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Abstract. We introduce the idea of a coherent adequate set of models, which can be
used as side conditions in forcing. As an application we define a forcing poset which adds
a square sequence on ω2 using finite conditions.

In previous work [3] we introduced the idea of an adequate set of models
and showed how to use adequate sets as side conditions in forcing with finite
conditions. We gave several examples of forcing with adequate sets, including
forcing posets for adding a generic function on ω2, adding a nonreflecting
stationary subset of ω2, adding a Kurepa tree on ω1, and in [4] adding a
club to a fat stationary subset of ω2. The main result of the present paper
is to define a forcing poset using adequate sets which adds a �ω1-sequence.

The idea of using models as side conditions in forcing goes back to
Todorčević [6], where the method was applied to add generic objects of
size ω1 with finite approximations. In the original context of applications of
PFA, the preservation of ω2 was not necessary. To preserve ω2, Todorčević
introduced the requirement of a system of isomorphisms on the models in a
condition.

In the present paper we introduce the idea of a coherent adequate set
of models. A coherent adequate set is essentially an adequate set in the
sense of [3] which also satisfies the existence of a system of isomorphisms in
the sense of Todorčević. Combining these two ideas turns out to provide a
powerful method for forcing with side conditions. As an application we define
a forcing poset which adds a square sequence on ω2 using finite conditions.

We assume that the reader is familiar with the basic theory of adequate
sets as described in Sections 1–3 of [3]. Our treatment of coherent adequate
sets owes a lot to the presentation of nicely arranged families given by Abra-
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ham and Cummings [1]. Forcing a square sequence with finite conditions was
first achieved by Dolinar and Džamonja [2] using the Mitchell style of models
as side conditions [5]. An important difference is that the clubs which appear
in the square sequence added by their forcing poset belong to the ground
model, whereas for us the clubs are themselves generically approximated by
finite fragments.

1. Adequate sets. In this section we review the material on adequate
sets which we will use. Throughout the paper we assume that 2ω = ω1 and
2ω1 = ω2.

Let π be a bijection of ω2 onto H(ω2). Fix a set of definable Skolem
functions for the structure (H(ω2),∈, π). For any set a ⊆ ω2, let Sk(a)
denote the closure of a under these Skolem functions. Let C∗ be the club
set of β < ω2 such that Sk(β) ∩ ω2 = β. Let Λ := C∗ ∩ cof(ω1). Note that
any ordinal in Λ is also a limit point of C∗.

Let X be the set of countable M ⊆ ω2 such that Sk(M) ∩ ω2 = M and
for all γ ∈ M , sup(C∗ ∩ γ) ∈ M . Note that X is a club subset of Pω1(ω2).
If M ∈ X then Sk(M) = π[M ]. It follows that if M and N are in X
and N ∈ Sk(M), then Sk(N) ∈ Sk(M). If a and b are in X ∪ Λ, then
Sk(a) ∩ Sk(b) = Sk(a ∩ b) (see [3, Lemma 1.4]). This implies that if M ∈ X
and β ∈ Λ, then M ∩ β ∈ X .

If M ∈ X and β ∈ Λ ∩ sup(M), then min(M \ β) is in Λ. Clearly
min(M \β) has cofinality ω1. If this ordinal is not in Λ, then it is not a limit
point of C∗. Also β 6= min(M \β), so sup(M ∩β) < β < min(M \β). Hence
sup(C∗ ∩ min(M \ β)) is below min(M \ β) and is in M by the definition
of X . In particular this supremum is below β. This is a contradiction since
β is in C∗.

Let M be in X . A set K is an initial segment of M if either K = M or
there exists β ∈M ∩ Λ such that K = M ∩ β. So any initial segment of M
is also in X . If M and N are in X and N ∈ Sk(M), then since N has only
countably many initial segments, they are all members of Sk(M).

Since 2ω = ω1, for all β ∈ Λ, X ∩ P (β) ⊆ Sk(β). For since cf(β) = ω1,
every member of X ∩ P (β) belongs to Pω1(γ) for some γ < β. And since
ω1 ⊆ Sk(β), we have Pω1(γ) ⊆ Sk(β). In particular, if M ∈ X and β ∈ Λ,
then M ∩ β ∈ Sk(β).

For a set M ∈ X , let ΛM denote the set of β ∈ Λ such that

β = min(Λ \ sup(M ∩ β)).

In other words, β ∈ ΛM if β ∈ Λ and there are no elements of Λ strictly
between sup(M ∩ β) and β. For M and N in X , ΛM ∩ ΛN has a largest
element (see [3, Lemma 2.4]). We denote this largest element by βM,N ,
which is called the comparison point of M and N . An important property
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of the comparison point is the following:

(M ∪ lim(M)) ∩ (N ∪ lim(N)) ⊆ βM,N

(see [3, Proposition 2.6]).

Definition 1.1. A set A ⊆ X is adequate if for all M and N in A, either
M ∩ βM,N ∈ Sk(N), N ∩ βM,N ∈ Sk(M), or M ∩ βM,N = N ∩ βM,N .

