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Abstract. We show that for each natural number n > 1, it is consistent that there is
a compact Hausdorff totally disconnected space Ka, such that C'(K2,) has no uncountable
(semi)biorthogonal sequence (fe, pe)ecw, Where pe’s are atomic measures with supports
consisting of at most 2n—1 points of Ks,, but has biorthogonal systems ( fe, pt¢)ecw, where
pe’s are atomic measures with supports consisting of 2n points. This complements a result
of Todorcevic which implies that it is consistent that such spaces do not exist: he proves
that its is consistent that for any nonmetrizable compact Hausdorff totally disconnected
space K, the Banach space C'(K) has an uncountable biorthogonal system where the
functionals are measures of the form d,, — d,, for £ < w1 and z¢,ye € K. It also follows
from our results that it is consistent that the irredundance of the Boolean algebra Clop(K)
for a totally disconnected K or of the Banach algebra C'(K) can be strictly smaller than
the sizes of biorthogonal systems in C'(K). The compact spaces exhibit an interesting
behaviour with respect to known cardinal functions: the hereditary density of the powers
K% is countable up to k = n and it is uncountable (even the spread is uncountable) for
k>n.

1. Introduction. If X is a Banach space and X™* is its dual, then
(i, 2] )ier € X x X* is called a biorthogonal system if 7 (x;) = 1 and
xf(z;) = 0if ¢ # j for each 4,5 € I. If a is an ordinal, a transfinite se-
quence (x;, 2} )ica € X x X* is called a semibiorthogonal sequence whenever
xf(z;) =1, 27 (x;) =0 for j <i<oaand z(x;) >0fori<j<a.

Biorthogonal systems have always played an important role in the the-
ory of Banach spaces ([9]) because all kinds of bases in Banach spaces are in
particular the X-parts of biorthogonal systems ([20] and [21]). Semibiorthog-
onal sequences have been introduced quite recently (|2]) in connection with
subsets of Banach spaces supported by all of their points ([17], [13], [8]).
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We will mainly deal with biorthogonal systems in real Banach spaces
C(K) of all real-valued continuous functions on a compact Hausdorff space
K with the supremum norm. Its dual space is isometric to the Banach space
M(K) of all Radon measures on K with the variation norm, and so we
will identify this dual with M (K). If K is a compact Hausdorff space and
x € K, then 0, denotes the functional on C(K) defined by d,(f) = f(z) for
all f e C(K).

This paper is motivated by the following question: If there is an uncount-
able biorthogonal system (fe, pig)ecw, in C(K)x M(K), is there also one such
that

fg = Oz — Oy,

for some points x¢,ye € K? Following [4], we will call such biorthogonal
systems nuce.

The origin of this question is that in all concrete situations so far analyzed
in the literature, the above question has a positive answer. Moreover, it hap-
pens for a good reason, namely, it follows from a recent result of Todorcevic
that Martin’s axiom together with the negation of the continuum hypothe-
sis implies a positive answer for K totally disconnected. Indeed, analyzing
the proof of Theorem 11 of [24], one gets two cases: the first case, when K
is hereditarily separable, which is the main part of that proof and where
the constructed biorthogonal system is nice; and the second case, when K
is c.c.c. but contains a nonseparable subspace, in which case the proof of
Theorem 10 of [24] provides the required nice system; if K is not c.c.c., one
can easily obtain an uncountable nice biorthogonal system.

There is one more reason why nice biorthogonal systems appear fre-
quently in the context of Banach spaces C'(K) and which makes them more
meaningful. Namely, a family (fo)aex is the X-part of a nice biorthogonal
system if and only if (fa)aex is irredundant in the Banach algebra C(K),
in the sense that no f, belongs to the Banach subalgebra generated by the
remaining elements. This is a consequence of the Stone-Weierstrass theo-
rem. If K is totally disconnected and f,’s are the characteristic functions
of clopen sets A, C K, we obtain the well-known notion of an irredundant
set in a Boolean algebra, i.e., a set where no element belongs to the Boolean
algebra generated by the remaining elements (see [14]). The irredundance of
a Boolean algebra is the supremum of the cardinalities of irredundant sets.

To formulate our main results properly we need the following:

DEFINITION 1.1. Let K be a compact Hausdorff space and n € N. We
say that the functionals of a sequence (fe, pi¢)eew, € C(K) x M(K) are
n-supported if each ji¢ is an atomic measure whose support consists of no
more than n points of K.
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THEOREM 1.2. For each natural number n > 1, it is consistent that there
is a compact Hausdorff totally disconnected space Koy, such that C(Kap,)
has no uncountable semibiorthogonal sequence whose functionals are 2n — 1-
supported, but has uncountable biorthogonal systems whose functionals are
2n-supported.

Moreover, K3 is hereditarily separable but K3 has an uncountable dis-
crete subspace. Neither the Banach algebra C(Kay) nor the Boolean algebra
Clop(K2y,) have an uncountable irredundant family. In particular, C(K4) has
an uncountable biorthogonal system but it has no uncountable nice biorthog-
onal system.

This situation suggests many questions about the size of biorthogonal
systems of various types in C'(K) spaces as well as in general Banach spaces.
These more general discussions will appear elsewhere. In particular, we are
unable to obtain K’s such that C'(K) contains biorthogonal systems whose
functionals are 2n + 1-supported but does not contain one whose functionals
are 2n-supported. The reason why some fundamental change in the approach
would have to be taken to obtain such a space is shown in Lemma [3.9]

On the other hand, if n = 1 one has absolute results. If K is the split
interval, then K is hereditarily separable, and so it cannot have an uncount-
able semibiorthogonal system whose functionals are 1-supported, but C(K)
has an uncountable nice biorthogonal system (see [7]).

It seems that our compact space is the first example showing that the
hereditary density or spread of finite powers of a compact space may change
its value from countable to uncountable arbitrarily high in N. Such an ex-
ample can be only consistent since, for example, under MA+—-CH if K3 is
hereditarily separable for a compact K, then it is metrizable, and so all fi-
nite powers are hereditarily separable. This follows from the fact that under
these assumptions there are no compact S-spaces ([22]), from the Katétov
theorem ([10]) and from the fact that Lindel6f regular spaces are normal.

The paper is organized as follows: in the next section we discuss a general
form of the compact spaces we construct and call them unordered N-split
Cantor sets. They are versions of the split interval whose connection with
biorthogonal systems in Banach spaces was already demonstrated in [7]. Sec-
tion 3 is devoted to a generic construction of Boolean algebras whose Stone
spaces are the Kb,’s. That is the only section that requires the knowledge
of forcing. The partial order we use is a new modification of that of [11],
which produced nonseparable C'(K)’s with no uncountable semibiorthogo-
nal sequences. Thus our spaces are quite controllable members of the class
of compact spaces constructed in [I], [18], [19], [II]. In that section we also
prove the existence of an uncountable discrete subspace of K;L; land an un-
countable biorthogonal system in C'(K) whose functionals are 2n-supported.
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The section ends with Theorem [3.8] which expresses the random character
of the compact space constructed. Later on we use this theorem to prove
further properties of that space. Hence, a reader not familiar with forcing
may use this theorem for other purposes and read only the following sec-
tion. The last, fourth section is devoted to applications of Theorem to
prove that K3, is hereditarily separable and that C'(K3,,) has no uncountable
semibiorthogonal sequences whose functionals are 2n — 1-supported.

