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Abstract. We show that for each natural number n > 1, it is consistent that there is
a compact Hausdorff totally disconnected spaceK2n such that C(K2n) has no uncountable
(semi)biorthogonal sequence (fξ, µξ)ξ∈ω1 where µξ’s are atomic measures with supports
consisting of at most 2n−1 points ofK2n, but has biorthogonal systems (fξ, µξ)ξ∈ω1 where
µξ’s are atomic measures with supports consisting of 2n points. This complements a result
of Todorcevic which implies that it is consistent that such spaces do not exist: he proves
that its is consistent that for any nonmetrizable compact Hausdorff totally disconnected
space K, the Banach space C(K) has an uncountable biorthogonal system where the
functionals are measures of the form δxξ − δyξ for ξ < ω1 and xξ, yξ ∈ K. It also follows
from our results that it is consistent that the irredundance of the Boolean algebra Clop(K)
for a totally disconnected K or of the Banach algebra C(K) can be strictly smaller than
the sizes of biorthogonal systems in C(K). The compact spaces exhibit an interesting
behaviour with respect to known cardinal functions: the hereditary density of the powers
Kk

2n is countable up to k = n and it is uncountable (even the spread is uncountable) for
k > n.

1. Introduction. If X is a Banach space and X∗ is its dual, then
(xi, x∗i )i∈I ⊆ X × X∗ is called a biorthogonal system if x∗i (xi) = 1 and
x∗i (xj) = 0 if i 6= j for each i, j ∈ I. If α is an ordinal, a transfinite se-
quence (xi, x∗i )i<α ⊆ X×X∗ is called a semibiorthogonal sequence whenever
x∗i (xi) = 1, x∗i (xj) = 0 for j < i < α and x∗i (xj) ≥ 0 for i < j < α.

Biorthogonal systems have always played an important role in the the-
ory of Banach spaces ([9]) because all kinds of bases in Banach spaces are in
particular the X-parts of biorthogonal systems ([20] and [21]). Semibiorthog-
onal sequences have been introduced quite recently ([2]) in connection with
subsets of Banach spaces supported by all of their points ([17], [13], [8]).
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We will mainly deal with biorthogonal systems in real Banach spaces
C(K) of all real-valued continuous functions on a compact Hausdorff space
K with the supremum norm. Its dual space is isometric to the Banach space
M(K) of all Radon measures on K with the variation norm, and so we
will identify this dual with M(K). If K is a compact Hausdorff space and
x ∈ K, then δx denotes the functional on C(K) defined by δx(f) = f(x) for
all f ∈ C(K).

This paper is motivated by the following question: If there is an uncount-
able biorthogonal system (fξ, µξ)ξ∈ω1 in C(K)×M(K), is there also one such
that

µξ = δxξ − δyξ
for some points xξ, yξ ∈ K? Following [4], we will call such biorthogonal
systems nice.

The origin of this question is that in all concrete situations so far analyzed
in the literature, the above question has a positive answer. Moreover, it hap-
pens for a good reason, namely, it follows from a recent result of Todorcevic
that Martin’s axiom together with the negation of the continuum hypothe-
sis implies a positive answer for K totally disconnected. Indeed, analyzing
the proof of Theorem 11 of [24], one gets two cases: the first case, when K
is hereditarily separable, which is the main part of that proof and where
the constructed biorthogonal system is nice; and the second case, when K
is c.c.c. but contains a nonseparable subspace, in which case the proof of
Theorem 10 of [24] provides the required nice system; if K is not c.c.c., one
can easily obtain an uncountable nice biorthogonal system.

There is one more reason why nice biorthogonal systems appear fre-
quently in the context of Banach spaces C(K) and which makes them more
meaningful. Namely, a family (fα)α∈κ is the X-part of a nice biorthogonal
system if and only if (fα)α∈κ is irredundant in the Banach algebra C(K),
in the sense that no fα belongs to the Banach subalgebra generated by the
remaining elements. This is a consequence of the Stone–Weierstrass theo-
rem. If K is totally disconnected and fα’s are the characteristic functions
of clopen sets Aα ⊆ K, we obtain the well-known notion of an irredundant
set in a Boolean algebra, i.e., a set where no element belongs to the Boolean
algebra generated by the remaining elements (see [14]). The irredundance of
a Boolean algebra is the supremum of the cardinalities of irredundant sets.

To formulate our main results properly we need the following:

Definition 1.1. Let K be a compact Hausdorff space and n ∈ N. We
say that the functionals of a sequence (fξ, µξ)ξ∈ω1 ⊆ C(K) × M(K) are
n-supported if each µξ is an atomic measure whose support consists of no
more than n points of K.
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Theorem 1.2. For each natural number n > 1, it is consistent that there
is a compact Hausdorff totally disconnected space K2n such that C(K2n)
has no uncountable semibiorthogonal sequence whose functionals are 2n− 1-
supported, but has uncountable biorthogonal systems whose functionals are
2n-supported.

Moreover, Kn
2n is hereditarily separable but Kn+1

2n has an uncountable dis-
crete subspace. Neither the Banach algebra C(K2n) nor the Boolean algebra
Clop(K2n) have an uncountable irredundant family. In particular, C(K4) has
an uncountable biorthogonal system but it has no uncountable nice biorthog-
onal system.

This situation suggests many questions about the size of biorthogonal
systems of various types in C(K) spaces as well as in general Banach spaces.
These more general discussions will appear elsewhere. In particular, we are
unable to obtain K’s such that C(K) contains biorthogonal systems whose
functionals are 2n+ 1-supported but does not contain one whose functionals
are 2n-supported. The reason why some fundamental change in the approach
would have to be taken to obtain such a space is shown in Lemma 3.9.

On the other hand, if n = 1 one has absolute results. If K is the split
interval, then K is hereditarily separable, and so it cannot have an uncount-
able semibiorthogonal system whose functionals are 1-supported, but C(K)
has an uncountable nice biorthogonal system (see [7]).

It seems that our compact space is the first example showing that the
hereditary density or spread of finite powers of a compact space may change
its value from countable to uncountable arbitrarily high in N. Such an ex-
ample can be only consistent since, for example, under MA+¬CH if K3 is
hereditarily separable for a compact K, then it is metrizable, and so all fi-
nite powers are hereditarily separable. This follows from the fact that under
these assumptions there are no compact S-spaces ([22]), from the Katětov
theorem ([10]) and from the fact that Lindelöf regular spaces are normal.

The paper is organized as follows: in the next section we discuss a general
form of the compact spaces we construct and call them unordered N -split
Cantor sets. They are versions of the split interval whose connection with
biorthogonal systems in Banach spaces was already demonstrated in [7]. Sec-
tion 3 is devoted to a generic construction of Boolean algebras whose Stone
spaces are the K2n’s. That is the only section that requires the knowledge
of forcing. The partial order we use is a new modification of that of [11],
which produced nonseparable C(K)’s with no uncountable semibiorthogo-
nal sequences. Thus our spaces are quite controllable members of the class
of compact spaces constructed in [1], [18], [19], [11]. In that section we also
prove the existence of an uncountable discrete subspace of Kn+1

2n and an un-
countable biorthogonal system in C(K) whose functionals are 2n-supported.
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The section ends with Theorem 3.8, which expresses the random character
of the compact space constructed. Later on we use this theorem to prove
further properties of that space. Hence, a reader not familiar with forcing
may use this theorem for other purposes and read only the following sec-
tion. The last, fourth section is devoted to applications of Theorem 3.8 to
prove thatKn

2n is hereditarily separable and that C(K2n) has no uncountable
semibiorthogonal sequences whose functionals are 2n− 1-supported.

We use standard notation: for a positive natural number n, we put [n] =
{1, . . . , n} and n = {0, . . . , n− 1}. AB denotes the set of all functions from
B into A, and so if 2 = {0, 1}, then 2ω denotes all infinite sequences with
terms in {0, 1}, while 2n stands for functions from n into {0, 1}; also, 2<ω =⋃
{2n : n ∈ N} and 〈s〉 = {x ∈ 2ω : s ⊆ x} for s ∈ 2n and some n ∈ N. If

A,B are sets of ordinals, then A < B means that α < β for any α ∈ A and
any β ∈ B.

