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Hausdorff dimension of scale-sparse
Weierstrass-type functions

by

Abel Carvalho (Aveiro)

Abstract. The aim of this paper is to calculate (deterministically) the Hausdorff
dimension of the scale-sparse Weierstrass-type functionsWs(x) :=

P
j≥1 ρ

−γjsg(ργ
j

x+θj),
where ρ > 1, γ > 1 and 0 < s < 1, and g is a periodic Lipschitz function satisfying some
additional appropriate conditions.

1. Introduction. Functions with a uniform fractal structure on the do-
main occur everywhere in nature, and they are widely applicable in physics
because their graphs play an important role as invariant sets in dynamical
systems. Examples of this are the Weierstrass-type functions

Ws(x) :=
∑
j≥1

ρ−js cos(ρjx+ θj), x ∈ R,

where ρ > 1, 0 < s < 1 and θj ∈ R. The parameter s measures smooth-
ness, more precisely the continuous real function Ws belongs to the Hölder
class Cs(R). Other distinguished parameters of the graphs of continuous real
functions on the real line are the box and Hausdorff dimensions. They fall
between 1 and 2 because the domain is R but the graphs are contained in R2.
The box dimension of the graph of the function Ws is given by the simple
and well-known formula dimB Γ (Ws) = 2− s.

Nevertheless, the determination of the Hausdorff dimension for graphs
of such functions remains an open problem even for the typical case ρ = 2
and θj = 0. Hunt [4] stated (see Theorem 3.1 below) that the Hausdorff
dimension of Γ (Ws) equals 2 − s for almost all sequences (θj)j∈N, but this
result is not deterministic. In the present work, however, we will deal with
the far easier scale-sparse Weierstrass-type functions
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2 A. Carvalho

Ws(x) :=
∑
j≥1

ρ−γ
js cos(ργ

j
x+ θj).

Theorem 3.2 below is the main result of the paper and gives deterministically
the Hausdorff dimension for these functions. The necessary definitions are
given in Section 2 and the proofs are shifted to Section 4. Strictly positive
constants are represented by cindices or c, c′, . . . .

2. Some definitions in fractal geometry. We introduce the concepts
of box and Hausdorff dimensions, measures and d-sets.

Definition 2.1. Let x := (x1, . . . , xn) ∈ Rn. Then |x| :=
√∑n

i=1 x
2
i

is the Euclidean norm of x. Let ∅ 6= U ⊂ Rn. Then the diameter of U is
|U | := supx,y∈U |x− y|.

Definition 2.2. A measure on Rn is a function defined on the Borel
subsets of Rn, satisfying µ(∅) = 0, µ(U) ≤ µ(U ∪ V ), and µ(

⋃
k∈N Uk) =∑

k∈N µ(Uk) for disjoint collections. (We will consider onlymass distributions
with µ(Rn) = 1.)

The paper deals mainly with Hausdorff dimension, dimH, though upper
and lower box dimensions, dimB and dimB, are also invoked; for definitions,
see [3, pp. 25–41].

Remark 2.3 ([3, pp. 43 and 55]). Let ∅ 6= E ⊂ Rn. Then 0 ≤ dimHE ≤
dimBE ≤ dimBE ≤ n. Let Br be balls (of radius r) centered at P ∈ E =
suppµ; if rd ≥ cµ(Br) for 0 < r < 1 then dimBE ≥ d (and the respective
result for ≤ also holds).

Definition 2.4. Consider d > 0 and let ∅ 6= E ⊂ Rn. Then E is a
d-set if there is a mass distribution µ on Rn such that µ(Br) ≈r rd, i.e.
c1r

d ≤ µ(Br) ≤ c2r
d for all balls Br with 0 < r < 1 and centered at any

P ∈ E = suppµ.
By Remark 2.3, dimHE = dimBE = d. (However, box and Hausdorff

dimensions can behave distinctly—cf. first table of Theorem 4.3 of [2].)

