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Minimal sets of non-resonant torus homeomorphisms

by

Ferry Kwakkel (Coventry)

Abstract. As was known to H. Poincaré, an orientation preserving circle homeomor-
phism without periodic points is either minimal or has no dense orbits, and every orbit
accumulates on the unique minimal set. In the first case the minimal set is the circle, in
the latter case a Cantor set. In this paper we study a two-dimensional analogue of this
classical result: we classify the minimal sets of non-resonant torus homeomorphisms, that
is, torus homeomorphisms isotopic to the identity for which the rotation set is a point
with rationally independent irrational coordinates.

1. Introduction and statement of results. Let T1 = R \ Z and
let f : T1 → T1 be an orientation preserving circle homeomorphism. A lift
F : R → R of f satisfies f ◦ p1 = p1 ◦ F , with p1 : R → T1 the canonical
projection. The number

(1.1) ρ(F, x) := lim
n→∞

Fn(x)− x
n

exists for all x ∈ R, is independent of x and well defined up to an integer,
that is, if F and F̂ are two lifts of f then ρ(F ) − ρ(F̂ ) ∈ Z. The number
ρ(f) := ρ(F, x) mod Z is called the rotation number of f , and ρ(f) ∈ Q if and
only if f has periodic points. Denote by rθ : T1 → T1 the rigid rotation of
the circle with rotation number θ. The following classical result classifies the
possible topological dynamics of orientation preserving homeomorphisms of
the circle without periodic points [P1, P2, P3].

Poincaré Classification Theorem. Let f : T1 → T1 be an orienta-
tion preserving homeomorphism such that ρ(f) ∈ R \Q. Then

(i) if f is transitive then f is conjugate to the rigid rotation rρ(f),
(ii) if f is not transitive then f is semi-conjugate to the rotation rρ(f)

via a non-invertible continuous monotone map.

2010 Mathematics Subject Classification: Primary 37B99; Secondary 37B45.
Key words and phrases: topological dynamics, minimal sets, torus homeomorphisms.

DOI: 10.4064/fm211-1-3 [41] c© Instytut Matematyczny PAN, 2011



42 F. Kwakkel

Moreover, f has a unique minimal set M, which is the circle T1 in
case (i) and a Cantor set in case (ii), and M = Ω(f) = ω(x) = α(x)
for all x ∈ T1.

Here, Ω(f) is used to denote the non-wandering set of f and ω(x), α(x)
the omega-limit and alpha-limit sets of f relative to x ∈ T1. Every connected
component I of the complement of the Cantor minimal set is a wandering
interval, i.e. fn(I) ∩ I = ∅ for all n 6= 0. Given a Cantor set in the circle,
there exists a circle homeomorphism with any given irrational rotation num-
ber that has this Cantor set as its minimal set. This fact was first explicitly
mentioned by Denjoy [D], but essentially known already by Bohl [Bo] and
Kneser [Kn]. Denjoy [D] proved that an orientation preserving circle dif-
feomorphism f ∈ Diff2(T1) with irrational rotation number is necessarily
transitive and hence cannot have a wandering interval; see also [H] where
these ideas are further developed.

The key feature of an orientation preserving circle homeomorphism with-
out periodic points is that it has an irrational rotation number which is inde-
pendent of the basepoint, and the rotation with the corresponding rotation
number is minimal. A natural generalization to dimension two is as follows.
Let T2 = R2 \ Z2, where p : R2 → T2 is the canonical projection mapping.
We denote by Homeo(T2) the class of homeomorphisms of the torus and by
Homeo0(T2) ⊂ Homeo(T2) the subclass of homeomorphisms isotopic to the
identity. Given an element f ∈ Homeo0(T2), we denote by F : R2 → R2 a lift
to the cover. Any two different lifts F, F̂ of f differ by an integer translation,
that is, F (z) = F̂ (z) + (n,m) where (n,m) ∈ Z2. Given a lift F and z̃ ∈ R2,
define

ρ(F ) =
∞⋂
m=1

Cl
( ∞⋃
n=m

{
Fn(z̃)− z̃

n

} ∣∣∣∣ z̃ ∈ R2

)
⊂ R2.

The rotation set of f is defined as ρ(f) = ρ(F ) mod Z2. In words, the
rotation set collects all limit points, modulo Z2, of sequences of the form

Fnk(z̃)− z̃
nk

,

where nk → ∞ for k → ∞ and z̃ ∈ R2. The rotation set of a homeomor-
phism f ∈ Homeo0(T2) is in general no longer a single point, but a convex
connected closed set (see [MZ]). We define

(1.2) Homeo∗(T2) ⊂ Homeo0(T2)

to be the class of homeomorphisms isotopic to the identity for which the
rotation set ρ(f) = (α, β) mod Z2 is a single point where the numbers
1, α, β are rationally independent. These homeomorphisms are said to be
non-resonant torus homeomorphisms.
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Generalizations of Poincaré’s Theorem have recently seen much progress
through the work of F. Béguin, S. Crovisier, T. Jäger, G. Keller, F. Le Roux
and J. Stark [Be, JK, JS], where one considers an analogous class of torus
homeomorphisms, namely quasiperiodically forced circle homeomorphisms,
which are torus homeomorphisms of the form (x, θ) 7→ (x+α, gθ(x)) mod Z2,
with (x, θ) ∈ T2, gθ : T1 → T1 circle homeomorphisms and α ∈ R \ Q.
In [Be, JK, JS], the appropriate analogues of the results of Poincaré and
Denjoy in the class of quasiperiodically forced circle homeomorphisms are
developed. Analogues of Poincaré’s Theorem in the setting of conservative
torus homeomorphisms are developed by T. Jäger in [J]. In the setting of
non-resonant homeomorphisms of the two-torus, introducing differentiability
or other geometrical conditions on the homeomorphisms gives rise to ana-
logues of Denjoy’s Theorem; see [No, NV, NS] for results in this direction.

To state our results, we need the following definitions. A connected set
X ⊂ T2 is said to be (un)bounded according to whether a lift X̃ ⊂ R2 is
(un)bounded as a subset of R2, where a lift X̃ of X is a connected component
of p−1(X). A compact and connected set is called a continuum. A continuum
in T2 is called non-separating if its complement in T2 is connected. Given
a bounded continuum C ⊂ T2, we define Fill(C) ⊂ T2, the filled continuum,
to be the smallest (with respect to inclusion) non-separating bounded con-
tinuum containing C. A bounded non-separating continuum in T2 is called
acyclic.

Definition 1 (Extension of a Cantor set). LetM be a minimal set for
f ∈ Homeo∗(T2), and {Λi}i∈I be the collection of connected components
of M. If Fill(Λi) is acyclic for every i ∈ I, Fill(Λi) ∩ Fill(Λj) = ∅ if i 6= j
and there exists a continuous φ : T2 → T2, homotopic to the identity, and
an f̂ ∈ Homeo∗(T2), such that

(i) φ ◦ f = f̂ ◦ φ, i.e. f is semi-conjugate to f̂ ,
(ii) M̂ := φ(Q̂) ⊂ T2 is a Cantor minimal set for f̂ ,

where Q̂ =
⋃
i∈I Fill(Λi), then we say M is an extension of a Cantor set.

Put in words,M is an extension of a Cantor set if the semi-conjugacy φ
between f and f̂ sends the collection of filled in components ofM to points
in a one-to-one fashion, and the corresponding totally disconnected set M̂ is
a Cantor minimal set of the factor f̂ . An extension of a Cantor set is called
non-trivial if there exist components of M that are not singletons.

Further, we define the following. A disk D ⊂ T2 in the torus is an injec-
tion by a homeomorphism of the open unit disk D2 ⊂ R2 into the torus. An
annulus A ⊂ T2 is an injection by a homeomorphism of the open annulus
S1× (0, 1) into the torus; an annulus A is said to be essential if the inclusion
A ↪→ T2 induces an injection of π1(A) into π1(T2).
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Let us now state our main results. Our first result gives a classification
of the possible minimal sets of homeomorphisms in our class Homeo∗(T2).

Theorem A (Classification of minimal sets). Let f ∈ Homeo∗(T2) and
let M be a minimal set for f . Let {Σk}k∈Z be the connected components of
the complement of M in T2. If M 6= T2, then either

(I) {Σk} is a collection of bounded and unbounded disks,
(II) {Σk} is a collection of essential annuli and bounded disks, or

(III) M is an extension of a Cantor set.

We prove this result in Section 2. The proof of Theorem A implies

Corollary 1 (Structure of orbits; types I and II). Let f ∈ Homeo∗(T2)
with a minimal set M of type I or II. Then

(1.3) M = Ω(f) = ω(z) = α(z)

for all z ∈ T2. In particular, M is unique.

In [Be, Thm 1.2], F. Béguin, S. Crovisier, T. Jäger and F. Le Roux con-
struct a counterexample to the conclusion of Corollary 1 in the case where
M is of type III in the setting of quasiperiodically forced circle homeomor-
phisms. Formulated in our terminology, this result reads

Counterexample 2 (Structure of orbits; type III [Be]). There exist
homeomorphisms f ∈ Homeo∗(T2) which have a unique Cantor minimal
set M (and are thus of type III), but are transitive.

In other words, M 6= T2 is the unique Cantor minimal set, but Ω(f)
= T2. Uniqueness of minimal sets of type III homeomorphisms has not yet
been settled: see Question 1 in the final section of this paper. Further, we
have

Corollary 3 (Connected minimal sets). Let f ∈ Homeo∗(T2). If M
6= T2, then M is connected if and only if M is of type I.

To state the third corollary, we need the following. Recall that a null-
sequence is a sequence of positive real numbers for which for every given
ε > 0, only finitely many elements of the sequence are greater than ε.

Definition 2 (Quasi-Sierpiński set). A quasi-Sierpiński set is a contin-
uum S = T2\⋃k∈ZDk with {Dk}k∈Z a family of disks such that

⋃
k∈ZDk

is dense in T2, and

(a) Dk is the interior of a closed embedded disk, for every k ∈ Z,
(b) Cl(Dk) ∩ Cl(Dk′) is at most a single point if k 6= k′,
(c) diam(Dk), k ∈ Z, is a null-sequence.

If property (b) above is replaced by the condition that Cl(Dk)∩Cl(Dk′) = ∅
if k 6= k′, then we refer to S as a Sierpiński set.
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A closed subset of a topological space is locally connected if every of its
points has arbitrarily small connected neighbourhoods. Requiring a minimal
set to be locally connected reduces the list of Theorem A to one type of
non-trivial minimal set.

Corollary 4 (Locally connected minimal sets). Let f ∈ Homeo∗(T2)
and suppose that the minimal set M of f is locally connected. Then either
M = T2 or M is a quasi-Sierpiński set.

This result was (essentially) proved by A. Bís, H. Nakayama and P. Wal-
czak in [B1]. We show how this result, for our class of homeomorphisms, can
be recovered from Theorem A above, and our line of approach is different.
Rather than assuming the minimal set is locally connected from the start as
in [B1], here we show that most of the minimal sets of Theorem A are not
locally connected, ultimately arriving at the only possible locally connected
minimal set, a quasi-Sierpiński set.

Our second result says that the classification of Theorem A is sharp in
the following sense.

Theorem B (Existence of minimal sets). Every type of minimal set
Theorem A allows is realized by homeomorphisms in Homeo∗(T2).

This result is proved by a number of examples constructed in Section 3
below. Let us briefly discuss these. It is well-known there exist homeomor-
phisms f ∈ Homeo∗(T2) for which the minimal set is a Sierpiński set. The
first example given, a locally connected quasi-Sierpiński minimal set that is
not a Sierpiński set, is known [B1]. The examples constructed below are a
minimal set for which the complement is a single unbounded disk (type I),
a minimal set for which the complement components are essential annuli
and bounded disks (type II) and examples of rather exotic non-trivial ex-
tensions of Cantor sets (type III), where the minimal sets constructed are
homeomorphic to Cantor dust interspersed with various continua.

2. Classification of minimal sets. In what follows, let f ∈Homeo∗(T2)
with M a minimal set of f . This section is devoted to the proof of Theo-
rem A.

2.1. Preliminary results. We first set notation and recollect several
basic results to be used in the remainder of this paper.

Let us first recall the following. A vector (α, β) ∈ R2 is irrational if the
numbers 1, α, β are rationally independent, that is, the only solution over
the integers of

(2.1) N1 +N2α+N3β = 0
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is N1 = N2 = N3 = 0. The translation τ : T2 → T2 corresponding to (α, β),

(2.2) τ : (x, y) 7→ (x+ α, y + β) mod Z2,

is minimal if and only if the vector (α, β) is irrational. The class of homeo-
morphisms of the torus T2 isotopic to the identity with rotation set consist-
ing of a single irrational vector will be denoted by Homeo∗(T2). It is easy
to see that a homeomorphism f ∈ Homeo∗(T2) has no periodic points.

