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The real field with the rational points of an elliptic curve
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Abstract. We consider the expansion of the real field by the group of rational points
of an elliptic curve over the rational numbers. We prove a completeness result, followed
by a quantifier elimination result. Moreover we show that open sets definable in that
structure are semialgebraic.

1. Introduction. Here we study the expansion of the real field by the
set, C, of pairs (x, y) ∈ Q2 such that

y2 = x3 + ax+ b,

with a, b ∈ Q such that 4a3 + 27b2 6= 0. We consider
(
R, C

)
as a structure in

the language Lo(P ) extending the language Lo = {0, 1,+, ·, <} of ordered
rings by a binary relation symbol P . Our main result is the following.

Theorem 1.1. Every subset of Rs definable in the structure (R, C) is
defined by a boolean combination of formulas of the form

∃y1 · · · ∃y2n

[ n∧
j=1

P (y2j−1, y2j) ∧ φ(x, y)
]
,

where y denotes the tuple (y1, . . . , y2n), x is an s-tuple of distinct variables
and φ(x, y) is a quantifier-free Lo-formula.

As a by-product of our techniques, we also axiomatize the first order
theory of (R, C) (see Theorem 4.4).

One of our motivations for studying (R, C) is to understand open defin-
able sets in the sense of [3]. In the last section we prove the following.

Theorem 1.2. Let U ⊆ Rs be an open set definable in (R, C). Then U
is semialgebraic.

2010 Mathematics Subject Classification: 03C10, 03C64, 14H52, 11U09.
Key words and phrases: real field, definable set, elliptic curve, open core.

DOI: 10.4064/fm211-1-2 [15] c© Instytut Matematyczny PAN, 2011



16 A. Günaydın and P. Hieronymi

We prove Theorems 1.1 and 1.2 for a broader class of structures than the
ones in the statements. Namely we study (R, Γ ), where Γ ⊆ Rm is a dense
subgroup of a one-dimensional connected group definable in R, satisfying
a number-theoretic property. The details of the setting can be found in
Section 2. In Section 3, we show that the conclusion of Theorem 1.1 holds
for these structures. The reader would notice that C, considered as a subset
of the projective plane P2(C), becomes the group of rational points of an
elliptic curve after adding a point at infinity. We explain this thoroughly in
Section 4 and using this we illustrate how the structure (R, C) fits into the
more general framework.

The current paper is not the first attempt to treat such structures. For
instance, Zilber studied the real field expanded by the group of roots of
unity in [15] and later Belegradek and Zilber generalized the results of that
paper to the real field expanded by a subgroup of the unit circle, of finite
rank in [1]. The first author of the current paper studied similar structures
in [8] with an approach different than the one in [1]. However neither [1]
nor [8] prove anything about the structure of open definable sets. Since we
prove our theorems in the generality of Section 2, we were able to get some
results in that direction: Let

S := {(x, y) ∈ R2 : x2 + y2 = 1}

be the unit circle and let Γ be a finite rank subgroup of S; that is, Γ is
contained in the divisible closure of a finitely generated subgroup of S. Now
the statement analogous to Theorem 1.2 in this setting is as follows.

Theorem 1.3. Let U ⊆ Rs be an open set definable in (R, Γ ). Then U
is semialgebraic.

Conventions and notations. Above and in the rest of the paper m,n, s, t
always denote natural numbers. Also as usual ‘definable’ means ‘definable
with parameters’ and when we want to make the language and the param-
eters explicit we write L-B-definable to mean definable in the appropriate
L-structure using parameters from the set B.

The real closure of an ordered field K is denoted by Krc.
We denote the graph of a function f : X → Y by gr(f).

2. The Mordell–Lang property. Throughout this section K denotes
a real closed field and (A,⊕) is a one-dimensional group definable in K; that
is, A ⊆ Km and ⊕ : Km ×Km → Km are definable in K such that A is of
dimension one and ⊕|(A × A) is a group operation on A. (Here and below
we do not make any distinction between an ordered field and its underlying
set.)
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By Proposition 2.5 of [12], there is a topology on A definable in K such
that A becomes a topological group. We will refer to this topology as the
t-topology. Further, a subset of A is called t-dense (respectively t-connected,
t-compact) if it is dense (respectively connected, compact) in the t-topology.
A function f : An → A is said to be t-continuous if it is continuous with
respect to the t-topology.

By Claim I in the proof of Proposition 2.5 in [12], the t-topology agrees
with the topology induced from Km except for finitely many points; that is,
there is a finite subset X of A such that the topologies on A \ X induced
from A and Km are equivalent.

In [12], it is proven that A must be abelian-by-finite. By Theorem 1.1
of [6] we also know that A has finitely many n-torsion elements for each
n > 0.

Throughout the rest of the paper, we assume that (A,⊕) is t-connected.

By Proposition 2.12 of [12] it follows that A does not have any proper
infinite definable subgroup. Combining this with the previous paragraph we
see that A is abelian and divisible.

Note that the t-connectedness assumption is not very restrictive, because
every group definable in K is a finite union of cosets of its t-connected
component.

Let π1, . . . , πm be the standard projections of Km onto K. For our pur-
poses it is harmless to assume that there is i ∈ {1, . . . ,m} such that for
every a ∈ A and j = 1, . . . ,m the image πj(a) is Lo-definable over πi(a).
Moreover we take i to be 1 and we sometimes write π instead of π1.

For convenience we also assume that A is definable over ∅ and for another
real closed field E, we let (A(E),⊕) denote the group definable in E by the
formulas defining (A,⊕) in K.

Let k = (k1, . . . , kn) be a tuple of integers. Consider the group character

χk : An → A, χk(a1, . . . , an) := k1a1 ⊕ · · · ⊕ knan,

and let Tk denote the kernel of χk.
Fix n > 0 and a tuple of distinct indeterminates X = (X1, . . . , Xmn). We

usually denote an element of the polynomial ring K[X] by p (possibly with
subscripts) and if we want to make the variables precise, we write p(X). In
what follows we identify Kmn with (Km)n. In particular, for α1, . . . , αn ∈
Km and a polynomial p ∈ K[X], p(α1, . . . , αn) means

p(π1(α1), π2(α1), . . . , πm(α1), . . . , π1(αn), . . . , πm(αn)).

In a similar fashion, for a subfield L of K and a subset S of A, L(S) denotes
the subfield L(π1(S)∪· · ·∪πm(S)) of K and L[S] := L[π1(S)∪· · ·∪πm(S)].
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Finally for a polynomial p as above we put

V (p) := {α ∈ Kmn : p(α) = 0},
the zero set of p (in K).

In the rest of this section, L is a subfield of K, and G is a subgroup of A.

Definition 2.1. We say that G has the Mordell–Lang property over L if
for every n > 0 and for every polynomial p ∈ L[X], there are g1, . . . , gt ∈ Gn
and k1, . . . , kt ∈ Zn such that

V (p) ∩Gn =
t⋃
i=1

gi ⊕ (Tki
∩Gn).

The reason for this name is that this property is the conclusion of a
conjecture of Lang generalizing a conjecture of Mordell for abelian varieties.
We refer the reader to [10] for the precise statement of the conjecture and
its history.

We proceed to show that if G has the Mordell–Lang property over Q,
then it has the Mordell–Lang property over K.

Lemma 2.2. Let L contain Q(G) and suppose that G has the Mordell–
Lang property over L. Then G has the Mordell–Lang property over Lrc.

Proof. Let α ∈ K be algebraic over L of degree d > 1. It suffices to
show that G has the Mordell–Lang property over L(α). Take a polynomial
p ∈ L[α][X]. Write

p = p0 + p1α+ · · ·+ pd−1α
d−1,

where pi ∈ L[X] for i = 0, 1, . . . , d− 1. Then for g = (g1, . . . , gn) ∈ Gn,

p(g) = 0 ⇔ pi(g) = 0 for each i ∈ {0, 1, . . . , d− 1}.
Therefore

V (p) ∩Gn =
d−1⋂
i=0

V (pi) ∩Gn = V (p2
0 + · · ·+ p2

d−1) ∩Gn.