3. Hausdorff dimension of graphs. In the present section we deal
with the box and Hausdorff dimensions of the graphs of Weierstrass-type
functions, particularly in the scale-sparse case for which we give in Theorem
3.2 deterministically the exact value for the Hausdorff dimension.

Theorem 3.1 (Theorem 1 of [4], with elementary adaptations). Con-
sider ρ > 1, 0 < s < 1, and let θ := (θj)j∈N ⊂ [0, 2π]. Let Ws : [0, 1]→ R be
defined by Ws(x) :=

∑
j≥1 ρ

−js cos(ρjx+ θj). Then

dimH Γ (Ws) = 2− s for almost all sequences θ,
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where the set of all sequences θ, q := [0, 2π]N, is endowed with the measure
induced by the Lebesgue (uniform) measure normalized by the factor (2π)−1,
so q has measure 1. By almost all we mean all θ ∈ q \ q′ for some q′ ⊂ q
with measure zero.

By looking at Theorem 3.1 of [2], we see that the value 2 − s coincides
with the box dimension of Ws. Moreover, Theorem 3.1 above remains valid
if we replace the constant s by any convergent sequence (sj)j∈N ⊂ R+ such
that s := limj→∞ sj satisfies 0 < s < 1. As we can see in Theorem 4.3 of [2],
referring to [6], if 1 ≤ p ≤ ∞ and 0 < s < 1 then 2 − s is the maximal
Hausdorff dimension for all continuous real functions with smoothness s, so
Theorem 3.1 is important in what concerns the existence of functions that
achieve that maximal value.

This theorem can also be generalized by replacing the cosine function by a
more general real, Lipschitz and non-constant periodic function g satisfying
some additional hypotheses (see Theorem 2 of [4]). One inconvenience is
that it is not deterministic, so even for the typical case ρ = 2 and θ = 0,
the Hausdorff dimension of Γ (Ws) for the so called Weierstrass function
is still unknown. Despite that fact, in [5, p. 800, Theorem 8], it is stated
(deterministically) that

dimH Γ (Ws) ≥ 2− s− c/log ρ,

for all sequences θ, where c does not depend on ρ, so the right hand side
grows slowly to 2 − s when ρ tends to infinity. (Recall, on the other hand,
the well-known relation dimH Γ (Ws) ≤ dimB Γ (Ws) ≤ dimB Γ (Ws) ≤ 2−s.)
Though the proof of the inequality above uses techniques very different from
the ones employed in [4], both references use similar measures, respectively
induced by Cantor and Lebesgue measures.

As we can see in Remark 3.3(b) below, by using techniques similar to
but simpler than the ones employed in [5], we can recover the lower bound
2−s−c/log ρ given in that reference. Moreover, by applying those techniques
we prove the deterministic result stated in Theorem 3.2, which gives the
Hausdorff dimension of scale-sparse series, coinciding with the lower box
dimension.

Theorem 3.2. Let g : R→ R be a periodic Lipschitz function satisfying
g(x) − g(y) ≈x,y x − y for x and y belonging to some subinterval of the
real line, and g(x) − g(y) ≈x,y −(x − y) on another subinterval. Consider
ρ, γ > 1, 0 < s < 1 and (θj)j∈N ⊂ R. Let Ws : [0, 1] → R be defined by
Ws(x) :=

∑
j≥1 ρ

−γjsg(ργ
j
x+ θj). Then, for any sequence (θj)j∈N, we have

the identity

(1) dimH Γ (Ws) = 2−Ξ(γ, s) = 2− γs

1− s+ γs
.
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We observe that for fixed γ > 1, the one-variable function Ξ(γ, ·) is
strictly increasing and ranges over (0, 1) for 0 < s < 1; analogously, for fixed
0 < s < 1, the function Ξ(·, s) is strictly increasing and ranges over (s, 1)
for 1 < γ <∞.