We use standard notation: for a positive natural number n, we put [n] =
{1,...,n} and n = {0,...,n — 1}. AB denotes the set of all functions from
B into A, and so if 2 = {0,1}, then 2¥ denotes all infinite sequences with
terms in {0, 1}, while 2" stands for functions from n into {0, 1}; also, 2<% =
U{2" : n € N} and (s) = {z € 2 : s C z} for s € 2" and some n € N. If
A, B are sets of ordinals, then A < B means that o < 3 for any o € A and
any 3 € B.

2. Unordered N-split Cantor sets. Fix asequence X = {z¢ : { <wi}

C 2% of distinct elements and N € N. Let
Ky =2\ X) U (X x [N])
and define
Ve =({s) N (27\ X)) U (((s) N X) x [N]).

DEFINITION 2.1. A family (A¢; : £ < wy, i € [N]) of subsets of Ky is
called an N -splitting family if it satisfies the following conditions:

(1) (we,i) € Ag; € K for each £ < wq and i € [N];
(2) for each £ < w; the sets A¢; are pairwise disjoint;
(3) for each & < wy we have Ky = A¢ 1 U---U A¢ n;
(4) if n < &, then there are k € N and j € [N] such that A;; NV, 1, C

Ag i O Vo ks
(5) if n> ¢ and x = ) or x € 2* \ X, then there are k € N and j € [N]
such that V,, C Ag¢ ;.

DEFINITION 2.2. Given an N-splitting family (A¢; : £ < wi, i € [N]),

we call the space (Ky,7) an unordered N -split Cantor set if the topology 7

on K is defined by indicating neighbourhood bases B, at = for every x € Ky
in the following way: if z € 2¢ \ X, then

B, ={Vy:sCu},
and if z = (x¢,j) € Ky, then
By ={VsNAg;:sCaxe}.

The intuitive meaning of the above definitions is the following: each point
xe of 2¥ is split into N points (z¢,1),..., (z¢, N). If we view Ky as con-
structed inductively, when at step £ < w; we construct the splitting clopen

3
4



Biorthogonal systems 47

neighbourhoods Ag¢1,..., A¢ n of the points (x¢,1),...,(x¢, N) and these
neighbourhoods split only x¢ and no other previously constructed (z,,%) for
n < & (condition [2.1(4)) nor a,, for n > & nor z € 2\ X (condition 2.1)(5)).
On the other hand, note that A¢;’s may split x,, for n < ¢, and in this case,
by condition (4), they do it “the same way” as the A, ;s.

PROPOSITION 2.3. Let N € N. If (A¢; : € < wi, i € [N]) s an N-
splitting family, then the corresponding unordered N -split Cantor set is a
compact, Hausdorff, totally disconnected topological space.

Proof. Since Vjj = Ky, conditions (1)—(3) of Definition imply that
Agi’s are clopen sets. Now using Proposition 1.2.3 of [5], we will prove that
the above families satisfy the axioms BP1-BP3 for neighbourhood bases
from [5]. The only nontrivial part is to prove that given € V' € B, there
isU € B, suchthat z € U C V.

Suppose € 2¥ \ X and z € V; € By. Then s C z and so V; itself is
in B,. If x € VyN Ag;, we also have s C x and by (5) of Definition
there is & € N such that V,;, € A¢; for some j € N. Put t = s U x|k and
note that V; C Ag ;, so by disjointness (condition [2.1)2)) we have j = i with
reVieByand V; CVoNAg,.

Now suppose that = (x,,7) and € Vi € By, hence s C = and so
VsNA,;eByandx e VyNA,,; CV.

Finally, let © = (xy,7) and v € Vs N A¢j € Bz, .j), then s C ay.

First consider n < £. Then by (5) of Definition there are k € N and
j"such that A, ; NV, C A¢ NV, |, and by disjointness we get j’ = j. So,
if we put t = sU x|k, then A,; NV; C A¢ ;N V; C Ag; N Vs and of course
ANV e B(a?n,i)~

Secondly, if n > £ and (zy,1) € VsNAg ;, we also have s C x,) and by[2.1[4)
there are & € N and j' such that V,, |, € A¢j for some j'. By disjointness
we have j = j/. If t = s U zylk we have V; C A¢;, so z € V; € B, and
Vi € VsNAg ;. This completes the proof that B,’s form a local neighbourhood
base.

The Hausdorff property is easy since basic sets are clopen.

To prove the compactness, suppose U is an open cover of Kpy. We may
assume that it consists of basic open sets. For each z € 2¥\ X define s, € 2<%
such that = € V;, CU € U for some U, and for each £ < w; define s¢ € 2<%
such that (z¢,4) € Vse N Agi CU €U for some U, and for each 1 <4 < N.
This actually implies by (3) of Definition that Vs, is covered by finitely
many U € U.

Now {(sz), (s¢) : @ € 2¥ \ X, { < wi} forms an open cover of 2 which is
compact and so it has a finite subcover, which easily yields a finite subcover
of U. m
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DEFINITION 2.4. Suppose N € N and K is an unordered N-split Cantor
set. Under the above notation, we define the following:

o Re={(z¢,1),...,(ze, N)}.

e A, is the subalgebra of Clop(Ky) generated by (Vs : s € 2<%) and
{A¢i: & <, i€ [N]} for a <wi.

e C, is the closure (in the norm) of the set of finite linear combinations
of characteristic functions of elements of A, inside C(K).

Note that Cp can be naturally identified with C'(2*) inside C(K).

LEMMA 2.5. Let N € N and let Ky be an unordered N -split Cantor set.
For every n € N and for every a € wy and every i € [N] we have

Aa,i \ anm c .Aa.

Proof. By the properties 2.1(4)&(5) of A¢;’s any point of K \ Ry has a
neighbourhood V' such that for every ¢ € [N] it is included in A, ; or disjoint
from A, ; and moreover V € A,.

Since Aq; \ Vialn is a compact subspace of Ky \ R,, we have a finite
subcover consisting of subsets, i.e. Ay \ Vialn is the supremum of a finite
family of elements of A, as required. =

Let us see the general form of continuous rational simple functions on
an unordered N-split Cantor set. By a rational simple function we mean a
function assuming only finitely many rational values.

LEMMA 2.6. Suppose that N € N and that Ky is an unordered N -split
Cantor set, € > 0, pu is a (regqular) Radon measure on K and f is a continu-
ous rational simple function on Ky. Then there is a simple rational function
g € C(2v), distinct &1, ..., & < wr and rationals ¢;;, non-negative integers
m; and s; € 2™ with s; = x¢,|my;, for1 <i<ke€w and1 <1< N, such that

f=g+> > qilX A, Vs,

1<i<k 1<I<N

and

. _ ) <e.
Z lgiﬁ(\qz,ll)\ﬂl(% \Re) <e
1<i<k

Proof. By induction on £ we prove that any continuous simple rational
function in C¢ can be written in the form as in the lemma. The Stone-
Weierstrass theorem and the uncountable cofinality of w; imply that the
union of C¢’s is the entire C'(Ky).

The limit stage is trivial. So, suppose we have proved the conclusion
for C¢ and we are given a continuous simple rational function f in Ceyq.

Note that
() Vielm = Re.
meN
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Hence, the regularity of the Radon measures implies that [p|(Vagm \ Re)’s
converge to 0. Let m7 be such that

1l (Ve \ B9 < g7

for m > mq.