2. Unordered N-split Cantor sets. Fix a sequence X = {xξ : ξ < ω1}
⊆ 2ω of distinct elements and N ∈ N. Let

KN = (2ω \ X ) ∪ (X × [N ])

and define
Vs = (〈s〉 ∩ (2ω \ X )) ∪ ((〈s〉 ∩ X )× [N ]).

Definition 2.1. A family (Aξ,i : ξ < ω1, i ∈ [N ]) of subsets of KN is
called an N -splitting family if it satisfies the following conditions:

(1) (xξ, i) ∈ Aξ,i ⊆ KN for each ξ < ω1 and i ∈ [N ];
(2) for each ξ < ω1 the sets Aξ,i are pairwise disjoint;
(3) for each ξ < ω1 we have KN = Aξ,1 ∪ · · · ∪Aξ,N ;
(4) if η < ξ, then there are k ∈ N and j ∈ [N ] such that Aη,i ∩ Vxη |k ⊆

Aξ,j ∩ Vxη |k;
(5) if η > ξ and x = xη or x ∈ 2ω \ X , then there are k ∈ N and j ∈ [N ]

such that Vx|k ⊆ Aξ,j .
Definition 2.2. Given an N -splitting family (Aξ,i : ξ < ω1, i ∈ [N ]),

we call the space (KN , T ) an unordered N -split Cantor set if the topology T
onKN is defined by indicating neighbourhood bases Bx at x for every x ∈ KN

in the following way: if x ∈ 2ω \ X , then
Bx = {Vs : s ⊆ x},

and if x = (xξ, j) ∈ KN , then

Bx = {Vs ∩Aξ,j : s ⊆ xξ}.
The intuitive meaning of the above definitions is the following: each point

xξ of 2ω is split into N points (xξ, 1), . . . , (xξ, N). If we view KN as con-
structed inductively, when at step ξ < ω1 we construct the splitting clopen
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neighbourhoods Aξ,1, . . . , Aξ,N of the points (xξ, 1), . . . , (xξ, N) and these
neighbourhoods split only xξ and no other previously constructed (xη, i) for
η < ξ (condition 2.1(4)) nor xη for η > ξ nor x ∈ 2ω \ X (condition 2.1(5)).
On the other hand, note that Aξ,i’s may split xη for η < ξ, and in this case,
by condition 2.1(4), they do it “the same way” as the Aη,j ’s.

Proposition 2.3. Let N ∈ N. If (Aξ,i : ξ < ω1, i ∈ [N ]) is an N -
splitting family, then the corresponding unordered N -split Cantor set is a
compact, Hausdorff, totally disconnected topological space.

Proof. Since V∅ = KN , conditions (1)–(3) of Definition 2.1 imply that
Aξ,i’s are clopen sets. Now using Proposition 1.2.3 of [5], we will prove that
the above families satisfy the axioms BP1–BP3 for neighbourhood bases
from [5]. The only nontrivial part is to prove that given x ∈ V ∈ By, there
is U ∈ Bx such that x ∈ U ⊆ V .

Suppose x ∈ 2ω \ X and x ∈ Vs ∈ By. Then s ⊆ x and so Vs itself is
in Bx. If x ∈ Vs ∩ Aξ,i, we also have s ⊆ x and by (5) of Definition 2.1
there is k ∈ N such that Vx|k ⊆ Aξ,j for some j ∈ N . Put t = s ∪ x|k and
note that Vt ⊆ Aξ,j , so by disjointness (condition 2.1(2)) we have j = i with
x ∈ Vt ∈ Bx and Vt ⊆ Vs ∩Aξ,i.

Now suppose that x = (xη, i) and x ∈ Vs ∈ By, hence s ⊆ x and so
Vs ∩Aη,i ∈ Bx and x ∈ Vs ∩Aη,i ⊆ Vs.

Finally, let x = (xη, i) and x ∈ Vs ∩Aξ,j ∈ B(xξ,j), then s ⊆ xη.
First consider η < ξ. Then by (5) of Definition 2.1 there are k ∈ N and

j′ such that Aη,i∩Vxη |k ⊆ Aξ,j′ ∩Vxη |k and by disjointness we get j′ = j. So,
if we put t = s ∪ xη|k, then Aη,i ∩ Vt ⊆ Aξ,j ∩ Vt ⊆ Aξ,j ∩ Vs and of course
Aη,i ∩ Vt ∈ B(xη ,i).

Secondly, if η ≥ ξ and (xη, i) ∈ Vs∩Aξ,j , we also have s ⊆ xη and by 2.1(4)
there are k ∈ N and j′ such that Vxη |k ⊆ Aξ,j′ for some j′. By disjointness
we have j = j′. If t = s ∪ xη|k we have Vt ⊆ Aξ,j , so x ∈ Vt ∈ Bx and
Vt ⊆ Vs∩Aξ,i. This completes the proof that Bx’s form a local neighbourhood
base.

The Hausdorff property is easy since basic sets are clopen.
To prove the compactness, suppose U is an open cover of KN . We may

assume that it consists of basic open sets. For each x ∈ 2ω\X define sx ∈ 2<ω

such that x ∈ Vsx ⊆ U ∈ U for some U , and for each ξ < ω1 define sξ ∈ 2<ω

such that (xξ, i) ∈ Vsξ ∩ Aξ,i ⊆ U ∈ U for some U , and for each 1 ≤ i ≤ N .
This actually implies by (3) of Definition 2.1 that Vsξ is covered by finitely
many U ∈ U .

Now {〈sx〉, 〈sξ〉 : x ∈ 2ω \ X , ξ < ω1} forms an open cover of 2ω which is
compact and so it has a finite subcover, which easily yields a finite subcover
of U .
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Definition 2.4. SupposeN ∈ N andKN is an unorderedN -split Cantor
set. Under the above notation, we define the following:

• Rξ = {(xξ, 1), . . . , (xξ, N)}.
• Aα is the subalgebra of Clop(KN ) generated by (Vs : s ∈ 2<ω) and
{Aξ,i : ξ < α, i ∈ [N ]} for α ≤ ω1.

• Cα is the closure (in the norm) of the set of finite linear combinations
of characteristic functions of elements of Aα inside C(K).

Note that C0 can be naturally identified with C(2ω) inside C(K).

Lemma 2.5. Let N ∈ N and let KN be an unordered N -split Cantor set.
For every n ∈ N and for every α ∈ ω1 and every i ∈ [N ] we have

Aα,i \ Vxα|n ∈ Aα.
Proof. By the properties 2.1(4)&(5) of Aξ,i’s any point of KN \Rα has a

neighbourhood V such that for every i ∈ [N ] it is included in Aα,i or disjoint
from Aα,i and moreover V ∈ Aα.

Since Aα,i \ Vxα|n is a compact subspace of KN \ Rα, we have a finite
subcover consisting of subsets, i.e. Aα,i \ Vxα|n is the supremum of a finite
family of elements of Aα as required.

Let us see the general form of continuous rational simple functions on
an unordered N -split Cantor set. By a rational simple function we mean a
function assuming only finitely many rational values.

Lemma 2.6. Suppose that N ∈ N and that KN is an unordered N -split
Cantor set, ε > 0, µ is a (regular) Radon measure on KN and f is a continu-
ous rational simple function on KN . Then there is a simple rational function
g ∈ C(2ω), distinct ξ1, . . . , ξk < ω1 and rationals qi,l, non-negative integers
mi and si∈2mi with si = xξi |mi, for 1 ≤ i ≤ k∈ω and 1 ≤ l < N , such that

f = g +
∑

1≤i≤k

∑
1≤l<N

qi,lχAξi,l∩Vsi

and ∑
1≤i≤k

max
1≤l<N

(|qi,l|)|µ|(Vsi \Rξi) ≤ ε.

Proof. By induction on ξ we prove that any continuous simple rational
function in Cξ can be written in the form as in the lemma. The Stone–
Weierstrass theorem and the uncountable cofinality of ω1 imply that the
union of Cξ’s is the entire C(KN ).