Theorem 3.2 is an extension of a result given in [1], which considered the
case when g is a pure triangular wave and θj = 0 for all j ∈ N. Observe that
by using Theorem 4.1 of [2], together with Remark 2.3, we can now easily
deduce the same value for the lower box dimension:

dimB Γ (Ws) = 2−Ξ(γ, s) = 2− γs

1− s+ γs
= 1 +

1− s
1− s+ γs

.

Moreover, an easy estimation of the oscillations ofWs, by using only standard
arguments, shows that dimB Γ (Ws) = 2 − s. Furthermore, Theorems 3.1
and 3.2, as well as the comments and estimates following them, also hold
for the limiting case s = 1; in other words, dimH Γ (W1) = dimB Γ (W1) = 1.
This follows from the identity dimB Γ (W1) = 1 for this limiting case and
Remark 2.3.

As a special case of Theorem 3.2, it follows that, for all κ > 0 and
0 < s < 1, the function of [7, p. 121], when the graph is in R2, f(x) =∑

j≥1 2−νjs
∑

k∈Z ω(2νjx − k), where νj := 2jκ, actually has Hausdorff di-
mension 2 − Ξ(2κ, s). (See the beginning of Section 5 of [2].) Furthermore,
the equalities above give the same value for the lower box dimension, so both
are strictly smaller than the upper box dimension 2− s.

In [6, p. 74], we find a result analogous to that of Theorem 3.2, but it
concerns wavelet series and is stated only in probabilistic form; however,
we believe that a (deterministic) counterpart for Theorem 3.2 concerning
wavelet series also holds.

Remark 3.3. (a) Let (λj)j∈N ⊂ R+ be such that the limit γ :=
limj→∞ λj+1/λj exists and satisfies γ > 1, and consider a convergent se-
quence (sj)j∈N ⊂ R+ such that s := limj→∞ sj satisfies 0 < s < 1. Let
Ws : [0, 1] → R be defined by Ws(x) :=

∑
j≥1 2−λjsjg(2λjx + θj), where

(θj)j∈N ⊂ R and g is as in Theorem 3.2. Then the identity of Theorem 3.2
remains true for these γ and s and this more general scale-sparse Weierstrass-
type function.

(b) Consider ρ > 1, 0 < s < 1, (θj)j∈N ⊂ R, and g as in Theorem 3.2.
Let Ws : [0, 1]→ R be defined by Ws(x) :=

∑
j≥1 ρ

−jsg(ρjx+θj). Then (see
[5, Theorem 8, p. 800]) we have

dimH Γ (Ws) ≥ 2− s− cg,s
log ρ

where cg,s does not depend on ρ; this inequality can also be proved by using
the same techniques applied in the proof above, including the generalization
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when we replace the constant s by any convergent sequence (sj)j∈N ⊂ R+

such that s := limj→∞ sj satisfies 0 < s < 1.

4. Proofs of Theorem 3.2 and Remark 3.3. We first prove Theorem
3.2 and then use analogous arguments to prove Remark 3.3.

Proof of Theorem 3.2. (i) Let us start by defining a Cantor-like set K ⊂
[0, 1], in order to remove short open intervals around local maxima and
minima of Ws, as follows. Let us denote by K ′0 and K ′′0 the two subintervals
of monotonicity considered for g in the theorem. Furthermore, we assume,
without any loss of generality, that g has period 1, and that K ′0 and K ′′0 are
closed congruent intervals, i.e. they have the same length.

Let j(ρ, γ, s) := j(g,K ′0,K
′′
0 , ρ, γ, s) be a large positive number, and for

each fixed integer j ≥ j(ρ, γ, s) consider the set Kj of all x ∈ [0, 1] such that
ργ

j
x + θj ∈ K ′0 ∪ K ′′0 + k for some k = kx ∈ Z. Actually, we complete the

definition of Kj by removing from it all those x for which kx is maximal
or minimal over all k taken (for j fixed). Thus, Kj is a union of congruent
intervals in which Wj(x) := g(ργ

j
x + θj) satisfies, with alternating mono-

tonicity on consecutive intervals, the growth properties assumed for g on K ′0
and K ′′0 .