Note also that a simple function is a linear combination of characteristic
functions of clopen sets, hence there are &1,...,&_1 < & < wy and me such
that the preimages under f of each of its finite rational values belong to the
subalgebra of A¢ 1 generated by Vi’s for [t| < mo and Ag¢, j,..., A¢, .5 Acj
for 1 < j < N. Now let n > m1, mo be such that for every 1 < i < k there is
1 < j < N such that dem C Ag, j, which can be obtained by the property
(5) (of Definition of A¢’s and n = §&;.

It follows that f is constant on Ag; N dem for every 1 < j < N. Let
¢}, ---,qy € Q be the corresponding values and note that |q; — ¢jy| < 2|/ f]|
for any 1 <1< N. So, by conditions (2) and (3) (of Definition 2.1 of A¢ ;s
we have

[f|(K \ V:vdm) + QNXVzg‘m + Z )XAg lsz§|m'
1<I<N
Note that f|(K \ Vj;n) belongs to C¢ by Lemma and so

™

f=h+ ). UXAWaepmr T |l |1 (Vagm \ Re) < 5
1<I<N

[\

where ¢; = ¢] — ¢)y and h € C¢. Hence the inductive assumption for £/2 can
be used, which completes the proof of the lemma. =

DEFINITION 2.7. We say that an N-splitting family (A¢; @ § < wi,
i € [N]) is balanced if it satisfies the following additional condition:

(6) for all distinct &, € wy and all j € [2n],
Hie{1,3,....2n — 1} : (zy,1) € A¢;}|
:|{i€{2747-- 2n} (m.nv GASJH
LEMMA 2.8. Suppose thatn € N and Ka, is an unordered 2n-split Cantor
set, where the N-splitting family (A¢; : & < wi,i € [2n]) is balanced. Then:

a) K%M contains an uncountable discrete subspace;
2n
(b) there is an uncountable biorthogonal system in C(Kay,) with 2n-sup-
ported functionals.

Proof. To prove (a), let us show that the subset {((z¢,1), (z¢,2),
(z6,4), ..., (z,2n)) : € < w1} of Koot is relatively discrete.

Let Ug = Ag1 X Ago X Ag g X -+ X Ag 2, which is clearly an open neigh-
bourhood of ((x¢, 1), (z¢,2), (z¢,4), ..., (x¢,2n)). Now, fix distinct &, < wq
and let us prove that ((z,,1), (zy,2), (y,4),...,(xy,2n)) ¢ Ue.
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For contradiction, suppose ((z,1), (zy,2), (,4),...,(zy,2n)) € Ug,
that is, (z,),7) € A¢; for each j = 1,2,4,...,2n. By condition (6), we see
that for each j € [2n],

Hie{L,3,...,2n — 1} : (z,1) € A¢;}|

={ie{2,4,...,2n} : (xy,1) € A¢;}|.
Hence, each set A¢ o, A¢ 4, ..., A¢ 2, must contain at least one of the (z,1),
(9,3), ..., (xy,2n — 1). By the disjointness of the A¢;’s (property (2) of
Definition , (xy,1) has to be in one of the sets A¢ o, A¢ 4, ..., A¢ 2, But
by our assumption, (x,,1) € A¢; and again by the disjointness of the Ag¢ ;’s,
this is a contradiction.

To show (b), for each § < wi, let fe = x4,,, and

n
He = 2(5(%%) - 5(3;5,21'—1))
k=1
and note that (fe, p¢)e<cw; € C(K2,) X M(Kay,). Let us prove that this is a
biorthogonal system.

For each { < wy, since (x¢,i) € A¢; and these sets are disjoint (property

(2) of Definition 2.1, we get

n

pe(fe) = (Owe2k) — (o .26-1)) (XAg )
k=1
= (XAon (36, 2K)) = XA, (¢, 2k — 1)) = XA, o, (e, 20)) = 1.
k=1

On the other hand, for distinct £, 7 < w1, by property (6), we know that
for all j € [2n],

[{ie{1,3,... . 2n—1} : (w,4) € A} = [{i € {2,4,.. .20} : (7)€ Ac,}.

Hence,

pe(fn) = 2(5(%21@) = Oz 26-1)) (X4,.2,)
k=1
=3 (X0 (36, 2K)) = XA, 5, (6, 2k — 1))
k=1
=S Xy o (@6, 2K)) =Y xa, o (6, 2k — 1))
k=1 k=1

={it €{2,4,...,2n} : (x¢,1) € Ayan}
—Hie{1,3,...,2n — 1} : (x¢, i) € Apon}| =0,
showing that (fe, pe)e<w, € C(Kap) x M(Kay,) is a biorthogonal system. m
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3. The generic construction. This section is devoted to a generic con-
struction of an unordered 2n-split Cantor set which exhibits quite random
features. This type of uncountable structures was first investigated systemat-
ically in [19]. One can describe this random behaviour as: in any uncountable
sequence of finite substructures there are two which are related as we wish
(up to constraints). We fix an uncountable sequence (z¢ : § < wy) C 2¢
consisting of distinct elements.

DEFINITION 3.1. Let PP be the forcing formed by the conditions
p= (vanpa (fg 1€ Fp))a

where:

1. F, € [wi]%;
2. np € w is such that for all £ # n in F,, x¢|n, # xy|np;
3. for all £ € F),

22\ {aglny}t — [20]P" x [F, 0 (£ + 1)
is such that

(a) if fg(s) = (¢, &), then ¢ is a constant function;
(b) if f£(s) = (¢, n) for some n <, then

vie2n] | t()N{1,3,5,....2n—1} =o' (j)N{2,4,...,2n}|.

We put ¢ < p if F; O Fp, ng > n, and for all £ € Fp, all s € 2"\ {z¢|ng}
and all t € 2™\ {x¢|n,},
tCs = f(t)=f{(s)

Intuitively, we are of course trying to build a 2n-split Cantor set which
is determined by the choice of the balanced 2n-splitting family formed by
Agi’s. Thus the coordinate fg(s) describes the behaviour of A¢;’s on V.
The formal description is given in Definition The value fg (s) = (¢,¢),
where ¢ has to be a constant function, say equal to i, means that the entire
Vs is included in Ag;. The value fg = (p,n) for some n < & means that
Agi’s divide Vs as coded by ¢, i.e. Ay ;NVs C Ag ;) for each j € [N]. Note
that a condition p € IP carries no information about the behaviour of A¢;’s
on Vi,jn, other than (z¢,7) € Ag;. This is the degree of freedom we have
and which can be controlled by passing to an appropriate extension ¢ < p.

Condition (b) is to guarantee that the family of A¢;’s is balanced, that is,
satisfies property (6) of Definition

LEMMA 3.2. The following subsets of P are dense in P:

(i) {p € P:ny, >k} for each fired k € N;
(ii) {peP: £ € F,} for each fized £ < wy.
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Proof. For (i), fix k € N and let p = (F),, np, (fgJ 1€ Fy)) eP. Ifn, <k,
define ¢ = (Fy,ng, (fg : £ € Fy)) by putting F, = F},, ng = k and for each
e F,=F, fg is any function satisfying condition 3 of the definition of the
forcing such that fZ(t) = f¢(t|np) if t|n, € 2™\ {z¢[n,}; for example, let

q fE(tnp) i tiny € 2™\ {z¢|ny},
fg (t) = ¢ :
(p,§) otherwise,
where ¢ is the constant function equal to 1. It is easy to see that ¢ € P and g <p.
For (ii), fix £ < w; and let p = (Fp,np,(fg’ 1 & € Fp)) € P. By (i),
we may assume that n, is such that z,|n, # x¢|n, for all n € F,. Define
q= (FQ7nqv(fg 1§ € Fy)) by putting Fy = F, U{&}, ng = nyp, fyj = fi for
each n € Fj,, and fg is any function satisfying condition 3 of the definition of
the forcing; for example, let fg (t) = (p,&), where ¢ is the constant function
equal to 1. It is easy to see that g € P and ¢ < p. m

DEFINITION 3.3. Given a P-generic filter G over a model V', we define
the family {A¢; : £ € w1, j € [2n]} as follows: for each £ € w; and each
J € [2n], let
Agj=UVs N Ay s 3p € G, fL(s) = (¢,n) for some n # £ and (i) = j}

U WHVs:3pegq, fg(s) = (¢, &) and ¢ is the constant function equal to j}
U {(ze,5)}-
The following lemma follows directly from the above definition.

