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Closed graph multi-selections
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Valentin Gutev (Durban)

Abstract. A classical Lefschetz result about point-finite open covers of normal spaces
is generalised by showing that every lower semi-continuous mapping from a normal space
into the nonempty compact subsets of a metrizable space admits a closed graph multi-
selection. Several applications are given as well.

1. Introduction. For a space Y , we will use 2Y to denote the power
set of Y , i.e. the set of all subsets of Y . Also, let

F (Y ) = {S ∈ 2Y : S 6= ∅ and S is closed},
C (Y ) = {S ∈ F (Y ) : S is compact}.

Any relation R ⊂ X × Y can be represented as a map ΦR : X → 2Y by
letting ΦR(x) = {y ∈ Y : 〈x, y〉 ∈ R}, x ∈ X. This map is usually called a
set-valued (or multi-valued) mapping, and sometimes a multifunction. The
converse is also true. To any set-valued mapping Φ : X → 2Y one can
associate the relation

Graph(Φ) = {〈x, y〉 ∈ X × Y : y ∈ Φ(x)},
which is called the graph of Φ. Thus, R = Graph(ΦR).

The inverse relation R−1 ⊂ Y ×X of a relation R ⊂ X×Y is defined by
R−1 = {〈y, x〉 ∈ Y ×X : 〈x, y〉 ∈ R}. Clearly, (R−1)−1 = R. In particular,
for any set-valued mapping Φ : X → 2Y the inverse Φ−1 : Y → 2X is
defined by

Graph(Φ−1) = (Graph(Φ))−1,

and we always have (Φ−1)−1 = Φ. There is a more practical way to describe
the inverse of a mapping Φ : X → 2Y . Namely, for a set B ⊂ Y , let

Φ−1[B] = {x ∈ X : Φ(x) ∩B 6= ∅}.
Then Φ−1(y) = Φ−1[{y}] for every y ∈ Y . Finally, let us explicitly mention
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that we will make no difference between single-valued and singleton-valued
mappings; such mappings represent the same relation.

A map f : X → Y is a selection (or a single-valued selection) for Φ :
X → 2Y if f(x) ∈ Φ(x) for every x ∈ X. A set-valued mapping ψ : X → 2Y

is a multi-selection (or a set-valued selection) for Φ : X → 2Y if ψ(x) ⊂ Φ(x)
for every x ∈ X. A mapping Φ : X → 2Y is lower semi-continuous, or l.s.c.,
if the set Φ−1[U ] is open in X for every open U ⊂ Y . A mapping Ψ : X → 2Y

is upper semi-continuous, or u.s.c., if the set

Ψ#[U ] = X \Ψ−1[Y \ U ] = {x ∈ X : Ψ(x) ⊂ U}
is open in X for every open U ⊂ Y . For convenience, we say that Ψ : X → 2Y

is usco if it is u.s.c. and nonempty-compact-valued.
This paper extends the ideas of [6, 7], and its main goal is to demonstrate

that combinatorial properties of covers of topological spaces can be trans-
formed with ease into multi-selections of set-valued mappings with point-
images in completely metrizable spaces. A starting point is the following
theorem of Michael’s.

Theorem 1.1 ([10]). If X is a paracompact space, Y is completely
metrizable, and Φ : X → F (Y ) is l.s.c., then there is a pair of mappings
〈ϕ,ψ〉 : X → C (Y ) such that ϕ is l.s.c., ψ is u.s.c. and ϕ(x) ⊂ ψ(x) ⊂ Φ(x)
for all x ∈ X.

In this theorem, if Y is assumed to be a discrete space, then the stated
selection property means that for every open cover U of X there is an open
locally-finite cover {VU : U ∈ U } of X such that VU ⊂ U for all U ∈ U (see
Proposition 3.1). That is, any Hausdorff space X (actually, a T1-space X)
which has this property with respect to discrete spaces will be paracompact,
so Theorem 1.1 yields a characterisation of paracompactness. In the present
paper, we prove the following theorem which transforms another well-known
cover property (see Lemma 3.3) into the existence of multi-selections.

Theorem 1.2. For a T1-space X, the following are equivalent:

(a) X is normal.
(b) If Y is a metrizable space and Φ : X → C (Y ) is l.s.c., then there

exists a pair of mappings 〈ϕ,ψ〉 : X → C (Y ) such that ϕ is l.s.c.,
ψ has a closed graph and ϕ(x) ⊂ ψ(x) ⊂ Φ(x) for all x ∈ X.

(c) If Y is a metrizable space, then every l.s.c. Φ : X → C (Y ) admits
a closed graph multi-selection.

It is well-known that every paracompact space is normal, but the con-
verse is not true. In the same way, every u.s.c. mapping into the closed
subsets of a regular space has a closed graph, but not every mapping which
has a closed graph is u.s.c.
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The paper is organised as follows. In the next section are summarised
some basic properties of closed graph mappings. Section 3 provides rela-
tions between cover properties and set-valued mappings with point-images
in discrete spaces, in particular it contains the proof of Theorem 1.2 for
a discrete Y (see Corollary 3.5). Section 4 provides the main interface be-
tween set-valued mappings with a discrete range and those with a com-
pletely metrizable one. The proof of Theorem 1.2 is finally accomplished in
Section 5. Some related results and applications are obtained in the same
section (see Theorems 5.1 and 5.2). Section 6 deals with some characterisa-
tions of paracompactness-like properties, in Theorems 6.1–6.3.