By the Mordell–Lang property over L, we know that V (p2
0 + · · ·+p2

d−1)∩Gn
is a finite union of cosets of the kernels of χk in Gn, thus so is V (p)∩Gn.

We need the following notation in the next step: For s ∈ N and a tuple
i = (i(1), . . . , i(s)) ∈ Ns, |i| denotes i(1) + · · · + i(s), and for a tuple Y =
(Y1, . . . , Ys) of distinct indeterminates, Y i is the monomial

Y
i(1)
1 · · ·Y i(s)

s .

Likewise for α = (α1, . . . , αs) ∈ Ks, αi means αi(1)
1 · · ·αi(s)s .

Lemma 2.3. Let G have the Mordell–Lang property over Q. Then G has
the Mordell–Lang property over Q(G).
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Proof. Take a polynomial p ∈ Q[G][X] of degree d. Write

p =
∑
|i|≤d

∑
j

ai,jg
jXi,

where i and j run through elements of Nmn and Nmt respectively, ai,j ∈ Q,
and g = (g1, . . . , gt) ∈ Gt.

Let Y = (Y1, . . . , Ymt) be a tuple of indeterminates different than X and
put q(X,Y ) =

∑
|i|≤d

∑
j ai,jX

iY j ∈ Q[X,Y ]. For g∗ ∈ Gn we have

p(g∗) = 0 ⇔ q(g∗, g) = 0.

Now the result follows since G has the Mordell–Lang property over Q.

Proposition 2.4. Let G have the Mordell–Lang property over Q. Then
G has the Mordell–Lang property over K.

Proof. Let E ⊆ K be a finitely generated extension of Q(G)rc, and take
a transcendence basis α = (α1, . . . , αt) of E over Q(G)rc.

Take a polynomial p ∈ E[X], and write

p =
∑
i

piα
i,

where i = (i(1), . . . , i(t)) runs through elements of Nt such that |i| ≤ s for
some s ∈ N and pi ∈ Q(G)rc[X].

Now it is easy to see that for g ∈ Gn,

p(g) = 0 ⇔ pi(g) = 0 for each i.

Hence V (p)∩Gn is of the desired form since G has the Mordell–Lang prop-
erty over Q(G)rc by the previous two lemmas.

From now on we assume that G has the Mordell–Lang property over Q.
As a consequence of the proposition above it is harmless to simply say that
G has the Mordell–Lang property.

For a subset S of K[X], let

V (S) :=
⋂
p∈S

V (p).

Let C = K(
√
−1) be the algebraic closure of K and identify C with K2

in the usual way. We get the following consequence of the Mordell–Lang
property.

Corollary 2.5. Let X ⊂ Cmn be definable in the field C. Then X∩Gn
is definable in the group (G,⊕).

Proof. By quantifier elimination for algebraically closed fields, it suffices
to show that for every S ⊆ K[X], there are s, t ∈ N and gi,j ∈ Gn and
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ki,j ∈ Zn for i = 1, . . . , s and j = 1, . . . , t such that

V (S) ∩Gn =
s⋂
i=1

t⋃
j=1

gi,j ⊕ (Tki,j
∩Gn).

This easily follows from the Mordell–Lang property combined with Hilbert’s
Basis Theorem.

Remark. Note that we cannot get this result with K in place of C.
Vaguely speaking, it is not possible to define the trace of ordering on the
group G.

2.1. The main lemma. We prove an analog of Lemma 5.12 in [5],
which is the most useful consequence of the Mordell–Lang property. We
take this opportunity to introduce some more algebraic notations and con-
ventions.

Let G′ be a subgroup of A containing G and g′, g′1, . . . , g
′
n elements of G′.

We say that g′ is algebraic over L if π(g′) is algebraic over L, and similarly
g′1, . . . , g

′
n are algebraically dependent over L if π(g′1), . . . , π(g′n) are alge-

braically dependent over L. Also we say that g′1, . . . , g
′
n are linearly depen-

dent modulo G if there is k ∈ Zn \ {(0, . . . , 0)} such that χk(g′1, . . . , g
′
n) ∈ G.

We say that G′ satisfies the same Mordell–Lang conditions as G if for
every polynomial p ∈ Q[X],

V (p) ∩ (G′)n = g1 ⊕ (Tk1 ∩ (G′)n) ∪ · · · ∪ gt ⊕ (Tkt ∩ (G′)n),

with g1, . . . , gt ∈ Gn and k1, . . . , kt ∈ Zn.
Note that if G′ satisfies the same Mordell–Lang conditions as G, then G′

has the Mordell–Lang property as well.

Lemma 2.6. Let G′ be a subgroup of A containing G and suppose that
G′ satisfies the same Mordell–Lang conditions as G. Then g′1, . . . , g

′
n ∈ G′

are linearly dependent modulo G whenever they are algebraically dependent
over Q(G).

Proof. We just prove the case n = 1 and the general case can be proven
using similar arguments. So let g′ ∈ G′ be algebraically dependent over
Q(G). Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ymt) be tuples of distinct
indeterminates, and take a polynomial p(X1, Y ) ∈ Q[X1, Y ] and h ∈ Gt

such that p(π(g′), h) = 0 and p(X1, h) is not the zero polynomial. Then
considering p(X1, Y ) as an element of K[X,Y ] and using the Mordell–Lang
condition for n = t + 1 we get k ∈ Zt+1 and h′ ∈ Gt+1 such that (g′, h) ∈
h′ ⊕ (Tk ∩ (G′)t+1). Note that k1 6= 0, because otherwise p(π(g′′), h) = 0 for
every g′′ ∈ G′ and hence p(X1, h) is the zero polynomial. Now it is easy to
see that k1g

′ ∈ G.
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2.2. Smallness revisited. The aim of this subsection is to prove Corol-
lary 2.10 below, which is used in Section 3 in a very essential way. That result
is a consequence of an abstract condition called smallness, which in turn is
satisfied by the groups with the Mordell–Lang property (see Proposition 2.9
below).

Here we define smallness only in the setting of fields; in Section 5, we
define it in a more general setting. First we recall some notations: For a
positive integer l, an l-valued map, denoted as f : X l→ Y , is a map from X
to P(Y ) such that |f(x)| ≤ l for every x ∈ X; and such a map is definable
in a given structure M if its graph

{(x, y) ∈ X × Y : y ∈ f(x)}

is definable in M. For A ⊆ X, we let f(A) :=
⋃
a∈A f(a).

Definition 2.7. Let E be a field. A subset X of Es is called large if
there is a map f : Esn → E definable in the field E such that f(Xn) = E;
otherwise we say that X is small.

Remarks. (1) Smallness is an elementary property of the pair (E,X)
construed as a structure in the language of rings expanded by an s-ary
relation symbol.

(2) If E is an ordered field or is an algebraically closed field, then X is
large if and only if there is a multi-valued map f : Esn l→ E definable in
the field E such that f(X) = E. It is easy to see this when E is an ordered
field, and for algebraically closed fields see Lemma 2.4 in [5] (note that the
definition of large is different in that paper).

We first mention a result that has been neglected in [2]. It must be known
to many people, but we could not find a reference for it anywhere. So we
include a proof as well.

Remember that at the beginning of this section we fixed K to be a
real closed field and G a subgroup of a t-connected one-dimensional group
definable in K with the Mordell–Lang property. Let C = K(

√
−1).

Lemma 2.8. If X ⊆ Ks is small in C, then X is small in K.

Proof. By the first of the remarks above we may assume that K is ℵ0-
saturated. Also by the second remark, it is enough to prove the following:

Claim. Let f : Ks → K be definable in the field K. Then there is a
multi-valued function f̃ : Cs l→ C definable in the field C such that f(α) ∈
f̃(α) for each α ∈ Ks.