LEMMA 3.4. Givenp € G, £ € F, and s € 2™ \ {z¢|n,}, we have:

(a) if fE(s) = (#,€), then Vs C Ag; for j = o(1);
(b) if fg(s) = (¢,m) for some n<§, then Vi€ [2n], Vs N Ay C Ag o). =

Notice that in case fg(s) = (¢, &), p is the constant function equal to j,
so that we could have taken j = ¢(i) for any i € [2n].

Let us now check that the family {A¢ ; : £ € w1, j € [2n]} has the desired
properties.

THEOREM 3.5. The family {A¢; : & € wy, j € [2n]} is a balanced 2n-
splitting family.

Proof. Let us prove that the family satisfies conditions [2.1(1)~(5) and
276).

(1) follows directly from the definition of A¢ ;.

(2) This is proved by induction on &. First notice that by the definition
of the forcing P,

VpGIF’VfGFpVSEdomfg ReNVy =10,

since z¢|n, ¢ dom fg’ Thus, (z¢,j1) € Ag j, iff j1 = jo.
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Now, fix £ < wy and suppose A,; are pairwise disjoint for each fixed
n < & Suppose there is € A¢ j, N Ag j, for some distinct ji, jo € [2n]. By
the above observation, x # (x¢, j) for any j € [2n].

By the definition of Agj, , for each k € {1,2} there are p, € G and
s € dom fg’“ such that x € V;, and either

° Ep’“(sk) = (¢k, &) and @ is the constant function equal to ji, or
. g’“(sk) = (¢k, i) for some ny < € and x € A, ; for some i € ¢, " (ji)-

Let p € G be such that p < p1,p2 and let ¢ € 2™ \ {z¢|n,} be such that
x € V. Then t D s, since z € Vj, , and hence, by the definition of extension
in P, ff'(s1) = f{(t) = f£*(s2), so that 1 = o

Now, if fg(t) = (¢, &), this would mean that ¢; and @9 are both constant
equal to j; and ja, contradicting the hypothesis that j; # jo. Otherwise, if
fg(t) = (¢, n), for some n < &, we would get z € A, ;, for some i, € ™1 (ji).
By the inductive hypothesis i; = i € ¢~ 1(j1) N~ 1(j2), which implies that
J1 = jo, again contradicting the hypothesis.

This concludes the proof that the family satisfies condition (2) of Defini-
tion 2.1

(3) is again proved by induction on &. So, let £ < wj, suppose K =
Ap1U---UA; 9, for any n < { and let x € K.

If © = (x¢,i) for some i € [2n], then & € A¢; by definition.

By Lemma[3.2] let p € G be such that = € V; for some s € 2"\ {x¢[n,}.

If fg(s) = (p,&), by Lemma (a) we get Vs C Ag 1), which guarantees
that = € A{,Lp(l)'

Otherwise, if fg (s) = (p,n) for some n < &, by the inductive hypothesis,
let i € [2n] be such that € A, ;. Then, by Lemma(b), VsNAyi C Ag o)
which implies that x € A¢ ;) and concludes the proof of condition (3) of
Definition .11

To prove (4), fix n < £ < w; and i € [2n]. By Lemma let p € G be
such that &, 7 € F, and x,|n, # x¢|np.

If fg(xn\np) = (¢,€), by Lemma (a) we get Vi, 1n, C Ae ) (and in
particular V, 1, N Ay © Vi n, N Ae (1)

If fg(mnmp) = (p,n) for some n < &, then, by Lemma w(b), we have
Vaplny NV Ani © Ag o) (and in particular V, 1, N Ay C Vo 15, N Ag o)), and
we are done by condition (4) of Definition

(5) is proved by induction on & < wy. Let § < wy and x € 2¥\{z, : n < &}

If v = z;, for some n > £, by Lemma there is p € G such that
¢,n € F,. Otherwise, if x € 2°\ {z,, : n < w1}, by Lemmathere ispeG
such that £ € F), and x|n, # x¢|ny. In both cases, put s = x|n,,.

If fgp(s) = (¢, &), then, by Lemma a), Vs C Ag 1)
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If fg(s) = (¢,n') for some 1’ € F,N¢&, by the inductive hypothesis, there
are k € N and i € [2n] such that V,; C A, ;. By Lemma let g € G
be such that ¢ < p and n, > k. Putting t = x|ng, we get V; C V1, C Ay
and f{(t) = f{(s) = (¢.7), since t 2 s. This implies by Lemma [3.4(b)
that V; =V, N A, ; C Aw(i), which concludes the proof of condition (5) of
Definition 2.1

Hence, the family formed by the A¢;’s is a 2n-splitting family.

(6) is proved by induction on & < wi. So, fix { < w; and suppose we
know that for all ( < ¢, all n # ¢ and all j € [2n],

{ie{1,3,...,2n—1} : (zy,1) € Acj}H=|{i € {2,4,...,2n} : (z,,7) € Ac;}]-

Now, fix n # . Let p € G be such that §,n € F,, so that z,|n, € dom fg.

If fg(xn\np) = (p,€), then, by Lemma (a), Vaolny © Aep(1), which
implies that (z;,i) € Ag ;) for all i € [2n]. By the disjointness of the A¢;’s,
(3) and condition (6) of Definition [2.7| hold both for A¢ 1) (Which contains
all (x,,7)) and for A¢ ;, j # ¢(1) (Whlch contain no (x,,1%)).

If f£ (xn|np) = (¢, ) for some ¢ < £ in F), then for all i € [2n], we have
Vaon, N Aci © Ag o(i)- This means that each Ag; contains exactly those
(xy, k) which are in ACi for some i € p~1(j). In particular,

{k?G{]_,B,... 1} (:En’ )GA&]‘}

={ke {1,3,... —1}: (33777 k) € A, for some i € ¢ 1(5)}
= U {k:e{1,3,... — 1} : (), k) € Aci}
i€p~1(j)
and
{ke{2,4,...,2n} : (z, k) € A¢;}
={k € {2,4,...,2n} : (z,,k) € A¢; for some i € o~ '(5)}
= | {re{24,... 20} (k) € Agy}.
i€p~1(j)

Let us now consider two cases:

If n = ¢, since (zy, k) € Ay i, we get
{ke{1,3,....,2n —1}: (2, k) € Ag j} ={k€{1,3,...,2n — 1} : k€ p 1 (j)}
and

{k€{2,4,....2n} : (z,k) € Agj} ={k €{2,4,....2n}:k € ' (j)}.