The limit stage is trivial. So, suppose we have proved the conclusion
for Cξ and we are given a continuous simple rational function f in Cξ+1.
Note that ⋂

m∈N
Vxξ|m = Rξ.
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Hence, the regularity of the Radon measures implies that |µ|(Vxξ|m \ Rξ)’s
converge to 0. Let m1 be such that

|µ|(Vxξ|m \Rξ) ≤
ε

4‖f‖
for m ≥ m1.

Note also that a simple function is a linear combination of characteristic
functions of clopen sets, hence there are ξ1, . . . , ξk−1 < ξ < ω1 and m2 such
that the preimages under f of each of its finite rational values belong to the
subalgebra of Aξ+1 generated by Vt’s for |t| < m2 and Aξ1,j , . . . , Aξk−1,j , Aξ,j
for 1 ≤ j ≤ N . Now let n ≥ m1,m2 be such that for every 1 ≤ i < k there is
1 ≤ j ≤ N such that Vxξ|m ⊆ Aξi,j , which can be obtained by the property
(5) (of Definition 2.1) of Aξ’s and η = ξi.

It follows that f is constant on Aξ,j ∩ Vxξ|m for every 1 ≤ j ≤ N . Let
q′1, . . . , q

′
N ∈ Q be the corresponding values and note that |q′l − q′N | ≤ 2‖f‖

for any 1 ≤ l ≤ N . So, by conditions (2) and (3) (of Definition 2.1) of Aξ,j ’s
we have

f = [f |(K \ Vxξ|m) + q′NχVxξ|m
] +

∑
1≤l<N

(q′l − q′N )χAξ,l∩Vxξ|m .

Note that f |(K \ Vxξ|m) belongs to Cξ by Lemma 2.5, and so

f = h+
∑

1≤l<N
qlχAξ,l∩Vxξ|m

, max
1≤l<N

|ql| |µ|(Vxξ|m \Rξ) ≤
ε

2

where ql = q′l − q′N and h ∈ Cξ. Hence the inductive assumption for ε/2 can
be used, which completes the proof of the lemma.

Definition 2.7. We say that an N -splitting family (Aξ,i : ξ < ω1,
i ∈ [N ]) is balanced if it satisfies the following additional condition:

(6) for all distinct ξ, η ∈ ω1 and all j ∈ [2n],

|{i ∈ {1, 3, . . . , 2n− 1} : (xη, i) ∈ Aξ,j}|
= |{i ∈ {2, 4, . . . , 2n} : (xη, i) ∈ Aξ,j}|.

Lemma 2.8. Suppose that n ∈ N and K2n is an unordered 2n-split Cantor
set, where the N -splitting family (Aξ,i : ξ < ω1, i ∈ [2n]) is balanced. Then:

(a) Kn+1
2n contains an uncountable discrete subspace;

(b) there is an uncountable biorthogonal system in C(K2n) with 2n-sup-
ported functionals.

Proof. To prove (a), let us show that the subset {((xξ, 1), (xξ, 2),
(xξ, 4), . . . , (xξ, 2n)) : ξ < ω1} of Kn+1

2n is relatively discrete.
Let Uξ = Aξ,1×Aξ,2×Aξ,4× · · · ×Aξ,2n, which is clearly an open neigh-

bourhood of ((xξ, 1), (xξ, 2), (xξ, 4), . . . , (xξ, 2n)). Now, fix distinct ξ, η < ω1

and let us prove that ((xη, 1), (xη, 2), (xη, 4), . . . , (xη, 2n)) /∈ Uξ.
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For contradiction, suppose ((xη, 1), (xη, 2), (xη, 4), . . . , (xη, 2n)) ∈ Uξ,
that is, (xη, j) ∈ Aξ,j for each j = 1, 2, 4, . . . , 2n. By condition 2.7(6), we see
that for each j ∈ [2n],

|{i ∈ {1, 3, . . . , 2n− 1} : (xη, i) ∈ Aξ,j}|
= |{i ∈ {2, 4, . . . , 2n} : (xη, i) ∈Aξ,j}|.

Hence, each set Aξ,2, Aξ,4, . . . , Aξ,2n must contain at least one of the (xη, 1),
(xη, 3), . . . , (xη, 2n − 1). By the disjointness of the Aξ,j ’s (property (2) of
Definition 2.1), (xη, 1) has to be in one of the sets Aξ,2, Aξ,4, . . . , Aξ,2n. But
by our assumption, (xη, 1) ∈ Aξ,1 and again by the disjointness of the Aξ,j ’s,
this is a contradiction.

To show (b), for each ξ < ω1, let fξ = χAξ,2n and

µξ =
n∑
k=1

(δ(xξ,2i) − δ(xξ,2i−1))

and note that (fξ, µξ)ξ<ω1 ⊆ C(K2n)×M(K2n). Let us prove that this is a
biorthogonal system.

For each ξ < ω1, since (xξ, i) ∈ Aξ,i and these sets are disjoint (property
(2) of Definition 2.1), we get

µξ(fξ) =
n∑
k=1

(δ(xξ,2k) − δ(xξ,2k−1))(χAξ,2n)

=
n∑
k=1

(χAξ,2n((xξ, 2k))− χAξ,2n((xξ, 2k − 1))) = χAξ,2n((xξ, 2n)) = 1.

On the other hand, for distinct ξ, η < ω1, by property (6), we know that
for all j ∈ [2n],

|{i∈ {1, 3, . . . , 2n−1} : (xη, i)∈Aξ,j}|= |{i∈ {2, 4, . . . , 2n} : (xη, i)∈Aξ,j}|.
Hence,

µξ(fη) =
n∑
k=1

(δ(xξ,2k) − δ(xξ,2k−1))(χAη,2n)

=
n∑
k=1

(χAη,2n((xξ, 2k))− χAη,2n((xξ, 2k − 1)))

=
n∑
k=1

χAη,2n((xξ, 2k))−
n∑
k=1

χAη,2n((xξ, 2k − 1))

= |{i ∈ {2, 4, . . . , 2n} : (xξ, i) ∈ Aη,2n}|
− |{i ∈ {1, 3, . . . , 2n− 1} : (xξ, i) ∈ Aη,2n}| = 0,

showing that (fξ, µξ)ξ<ω1 ⊆ C(K2n)×M(K2n) is a biorthogonal system.
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3. The generic construction. This section is devoted to a generic con-
struction of an unordered 2n-split Cantor set which exhibits quite random
features. This type of uncountable structures was first investigated systemat-
ically in [19]. One can describe this random behaviour as: in any uncountable
sequence of finite substructures there are two which are related as we wish
(up to constraints). We fix an uncountable sequence (xξ : ξ < ω1) ⊆ 2ω

consisting of distinct elements.

Definition 3.1. Let P be the forcing formed by the conditions

p = (Fp, np, (f
p
ξ : ξ ∈ Fp)),

where:

1. Fp ∈ [ω1]<ω;
2. np ∈ ω is such that for all ξ 6= η in Fp, xξ|np 6= xη|np;
3. for all ξ ∈ Fp,

fpξ : 2np \ {xξ|np} → [2n][2n] × [Fp ∩ (ξ + 1)]

is such that

(a) if fpξ (s) = (ϕ, ξ), then ϕ is a constant function;
(b) if fpξ (s) = (ϕ, η) for some η < ξ, then

∀j∈ [2n] |ϕ−1(j)∩{1, 3, 5, . . . , 2n−1}|= |ϕ−1(j)∩{2, 4, . . . , 2n}|.
We put q ≤ p if Fq ⊇ Fp, nq ≥ np and for all ξ ∈ Fp, all s ∈ 2nq \ {xξ|nq}
and all t ∈ 2np \ {xξ|np},

t ⊆ s ⇒ fpξ (t) = f qξ (s).

Intuitively, we are of course trying to build a 2n-split Cantor set which
is determined by the choice of the balanced 2n-splitting family formed by
Aξ,i’s. Thus the coordinate fpξ (s) describes the behaviour of Aξ,i’s on Vs.
The formal description is given in Definition 3.3. The value fpξ (s) = (ϕ, ξ),
where ϕ has to be a constant function, say equal to i, means that the entire
Vs is included in Aξ,i. The value fpξ = (ϕ, η) for some η < ξ means that
Aξ,i’s divide Vs as coded by ϕ, i.e. Aη,j ∩Vs ⊆ Aξ,ϕ(j) for each j ∈ [N ]. Note
that a condition p ∈ P carries no information about the behaviour of Aξ,i’s
on Vxξ|np , other than (xξ, i) ∈ Aξ,i. This is the degree of freedom we have
and which can be controlled by passing to an appropriate extension q ≤ p.
Condition (b) is to guarantee that the family of Aξ,i’s is balanced, that is,
satisfies property (6) of Definition 2.7.

