial, since
changing the cofinalities depends on the length of the extender sequence
system used and not on its size.

(c) V1 |= “GCH”: by Theorem 6.7(e).
(d) V2 |= “∀λ, 2λ = λ+3”: by Theorem 5.9(g).
Theorem 1.1 follows.

Problem 8.1. Is it possible to kill GCH everywhere, preserving cofinal-
ities, adding just a single real? (Allowing cofinalities, but not cardinalities,
to change, this was accomplished in [FG].)
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