By property 3(b) of the definition of the partial ordering, the sets on the
right-hand side of these two equalities have the same size, which guarantees

{Ee{l,3,....2n=1}: (zg, k) € Ag j}[ = [{k €{2,4, ..., 2n} : (2, k) € Ag 3},

concluding the proof in this case.
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If n # ¢, by the inductive hypothesis we know that for all i € [2n],
Hke{l,3,....2n—1}: (zy, k) € Ac i = {k € {2,4,...,2n} : (xy, k) € Ac i}

Hence,

{ke{1,3,....,2n — 1} : (,, k) € Ag;}]
:( U {ke{3,...2n—1}: (w,k) € Acy)
i€p~1(j)
U {re{24,... 20} (), k) € Aci}
i€p1(j)

=|{ke{2,4,...,2n} : (z, k) € A¢;},

which concludes the proof of condition (6) of Definition that is, the
family of A¢;’s is a balanced 2n-splitting family. =

PROPOSITION 3.6. Let p1 = (Fl,nl,(fé1 c &€ ) and py = (Fy,no,
(fg2 1€ € Fy)) be conditions of P such that:

o [NNFy <F1\F2 <F2\F1,‘
® Ny ="MnN2 ="n;
e there is an order-preserving bijection e : Iy — Fy such that

— for all § € F1, z¢[n = xo(e)|n;
— forall§ € Fy and all s € 2™ \ {z¢n1} (= 2"\ {ze(g)In2}),

2o(5) = (poe(m) where f1(s) = (o1).
Then, given (e¢ : € € Fy \ Fy) C [2n]?"] such that for all ¢ € Fy \ Fy,
Vj € [2n] \eg () NA{L,3,5,...,2n — 1} = [e; Y)yn{2,4,6,...,2n},

and given constant functions (5¢ : & € Fy \ Fz) C [2n] 20l there is g < p1, pa,
q € P, such that

(3.1) VEEPI\Fy  f{(ze(e)lng) = (0¢,€) and [ (welng) = (ec, &)

Proof. Define ¢ = (Fy,ng, (fg : £ € Fy)) as follows: let F, = F} U Fy; let
ng € N be such n, < ng and for all £ < n € Fy, x¢|ng # xy|ng; for each
€ Fyand t € 2™ \ {z¢|ng}, let

fg(t\n) if £ € Fy and t|n # x¢|n (Case 1),

£ = fg(t|n) if £ € Fy and t|n # x¢|n (Case 2),
¢ (56, €) if ¢ € Fy and t/n = z¢ln (Case 3),
(€-1(e),€71(8)) if &€ Fy\ Fi and tn = x¢n  (Case 4).

fg is well-defined since e(§) = £ whenever £ € F; N Fy, so that fg(s) =
[2e(s) = F2(s) for s € 27\ {agln}.
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Let us now prove that ¢ € P. Conditions 1 and 2 of Definition 3.1 follow
directly from the definition of Fj, and n.

To prove that ¢ satisfies condition 3, fix { € F, and t € 2" \ {x¢|ng}.
In Case 1 (resp. Case 2), both conditions 3(a) and 3(b) follow from the fact
that p1 (resp. p2) is in P.

In Case 3, we only have to check condition 3(a), which is guaranteed by
the fact that (6 : € € Fy \ Fy) C [2n]1?"] are assumed to be constant.

Similarly, in Case 4, we only have to check condition 3(b), which is guar-
anteed by the fact that (e¢ : € € Fy \ Fy) C [2n]?"] are assumed to be as
needed.

Let us now prove that ¢ < p1,po. Trivially, Fy, F» C F, and nq,ne < ng.

Given ¢ € Fy, s € 2"\ {x¢|n} and ¢ € 2™\ {x¢|ng} such that s C ¢, let
k € {1,2} be such that £ € F}, and notice that we are in Cases 1 or 2, since
t|n = s. Therefore, fg(t) = fgk(ﬂn) = fgk(s)7 which implies that g < pq, po.

Finally, notice that the definition of fg(t) in Cases 1 or 2 implies . u

THEOREM 3.7. P s c.c.c.

Proof. For each av < wy, let po = (Foy s (f )ner,) € P
By the A-system lemma, we can assume that (Fy)a<w, forms a A-system

with root A such that for every a < 8 < w1,
e A< F,\A<Fg\A and |F,|=|Fj|.
Since each n, € N, we can suppose that for every a < 8 < wq,
® ng=ng=n.
Also, we may assume that if e, : Fi, — Fj3 is the order-preserving bijective
function, then

o forall § € Fy, z¢n =z, ,(¢)In (since both belong to 2");
o forall { € F, and all s € 2"\ {x¢|n},
12 (6(5) = (preas(n),  where  fE(s) = (¢,m).

Now, fix o < B < wi. Note that p, and pg satisfy the hypothesis of
Proposition . Let, for £ € Fg\ A, € be any function satisfying condition 3
of Definition 3.1 (for example, € constant equal to 1); and for £ € Fi, \ A,
let 9¢ € [2n] 2] he any constant function. Then, by Proposition there is

q < Pa,pp in P, which concludes the proof. =

THEOREM 3.8. Let n > 1 be a natural number. It is consistent that there
15 a compact Hausdorff totally disconnected space K which is an unordered
2n-split Cantor set corresponding to a balanced 2n-splitting family (A¢; -
¢ < wi, © € [2n]) such that given any collection of pairwise disjoint sets
E,={€L, ... &8} Cwy for a < wi, given €: [k] x [2n] — [2n] such that

H{le{1,3,5,...,2n — 1} 1 €(i,1) = j} = {l € {2,4,6,...,2n} : €(i,1) = j}|,
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and giwen 9§ : [k] — [n], there are o < B such that for all 1 < i <k,
R € Ag s ond (2g,,0) € Ag iy

Proof. By Theorem [3.5, P forces that (A¢; : £ < wi, i € [2n]) as in
Definition [3.3]is a balanced 2n-splitting family. By Proposition the cor-
responding unordered 2n-split Cantor set is a compact, Hausdorff, totally
disconnected space. Let us now prove the remaining desired property.

In V, suppose (Eq)a<w; and (&})a<w; 1<i<k are sequences of names such
that P forces that F, = {€} < --- < €%} and (E,)a<w, is pairwise disjoint.

For each o < wy, let po = (Fa, na, (f7)ner.) € P, €l &8 € w and
E,, ..., By Cwi be finite such that

palFV1<i<k € =& and E,=E,.

By Lemma [3:2] we can assume without loss of generality that for all
a<wy, BEY CF,.

By the A-system lemma, we can assume as well that (Fy)a<w, forms a
A-system with root A such that for every a < 8 < wy,

e A< F,\A<Fg\A and |F,| = |Fs|.

Since each n, € N, we can suppose that for every a < 8 < wiq,

® Ng =TNg="n.

Also, we may assume that if e,g : F;, — Fj is the order-preserving bijective
function, then

o for all § € Fyy, z¢|n = x,_,(¢)In (since both belong to 2");
o forall £ € F, and all s € 2"\ {z¢|n},

12 65) = (9reas(n),  where  fE(s) = ().
e forall 1 <i<k, eqns(El) = %

Finally, we may assume that for all 1 < i < k we have: either ¢, = fé for
all < B < wy;or & ¢ A for all o < wy, and actually the second case holds
by the assumption that F,’s are pairwise disjoint.