2. Some properties of closed graph mappings. If ψ : X → 2Y and
x ∈ X, then {x} × ψ(x) = ({x} × Y ) ∩ Graph(ψ). Thus, if X is a T1-space
and ψ : X → 2Y has a closed graph, then ψ must be closed-valued. However,
ψ−1 : Y → 2X also has a closed graph. Hence, if Y is a T1-space, then ψ−1(y)
is closed in X for every y ∈ Y . This property holds for arbitrary compact
subsets of Y . Namely, according to Kuratowski’s theorem (see [4, 3.1.16]),
we have the following observation.

Proposition 2.1. If Y is a Hausdorff space and ψ : X → 2Y has a
closed graph, then ψ−1[K] is closed in X for every compact K ⊂ Y . In
particular, if Y is a compact Hausdorff space and ψ : X → 2Y has a closed
graph, then ψ is u.s.c.

Our next observation deals with products of such mappings; its proof is
also easy and is left to the reader.

Proposition 2.2. If each mapping ψα : X → F (Yα), α ∈ A , has a
closed graph, then the product mapping ψ(x) =

∏
{ψα(x) : α ∈ A }, x ∈ X,

also has a closed graph.

For a set-valued mapping η : Y → 2Z and B ⊂ Y , let

(2.1) η[B] =
⋃
{η(y) : y ∈ B} = (η−1)−1[B].

We conclude this section with another construction of closed graph map-
pings.

Proposition 2.3. Let θ : X → 2Y have a closed graph, and let η :
Y → 2Z be such that its inverse η−1 : Z → 2Y is usco. Then the composite
mapping ψ(x) = η[θ(x)], x ∈ X, has a closed graph.

Proof. Take a point 〈x, z〉 /∈ Graph(ψ). Then

z /∈ ψ(x) = η[θ(x)] =
⋃
{η(y) : y ∈ θ(x)}.

By hypothesis, η−1 is nonempty-compact-valued, so K = η−1(z) is a non-
empty compact subset of Y such that ({x} × K) ∩ Graph(θ) = ∅. Since
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θ has a closed graph, there are open sets U ⊂ X and V ⊂ Y such that
{x} × K ⊂ U × V and (U × V ) ∩ Graph(θ) = ∅. Since η−1 is u.s.c. and
η−1(z) = K ⊂ V , the set W = (η−1)#[V ] is open in Z and contains z.
Thus, U ×W is an open subset of X × Z such that 〈x, z〉 ∈ U ×W and
(U ×W ) ∩ Graph(ψ) = ∅.

3. Multi-selections and cover properties. Any family U ⊂ 2X of
subsets of a spaceX can be represented as a set-valued mapping U : D→ 2X

by considering U as an indexed collection {U (d) : d ∈ D} of subsets of X. In
this section, and in what follows, the set D of indices will always be endowed
with the discrete topology. This assumption cannot help much in deriving
properties of U from properties of the set-valued mapping U : D → 2X

because these properties are actually provided by the space X. The benefit
of this assumption comes to light when we look at properties of the inverse
mapping U −1 : X → 2D. Different parts of the following proposition were
used implicitly by several authors (see, e.g., [2, 7, 12]).

Proposition 3.1. For a space X and a family U : D→ 2X , the follow-
ing hold:

(a) U is a cover of X iff U −1 is nonempty-valued (i.e., U −1 : X →
F (D)).

(b) U is an open cover of X iff U −1 : X → F (D) has an open graph
(in particular, is l.s.c.).

(c) U is a point-finite cover of X iff U −1 : X → C (D).
(d) U is a locally-finite closed cover of X iff U −1 : X → C (D) and is

u.s.c. (i.e., U −1 is usco).

A family V : D → 2X is an indexed refinement of U : D → 2X if
V (d) ⊂ U (d) for every d ∈ D; in the Introduction we then called the
set-valued mapping V a multi-selection for U . Moreover, V : D → 2X is
a multi-selection for U : D → 2X if and only if Graph(V ) ⊂ Graph(U ),
but the inverse mappings preserve the graph-inclusion. Hence, we have the
following immediate observation.

Proposition 3.2. Let X be a set, and let U : D→ 2X and V : D→ 2X

be families of subsets of X. Then V is an indexed refinement of U if and
only if the mapping V −1 : X → 2D is a multi-selection for U −1 : X → 2D.

In this section, we are interested in the following result of Lefschetz [9]
(see also [4]), and its possible interpretation in terms of set-valued mappings.

Lemma 3.3 ([9]). Let X be a normal space, and let U : D → 2X be an
open point-finite cover of X. Then X has an open cover V : D → 2X such
that V (d) ⊂ U (d) for every d ∈ D.
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In view of Lemma 3.3, to any set-valued mapping ϕ : X → 2Y we
associate another one ϕ : X → 2Y defined by ϕ(x) = ϕ(x), x ∈ X, which
will play the role of pointwise closure of ϕ. We also associate to ϕ the uniform
closure ϕu : X → 2Y defined by Graph(ϕu) = Graph(ϕ). In general, ϕ and
ϕu may not coincide, but in the case of a discrete domain they do.