Lemma 5. Let f ∈ Homeo∗(T2). If X ⊂ T2 is a bounded connected set,
then fn(X) 6= X for all n 6= 0.

Proof. If X ⊂ T2 is bounded and fN (X) = X for some N 6= 0, we can
take a lift F of f and a lift X̃ of X such that FN (X̃) = X̃. Let z̃ ∈ X̃. As X̃
is bounded, we must have ρ(F, z̃) = (0, 0) and thus ρ(f, z) = (0, 0) mod Z2,
where z = p(z̃), contrary to our assumption on the rotation set.

In other words, if X ⊂ T2 is a connected and f -invariant set, then X is
necessarily unbounded. In what follows, let

(2.3) Tp,q : R2 → R2, Tp,q(x, y) = (x+ p, y + q),

where (p, q) ∈ Z2.

Lemma 6. Let f ∈ Homeo∗(T2) and F a lift of f . Let D ⊂ R2 be a
closed topological disk. Then there exist no N 6= 0 and (p, q) ∈ Z2 such that

FN (D) ⊆ Tp,q(D) or Tp,q(D) ⊆ FN (D).

Proof. Suppose that there exist N 6= 0 and (p, q) ∈ Z2 such that FN (D)
⊆ Tp,q(D). Choosing a different lift F̂ if necessary, we may assume that
F̂N (D) ⊆ D. By the Brouwer Fixed Point Theorem, F̂N has a fixed point
on D, and thus f has a periodic point, contrary to our assumptions. The
case where Tp,q(D) ⊆ FN (D) follows by considering the inverse F−1.

Next, we turn to the topology of domains in the torus. In the subsequent
proof, the various topological types of domains on the torus play an impor-
tant role. In what follows, a domain is an open connected set. Let γ ⊂ T2

be an essential simple closed curve. We say the curve γ has homotopy type
(p, q) if γ lifts to a curve γ̃ ⊂ R2 such that, up to a suitable translation, γ̃
connects the lattice points (0, 0) ∈ Z2 and (p, q) ∈ Z2 with p and q coprime.
Then γ̃ is periodic in the sense that

(2.4) γ̃ =
⋃
n∈Z

Tnp,q(η),

where η ⊂ γ̃ is the arc connecting (0, 0) and (p, q). Let D ⊂ T2 be a domain.
The inclusion D ↪→ T2 naturally induces an injection of π1(D) into π1(T2).
This gives rise to the following.
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Definition 3 (Types of domains). A domain D ⊂ T2 is said to be
trivial, essential or doubly essential according to whether the inclusion of
π1(D) into π1(T2) is isomorphic to 0,Z or Z2 respectively.

Definition 4. An essential domain D ⊂ T2 has characteristic (p, q) if
an essential closed curve γ ⊂ D has homotopy type (p, q).

Note that Definition 4 is correct, in the sense that any other essential
simple closed curve in D must have the same homotopy type (as otherwise
the domain D would be doubly essential). The following lemma relates the
notion of a trivial and essential domain to that of a disk and essential annulus
in the torus respectively.

Lemma 7. A domain D ⊂ T2 such that D̃ is simply connected is trivial
(resp. essential) if and only if it is a disk (resp. essential annulus) in the
torus.

Proof. As the “if” part is evident, we need only prove the “only if” part.
First suppose that D is trivial and let D̃ be a lift of D. By the Riemann
mapping theorem, there exists a biholomorphism φ : D2 → D̃, where D2

⊂ R2 is the unit (Poincaré) disk. As D is trivial, no two points in D̃ are
identified under the action of the translation group Z2 ⊂ R2 and thus p| eD is
injective, where p : R2 → T2 is the projection mapping. Therefore, the map
p ◦ φ : D2 → T2 satisfies p ◦ φ(D2) = D, and thus D ⊂ T2 is a disk.

Next, suppose that D is essential. Then there exists a unique pair (p, q)
∈ Z2 with gcd(p, q) = 1 such that the translation Tp,q leaves D̃ invariant,
i.e. Tp,q(D̃) = D̃. Further, as D̃ is simply connected, again by the Riemann
mapping theorem, there exists a biholomorphism φ : D2 → D̃. As Tp,q :
D̃ → D̃ is a biholomorphism, the map

µ : D2 → D2, µ = φ−1 ◦ Tp,q ◦ φ,
is itself a biholomorphism and thus a Möbius transformation. Moreover, as
Tp,q does not fix any point in D̃, µ does not fix any point in D2 and thus µ
is either a hyperbolic or a parabolic Möbius transformation.

As is well known, D2 \ 〈µ〉 is conformally equivalent to an annulus if µ is
hyperbolic, and conformally equivalent to the once punctured disk D2 \ {0}
if µ is parabolic (see e.g. [Ab]). Thus both are topologically equivalent to an
annulus S1 × (0, 1), therefore so is D̃ \ 〈Tp,q〉. As D̃ admits no translations
other than (multiples of) Tp,q that leave D̃ invariant, the continuous projec-
tion p restricted to D̃ \ 〈Tp,q〉 into the torus T2 is an injection and thus D is
indeed topologically equivalent to the annulus S1 × (0, 1).

We recall some standard results from decomposition theory, to be used
in the proof of Theorem A. In the following statements, let M be a closed
surface.
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Definition 5. A collection U = {Ui}i∈I of continua in a surface M is
said to be upper semicontinuous if the following holds:

(1) If Ui,Uj ∈ U , then Ui ∩ Uj = ∅.
(2) Each Ui is non-separating.
(3) M =

⋃
i∈I Ui.

(4) If Uik with k ∈ N is a sequence that has the Hausdorff limit C, then
there exists Uj ∈ U such that C ⊂ Uj .

In a compact metric space, every Hausdorff limit of continua is again
a continuum. We have the following classical result (see for example [W]
or [Da]).

Moore’s Theorem. Let U be an upper semicontinuous decomposition
of M so that every element of U is acyclic. Then there is a continuous map
φ : M →M that is homotopic to the identity and such that for every z ∈M ,
φ−1(z) = Ui for some Ui ∈ U .

The following is a corollary of Moore’s Theorem (see also [Br]). We give
a proof here for the convenience of the reader.

Lemma 8. Given an upper semicontinuous decomposition U of T2 into
acyclic elements and an f ∈ Homeo0(T2) that sends elements of U onto
elements of U . Then the map f̂ : T2 → T2 defined by φ ◦ f(z) = f̂ ◦φ(z), for
every z ∈ T2, is an element of Homeo0(T2). In other words, f is semicon-
jugate to f̂ through φ.

Proof. The map φ : T2 → T2 given by Moore’s Theorem, sending ele-
ments of U to points, is continuous. The map f̂ , where φ ◦ f(z) = f̂ ◦ φ(z),
is one-to-one as f sends elements of U onto elements of U . To prove that
f̂ is continuous, we observe that, whenever C ⊂ T2 is closed, so are C′ =
(φ◦f)−1(C) and C′′ = φ(C′), since φ and f are continuous and T2 is compact.
Since C′′ = f̂−1(C), this shows that f̂ is continuous and hence a homeomor-
phism, again by compactness of T2.

2.2. Topology of the domains Σk. In what follows, letΣ = Σk be any
element of {Σk}, the collection of connected components of the complement
of M, a minimal set of an element f ∈ Homeo∗(T2). Further, let d̃(·, ·) be
the standard Euclidean metric on R2, and d(·, ·) the (induced) metric on T2.

Lemma 9. If fn(Σ) ∩ Σ = ∅ for all n 6= 0, then Σ is a disk or an
essential annulus.

Proof. First, suppose that Σ is doubly essential and let γ, γ′ ⊂ Σ be
two non-homotopic essential simple closed curves. As f is homotopic to
the identity, the homotopy classes of f(γ) and γ are equal. As any two
non-homotopic simple closed curves on the torus intersect, it follows that
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f(γ) ∩ γ′ 6= ∅. Therefore f(Σ) ∩ Σ 6= ∅ and thus Σ has to be either trivial
or essential.

Thus let Σ be a trivial or essential domain and let Σ̃ be a lift of Σ.
In order to show that Σ is a disk or an essential annulus respectively, by
Lemma 7 it suffices to show that Σ̃ is simply connected. Suppose it is not.
Then there exists a simple closed curve γ ⊂ Σ̃ such that the open disk Dγ

with boundary curve γ has the property that

(2.5) Dγ ∩ p−1(M) 6= ∅.
Let F be a lift of f . As every point in M is recurrent, there exists a sub-
sequence nk such that fnk(z) → z for k → ∞. Therefore, by passing to a
subsequence if necessary, we may assume that for all k ≥ 1,

(2.6) Fnk(Dγ) ∩ Tpk,qk(Dγ) 6= ∅
for certain (pk, qk) ∈ Z2. Given (2.6), there are two possibilities. For a given
k ≥ 1, we have either

(a) Fnk(Dγ) ⊂ Tpk,qk(Dγ) or Tpk,qk(Dγ) ⊂ Fnk(Dγ), or
(b) Fnk(γ) ∩ Tpk,qk(γ) 6= ∅.

Case (a) can be excluded as, by Lemma 6, this yields periodic points for f .
Furthermore, case (b) is ruled out as this implies that

(2.7) Fnk(Σ̃) ∩ Tpk,qk(Σ̃) 6= ∅,
implying that fnk(Σ) ∩ Σ 6= ∅, contrary to our assumption. Therefore, Σ̃
must be simply connected indeed.

In what follows, a fundamental domain of T2 is defined as the standard
square [0, 1]× [0, 1] ⊂ R2 and the integer translates thereof.

Lemma 10. If Σ is trivial, then Σ is a disk. Moreover, if Σ is bounded,
then fn(Σ) ∩Σ = ∅ for all n 6= 0.

Proof. Because M is invariant, we have either (a) fn(Σ) ∩ Σ = ∅ for
all n 6= 0, or (b) fN (Σ) = Σ for some N 6= 0. In case (a), Σ is a disk by
Lemma 9. In case (b), Lemma 5 implies that Σ is necessarily unbounded.

Thus we need to show that for unbounded Σ, the set Σ̃ is simply con-
nected if fN (Σ) = Σ for some N 6= 0. We may as well assume that N = 1.
Take a lift F of f such that F (Σ̃) = Σ̃. If Σ̃ is not simply connected, then
there exists a simple closed curve γ ⊂ Σ̃ such that the disk Dγ ⊂ R2 with
boundary curve γ has the property that Dγ ∩ p−1(M) 6= ∅. Similarly to
Lemma 9, there exists a subsequence nk such that, for k ≥ 1,

(2.8) Fnk(Dγ) ∩ Tpk,qk(Dγ) 6= ∅
for certain (pk, qk) ∈ Z2. As

ρ(f) = ρ(f, z) = (α, β) mod Z2 6= (0, 0) mod Z2
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for every z ∈ T2, it follows that d̃(Fnk(z̃), z̃) → ∞ for k → ∞. In partic-
ular, passing to a subsequence once again, we may assume that Fnk(z̃) is
contained in a fundamental domain different from that of z̃, for all k ≥ 1.
Condition (2.8) gives again the two possiblities (a) and (b) of Lemma 9, and
we can exclude case (a) as this would yield periodic points for f . Therefore,
for all k ≥ 1, (2.8) reduces to the condition that

(2.9) Fnk(γ) ∩ Tpk,qk(γ) 6= ∅
for some (pk, qk) ∈ Z2. Thus for every k ≥ 1,

(i) Fnk(γ) ∩ Tpk,qk(γ) 6= ∅,
(ii) Fnk(γ) lies in a fundamental domain different from that of γ,

(iii) Fnk(γ) ⊂ Σ̃.

Condition (iii) follows simply from the fact that Σ̃ is F -invariant and γ ⊂ Σ̃.
Fix any k ≥ 1, choose w̃ ∈ Fnk(γ)∩Tpk,qk(γ) and let w̃′ = T−1

pk,qk
(w̃) ∈ γ. As

Σ̃ is a domain, it is path-connected and thus there exists an arc η ⊂ Σ̃ con-
necting w̃ and w̃′. As these endpoints lie in different fundamental domains
of T2, η projects under p to an essential closed curve, as its endpoints differ
by an integer translate. However, this contradicts our assumption that Σ is
trivial (and thus does not contain any essential simple closed curves). This
contradiction shows that Σ̃ must be simply connected, and this completes
the proof.

Using the irrationality of the rotation vector (α, β), we now deduce the
following.

Lemma 11. If Σ is essential, then Σ is an essential annulus and fn(Σ)∩
Σ = ∅ for all n 6= 0.