Note that a set A ⊆ X is adequate iff for all M and N in A, {M,N} is
adequate. If {M,N} is adequate, thenM∩βM,N ∈ Sk(N) iffM∩ω1 < N∩ω1,
and M ∩ βM,N = N ∩ βM,N iff M ∩ ω1 = N ∩ ω1.

Suppose that {M,N} is adequate. IfM∩βM,N = N∩βM,N , thenM∩N =
M ∩ βM,N . And if M ∩ βM,N ∈ Sk(N), then M ∩N = M ∩ βM,N .

The next lemma records some important technical facts about compari-
son points which are used frequently. The proofs can be found in Section 3
of [3].

Lemma 1.2.

(1) Let M ∈ X , β ∈ Λ, and suppose M ⊆ β. Then βM,N ≤ β for all
N ∈ X .

(2) Let K,M,N ∈ X , and suppose M ⊆ N . Then βK,M ≤ βK,N .
(3) Let M and N be in X , and β∈Λ. If βM,N ≤ β, then βM,N = βM∩β,N .
(4) Let M and N be in X , and β ∈ Λ. If N ⊆ β, then βM,N = βM∩β,N .

Another important fact is that if {M,N} is adequate and β ∈ Λ, then
{M ∩ β,N ∩ β} is adequate (see [3, Lemma 3.3]).

Lemma 1.3. If {M ∩ βM,N , N ∩ βM,N} is adequate, then so is {M,N}.
Proof. Let β := βM,N . Since β ≤ β, Lemma 1.2(3) implies that β =

βM∩β,N . And as M∩β ⊆ β, Lemma 1.2(4) implies that βM∩β,N = βM∩β,N∩β.
Hence β = βM∩β,N∩β. In particular, (M ∩ β) ∩ βM∩β,N∩β = M ∩ β and
(N ∩ β) ∩ βM∩β,N∩β = N ∩ β. So if (M ∩ β) ∩ βM∩β,N∩β ∈ Sk(N ∩ β)
then M ∩β ∈ Sk(N), and similarly if (N ∩β)∩βM∩β,N∩β ∈ Sk(M ∩β) then
N∩β ∈ Sk(M). Also the equality (M∩β)∩βM∩β,N∩β = (N∩β)∩βM∩β,N∩β
is equivalent to the equality M ∩ β = N ∩ β.

2. Coherent adequate sets. In the basic theory of adequate sets,
we identify a set M in X with Sk(M), and oftentimes with the structure
(Sk(M),∈, π∩Sk(M)), which is an elementary substructure of (H(ω2),∈, π).
For any set P ⊆ H(ω2) and M ∈ X , let PM := P ∩ Sk(M). In the context
of coherent adequate sets we are interested in the expanded structure

M = (Sk(M),∈, πM ,XM , ΛM ).

Note that M is not necessarily an elementary substructure of (H(ω2),∈,
π,X , Λ). In general if a set in X is denoted with a particular letter, we use
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the Fraktur version of the letter to denote the above structure on its Skolem
hull.

Let M and N be in X . We say that M and N are isomorphic if the
structures M and N are isomorphic. In other words,M andN are isomorphic
if there exists a bijection σ : Sk(M) → Sk(N) such that for all x and y
in Sk(M):

(1) x ∈ y iff σ(x) ∈ σ(y);
(2) π(x) = y iff π(σ(x)) = σ(y);
(3) x ∈ X iff σ(x) ∈ X ;
(4) x ∈ Λ iff σ(x) ∈ Λ.

In particular, such a map σ is an isomorphism from (Sk(M),∈) to (Sk(N),∈).
Since these structures model the axiom of extensionality, such an isomor-
phism is unique if it exists. In that case, let σM,N denote the unique iso-
morphism from M to N. Note that if M , N , and K are isomorphic, then
σM,N = σK,N ◦ σM,K .

For M ∈ X , let M denote the transitive collapse of the structure M, and
let σM : M→M be the collapsing map. Note that M and N are isomorphic
iff M = N. In that case, by the uniqueness of isomorphisms we have

σM,N = σ−1N ◦ σM .

Suppose that M and N are isomorphic and a ∈ Sk(M) is countable. We
claim that σM,N (a) = σM,N [a]. Since a and σM,N (a) are countable, we have
a ⊆ Sk(M) and σM,N (a) ⊆ Sk(N). Hence x ∈ a implies σM,N (x) ∈ σM,N (a),
so that σM,N [a] ⊆ σM,N (a). On the other hand, if z ∈ σM,N (a), then for
some x ∈ Sk(M), σM,N (x) = z, which implies that x ∈ a. So z ∈ σM,N [a].

Lemma 2.1. Let M and N be isomorphic, and K ∈ Sk(M) ∩ X . Let
K∗ = σM,N (K). Then σM,N (Sk(K)) = Sk(K∗), K and K∗ are isomorphic,
and σM,N�Sk(K) = σK,K∗.