Proposition 3.4. If ψ : D → 2X is a closed-valued mapping, then it
has a closed graph. In particular, ψ u = ψ whenever ψ : D→ 2X .

Proof. Take a point 〈d, x〉 ∈ Graph(ψ) and a neighbourhood U of x in X.
Then ({d}×U)∩Graph(ψ) 6= ∅, and therefore U ∩ψ(d) 6= ∅. By hypothesis,
ψ(d) is closed in X. Hence, x ∈ ψ(d).

Now, we turn to the following characterisation of normality which is
actually Theorem 1.2 for the case of a discrete space Y .

Corollary 3.5. For a T1-space X and a discrete space D with at least
two distinct points, the following are equivalent:

(a) X is normal.
(b) Every l.s.c. mapping Φ : X → C (D) admits a pair of mappings
〈ϕ,ψ〉 : X → C (D) such that ϕ is l.s.c., ψ has a closed graph, and
ϕ(x) ⊂ ψ(x) ⊂ Φ(x) for all x ∈ X.

(c) Every l.s.c. Φ : X → C (D) admits a closed graph multi-selection.

Proof. (a)⇒(b). Suppose that X is normal and Φ : X → C (D) is l.s.c.
By Proposition 3.1, U = Φ−1 : D → 2X is an open point-finite cover
of X. Hence, by Lemma 3.3, X has an open cover V : D → 2X such that
V (d) ⊂ U (d) for all d ∈ D. By Propositions 3.1, 3.2 and 3.4, the pair
〈ϕ,ψ〉 : X → C (D) is as required, where ϕ = V −1 and ψ = ϕu. The
implication (b)⇒(c) is obvious. To show finally that (c)⇒(a), take disjoint
closed sets F0, F1 ⊂ X, and define an l.s.c. mapping Φ : X → C ({0, 1}) by
Φ(x) = {i} if x ∈ Fi, i = 0, 1, and Φ(x) = {0, 1} otherwise. By (c), Φ has a
closed graph multi-selection ψ : X → C ({0, 1}). Since the discrete two-point
space {0, 1} is compact, by Proposition 2.1, ψ is u.s.c. Thus, Ui = ψ#[{i}],
i = 0, 1, are disjoint open subsets of X such that Fi ⊂ Ui, i = 1, 2.

4. Trees—an interface to completely metrizable spaces. A par-
tially ordered set (T,�) is a tree if {s ∈ T : s ≺ t} is well-ordered for every
t ∈ T , where “s ≺ t” means that s � t and s 6= t. For a tree (T,�), we
use T (0) to denote the set of minimal elements of T . Given an ordinal α, if
T (β) is defined for every β < α, then T (α) denotes the minimal elements of
T \ (T �α) where T �α =

⋃
{T (β) : β < α}. The set T (α) is called the αth

level of T , while the height of T is the least ordinal α such that T �α = T .
We say that (T,�) is an α-tree if its height is α. In this case, a natural
set-valued mapping associates to every β < α the corresponding level T (β).
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We will denote this mapping again by T (i.e., T : α→ 2T ), and refer to it as
the level mapping of (T,�). Clearly, each level mapping is nonempty-valued.
A maximal linearly ordered subset of a tree (T,�) is called a branch, and
B(T ) is used to denote the set of all branches of T . Finally, let us recall that
a tree (T,�) is pruned if every element of T has a successor in T , i.e. for
every s ∈ T there exists t ∈ T with s ≺ t. In these terms, an ω-tree (T,�)
is pruned if each branch β ∈ B(T ) is infinite.

Given a set D and a nonempty-valued mapping T : ω → 2D, let Π(T )
be the set of all single-valued selections for T , i.e. f ∈ Π(T ) if and only if
f : ω → D and f(n) ∈ T (n) for every n < ω. In fact, Π(T ) =

∏
{T (n) :

n < ω} and we will consider it as a topological space endowed with the
Tikhonov product topology generated by the discrete topology on D. The
resulting space is always a completely metrizable non-Archimedean space,
and it is the Baire space of weight τ provided τ = |T (n)| ≥ ω for every
n < ω (see [4]). We will refer to Π(T ) as a generalised Baire space. In these
terms, any generalised Baire space Π(T ) is a closed subset of the Baire space
of weight τ = |D|.

To any ω-tree (T,�) we may associate the corresponding generalised
Baire space Π(T ) generated by the level mapping T : ω → 2T of (T,�). If,
moreover, (T,�) is also pruned, then β ∩ T (n) 6= ∅ for every β ∈ B(T ) and
n < ω. Hence, every branch β ∈ B(T ) can be identified with a selection
β : ω → T for T : ω → 2T for which β(n) ∈ β ∩ T (n) and β(n) ≺ β(n+ 1),
n < ω. Thus, we may consider B(T ) as a topological space endowed with
the relative topology as a subspace of the generalised Baire space Π(T ).
We will refer to this topology on B(T ) as the branch topology, and to the
resulting topological space as the branch space.