Proof. It suffices to show that if Σ is essential, then fn(Σ) ∩Σ 6= ∅ for
all n 6= 0. It then follows from Lemma 9 that Σ is an essential annulus.
Assume that Σ has characteristic (p, q). We will show that, by our choice of
translation number, fN cannot fix an essential domain, for any N 6= 0. To
derive a contradiction, suppose there exists an N 6= 0 such that fN (Σ) = Σ.
We may assume that N = 1, i.e. f(Σ) = Σ. Let γ ⊂ Σ be an essential simple
closed curve and let γ̃ be a lift of γ. We may assume that γ̃ passes through
(0, 0) ∈ R2, and by definition it also passes through (p, q) ∈ R2, where
p, q ∈ Z and gcd(p, q) = 1. The arc η ⊂ γ̃ connecting (0, 0) and (p, q) is
compact and therefore bounded. Therefore, the curve γ̃ divides R2 into two
unbounded connected componentsHl andHr, homeomorphic to half-planes,
so that R2 \ γ̃ = Hl ∪Hr and Hl ∩Hr = ∅. Further, as γ is a simple closed
curve, any integer translate γ̃′ = Tp′,q′(γ̃), where (p′, q′) is not an integer
multiple of (p, q), has the property that γ̃′∩ γ̃ = ∅. This follows from the fact
thatΣ is essential, but not doubly essential; if γ̃′ 6= γ̃, then there exists an arc
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ζ ⊂ Σ̃ connecting (0, 0) to a point (p′, q′) = Tp′,q′(0, 0) which is not a multiple
of (p, q); the projection of ζ under p would then lie in a homotopy class
other than that of γ, implying that Σ would be doubly essential, contrary
to our assumption. Therefore, we can choose integer translates γ̃l and γ̃r of
γ̃ contained in Hl and Hr respectively and we can define Γ ⊂ R2 to be the
infinite strip bounded by γ̃l ∪ γ̃r.

We claim that Σ̃ ⊂ Γ . Indeed, if Σ̃ ∩ Γ c 6= ∅, where Γ c := R2 \ Γ , then
Σ̃ ∩ (γ̃l ∪ γ̃r) 6= ∅. Suppose that Σ̃ ∩ γ̃l 6= ∅. The case where Σ̃ ∩ γ̃r 6= ∅ (or
both) is similar. Let z̃′ ∈ Σ̃ ∩ γ̃l. Because γ̃ ⊂ Σ̃ and Σ̃ is path-connected,
there exists an arc ζ ⊂ Σ̃ connecting z̃′ to a point z̃ ∈ γ̃ such that z =
p(z̃′) = p(z̃). As the arc ζ connects two lattice points whose projection lies
in a homotopy class different from γ, this would imply that Σ is doubly
essential, contrary to our assumption. Thus Σ̃ ⊂ Γ .

To finish the proof, choose a lift F of f such that F (Σ̃) = Σ̃. As Γ is
invariant under the translation Tp,q, and Σ̃ ⊂ Γ , we must have

(2.10) ρ(F, z̃) = lim
n→∞

Fn(z̃)− z̃
n

= (a, b), where
b

a
=
q

p
,

for every z̃ ∈ Σ̃. As (a, b) = (α+ s, β + t) for certain s, t ∈ Z and α, β /∈ Q,
we see that a = α+ s 6= 0 and b = β + t 6= 0, and we obtain

(2.11)
α+ s

β + t
=
a

b
=
p

q
.

Rewriting (2.11) gives

qα− pβ − (qs− pt) = 0.

As p, q, qs − pt ∈ Z, with (p, q) 6= (0, 0), this gives a non-trivial solution
of (2.1), which contradicts the irrationality of (α, β).

The following lemma shows that not all combinations of types of domains
can occur.

Lemma 12. The collection {Σk} cannot contain both an essential annu-
lus and an unbounded disk.

Proof. Suppose, to derive a contradiction, that {Σk} contains both an
essential annulus and an unbounded disk. By Lemma 11, {Σk} contains
infinitely many essential annuli; denote these by {Σa

k}. Note further that,
as all these annuli are disjoint, they all have the same characteristic, which
we assume to be (0, 1); the proof in the case of any other characteristic
is entirely similar. Denote by Σ an element of {Σk} homeomorphic to an
unbounded disk.

Let Σ̃ ⊂ R2 and Σ̃a
k ⊂ R2 be lifts of Σ and Σa

k respectively. Take z̃ ∈ Σ̃
and let `ez be the horizontal (Euclidean) line through z̃. Let I ⊂ `ez ∩ Σ̃ be
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the connected component containing z̃. As the line `ez is horizontal and the
characteristic of the essential annuli Σa

k is (0, 1), the length of the interval
I is finite. Indeed, as the characteristic of the annuli is (0, 1), curves in
these annuli lift to curves in R2 which are homotopic, and therefore within
uniformly bounded distance of genuinely vertical Euclidean lines. As the
length of a horizontal line segment disjoint from the genuinely Euclidean
vertical curves is at most 1 by periodicity, the length of I has to be finite, as
a homotopy moves points a uniformly bounded distance. Let z̃−, z̃+ ∈ ∂I be
the left and right endpoints of the interval I respectively. As z̃−, z̃+ ∈ ∂Σ̃,

(2.12) z± := p(z̃±) ∈ ∂Σ ⊂M.

Define I±1 = T±1
0,1 (I). Let γk ⊂ Σa

k be a simple closed curve and γ̃k a lift
of γk. Certainly, γ̃k ∩ Tn0,1(I) for all n ∈ Z. As every orbit in M is dense,
we can take a point z′ ∈ ∂Σa

k , for some k ∈ Z, and find subsequences
kt and k′t such that fkt(z′) → z+ and fk

′
t(z′) → z− for t → ∞. After

appropriately labelling the annuli if necessary, we find points zkt ∈ γkt ⊂ Σa
kt

and zk′t ∈ γk′t ⊂ Σa
k′t

such that zkt → z+ and zk′t → z− for t → ∞. Thus
we can find lifts γ̃kt and γ̃k′t and points z̃kt ∈ γ̃kt and z̃k′t ∈ γ̃k′t such that
z̃kt → z̃+ and z̃k′t → z̃− for t → ∞. As the curves γ̃kt , γ̃k′t are periodic (in
the sense of (2.4)), they define an infinite strip Γt that contains the line
segments Tn0,1(I) for all n ∈ Z. Further, after a relabelling if neccesary, we
may assume that Γt′ ⊂ Γt if t′ > t. We now see that Σ̃ ⊂ Γt for every t ≥ 1
and I ⊂ Σ̃.

By periodicity, T±1
0,1 (z̃kt) and T±1

0,1 (z̃k′t) limit to T±1(z̃+) and T±1(z̃−)
respectively. Therefore, as Σ̃ is unbounded, we must have either Σ̃ ∩T0,1(I)
6= ∅ or Σ̃ ∩T−1

0,1 (I) 6= ∅, or both. As Σ̃ is path-connected, we can find an arc
η ⊂ Σ̃ that projects under p to an essential closed curve γ ⊂ Σ, which is the
desired contradiction: Σ is a disk and thus does not contain any essential
closed curves.

We recall that a Cantor set can be characterized topologically as being
compact, perfect and totally disconnected.

Lemma 13. If Σ is doubly essential, thenM is an extension of a Cantor
set.

Proof. Denote by {Λi}i∈I the collection of connected components ofM.
Because Σ is doubly essential, f(Σ)∩Σ 6= ∅, hence f(Σ) = Σ. As f(Σ) = Σ,
we have f(∂Σ) = ∂Σ. Further, as ∂Σ ⊂ M and ∂Σ is closed, ∂Σ = M
by minimality of M. Let Λ := Λi for some i ∈ I. As Λ is closed in M and
M is closed in T2, Λ is closed, and thus compact, in T2. Therefore, Λ is a
continuum. Further, as M is nowhere dense (as M 6= T2), it follows that Λ
is nowhere dense.
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We need to show that a lift Λ̃ of Λ is bounded. As Σ is doubly essential,
there exist two non-homotopic essential simple closed curves γ, γ′ ⊂ Σ. As
these curves are non-homotopic, their respective lifts γ̃, γ̃′ ⊂ Σ̃ and the
integer translates of these lifts tile R2 into bounded disks. As Λ̃ ∩ Σ̃ = ∅, it
follows that Λ̃ has to be contained in one of these bounded disks, implying
Λ̃ itself is bounded.

As Λ is a connected component of M, we must have either fn(Λ) ∩ Λ
= ∅ for all n 6= 0, or fN (Λ) = Λ for some finite N 6= 0. However, the
latter is excluded by Lemma 5 as Λ is bounded, and thus fn(Λ)∩Λ = ∅ for
all n 6= 0. As Λ is a bounded continuum, T2 \ Λ has a unique unbounded
component and all the other components are bounded disks. Let D be one
such disk. Then Σ is contained in the unbounded component: indeed, other-
wise we can take a point z ∈ D ∩ Σ and an essential simple closed curve
γ ⊂ Σ passing through z; as M ∩ Σ = ∅ and z ∈ D, this implies that
γ ⊂ D, contradicting that D is a disk. We thus conclude that D ∩ Σ = ∅.
Further, if D ∩M 6= ∅, then Σ ∩D 6= ∅ as ∂Σ =M, which contradicts our
earlier conclusion. In other words, to a component Λ, we can uniquely adjoin
the open disks which, apart from the unique doubly essential component
containing Σ, form the connected components of T2 \ Λ. This proves that
Fill(Λi) ∩ Fill(Λj) = ∅ if i 6= j, with Fill(Λi) a bounded non-separating
continuum, for every i ∈ I.

Let again Λi be any component of M and define Q̂ =
⋃
i∈I Fill(Λi).

Define the decomposition U of T2 into the continua {Fill(Λi)}i∈I and sin-
gletons in the complement of these continua. In order to show thatM is an
extension of a Cantor set, we first show that the decomposition U is upper
semicontinuous. By Moore’s Theorem, this implies there exists a continu-
ous φ : T2 → T2 such that φ−1(z) = Uj for every z ∈ T2. We have already
shown that the decomposition U satisfies conditions (1)–(3) of Definition 5.
To prove it satisfies condition (4), we need to show that if a sequence of con-
tinua Ujk , with k ∈ Z, has Hausdorff limit C, then C ⊂ Uj for some j ∈ J .
This being obvious if C is a singleton, assume C is a non-trivial continuum.
Note that every non-degenerate element Ujk ∈ U has ∂Ujk ⊂ ∂Σ =M. Fur-
ther, without loss of generality, we may assume that no ∂Ujk is a singleton
and that they are mutually disjoint.

We first claim that the interior of C has to be empty. Indeed, if not,
there would exist a subsequence of elements for which the largest open disk
contained in the interior of Ujk would be bounded from below, contradicting
that the torus is compact and the elements mutually disjoint. Therefore, as
∂Ujk ⊂ M, every point of the Hausdorff limit C is the limit point of a se-
quence of points ofM. AsM is closed, this implies C is itself contained inM.
In particular, as C is connected, C is contained in a connected component of
M, i.e. C ⊂ Λi ⊂ Uj for some j ∈ J . So U is upper semicontinuous indeed.



54 F. Kwakkel

We have already shown that all non-trivial elements of U are non-separating
and bounded, and thus acyclic.

Thus, by Moore’s Theorem, there exists a continuous φ : T2 → T2, homo-
topic to the identity, such that for every z ∈ T2, φ−1(z) is a unique element
of U . By Lemma 8, as U is upper semicontinuous and f sends elements of
U into elements of U , the mapping f̂ defined by φ ◦ f = f̂ ◦ φ is an ele-
ment of Homeo0(T2). By a standard argument, ρ(f) = ρ(f̂) mod Z2, thus
f̂ ∈ Homeo∗(T2). This proves condition (i) of Definition 1.

To prove condition (ii) of Definition 1, we need to show that M̂ :=
φ(Q̂) ⊂ T2 is a Cantor minimal set for f̂ . AsM is a minimal set for f , M̂ is
a minimal set for f̂ . Further, as M̂ is totally disconnected by construction,
it suffices to show that it is compact and perfect. First, Q̂ is compact as the
complement Σ is open. Because φ is continuous, M̂ is compact. To show
M̂ is perfect, we observe that, because Fill(Λi) ∩ Fill(Λj) = ∅ if i 6= j, no
element Fill(Λi) is isolated, as this would imply that a component Λi is
isolated. Therefore, by continuity of φ, no point of M̂ is isolated, and thus
M̂ is perfect.