Proof of the claim. Suppose that f is definable over B ⊆ K and let
α ∈ Ks. Then f(α) is in the definable closure in K of B ∪ {α}. Hence f(α)
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is in the algebraic closure in C of B∪{α}. Let this be witnessed by a formula
φ(x, y) in the language of rings; that is,

(2.1) C |= φ(α, f(α)) and |{y ∈ C : C |= φ(α, y)}| <∞.
By quantifier elimination for algebraically closed fields, the second part
of (2.1) is expressible by a formula in the language of rings. By satura-
tion of K, there are formulas φ1, . . . , φt in the language of rings such that
for all α ∈ Ks there is i ∈ {1, . . . , t} such that (2.1) holds with φ in place
of φi.

For α ∈ C, let Iα be the set

{i ∈ {1, . . . , t} : |{y ∈ C : C |= φi(α, y)}| <∞}.
Now define a multi-valued function f̃ : Cs → C by

f̃(x) :=
{⋃

i∈Ix{y ∈ C : C |= φi(x, y)} if Ix 6= ∅,
{0} otherwise.

We need the following general model-theoretic fact in the next proposi-
tion.

Fact. A field is interpretable in an abelian group only if it is finite.

Proof. For this, recall the well-known model-theoretic results that every
abelian group is one-based and that a group interpretable in a one-based
structure has an abelian subgroup of finite index (see [13]). Now the fact
follows since SL2(E) does not have an abelian subgroup of finite index for
an infinite field E.

Now we are ready to prove the following.

Proposition 2.9. The group G is small in K.

Proof. By Lemma 2.8, it is enough to show that G is small in the alge-
braically closed field C. For a contradiction let f : Cmn → C be definable in
the field C such that f(Gn) = C. Let R ⊆ C2mn be the equivalence relation
on Cmn defined as follows:

R(x, y) ⇔ f(x) = f(y),

and put RG := R ∩ G2n, which is definable in the group (G,⊕) by Corol-
lary 2.5. Then f gives a bijection between Gn/RG and C, and we carry over
the addition and multiplication on C to Gn/RG using this bijection, which
are interpretable in (G,⊕). This gives an infinite field interpretable in an
abelian group, contradicting the fact above.

A consequence of smallness is the following.

Corollary 2.10. Let f1, . . . , fl : Kmn → K be definable in the ordered
field K. Then K \

⋃l
i=1 fi(G

n) is dense in K.
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Proof. Let f : Kmn → K be the l-valued map taking α ∈ Kmn to the
set {f1(α), . . . , fl(α)}. Assume that a nonempty interval I of K is contained
in f(Gn). Take a function g : K → K definable in the ordered field K that
maps I onto K. Now (g ◦ f)(Gn) = K, contradicting the smallness of G.

3. Model theory. Remember that (A,⊕) is a one-dimensional t-con-
nected group definable in a real closed field K over ∅. As before for another
real closed field E, we let A(E) denote the group definable in E by the
formulas defining A in K. As mentioned above, such a group is abelian,
divisible and has finitely many n-torsion points for every n > 0.

Fix a subgroup Γ of A(R) with the Mordell–Lang property such that
|Γ/nΓ | is finite for every n > 0.

3.1. The theory. Let Lo(P ) be the language Lo of ordered rings ex-
panded by an m-ary relation symbol P (note that m = 2 in the introduc-
tion). Also let Lo(Γ ) be the language Lo augmented by constant symbols
π(γ) for each γ ∈ Γ and let Lo(P ;Γ ) be the language Lo(Γ ) extended by P .
For simplicity of notation we denote Lo(Γ )-structures by (K, (γ)γ∈Γ ), rather
than (K, (π(γ))γ∈Γ ); similarly (K,G, (γ)γ∈Γ ) are Lo(P ;Γ )-structures.

Let T be the Lo(Γ )-theory of (R, (γ)γ∈Γ ) and let T (Γ ) be the Lo(P ;Γ )-
theory extending T whose models are of the form (K,G, (γ)γ∈Γ ) satisfying
the following:

(1) G is a t-dense subgroup of A(K),
(2) for every n > 0 and g ∈ G, if ng ∈ Γ , then g ∈ Γ ,
(3) for every n > 0, |G/nG| = |Γ/nΓ |,
(4) G satisfies the same Mordell–Lang conditions as Γ (see page 20).

Using Proposition 2.5 of [12] once again, we get a finite subset S of A(K)
such that a subset X of A(K) is t-dense if and only if X \ S is dense in
A(K) \ S. Hence condition (1) is first order in the language Lo(P ;Γ ). It is
easy to see that conditions (2) and (3) are also first order in the language
Lo(P ;Γ ); for the last one we fix γ1, . . . , γt ∈ Γn and k1, . . . , kt ∈ Zn for a
given polynomial p ∈ Q[X] such that

V (p) ∩ Γn =
t⋃
i=1

γi ⊕ (Tki
∩ Γn),

and consider the formula

∀x1 · · · ∀xmn
n−1∧
j=0

P (xjm+1, . . . , xjm+m)→
[
p(x1, . . . , xmn) = 0

↔
t∨
i=1

χki
((x1, . . . , xm), . . . , (xmn−m+1, . . . , xmn)) = χki

(γi)
]
.
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Note that if Γ is t-dense in A(R), then (R, Γ ) is a model of T (Γ ). We
proceed to show that T (Γ ) is complete in that case. We achieve that by
constructing a back-and-forth system between models of T (Γ ). The same
back-and-forth system gives that T (Γ ) has quantifier elimination up to for-
mulas of the form

∃y1 · · · ∃ymn
(n−1∧
j=0

P (ymj+1, . . . , ymj+m) ∧ φ(x, y1, . . . , ymn)
)

where x is a tuple of distinct variables and φ is a formula in the language
Lo(Γ ).

In the rest of this section (K,G, (γ)γ∈Γ ) ranges over models of T (Γ ),
and we denote them simply by (K,G).

For k = (k1, . . . , kn) ∈ Zn and e ∈ N, define

Dk,e := χ−1
k (eG) ∩Gn.

Note that Dk,e is a subset of Gn definable in Lo(P ) and that (eG)n ⊆ Dk,e.
Hence Dk,e is of finite index in Gn, as eG is of finite index in G. Thus both
Dk,e and Gn\Dk,e are finite unions of cosets (in Gn) of (eG)n. Using the fact
that eG ∩ e′G = lcm(e, e′)G for e, e′ ∈ N, we get the following consequence.

Lemma 3.1. Let n > 0, k1, . . . , ks ∈ Zn and e1, . . . , et ∈ N. Then every
boolean combination (in Gn) of cosets of Dki,ej

in Gn with i ∈ {1, . . . , s}
and j ∈ {1, . . . , t} is a finite union of cosets of (lG)n, where l is the lowest
common multiple of e1, . . . , et.

Remark. Note that the coset representatives can be chosen from Γn by
axiom (3). Moreover, l in the lemma depends only on e1, . . . , et and not on
G or k1, . . . , ks.

Lemma 3.2. Let γ ∈ A(K)n, k ∈ Zn and e ∈ N. Then γ⊕Dk,e is t-dense
in A(K)n.

Proof. Since G is t-dense in A(K) and multiplication by e is a t-continu-
ous map on A(K), it follows that (eG)n is t-dense in (eA(K))n. Since A(K)n

is divisible, (eG)n is t-dense in A(K)n. Since (eG)n ⊆ Dk,e, we see that
Dk,e is t-dense in A(K)n. Since addition is t-continuous, γ ⊕Dk,e is t-dense
A(K)n.

Recall that a subgroup H of G is called pure if nG ∩H = nH for every
n > 0. For a subset X of G we let 〈X〉G be the subgroup of G generated by
X and we let [X]G be the subgroup of G consisting of g such that ng ∈ 〈X〉G
for some n > 0. When the ambient group G is clear from the context, we
omit G from both of these notations.