So,W j(x) :=
∑j

j′=1 ρ
−γj′sg(ργ

j′
x+θj′) has the same growth behavior on

Kj :=
⋂j
j′=j(ρ,γ,s)Kj′ . Actually, we can write Kj also as a union of intervals

Ij and, as before, we must complete the definition of Kj by removing from
it all those intervals Ij which have length strictly smaller than most of them
due to a truncation in the intersection above. In this way, we arrive at a
(closed) Cantor-like set K :=

⋂
j≥j(ρ,γ,s)Kj , which satisfies dimHK = 1.

In order to prove the last identity, we will deal with the most natural
mass distribution, denoted here by µK , supported on the Cantor set K (cf.
[3, pp. 13–14]). Using the Lebesgue measure δ := λ(K ′0∪K ′′0 ), we can obtain
|Ij | = (δ/2)ρ−γ

j and

µK(Ij) = (2[ργ
j(ρ,γ,s)

] + κj(ρ,γ,s))
−1

j∏
j′=j(ρ,γ,s)+1

(
2
[

(δ/2)ρ−γ
j′−1

ρ−γj
′

]
+ κj′

)−1

,

with κj′ ∈ {0,±1,±2}. This yields a result that will be useful in part (ii)
below:

µK(Ij) = |Ij |dj , where lim
j→∞

dj = 1.

Considering now a ball Ḃr ⊂ R centered at X ∈ K and rj+1 < r ≤ rj for
some j = jr (where rj ≈j ρ−γj ), then we obtain µK(Ḃr) ≈r rdjj r/rj ≤ crdj ,
and so the identity dimHK = 1 follows by Remark 2.3.
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(ii) Now, we will prove formula (1) of the theorem. Invoking Theorem 4.1
of [2] and comparison between dimensions in Remark 2.3, we realize that is
sufficient to prove that dimH Γ (Ws|K) ≥ 2−Ξ(γ, s). To do this, let us start
by defining, induced by the mass distribution µK defined in part (i), and
supported on the graph of Ws|K , the natural mass distribution

µ0(U) := µWs|K (U) := µK({x ∈ K : (x,Ws(x)) ∈ U})

for Borel subsets U of R2. In the rest of the proof, we will assume that j ≥
j(ρ, γ, s) is an integer sufficiently large, according to part (i). We will estimate
from above the mass of small balls centered at any point P ∈ Γ (Ws|K) =
suppµ0, considering first the balls Bj ⊂ R2 with diameter |Bj | = rj ≈j ρ−γj
(see Figure 1 below). As we will see, these balls correspond asymptotically
to the “minimal mass”. On the other hand, in part (iii) below we will be in
an opposite situation when we calculate the mass µ0 applied to appropriate
balls B′j ⊂ R2 with diameter, according to Figure 1, given by the relation

x

Ws(x)

≈j ργj−1(1−s−γ)}

Ball Bj: diameter ≈j ρ−γj

Ball B′
j: diameter

≈j ρ−γj 1−s+γs
γ

Angle αj−1:

tan αj−1 ≈j ργj−1(1−s)

αj−1

Fig. 1. Graph of the restriction Ws|K to a Cantor-like set, according to the proof of
Theorem 3.2, where Ws(x) =

P
j≥1 ρ

−γjsg(ργ
j

x+ θj).
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|B′j | = r′j ≈j ρ−γ
js cosαj−1 ≈j ρ−γ

js/tanαj−1 ≈j ρ−γ
js/ργ

j−1(1−s).

In fact, this class of balls with diameter r′j ≈j ρ−γ
j−1(1−s+γs) ≈j r1−s+γsj−1 ≈j

r
(1−s+γs)/γ
j corresponds asymptotically to the “maximal mass”, which allows
us to obtain a sharp estimate for dimH Γ (Ws|K). (We should observe that
1 < 1− s+ γs < γ.)