2.3. Proof of Theorem A and its corollaries

Proof of Theorem A. To show that the minimal set M of f is either of
type I, II or III as given above, assume that M 6= T2 and let {Σk} be the
collection of connected components of the complement of M. If no element
of {Σk} is doubly essential, then Σk is either trivial or essential, for all
k ∈ Z. By Lemmas 10 and 11, {Σk} are all disks and/or essential annuli;
however, by Lemma 12, {Σk} cannot both contain an essential annulus and
an unbounded disk. In case no element Σk is essential, we have a type I
minimal set. In case at least one, and therefore infinitely many, connected
components are essential, we have a type II minimal set. If for some k, Σk
is doubly essential, then M is an extension of a Cantor set by Lemma 13
and these correspond to type III minimal sets. This concludes the proof.

Proof of Corollary 1. Let M be a minimal set of f of type I. It suffices
to show that M = Ω(f). Indeed, if this is shown, then by minimality of M
and the inclusions α(z), ω(z) ⊆ Ω(f), with ω(z), α(z) closed and f -invariant
sets for every z ∈ T2, we obtain (1.3). Uniqueness then also follows, as any
other minimal set M′ of f has to be contained in the complement of Ω(f),
which is clearly impossible: if z ∈ M′ then z would be both recurrent and
wandering, which are incompatible conditions to hold simultaneously.

First, suppose that M is of type I. Fix a component Σ := Σk. Then
Σ is a disk. If Σ is bounded, then by Lemma 10 we have fn(Σ) ∩ Σ = ∅
for all n 6= 0, and thus Σ ∩ Ω(f) = ∅. So it remains to consider the case
where Σ is an unbounded disk. We may assume that there exists an N 6= 0
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such that fN (Σ) = Σ, as otherwise we are done by the previous argument.
A straightforward modification of the argument of Lemma 10 shows that
Ω(f) ∩ Σ = ∅ in this case as well. Finally, if M is of type II, then all
elements of {Σk} are essential annuli or bounded disks. We need only show
that if Σk is an essential annulus, then Ω(f) ∩ Σk = ∅. This follows from
Lemma 11 stating that fn(Σk) ∩Σk = ∅ for all n 6= 0, and this finishes the
proof.

Proof of Corollary 3. First, it is readily verified that no minimal set of
type II or III is connected. Conversely, let M be of type I, so that Σk is an
open topological disk for every k ∈ Z. In each disk Σk, we can find a sequence
Dt
k of nested disks, i.e. Dt

k ⊂ Dt+1
k , embedded in Σk, such that Cl(Dt

k) is a
closed disk and

⋃
t≥1D

t
k = Σk. We can accomplish this by uniformizing each

disk Σk to the unit disk D2, taking nested such disks centred at the origin
in D2, and pulling these back to Σk. Define Γt = T2 \ ⋃k∈ZD

t
k. We claim

that Γt is connected. Indeed, define the compact sets Γ st = T2 \⋃s
k=−sD

t
k.

Clearly, Γ st , as the torus with finitely many disjoint disks whose closures are
disjoint deleted, is connected. As Γ s+1

t ⊂ Γ st , we see that Γt =
⋂
s≥1 Γ

s
t is

connected as well. By the same token, as Γt+1 ⊂ Γt with Γt compact and
connected for every t ≥ 1, we conclude that M =

⋂
t≥1 Γt is connected.

Sketch of the proof of Corollary 4. First, it is not difficult to show that a
locally connected minimal setM has to be of type I and that the collection
{Σk} cannot contain an unbounded disk. By the same arguments as in [B1,
Lemma 7], one can now show that diam(Σk) is a null-sequence. Further, as
no minimal set of a homeomorphism of a compact metric space can have
cut points by [B1, Lemma 2], it follows from e.g. [Ku, Thm. 61-4] that Σk
is the interior of a closed embedded disk.

To show that Cl(Σk) ∩ Cl(Σk′) consists of at most one point if k 6= k′,
we reason as follows. Denote Σ = Σk and Σ′ = Σk′ and let γ = ∂Σ and
γ′ = ∂Σ′, both simple closed (trivial) curves. Assume, to the contrary, that
γ ∩ γ′ contains at least two points z1, z2. There exists an arc η ⊂ Cl(Σ)
starting at z1 and ending at z2 such that η ∩ ∂Σ = {z1, z2}. Similarly,
there exists an arc η′ ⊂ Cl(Σ′) starting at z1 and ending at z2 such that
η′ ∩ ∂Σ′ = {z1, z2}. Then η ∪ η′ forms a simple closed curve that bounds
a disk D. As the diameters of Σ and Σ′ tend to zero, diam(fn(D)) → 0
for |n| → ∞. Furthermore, as z1 6= z2, and D contains arcs contained in
∂Σ and ∂Σ′ joining z1 and z2 in its interior, we have D ∩ M 6= ∅. As
diam(fn(D)) is a null-sequence, for sufficiently large N we have fN (D) ⊂ D,
which by Lemma 6 implies f has periodic points. Therefore, Cl(Σ)∩Cl(Σ′)
can consist of at most a single point and thusM is indeed a quasi-Sierpiński
set.
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3. Existence of minimal sets. Having given a classification of the
possible minimal sets of homeomorphisms f ∈ Homeo∗(T2), in this section
we aim at constructing such homeomorphisms admitting a minimal set of
every type Theorem A allows. More precisely, we show there exist f ∈
Homeo∗(T2) whose minimal set M

(1) is a quasi-Sierpiński set, but not a Sierpiński set,
(2) has complement consisting of a single unbounded disk,
(3) has complement consisting of essential annuli and disks,
(4) is a non-trivial extension of a Cantor set.

It is well-known there exist f ∈ Homeo∗(T2) for which the minimal
set is a Sierpiński set. Example 1, constructed in [B1], is derived from the
Sierpiński set; see also Section 3.3 below for a discussion of this example.
The remainder of this section is devoted to the construction of Example 2
(type I), Example 3 (type II) and Example 4 (type III). Combined, these
examples prove Theorem B.

3.1. Homeomorphisms semiconjugate to an irrational transla-
tion. There is a natural subclass of Homeo∗(T2), namely those homeomor-
phisms that are semiconjugate to an irrational translation of the torus. In-
deed, a standard argument shows that an element f ∈ Homeo0(T2) semi-
conjugate to a translation τ , through a continuous map homotopic to the
identity, has the property that ρ(f) = ρ(τ) mod Z2. Given a continuous
map π : T2 → T2, we call the set of points

(3.1) Rπ = {z ∈ T2 | #(π−1(π(z))) = 1} ⊂ T2

the regular set of π.

Definition 6. We define Homeo#(T2) ⊂ Homeo∗(T2) to be the class of
homeomorphisms which satisfy the following:

(i) f is isotopic to the identity, i.e. f ∈ Homeo0(T2),
(ii) there exists a monotone (1) and continuous π : T2 → T2, homotopic

to the identity, and an irrational translation τ such that π◦f = τ ◦π
(cf. (2.2)),

(iii) the regular set Rπ is uncountable.

The following simple but important observation plays a crucial role in
the constructions below. In what follows, we denote by Of (z) the full orbit
of a point z under f .

Lemma 14. Let f ∈ Homeo#(T2), with π the corresponding semiconju-
gacy. Then f has a unique minimal set M and

(3.2) M = Cl(Rπ) = Cl(Of (z)) for any z ∈ Rπ.

(1) A map is said to be monotone if every point-inverse is connected.
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Proof. Let us first prove the uniqueness of the minimal set. Let M and
M′ be two minimal sets for f . Because M is closed and f -invariant, π(M)
is closed and τ -invariant. In particular, π(M) contains the complete τ -orbit
of every point π(z) ∈ π(M), where z ∈ M. Since every orbit of τ is dense,
we have π(M) = T2. Similarly, π(M′) = T2. Take z ∈ Rπ 6= ∅. Then
{z} = π−1(π(z)) is contained in both M and M′. As two minimal sets are
either identical or disjoint, this implies that M =M′.

Next we prove thatM = Cl(Of (z)) for every z ∈ Rπ. For any z ∈ Rπ the
set Cl(Of (z)) is closed and invariant, hence it contains the (unique) minimal
set M of f , i.e. M⊆ Cl(Of (z)). We need to show that Cl(Of (z)) ⊆M. If
we hadM∩Of (z) = ∅, then as π(M) = T2 by the above, there would exist a
point z′ ∈M for which π(z′) = π(z). However, this contradicts the assump-
tion that z ∈ Rπ and thus π−1(π(z)) = {z}. It follows thatM∩Of (z) 6= ∅.
Let z′ ∈ M∩Of (z); then Of (z′) = Of (z) ⊆ M, since M is invariant. But
since M is also closed, Cl(Of (z)) ⊆ M. Hence M = Cl(Of (z)) for any
z ∈ Rπ, and consequently M = Cl(Rπ).

Let us further introduce the following notation, to be used in the
proofs of Examples 2–4 below. A non-transitive orientation preserving cir-
cle homeomorphism with irrational rotation number will be referred to
as a Denjoy counterexample. Moreover, given a Cantor set in the circle
Q = T1 \⋃k∈Z Ik, we denote by Qrat ⊂ Q and Qirr = Q \ Qrat the rational
and irrational parts of Q, which are the set of all endpoints of the deleted
intervals and its complement in Q. It is readily verified, using Poincaré’s
Theorem, that

(1) a product of a Denjoy counterexample and an irrational rotation,
and

(2) a product of two Denjoy counterexamples,

are elements of Homeo#(T2), provided the rotation numbers of the factors
are rationally independent.

3.2. A topological blow-up procedure. In order to construct the
examples, we devise a tool that enables us to blow up an orbit of a point
under a homeomorphism to a collection of disks. A. Bís, H. Nakayama and
P. Walczak in [B2] define such a blow-up procedure that works for (groups
of) diffeomorphisms. J. Aarts and L. Oversteegen in [A] defined a similar
blow-up construction for a homeomorphism of the annulus that preserves
radial lines. Both constructions allow for the mapping to be extended to the
disks glued to the surface by the infinitesimal behaviour of the mapping.
As this would not work for a general homeomorphism, we circumvent this
by inductively blowing up punctures to disks, by pulling back points near
a puncture along leaves of a dynamically defined foliation emanating from
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the puncture. We use the continuity of the foliation to define an extension
of the mapping to the disks.

Let f ∈ Homeo#(T2), with π : T2 → T2 the semiconjugacy between f
and an irrational translation τ . Take a point z0 ∈ Rπ; we do not require f
to be minimal, so Of (z0) may or may not be dense. Define Γ = T2 \Of (z0).
Clearly, f(Γ ) = Γ and f |Γ is a homeomorphism. Let Bδ := B(z0, δ) ⊂ T2

be the embedded closed Euclidean disk of radius 0 < δ ≤ 1/4 centred at z0.
Choose 0 < δ0 ≤ 1/4 and let F0 be the foliation of Bδ0 by straight rays
emanating from z0 (see Figure 1). The leaves ρθ ∈ F0 are parametrized by
θ ∈ [0, 2π). Fix 0 < ε0 < 1. To blow up the punctures to disks, we define
the following auxiliary planar map, in polar coordinates:

(3.3) gε : B̃1 \ {0} → B̃1 \ B̃ε, gε(r, θ) =
(
r + ε

1 + rε
, θ

)
,

where B̃ρ ⊂ R2 is the closed Euclidean disk centred at 0 ∈ R2 of radius 0 <
ρ ≤ 1. Conjugating gε0 with a linear injection (into the torus) λ0 : B̃1 ↪→ Bδ0
yields a homeomorphism

(3.4) h0 = λ0 ◦ gε0 ◦ λ−1
0 : A0 → h0(A0),

where A0 = Bδ0\{z0} and h0(A0) = Bδ0\Bε0δ0 is the corresponding annulus.
We can extend h0 to T2 \ {z0} by declaring it to be the identity off A0; the
extension is a homeomorphism we denote again by h0, and it naturally acts
on Γ ⊂ T2 \ {z0} by restriction. Note that h0 acts on Bδ0 \ {z0} along the
leaves of the foliation F0.

A0 h0(A0)

Σ0
ρ0

ρθ

z0

θ h0

Fig. 1. Radial blow up of a puncture to a disk

Define Γ0 = h0(Γ ), define the homeomorphism

(3.5) f0 : Γ0 → Γ0, f0 = h0 ◦ f |Γ ◦ h−1
0 ,

and consider the continuous map φ0 : Γ0 → Γ given by φ0 = h−1
0 . Note that,

by construction, f0 = φ−1
0 ◦ f |Γ ◦φ0. Define Σ0 := Int(Bε0δ0) and γ0 := ∂Σ0



Minimal sets of torus homeomorphisms 59

(see again Figure 1). Consider the points z±1 := φ−1
0 (f±1(z0)) and define

(3.6) d1 =
1
4

min{(1/4)2, d(z−1, z1), d(z−1, Σ0), d(z1, Σ0)} > 0.