Now, fix o < 8 < w;. Note that p, and pg satisfy the hypothesis of
Proposition Taking i = €(i,-) and 6¢; = 6(i) (and for £ € F\(AUEp),
any function e¢ satisfying condition 3 of Definition 3.1, while for £ € F, \
(AU E,), any constant function &¢ € [2n]?")), by Proposition there is
q < Pa,pg in P such that

VEEFANA  flrayoing) = (6§ and 1 (aelng) = (oyies ).
In particular, for all 1 < i <k,
fgét (‘Ték‘nq) = (5(2)7£g) and fqzi (xggmq) = (E(Za )76(21)
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By the definition of A¢ ;, we see that for all 1 <i <k,
R © Agiow and (2g,1) € Agi iy
which concludes the proof. m

The fact that 2n is even is exploited in the above proof. It turns out that
there cannot be an analogue of an unordered N-split Cantor set for N = 3
which behaves as in Theorem [3.8] since we have the following:

LEMMA 3.9. Let N > 3 be a natural number. Suppose that K is an
unordered N-split Cantor set corresponding to an N-splitting family
(Ag; & <wi, i € [N]) such that given any sequence (&q @ o < wn) of distinct
ordinals and j € [N], there are a < (3 such that

Re, C Ag, j-

Suppose that (fuo, lha)a<w, S a biorthogonal system such that f, = xa, for
some clopen subset Ao C K and po = a0z, 1) + S$ad(z,, 2) + tad(z,, 3) for
all @ < wy, for some reals T4, Sa, to and some sequence (Ng : o < w1). Then
there is an uncountable nice biorthogonal system in C(K).

Proof. If there is a biorthogonal system of the form (xa,,7a0y, ) for a <
wi and Yy, € K, then 7, = 1 for all o < wy and y, & Ag for any 8 # «
and Yo € An. S0 (XAui1sOyarr — Oy ), say, for all limit ordinals « is a nice
biorthogonal system.

If there is a biorthogonal system of the form (xa,,7ra0y, + Sa0-,) for
a < wy and Yo, 2o € K, and 74, 84,70 + 5o # 0, then rq, s, € Ag for any
«a # (B and a similar argument to the one above gives a nice biorthogonal
system. If 7o, + s, = 0 and 74, So # 0, we may assume that r, > 0 and so
Sq = —Tq. It follows from the fact that (rody, +5462,)(x4,) = 1that ro =1
and s, = —1, and so we have a nice biorthogonal system.

Hence, without loss of generality, we may assume that r,, sq,tq # 0 for
all o < wy. First let us see that there is an uncountable X C w; such that
To + So +to = 0 for all & € X. If not, then there is an uncountable X C wy
and an € > 0 such that |ry + so + to| > € for each a € X.

Now note that as pa(xa,) = 1 # 0, we have 7 € {1,2,3} such that
(Zn.,J) € Aq. We may assume that it is the same j for all a € X. By the
form of the basic neighbourhoods of points (z,,, j) we have s € 2 for some
m € N such that (z,,,j) € Vs N A,, ; € Ay. We may assume that it is the
same s for all o« € X. It follows that for some n € N we have s = z,,|n
for all @ € X and so R,, C V; for all @ € X. Apply the hypothesis of the
lemma and obtain a < 3, both in X, such that R,, C A,, ;; thus we get
Ry, € Vin Ay, ; € Ay This means that 0 = ug(xa,) = 75 + 55 + g,
contradicting the choice of § € X. So we may assume that ro + sq +to =0
for all o < wq.
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For three nonzero numbers whose sum is zero, there cannot be any sub-
sum which is zero. This means that, for o # (3, as 110 (Ag) = 0, we have either
{Za, Yo, 2a} NAg =0 or {Za, Yo, 2a} € Ag. So, to make an uncountable nice
biorthogonal system out of points {zq, Ya, 2o} and functions x4,, we need
to find any fixed pair of them which is separated by A, for uncountably
many «’s.

But A, must separate some pair as o (Aqs) = 1, so choose an uncountable
subset Y of w; on which the same pair is separated, say x, € A, and z, ¢ Aa.

Define v, = 85, — 9., and note that (x4, ,Va)acy is an uncountable nice
biorthogonal system. m

4. Biorthogonal and semibiorthogonal systems in C(K3,)’s

LEMMA 4.1. Suppose that 0 > p >0, n € N, n> 2, and ry,...,ro, are
reals such that

(1) [ X 1<i<on il <p;
(2) there is 1 <'ig < 2n such that i, > 0,
(3) there is 1 < iy < 2n such that r;;, = 0.
Then there are 1 < i,j < 2n such that (—1)"* = —1 and
2np — 0
n(2n —2)
Proof. By (1) and (2), since 6 > p, there must be an iy € {1,...,2n}\
{ip, 71} such that

ri+r; <

riy < — 0—p _ p—10 < 2np — 6 .

2n—2 2n—-2 n(2n-2)
So, if there is i3 such that (—1)2%% = —1 and r;; < 0, then we are done.
Otherwise, there are at least n positive numbers 7; (at least for all i of parity
other than is), and so, by (3), at most n — 1 negative numbers r;. Let r;,
be the smallest number among 7;’s with ¢ of different parity than is, in
particular r;, > 0. Let r;; be the smallest number among r;’s for i of the

. . . . . 0_p
same parity as iz, in particular r;; < —5 5. So we have

nri, + (n— 1)y < Z{Tz (1) = 1) + Z{TZ (=12 =1} < p.

Hence,
b—p
n(ri, +1i5) <p+rig < p— 575
SO
1 0—p 2n—1)p—10
Tia T i < <p 2n — 2) n(2n—2) ’

as required. m
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LEMMA 4.2. Let n > 2. Suppose that (fa)a<w, @S a sequence of continu-
ous rational simple functions on Ko, as in Theorem and (la)a<w, 1S @
sequence of (2n — 1)-supported atomic Radon measures on Koy,. Then either
there are o < 3 < wy such that

(2 §fadis] > 5

2n2(2n — 2)’
or there is o € wy such that
(b) | fodpa < 0.99,

or there are a < 8 < wy such that

0.89
d —_—

(c) Sfﬁ o < 2n?(2n — 2)

Proof. By the separability of Cyp = C(2¥) (see Definition [2.4)), Lemma

and thinning out the sequence, we may assume that for all o < wy we

have
fa=9+ Z Z BGIXAg Vs,
1<i<k 1<I<2n—1
for some simple rational function g € Co, F,, = {€L,...,€5} C wy, some

s;i € 2™, m; € N and some rationals ¢;;, 1 <7 < k and 1 <1 < 2n, such
that s; = r£g|mi and

0.01
; ) i) < —.
Z (mas lalnal (Ve \ Re) < 5095 =5
1<i<k

By thinning out the sequence (applying the A-system lemma, see [Ku|) and
moving some identical parts to g we may assume that F,’s are pairwise
disjoint and g (no longer in Cj) is fixed. So, we will be allowed to use the
following decompositions:

CLAM 0. For each o, 3 < w1 we have

Viodus=Ygdus+ Y Y dianp(Ag N Ry NVi)

1<i<k 1<I<2n—1

> > Giip5(Agi, 0 N Ve, \ Rei).