Proof. Since K is countable, K∗ = σM,N [K]. For all α ∈ K, we have
σM,N (π(α)) = π(σM,N (α)). It follows that

σM,N (Sk(K)) = σM,N [Sk(K)] = σM,N [π[K]]

= π[σM,N [K]] = π[K∗] = Sk(K∗).

So σM,N�Sk(K) is a bijection from Sk(K) to Sk(K∗), and it clearly preserves
the predicates ∈, π, X , and Λ. Hence σM,N�Sk(K) is an isomorphism of K
to K∗. So K and K∗ are isomorphic and σK,K∗ = σM,N�Sk(K).

Lemma 2.2. Let M and N be isomorphic, and let K be an initial seg-
ment of M . Let K∗ := σM,N [K]. Then K∗ is an initial segment of N ,
σM,N [Sk(K)] = Sk(K∗), K and K∗ are isomorphic, and σM,N�Sk(K)
= σK,K∗.
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Proof. This is clear if M = K. Otherwise there is β ∈ M ∩ Λ such
that K = M ∩ β. Then σM,N (β) ∈ N ∩ Λ, and easily K∗ = N ∩ σM,N (β).
By the argument from the previous lemma, σM,N [Sk(K)] = Sk(σM,N [K])
= Sk(K∗), and σM,N�Sk(K) is an isomorphism of Sk(K) to Sk(K∗). Hence
K and K∗ are isomorphic, and σM,N�Sk(K) = σK,K∗ .

Suppose that M ∩ βM,N = N ∩ βM,N , and M and N are isomorphic.
Applying the previous lemma, σM,N�(M ∩ βM,N ) is an isomorphism of
M ∩βM,N to the initial segment σM,N [M ∩βM,N ] of N . But the latter initial
segment has the same order type as the initial segment N ∩ βM,N , so it is
equal to it. Hence σM,N�Sk(M ∩βM,N ) is an isomorphism of Sk(M ∩βM,N )
to itself, and therefore it is the identity map. But M ∩ βM,N = M ∩N . In
particular, we have proven the following lemma.

Lemma 2.3. Let {M,N} be adequate, where M and N are isomorphic
and M ∩βM,N = N ∩βM,N . Then σM,N�Sk(M ∩N) is the identity function.

We now introduce the most important idea of the paper.

Definition 2.4. Let A ⊆ X . Then A is a coherent adequate set if A is
adequate and for all M and N in A:

(1) if M ∩ βM,N = N ∩ βM,N , then M and N are isomorphic;
(2) if M ∩ βM,N ∈ Sk(N), then there exists N ′ in A such that M ∈

Sk(N ′) and N and N ′ are isomorphic;
(3) if M ∩ βM,N = N ∩ βM,N and K ∈ A ∩ Sk(M), then σM,N (K) ∈ A.

Recall that if A is adequate and M and N are in A, then M ∩ βM,N ∈
Sk(N) iff M∩ω1 < N∩ω1, and M∩βM,N = N∩βM,N iff M∩ω1 = N∩ω1. It
follows that a finite adequate set A is coherent iff the set {Sk(M) : M ∈ A}
is a nicely arranged family in the sense of Definition 3.3 of [1].

Also note that if M and N are in X and are isomorphic, then M ∩ω1 =
N∩ω1. For in that case σM,N (ω1) = ω1, and therefore σM,N [M∩ω1] = N∩ω1.
But this implies that M ∩ω1 and N ∩ω1 have the same order type and thus
are the same ordinal. Consequently, the following are equivalent for M and
N in a coherent adequate set: (1) M∩ω1 = N∩ω1; (2) M∩βM,N = N∩βM,N ;
(3) M and N are isomorphic.

Lemma 2.5. Let A be a coherent adequate set. Let M and K be in A. If
K ∩ βK,M ∈ Sk(M), then there is K∗ in A ∩ Sk(M) such that K and K∗

are isomorphic and K ∩ βK,M = K∗ ∩ βK,M .

Proof. Since A is coherent, there exists M ′ in A such that K ∈ Sk(M ′)
and M and M ′ are isomorphic. Let K∗ = σM ′,M (K). Since A is coherent,
we have K∗ ∈ A. By Lemma 2.1, σM ′,M�Sk(K) is an isomorphism of Sk(K)
to Sk(K∗) and is equal to σK,K∗ . And σM ′,M is the identity on M ′ ∩M =
M ′ ∩ βM,M ′ = M ∩ βM,M ′ . Since K ⊆M ′, it follows that βK,M ≤ βM ′,M .
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As σM ′,M�M ′∩βM ′,M is the identity, σM ′,M (K∩βK,M )=σM ′,M [K∩βK,M ]
= K∩βK,M . Since σM ′,M�Sk(K) = σK,K∗ , Lemma 2.2 implies thatK∩βK,M
is an initial segment of K∗. If γ is in K∗ \K and γ < βK,M , then γ < βM ′,M
implies that γ = σM,M ′(γ) ∈ K, which is a contradiction. So K ∩ βK,M =
K∗ ∩ βK,M .