Let l ≥ j(ρ, γ, s) be an integer and assume additionally, without any loss
of generality, that min(g) ≥ 0 and K ′0∪K ′′0 ⊂ [0, 1]. A scale peak of the func-
tionWs|K , or, briefly, a peak, denoted by Λl = Λ

(m)
l , is by definition a subset

of the graph ofWs|K , when restricted toK∩[(m−θl)ρ−γ
l
, (m+1−θl)ρ−γ

l
] =

K∩[I ′(m)
l ∪I ′′(m)

l ] for some integerm for which we have a non-empty intersec-
tion. Here, I ′(m)

l and I ′′(m)
l are two consecutive (congruent) intervals I l of the

set K l. The height of a peak Λl, hΛl , obtained by elementary calculations,
is given by ≈l ρ−γ

ls. More precisely,

hΛl := max
Λl
−min

Λl
≈l
∣∣∣∑
j′≥l
±ρ−γj

′
s
∣∣∣ ≈l ρ−γls

where minΛl and maxΛl stand for the minimum and maximum, respectively,
of the vertical coordinate over all points (x,Ws|K(x)) of the peak Λl.

Moreover, most of the peaks Λl have two geometrical halves, coming from
the two monotonic parts of W l|I′(m)

l ∪I′′(m)
l

, as can be graphically observed in
Figure 1 where the two halves of a peak Λj−1 of Ws|K are explicitly repre-
sented, as well as a large number of peaks Λj . For a given j, standard cal-
culations show that both graphs of Ws|K and W j |K have geometrical peaks
Λj with height ≈j ρ−γjs, and that each peak Λj−1 contains ≈j ρ−γj−1

/ρ−γ
j

many peaks Λj .
Let us now estimate the mass µ0 = µWs|K of balls Bj−1 centered at any

P ∈ Γ (Ws|K), which are not explicitly represented in Figure 1 since they
would appear too large. In order to do this, we define the angle αj−1 (see
Figure 1) by the relation |W j−1(y)−W j−1(x)| ≈j,x,y |y−x| tanαj−1 on any
of the intervals Ij−1 of Kj−1. Then

tanαj−1 ≈j
∣∣∣ j−1∑
j′=1

ρ−γ
j′s(±ργj

′
)
∣∣∣ ≈j ργj−1(1−s)

on any interval Ij−1, sinceWj′(y)−Wj′(x) ≈j′,x,y ±ργ
j′

(y−x) on each Ij−1.
By considering a fixed half Λ∗ of a peak Λj−1, and by taking into account
the angle αj−1 on Λ∗, we can say that, roughly, the vertical position of a
peak Λ(m+1)

j of Λ∗ is obtained from the one of the preceding peak Λ(m)
j by
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moving an “average distance” (see Figure 1)

Aj := ρ−γ
j

tanαj−1 ≈j ργ
j−1(1−s−γ).

Let CΛ∗ be the minimum of the vertical coordinate over all points (x,
W j−1|K(x)) of the corresponding fixed half Λ̄∗ for the function W j−1|K ;
then CΛ∗ depends only on Λ∗. In precise terms, by taking into account the
value of tanαj−1 coming from the partial sum W j−1 on the interval Ij−1—
analogously to that coming from Wj−1—as well as the height of every peak
Λ̃j ofWs|K−W j−1|K , estimated by ≈j ρ−γjs—analogously to that of a peak
Λj of Ws|K—we have the relation

min
Λ

(k)
j

− CΛ∗ ≈j,k k Aj ,

where the index k ∈ N0 establishes a rank on all peaks Λj of the half Λ∗, by
starting from the lowest vertical position with k = 0. Because of this relation,
and since a ball Bj−1 has height, or diameter, |Bj−1| = rj−1 ≈j ρ−γj−1 , the
number Nj of peaks Λj that intersect a given ball Bj−1 can be estimated
from above by the quantity

c
ρ−γ

j−1
+ hΛj

Aj
≈j

ρ−γ
j−1

+ ρ−γ
js

ργj−1(1−s−γ) .