Proposition 4.1 ([6]). If (T,�) is a pruned ω-tree, then the branch
space B(T ) is a closed subset of the generalised Baire space Π(T ). In par-
ticular, B(T ) is a completely metrizable non-Archimedean space, and it is
compact if and only if all levels of (T,�) are finite.

There is another way to deal with the branch space of a pruned ω-tree
(T,�). Following Nyikos [13], for every t ∈ T , we let

(4.1) O(t) = {β ∈ B(T ) : t ∈ β}.
Proposition 4.2 ([6]). If (T,�) is a pruned ω-tree, then the family

{O(t) : t ∈ T} is a base for the branch topology on B(T ).

A path π in a tree (T,�) is a subset π ⊂ T which is linearly ordered
by � and s ∈ π whenever s � t and t ∈ π. Clearly, every maximal path is
a branch. For a nonmaximal path π ⊂ T , the node of π in T is the subset
node(π) ⊂ T defined by t ∈ node(π) if and only if π = {s ∈ T : s ≺ t}. Let
N (T ) be the set of all nodes of T . If ν ∈ N (T ) for some ω-tree (T,�), then
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ν = node(π) for some finite path π ⊂ T . In case π = ∅, we have

node(∅) = {t ∈ T : t ∈ T (0)} = T (0).

Otherwise, if π 6= ∅, then π = {s ∈ T : s � t} where t = max� π. In this
case, we will say that the node ν ∈ N (T ) is generated by t, and will simply
write ν = node(t).

Definition 4.3. Given a set X and a pruned ω-tree (T,�), a set-valued
mapping S : T → 2X is a sieve on X if

(i) X = S [node(∅)],
(ii) S (t) = S [node(t)] for every t ∈ T .

Sieves provide the main interface between systems of covers and metriz-
able spaces. Namely, for a tree (T,�) and a mapping S : T → 2X , we define
another mapping ΩS : B(T )→ 2X , called the polar mapping, by letting

(4.2) ΩS (β) =
⋂
{S (t) : t ∈ β}, β ∈ B(T ).

The value ΩS (β) for a branch β ∈ B(T ) is called the polar of β by S . The
inverse mapping Ω−1

S : X → 2B(T ) will be denoted by fS . Thus, for every
x ∈ X, we have

(4.3) fS (x) =
{
β ∈ B(T ) : x ∈ ΩS (β)

}
.

The mapping fS corresponding to a sieve S : T → 2X was studied in [6].
In order to state some of the results obtained there, let P be a property of
indexed covers of topological spaces, and let (T,�) be an ω-tree. We shall
say that a mapping S : T → 2X has the property P, or is a P mapping,
if each family S �T (n) : T (n) → 2X , n < ω, has the property P. We will
be mainly interested in P sieves, when P is the property “locally-finite”,
“point-finite”, etc.

Lemma 4.4 ([6]). Let X be a space, and let S : T → 2X be a sieve
on X. Then fS : X → 2B(T ) is always nonempty-valued. Moreover,

(a) fS : X → 2B(T ) is compact-valued provided S is point-finite.
(b) fS : X → 2B(T ) is l.s.c. provided S is open-valued.
(c) fS : X → 2B(T ) is usco provided S is locally-finite and closed-

valued.

Here, we refine some of the results of Lemma 4.4, and also deal with the
case when fS has a closed graph. To prepare for this, following Choban
and Nedev [3] (see also [12]), a mapping S : T → 2X defined on a pruned
ω-tree (T,�) will be called a semi-sieve on X if

(i) X = S [T (n)] for every n < ω,
(ii) S [node(t)] ⊂ S (t) for every t ∈ T .
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Also, let us recall that a subset S ⊂ T of a tree (T,�) is a subtree if (S,�)
is itself a tree.

Lemma 4.5. Let X be a space, S : T → 2X be a semi-sieve on X
and, for every n < ω, let Sn = S �T (n) : T (n) → 2X . Endowing T with
the discrete topology, let ΠS (x) =

∏
{S −1

n (x) : n < ω}, x ∈ X, be the
corresponding product mapping from X to the subsets of the generalised
Baire space Π(T ). Then

(a) fS (x) = ΠS (x) ∩B(T ) for every x ∈ X, and, in particular, fS is
always closed-valued.

(b) fS is nonempty-valued provided S is point-finite.

Proof. To show (a), take a point x ∈ X. By (4.2) and (4.3), β ∈ fS (x) if
and only if x ∈ ΩS (β) =

⋂
{S (t) : t ∈ β}. Moreover, for a map β : ω → T ,

we have β ∈ ΠS (x) if and only if β(n) ∈ T (n) and x ∈ S (β(n)), for all
n < ω. Consequently, for a branch β ∈ B(T ), we find that β ∈ fS (x) if
and only if β ∈ ΠS (x). The second part of (a) follows from Proposition 4.1
and the fact that ΠS : X → 2Π(T ) is always closed-valued. The proof of (b)
follows an idea in the proof of [7, Lemma 3.2]. Namely, for a point x ∈ X,
set T (x) = {t ∈ T : x ∈ S (t)}. According to the definition of a semi-sieve,
(T (x),�) is a subtree of (T,�) because S is order-preserving with respect
to reverse inclusion. Also, T (x) is infinite because, for every n < ω, x ∈ S (t)
for some t ∈ T (n). Since each level of T (x) is finite, by König’s lemma (see
Lemma 5.7 in Chapter II of [8]), T (x) contains an infinite branch β(x). Since
β(x) is also a branch in T , from (4.3) we conclude that β(x) ∈ fS (x).