Lemma 2.6. Suppose that A is a finite coherent adequate set, N ∈ X ,
and A ∈ Sk(N). Then A ∪ {N} is a coherent adequate set.

Proof. If M ∈ A then since M ∈ Sk(N), M ∩ βM,N = M , which is in
Sk(N). So A∪{N} is adequate, and the requirements of being coherent are
trivially satisfied.

Lemma 2.7. Let A be a coherent adequate set and N ∈ A. Then A ∩
Sk(N) is a coherent adequate set.

Proof. Clearly A∩Sk(N) is adequate, and (1) of Definition 2.4 is obvious.
(3) is also straightforward. For (2), let M and K be in A ∩ Sk(N) and
suppose that K ∩ βK,M ∈ Sk(M). Since A is coherent, there exists M ′ in
A such that K ∈ Sk(M ′) and M and M ′ are isomorphic. As M ∈ Sk(N),
M ′ ∩ ω1 = M ∩ ω1 < N ∩ ω1. Hence M ′ ∩ βM ′,N ∈ Sk(N). By Lemma 2.5
there exists M∗ in A ∩ Sk(N) such that M ′ and M∗ are isomorphic and
M∗ ∩ βM ′,N = M ∩ βM ′,N . Now K ∈ Sk(M ′) ∩ Sk(N) = Sk(M ′ ∩ N) =
Sk(M ′ ∩ βM ′,N ) = Sk(M∗ ∩ βM ′,N ). So K ∈ Sk(M∗), M∗ ∈ A∩ Sk(N), and
M∗ and M are isomorphic.

Lemma 2.8. Let A be a coherent adequate set. Suppose that N , N ′, and
N∗ are in A and are isomorphic, where N ′ 6=N∗. Then σN ′,N�Sk(N ′∩N∗) =
σN∗,N�(N ′ ∩N∗), and for some β ∈ N ∩Λ, this function is an isomorphism
of Sk(N ′ ∩N∗) to Sk(N ∩ β). Also σN,N ′�Sk(N ∩ β) = σN,N∗�Sk(N ∩ β).

Proof. By Lemma 2.3, σN ′,N∗�Sk(N ′ ∩ N∗) is the identity function.
Also σN ′,N = σN∗,N ◦ σN ′,N∗ . So for any x ∈ Sk(N ′ ∩ N∗), σN ′,N (x) =
σN∗,N (σN ′,N∗(x)) = σN∗,N (x). This proves that σN ′,N�Sk(N ′ ∩ N∗) =
σN∗,N�(N ′ ∩N∗). Denote this map by σ.

Since N ′ 6= N∗, N ′ ∩N∗ is a proper initial segment of N ′ and of N∗. By
Lemma 2.2, σ[N ′ ∩N∗] is equal to N ∩ β for some β ∈ N ∩ Λ, and σ is an
isomorphism of Sk(N ′∩N∗) to Sk(N ∩β). The last statement of the lemma
follows from the fact that σN,N ′�Sk(N ∩ β) and σN,N∗�Sk(N ∩ β) are both
the inverse of σ.

3. Amalgamating coherent adequate sets. One of the main meth-
ods for preserving cardinals when forcing with models as side conditions
is amalgamating conditions over elementary substructures. Proposition 3.5,
which handles amalgamation over countable substructures, will be used to
prove that the forcing poset in the next section is strongly proper and
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hence preserves ω1. Proposition 3.6 covers amalgamation over models of
size ω1 and will be used to prove that the forcing poset in the next section
is ω2-c.c.

The next four technical lemmas will be used to prove Proposition 3.5.

Lemma 3.1. Let M and N be in X and suppose that M and N are iso-
morphic. If α < γ are in M and Λ ∩ [α, γ] = ∅, then Λ ∩ [σM,N (α), σM,N (γ)]
= ∅.

Proof. Suppose for a contradiction that ζ is in Λ ∩ [σM,N (α), σM,N (γ)].
Let ζ∗ = min(N \ ζ). Then ζ∗ ∈ N ∩ Λ ∩ [σM,N (α), σM,N (γ)]. Therefore
σN,M (ζ∗) ∈ Λ ∩ [α, γ], which contradicts Λ ∩ [α, γ] = ∅.

Lemma 3.2. Let M and N be in X . Let α ≤ γ be ordinals, where α ∈
M ∪ lim(M) and γ ∈ N ∪ lim(N). If Λ ∩ [α, γ] = ∅, then γ < βM,N .

Proof. Let β=min(Λ\γ). Then γ≤sup(N∩β), so β=min(Λ\sup(N∩β)).
Also α ≤ sup(M ∩ β), and since Λ ∩ [α, γ] = ∅, β = min(Λ \ sup(M ∩ β)).
Therefore β ∈ ΛM ∩ ΛN , which implies that β ≤ βM,N . Since γ is not in Λ,
it follows that γ < βM,N .