Given 0 < ε0 < ε < 1, set ε′ = (ε+ ε0)/2 and define the second auxiliary
planar map

(3.7) qε : B̃ε \ B̃ε0 → B̃ε \ B̃ε′ , qε = ĝε′/ε ◦ ĝ−1
ε0/ε

,

where

(3.8) ĝδ/ε := rε ◦ gδ/ε ◦ r−1
ε

and rε : B̃1 → B̃ε is a linear (planar) rescaling for ε0 ≤ δ < ε. Let λε : B̃ε ↪→
Bεδ0 be the linear injection of the disk B̃ε ⊂ R2 onto the disk Bεδ0 ⊂ T2.
Define Aε,ε′ = Bε′δ0 \Bεδ0 and

(3.9) q̂ε : Aε,ε0 → Aε,ε′ , q̂ε = λε ◦ qε ◦ λ−1
ε .

In words, q̂ε has the effect of mapping the annulus Aε,ε0 radially, i.e. along
(part of) the foliation F0, to the annulus Aε,ε′ with the same outer boundary
curve, but larger inner boundary curve, so as to halve the modulus of the
annulus. There exist 0 < ε0 < ε±1 < 1 such that if we denote A±1 :=
f±1
0 (Aε±1,ε0), then diam(A±1) ≤ d1. Define

(3.10) h±1 : A±1 → h±1(A±1), h±1 = f∓1
0 ◦ q̂ε±1 ◦ f±1

0 ;

we extend h±1 to T2 by declaring it to be the identity off A±1. The annuli
A±1 are foliated by F±1 = f0|Aε±1,ε0

(F0). The maps h±1 have the effect
of blowing up the puncture z±1 along the foliation F±1 to a disk Σ±1 (see
Figure 2). Denote by Σ±1 the open disks obtained by blowing up the corre-
sponding puncture z±1. As ∂Σ±1 = f0(Cε′±1

), where Cε′±1
is the Euclidean

circle centred at z0 of radius ε0 < ε′±1 < ε±1, γ±1 := ∂Σ±1 is a simple closed
curve, as f±1

0 |Aε±1,ε0
is a homeomorphism.

A1 h1(A1)

Σ1

ρ1,θ

z1

h1

Fig. 2. Blowing up the puncture z1 to a disk; ρ1,θ is a leaf of the foliation F1 emanating
from z1, and h1 has the effect of pulling back points on ρ1,θ ∈ F1 along this leaf, for every
θ ∈ [0, 2π).
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Define ĥ1 := h−1 ◦ h1 on A−1 ∪ A1, set Γ1 = ĥ1(Γ0) and define the
homeomorphism

(3.11) f1 : Γ1 → Γ1, f1 := ĥ1 ◦ f0 ◦ ĥ−1
1 .

Further, consider the continuous map φ1 : Γ1 → Γ given by φ1 = φ0 ◦ ĥ−1
1 .

We proceed by induction. Assume we have blown up the punctures zk
to disks Σk for −n + 1 ≤ k ≤ n − 1, and consider the points z±n :=
φ−1
n−1(f±n(z0)). Define ∆n−1 =

⋃n−1
k=−n+1Σk and

(3.12) dn =
1
4

min{(1/4)n+1, d(z−n, zn), d(z−n, ∆n−1), d(zn, ∆n−1)} > 0.

There exist 0 < ε0 < ε±n < 1 such that diam(A±n) ≤ dn. Define

(3.13) h±n : A±n → h±n(A±n), h±n = f∓nn−1 ◦ q̂ε±n ◦ f±nn−1,

which we extend to T2 by declaring them to be the identity off A±n. The
annuli A±1 are foliated by F±n = fnn−1|Aε±n,ε0 (F0). The maps h±n blow up
the puncture z±n along the foliation F±n to a disk Σ±n. The boundaries
γ±n are again simple closed curves, as γ±n = f±nn−1(Cε′±n), where Cε′±n is the
Euclidean circle centred at z0 of radius ε0 < ε′±n < ε±n and f±nn−1|Aε±n,ε0 is

a homeomorphism. Define ĥn := h−n ◦ hn on A−n ∪ An, set Γn = ĥn(Γn−1)
and define the homeomorphism

(3.14) fn : Γn → Γn, fn := ĥn ◦ fn−1 ◦ ĥ−1
n .

Further, consider the continuous map φn : Γn → Γ given by φn = φn−1◦ĥ−1
n .

Next, we show that the above sequences of maps and homeomor-
phisms converge and have the desired properties. First, from (3.12) com-
bined with (3.13), it follows that Γn ⊂ Γn−1 and Γ∞ = limn→∞ Γn exists
in the Hausdorff sense, as

∑
n≥0 1/4n+1 < 1 < ∞. Denote N = Cl(Γ∞).

Notice that N = Γ∞ ∪
⋃
k∈Z γk, since no point in Σk can be the limit point

of points in Γ∞ as Σk∩Γ∞ = ∅. Furthermore, as the boundary curves γk are
simple closed curves, the extension φ̄n : Cl(Γn)→ T2 of φn is continuous.

Lemma 15. The homeomorphisms fn : Γn → Γn converge to a homeo-
morphism f∞ : Γ∞→Γ∞ that extends to a homeomorphism f ′∈Homeo∗(T2)
with f ′(N ) = N . Further, the disks {Σk} in the complement of N are in-
teriors of closed topological disks. Similarly, the continuous maps φn con-
verge to a continuous map φ∞ : Γ∞ → Γ that extends to a continuous map
φ : T2 → T2 for which φ(N ) = T2. Furthermore, f ′ is semiconjugate to f
through φ.

Proof. First, we show that the fn converge to a homeomorphism f∞
of Γ∞. Indeed, for every n ≥ 0, fn : Γn → Γn is a homeomorphism and
we observed above that Γn → Γ∞. As ĥn moves points by no more than
dn ≤ 1/4n+1, and

∑
n≥0 1/4n+1 < 1 < ∞, fn converges uniformly and
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thus the limit f∞ is a homeomorphism. Further, we observed that γk is a
simple closed curve for every k ∈ Z and thus Σk is the interior of the closed
topological disk Cl(Σk) = Σk ∪ γk.

Next, we show that f∞ extends to a homeomorphism f ′ ofN . To this end,
we first show that f∞ induces a homeomorphism from γk to γk+1 for every
k ∈ Z. To prove this, we note that the disks Σk, for −n ≤ k ≤ n, which have
been constructed after n steps, are left unmoved by future perturbations
by virtue of our choice of dn. Moreover, again by our choice of dn, we have
fn|γk = f∞|γk : γk → γk+1 for −n ≤ k ≤ n − 1, where fn|γk and f∞|γk are
the extensions of fn and f∞ to γk. To prove that fn|γk is a homeomorphism,
it suffices to show that fn|γk is one-to-one and continuous. We prove this by
induction for 0 ≤ k ≤ n, the case of negative k being handled by considering
the inverse.

Assume that after step n − 1, we have shown that fn−1|γk : γk → γk+1

for 0 ≤ k ≤ n − 2 are homeomorphisms, and consider step n, where we
have to show that fn|γn−1 : γn−1 → γn is a homeomorphism. By choice of εn,
An is disjoint from the previously constructed disks and disjoint from A−n.
Restricting to a smaller neighbourhood of An−1 if necessary, we may as well
assume that An−1 ∩ An = ∅. As hn = ĥn|An (as defined by (3.10)) acts
along the foliation Fn, fn sends leaves of Fn−1 to leaves of Fn which foliate
An−1 and An respectively. To each θ ∈ [0, 2π) corresponds a unique point
z(θ) ∈ γn−1 lying on ρn−1,θ ∈ Fn−1, which is mapped by fn to a unique
point z′(θ) = fn(z(θ)) ∈ γn lying on ρn,θ = fn(ρn−1,θ). As these foliations
are continuous, and as γn−1 and γn are (continuous) simple closed curves,
the points z′(θ) vary continuously as θ varies, and thus continuously as z(θ)
varies, which is what we needed to show.

By induction, f∞ extends homeomorphically to every boundary curve γk,
k ∈ Z. It thus follows that the extension f ′ to N is one-to-one, as N =
Γ∞ ∪

⋃
k∈Z γk. To show f ′ is continuous, we distinguish between two cases.

First, let z ∈ Γ∞. As f∞ is a homeomorphism, given a neighbourhood
V ⊂ N containing z′, we can find a small neighbourhood U ⊂ N , containing
the point z for which f ′(z) = z′, such that Cl(f∞(W )) ⊂ V , where W =
U ∩ Γ∞. As Cl(Γ∞) = N and f ′ extends homeomorphically to N , we have
f ′(U) = f ′(Cl(W )) = Cl(f∞(W )) ⊂ V .

Secondly, suppose that z ∈ γk for some k ∈ Z. For N ≥ k + 1, fN |γk =
f∞|γk : γk → γk+1 is a homeomorphism. Therefore, given a neighbourhood
V ⊂ N containing z′ = fN (z) = f ′(z), there exists a small neighbourhood
U 3 z such that fN (U) ⊂ V . Choosing N larger, and a smaller neighbour-
hood U ′ ⊂ U containing z if necessary, as

∑
n≥N dn → 0 for N → ∞,

it follows that f ′(U ′) ⊂ V as well. Thus f ′ is continuous, and therefore a
homeomorphism, being one-to-one as well.



62 F. Kwakkel

We can extend the homeomorphism f ′ : N → N to a homeomorphism
of T2 by extending, e.g. by Alexander’s trick, the induced homeomorphisms
of the boundary curves γk to homeomorphisms of the corresponding closed
disks Cl(Σk) = Σk ∪ γk. As the disks Σk are disjoint, and diam(Σk) forms
a null-sequence, the extension of f ′ : N → N to T2 is a homeomorphism,
which we denote again by f ′.

To show that φ : N → T2 is continuous, we recall that Cl(Γn) = T2 \∆n

for n ≥ 0. As we observed, for every n ≥ 0, φn : Γn → Γ is continuous and
it extends to a continuous φ̄n : Cl(Γn) → T2. As φn = φn−1 ◦ ĥ−1

n with ĥn
as in (3.13), whose norm is bounded by dn, φ = limn→∞ φ̄n : N → T2

is continuous as the limit of uniformly converging continuous maps φ̄n.
By declaring φ(Σk) = fk(z0), φ extends to a continuous map defined
on T2.

Finally, we show that f ′ ∈ Homeo#(T2). First, we observe that, as Rπ is
uncountable, and a countable number of points of Rπ is blown up to disks,
Rπ′ is uncountable as well. Further, the φ thus constructed is homotopic to
the identity. Thus it suffices to show that φ ◦ f ′ = f ◦ φ. For this, we note
that for every n ≥ 0 we have φn ◦ fn = f |Γ ◦ φn, where fn : Γn → Γn and
φn : Γn → Γ . As both fn and φn converge uniformly and extend continuously
to N , it follows that φ ◦ f ′ = f ◦ φ for some f ′ : N → N . Further, as Σk,
along with γk, is mapped to a single point by φ, we also have φ ◦ f ′ = f ◦ φ
when f ′ is extended to T2.

The following lemma, which combines Lemmas 14 and 15, is the key
ingredient in the construction of Examples 3 and 4. Let Bδ0 \ {z0} ⊂ T2 be
an embedded punctured disk centred at z0 ∈ Rπ with δ0 ≤ 1/4, and F0 the
corresponding foliation of Bδ0 \ {z0} by straight rays emanating from z0, in
the notation of the construction above. A wedge W(r, θ1, θ2) ⊂ Brδ0 \ {z0}
is the region bounded by two leaves ρθ1 , ρθ2 ∈ F0, where 0 < |θ1 − θ2| < π
and 0 < r ≤ 1. Define Rnπ := φ−1

n (Rπ \ Of (z0)) for n ≥ 0.