Lemma 3.2. The following subsets of P are dense in P:

(i) {p ∈ P : np ≥ k} for each fixed k ∈ N;
(ii) {p ∈ P : ξ ∈ Fp} for each fixed ξ < ω1.
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Proof. For (i), fix k ∈ N and let p = (Fp, np, (f
p
ξ : ξ ∈ Fp)) ∈ P. If np < k,

define q = (Fq, nq, (f
q
ξ : ξ ∈ Fq)) by putting Fq = Fp, nq = k and for each

ξ ∈ Fq = Fp, f
q
ξ is any function satisfying condition 3 of the definition of the

forcing such that f qξ (t) = fpξ (t|np) if t|np ∈ 2np \ {xξ|np}; for example, let

f qξ (t) =

{
fpξ (t|np) if t|np ∈ 2np \ {xξ|np},
(ϕ, ξ) otherwise,

whereϕ is the constant function equal to 1. It is easy to see that q∈P and q≤p.
For (ii), fix ξ < ω1 and let p = (Fp, np, (f

p
ξ : ξ ∈ Fp)) ∈ P. By (i),

we may assume that np is such that xη|np 6= xξ|np for all η ∈ Fp. Define
q = (Fq, nq, (f

q
ξ : ξ ∈ Fq)) by putting Fq = Fp ∪ {ξ}, nq = np, f

q
η = fpη for

each η ∈ Fp, and f qξ is any function satisfying condition 3 of the definition of
the forcing; for example, let f qξ (t) = (ϕ, ξ), where ϕ is the constant function
equal to 1. It is easy to see that q ∈ P and q ≤ p.

Definition 3.3. Given a P-generic filter G over a model V , we define
the family {Aξ,j : ξ ∈ ω1, j ∈ [2n]} as follows: for each ξ ∈ ω1 and each
j ∈ [2n], let

Aξ,j =
⋃
{Vs ∩Aη,i : ∃p ∈ G, fpξ (s) = (ϕ, η) for some η 6= ξ and ϕ(i) = j}

∪
⋃
{Vs : ∃p∈G, fpξ (s) = (ϕ, ξ) and ϕ is the constant function equal to j}

∪ {(xξ, j)}.
The following lemma follows directly from the above definition.
Lemma 3.4. Given p ∈ G, ξ ∈ Fp and s ∈ 2np \ {xξ|np}, we have:

(a) if fpξ (s) = (ϕ, ξ), then Vs ⊆ Aξ,j for j = ϕ(1);
(b) if fpξ (s) = (ϕ, η) for some η < ξ, then ∀i∈ [2n], Vs ∩Aη,i⊆Aξ,ϕ(i).

Notice that in case fpξ (s) = (ϕ, ξ), ϕ is the constant function equal to j,
so that we could have taken j = ϕ(i) for any i ∈ [2n].

Let us now check that the family {Aξ,j : ξ ∈ ω1, j ∈ [2n]} has the desired
properties.

Theorem 3.5. The family {Aξ,j : ξ ∈ ω1, j ∈ [2n]} is a balanced 2n-
splitting family.

Proof. Let us prove that the family satisfies conditions 2.1(1)–(5) and
2.7(6).

(1) follows directly from the definition of Aξ,j .
(2) This is proved by induction on ξ. First notice that by the definition

of the forcing P,
∀p ∈ P ∀ξ ∈ Fp ∀s ∈ dom fpξ Rξ ∩ Vs = ∅,

since xξ|np /∈ dom fpξ . Thus, (xξ, j1) ∈ Aξ,j2 iff j1 = j2.
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Now, fix ξ < ω1 and suppose Aη,i are pairwise disjoint for each fixed
η < ξ. Suppose there is x ∈ Aξ,j1 ∩ Aξ,j2 for some distinct j1, j2 ∈ [2n]. By
the above observation, x 6= (xξ, j) for any j ∈ [2n].

By the definition of Aξ,jk , for each k ∈ {1, 2} there are pk ∈ G and
sk ∈ dom fpkξ such that x ∈ Vsk and either

• fpkξ (sk) = (ϕk, ξ) and ϕk is the constant function equal to jk, or
• fpkξ (sk) = (ϕk, ηk) for some ηk < ξ and x ∈ Aηk,i for some i ∈ ϕ−1

k (jk).

Let p ∈ G be such that p ≤ p1, p2 and let t ∈ 2np \ {xξ|np} be such that
x ∈ Vt. Then t ⊇ sk since x ∈ Vsk , and hence, by the definition of extension
in P, fp1ξ (s1) = fpξ (t) = fp2ξ (s2), so that ϕ1 = ϕ2.

Now, if fpξ (t) = (ϕ, ξ), this would mean that ϕ1 and ϕ2 are both constant
equal to j1 and j2, contradicting the hypothesis that j1 6= j2. Otherwise, if
fpξ (t) = (ϕ, η), for some η < ξ, we would get x ∈ Aη,ik for some ik ∈ ϕ−1(jk).
By the inductive hypothesis i1 = i2 ∈ ϕ−1(j1)∩ϕ−1(j2), which implies that
j1 = j2, again contradicting the hypothesis.

This concludes the proof that the family satisfies condition (2) of Defini-
tion 2.1.

(3) is again proved by induction on ξ. So, let ξ < ω1, suppose K =
Aη,1 ∪ · · · ∪Aη,2n for any η < ξ and let x ∈ K.

If x = (xξ, i) for some i ∈ [2n], then x ∈ Aξ,i by definition.
By Lemma 3.2, let p ∈ G be such that x ∈ Vs for some s ∈ 2np \ {xξ|np}.
If fpξ (s) = (ϕ, ξ), by Lemma 3.4(a) we get Vs ⊆ Aξ,ϕ(1), which guarantees

that x ∈ Aξ,ϕ(1).
Otherwise, if fpξ (s) = (ϕ, η) for some η < ξ, by the inductive hypothesis,

let i ∈ [2n] be such that x ∈ Aη,i. Then, by Lemma 3.4(b), Vs∩Aη,i ⊆ Aξ,ϕ(i),
which implies that x ∈ Aξ,ϕ(i) and concludes the proof of condition (3) of
Definition 2.1.

To prove (4), fix η < ξ < ω1 and i ∈ [2n]. By Lemma 3.2, let p ∈ G be
such that ξ, η ∈ Fp and xη|np 6= xξ|np.

If fpξ (xη|np) = (ϕ, ξ), by Lemma 3.4(a) we get Vxη |np ⊆ Aξ,ϕ(1) (and in
particular Vxη |np ∩Aη,i ⊆ Vxη |np ∩Aξ,ϕ(1)).

If fpξ (xη|np) = (ϕ, η) for some η < ξ, then, by Lemma 3.4(b), we have
Vxη |np ∩Aη,i ⊆ Aξ,ϕ(i) (and in particular Vxη |np ∩Aη,i ⊆ Vxη |np ∩Aξ,ϕ(i)), and
we are done by condition (4) of Definition 2.1.

(5) is proved by induction on ξ < ω1. Let ξ < ω1 and x ∈ 2ω\{xη : η ≤ ξ}.
If x = xη for some η > ξ, by Lemma 3.2 there is p ∈ G such that

ξ, η ∈ Fp. Otherwise, if x ∈ 2ω \ {xη : η < ω1}, by Lemma 3.2 there is p ∈ G
such that ξ ∈ Fp and x|np 6= xξ|np. In both cases, put s = x|np.