(ii1) Let γs ≥ 1. Hence Nj ≤ cρ−γ
j−1
/ργ

j−1(1−s−γ) = cργ
j−1(−2+s+γ).

Therefore,

µ0(Bj−1) ≤ Njµ0(Λj) ≈j Nj(ρ−γ
j
)dj

≤ cρ−γj−1(2−s−γ+γdj) = cρ−γ
j−1(2−s−εj),

where εj := γ(1 − dj), thus (i) yields limj→∞ εj = 0. So, µ0(Bj−1) ≤
c|Bj−1|2−s−εj .

(ii2) Let γs ≤ 1 and define

J := max{j′ ∈ N0 : ρ−γ
j+j′s ≥ ρ−γj−1} = max{j′ ∈ N0 : γj

′
s ≤ γ−1}.

Because γs ≤ 1, for l = j, . . . , j + J we have

ρ−γ
j−1

+ hΛl
A l

≈j,l
ρ−γ

ls

ργl−1(1−s−γ) = ργ
l(1−s)(1−1/γ).

This quantity is, up to a constant, an upper bound of the number of peaks
Λl which have height ≈l ρ−γ

ls, intersect a given ball Bj−1 and are contained
in any of the two halves of a fixed peak Λl−1. So we have the inequality
Nj ≤ cργj(1−s)(1−1/γ) and, on the other hand, for each l = j+1, . . . , j+J+1
the total number Nl of peaks Λl intersecting the fixed ball Bj−1 can be
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recursively estimated:

Nj+1 ≤ cNjρ
γj+1(1−s)(1−1/γ) ≤ c′ργj(1−s)(1−1/γ)(1+γ),

Nj+2 ≤ cNj+1ρ
γj+2(1−s)(1−1/γ) ≤ c′ργj(1−s)(1−1/γ)(1+γ+γ2),

and so on, arriving at the inequality

Nj+J ≤ cργ
j(1−s)(1−1/γ)

PJ
l=0 γ

l
= cργ

j(1−s)(γJ+1−1)/γ .

Here, we must observe that the number J of iterations does not depend
on j, so the product of the constants coming from the previous steps is also
independent of j. Finally,

Nj+J+1 ≤ cNj+J
ρ−γ

j−1

ργ
(j+J+1)−1(1−s−γ) = cNj+Jρ

−γj(1/γ+γJ (1−s−γ))

≤ c′ργj((1−s)(γJ−1/γ)−1/γ−γJ (1−s−γ)) = c′ργ
j((−2+s)/γ+γJ+1),

and then we obtain

µ0(Bj−1) ≤ Nj+J+1µ0(Λj+J+1) ≈j Nj+J+1(ρ−γ
j+J+1

)dj+J+1

≤ cρ−γj((2−s)/γ−γJ+1+γJ+1dj+J+1) = cρ−γ
j−1(2−s−ε′j),

where ε′j := γJ+2(1 − dj+J+1), thus by (i) we have limj→∞ ε′j = 0. Hence,
µ0(Bj−1) ≤ c|Bj−1|2−s−ε

′
j .

(ii3) From (ii1) and (ii2), we obtain for all j the estimate (we remind the
reader that |Bj | = rj ≈j ρ−γj )

µ0(Bj) ≤ c|Bj |2−s−εj = cr
2−s−εj
j , where lim

j→∞
εj = 0.

Finally, in part (iii) below, we will easily find an estimate for the mass µ0 of
the balls B′j (see Figure 1) which have diameter

|B′j | = r′j ≈j ρ−γ
j(1−s+γs)/γ = r

(1−s+γs)/γ
j .