Lemma 3.3. Let M , N , K, and P be in X , where M and N are iso-
morphic and K and P are in Sk(M). Let σ := σM,N , K∗ := σ(K), and
P ∗ = σ(P ). Suppose that β = min(M \βK,P ). Then σ(β) = min(N \βK∗,P ∗).

Proof. Let α = sup(K∩β) and γ = sup(P∩β). Without loss of generality
assume that α ≤ γ. Since α and γ have cofinality ω, they are not in Λ. And
as α and γ are in M and below β, we see that α and γ are less than βK,P .
Thus α = sup(K ∩ βK,P ) and γ = sup(P ∩ βK,P ).

Since βK,P ∈ ΛK ∩ ΛP , we have βK,P = min(Λ \ α) = min(Λ \ γ).
So Λ ∩ [α, γ] = ∅. By Lemma 3.1 it follows that Λ ∩ [σ(α), σ(γ)] = ∅. Since
σ(α) ∈ lim(K∗) and σ(γ) ∈ lim(P ∗), Lemma 3.2 implies that βK∗,P ∗ > σ(γ).

By the definition of β, sup(M ∩ β) < βK,P . Since βK,P = min(Λ \ γ), it
follows that for all γ′ ∈M∩[γ, β), Λ∩[γ, γ′] = ∅. Hence by Lemma 3.1, for all
γ∗ ∈ N ∩ [σ(γ), σ(β)), Λ∩ [σ(γ), γ∗] = ∅. Therefore βK∗,P ∗ > sup(N ∩σ(β)).

We will be done if we can show that βK∗,P ∗ ≤ σ(β). Suppose for a con-
tradiction that βK∗,P ∗ > σ(β). Let τ = sup(K∗ ∩ βK∗,P ∗) and ξ = sup(P ∗ ∩
βK∗,P ∗). Without loss of generality assume that τ ≤ ξ, since the other case
follows by a symmetric argument. So βK∗,P ∗ = min(Λ \ τ) = min(Λ \ ξ).
Since βK∗,P ∗ > σ(β) and σ(β) ∈ Λ, we find that τ and ξ are greater than
σ(β). Also clearly Λ ∩ [τ, ξ] = ∅. By Lemma 3.1, Λ ∩ [σ−1(τ), σ−1(ξ)] = ∅.
Since σ−1(τ) ∈ lim(K) and σ−1(ξ) ∈ lim(P ), Lemma 3.2 implies that
βK,P > σ−1(ξ). But ξ > σ(β) implies that σ−1(ξ) > β. Hence βK,P > β,
which is a contradiction.
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Lemma 3.4. Let M , N , K, and P be in X . Suppose that M and N
are isomorphic, and K and P are in Sk(M). If {K,P} is adequate, then
{σM,N (K), σM,N (P )} is adequate.

Proof. Let σ := σM,N , K∗ := σM,N (K), and P ∗ := σM,N (P ). By
symmetry it suffices to consider the cases when K ∩ βK,P ∈ Sk(P ) and
K∩βK,P = P∩βK,P . First assume that βK,P ≥ sup(M). Then K∩βK,P = K
and P ∩ βK,P = P . If K ∩ βK,P ∈ Sk(P ), then K ∈ Sk(P ). Therefore
σ(K) ∈ σ(Sk(P )) = Sk(σ(P )). Also if K ∩ βK,P = P ∩ βK,P , then K = P ,
which implies that σ(K) = σ(P ).

Now assume that βK,P < sup(M). Let β := min(M\βK,P ). Then K∩β =
K ∩ βK,P and P ∩ β = P ∩ βK,P . By Lemma 3.3, σ(β) = min(N \ βK∗,P ∗).
Therefore K∗ ∩ σ(β) = K∗ ∩ βK∗,P ∗ and P ∗ ∩ σ(β) = P ∗ ∩ βK∗,P ∗ .

Suppose that K ∩ βK,P ∈ Sk(P ). Then K ∩ β ∈ Sk(P ). Therefore
σ(K∩β) = K∗∩σ(β) ∈ σ(Sk(P )) = Sk(P ∗). So K∗∩βK∗,P ∗ ∈ Sk(P ∗). Now
suppose that K ∩ βK,P = P ∩ βK,P . Then K ∩ β = P ∩ β. So K∗ ∩ σ(β) =
σ(K ∩ β) = σ(P ∩ β) = P ∗ ∩ σ(β). Hence K∗ ∩ βK∗,P ∗ = P ∗ ∩ βK∗,P ∗ .

The following proposition describes amalgamation of coherent adequate
sets over countable elementary substructures. It will be used to prove that
the forcing poset in the next section is strongly proper.

Proposition 3.5. Let A be a coherent adequate set and N ∈ A. Suppose
that B is a coherent adequate set and A ∩ Sk(N) ⊆ B ⊆ Sk(N). Let C be
the set

{M ∈ A : N ∩ ω1 ≤M ∩ ω1}
∪ {σN,N ′(K) : N ′ ∈ A, N ∩ ω1 = N ′ ∩ ω1, K ∈ B}.