If fpξ (s) = (ϕ, ξ), then, by Lemma 3.4(a), Vs ⊆ Aξ,ϕ(1).
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If fpξ (s) = (ϕ, η′) for some η′ ∈ Fp ∩ ξ, by the inductive hypothesis, there
are k ∈ N and i ∈ [2n] such that Vx|k ⊆ Aη′,i. By Lemma 3.2, let q ∈ G
be such that q ≤ p and nq ≥ k. Putting t = x|nq, we get Vt ⊆ Vx|k ⊆ Aη′,i
and f qξ (t) = fpξ (s) = (ϕ, η′), since t ⊇ s. This implies by Lemma 3.4(b)
that Vt = Vt ∩ Aη′,i ⊆ Aξ,ϕ(i), which concludes the proof of condition (5) of
Definition 2.1.

Hence, the family formed by the Aξ,i’s is a 2n-splitting family.
(6) is proved by induction on ξ < ω1. So, fix ξ < ω1 and suppose we

know that for all ζ < ξ, all η 6= ζ and all j ∈ [2n],

|{i ∈ {1, 3, . . . , 2n−1} : (xη, i) ∈ Aζ,j}|= |{i ∈ {2, 4, . . . , 2n} : (xη, i)∈Aζ,j}|.
Now, fix η 6= ξ. Let p ∈ G be such that ξ, η ∈ Fp, so that xη|np ∈ dom fpξ .
If fpξ (xη|np) = (ϕ, ξ), then, by Lemma 3.4(a), Vxη |np ⊆ Aξ,ϕ(1), which

implies that (xη, i) ∈ Aξ,ϕ(1) for all i ∈ [2n]. By the disjointness of the Aξ,i’s,
(3) and condition (6) of Definition 2.7 hold both for Aξ,ϕ(1) (which contains
all (xη, i)) and for Aξ,j , j 6= ϕ(1) (which contain no (xη, i)).

If fpξ (xη|np) = (ϕ, ζ) for some ζ < ξ in Fp, then for all i ∈ [2n], we have
Vxη |np ∩ Aζ,i ⊆ Aξ,ϕ(i). This means that each Aξ,j contains exactly those
(xη, k) which are in Aζ,i for some i ∈ ϕ−1(j). In particular,

{k ∈ {1, 3, . . . , 2n− 1} : (xη, k) ∈ Aξ,j}
= {k ∈ {1, 3, . . . , 2n− 1} : (xη, k) ∈ Aζ,i for some i ∈ ϕ−1(j)}

=
⋃

i∈ϕ−1(j)

{k ∈ {1, 3, . . . , 2n− 1} : (xη, k) ∈ Aζ,i}

and

{k ∈ {2, 4, . . . , 2n} : (xη, k) ∈ Aξ,j}
= {k ∈ {2, 4, . . . , 2n} : (xη, k) ∈ Aζ,i for some i ∈ ϕ−1(j)}

=
⋃

i∈ϕ−1(j)

{k ∈ {2, 4, . . . , 2n} : (xη, k) ∈ Aζ,i}.

Let us now consider two cases:
If η = ζ, since (xη, k) ∈ Aη,k, we get

{k ∈ {1, 3, . . . , 2n− 1} : (xη, k)∈Aξ,j}= {k ∈ {1, 3, . . . , 2n− 1} : k ∈ϕ−1(j)}
and
{k ∈ {2, 4, . . . , 2n} : (xη, k) ∈ Aξ,j} = {k ∈ {2, 4, . . . , 2n} : k ∈ ϕ−1(j)}.

By property 3(b) of the definition of the partial ordering, the sets on the
right-hand side of these two equalities have the same size, which guarantees

|{k∈{1, 3, . . . , 2n−1} : (xη, k)∈Aξ,j}|= |{k∈{2, 4, . . . , 2n} : (xη, k)∈Aξ,j}|,
concluding the proof in this case.
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If η 6= ζ, by the inductive hypothesis we know that for all i ∈ [2n],

|{k∈{1, 3, . . . , 2n−1} : (xη, k)∈Aζ,i}|= |{k ∈ {2, 4, . . . , 2n} : (xη, k)∈Aζ,i}|.
Hence,

|{k ∈ {1, 3, . . . , 2n− 1} : (xη, k) ∈ Aξ,j}|

=
∣∣∣ ⋃
i∈ϕ−1(j)

{k ∈ {1, 3, . . . , 2n− 1} : (xη, k) ∈ Aζ,i}
∣∣∣

=
∣∣∣ ⋃
i∈ϕ−1(j)

{k ∈ {2, 4, . . . , 2n} : (xη, k) ∈ Aζ,i}
∣∣∣

= |{k ∈ {2, 4, . . . , 2n} : (xη, k) ∈ Aξ,j}|,
which concludes the proof of condition (6) of Definition 2.7, that is, the
family of Aξ,i’s is a balanced 2n-splitting family.

Proposition 3.6. Let p1 = (F1, n1, (f1
ξ : ξ ∈ F1)) and p2 = (F2, n2,

(f2
ξ : ξ ∈ F2)) be conditions of P such that:

• F1 ∩ F2 < F1 \ F2 < F2 \ F1;
• n1 = n2 = n;
• there is an order-preserving bijection e : F1 → F2 such that

– for all ξ ∈ F1, xξ|n = xe(ξ)|n;
– for all ξ ∈ F1 and all s ∈ 2n1 \ {xξ|n1} (= 2n2 \ {xe(ξ)|n2}),

f2
e(ξ)(s) = (ϕ, e(η)) where f1

ξ (s) = (ϕ, η).

Then, given (εξ : ξ ∈ F1 \ F2) ⊆ [2n][2n] such that for all ξ ∈ F1 \ F2,

∀j ∈ [2n] |ε−1
ξ (j) ∩ {1, 3, 5, . . . , 2n− 1}| = |ε−1

ξ (j) ∩ {2, 4, 6, . . . , 2n}|,

and given constant functions (δξ : ξ ∈ F1 \F2) ⊆ [2n][2n], there is q ≤ p1, p2,
q ∈ P, such that

(3.1) ∀ξ ∈ F1 \ F2 f qξ (xe(ξ)|nq) = (δξ, ξ) and f qe(ξ)(xξ|nq) = (εξ, ξ).

Proof. Define q = (Fq, nq, (f
q
ξ : ξ ∈ Fq)) as follows: let Fq = F1 ∪ F2; let

nq ∈ N be such np ≤ nq and for all ξ < η ∈ Fq, xξ|nq 6= xη|nq; for each
ξ ∈ Fq and t ∈ 2nq \ {xξ|nq}, let

f qξ (t) =


f1
ξ (t|n) if ξ ∈ F1 and t|n 6= xξ|n (Case 1),

f2
ξ (t|n) if ξ ∈ F2 and t|n 6= xξ|n (Case 2),

(δξ, ξ) if ξ ∈ F1 and t|n = xξ|n (Case 3),
(εe−1(ξ), e

−1(ξ)) if ξ ∈ F2 \ F1 and t|n = xξ|n (Case 4).

f qξ is well-defined since e(ξ) = ξ whenever ξ ∈ F1 ∩ F2, so that f1
ξ (s) =

f2
e(ξ)(s) = f2

ξ (s) for s ∈ 2n \ {xξ|n}.
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Let us now prove that q ∈ P. Conditions 1 and 2 of Definition 3.1 follow
directly from the definition of Fq and nq.

To prove that q satisfies condition 3, fix ξ ∈ Fq and t ∈ 2nq \ {xξ|nq}.
In Case 1 (resp. Case 2), both conditions 3(a) and 3(b) follow from the fact
that p1 (resp. p2) is in P.

In Case 3, we only have to check condition 3(a), which is guaranteed by
the fact that (δξ : ξ ∈ F1 \ F2) ⊆ [2n][2n] are assumed to be constant.

Similarly, in Case 4, we only have to check condition 3(b), which is guar-
anteed by the fact that (εξ : ξ ∈ F1 \ F2) ⊆ [2n][2n] are assumed to be as
needed.

Let us now prove that q ≤ p1, p2. Trivially, F1, F2 ⊆ Fq and n1, n2 ≤ nq.
Given ξ ∈ Fq, s ∈ 2n \ {xξ|n} and t ∈ 2nq \ {xξ|nq} such that s ⊆ t, let

k ∈ {1, 2} be such that ξ ∈ Fk and notice that we are in Cases 1 or 2, since
t|n = s. Therefore, f qξ (t) = fkξ (t|n) = fkξ (s), which implies that q ≤ p1, p2.