1<i<k 1<1<2n—1

Here, the last term is small by the above application of Lemma the
first term will be shown to be small by the claim below, and so the value of
the integral will depend on the relation of the points from R% 1 to the sets

Aéé 1 Which is “as we wish” on any uncountable set by Theorem
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CLAIM 1. Either (a) holds or for all but countably many «’s in w; we

have
0.02

dita| < 5o o
Hg Haf = 2n2(2n —2)’
Proof of the claim. If the inequality does not hold for uncountably many

a’s, then by Theorem we can find among them o < 3 < wy such that
R% - A&“% for all 1 <14 < k. By Claim 0 we get

Hfad,uﬁ‘ > Hgdua’ - Z Z |Gia| s (Ags 1 O Vs,)|
1<i<k 1<i<2n—1
0.02 —-0.01 0.01
> |§gdus| = D7 (max lgual)lusl(vi\Bey) > =

2091, —9)  9n2(2n — 2’
(52, 1sism 2n2(2n —2)  2n2(2n —2)

proving (a) of the lemma and Claim 1.
CLAIM 2. Either (a) holds or for all but countably many a’s in w1 we
have, for each 1 <lg < 2n —1,

0.04
E i Rei)| £ —7———.
‘ - Gitota(Fey )| < 2n2(2n — 2)
1<i<k

Proof of the claim. Without loss of generality we may assume that the
inequality of Claim 1 holds for all @ < 8 < w;. Fix lp as above. Suppose
that the inequality above does not hold for uncountably many «’s; then by
Theorem we obtain among them a < (§ such that for all 1 < ¢ <k,

So by Claim 0 we have
> ; i i s )| —
Hfadﬂﬂ‘ Z ‘ > Giatp(Rey N Agi g ﬂvl)‘ Hgd#B’

1<i<k 1<I<2n—1

_ Z max |Qi,l|)|ﬂﬂ’(%¢\R£Zg)

1<I<2n—1
1<i<k
> | 3 diaoms(Rey)| — [Todus| = 3 ( max laiaDlusl(Vii \ Bey)
1<i<k 1<i<k — —
0.04—0.02-0.01 001
2n2(2n —2)  2n2(2n —2)’

proving (a) and Claim 2.

CLAIM 3. FEither (a) or (b) holds or there is ly € {1,...,2n} such that
for uncountably many o’s in w1 we have

Z qi l()lu’a :L‘é‘z 7l0)}) >

1<i<k

096
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Proof of the claim. Assume that (a) does not hold, i.e., the inequalities
of Claims 1 and 2 hold for all a < wi. Now, suppose also that the inequality
above does not hold for any ly € {1,...,2n}. By Claim 0 for « = 8 we have

Sfa dpa < Z Z Qi,lﬂa({(wggal)})
1<i<k 1<I<2n—1
B 0.02 B 0.01 < (2n —1)0.96
2n?2(2n —2)  2n%(2n—2) — 2n
that is, we obtain (b), which concludes the proof of Claim 3.

—0.03 < 0.99,

To finish the proof of the lemma, we assume that (a) and (b) fail, i.e., the
inequalities of all the above claims hold, and we need to get (¢). Fix a < wy;
we will apply Lemma [4.1] for

Tla = Z Qi,loﬂa({(xggal)})
1<i<k

and | € {1,...,2n}. Since the supports of the measures p, have at most
2n — 1 elements, one of r; ,’s must be zero. By Claim 3 we have ry, o > 0 =
0.96/(2n) and by Claim 2, 3, j<o, 7.0 < p = 0.04/(2n)%. So by Lemmal[d.]]
we find 1 <y 4,02, < 2n of different parities such that

2np — 0
lékq@,loua{(%zm), (o a))) < o=
~ 2n(0.04/(2n)?) — 0.96/(2n) 0.92
- n(2n — 2) T m2(2n—2)

We may assume that l;, = l; and Iy, = lo for all @ < w;. Note that by
Theorem 3.8 we can find a < 3 < wy such that

(g, 1), (i p 12)} © Agi g,
and
R{é \ {(xgév ll)v (17537 ZQ)} - A{é,?n

for all 1 < ¢ < k. Together with Claim 0 with o and (8 switched, this implies
that

Sfﬁ dpia < Z Qi,loﬂa({(ﬂfgg, lh), (‘T&X’ 12)})

1<i<k
£ 30 (max lauaDlal (Ve \ Rey) + | fadpa
1<i<k
_ 0.92+040.01+0.02 089
- (2n)%(2n — 2)  (2n)2(2n - 2)’

which completes the proof of the lemma. u
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THEOREM 4.3. Letn > 2. If Koy, is an unordered 2n-split Cantor set as
in Theorem [3.8], then there are no uncountable semibiorthogonal sequences in
C(Kap) whose functionals are (2n — 1)-supported but there is an uncountable
biorthogonal system whose functionals are 2n-supported.

Proof. Suppose (fa, tta)a<w; © C(Kay) X M(Ka,) is a sequence whose
functionals are 2n — 1-supported and that §{ fo dpg = 0 for all @ < 8 < wy
as well as { fo dpo =1 for all o < wy.

We may assume without loss of generality that |uq|| < M for some
positive M. By the Stone-Weierstrass theorem we can choose f! € C(K)
which is a rational simple function and

0.01
/
—fall <
This means that (a) and (b) of Lemma 14 do not hold for f/’s in place of
fa’s, i.e. (c) holds, which implies that ( fa, fta)a<w, 1S not semibiorthogonal. m

THEOREM 4.4. If Ko, is an unordered 2n-split Cantor set as in Theo-
rem[3.8 then hd(K%,) = w.

Proof. We will be using the well-known fact that a regular space is hered-
itarily separable if and only if it has no uncountable left-separated sequence
(see Theorem 3.1 of [16]).

Suppose (Ya)a<w, is a left-separated sequence in K73, of cardinality N;.
Hence, for each a < w1, yo = (y,...,y"), where each ¢y € Ko, and, by the
definition of a left-separated sequence, for each o < w; and each m € [N],
there is an open basic neighbourhood U[* of y' such that

Va<w VYm € [n] yleUr
and
Va<f<w dmen] yi ¢UZ.
We may assume without loss of generality that
{meln]:yy €29\ {ze: E <wit} ={men]:yz € 29\ {e: £ <wi}}
for every a < # < wy and let us call this set 1.
For each m € [n]\ I, let €' be a countable ordinal and jJ* be an element
of [n] such that y' = (zem, jo').
Now, for each m € [n], let sI' € 2<“ be such that
‘/Sm if me I,
Uul' = “
‘/San N AggngL if m ¢ I
Put E, ={& :m € [n]\ I}.
Without loss of generality, we may assume that:

e there is j,, € [n] such that ;7' = j,, for all & < wy;
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e there is s, € 2<% such that s = s,, for all @ < w; (this already
guarantees that each y7' € V5, );
e for all m € [n]\ I, either

Va<fB<w &=,
or
Va<f<w & <&f.
o (Ey)a<w, is a A-system with root A such that for every o < 5 < wy,
A <E,\A<Eg\Aand |E,| =|Es|

If E,\ A = 0, the left-separated sequence in K% would lead to a left-
separated sequence in a finite power of 2¢, which is not possible since 2% is
hereditarily separable in all finite powers. Therefore, each E, \ A # () and
they are pairwise disjoint.

For each av < w1, enumerate E, \ A = {nl <--- < nk}. We may assume
that 5" =y, if and only if £5' = nj.

CLAIM. For each 1 < i <k, one can find I; C [2n] of cardinality N and
a bijection o; : I; — [2n] \ I; such that o;(1) and | have opposite parity and

{j € 2n] : Im € [n] such that j = jp, and E™ =7’} C I,.
Proof of the claim. The claim follows easily from the fact that the set
{j € [2n] : Im € [n] such that j = j,, and £™ = 7.}

has cardinality at most n so that we can find I; containing it, and that
whenever we have a partition of [2n] into two sets A and B, both of size n,
then A has as many odds as B has evens, and vice versa.