By Lemma 4.4, the inverse polar mapping corresponding to a sieve S :
T → 2X is always nonempty-valued. Thus, according to Propositions 2.2
and 3.4, Lemma 4.5 implies the following further property of this mapping.

Corollary 4.6. Let X be a space, and let F : T → 2X be a closed-
valued sieve on X. Then fF : X → 2B(T ) is nonempty-valued and has a
closed graph.

Recall that a map f : Z → Y is perfect if it is a continuous closed map
such that each f−1(y), y ∈ Y , is compact. Our next result is a consequence
of Lemma 4.4, and represents the well-known fact that every completely
metrizable space is a perfect image of a closed subset of the Baire space.
As emphasised in the Introduction, we will make no difference between
singleton-valued mappings g : Z → 2Y and single-valued ones g : Z → Y .

Corollary 4.7. Every completely metrizable space Y has an open-
valued locally-finite sieve R : T → 2Y such that the polar mapping ΩR :
B(T )→ 2Y is singleton-valued and perfect.
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Proof. Let d be a complete metric on Y compatible with the topology
of Y . Since Y is paracompact, it has an open-valued locally-finite sieve
R : T → 2Y such that R(t) 6= ∅ and diamd(R(t)) < 2−n for every t ∈ T (n)
and n < ω. Since (Y, d) is complete, by Cantor’s Theorem (see [4]) each
polar ΩR(β), β ∈ B(T ), is a singleton and if ΩR(β) ⊂ V for some open
V ⊂ Y and β ∈ B(T ), then R(t) = R(t) ⊂ V for some t ∈ β. Hence,
ΩR is continuous (see (4.1) and Proposition 4.2). Since R : T → F (Y ) is
a closed-valued locally-finite sieve on Y , by Lemma 4.4 the inverse polar
mapping fR : Y → 2B(T ) is usco. Hence, ΩR is also perfect.

A sieve S : T → 2Y on space Y is complete (see [1, 11]) if for every
branch β ∈ B(T ) and every nonempty centred (i.e., with the finite inter-
section property) family F of sets which refines {S (t) : t ∈ β} we have⋂
{F : F ∈ F} 6= ∅. In other words, a sieve S : T → 2Y is complete if each

family {S (t) : t ∈ β}, β ∈ B(T ), is a compact filter base (i.e., each ultra-
filter containing it is convergent) [14]. If S : T → 2Y is a nonempty-valued
complete sieve on a space Y , then for every branch β ∈ B(T ), the polar
ΩS (β) is a nonempty compact subset of Y , and every open V ⊃ ΩS (β)
contains some S (t) for t ∈ β (see, e.g., [1, Proposition 2.10]). In terms of
properties of set-valued mappings, this means that in this case the polar
mapping ΩS : B(T )→ 2Y is usco.

In [6], a sieve S : T → 2Y on the space Y was called complete if for
every branch β ∈ B(T ), the polar ΩS (β) is a nonempty compact subset
of Y , and every open V ⊃ ΩS (β) contains some S (t) for t ∈ β. This
corresponds to what is usually called an open-valued strong complete sieve
S : T → 2Y . Finally, recall that a space Y is sieve-complete if it has
an open-valued complete sieve. Every regular sieve-complete space has an
open-valued strong complete sieve (see [1, Proposition 2.10] and [11, Lemma
2.5]). Let us also remark that every Čech-complete space is sieve-complete,
and it was shown in [1] (see also [11]) that the two concepts are equivalent
in the presence of paracompactness.

Now, we also have the following observation for the case of paracompact
Čech complete spaces which is very similar to Corollary 4.7.

Corollary 4.8. Every paracompact Čech complete space Y has an open-
valued locally-finite sieve R : T → 2Y such that both the polar mapping
ΩR : B(T )→ 2Y and its inverse fR : Y → 2B(T ) are usco.

Proof. As mentioned above, Y has an open-valued complete sieve S :
T → 2Y , being sieve-complete. Since Y is paracompact, by [11, Lemma 2.2]
there exists an open-valued locally-finite sieve R : T → 2Y on Y such that
R is a multi-selection for S , i.e. R(t) ⊂ S (t) for every t ∈ T . We may
assume that R(t) 6= ∅ for every t ∈ T . Since R is also a complete sieve
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on Y , being a multi-selection for S , as mentioned above, ΩR : B(T )→ 2Y

is usco. Since R : T → 2Y is a closed-valued locally-finite sieve on Y , by
Lemma 4.4 the inverse polar mapping fR : Y → 2B(T ) is also usco.