(iii) Taking into account the estimate obtained in part (ii) and the diam-
eters of the balls Bj and B′j , we get

µ0(B′j) ≤ c(r′j/rj)2 sup
Bj

µ0(Bj) ≤ c′(r′j)2r
−s−εj
j .

Therefore,

µ0(B′j) ≤ c(r′j)2(r′j)
− γ(s+εj)

1−s+γs = c(r′j)
2−Ξ(γ,s)−ε′j , where lim

j→∞
ε′j = 0.

Consider now a small ball Br ⊂ R2 with 0 < |Br| = r < 1 and centered at
any P ∈ Γ (Ws|K) = suppµ0. Suppose first rj ≤ r ≤ r′j for some j = jr.
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Then

µ0(Br) ≤ c(r/rj)2 sup
Bj

µ0(Bj) ≤ c′r2r−s−εjj

≈r c′r2(r′j)
−Ξ(γ,s)−ε′j ≤ c′r2−Ξ(γ,s)−ε′j .

Suppose now r′j ≤ r ≤ rj−1 for some j = jr. Then, by taking into account the
particular characteristics of the graph of Ws|K and the respective diameters
of the balls,

µ0(Br) ≤ c(r/r′j) sup
B′j

µ0(B′j) ≤ c′r(r′j)1−Ξ(γ,s)−ε′j ≤ c′r2−Ξ(γ,s)−ε′j .

In this way we obtain the estimate µ0(Br) ≤ cr2−Ξ(γ,s)−εr , where limr→0+ εr
= 0.

By Remark 2.3 we obtain dimH Γ (Ws|K) ≥ 2−Ξ(γ, s)− ε for all ε > 0,
and by the comments at the beginning of part (ii), the proof is complete.

Proof of Remark 3.3. Part (a) follows from the proof of Theorem 3.2
with standard modifications. We will prove the inequality of part (b) by
applying the same techniques we used in that proof. Likewise, we assume
that g has period 1, min(g) ≥ 0, and K ′0,K ′′0 ⊂ [0, 1] are congruent intervals.
Additionally, we consider here ρ ≥ ρ(s) := ρ(g,K ′0,K

′′
0 , s) sufficiently large.

Then standard calculations show that there are geometrical scale peaks in the
graph of the function Ws|K , where K ⊂ [0, 1] is an appropriate Cantor-like
set.

If we consider balls Ḃj ⊂ R with diameter |Ḃj | = rj ≈j ρ−j , centered at
any X ∈ K = suppµK , where µK is the mass distribution associated to the
set K, then for all j ∈ N,

µK(Ḃj) ≤ crdjj with dj :=
c′ + (j − 1) log(2[(δ/2)ρ]− 2)

c+ (j − 1) log ρ
,

where the Lebesgue measure δ := λ(K ′0 ∪K ′′0 ) does not depend on ρ. Hence,
by Remark 2.3 we have

dimHK ≥ lim
j→∞

dj =
log(2[(δ/2)ρ]− 2)

log ρ
= 1− cδ,ρ

log ρ
,

where cδ,ρ := log ρ
2[(δ/2)ρ]−2 . (Observe that cδ,ρ → log(1/δ) as ρ→∞.)

Let 0 < η < 1 and ρ(η) := ρ(δ, η) be such that cδ,ρ ≤ cδ,η := (1 + η)
log(1/δ) for all ρ ≥ ρ(η). In what follows consider ρ ≥ ρ(s, η) := max{ρ(s),
ρ(η)} and j ≥ j(ρ, η, δ) so large that dj ≥ 1− cδ,η/log ρ.

We will estimate the mass µ0 of balls Bj−1 ⊂ R2 centered at any P ∈
Γ (Ws|K), where µ0(U) := µK({x ∈ K : (x,Ws(x)) ∈ U}) for Borel sets
U ⊂ R2. We start by observing that, for fixed j, the vertical position of a
peak Λ

(m+1)
j is obtained from the position of the preceding peak Λ

(m)
j by
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moving an “average distance”

≈j ρ−j tanαj−1 ≈j ρ−jρ(j−1)(1−s) = ρ−(1−s)ρ−js.