We prove some lemmas that will be useful in the rest of the section.
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Lemma 3.3. Let H be a pure subgroup of G containing Γ and let g ∈ G.
Then

(Q(H, g)rc)m ∩G = [H ∪ {g}].
Proof. It is easy to see that [H ∪ {g}] ⊆ (Q(H, g)rc)m ∩ G. Now take

g′ ∈ (Q(H, g)rc)m ∩ G. Since G satisfies the same Mordell–Lang conditions
asH, we can apply Lemma 2.6 to deduce that g and g′ are linearly dependent
modulo H. Thus g′ ∈ [H ∪ {g}].

We can strengthen this lemma as follows.

Lemma 3.4. Let H, g be as in the previous lemma and let X be a subset
of K algebraically independent over π(G). Then

(Q(X,H, g)rc)m ∩G = [H ∪ {g}].
Proof. By the previous lemma, all we need to show is

(3.1) (Q(X,H, g)rc)m ∩G ⊆ (Q(H, g)rc)m ∩G.
Let g′ ∈ (Q(X,H, g)rc)m ∩ G. Let X ′ be a minimal subset of X such that
g′ ∈ (Q(X ′, g,H)rc)m. For a contradiction, suppose that X ′ is nonempty and
let x ∈ X ′. By minimality of X ′, we have g′ /∈ (Q(X ′ \ {x}, H, g)rc)m. But
then the Steinitz Exchange Principle implies that x ∈ Q(X ′ \{x}, H, g, g′)rc.
Since g, g′ ∈ G, we get

x ∈ Q(X ′ \ {x}, G)rc.

This contradicts the assumption that X is algebraically independent over
π(G). Hence X ′ is empty and g′ ∈ (Q(H, g)rc)m ∩G.

Corollary 3.5. Let g ∈ G. If g is Lo(Γ )-∅-definable, then g ∈ Γ .

Proof. Using Lemma 3.3, we have [Γ ] = (Q(Γ )rc)m ∩G. But [Γ ] = Γ by
axiom (2).

Lemma 3.6. Suppose that (K,G) is |Γ |+-saturated. Let S be an Lo(Γ )-
∅-definable subset of A(K) and let D be a t-dense subset of G. Then the
projection π((D \ Γ ) ∩ S) is dense in the interior of π(S).

Proof. Let Y ⊆ A(K) be the finite set of points where the t-topology
does not agree with the induced topology from Km. Hence D \ Y is dense
in A(K) \ Y . By the construction of the t-topology in [12], every point of Y
is Lo(Γ )-∅-definable. Hence G ∩ Y ⊆ Γ by Corollary 3.5.

By o-minimality, π(S) is a finite union of open intervals and points. So
suppose there is g ∈ D such that π(g) is one of these points. This implies
that π(g) is Lo(Γ )-∅-definable, since S is. Then g ∈ Γ by Corollary 3.5.
Hence π((D \ Γ ) ∩ S) is in the interior of π(S).

Since (K,G) is |Γ |+-saturated, π(Γ ) is discrete in K. Because D \ Y is
dense in A(K)\Y and Y ∩D ⊆ Γ , we conclude that π((D \Γ )∩S) is dense
in the interior of π(S).
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3.2. Back-and-forth and completeness. Fix two |Γ |+-saturated
models (K,G) and (K ′, G′) of T (Γ ), and let S be the collection of Lo(P ;Γ )-
isomorphisms

β : (Q(X,H)rc, H)→ (Q(X ′, H ′)rc, H ′)

where H and H ′ are pure subgroups of cardinality at most |Γ | of G and
G′ containing Γ , and X and X ′ are finite subsets of K and K ′ that are
algebraically independent over Q(G) and Q(G′) respectively and β(X) = X ′.

Note that by Lemma 3.4, (Q(X,H)rc, H) and (Q(X ′, H ′)rc, H ′) as above
become Lo(P ;Γ )-substructures of (K,G) and (K ′, G′) respectively. More-
over the map β is a partial elementary map between the ordered fields K
and K ′ (in the language Lo).

Lemma 3.7. The collection S is a back-and-forth system.

Proof. Let β : (Q(X,H)rc, H) → (Q(X ′, H ′)rc, H ′) be in S and take
a ∈ K \Q(X,H)rc. By symmetry it is enough to prove that there is β̃ ∈ S
such that β̃ extends β and a ∈ dom(β̃).

Case 1: a ∈ π(G). Take b ∈ Km−1 such that (a, b) ∈ G. Since G ⊆
A(K) and A(K) is Lo-∅-definable of dimension 1, there is an Lo-∅-definable
function f : K → Km−1 such that b = f(a). Let q(x) be the Lo(P ;Γ )-type
consisting of the Lo-type of a over Q(X,H)rc and for every l ∈ Z, h ∈ H
and s > 0 one of the formulas

l(x, f(x))⊕ h ∈ sG,(3.2)
l(x, f(x))⊕ h /∈ sG,(3.3)

depending on whether l(a, b)⊕ h ∈ sG or not. Further let q′(x) be the type
over Q(X ′, H ′)rc corresponding to q(x) via β. We want to find an a′ ∈ K ′
such that a′ realizes q′(x). By saturation of (K ′, G′), it is enough to show that
every finite subset of q′(x) can be realized in (K ′, G′). By o-minimality of T ,
this reduces to finding a′ ∈ K ′ for every c, d ∈ Q(X,H)rc with c < a < d
and finite collection of formulas φ1, . . . , φn of the form (3.2) or (3.3) with
(K,G) |=

∧n
i=1 φi(a, b) such that

(3.4) (K ′, G′) |= β(c) < a′ < β(d) ∧
n∧
i=1

φi(a′, f(a′)).

By Lemma 3.1 and the remark succeeding it,

D :=
{
g ∈ G′ : (K ′, G′) |=

n∧
i=1

φi(g)
}

is a finite union of cosets of tG′ in G′ for some t ∈ N, and the representatives
of these cosets can be chosen to be in Γ . Then by Lemmas 3.2 and 3.6,
the set π((D \ Γ ) ∩ gr(f)) is dense in the interior of π(A(K ′) ∩ gr(f)).
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Since π(A(K) ∩ gr(f)) is Lo(Γ )-definable and a is in it, we can assume
that the interval (c, d) is a subset of π(A(K) ∩ gr(f)). As β is a partial
Lo-elementary map, it follows that the interval (β(c), β(d)) is a subset of
π(A(K ′)∩gr(f)) and that π((D \Γ )∩gr(f))∩ (β(c), β(d)) is a dense subset
of (β(c), β(d)). Now take any a′ ∈ π((D \ Γ ) ∩ gr(f)) ∩ (β(c), β(d)). This a′

satisfies (3.4). It is clear that [H∪{(a, b)}]G and [H ′∪{(a′, f(a′))}]G′ are pure
subgroups of G and G′ respectively. Let β̃ be the Lo(P ;Γ )-isomorphism that
extends β to Q(X,H, a)rc and maps a to a′. By conditions (3.2) and (3.3),
we deduce that β̃ maps [H ∪ {(a, b)}]G onto [H ′ ∪ {(a′, f(a′))}]G′ . Hence
β̃ is an Lo(P ;Γ )-isomorphism between (Q(X,H, a)rc, [H ∪ {(a, b)}]G) and
(Q(X ′, H ′, a′)rc, [H ′ ∪ {(a′, f(a′))}]G′) and β̃ ∈ S.

Case 2: a ∈ Q(X,G)rc. Let g1, . . . , gn ∈ G be such that a ∈
Q(X, {g1, . . . , gn})rc. By applying the previous case n times, we get a β̃ ∈ S
such that g1, . . . , gn ∈ dom(β̃). Since dom(β̃) is a real closed field, we have
a ∈ dom(β̃).

Case 3: a /∈ Q(X,G)rc. Let C be the cut of a in Q(X,H)rc and let C ′

be the cut in Q(X ′, H ′)rc corresponding to C via β. By saturation, we can
assume that there are c′, d′ ∈ K ′ such that every element in the interval
(c′, d′) realizes the cut C ′. Let u ∈ K |X| be the set X written as a tuple. Let
f1, . . . , fn : Kmt+|X| → K be ∅-definable functions in the language Lo(Γ ).
By Corollary 2.10, there exists b′ ∈ (c′, d′) such that for i = 1, . . . , n and
every tuple g′1, . . . , g

′
t of elements of G′,

fi(g′1, . . . , g
′
t, β(u)) 6= b′.