5. Normality and closed graph multi-selections. In this section,
we first prove Theorem 1.2.

Proof of Theorem 1.2. According to Corollary 3.5, it only suffices to
show that (a)⇒(b). So, let X be a normal space, Y be metrizable, and let
Φ : X → C (Y ) be an l.s.c. mapping. Observe that Φ : X → C (Y ) ⊂ C (Z)
remains l.s.c. whenever Y ⊂ Z. Hence, we may assume that Y is itself a
completely metrizable space. Then, by Corollary 4.7, Y has an open-valued
locally-finite sieve R : T → 2Y whose polar mapping ΩR : B(T ) → 2Y

is singleton-valued and perfect. Since Φ is l.s.c., the composite mapping
L = Φ−1 ◦ R : T → 2X defines an open-valued sieve on X. Since Φ is
compact-valued and R is locally-finite, it now follows that L is point-finite.
Then there exists an open-valued sieve S : T → 2X on X such that S is a
multi-selection for L . Indeed, {L (t) : t ∈ T (0)} is an open and point-finite
cover of X. Hence, by Lemma 3.3, X has an open cover {S (t) : t ∈ T (0)}
such that S (t) ⊂ L (t) for every t ∈ T (0). Take an element s ∈ T (0). Then
{L (t) : t ∈ node(s)} is an open and point-finite cover of S (s). Since S (s)
is also normal, by Lemma 3.3 it has an open cover {G (t) : t ∈ node(s)} such
that G (t) ⊂ L (t), t ∈ node(s). Set S (t) = G (t) ∩S (s), t ∈ node(s), and
extend these arguments by induction. This completes the construction of
the sieve S : T → 2X . Let us show that the mappings

ϕ = ΩR ◦ fS : X → 2Y and ψ = ΩR ◦ fS : X → 2Y

are as required. Since ΩR is continuous, by Lemma 4.4, ϕ : X → C (Y )
and is l.s.c. Since both ΩR and Ω−1

R
= fR are usco, by Corollary 4.6 and

Proposition 2.3, ψ : X → C (Y ) and has a closed graph. Finally, according to
[6, Lemma 7.1], ψ is a multi-selection for Φ because ΩR is singleton-valued.

The rest of this section deals with related results and applications for
normal spaces. In our next result, and in what follows, a mapping ψ : X→2Y

is a section for Φ : X → 2Y (see [6]) if ψ(x) ∩ Φ(x) 6= ∅ for every x ∈ X.

Theorem 5.1. Let X be a normal space, Y be a paracompact Čech com-
plete space, and let Φ : X → C (Y ) be an l.s.c. mapping. Then Φ has a closed
graph section ψ : X → C (Y ).

Proof. According to Corollary 4.8, the space Y has an open-valued local-
ly-finite sieve R : T→2Y such that both the polar mapping ΩR : B(T )→2Y

and its inverse fR : Y →2B(T ) are usco. Since Φ is l.s.c. and compact-valued
and R is open-valued and locally-finite, the composition L = Φ−1 ◦ R :



Closed graph multi-selections 95

T → 2X is an open-valued point-finite sieve on X. We may now accomplish
the proof in the same way as that of Theorem 1.2. Namely, exactly as in
that proof construct an open-valued sieve S : T → 2X on X such that S
is a multi-selection for L . Then the mapping ψ = ΩR ◦ fS : X → 2Y is as
required. Indeed, as shown in the previous proof, ψ : X → C (Y ) and has a
closed graph. Finally, by [6, Lemma 7.1], ψ(x)∩Φ(x) 6= ∅ for every x ∈ X.

Let us remark that Theorem 5.1 can be deduced from Theorem 1.2 by
using Froĺık’s result [5] (see also [4, 5.5.9(a)]) that, in this case, there exists
a perfect map g : Y → Z of Y onto a completely metrizable space Z (see
the proof of [6, Corollary 1.3]). Concerning the section constructed in this
theorem, let us explicitly mention that if Φ : X → C (Y ), then ψ = Φu has
a closed graph but is not necessarily compact-valued. For instance, define
an l.s.c. mapping Φ : [0, 1]→ C (R) by Φ(0) = {0} and Φ(x) = [−1/x, 1/x],
x 6= 0. Then Φu(0) = R.

In our last result of this section, dim(X) means the covering dimension
of X.

Theorem 5.2. For a T1-space X, the following are equivalent:

(a) X is a normal space with dim(X) = 0.
(b) Whenever Y is a metrizable space, every l.s.c. Φ : X → C (Y ) has

an l.s.c. closed graph multi-selection.