Then C is a coherent adequate set which contains A ∪B.

Proof. First we prove that C is adequate. Obviously, any two sets in
{M ∈ A : N ∩ω1 ≤M ∩ω1} compare properly since A is adequate. Consider
M ∈ A with N ∩ ω1 ≤ M ∩ ω1, and L = σN,N ′(K) for some N ′ ∈ A with
N ∩ ω1 = N ′ ∩ ω1 and some K ∈ B. Since N ′ ∩ ω1 = N ∩ ω1 ≤ M ∩ ω1,
the set N ′ ∩ βM,N ′ is either in Sk(M) or equal to M ∩ βM,N ′ . In either case,
Sk(N ′ ∩ βM,N ′) is a subset of Sk(M). Since L ⊆ N ′, we have βL,M ≤ βM,N ′ .
As L is in Sk(N ′), L ∩ βL,M is in Sk(N ′) ∩ Sk(βM,N ′) = Sk(N ′ ∩ βM,N ′).
Hence L ∩ βL,M is a member of Sk(M).

Now consider M and L such that M = σN,N ′(K) for some N ′ ∈ A with
N∩ω1 = N ′∩ω1 and some K ∈ B, and L = σN,N∗(P ) for some N∗ ∈ A with
N ∩ω1 = N∗ ∩ω1 and some P ∈ B. Since B is adequate, K and P compare
properly. If N ′ = N∗, then {M,L} is adequate by Lemma 3.4. Suppose
N ′ 6= N∗. By symmetry it suffices to consider the cases when K ∩ βK,P
either is in Sk(P ) or is equal to P ∩ βK,P .
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The sets N ′ and N∗ are isomorphic, and N ′ ∩ βN ′,N∗ = N∗ ∩ βN ′,N∗ =
N ′ ∩N∗. By Lemma 2.8, σN ′,N�N ′ ∩N∗ = σN∗,N�N ′ ∩N∗, and there exists
β ∈ N ∩Λ such that N ∩β = σN ′,N [N ′∩N∗]. Let σ := σN,N ′�Sk(N ∩β). By
Lemma 2.8, σ = σN,N∗�Sk(N ∩β) and σ is an isomorphism of Sk(N ∩β) to
Sk(N ′∩N∗). Now σ(K∩β) = σN,N ′ [K∩(N∩β)] = σN,N ′ [K]∩σN,N ′ [N∩β] =
M ∩ (N ′ ∩ βN ′,N∗) = M ∩ βN ′,N∗ , and similarly σ(P ∩ β) = L ∩ βN ′,N∗ .

Since {K,P} is adequate, so is {K ∩ β, P ∩ β}. By Lemma 3.4, it fol-
lows that {σ(K ∩ β), σ(P ∩ β)} is adequate. In other words, {M ∩ βN ′,N∗ ,
L ∩ βN ′,N∗} is adequate. Since M ⊆ N ′, we have βL,M ≤ βL,N ′ , and since
L ⊆ N∗, it follows that βL,N ′ ≤ βN ′,N∗ . Hence βL,M ≤ βN ′,N∗ . Therefore
{M ∩ βL,M , L ∩ βL,M} is adequate. By Lemma 1.3 it follows that {M,L} is
adequate.

Now we show that A ∪ B ⊆ C and C is coherent. This statement fol-
lows immediately from Lemmas 3.8 and 3.9 of [1]; we include a proof for
completeness. If K ∈ B, then K = σN,N (K) is in C by definition. Let
M ∈ A. If N ∩ ω1 ≤ M ∩ ω1, then M ∈ C by definition. Otherwise
M ∩ ω1 < N ∩ ω1. So there exists N ′ ∈ A isomorphic to N such that
M ∈ Sk(N ′). Let K := σN ′,N (M), which is in A ∩ Sk(N) and hence in B.
Then M = σN,N ′(K) is in C.

Suppose that L and M are in C and L ∩ ω1 = M ∩ ω1. We will show
that L and M are isomorphic. If M ∩ ω1 ≥ N ∩ ω1, then L and M are in A
and hence are isomorphic. Otherwise M = σN,N ′(M

∗) and L = σN,N ′′(L
∗),

where M∗ and L∗ are in B and N ′ and N ′′ are in A and are isomorphic to N .
Then M∗ ∩ ω1 = L∗ ∩ ω1, which implies that M∗ and L∗ are isomorphic. It
follows that M and L are isomorphic.

Assume that L and M are in C and L∩ω1 < M ∩ω1. We will show that
there is M ′ in C isomorphic to M such that L ∈ Sk(M ′). If N ∩ω1 ≤ L∩ω1,
then L and M are in A and we are done. Suppose that L ∩ ω1 < N ∩ ω1 ≤
M ∩ ω1. Then L = σN,N ′(L

∗) for some L∗ in B and N ′ in A which is
isomorphic to N . Fix M ′ in A which is isomorphic to M such that N ′ is
either equal to M ′ or is a member of Sk(M ′). Then L ∈ Sk(M ′) and we are
done.