Finally, notice that the definition of f qξ (t) in Cases 1 or 2 implies (3.1).

Theorem 3.7. P is c.c.c.

Proof. For each α < ω1, let pα = (Fα, nα, (fαη )η∈Fα) ∈ P.
By the ∆-system lemma, we can assume that (Fα)α<ω1 forms a ∆-system

with root ∆ such that for every α < β < ω1,

• ∆ < Fα \∆ < Fβ \∆ and |Fα| = |Fβ|.
Since each nα ∈ N, we can suppose that for every α < β < ω1,

• nα = nβ = n.

Also, we may assume that if eαβ : Fα → Fβ is the order-preserving bijective
function, then

• for all ξ ∈ Fα, xξ|n = xeαβ(ξ)|n (since both belong to 2n);
• for all ξ ∈ Fα and all s ∈ 2n \ {xξ|n},

fβeαβ(ξ)(s) = (ϕ, eαβ(η)), where fαξ (s) = (ϕ, η).

Now, fix α < β < ω1. Note that pα and pβ satisfy the hypothesis of
Proposition 3.6. Let, for ξ ∈ Fβ \∆, εξ be any function satisfying condition 3
of Definition 3.1 (for example, εξ constant equal to 1); and for ξ ∈ Fα \∆,
let δξ ∈ [2n][2n] be any constant function. Then, by Proposition 3.6, there is
q ≤ pα, pβ in P, which concludes the proof.

Theorem 3.8. Let n ≥ 1 be a natural number. It is consistent that there
is a compact Hausdorff totally disconnected space K which is an unordered
2n-split Cantor set corresponding to a balanced 2n-splitting family (Aξ,i :
ξ < ω1, i ∈ [2n]) such that given any collection of pairwise disjoint sets
Eα = {ξ1α, . . . , ξkα} ⊆ ω1 for α < ω1, given ε : [k]× [2n]→ [2n] such that

|{l ∈ {1, 3, 5, . . . , 2n− 1} : ε(i, l) = j}| = |{l ∈ {2, 4, 6, . . . , 2n} : ε(i, l) = j}|,
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and given δ : [k]→ [n], there are α < β such that for all 1 ≤ i ≤ k,
Rξiβ
⊆ Aξiα,δ(i) and (xξiα , l) ∈ Aξiβ ,ε(i,l).

Proof. By Theorem 3.5, P forces that (Aξ,i : ξ < ω1, i ∈ [2n]) as in
Definition 3.3 is a balanced 2n-splitting family. By Proposition 2.3, the cor-
responding unordered 2n-split Cantor set is a compact, Hausdorff, totally
disconnected space. Let us now prove the remaining desired property.

In V , suppose (Ėα)α<ω1 and (ξ̇iα)α<ω1,1≤i≤k are sequences of names such
that P forces that Ėα = {ξ̇1α < · · · < ξ̇kα} and (Ėα)α<ω1 is pairwise disjoint.

For each α < ω1, let pα = (Fα, nα, (fαη )η∈Fα) ∈ P, ξ1α, . . . , ξkα ∈ ω1 and
Eα, . . . , Eα ⊆ ω1 be finite such that

pα 
 ∀1 ≤ i ≤ k ξ̇iα = ξ̌iα and Ėα = Ěα.

By Lemma 3.2, we can assume without loss of generality that for all
α < ω1, Eαi ⊆ Fα.

By the ∆-system lemma, we can assume as well that (Fα)α<ω1 forms a
∆-system with root ∆ such that for every α < β < ω1,

• ∆ < Fα \∆ < Fβ \∆ and |Fα| = |Fβ|.
Since each nα ∈ N, we can suppose that for every α < β < ω1,

• nα = nβ = n.

Also, we may assume that if eαβ : Fα → Fβ is the order-preserving bijective
function, then

• for all ξ ∈ Fα, xξ|n = xeαβ(ξ)|n (since both belong to 2n);
• for all ξ ∈ Fα and all s ∈ 2n \ {xξ|n},

fβeαβ(ξ)(s) = (ϕ, eαβ(η)), where fαξ (s) = (ϕ, η).

• for all 1 ≤ i ≤ k, eαβ(ξiα) = ξiβ .

Finally, we may assume that for all 1 ≤ i ≤ k we have: either ξiα = ξiβ for
all α < β < ω1; or ξiα /∈ ∆ for all α < ω1, and actually the second case holds
by the assumption that Eα’s are pairwise disjoint.

Now, fix α < β < ω1. Note that pα and pβ satisfy the hypothesis of
Proposition 3.6. Taking εξiβ = ε(i, ·) and δξiα = δ(i) (and for ξ ∈ Fβ\(∆∪Eβ),
any function εξ satisfying condition 3 of Definition 3.1, while for ξ ∈ Fα \
(∆ ∪ Eα), any constant function δξ ∈ [2n][2n]), by Proposition 3.6, there is
q ≤ pα, pβ in P such that

∀ξ ∈ Fα \∆ f qξ (xeαβ(ξ)|nq) = (δξ, ξ) and f qeαβ(ξ)(xξ|nq) = (εeαβ(ξ), ξ).

In particular, for all 1 ≤ i ≤ k,
f q
ξiα

(xξiβ |nq) = (δ(i), ξiα) and f q
ξiβ

(xξiα |nq) = (ε(i, ·), ξiα).
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By the definition of Aξ,j , we see that for all 1 ≤ i ≤ k,
Rξiβ
⊆ Aξiα,δ(i) and (xξiα , l) ∈ Aξiβ ,ε(i,l),

which concludes the proof.

The fact that 2n is even is exploited in the above proof. It turns out that
there cannot be an analogue of an unordered N -split Cantor set for N = 3
which behaves as in Theorem 3.8, since we have the following:

Lemma 3.9. Let N ≥ 3 be a natural number. Suppose that K is an
unordered N -split Cantor set corresponding to an N -splitting family
(Aξ,i : ξ < ω1, i ∈ [N ]) such that given any sequence (ξα : α < ω1) of distinct
ordinals and j ∈ [N ], there are α < β such that

Rξβ ⊆ Aξα,j .
Suppose that (fα, µα)α<ω1 is a biorthogonal system such that fα = χAα for
some clopen subset Aα ⊆ K and µα = rαδ(xηα ,1) + sαδ(xηα ,2) + tαδ(xηα ,3) for
all α < ω1, for some reals rα, sα, tα and some sequence (ηα : α < ω1). Then
there is an uncountable nice biorthogonal system in C(K).

Proof. If there is a biorthogonal system of the form (χAα , rαδyα) for α <
ω1 and yα ∈ K, then rα = 1 for all α < ω1 and yα 6∈ Aβ for any β 6= α
and yα ∈ Aα. So (χAα+1 , δyα+1 − δyα), say, for all limit ordinals α is a nice
biorthogonal system.

If there is a biorthogonal system of the form (χAα , rαδyα + sαδzα) for
α < ω1 and yα, zα ∈ K, and rα, sα, rα + sα 6= 0, then rα, sα 6∈ Aβ for any
α 6= β and a similar argument to the one above gives a nice biorthogonal
system. If rα + sα = 0 and rα, sα 6= 0, we may assume that rα > 0 and so
sα = −rα. It follows from the fact that (rαδyα +sαδzα)(χAα) = 1 that rα = 1
and sα = −1, and so we have a nice biorthogonal system.