Proof. (a)⇒(b). Suppose that X is a normal space with dim(X) = 0,
and Φ : X → C (Y ) is an l.s.c. mapping for some metrizable space Y . As in
the proof of Theorem 1.2, we may assume that Y is completely metrizable.
Following the same proof, there exists an open-valued locally-finite sieve
R : T → 2Y on Y such that the polar mapping ΩR : B(T )→ 2Y is singleton-
valued and perfect. Since dim(X) = 0, there now exists a clopen-valued
sieve S : T → 2X such that S (t) ⊂ Φ−1[R(t)], t ∈ T . Briefly, {Φ−1[R(t)] :
t ∈ T (0)} is an open and point-finite cover of X because Φ is l.s.c. and
compact-valued. Hence, by Lemma 3.3, X has a closed cover {Ft : t ∈ T (0)}
such that Ft ⊂ Φ−1[R(t)] for every t ∈ T (0). Since dim(X) = 0, for every
t ∈ T (0) there exists a clopen set S (t) ⊂ X such that Ft ⊂ S (t) ⊂
Φ−1[R(t)]. We may now proceed by induction. Namely, if s ∈ T (0), then
{Φ−1[R(t)] : t ∈ node(s)} is an open and point-finite cover of S (s). Exactly
in the same way as before, we get a clopen cover {S (t) : t ∈ node(s)} of S (s)
such that S (t) ⊂ Φ−1[R(t)] for t ∈ node(s). Having already constructed the
sieve S : T → 2X , the proof can be accomplished in the same manner as that
of Theorem 1.2. Namely, as in that theorem, ϕ = ΩR ◦ fS : X → C (Y ) is
a multi-selection for Φ which, by Lemma 4.4, Corollary 4.6 and Proposition
2.3, is l.s.c. and has a closed graph.
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(b)⇒(a). By Theorem 1.2,X is a normal space. To show that dim(X)=0,
take a closed set F ⊂ X and an open set V ⊂ X with F ⊂ V . Next, define
an l.s.c. mapping Φ : X → C ({0, 1}) by Φ(x) = {0} if x ∈ F ; Φ(x) = {1}
if x /∈ V ; and Φ(x) = {0, 1} otherwise. By (b), Φ has an l.s.c. closed-graph
multi-selection ϕ : X → C ({0, 1}). Since the discrete two-point space is com-
pact, by Proposition 2.1, ϕ is u.s.c. Then U = ϕ#[{0}] is a clopen subset of
X such that F ⊂ U ⊂ V . Consequently, dim(X) = 0.

6. Paracompactness-like properties and closed graph multi-sel-
ections. In this section, we first characterise countably paracompact nor-
mal spaces by means of special closed graph multi-selections.

Theorem 6.1. For a T1-space X, the following are equivalent:

(a) X is a countably paracompact normal space.
(b) Whenever Y is a completely metrizable separable space, every l.s.c.

mapping Φ : X → F (Y ) admits a pair of mappings 〈ϕ,ψ〉 :
X → C (Y ) such that ϕ is l.s.c., ψ has a closed graph and ϕ(x) ⊂
ψ(x) ⊂ Φ(x) for all x ∈ X.

Proof. The implication (a)⇒(b) follows from a more general result of
Choban in [2]. Namely, if X is a countably paracompact normal space, Y is
a completely metrizable separable space and Φ : X → F (Y ) is l.s.c., then,
by [2, Theorem 11.2], there is an l.s.c. mapping ϕ : X → C (Y ) and an usco
mapping ψ : X → C (Y ) such that ϕ(x) ⊂ ψ(x) ⊂ Φ(x) for all x ∈ X.

To show that (b)⇒(a), observe that X must be normal by Theorem 1.2.
Take an open cover U : D→ 2X of X for some countable discrete space D.
Then, by Proposition 3.1, Φ = U −1 : X → F (D) is l.s.c. and, by (b), Φ
has an l.s.c. multi-selection ϕ : X → C (D). By Propositions 3.1 and 3.2,
ϕ−1 : D→ 2X is an open and point-finite cover of X which refines U . This
implies that X is countably paracompact (see, for instance, [4, Theorem
5.2.6]).

Our next results refine Choban’s [2, Theorem 6.1] stating that a regular
space X is weakly paracompact if and only if for every completely metrizable
Y , every l.s.c. Φ : X → F (Y ) has an l.s.c. multi-selection ϕ : X → C (Y ). In
this connection, let us explicitly mention that there are non-regular weakly
paracompact spaces (see, e.g., [4, Example 5.3.4]). Concerning the role of
regularity in this result, we first prove the following theorem.

Theorem 6.2. For a Hausdorff space X, the following are equivalent:

(a) X is weakly paracompact.
(b) Whenever Y is a completely metrizable space, every l.s.c. mapping

Φ : X → F (Y ) has an l.s.c. section ϕ : X → C (Y ).
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Proof. To show that (a)⇒(b), we follow to some extent the correspond-
ing proof in Theorem 1.2. Namely, suppose that X is weakly paracompact,
Y is completely metrizable, and Φ : X → F (Y ) is l.s.c. By Corollary 4.7,
Y has an open-valued (locally-finite) sieve R : T → 2Y such that the po-
lar mapping ΩR : B(T ) → 2Y is singleton-valued and continuous. Then
the composition L = Φ−1 ◦R : T → 2X defines an open-valued sieve on
X because Φ is l.s.c. Since X is weakly paracompact, this implies that
X has an open-valued point-finite semi-sieve S : T → 2X which is a
multi-selection for L . Indeed, {L (t) : t ∈ T (0)} is an open cover of X,
so there exists an open point-finite cover {S (t) : t ∈ T (0)} of X such
that S (t) ⊂ L (t), t ∈ T (0) (see, for instance, [4, Lemma 5.3.5]). For the
same reason, there exists an open point-finite cover {S (s) : s ∈ T (1)} of
X such that S (s) ⊂ L (s) ∩S (t) for every t ∈ T (0) and s ∈ node(t). The
construction of S is completed by induction. Now, by Proposition 3.1 and
Lemma 4.5, the product mapping ΠS : X → 2Π(T ) corresponding to the
semi-sieve S is nonempty-compact-valued and l.s.c. as a product of l.s.c.
compact-valued mappings. By Lemma 4.5 once again, we also have

fS (x) = ΠS (x) ∩B(T ) 6= ∅ for every x ∈ X.