Because every peak Λj has height ≈j ρ−js, the number Nj of peaks Λj
intersecting a given ball Bj−1 with height, or diameter, |Bj−1| = rj−1 ≈j
ρ−(j−1) = cρ−j can be estimated from above by c ρ−j+ρ−js

ρ−(1−s)ρ−js
≈j 1, therefore

we can write Nj ≤ c.
Set Jj := max{j′ ∈ N0 : ρ−(j+j′)s ≥ ρ−j}, so j − s ≤ (j + Jj)s ≤ j. For

l = j+1, . . . , j+Jj , the number Nl of peaks that intersect a given ball Bj−1

can be estimated recursively as

Nl ≤ c′0
ρ−j + ρ−ls

ρ−(1−s)ρ−ls
Nl−1 ≤ c0ρ1−sNl−1,

therefore we finally obtain

Nj+Jj ≤ c(c0ρ1−s)Jj = cc
Jj
0 ρ

Jj(1−s).

(Observe that c′0 := c′0(g,K ′0,K
′′
0 ) and c0 := 2c′0 depend only on g, K ′0, K ′′0 .)

Unlike the proof of Theorem 3.2, part (ii2), here the number J = Jj
depends on j, so we take into account the inequalities 1−s

s j−1 ≤ Jj ≤ 1−s
s j,

and the relations

c
Jj
0 ≈j cjs = (ρ−j)−

log cs
log ρ ≈j |Bj−1|−

c′s
log ρ ,

where cs := c
(1−s)/s
0 and c′s := log cs = 1−s

s log c0 (we can choose cs > 1, so
c′s > 0). Hence,

µ0(Bj−1) ≤ Nj+Jjµ0(Λj+Jj ) ≤ cNj+Jj (ρ
−(j+Jj))1−

cδ,η
log ρ
−εj

≤ c′cJj0 ρ−Jjsρ−jρ
(j+Jj)(

cδ,η
log ρ

+εj) ≈j cJj0 ρ−(j+Jj)sρ−j(1−s)ρj
1
s
(
cδ,η
log ρ

+εj)

≈j |Bj−1|−
c′s

log ρ ρ−jρ−j(1−s)ρj
cδ,η
s log ρ ρj

εj
s ≈j |Bj−1|2−s−

c′s
log ρ
− cδ,η
s log ρ

− εj
s ,

where the quantity εj := 1 − cδ,η/log ρ − dj+Jj satisfies limj→∞ εj = 0.
Consequently, we have the estimate

µ0(Br) ≤ c|Br|2−s−
c′s+cδ,η/s

log ρ
−εr for all 0 < r < 1,

where limr→0+ εr = 0. By Remark 2.3 we obtain

dimH Γ (Ws|K) ≥ 2− s− c′s + cδ,η/s

log ρ

for all ρ ≥ ρ(s, η) = max{ρ(s), ρ(η)}, therefore we can complete the proof
of part (b) by considering the quantity cg,s defined by cg,s := max{c′s +
cδ,η/s, (1− s) log ρ(s, η)}.
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Observation. Aswe just have the estimate 2−s−cg,s/log ρ≤dimH Γ (Ws)
≤ 2− s—as mentioned before, the second (last) inequality is well-known—it
is of interest to minimize the number cg,s.

For fixed g, ρ, s and η, we observe the following concerning cg,s: When δ
increases, the values of cδ,η and of ρ(η) decrease, but the values of ρ(s) and
of c′s may increase, so we have a trade-off when intending to minimize cg,s.

Therefore, even knowing that dimH Γ (Ws) = 2−s holds in many cases—
see e.g. Theorem 3.1—in general we do not know the actual value of
dimH Γ (Ws) up to an (apparently unavoidable) additive constant given by
cg,s/log ρ.
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