Thus by saturation, there is an a′ ∈ (c′, d′) such that a′ /∈ Q(X ′, G′)rc. Since
a′ realizes the cut C ′, there is an Lo(Γ )-isomorphism β̃ from Q(X, a,H)rc

to Q(X ′, a′, H ′)rc extending β and sending a to a′. Since a /∈ Q(X,G)rc and
a′ /∈ Q(X ′, G′)rc, using Lemma 3.4 we get

(Q(X, a,H)rc)m ∩G = H and (Q(X ′, a′, H ′)rc)m ∩G′ = H ′.

Since β(H) = H ′ and β̃ extends β, we see that β̃ is an Lo(P ;Γ )-isomorphism
from (Q(X, a,H)rc, H) to (Q(X ′, a′, H ′)rc, H ′) with β̃(X ∪{a}) = X ′∪{a′}.
Thus β̃ ∈ S.

Now the proof of completeness becomes an easy consequence of this
lemma.

Theorem 3.8. Let Γ be t-dense in A(R). Then the theory T (Γ ) is com-
plete.

Proof. Take |Γ |+-saturated models (K,G) and (K ′, G′) of T (Γ ), and let
S be as above. It only remains to show that S is nonempty. But it is easy
to see that the identity map on (Q(Γ )rc, Γ ) belongs to S.
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3.3. Quantifier elimination. Let x = (x1, . . . , xt) be a tuple of distinct
variables. For every Lo(P ;Γ )-formula φ(x) of the form

(3.5) ∃y1 · · · ∃ymn
n∧
j=1

P (ym(j−1)+1, . . . , ymj) ∧ ψ(x, y1, . . . , ymn),

where ψ(x, y) is an Lo(Γ )-formula, let Pφ be a new relation symbol of ar-
ity t, and let Lo(P ;Γ )+ be the language Lo(P ;Γ ) together with the relation
symbols Pφ (for various x).

Let T (Γ )+ be the Lo(P ;Γ )+-theory extending the theory T (Γ ) by an
axiom

∀x(Pφ(x)↔ φ(x)),

for each φ of the form (3.5).
With this notation in hand we are ready to prove the promised quantifier

elimination result.

Theorem 3.9. The theory T (Γ )+ has quantifier elimination.

Proof. Let (K,G) and (K ′, G′) be two |Γ |+-saturated models of T (Γ )+

and let S be the back-and-forth system between (K,G) and (K ′, G′) con-
structed above. Also take a= (a1, . . . , an)∈Kn and b= (b1, . . . , bn)∈ (K ′)n

with the same quantifier-free Lo(P ;Γ )+-type. In order to prove quantifier
elimination, we just need to find β̃ ∈ S sending a to b. Without loss of gen-
erality, we may assume that {a1, . . . , ar} is a transcendence basis of Q(G, a)
over Q(G). Since a and b have the same quantifier-free Lo(P ;Γ )+-type, we
see that {b1, . . . , br} is a transcendence basis of Q(G′, b) over Q(G′). Let β
be the Lo(Γ )-isomorphism between Q(a1, . . . , ar, Γ )rc and Q(b1, . . . , br, Γ )rc

sending a to b. We will now show that β extends to an isomorphism β̃ in the
back-and-forth system S. Let g1, . . . , gt ∈ G be such that ar+1, . . . , an are
in Q(a1, . . . , ar, g1, . . . , gt, Γ )rc. Let q(x1, . . . , xt) be the Lo(P ;Γ )-type con-
sisting of the Lo(Γ )-type of (g1, . . . , gt) over Q(a1, . . . , ar)rc and for every
k1, . . . , kt ∈ Z, s ∈ N and γ ∈ Γ one of the formulas

t∧
i=1

P (xi) ∧
t⊕
i=1

kixi ⊕ γ ∈ sG, or(3.6)

t∧
i=1

P (xi) ∧
t⊕
i=1

kixi ⊕ γ /∈ sG,(3.7)

depending on whether
⊕t

i=1 kigi⊕γ ∈ sG. Let q′ be the type corresponding
to q under β. We want to find h1, . . . , ht ∈ G′ realizing q′. By saturation
of (K ′, G′), it is enough to show that every finite subset of q′ can be real-
ized. So let ψ(x, b1, . . . , br) be an Lo(Γ )-formula in q′ and χ1(x), . . . , χe(x)
be finitely many formulas in q′ of the form (3.6) or (3.7). Put χ =

∧e
i=1 χi.



The real field with rational points 29

By Lemma 3.1, the set
{(h1, . . . , ht) ∈ G′t : (K ′, G′) |= χ(h1, . . . , ht)}

is a finite union of cosets of (lG′)t in (G′)t for some l ∈ N. So the formula
χ(x) is equivalent to an Lo(P ;Γ )-formula of the form (3.5). Hence the dis-
junction ψ∧χ is a quantifier-free Lo(P ;Γ )+-formula. Since (a1, . . . , ar) and
(b1, . . . , br) have the same quantifier-free Lo(P ;Γ )+-type, and

∃x(ψ ∧ χ)(x, a1, . . . , ar)

holds in (K,G), the corresponding formula ∃x(ψ ∧ χ)(x, b1, . . . , br) holds in
(K ′, G′). So q′ is finitely satisfiable. Now let h1, . . . , ht ∈ G′ realize q′. Then
β extends to a field isomorphism

β̃ : Q(a1, . . . , ar, g1, . . . , gt, Γ )rc → Q(b1, . . . , br, h1, . . . , ht, Γ )rc.

By the construction of g1, . . . , gt and h1, . . . , ht, we have
t⊕
i=1

kigi ⊕ γ ∈ sG if and only if
t⊕
i=1

kihi ⊕ β(γ) ∈ sG′

for all k1, . . . , kt ∈ Z, s ∈ N and γ ∈ Γ . Hence β̃ is in S.

3.4. Induced structure. Let (K,G) be a model of T (Γ ). Here we
study the subsets of Gn definable in (K,G).

Let B be a set of parameters such that B \ π(G) is algebraically inde-
pendent over Q(G).

Proposition 3.10. Let X ⊆ Gn be definable in (K,G, (γ)γ∈Γ ) with
parameters from B. Then X is a finite union of sets of the form
(3.8) E ∩ (γ ⊕ (sG)n),
where E is Lo(Γ )-B-definable, γ ∈ Γn, and s ∈ N.

Proof. We may assume that (K,G) is a |Γ |+-saturated model of T (Γ ).
Let S be the back-and-forth system of Lo(P ;Γ )-isomorphisms between
(K,G) and itself constructed above. Let g, h ∈ Gn be such that for ev-
ery E ⊆ Kmn definable in (K, (γ)γ∈Γ ) over B, γ1, . . . , γt ∈ Γn, and s ∈ N
we have that
(3.9) g ∈ E ∩ (γ ⊕ (sG)n)⇔ h ∈ E ∩ (γ ⊕ (sG)n).

Note that by Lemma 3.1, the collection of finite unions of sets of the
form (3.8) is closed under boolean operations. Hence it suffices to show
that there is β ∈ S fixing B and mapping g to h. Since h satisfies all Lo(Γ )-
formulas over B which are satisfied by g, there is an Lo(Γ )-isomorphism from
Q(g,B)rc to Q(h,B)rc fixing B and mapping g to h. To show that β ∈ S,
it is only left to prove that β takes G ∩ (Q(B, g)rc)m to G ∩ (Q(B, h)rc)m.
Using Lemma 3.4 it suffices to show

β([Γ ∪ ((Q(B)rc)m ∩G) ∪ {g}]) = [Γ ∪ ((Q(B)rc)m ∩G) ∪ {h}].
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It is enough to show for all γ ∈ Γn, k ∈ Zn and s ∈ N that

g ∈ γ ⊕Dk,s if and only if h ∈ γ ⊕Dk,s,

since we can choose representatives for cosets of Dk,s in Gn from Γn. By
Lemma 3.1, there are γ1, . . . , γt1 , δ1, . . . , δt2 ∈ Γn such that γ ⊕ Dk,s =⋃t1
i=1 γi ⊕ (sG)n and Gn \ (γ ⊕Dk,s) =

⋃t2
i=1 δi ⊕ (sG)n. We are done since

by assumption g ∈ γ ⊕Dk,s if and only if h ∈ γ ⊕Dk,s.