Hence, without loss of generality, we may assume that rα, sα, tα 6= 0 for
all α < ω1. First let us see that there is an uncountable X ⊆ ω1 such that
rα + sα + tα = 0 for all α ∈ X. If not, then there is an uncountable X ⊆ ω1

and an ε > 0 such that |rα + sα + tα| > ε for each α ∈ X.
Now note that as µα(χAα) = 1 6= 0, we have j ∈ {1, 2, 3} such that

(xηα , j) ∈ Aα. We may assume that it is the same j for all α ∈ X. By the
form of the basic neighbourhoods of points (xηα , j) we have s ∈ 2m for some
m ∈ N such that (xηα , j) ∈ Vs ∩ Aηα,j ⊆ Aα. We may assume that it is the
same s for all α ∈ X. It follows that for some n ∈ N we have s = xηα |n
for all α ∈ X and so Rηα ⊆ Vs for all α ∈ X. Apply the hypothesis of the
lemma and obtain α < β, both in X, such that Rηβ ⊆ Aηα,j ; thus we get
Rηβ ⊆ Vs ∩ Aηα,j ⊆ Aα. This means that 0 = µβ(χAα) = rβ + sβ + tβ ,
contradicting the choice of β ∈ X. So we may assume that rα + sα + tα = 0
for all α < ω1.
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For three nonzero numbers whose sum is zero, there cannot be any sub-
sum which is zero. This means that, for α 6= β, as µα(Aβ) = 0, we have either
{xα, yα, zα}∩Aβ = ∅ or {xα, yα, zα} ⊆ Aβ . So, to make an uncountable nice
biorthogonal system out of points {xα, yα, zα} and functions χAα , we need
to find any fixed pair of them which is separated by Aα for uncountably
many α’s.

But Aα must separate some pair as µα(Aα) = 1, so choose an uncountable
subset Y of ω1 on which the same pair is separated, say xα ∈ Aα and zα /∈ Aα.

Define να = δxα − δzα and note that (χAα , να)α∈Y is an uncountable nice
biorthogonal system.

4. Biorthogonal and semibiorthogonal systems in C(K2n)’s

Lemma 4.1. Suppose that θ > ρ > 0, n ∈ N, n ≥ 2, and r1, . . . , r2n are
reals such that

(1) |
∑

1≤i≤2n ri| < ρ,
(2) there is 1 ≤ i0 ≤ 2n such that ri0 > θ,
(3) there is 1 ≤ i1 ≤ 2n such that ri1 = 0.

Then there are 1 ≤ i, j ≤ 2n such that (−1)i+j = −1 and

ri + rj <
2nρ− θ
n(2n− 2)

.

Proof. By (1) and (2), since θ > ρ, there must be an i2 ∈ {1, . . . , 2n} \
{i0, i1} such that

ri2 < −
θ − ρ

2n− 2
=

ρ− θ
2n− 2

<
2nρ− θ
n(2n− 2)

.

So, if there is i3 such that (−1)i2+i3 = −1 and ri3 ≤ 0, then we are done.
Otherwise, there are at least n positive numbers ri (at least for all i of parity
other than i2), and so, by (3), at most n − 1 negative numbers ri. Let ri4
be the smallest number among ri’s with i of different parity than i2, in
particular ri4 > 0. Let ri5 be the smallest number among ri’s for i of the
same parity as i2, in particular ri5 ≤ −

θ−ρ
2n−2 . So we have

nri4 + (n− 1)ri5 ≤
∑
{ri : (−1)i+i2 = −1}+

∑
{ri : (−1)i+i2 = 1} < ρ.

Hence,

n(ri4 + ri5) < ρ+ ri5 ≤ ρ−
θ − ρ

2n− 2
,

so

ri4 + ri5 <
1
n

(
ρ− θ − ρ

2n− 2

)
=

(2n− 1)ρ− θ
n(2n− 2)

,

as required.
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Lemma 4.2. Let n ≥ 2. Suppose that (fα)α<ω1 is a sequence of continu-
ous rational simple functions on K2n as in Theorem 3.8 and (µα)α<ω1 is a
sequence of (2n− 1)-supported atomic Radon measures on K2n. Then either
there are α < β < ω1 such that

(a)
∣∣∣ � fα dµβ∣∣∣ > 0.01

2n2(2n− 2)
,

or there is α ∈ ω1 such that

(b)
�
fα dµα < 0.99,

or there are α < β < ω1 such that

(c)
�
fβ dµα < −

0.89
2n2(2n− 2)

.

Proof. By the separability of C0 ≡ C(2ω) (see Definition 2.4), Lemma
2.6 and thinning out the sequence, we may assume that for all α < ω1 we
have

fα = g +
∑

1≤i≤k

∑
1≤l≤2n−1

qi,lχA
ξiα,l
∩Vsi

for some simple rational function g ∈ C0, Fα = {ξ1α, . . . , ξkα} ⊆ ω1, some
si ∈ 2mi , mi ∈ N and some rationals qi,l, 1 ≤ i ≤ k and 1 ≤ l ≤ 2n, such
that si = rξiα |mi and∑

1≤i≤k
( max
1≤l≤2n

|qi,l|)|µα|(Vsi \Rξiα) ≤ 0.01
2n2(2n− 2)

.

By thinning out the sequence (applying the ∆-system lemma, see [Ku]) and
moving some identical parts to g we may assume that Fα’s are pairwise
disjoint and g (no longer in C0) is fixed. So, we will be allowed to use the
following decompositions:

Claim 0. For each α, β < ω1 we have
�
fα dµβ =

�
g dµβ +

∑
1≤i≤k

∑
1≤l≤2n−1

qi,lµβ(Aξiα,l ∩Rξiβ ∩ Vsi)

+
∑

1≤i≤k

∑
1≤l≤2n−1

qi,lµβ(Aξiα,l ∩ Vsi \Rξiβ ).

Here, the last term is small by the above application of Lemma 2.6, the
first term will be shown to be small by the claim below, and so the value of
the integral will depend on the relation of the points from Rξiβ ,l

to the sets
Aξiα,l which is “as we wish” on any uncountable set by Theorem 3.8.
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Claim 1. Either (a) holds or for all but countably many α’s in ω1 we
have ∣∣∣ � g dµα∣∣∣ ≤ 0.02

2n2(2n− 2)
.

Proof of the claim. If the inequality does not hold for uncountably many
α’s, then by Theorem 3.8 we can find among them α < β < ω1 such that
Rξiβ
⊆ Aξiα,2n for all 1 ≤ i ≤ k. By Claim 0 we get∣∣∣ � fα dµβ∣∣∣ ≥ ∣∣∣ � g dµβ∣∣∣− ∑

1≤i≤k

∑
1≤l≤2n−1

|qi,l| |µβ(Aξiα,l ∩ Vsi)|

≥
∣∣∣ � g dµβ∣∣∣− ∑

1≤i≤k
( max
1≤l≤m

|qi,l|)|µβ|(Vsi \Rξiβ ) >
0.02− 0.01
2n2(2n− 2)

=
0.01

2n2(2n− 2)
,

proving (a) of the lemma and Claim 1.

Claim 2. Either (a) holds or for all but countably many α’s in ω1 we
have, for each 1 ≤ l0 ≤ 2n− 1,∣∣∣ ∑

1≤i≤k
qi,l0µα(Rξiα)

∣∣∣ ≤ 0.04
2n2(2n− 2)

.

Proof of the claim. Without loss of generality we may assume that the
inequality of Claim 1 holds for all α < β < ω1. Fix l0 as above. Suppose
that the inequality above does not hold for uncountably many α’s; then by
Theorem 3.8 we obtain among them α < β such that for all 1 ≤ i ≤ k,

Rξiβ
⊆ Aξiα,l0 .

So by Claim 0 we have∣∣∣ � fα dµβ∣∣∣ ≥ ∣∣∣ ∑
1≤i≤k

∑
1≤l≤2n−1

qi,lµβ(Rξiβ ∩Aξiα,l ∩ Vsi)
∣∣∣− ∣∣∣ � g dµβ∣∣∣

−
∑

1≤i≤k
( max
1≤l≤2n−1

|qi,l|)|µβ|(Vsi \Rξiβ )

≥
∣∣∣ ∑
1≤i≤k

qi,l0µβ(Rξiβ )
∣∣∣− ∣∣∣ � g dµβ∣∣∣− ∑

1≤i≤k
( max
1≤l≤2n−1

|qi,l|)|µβ|(Vsi \Rξiβ )

>
0.04− 0.02− 0.01

2n2(2n− 2)
=

0.01
2n2(2n− 2)

,

proving (a) and Claim 2.