Lemma 16. In the construction above, let f ′ be semiconjugate to f
through φ by blowing up the orbit Of (z0), with z0 ∈ Rπ, to disks whose
interiors are Σk, and let γk = ∂Σk, where k ∈ Z. Let M′ be the minimal
set of f ′ and define π′ = π ◦ φ. Then

(1) M′ = Cl(Rπ′) = Cl(φ−1(Rπ \ Of (z0))),
(2) γk ⊂ M′, for all k ∈ Z, if for every 0 < r ≤ 1 and every θ1, θ2 ∈

[0, 2π) with 0 < |θ1−θ2| < π, we haveW(r, θ1, θ2)∩(Rπ\Of (z0)) 6= ∅.
Proof. To prove (1), as Rπ is uncountable, R0

π 6= ∅. As the points fk(z0)
are blown up to disks, i.e. φ−1(fk(z0)) = Cl(Σk), where Cl(Σk) is a closed
topological disk, we have Rπ′ = φ−1(Rπ \ Of (z0)). By Lemma 14, M′ =
Cl(Rπ′), and this proves (1).
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To prove (2), first assume that γ0 ⊂ Cl(R0
π). As the size of the perturba-

tions ĥn, by virtue of our choice of dn, converges to zero as the perturbations
approach γ0, it follows that γ0 ⊂ Cl(Rnπ) for every n ≥ 0. As the maps φn
converge, we thus have γ0 ⊂ Cl(Rπ′) = M′, by (1). As M′ is f ′-invariant,
and f ′(γk) = γk+1, we find that γk ⊂ M′, for every k ∈ Z. To finish the
proof, suppose that W(r, θ1, θ2) ∩ (Rπ \ Of (z0)) 6= ∅ for every 0 < r ≤ 1
and every θ1, θ2 ∈ [0, 2π) for which 0 < |θ1 − θ2| < π. We have to show that
γ0 ⊂ Cl(R0

π).
Suppose, to derive a contradiction, that γ0 ∩ Cl(R0

π) 6= γ0. As γ0 ∩
Cl(R0

π) is closed, this implies there exists an open subarc η ⊂ γ0 such that
η ∩ Cl(R0

π) = ∅. Let z ∈ η be the midpoint of η and let η′ ⊂ η be a closed
subsegment properly contained in η, and containing z ∈ η, with endpoints
{z−, z+} = ∂η′. Let ρθ1 and ρθ2 be the two rays passing through z− and z+,
and W(1, θ1, θ2) the corresponding wedge. As Cl(R0

π) is closed, there exists
an open neighbourhood U ⊃ η′ such that U ∩ Cl(R0

π) = ∅. However, this
implies that W(r, θ1, θ2) ∩ (Rπ \ Of (z0)) = ∅ for r > 0 sufficiently small,
contrary to our assumption.

3.3. Minimal sets of type I. It is well-known that, given any Sierpiń-
ski set S ⊂ T2, there exists a homeomorphism f ∈ Homeo∗(T2) for which the
minimal set M is S. The following example can be found in [B1, Thm. 3].
We will only sketch the proof.

Example 1 (Type I: a quasi-Sierpiński set [B1]). There exist homeomor-
phisms f ∈ Homeo∗(T2) for which the minimal set M is a quasi-Sierpiński
set, but not a Sierpiński set.

Σ Σ1 Σ2/∼
η

Fig. 3. Construction of a quasi-Sierpiński set: collapsing arcs to points

Sketch of the proof. Let M be a Sierpiński minimal set of an f ∈
Homeo∗(T2) and let Σ be a component of the complement of M. Denote
Σn = fn(Σ) and γn = ∂Σn. Take an arc η ⊂ Cl(Σ) such that only the end-
points of η intersect γ = γ0 (see Figure 3). Let ηn := fn(η) ⊂ Cl(Σn) the
corresponding arcs in the image disks. Using techniques from decomposition
theory, it can be shown that T2/∼, where z ∼ z′ if and only if z, z′ ∈ ηn (i.e.
collapsing the arcs ηn to points), yields a well-defined quotient space home-
omorphic to T2 and thatM quotients to a quasi-Sierpiński setM′ =M/∼,
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which is not a Sierpiński set. The corresponding quotient homeomorphism
f ′ ∈ Homeo∗(T2) has M′ as its minimal set and this minimal set is locally
connected.

Next, we give an example of a minimal set which is of type I, but not lo-
cally connected. It shows the existence of homeomorphisms f ∈ Homeo∗(T2)
for which the complement of the minimal set M consists of a single un-
bounded disk Σ, which is f -invariant.

Example 2 (Type I: unbounded disks). There exist minimal setsM of
homeomorphisms f ∈ Homeo∗(T2) of type I such that the complement of
M in T2 is a single unbounded disk.

The example uses a derived-from-Anosov type argument (2), constructed
initially by P. McSwiggen [McS1] on the 3-torus and subsequently general-
ized to the general (k + 1)-torus for k ≥ 1 in [McS2]. For completeness, we
recall this discussion for the case k = 1 and collect the necessary results
needed for our construction. Almost all of this material, up to the proof of
Example 2, is taken verbatim from [McS2].

Start with a hyperbolic A ∈ SL(2,Z) and let g0 : T2 → T2 be the induced
linear toral automorphism. Let z0 ∈ T2, with z0 = p(0) where 0 ∈ R2 is the
origin and p : R2 → T2 is the canonical projection, be the fixed point of g0.
Let vs, vu ∈ R2 be the stable and unstable eigenvector of A respectively and
λs, λu the corresponding eigenvalues. Let F s

lin,Fu
lin be the stable and unstable

foliations respectively relative to g0 of T2 by parallel lines and let `0 ⊂ T2

be the unstable leaf of Fu
lin passing through the saddle fixed point z0. Rel-

ative to the standard basis, the eigenvectors vs, vu have irrational slope,
and consequently every leaf of F s

lin and Fu
lin is an isometric immersion

into T2 of a copy of R. For future reference, define Fhor to be the foliation
of T2 by horizontal (relative to the standard basis) simple closed curves,
parametrized by y ∈ T1, i.e. Fhor = {Cy}y∈T1 with Cy ⊂ T2 the curve of
height y ∈ T1.

Next we perturb g0 on a small neighbourhood U 3 z0 of the original
saddle fixed point of g0 to turn it into a repeller and create two additional
saddle fixed points z−1, z1 close to z0 through a pitch-fork bifurcation, re-
sulting in a DA diffeomorphism. We first describe the perturbation and
subsequently we scale it into the neighbourhood U of z0. For this, we use
the following (see [McS2, Lemmas 1.3 and 1.4]).

Lemma 17. Fix ρ > 0. Given any υ > ρ and any arbitrarily small δ > 0,
for each κ with ρ > κ > 0, there exists a C∞ function λκ : R→ R satisfying
the following conditions.

(2) See for example [PdM, Chapter 4] for these and related constructions.
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(i) λκ(t) ≡ υ for t ≤ 0 and λκ(t) ≡ κ for t ≥ 1.
(ii) −δ ≤ tλ′κ(t) ≤ 0 for all t and λ′κ(t) < 0 if υ > λκ(t) > κ. In

addition, if κ ≥ κ′, then 0 ≤ λκ(t)− λκ′(t) ≤ κ− κ′ for all t.
(iii) There exists t0 > 0, depending only on ρ and δ, where λκ(t0) = ρ

and such that λκ(t) is independent of κ for t ≤ t0 and independent
of υ for t ≥ t0.

Further, if we define η(t) = tλ(t), then 0 ≤ (λ−η′)(t) ≤ δ and 0 ≤ η(t)−κt
≤ δ for t ≥ 0.

Fix υ with λu > υ > 1. Choose ρ with 1 > ρ > λs and δ > 0 small
enough so that 1 − δ > ρ. Choose ῡ satisfying 1 − δ ≥ ῡ > ρ. Let λ, λ̄ be
the functions of Lemma 17 relative to the choices of κ = λs and these υ
and ῡ respectively. Denote by E1 ⊕ E2 the splitting of the tangent bundle
TR2 into the unstable and stable direction relative to A ∈ SL(2,Z). By
a linear change of coordinates B taking E1 ⊕ E2 to R2, the action reads
BAB−1(x, y) = (λux, λsy). Let χ0, χ1, χ2 : R→ [0, 1] be even C∞ functions
satisfying χ0 + χ1 + χ2 ≡ 1, χ0(0) = 1; χ0(t) ≡ 0 for |t| ≥ 1; χ2(t) ≡ 0 for
|t| ≤ 1 and χ2(t) ≡ 1 for |t| ≥ 2. We may further assume that |χ′i| ≤ 2 for
all i.

Define G(x, y) = (λux, L(x, y)y), where L(x, y) = χ0λ(y) + χ1(x)λ̄(y) +
χ2λs. The derivative of G has the following form:

(3.15) DG(x,y) =
(

λu 0
c(x, y) N(x, y)

)
,

where

(3.16) c(x, y) =
{
χ′0(x)(λ(y)− λ̄(y))y, |x| ≤ 1,
χ′1(x)(λ(y)− λs)y, 1 ≤ |x| ≤ 2,

and N(x, y) = L(x, y) + (χ0(x)λ′(y) +χ1(x)λ̄′(y))y. The following estimates
hold (cf. [McS2, Lemma 2.2]).

Lemma 18. We have |c(x, y)| ≤ 2δ and λs ≤ |N(x, y)| ≤ υ. Moreover,
if |y| ≥ t0 or |x| ≥ 1, then N(x, y) < 1.

Proof. Set t = |y| and t̂ = y/|y|. For |x| ≤ 1, we have c(x, y) =
χ′0(x)(λ(t)t − λ̄(t)t)t̂. As λ(t)t − λ̄(t)t = η(t) − η̄(t) ≤ η(t) − λst ≤ δ by
Lemma 17, it follows that |c(x, y)| ≤ δ|χ′0(x)| ≤ 2δ by choice of χ0. For
1 ≤ |x| ≤ 2, λ(t)− λ̄(t) is replaced by λ̄(t)t− λst = η̄(t)− λs, which has the
same estimate. For |x| ≥ 2, we find that c(x, y) = 0.

To estimate N(x, y), we first estimate (χ0(x)λ′(y) + χ1(x)λ̄′(y))y. As
|yλ′(y)| ≤ δ and |yλ̄′(y)| ≤ δ by Lemma 17, it follows that |(χ0(x)λ′(y) +
χ1(x)λ̄′(y))y| ≤ δ. As λ(t), λ̄(t) ≥ λs, we have |N(x, y)| ≥ λs. For t ≥ t0,
λ(t) = λ̄(t) ≤ ρ, again by Lemma 17. Therefore, |N(x, y)| ≤ ρ + δ < 1. If
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|x| ≥ 1, we have |N(x, y)| ≤ λ̄(t)+δ ≤ ῡ+δ < 1. Therefore, |N(x, y)| < 1 for
|y| ≥ t0 or |x| ≥ 1. Finally, if t ≤ t0 and |x| ≤ 1, then λ(t) ≥ λ̄(t). We have
|N(x, y)| = |χ0(λ(t) + tλ′(t)) +χ1(λ̄(t) + tλ̄′(t))|. As η′(t) ≤ λ(t) and η̄′(t) ≤
λ̄(t) ≤ λ(t) by Lemma 17, and as η′(t) = λ(t)+tλ′(t) and η̄′(t) = λ̄(t)+tλ̄′(t)
by definition, it follows that |N(x, y)| = |χ0η

′(t) + χ1η̄
′(t)| ≤ λ(t) ≤ υ for

all t. This finishes the proof.

In particular, the map G : R2 → R2 is a C∞ diffeomorphism agree-
ing with BAB−1 outside the square {(x, y) | |x| ≤ 2, |y| ≤ 1} and, as
N(0, 0) = υ > 1, the origin is turned into a repeller. We can now rescale
the perturbation so that the support is contained in U 3 z0, the fixed point
of the original linear g0, and we obtain a perturbed system g : T2 → T2.
Since rescaling does not affect estimates on first derivatives, relative to the
splitting E1 ⊕ E2, the derivative of g has the form

(3.17) Dgz =
(
λu 0
c̃(z) Ñ(z)

)
,

where |c̃(z)| ≤ 2δ and λs ≤ |Ñ(z)| ≤ υ for all z ∈ T2. With g defined
as such, Dg leaves the line bundle E2 invariant and, although it is not a
contraction on E2, it expands in this direction by no more than υ < λu. Set
Eps := E2. Even though E1 is no longer invariant, there is a new invariant
line bundle Eu everywhere close to E1 which Dg expands uniformly by λu

in a suitable metric and thus Eu is a strong unstable direction. To see this,
let s : L(E1, E2) → T2 be the standard vector bundle over T2 with fibres
s−1(z) ∼= Lin(E1, E2), where Lin(E1, E2) is the space of linear maps from
E1 to E2. A continuous section of L(E1, E2) corresponds to a continuous line
field on T2. If Sz ∈ Lin(E1(z), E2(z)), then the induced action of Dgz is given
by Sz 7→ c̃(z)λ−1

u + Ñ(z)Szλ−1
u ∈ Lin(E1(g(z)), E2(g(z))). As |Ñ(z)λ−1

u | ≤
υλ−1

u < 1, Dg contracts the section, hence there is a unique invariant section
S ∈ L(E1, E2). If we define Eu to be the corresponding invariant line field
for Dg, then Eu⊕Eps is the continuous invariant splitting under Dg of T2.
As the image of the zero section is bounded in norm by

sup
z∈T2

c̃(z)λ−1
u ≤ 2δλ−1

u ,

Dg takes the disk of radius r := 2δ(λu−υ)−1 into itself, which implies Eu(z)
is contained in the cone {(u, v) ∈ TzT2 | |v| ≤ r|u|} for each z ∈ T2. Choose
δ > 0 so that r ≤ 1. Defining an equivalent metric ‖(u, v)‖ on T2 by declaring
that ‖(u, v)‖ = max{|u|, |v|} for (u, v) ∈ E1 ⊕E2, we have ‖(u, v)‖ = |u| for
(u, v) ∈ Eu. As Eu is invariant, this implies that Dgz(u, v) ∈ Eu and thus
‖Dgz(u, v)‖ = |λuu| = λu|u| = λu‖(u, v)‖. Therefore, under this metric, Dg
expands Eu by λu. Thus, all of T2 is a pseudo-hyperbolic set for g with
strong unstable direction Eu.
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The classical theory of (un)stable manifolds now gives that, through
each point z ∈ T2, there is a unique strong unstable manifold, which is a
C∞ immersed copy of R. As two such manifolds are either disjoint or equal,
the union of these leaves foliates the torus T2 and this foliation, denoted
Fu

DA, is continuous. If r is sufficiently small, implying that δ is sufficiently
small, Fu

DA will be everywhere transverse to the leaves of the foliation Fhor.
Let us summarize this.