Corollary 3.11. Let X ⊆ Gn be definable in (K,G, (γ)γ∈Γ ) with pa-
rameters from B. Then the topological closure X of X is definable in
(K, (γ)γ∈Γ ) over B.

Proof. By Lemma 1.3.4 of [4] the topological closure of a set definable
in the ordered field K is again definable in the ordered field K. So it suf-
fices to prove that there is an Lo(Γ )-B-definable set E ⊆ Kmn such that
X is a dense subset of E. We do this by induction on n. The case n = 0 is
trivial. So let n > 0. By Proposition 3.10 we may assume that there exist
an Lo(Γ )-B-definable set E0 and an Lo(P ;Γ )-∅-definable set D0 ⊆ Gn such
that X = E0 ∩ D0. By Lemma 3.2, we can assume that D0 is t-dense in
A(K)n. Since the t-topology and the induced topology from Km coincide
apart from finitely many points, we can even assume that D0 is dense in
a Lo(Γ )-∅-definable S0. By cell decomposition, we can assume that E0 is a
cell and that E0 ⊆ S0 ∩ A(K)n. Hence dimE0 ≤ n. First consider the case
that dimE0 = n. By Lemma 4.1.15 of [4], we can assume that E0 is open
in S0. Since D0 is dense in S0, X is dense in E0. Now consider the case that
dimE0 = s for s < n. We can assume that there is an Lo(Γ )-B-definable
set C ⊆ A(K)s, a projection π : Kmn → Kms and an Lo(Γ )-B-definable
continuous function f such that π(E0) = C and f(C) = E0. Consider the set

V ′ := {(g1, . . . , gs) ∈ Gs ∩ C : f(g1, . . . , gs) ∈ D0}.
By the induction hypothesis, there is an Lo(Γ )-B-definable subset E1 of C
such that V ′ is dense in E1. By continuity of f , the image of V ′ under f
is dense in the image of E1 under f . Set E := f(E1). Since X = f(V ′), we
conclude that X is dense E.

4. Elliptic curves. Fix a, b ∈ Q such that 4a3 + 27b2 6= 0 and let ∆ be
the subset of R2 defined by

{(x, y) ∈ R2 : y2 = x3 + ax+ b}.
Further let (c, d) ∈ Q2 \∆ and define

∆∗ := ∆ ∪ {(c, d)} and ∆∗(Q) := ∆ ∩Q2.

In this section, we show that ∆∗ can be given the structure of a definable
group in R such that ∆∗(Q) becomes a subgroup with the Mordell–Lang
property.
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Let P2(C) denote the complex projective plane and we write its elements
as (α : β : γ). Let E consist of (α : β : γ) ∈ P2(C) such that

β2γ = α3 + aαγ2 + bγ3.

Then E is an elliptic curve and it is well-known that it becomes a group
with a group operation ⊕ given by rational functions over Q and identity
element O := (0 : 1 : 0) (see for instance III.2.3 in [14]). Now ∆∗ can be
mapped injectively into E by

ι : ∆∗ → E , (x, y) 7→
{O if (x, y) = (c, d),

(x : y : 1) otherwise.
We write E(R) for the image of ∆∗ under ι, and E(Q) for the image of ∆∗(Q).

It is easy to see that both E(R) and E(Q) are subgroups of E . Thus the
map ι induces a group structure on ∆∗ and ∆∗(Q) becomes a subgroup
of ∆∗. Since the group structure on E is given by rational functions, the
group structure on ∆∗ is semialgebraic.

The elliptic curve E is a complex Lie group and as such it is isomorphic
to a complex torus C/Λ where Λ ⊆ C is a lattice. This isomorphism uses
the Weierstrass elliptic function ℘ attached to Λ, namely

f : C/Γ → E , z + Λ 7→
{

(℘(z) : ℘′(z) : 1) if z /∈ Λ,
O otherwise.

We also have the quotient map q : C→ C/Γ .
The endomorphism ring of E is either Z or Z[τ ] for some τ ∈ C with τ2

a negative integer. In the second case, we say E has complex multiplication
by τ .

In the case that E does not have complex multiplication, all algebraic
subgroups of En are the kernels of maps of the form

(4.1) (x1, . . . , xn) 7→ k1x1 ⊕ · · · ⊕ knxn : En → E ,
where ki ∈ Z for i = 1, . . . , n.

If the elliptic curve E has complex multiplication by τ , then the situation
is a bit more complicated, because an algebraic subgroup of En is the kernel
of a map of the form

(4.2) (x1, . . . , xn) 7→
n⊕
i=1

(ki + liτ)xi : En → E ,

with ki, li ∈ Z. However, using the following lemma we still have control
over the intersection of these subgroups with E(Q)n.

Lemma 4.1. Let E be an elliptic curve with complex multiplication by τ .
Then the intersection of E(R) with its image under τ is finite.

Proof. In this case E is isomorphic to C/Λ, where Λ = Z+Zτ (see C.11.6
in [14]). Since τ is purely imaginary, the series expansions of ℘ and ℘′ have
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only real coefficients (see Theorem VI.3.5 in [14]). Then f maps the set
[0, 1) + Λ into E(R). Let S be the inverse image of E(R) under f . Being a
one-dimensional group definable in the ordered field R, ∆∗ has finitely many
connected components and so does E(R). Thus S is the image under q of a
finite union of lines in C parallel to the real axis. On C/Λ the endomorphism
of E corresponding to τ is just multiplication by the complex number τ (this
means the map taking x+Λ to τx+Λ; see Theorem VI.4.1 in [14]). Hence τS
is the image under q of a finite union of lines parallel to the imaginary axis.
Therefore the intersection of S and τS is finite and so is the intersection of
E(R) and its image under τ .

The key fact we use is the following special case of Faltings’ Theorem
(see [7]).

Theorem 4.2. Let E be an elliptic curve over Q, and Γ a finitely gener-
ated subgroup of E. Then for every algebraic subset V of En, the set V ∩Γn
is a finite union of cosets of subgroups A∩Γn of Γn, where A is an algebraic
subgroup of En.

Now we are ready to prove that ∆∗(Q) has the Mordell–Lang property.

Proposition 4.3. The group ∆∗(Q) has the Mordell–Lang property.

Proof. It is enough to show that for every algebraic subset V of En the
set V ∩ E(Q)n is a finite union of cosets in E(Q)n of subgroups of E(Q)n

given as the kernels of maps of the form

(x1, . . . , xn) 7→ k1x1 ⊕ · · · ⊕ knxn : E(Q)n → E(Q),

with k1, . . . , kn ∈ Z.
By the Mordell–Weil Theorem, E(Q) is indeed a finitely generated sub-

group of the elliptic curve E . So in the case that E does not have complex
multiplication, Theorem 4.2 gives the desired result directly.

If E has complex multiplication, say by τ , then Lemma 4.1 implies that
the cosets of the intersection of E(Q)n an algebraic subgroup of En given
as the kernel of a map of the form (4.2) is a finite union of cosets of the
intersection of E(Q)n with subgroups given as kernels of maps of the form
(4.1). Hence the result follows again from Theorem 4.2.

Proof of Theorem 1.1. Note that C from the introduction is just ∆∗(Q)
without (c, d) and thus (R, C) and (R, ∆∗(Q)) are quantifier-free interdefin-
able over ∅. Hence it suffices to prove Theorem 1.1 with ∆∗(Q) in place
of C.