Since ΩR is continuous, by [6, Lemma 7.1], ψ = ΩR ◦ fS : X → C (Y ) is a
multi-selection for Φ. By Proposition 4.1, the branch space is a closed subset
of the generalised Baire space Π(T ). Since Π(T ) is a completely metrizable
non-Archimedean space, there exists a retraction r : Π(T )→ B(T ). Finally,
define ϕ = ΩR ◦ r ◦ ΠS : X → C (Y ), which is l.s.c. because r and ΩR are
continuous, and ΠS is l.s.c. Since r is a retraction, ∅ 6= ψ(x) ⊂ ϕ(x) ∩Φ(x)
for every x ∈ X. That is, ϕ is as required.

To show that (b)⇒(a), suppose U : D→ 2X is an open cover of X, and
consider D as a discrete space. By Proposition 3.1, Φ = U −1 : X → F (D) is
l.s.c. and, by (b), Φ has an l.s.c. section ϕ : X → C (D). However, Φ has an
open graph, which implies that ψ(x) = ϕ(x)∩Φ(x), x ∈ X, defines an l.s.c.
multi-selection ψ : X → C (D) for Φ. Finally, by Propositions 3.1 and 3.2,
V = ψ−1 : D → 2X is an open point-finite cover of X which is an indexed
refinement of U .

In the case of regular weakly paracompact spaces, we have the following
slight generalization of the above mentioned [2, Theorem 6.1].

Theorem 6.3. For a regular space X, the following are equivalent:

(a) X is weakly paracompact.
(b) For every completely metrizable space Y and l.s.c. Φ : X → F (Y ),

there exists a completely metrizable (non-Archimedean) space Z, a
continuous g : Z → Y , an l.s.c. mapping ϕ : X → C (Z) and a closed
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graph mapping ψ : X → F (Z) such that ϕ is a multi-selection for
ψ while g ◦ ψ is a multi-selection for Φ.

(c) Whenever Y is a completely metrizable space, every l.s.c. mapping
Φ : X → F (Y ) has an l.s.c. multi-selection ϕ : X → C (Y ).

Proof. It only suffices to show that (a)⇒(b). So, suppose that X is
weakly paracompact, Y is completely metrizable, and Φ : X → F (Y ) is l.s.c.
Just like before, Y has an open-valued (locally-finite) sieve R : T → 2Y such
that the polar mapping ΩR : B(T )→ 2Y is singleton-valued and continuous.
Hence, the composition L = Φ−1 ◦R : T → 2X defines an open-valued sieve
on X because Φ is l.s.c. Then, by [6, Lemma 6.3] (see also the proof of [2,
Theorem 6.1]), there exists a pruned ω-tree (D,�), a map h : D → T and an
open-valued point-finite sieve S : D → 2X of X such that S (d) ⊂ L (h(d))
for every d ∈ D, and h(s) ≺ h(t) for every s, t ∈ D with s ≺ t. According to
[6, Proposition 6.2], h generates a continuous map hB : B(D)→ B(T ) such
that h(β) is cofinal in hB(β) for every β ∈ B(D). Then take Z = B(D)
and g = ΩR ◦ hB : Z → Y . Finally, let

ϕ = fS : X → 2Z and ψ = fS : X → 2Z .

Since S is open-valued and point-finite, by Lemma 4.4, ϕ : X → C (Y ) and
is l.s.c. By Corollary 4.6, ψ : X → F (Z) and has a closed graph. Since ΩR

is singleton-valued and S (d) ⊂ L (h(d)) for every d ∈ D, by [6, Lemma
7.1], g(ψ(x)) ⊂ Φ(x) for all x ∈ X.

The following consequence is a well-known fact (see [4]).

Corollary 6.4. Every normal weakly paracompact space is countably
paracompact.

Proof. Let Y be a complete metrizable separable space, and Φ : X →
F (Y ) be l.s.c. By Theorem 6.3, Φ has an l.s.c. multi-selection Ψ : X → C (Y )
because X is weakly paracompact. Since X is also normal, by Theorem 1.2
there exists a pair of mappings 〈ϕ,ψ〉 : X → C (Y ) such that ϕ is l.s.c.,
ψ has a closed graph and ϕ(x) ⊂ ψ(x) ⊂ Ψ(x) ⊂ Φ(x) for every x ∈ X.
Finally, by Theorem 6.1, X is countably paracompact.
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