Assume that M ∩ ω1<N ∩ ω1. Then L=σN,N ′(L
∗) and M=σN,N ′′(M

∗),
where L∗ and M∗ are in B and N ′ and N ′′ are in A and are both isomorphic
to N . Since L∗ ∩ ω1 < M∗ ∩ ω1, there is M∗∗ in B isomorphic to M∗ such
that L∗ ∈ Sk(M∗∗). Then σN,N ′(M

∗∗) is in C, is isomorphic to M∗∗ and
hence to M , and its Skolem hull contains L.

Now assume that M , K, and L are in C, M ∩ ω1 = K ∩ ω1, and L ∈
C ∩ Sk(M). We will show that σM,K(L) ∈ C. First assume that N ∩ ω1 ≤
M ∩ ω1. Then M and K are in A. If L ∈ A then we are done. So assume
that L = σN,N ′(L

∗) for some L∗ in B and N ′ in A isomorphic to N . Fix J in
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A isomorphic to M such that N ′ is either equal to J or a member of Sk(J).
Let N ′′ := σJ,M (N ′) and let N ′′′ := σM,K(N ′′). Then N ′′ and N ′′′ are in A.
So σN,N ′′′(L

∗) ∈ C. Since L is in Sk(J) ∩ Sk(M), we have σJ,M (L) = L.
Then σN,N ′′′(L

∗) = σN ′′,N ′′′(σN ′,N ′′(σN,N ′(L
∗))) = σN ′′,N ′′′(σN ′,N ′′(L)) =

σM,K(σJ,M (L)) = σM,K(L). So σM,K(L) ∈ C.
Finally, assume that M ∩ ω1 < N ∩ ω1. Then M = σN,N ′(M

∗), K =
σN,N ′′(K

∗), and L = σN,N ′′′(L
∗), where M∗, K∗, and L∗ are in B, and

N ′, N ′′, and N ′′′ are in A and are isomorphic to N . Since L ∈ Sk(M),
we have L ∈ Sk(N ′) ∩ Sk(N ′′′). So σN ′,N (L) = σN ′′′,N (L) = L∗. Therefore
σM,M∗(L) = σN ′,N (L) = L∗. Then σM,K(L) = σK∗,K(σM∗,K∗(σM,M∗(L))) =
σK∗,K(σM∗,K∗(L

∗)) = σN,N ′′(σM∗,K∗(L
∗)). Since L∗ ∈ B, σM∗,K∗(L

∗) ∈ B.
Hence σN,N ′′(σM∗,K∗(L

∗)) ∈ C. So σM,K(L) ∈ C.

The next result describes amalgamation of coherent adequate sets over
models of size ω1. It will be used to show that the forcing poset in the next
section is ω2-c.c.

Proposition 3.6. Let A be a coherent adequate set and β ∈ Λ. Let
A+ := {M ∈ A : M \ β 6= ∅} and A− := {M ∈ A : M ⊆ β}. Suppose that
β∗ ∈ β ∩ Λ and for all M ∈ A, sup(M ∩ β) < β∗. Assume that there exists
a map M 7→M ′ from A+ into X ∩Sk(β) such that for all M and K in A+:

(1) M and M ′ are isomorphic and M ∩ β∗ = M ′ ∩ β∗;
(2) K ∈ Sk(M) iff K ′ ∈ Sk(M ′);
(3) if K ∈ Sk(M) then σM,M ′(K) = K ′;
(4) A− ∪ {M ′ : M ∈ A+} is a coherent adequate set.

Then C := A ∪ {M ′ : M ∈ A+} is a coherent adequate set.

Proof. Note that by assumption (1), σM,M ′�β∗ is the identity function
for all M ∈ A+. Let us begin by proving that C is adequate. Note that if
M ∈ A+, then M and M ′ have the same order type, which is larger than the
order type of M ∩ β∗ = M ′ ∩ β∗; it follows that M ′\β∗ is nonempty. There-
fore C is the union of the three disjoint sets A−, A+, and {M ′ : M ∈ A+}.
By (4) and the fact that A is adequate, it suffices to compare a set in A+

with a set in {M ′ : M ∈ A+}.
Let K and M be in A+, and let us compare K and M ′. Since M ′ ⊆ β,

βK,M ′ ≤ β by Lemma 1.2(1). Hence βK,M ′ = βK∩β,M ′ by Lemma 1.2(3). But
K∩β = K∩β∗, which implies by Lemma 1.2(1, 4) that βK,M ′ = βK∩β,M ′ =
βK∩β∗,M ′∩β∗ ≤ β∗. Also K ∩ β∗ = K ′ ∩ β∗ and M ′ ∩ β∗ = M ∩ β. Now
βK,M ′ = βK∩β∗,M ′∩β∗ , and since K ∩ β∗ ⊆ K and M ′ ∩ β∗ ⊆ M , it follows
that βK,M ′ ≤ βK,M .