If ∆∗(Q) is finite, then Theorem 1.1 is trivial. Hence we may assume
that ∆∗(Q) is infinite. First note that ∆ has either one or two connected
components depending on whether the polynomial p(X) = X3 +aX+ b has
one or three real roots. By the construction in [12, p. 247], the t-topology
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on ∆∗ is given by

{Z ⊆ ∆∗ : g ⊕ Z ∩∆ is open for every g ∈ ∆∗}.
One can easily check that the number of t-connected components of ∆∗

coincides with the number of connected components of ∆. Since ∆∗ can be
embedded into P2(C), ∆∗ is t-compact. Let H be the t-connected component
of ∆∗ containing the identity of the group ∆∗. By [12, Corollary 2.10], H is
definable. Since ∆∗ has at most two t-connected components, the index of
H in ∆∗ is at most 2. Hence H ∩∆∗(Q) is infinite since ∆∗(Q) is infinite.
Since H is t-compact, t-connected and 1-dimensional, H ∩∆∗(Q) is t-dense
in H. Moreover, since H is a subgroup of ∆∗ of finite index, the structures
(R, H ∩∆∗(Q)) and (R, ∆∗(Q)) are existentially interdefinable over ∅. Now
H can be taken as A(R) of the previous section and ∆∗(Q) ∩H as Γ (it is
clear that (∆∗(Q) ∩H)/n(∆∗(Q) ∩H) is finite for every n > 0). Therefore
Theorem 1.1 follows immediately from Theorem 3.9.

Also Theorem 3.8 takes the following form in this setting.

Theorem 4.4. Suppose that ∆∗(Q) is infinite. Let K be a real closed
field and G be a subgroup of ∆∗(K) with a group morphism

δ 7→ δ′ : ∆∗(Q)→ G,

and let ∆′ be the image of ∆∗(Q) under this map. Then

(K,G, (π(δ′))δ∈∆∗(Q)) ≡ (R, ∆∗(Q), (π(δ))δ∈∆∗(Q))

if and only if

• (K, (π(δ′))δ∈∆∗(Q)) ≡ (R, (π(δ))δ∈∆∗(Q)),
• for every n > 0 and g ∈ G we have g ∈ ∆′ whenever ng ∈ ∆′,
• for every n > 0, |G/nG| = |∆′/n∆′|,
• for every t-connected component Y of ∆(R),

∆∗(Q) ∩ Y is dense in Y ⇔ G ∩ Y (K) is dense in Y (K).

• G satisfies the same Mordell–Lang conditions as ∆′.

5. Open core. Here we work in a more general setting than the previ-
ous sections: Let R = (R,<,+, . . .) be an o-minimal expansion of a densely
ordered abelian group in a language L = {<,+, . . .} and let TR be its theory.
We say that a subset D of Rm is small if for every function f : Rmn→R
definable in R and every interval I ⊆ R we have I * f(Dn). Note that
for real closed fields this notion of smallness is equivalent to the notion
defined in Section 2. Now take a small subset G of Rm. Let TR(G) be
the theory of (R, G) in the language L(P ) = L ∪ {P}, where P is a new
m-ary relation symbol. We denote models of TR(G) by (M, P ), where M
is an L-structure. In what follows, we say that a set B is dcl-independent
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over P if for every b ∈ B, the singleton {b} is not definable in M over
π1(P )∪ · · · ∪πm(P )∪B \ {b}. (Here and in the rest of the section we do not
make a distinction between the relation symbol P and its interpretation; also
for a subset A of M , we write A \P rather than A \ (π1(P )∪ · · · ∪ πm(P )).)
For convenience in some of the proofs we also assume that L has two con-
stant symbols c, d. This way we can combine two L-definable functions by
preserving the parameter set as follows: Let f1 : X1 →M and f2 : X2 →M
be two functions definable in M over B. Then the function

f : (X1 × {c}) ∪ (X2 × {d})→M

given by f(x1, c) = f1(x1) and f(x2, d) = f2(x2), is definable inM over the
same parameter set B.

Definition 5.1. Let A = (A,<, . . .) be an ordered structure and let T ′

be its theory.

(i) The open core, denoted by A◦, of A is the the structure (A, (U)),
where U ranges over definable open subsets of An for various n > 0.

(ii) We say that a theory T is an open core of T ′ if for every B′ |= T ′,
there is B |= T such that (B′)◦ is interdefinable with B.

The main result of this section is the following.

Theorem 5.2. Suppose that for every (M, P ) |= TR(G) we have:

(i) every subset of M s definable in (M, P ) is a boolean combination of
subsets of M s defined by

∃y1 · · · ∃ymn
n−1∧
j=0

P (ymj+1, . . . , ymj+m) ∧ φ(x, y1, . . . , ymn),

where x is an s-tuple of distinct variables and φ is an L-M -formula,
(ii) for every parameter set B such that B\P is dcl-independent over P ,

and for every set V ⊆ P s definable in (M, P ) over B, its topological
closure V ⊆Mms is definable in M over B.

Then TR is an open core of TR(G).

On the basis of Theorem 3.9 and Corollary 3.11, this result has the
following consequence.

Corollary 5.3. Let A and Γ be as in Section 3. If Γ is t-dense in
A(R), then RCF is an open core of T (Γ ).

Combining this with the work of the previous section we get Theorem 1.2
in the following form.

Corollary 5.4. The theory of real closed fields is an open core of the
theory of (R, C). In particular every open subset of Rs definable in (R, C) is
definable in the real field.
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We prove Theorem 5.2 using the following special case (precisely when
T is o-minimal) of Theorem 4.14 from [3].

Theorem 5.5. Let T be an o-minimal theory extending the theory of
densely ordered abelian groups and let T ′ ⊇ T . Then the following are equiv-
alent:

• T is an open core of T ′.
• For every A |= T ′, every unary open set definable in A is a finite union

of intervals and every cofinitely continuous unary function definable
in A is definable in the reduct of A to the language of T .

In what follows, we assume that every model (M, P ) of TR(G) satisfies
the conditions (i) and (ii) of Theorem 5.2. We show that such a model
(M, P ) satisfies the second condition of Theorem 5.5.

After extending L by constants, we can assume that

(i′) every L-∅-definable set in M s is a boolean combination of subsets
of M s defined by

∃y1 · · · ∃ymn
n−1∧
j=0

P (ymj+1, . . . , ymj+m) ∧ φ(x, y1, . . . , ymn),

where x is an s-tuple of distinct variables and φ is an L-∅-formula.

In the following, B always refers to a finite parameter set such that B \P is
dcl-independent over P . Indeed any definable set can be defined over such
a B: say X is defined over a finite set A, then choose A0 ⊆ A \ P which is
dcl-independent over P . Then X is definable over a finite subset B of A0∪P
and it is clear that B \ P is dcl-independent over P .

Clearly condition (ii) is equivalent to the following:

(ii′) for every V ⊆ P s definable in (M, P ) over B, there is E ⊆ Mms

definable in M over B such that V is a dense subset of E.

We begin with some technical results.

Lemma 5.6. Let X ⊆ Mmn and f : X → Mk be definable in M over
B and let V ⊆ Pn be definable in (M, P ) over B. Then there is E ⊆Mmn

definable inM over B such that X∩V is a dense subset of E and f(X∩V )
is dense in f(E).

Proof. By o-minimality of M, there are definable subsets X1, . . . , Xl of
X such that X =

⋃l
i=1Xi and f is continuous on Xi for i = 1, . . . , l. Hence

we can assume that f is continuous on X. By (ii′), there is an L-definable
set E such that X ∩V is dense in E. Since f is continuous on X, the image
of X ∩ V is dense in the image of E.
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Lemma 5.7. Let X ⊆Mmn and f1, f2 : X →M be definable in M over
B and let D ⊂ X ∩ Pn be definable in (M, P ) over B. Then the set⋃

d∈D
{a ∈M : f1(d) < a < f2(d)}

is definable in M over B.