Lemma 19. The diffeomorphism g : T2 → T2 admits a g-invariant strong
unstable lamination (i.e. a C0 foliation by smooth leaves) Fu

DA whose leaves
are everywhere nearly parallel to the linear unstable foliation Fu

lin and hence
everywhere transversal to the horizontal foliation Fhor of T2.

Recall that z0 ∈ T2 is the repelling fixed point of g. Let K be the set
of points at which g does not contract E2. By Lemma 18, K is contained
in the rectangle described in local coordinates by |x| ≤ 1 and |y| ≤ t0. Let
{z−1, z1} be the two intersection points of ∂K with the local pseudo-stable
leaf of Fps

DA passing through z0, which in local coordinates corresponds to
{(0, y) | λ(y) = 1}. Since λ is strictly decreasing, there is a unique r0 such
that λ(r0) = 1. Let J ⊂ T2 be the open arc contained in the pseudo-stable
leaf of Fps

DA passing through z0 whose endpoints coincide with z−1 and z1. As
λ(r0) = 1, the points z−1, z1 are hyperbolic fixed points for g. Let Σ ⊂ T2

be the basin of repulsion of z0. Clearly, Σ is the domain obtained by taking
the union of all unstable leaves of FuDA passing through points z ∈ J , and
Σ is bounded by the two unstable leaves W u

±1 ∈ Fu
DA passing through z−1,

and z1 respectively. Further note that Σ is g-invariant.
In what follows, let {Iiy}i∈Z be the collection of connected components

of Cy ∩Σ. The following holds (see [McS2, Thm 2.4] for a detailed proof).

Lemma 20. If we denote by hy, h′y : Cy → Cy the holonomy homeomor-
phisms, i.e. the return maps to Cy along the unstable foliation, of the linear
and perturbed systems respectively, then for every y ∈ T1, there exists a
semiconjugacy πy : Cy → Cy between the perturbed and the linear systems,
i.e. a continuous πy such that πy ◦ h′y = hy ◦ πy. Further, for every y ∈ T1,
Σ ∩Cy is dense in Cy and h′y(Ī

i
y) ∩ Īiy = ∅ for every i 6= 0, where Ī denotes

the closure Cl(I) of the interval I in Cy.

Let us further observe the following.

Lemma 21. The domain Σ is an unbounded disk which is dense in T2.

Proof. By Lemma 20, Σ∩Cy is dense in Cy for every y ∈ T2, thus Σ ⊂ T2

is dense in T2 as
⋃
y∈T1 Cy = T2. To show that Σ is an unbounded disk,

we first recall the following. By [McS2, Thm. 2.4], g is semiconjugate to g0,
through a semiconjugacy which is homotopic to the identity, taking unstable
leaves of Fu

DA injectively onto unstable leaves of Fu
lin. Consequently, the lifts
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of the leaves of FuDA are homotopic (and thus uniformly close), through the
semiconjugacy between g and g0, to the corresponding lifts of the leaves
of Fu

lin. As the latter leaves are clearly unbounded in the lift, so are the lifts
of the leaves of Fu

DA and, in particular, Σ̃ is unbounded, where Σ̃ is a lift
of Σ to the cover R2. Further, as Σ̃ is foliated by leaves homeomorphic to
R passing through the cross-section J̃ ⊂ Σ̃, where J̃ is a lift of the open
interval J ⊂ Σ as defined above, Σ̃ is homeomorphic to (0, 1)×R and thus
simply connected.

To show that Σ is a disk, we need to show that Σ contains no essential
simple closed curves. To derive a contradiction, suppose there exists an es-
sential simple closed curve γ ⊂ Σ. As γ lifts to a curve γ̃ which is homotopic
to a curve of type (p, q), where p, q ∈ Z, γ̃ is homotopic, and thus uniformly
close, to a straight line with rational slope. However, as the unstable leaves
W u
±1 have lifts that are homotopic to a leaf of Fu

lin whose slope is irrational,
this implies that γ̃ has to intersect a lift of W u

1 , implying that γ ∩W u
1 6= ∅,

a contradiction. Thus Σ is an unbounded disk indeed.

Let us now proceed to the construction of our example.

Proof of Example 2. As Cy ∩Σ is a dense union of disjoint intervals, we
find that Qy = Cy \(Cy∩Σ), being the circle minus a dense union of disjoint
intervals, is a Cantor set. Note that the endpoints Qy,rat of Qy are exactly
the set of points Cy ∩ ∂Σ and that ∂Σ =

⋃
y∈T1 Qy,rat. The complement

in Qy of these endpoints is the irrational points, i.e. Qy,irr = Qy \ Qy,rat.
Further, as the slope of vu is irrational, there exists a suitable ν ∈ R such
that νvu = (α, β) with 1, α, β rationally independent. For example, if we
take g0 : T2 → T2 to be Arnold’s cat map, where vu =

(
1, 1+

√
5

2

)
, we may

choose ν = e so that (α, β) is an irrational vector, as 1,
√

5, e are rationally
independent. Let τ := τα,β be the corresponding irrational translation of the
torus where, by construction, τ(`0) = `0.

Choose compatible orientations on the foliations Fu
DA and Fu

lin. Given
y ∈ T1, let hy, h′y : Cy → Cy be the holonomy homeomorphisms, i.e. the
return maps to Cy of the unstable foliations of the linear and the per-
turbed systems respectively. For every y ∈ T1, there exists a semiconjugacy
πy : Cy → Cy such that πy◦h′y = hy◦πy, by Lemma 20. As the continuous fo-
liations Fu

DA and Fu
lin are everywhere transversal to the horizontal foliation,

the holonomy homeomorphisms h′y, and consequently the maps πy, depend
continuously on y ∈ T1. In other words, as T2 =

⋃
y∈T1 Cy, this defines a

continuous map

(3.18) π : T2 → T2, π(x, y) = (πy(x), y),

that has the property that π(Σ ∪W u
−1 ∪W u

1 ) = `0, as πy(Īiy) ∈ Cy ∩ `0 by
Lemma 18 for every i ∈ Z and y ∈ T1. For every y ∈ T1, there exists a



Minimal sets of torus homeomorphisms 69

Σ

Cy

Crβ(y)

z

z′

Fig. 4. fy maps the point z ∈ Cy along a leaf of the foliation Fu
DA to a point z′ = fy(z) ∈

Crβ(y).

homeomorphism fy : Cy → Crβ(y), defined by mapping z ∈ Cy to the first
intersection point of the unique leaf of Fu

DA through z with Crβ(y) (along the
positive direction of the leaf), where rβ : T1 → T1 is the irrational rotation
with rotation number ρ(r) = β mod Z (see Figure 4).

As Fu
DA is a foliation which is transversal to Fu

hor, fy is one-to-one. Fur-
ther, as Fu

DA is continuous, fy is continuous as well and thus a homeomor-
phism, for every y ∈ T1. Further, it follows from the definitions that πrβ(y) ◦
fy = τ ◦ πy. Define

(3.19) f : T2 → T2, f(x, y) = (fy(x), rβ(y)).

As the maps fy are homeomorphisms for every y ∈ T1 and depend continu-
ously on y ∈ T1 (by virtue again of the foliation Fu

DA being tranversal and
continuous), it follows that f as defined by (3.19) is a homeomorphism. It
is clear that this f is isotopic to the identity, π is homotopic to the identity
and, by construction, π ◦ f = τ ◦ π and f(Σ) = Σ with Σ the unbounded
disk (by Lemma 21) bounded by the leaves W u

±1 ∈ Fu
DA, as τ(`0) = `0. Let

M be the minimal set of f . As π is one-to-one except on Σ ∪W u
−1 ∪W u

1

(again by Lemma 18), it follows that

(3.20) Rπ = π−1(T2 \ `0) = T2 \ (Σ ∪W u
−1 ∪W u

1 ) =
⋃
y∈T1

Qy,irr.

As Qy = Cl(Qy,irr), combining (3.20) with Lemma 14, we conclude that

(3.21) M = Cl
( ⋃
y∈T1

Qy,irr
)

=
⋃
y∈T1

Cl(Qy,irr) =
⋃
y∈T1

Qy = T2 \Σ,
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where the second equality holds as the Cantor sets Qy (and therefore their
irrational parts Qy,irr) depend continuously on y ∈ T1. Thus M =
T2 \ Σ, with Σ an unbounded and f -invariant disk, and f ∈ Homeo#(T2),
as required. This finishes the proof.

3.4. Examples of type II. Let us next give examples of homeomor-
phisms for which the connected components {Σk} of the complement ofM
are essential annuli and disks.

Example 3 (Type II: essential annuli and disks). There exist f ∈
Homeo∗(T2) with minimal sets of the formM = T2\⋃n∈ZΣk with {Σk}k∈Z
a collection of essential annuli and disks. Furthermore, the essential annuli
can be constructed to have any characteristic (p, q), where gcd(p, q) = 1.

The proof of Example 3 uses the following.

Lemma 22. Let f ∈ Homeo∗(T2) and f ′ = L−1
A ◦f◦LA with LA : T2 → T2

induced by some A ∈ SL(2,Z). Then f ′ ∈ Homeo∗(T2).

Proof. Let LA be the linear conjugation induced by A ∈ SL(2,Z). As f ∈
Homeo0(T2), f ′ ∈ Homeo0(T2) as well. Let F, F ′ be lifts of f, f ′ respectively.
By [KK, Lemma 2.4], we have

ρ(L−1
A ◦ F ◦ LA) = L−1

A ρ(F ) mod Z2.

Therefore, ρ(f ′) = (α′, β′) mod Z2, where

α′ = aα+ bβ and β′ = cα+ dβ

with a, b, c, d ∈ Z. The condition N1 + N2α
′ + N3β

′ = 0 implies that
N1 = N2a + N3c = N2b + N3d = 0, as 1, α, β are rationally independent.
Multiplying N2a + N3c by b and N2b + N3d by a and subtracting yields
N2(ad− bc) = 0, which yields N2 = 0, as A ∈ SL(2,Z) and thus ad− bc = 1.
Similarly, N3 = 0 and it thus follows that 1, α′, β′ are rationally independent
as well. Therefore, f ′ ∈ Homeo∗(T2).

Proof of Example 3. First, we construct a homeomorphism f ∈
Homeo#(T2) for which the complement ofM is a collection of essential an-
nuli of a given characteristic. Let (p, q) with gcd(p, q) = 1 be given. Let f ∈
Homeo#(T2) be the product of a Denjoy counterexample ϕ ∈ Homeo(T1)
with rotation number α /∈ Q and an irrational rotation rβ with β /∈ Q
chosen so that 1, α, β are rationally independent. The corresponding semi-
conjugacy π is of the form π = (π1, Id), where π1 is the semiconjugacy of ϕ
to the irrational rotation rα. As Rπ = Qirr ×T1, the minimal set M of f is
M = Cl(Qirr×T1) = Q×T1, where Q ⊂ T1 is the Cantor minimal set of ϕ.
The characteristic of the corresponding essential annuli is (0, 1). For later
reference, denote by {Σa

t } the collection of essential annuli in the comple-
ment of M. Given any pair (p, q) ∈ Z2 such that gcd(p, q) = 1, there exists
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an element A ∈ SL(2,Z) such that the (linear) LA ∈ Homeo(T2) induced
by A has the property that an essential simple closed curve of characteristic
(0, 1) is mapped to an essential simple closed curve of characteristic (p, q). By
Lemma 22, conjugating f with LA gives a homeomorphism f ′ ∈ Homeo∗(T2)
and the components of the complement of the minimal set M′ = L−1

A (M)
are now essential annuli of characteristic (p, q).