Claim 3. Either (a) or (b) holds or there is l0 ∈ {1, . . . , 2n} such that
for uncountably many α’s in ω1 we have∑

1≤i≤k
qi,l0µα({(xξiα , l0)}) > 0.96

2n
.
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Proof of the claim. Assume that (a) does not hold, i.e., the inequalities
of Claims 1 and 2 hold for all α < ω1. Now, suppose also that the inequality
above does not hold for any l0 ∈ {1, . . . , 2n}. By Claim 0 for α = β we have�
fα dµα ≤

∑
1≤i≤k

∑
1≤l≤2n−1

qi,lµα({(xξiα , l)})

− 0.02
2n2(2n− 2)

− 0.01
2n2(2n− 2)

≤ (2n− 1)0.96
2n

− 0.03 < 0.99,

that is, we obtain (b), which concludes the proof of Claim 3.

To finish the proof of the lemma, we assume that (a) and (b) fail, i.e., the
inequalities of all the above claims hold, and we need to get (c). Fix α < ω1;
we will apply Lemma 4.1 for

rl,α =
∑

1≤i≤k
qi,l0µα({(xξiα , l)})

and l ∈ {1, . . . , 2n}. Since the supports of the measures µα have at most
2n− 1 elements, one of rl,α’s must be zero. By Claim 3 we have rl0,α > θ =
0.96/(2n) and by Claim 2,

∑
1≤l≤2n rl,α < ρ = 0.04/(2n)2. So by Lemma 4.1

we find 1 ≤ l1,α, l2,α ≤ 2n of different parities such that∑
1≤i≤k

qi,l0µα({(xξiα , l1,α), (xξiα , l2,α)}) < 2nρ− θ
n(2n− 2)

=
2n(0.04/(2n)2)− 0.96/(2n)

n(2n− 2)
= − 0.92

2n2(2n− 2)
.

We may assume that l1,α = l1 and l2,α = l2 for all α < ω1. Note that by
Theorem 3.8 we can find α < β < ω1 such that

{(xξiα , l1), (xξiα , l2)} ⊆ Aξiβ ,l0
and

Rξiα \ {(xξiα , l1), (xξiα , l2)} ⊆ Aξiβ ,2n
for all 1 ≤ i ≤ k. Together with Claim 0 with α and β switched, this implies
that �

fβ dµα ≤
∑

1≤i≤k
qi,l0µα({(xξiα , l1), (xξiα , l2)})

+
∑

1≤i≤k
( max
1≤l≤2n−1

|qi,l|)|µα|(Vsi \Rξiα) +
∣∣∣ � g dµα∣∣∣

≤ −0.92 + 0 + 0.01 + 0.02
(2n)2(2n− 2)

= − 0.89
(2n)2(2n− 2)

,

which completes the proof of the lemma.
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Theorem 4.3. Let n ≥ 2. If K2n is an unordered 2n-split Cantor set as
in Theorem 3.8, then there are no uncountable semibiorthogonal sequences in
C(K2n) whose functionals are (2n−1)-supported but there is an uncountable
biorthogonal system whose functionals are 2n-supported.

Proof. Suppose (fα, µα)α<ω1 ⊆ C(K2n) ×M(K2n) is a sequence whose
functionals are 2n − 1-supported and that

	
fα dµβ = 0 for all α < β < ω1

as well as
	
fα dµα = 1 for all α < ω1.

We may assume without loss of generality that ‖µα‖ ≤ M for some
positive M . By the Stone–Weierstrass theorem we can choose f ′α ∈ C(K)
which is a rational simple function and

‖f ′α − fα‖ <
0.01

2Mn2(2n− 2)
.

This means that (a) and (b) of Lemma 14 do not hold for f ′α’s in place of
fα’s, i.e. (c) holds, which implies that (fα, µα)α<ω1 is not semibiorthogonal.

Theorem 4.4. If K2n is an unordered 2n-split Cantor set as in Theo-
rem 3.8, then hd(Kn

2n) = ω.

Proof. We will be using the well-known fact that a regular space is hered-
itarily separable if and only if it has no uncountable left-separated sequence
(see Theorem 3.1 of [16]).

Suppose (yα)α<ω1 is a left-separated sequence in Kn
2n of cardinality ℵ1.

Hence, for each α < ω1, yα = (y1
α, . . . , y

n
α), where each ymα ∈ K2n and, by the

definition of a left-separated sequence, for each α < ω1 and each m ∈ [N ],
there is an open basic neighbourhood Umα of ymα such that

∀α < ω1 ∀m ∈ [n] ymα ∈ Umα
and

∀α < β < ω1 ∃m ∈ [n] ymα /∈ Umβ .
We may assume without loss of generality that

{m ∈ [n] : ymα ∈ 2ω \ {xξ : ξ < ω1}} = {m ∈ [n] : ymβ ∈ 2ω \ {xξ : ξ < ω1}}
for every α < β < ω1 and let us call this set I.

For each m ∈ [n] \ I, let ξmα be a countable ordinal and jmα be an element
of [n] such that ymα = (xξmα , j

m
α ).

Now, for each m ∈ [n], let smα ∈ 2<ω be such that

Umα =

{
Vsmα if m ∈ I,
Vsmα ∩Aξmα ,jmα if m /∈ I.

Put Eα = {ξmα : m ∈ [n] \ I}.
Without loss of generality, we may assume that:

• there is jm ∈ [n] such that jmα = jm for all α < ω1;
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• there is sm ∈ 2<ω such that smα = sm for all α < ω1 (this already
guarantees that each ymα ∈ Vsm);
• for all m ∈ [n] \ I, either

∀α < β < ω1 ξmα = ξmβ ,

or
∀α < β < ω1 ξmα < ξmβ .

• (Eα)α<ω1 is a ∆-system with root ∆ such that for every α < β < ω1,
∆ < Eα \∆ < Eβ \∆ and |Eα| = |Eβ|.

If Eα \ ∆ = ∅, the left-separated sequence in Kn
2n would lead to a left-

separated sequence in a finite power of 2ω, which is not possible since 2ω is
hereditarily separable in all finite powers. Therefore, each Eα \ ∆ 6= ∅ and
they are pairwise disjoint.

For each α < ω1, enumerate Eα \∆ = {η1
α < · · · < ηkα}. We may assume

that ξmα = ηiα if and only if ξmβ = ηiβ .

Claim. For each 1 ≤ i ≤ k, one can find Ii ⊆ [2n] of cardinality N and
a bijection σi : Ii → [2n] \ Ii such that σi(l) and l have opposite parity and

{j ∈ [2n] : ∃m ∈ [n] such that j = jm and ξmα = ηiα} ⊆ Ii.

Proof of the claim. The claim follows easily from the fact that the set

{j ∈ [2n] : ∃m ∈ [n] such that j = jm and ξmα = ηiα}
has cardinality at most n so that we can find Ii containing it, and that
whenever we have a partition of [2n] into two sets A and B, both of size n,
then A has as many odds as B has evens, and vice versa.

Now, let ε : [k]× [2n]→ [2n] be defined by

ε(i, l) =

{
l if l ∈ Ii,
σ−1
i (l) if l ∈ [2n] \ Ii.

Notice that for each i ∈ [k], l ∈ Ii and j ∈ [2n], ε(i, l) = j if and only if
ε(i, σ(l)) = j. Since σ(l) and l have opposite parities, we see that ε has the
desired property, that is,

|{l ∈ {1, 3, 5, . . . , 2n− 1} : ε(i, l) = j}| = |{l ∈ {2, 4, 6, . . . , 2n} : ε(i, l) = j}|.

By Theorem 3.8, there are α < β such that for all i ∈ [k],

(xηiα , l) ∈ Aηiβ ,ε(i,l).

Fixm ∈ [n] and let us prove that ymα ∈ Umβ , contradicting the assumption.
If m /∈ I, then ymα ∈ Vsm = Umβ . If m ∈ I and ξmα ∈ ∆, then ξmα = ξmβ ∈ Umβ .
Finally, if m ∈ I and ξmα /∈ ∆, then there is i ∈ [k] such that ξmα = ηiα
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and ξmβ = ηiβ . In this case we have jm ∈ Ii, and so ε(i, jm) = jm, which
guarantees that

ymα = (xξmα , jm) = (xηiα , jm) ∈ Aηiβ ,jm = Aξmβ ,jm .

Since also ymα ∈ Vsm , we get ymα ∈ Umβ , which concludes the proof.
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