Proof. Let f : X → M2 be the function given by x 7→ (f1(x), f2(x)) for
x ∈ X. By Lemma 5.6, there is an L-B-definable set E such that D is dense
in E and f(D) is dense in f(E). Hence⋃

d∈D
{a : f1(d) < a < f2(d)} =

⋃
e∈E
{a : f1(e) < a < f2(e)}.

Now note that the right hand side of the equation is L-B-definable.

Lemma 5.8. Let X ⊆M be L(P )-B-definable. Then X is a finite inter-
section of sets of the form

f1(D1) ∪ (M \ f2(D2)) ∪ Y,
where for i = 1, 2, fi : Mmni → M are L-B-definable functions, Di ⊆ Pni

are L(P )-B-definable and Y ⊆M is L-B-definable.

Proof. By condition (i′) of Theorem 5.2, X is a boolean combination of
sets of the form ⋃

u∈Pn

{a ∈M :M |= φ(a, u)},

where φ is an L-B-formula. By cell decomposition in M applied to φ, we
may assume that X is a boolean combination of sets of the form

{a ∈M : h1(u) < a < h2(u) for some u ∈ C},(5.1)
{a ∈M : f(u) = a for some u ∈ D},(5.2)

where f, h1, h2 : Mmn →M are L-B-definable functions and C,D are L(P )-
B-definable subset of Pn. After writing X in conjunctive normal form we
get X =

⋂
Xi, where Xi is a finite union of sets of the form (5.1) or (5.2)

and of sets whose complements are of of the form (5.1) or (5.2). Using the
observation at the end of the first paragraph of this section, we may even
assume that Xi is of the form

f1(D1) ∪ (M \ f2(D2)) ∪
⋃
j

Yj ∪ (M \ Zj),

where Yj , Zj are of the form (5.1), f1, f2 are L-B-definable functions and
D1, D2 are L(P )-B-definable subsets of Pn. By Lemma 5.7, the set

⋃
j Yj ∪

(M \ Zj) is L-B-definable. Thus each Xi is of the form

f1(D1) ∪ (M \ f2(D2)) ∪ Y,
where Y is an L-B-definable set.
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Remark. By applying this lemma to the complement of X we deduce
that X is a finite union of sets of the form

g1(E1) ∩ (M \ g2(E2)) ∩ Z,
where for i = 1, 2, gi : Mmni → M are L-B-definable functions, Ei ⊆ Pni

are L(P )-B-definable and Z ⊆M is L-B-definable.

Proposition 5.9. Every unary open set definable set in (M, P ) is de-
finable in M.

Proof. Let X be an open subset of M definable in (M, P ), say over B
with B\P dcl-independent over P . By Lemma 5.8, there are sets X1, . . . , Xl

⊆M such that X =
⋂l
i=1Xi and every Xi is of the form

(5.3) f1(D1) ∪ (M \ f2(D2)) ∪ Y,
where f1, f2 are L-B-definable functions, D1, D2 are L(P )-B-definable sub-
sets of Pn and Y is an L-B-definable subset of M . Since X is open,

X =
l⋂

i=1

X̊i,

where X̊i is the interior of Xi. Hence it is only left to show that X̊i is
definable in M. It suffices to show that Xi is the union of a set S with
empty interior and a set V definable in M, because such a V is a finite
union of intervals and points and S contributes only to the frontier of Xi.
Hence the interior of Xi is the interior V .

Therefore, let Xi be of the form (5.3). Consider the set

D := {u ∈ D2 : f2(u) /∈ Y ∪ f1(D1)}.
By Lemma 5.6, there is an L-B-definable set E such that D is dense in E
and f2(D) is dense in f2(E). Hence by (5.3) we get

Xi = f1(D1) ∪ (M \ f2(D2)) ∪ Y
= f1(D1) ∪ (f2(E) \ f2(D)) ∪ (M \ f2(E)) ∪ Y.

By smallness of P , f1(D1) has empty interior. Since f2(D) is dense in f2(E),
the set f2(E) \ f2(D) has empty interior as well. Since f1(D1) ∩ f2(D) is
empty, the intersection f2(E) ∩ f1(D1) is a subset of f2(E) \ f2(D). Hence
f1(D1)∪ (f2(E) \ f2(D)) has empty interior, since f2(E) is a finite union of
intervals and points. Thus Xi is a union of a set with empty interior and a
set definable in M.

Proposition 5.10. Every cofinitely continuous L(P )-definable unary
function is L-definable.

Proof. We may assume that (M, P ) is |L|+-saturated. Let f : M → M
be a cofinitely continuous function which is L(P )-B-definable, where B \ P
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is dcl-independent over P . Take a ∈ M such that ({a} ∪ B) \ P is dcl-
independent over P . Denote the set of such elements by W . Note that W is
L(P )-type-definable, since it is the intersection of all sets of the form

M \ {f(d1, . . . , dn) : d1, . . . , dn ∈ P}

where n ∈ N and f : Mmn →M is an L-∅-definable function. By saturation
and smallness of P , W is dense in M .

First, we will show that f(a) is L-B-definable over a. By the remark
after Lemma 5.8, the singleton set {f(a)} is of the form

f1(D1) ∩ (M \ f2(D2)) ∩ Y,

where f1, f2 are L-(B∪{a})-definable functions, D1, D2 are L(P )-(B∪{a})-
definable subsets of Pn, and Y is an L-(B ∪ {a})-definable subset of M .
Define D to be the set

{u ∈ D1 : f1(u) ∈ Y \ f2(D2)}.

Note that f1(D) = f1(D1) ∩ (M \ f2(D2)) ∩ Y and hence f1(D) = {f(a)}.
By Lemma 5.6, there is an L-(B∪{a})-definable set E such that D is dense
in E and f1(D) is dense in f1(E). Since f1(D) is a singleton, it equals f1(E)
and hence f(a) is L-(B ∪ {a})-definable.

By the compactness theorem, we get finitely many L-B-definable func-
tions h1, . . . , hs such that for every a ∈ W , there is i ∈ {1, . . . , s} with
f(a) = hi(a). Let Z0 be the finite set of points of discontinuity of f . By the
monotonicity theorem for o-minimal structures, there is a finite set Z1 such
that for every c, d ∈ Z1 with (c, d) ∩ Z1 = ∅ and for i, j ∈ {1, . . . , s}, hi, hj
are monotone on (c, d), and either hi and hj are equal on (c, d) or

• hi(x) < hj(x) for every x ∈ (c, d) or
• hi(x) > hj(x) for every x ∈ (c, d).

Hence for c, d ∈ Z0∪Z1 with (c, d)∩ (Z0∪Z1) = ∅, f is continuous on (c, d).
Further W ∩ (c, d) is dense in (c, d) and for every w ∈ W ∩ (c, d) we have
f(w) = hi(w) for some i ∈ {1, . . . , s}. Since f is continuous on (c, d) and all
the hi’s are a positive distance apart, it follows from o-minimality that there
is i ∈ {1, . . . , s} such that f and hi are equal on a dense subset of (c, d) and
hence equal on (c, d). So f is an L-B-definable function.

Now Theorem 5.2 follows directly from Theorem 5.5 in combination with
Propositions 5.9, 5.10.

Remark. As a consequence of Theorem 5.2, we take care of an unfin-
ished business from [9]. Namely we can simplify Theorem 1.3 of that paper
in the case when the predicate is dense by removing the assumption (iii),
since it follows from the first two assumptions using Theorem 5.2.
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Subgroups of the unit circle. Let Γ be a subgroup of the unit circle
S of finite rank. Note that if Γ is finite, then Theorem 1.3 is trivial, so we
assume that it is infinite. Then Γ is t-dense in S and Γ has the Mordell–Lang
property by [11, Theorem 2]. It is also clear that |Γ/Γ [n]| is finite for every
n > 0. Therefore Theorem 1.3 follows from Corollary 5.3.
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