To obtain an example of a homeomorphism f ′ ∈ Homeo∗(T2) with a
minimal set M′ for which the complementary components include both
essential annuli and disks, we modify the above example as follows. Let
f again be the product homeomorphism given above. Choose z0 ∈ Rπ and
blow up the orbit Of (z0) to disks by the procedure of Section 3.2. This gives
a homeomorphism f ′ ∈ Homeo#(T2) and a continuous map φ : T2 → T2 such
that φ◦f ′ = f ◦φ, and we define π′ = π ◦φ. We have φ−1(fk(z0)) = Cl(Σk),
where Σk is the interior of the closed disk Cl(Σk) and γk = ∂Σk is a simple
closed curve. Denote by M′ the corresponding minimal set of f ′.

In order to show that the complement of M′ consists of essential annuli
and disks, it suffices to show that γk ⊂ M′. Indeed, as φ is one-to-one on
T2 \ ⋃k∈Z Cl(Σk), φ−1(Σa

t ) is again an essential annulus for every t ∈ Z,
where φ−1(Σa

t ) ∩M′ = ∅. Thus to show that γk ⊂ M′ for every k ∈ Z, by
Lemma 16(2) it suffices to show that for every 0 < r ≤ 1 and every θ1, θ2 ∈
[0, 2π) with 0 < |θ1−θ2| < π, we haveW(r, θ1, θ2)∩(Rπ\Of (z0)) 6= ∅, where
we recall that the wedge W(r, θ1, θ2) ⊂ Brδ0 \ {z0} is the region bounded by
two leaves ρθ1 , ρθ2 ∈ F0, where 0 < |θ1 − θ2| < π and 0 < r ≤ 1 (see again
Section 3.2).

This is proved as follows: as z0 ∈ Rπ = Qirr × T1, through every wedge
W(r, θ1, θ2) pass infinitely many vertical simple closed curves (i.e. the con-
nected components of Qirr × T1), arbitrarily close to z0. As only countably
many of these points are deleted from these curves, every wedgeW(r, θ1, θ2)
contains points of Rπ \Of (z0), for any r > 0. Therefore, γk ⊂M′ for every
k ∈ Z indeed, where M′ = Cl(Rπ′) by Lemma 16(1). This finishes the
proof.

3.5. Examples of type III. The simplest example of an extension
of a Cantor set is of course a Cantor set itself. A homeomorphism f ∈
Homeo∗(T2) admitting such a Cantor minimal set is obtained by taking the
product of two Denjoy counterexamples with rationally independent rota-
tion numbers. Its minimal set is the product of the Cantor minimal sets of
its factors, and thus itself a Cantor set. Recall that an extension of a Cantor
set M is said to be non-trivial if not all connected components of M are
singletons. Below we give examples of non-trivial extensions of a Cantor set.
Recently, F. Béguin, S. Crovisier, T. Jäger and F. Le Roux in [Be, Thm. 1.2]
also constructed an example of a homeomorphism f ∈ Homeo∗(T2) for which
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the minimal setM is a non-trivial extension of a Cantor set (in our terminol-
ogy). This homeomorphism is constructed by adapting a quasiperiodically
forced circle homeomorphism (see [Be, Thm. 1.2]; cf. Counterexample 2)
with a Cantor minimal set, and blowing up an orbit of points to arcs, using
a construction due to M. Rees [R1, R2]. The minimal set thus constructed
has a countable number of arcs among its connected components. The ex-
amples below show that in our class Homeo∗(T2) there exist minimal sets
which are non-trivial extensions of Cantor sets and which have separating
connected components among its connected components.

Example 4 (Type III: extensions of Cantor sets). There exist f ∈
Homeo∗(T2) for which M is a non-trivial extension of a Cantor set whose
non-degenerate components are simple closed curves.

Remark 1. In a way similar to [B1, Thm. 3] (cf. Example 1), by defining
a suitable family of arcs in the disks enclosed by the non-degenerate com-
ponents of the above minimal set, if we pass to the quotient by collapsing
these arcs to points, this gives new quotient homeomorphisms of type III
for which the corresponding minimal set is again a non-trivial extension of
a Cantor set, possible connected components of which include flowers and
dendrites.

The proof of the above example needs two further lemmas. LetQ ⊂ T1 be
a Cantor set and denote by {Ik}k∈Z the collection of connected components
of T1 \Q. In what follows, we denote by |I| the length (relative to the Haar
measure on the circle) of an interval I ⊂ T1, and by d̃1 the Euclidean metric
on R.

Lemma 23. There exist Cantor sets Q ⊂ T1 with the following property:
there exists a point x0 ∈ Qirr, an interval J ⊂ T1 with ∂J ⊂ Qirr and
x0 as midpoint of J , and a constant C > 0, such that for every interval
Ik ⊂ J \ Q, k ≥ 1, we have |Ik| ≤ C(d(x0, xk))2, where xk is the midpoint
of the interval Ik.

Proof. First, let [−1, 1] ⊂ R with midpoint 0 ∈ [−1, 1]. Inductively delete
intervals from [−1, 1]: at each step t ≥ 1, choose a point xt ∈ (−1, 1)\⋃t−1

s=0 I
′
s

with xt 6= 0, and delete an interval I ′t ⊂ (−1, 1) \⋃t−1
s=0 I

′
s, centred at xt and

not overlapping 0, of length at most (d̃1(0, xt))2. Repeating this ad infinitum
produces a Cantor set Q′ ⊂ [−1, 1]. Given a Cantor set Q ⊂ T1, take a
small (closed) interval J ⊂ T1 for which ∂J ⊂ Qirr. Replacing J ∩ Q ⊂ T1

with a rescaled copy of Q′ into J yields the desired Cantor set in T1, with
C = |J |/2.

Lemma 24. Let f ∈ Homeo#(T2) be the product of two Denjoy coun-
terexamples ϕ,ψ ∈ Homeo(T1), semiconjugate to an irrational translation τ
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through π. Let Q1,Q2 ⊂ T1 be two Cantor minimal sets of ϕ and ψ respec-
tively, with points x0 ∈ Q1,irr and y0 ∈ Q2,irr and corresponding intervals
J1 and J2 satisfying the conditions of Lemma 23. Set z0 := (x0, y0) ∈ Rπ.
For every 0 < r ≤ 1 and θ1, θ2 ∈ [0, 2π) with 0 < |θ1 − θ2| < π, we have
W(r, θ1, θ2) ∩ (Rπ \ Of (z0)) 6= ∅.

Proof. First, we observe that Rπ = Q1,irr × Q2,irr, so the minimal set
of f is M = Cl(Q1,irr × Q2,irr) = Q1 × Q2, the product of the Cantor sets
of the factors ϕ and ψ. Let Bδ0 ⊂ T2 be the closed embedded disk centred
at z0, where δ0 is small enough so that the disk is contained in the rectangle
of width |J1| and height |J2| centred at z0.

Relative to the disk Bδ0 , let W(r, θ1, θ2) be any wedge, denoted W for
brevity from now on. Let 0 < ν < π, where ν = |θ1−θ2| is the angle between
the two rays ρθ1 , ρθ2 that bound the wedge, and define ρ̄ := ρ(θ1+θ2)/2, the
bisector of the two rays. Further, let ν ′ ∈ [0, 2π) be the angle between ρ̄
and the positive horizontal line through z0. As the vertical and horizontal
lines through z0 contain points of Rπ \ Of (z0) arbitrarily close to z0, by
symmetry we may assume that 0 < ν ′ < π/2. Given a point w = (x, y) ∈
ρ̄∩W, let `h(w), `v(w) be the horizontal and vertical straight lines through
w respectively and define the intercepts `′h(w) = `h(w) ∩ W and `′v(w) =
`v(w)∩W, which for w sufficiently close to z0 only pass through ρθ1 and ρθ2
(and not through the circular arc that cuts off the wedge).

There exist constants Kh,Kv > 0, depending only on θ1 and θ2, such that
`′h(w) = Khd(y, y0) and `′v(w) = Kvd(x, x0). Given any 0 < r ≤ 1, choose
w ∈ ρ̄ such that d(w, z0) < δ0r. As the lengths `′h(w), `′v(w) behave linearly,
and the lengths |I1,k| ≤ C1(d(x0, xk))2 and |I2,t| ≤ C2(d(y0, yt))2 behave
quadratically, with C1, C2 > 0 uniform constants, if we choose w sufficiently
close to z0, then w ∈ R := I1,k × I2,t for some k, t ∈ Z, with Cl(R) properly
contained in W. The cornerpoints of the rectangle R are limit points of Rπ,
and thus also of Rπ \ Of (z0), as a neighbourhood of any point z ∈ Rπ
contains uncountably many points and only a countable orbit is deleted.
Therefore, as Cl(R) ⊂ W, we see thatW∩ (Rπ \Of (z0)) 6= ∅, as required.

Proof of Example 4. We start with f ∈ Homeo#(T2) which is the prod-
uct of two Denjoy counterexamples ϕ,ψ ∈ Homeo(T1), with Cantor minimal
sets M1 = Q1 and M2 = Q2 respectively, semiconjugate to an irrational
translation τ through π. As every Cantor set in T1 can be realized as a
minimal set of a Denjoy counterexample, we can choose ϕ and ψ such that
the Cantor sets Qi with i = 1, 2, with x0 ∈ Q1,irr and y0 ∈ Q2,irr and
corresponding intervals J1 and J2, satisfy the conditions of Lemma 23. Let
z0 = (x0, y0) ∈ Rπ and let Bδ0 ⊂ T2 be the closed embedded Euclidean disk
with radius δ0 > 0 small enough so that Bδ0 is contained in the rectangle
of width |J1| and height |J2| centred at z0. Through the procedure in Sec-
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tion 3.2, we blow up the orbit Of (z0) to a collection of disks to obtain a
homeomorphism f ′ ∈ Homeo∗(T2) and a continuous map φ : T2 → T2 such
that φ ◦ f ′ = f ◦ φ and φ−1(fk(z0)) = Cl(Σk) is a closed topological disk,
where γk = ∂Σk is a simple closed curve, for every k ∈ Z.

Σk

Fig. 5. A non-trivial extension of a Cantor set M′; Cantor dust accumulates on the
boundary γk ⊂ M′ of each disk Σk and, conversely, every point of the Cantor dust is a
limit point of increasingly small disks Σk.

If we denote by Σ the doubly essential component of the complement of
the minimal set M of f , then Σ′ := φ−1(Σ) ⊂ T2 is open as φ is continu-
ous. As φ : Σ′ → Σ is one-to-one and continuous, it is a homeomorphism.
Therefore, as Σ is doubly essential, take for example the vertical and hori-
zontal essential simple closed curves in Σ; then these are taken by φ−1|Σ to
essential simple closed curves in Σ′ with the same homotopy type, as φ is
homotopic to the identity. Therefore, Σ′ is doubly essential indeed and thus
M′ is of type III. The other connected components of the complement of
M′ are, by construction, the disks Σk for k ∈ Z.

Now, φ−1(Rπ \ Of (z0)) ⊂M′ are all singletons, which by Lemma 16(2)
combined with Lemma 24 accumulate on the boundaries of the disks Σk
to form the non-trivial connected components γk (see Figure 5). Thus, as
M′ = Cl(φ−1(Rπ \ Of (z0))) by Lemma 16(1), γk ⊂ M′ for every k ∈ Z,
which are the desired non-degenerate components of M′.

Remark 2. In the proof of Example 4, we explicitly constructed a semi-
conjugacy between the extension of the Cantor setM′ and the original Can-
tor setM. Theorem A in essence says that all extensions of Cantor sets are
of this form.

4. Concluding remarks. Let us conclude this paper with the following
remarks. Corollary 1 states that homeomorphisms that admit a type I or II
minimal set have in fact a unique minimal set. This poses the natural

Question 1 (Uniqueness of type III minimal sets). Let f ∈ Homeo∗(T2)
with a minimal set M of type III. Is the minimal set M unique?
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Note that, by Lemma 14, a (possible) counterexample to the above ques-
tion could not be an element of Homeo#(T2). Further, it would be interest-
ing to get a completer description of the possible topology of extensions of
Cantor sets.

Question 2 (Topology of type III minimal sets). Let f ∈ Homeo∗(T2)
with a minimal set M of type III.

(i) Exactly what continua can arise as a connected component of M?
(ii) Can M have uncountably many non-degenerate connected compo-

nents? Can all components be non-degenerate?

For example, a classical result by R. Moore [M] implies that not all
components ofM can be triodic continua, as the number of connected com-
ponents of M is uncountable (3). However, it is not entirely clear whether
uncountably many components could be for example an arc.
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