Now, let € : [k] x [2n] — [2n] be defined by
l if | € I,
E(ia l) = 1 nee
o, () ifle2n]\ L.
Notice that for each i € [k], [ € I; and j € [2n], €(i,1) = j if and only if

€(i,0(l)) = j. Since o(l) and [ have opposite parities, we see that e has the

desired property, that is,

H{le{1,3,5,....,2n — 1} 1 €(i,1) = j} = {l € {2,4,6,...,2n} : €(i,1) = j}|
By Theorem there are a < [ such that for all i € [k],

(‘Tng ) l) € Ang,e(i,l)‘

Fix m € [n] and let us prove that y' € U, 5", contradicting the assumption.
Ifmé¢l, then yi' € Vs, =Ug". It m € I and &' € A, then 5" = 5" € U
Finally, if m € I and €™ ¢ A, then there is i € [k] such that &7 = n}



Biorthogonal systems 65

and £ = 17%. In this case we have j,, € I;, and so €(%, jm) = Jjm, which
guarantees that

Yoo = (T m) = Ty Jm) € Ay 5, = Agm j-

Since also yo' € Vi, ., we get yo' € U 53, which concludes the proof. =

Acknowledgements. We would like to thank Szymon Gtab for noting
a gap in the previous proof of Lemma 4.1 and for correcting it.

The first author was supported by FAPESP fellowship (2007/08213-2),
which is part of Thematic Project FAPESP (2006/02378-7). Part of the
research was done at the Technical University of £.6dz where the first author
was partially supported by Polish Ministry of Science and Higher Education
research grant N N201 386234.

The second author was partially supported by Polish Ministry of Science
and Higher Education research grant N N201 386234. Part of the research
was done at the State University of Campinas UNICAMP where the second
author was partially supported by the Department of Mathematics.

References

[1] M. Bell, J. Ginsburg, and S. Todoréevié¢, Countable spread of expY and Y, Topol-
ogy Appl. 14 (1982), 1-12.

[2] J. M. Borwein and J. D. Vanderwerff, Banach spaces that admit support sets, Proc.
Amer. Math. Soc. 124 (1996), 751-755.

[3] C.Brech and P. Koszmider, Thin-very tall compact scattered spaces which are hered-
itarily separable, Trans. Amer. Math. Soc. 363 (2011), 501-519.

[4] M. Dzamonja and I. Juhdsz, CH, a problem of Rolewicz and bidiscrete systems,
Topology Appl., to appear.

[6] R. Engelking, General Topology, 2nd ed., Sigma Ser. Pure Math. 6, Heldermann,
Berlin, 1989.

[6] M. Fabian, P. Habala, P. H4jek, V. Montesinos Santalucia, J. Pelant, and V. Zizler,
Functional Analysis and Infinite- Dimensional Geometry, CMS Books Math./Ouvra-
ges Math. SMC 8, Springer, New York, 2001.

[7] C. Finet and G. Godefroy, Biorthogonal systems and big quotient spaces, in: Ba-
nach Space Theory (Iowa City, IA, 1987), Contemp. Math. 85, Amer. Math. Soc.,
Providence, RI, 1989, 87-110.

[8] A.S. Granero, M. Jiménez Sevilla, and J. P. Moreno, Convez sets in Banach spaces
and a problem of Rolewicz, Studia Math. 129 (1998), 19-29.

[9] P. Hajek, V. Montesinos Santalucia, J. Vanderwerfl, and V. Zizler, Biorthogonal
Systems in Banach Spaces, CMS Books Math./Ouvrages Math. SMC 26, Springer,
New York, 2008.

[10] M. Katétov, Complete normality of Cartesian products, Fund. Math. 35 (1948),
271-274.

[11]| P. Koszmider, On a problem of Rolewicz about Banach spaces that admit support
sets, J. Funct. Anal. 257 (2009), 2723-2741.


http://dx.doi.org/10.1016/0166-8641(82)90043-8
http://dx.doi.org/10.1090/S0002-9939-96-03122-X
http://dx.doi.org/10.1090/S0002-9947-2010-05149-9
http://dx.doi.org/10.1016/j.jfa.2009.07.016

66 C. Brech and P. Koszmider

[12] K. Kunen, Set Theory. An Introduction to Independence Proofs, Stud. Logic Found.
Math. 102, North-Holland, Amsterdam, 1980.

[13] A. J. Lazar, Points of support for closed convez sets, Illinois J. Math. 25 (1981),
302-305.

[14] J. D. Monk, Cardinal Functions on Boolean Algebras, Lectures in Math. ETH
Zirich, Birkhduser, Basel, 1990.

[15]] S. Negrepontis, The Stone space of the saturated Boolean algebras, Trans. Amer.
Math. Soc. 141 (1969), 515-527.

[16] J.Roitman, Basic S and L, in: Handbook of Set-Theoretic Topology, North-Holland,
Amsterdam, 1984, 295-326.

[17] S. Rolewicz, On convez sets containing only points of support, Comment. Math.
Special Issue 1 (1978), 279-281,

[18] S. Shelah, On uncountable Boolean algebras with no uncountable pairwise comparable
or incomparable sets of elements, Notre Dame J. Formal Logic 22 (1981), 301-308.

[19]] —, Uncountable constructions for B.A., e.c. groups and Banach spaces, Israel J.
Math. 51 (1985), 273-297.

[20] 1. Singer, Bases in Banach Spaces. I, Grundlehren Math. Wiss. 154, Springer, New
York, 1970.

[21] —, Bases in Banach Spaces. II, Editura Academiei, Bucuregti, 1981.

[22] Z. Szentmiklossy, S-spaces and L-spaces under Martin’s axiom, in: Topology, Vol. 11
(Budapest, 1978), Colloq. Math. Soc. Janos Bolyai 23, North-Holland, Amsterdam,
1980, 1139-1145.

[23] S. Todorcevic, Irredundant sets in Boolean algebras, Trans. Amer. Math. Soc. 339
(1993), 35-44.

[24]] —, Biorthogonal systems and quotient spaces via Baire category methods, Math.
Ann. 335 (2006), 687-715.

Christina Brech Piotr Koszmider

Instituto de Matematica, Estatistica Instytut Matematyki Politechniki f.6dzkiej

e Computagao Cientifica Wolczanska 215

Universidade Estadual de Campinas 90-924 1.6dz, Poland

Rua Sérgio Buarque de Holanda 651 E-mail: pkoszmider.politechnika@gmail.com

13083-859, Campinas, Brazil Current address:

Current address: Institute of Mathematics

Instytut Matematyki Politechniki L.6dzkiej Polish Academy of Sciences

Woélczanska 215 Sniadeckich 8

90-924 Lodz, Poland P.O. Box 21

E-mail: christina.brech@gmail.com 00-956 Warszawa, Poland

E-mail: piotr.math@gmail.com

Received 19 May 2010;
in revised form 8 March 2011


http://dx.doi.org/10.1090/S0002-9947-1969-0248057-2
http://dx.doi.org/10.1305/ndjfl/1093883511
http://dx.doi.org/10.1007/BF02764721
http://dx.doi.org/10.2307/2154207
http://dx.doi.org/10.1007/s00208-006-0762-7

	Introduction
	Unordered N-split Cantor sets
	The generic construction
	Biorthogonal and semibiorthogonal systems in C(K2n)'s