We split into cases depending on the comparison of K and M . Suppose
that K∩βK,M ∈ Sk(M). Since βK,M ′ ≤ β∗, βK,M , it follows that K∩βK,M ′ ∈
Sk(M)∩Sk(β∗) = Sk(M∩β∗) = Sk(M ′∩β∗). Therefore K∩βK,M ′ ∈ Sk(M ′).
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Now assume that M∩βK,M ∈Sk(K). As βK,M ′ ≤βK,M , we have M∩βK,M ′
∈ Sk(K). But βK,M ′ ≤ β∗ implies that M ∩ βK,M ′ = M ′ ∩ βK,M ′ . So
M ′ ∩ βK,M ′ ∈ Sk(K). Finally, assume that K ∩ βK,M = M ∩ βK,M . Since
βK,M ′ ≤ βK,M , we have K ∩ βK,M ′ = M ∩ βK,M ′ . But βK,M ′ ≤ β∗, so
M ∩ βK,M ′ = M ′ ∩ βK,M ′ . Hence K ∩ βK,M ′ = M ′ ∩ βK,M ′ .

Now we show that C is coherent. Recall that A is the union of the three
disjoint sets A+, A−, and {M ′ : M ∈ A+}. The union of the first and second
set is equal to A, which is coherent, and the union of the second and third
set is coherent by (4). Note that requirements (1) and (2) in the definition
of coherence follow immediately from these facts, except for the case of a
pair of models where one is in A+ and the other is in {M ′ : M ∈ A+}.

Let K and M be in A+; we verify requirements (1) and (2) for K and M ′.
Suppose that K ∩ βK,M ′ = M ′ ∩ βK,M ′ . Then K ∩ ω1 = M ∩ ω1. Since A is
coherent, K and M are isomorphic. Hence K and M ′ are isomorphic.

Suppose that K ∩ βK,M ′ ∈ Sk(M ′). Then K ∩ ω1 < M ∩ ω1, so K ∩
βK,M ∈ Sk(M). So there exists M∗ in A such that K ∈ Sk(M∗) and M and
M∗ are isomorphic. Hence M∗ and M ′ are isomorphic. Now assume that
M ′∩βK,M ′ ∈ Sk(K). Then M ′∩ω1 < K ′∩ω1, so M ′∩βK′,M ′ ∈ Sk(K ′). Since
A− ∪ {L′ : L ∈ A+} is coherent, there is K∗ in C such that M ′ ∈ Sk(K∗)
and K∗ and K ′ are isomorphic. Then K∗ and K are isomorphic.

Now we prove that requirement (3) holds of C. Let M1 and M2 be in C
with M1 ∩ βM1,M2 = M2 ∩ βM1,M2 , and let K ∈ C ∩ Sk(M1). We will prove
that σM1,M2(K) is in C. Note that if M1 and M2 are both in A, then so
is K, and if M1 and M2 are both in A− ∪ {M ′ : M ∈ A+}, then so is K.
Since A and A− ∪ {M ′ : M ∈ A+} are both coherent, we are done in these
cases. So again it suffices to prove (3) in the case of two sets where one is in
A+ and the other is in {M ′ : M ∈ A+}.

Assume that M1 is in A+ and M2 = M ′ for some M ∈ A+. Then M1 and
M are isomorphic. Since K ∈ Sk(M1) we have K ∩ β ⊆ β∗, and hence K is
in A. As A is coherent, P := σM1,M (K) ∈ A∩Sk(M). If P ∈ A−, then since
σM,M ′�β∗ is the identity, σM,M ′(P ) = P . Hence σM1,M ′(K) = σM,M ′(P ) = P
is in A. Otherwise P ∈ A+, and by assumption (3), σM,M ′(P ) = P ′. So
σM1,M ′(K) = σM,M ′(σM1,M (K)) = σM,M ′(P ) = P ′ ∈ C.

In the last case assume that M1 =M ′ for some M ∈ A+ and M2 ∈ A+.
Since K ∈ Sk(M ′), we have K ⊆ β, so K is not in A+. Suppose that K is
in A−. Then K is a subset of β∗, so σM ′,M (K) = K. Hence K is in Sk(M)
∩ A, and therefore σM,M2(K) ∈ A since A is coherent. But σM ′,M2(K) =
σM,M2(σM ′,M (K)) = σM,M2(K) ∈ C. Otherwise K is equal to P ′ for some
P ∈ A+. So P ′ ∈ Sk(M ′). By assumptions (3) and (4), P ∈ Sk(M) and
σM,M ′(P ) = P ′. Since P is in A and A is coherent, we have σM,M2(P ) ∈ A.
So σM ′,M2(K) = σM ′,M2(P ′) = σM ′,M2(σM,M ′(P )) = σM,M2(P ) ∈ C.
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4. Forcing square with finite conditions. We define a forcing poset
which adds a square sequence with finite conditions, using coherent adequate
sets as side conditions.

By a triple we mean a sequence 〈α, γ, β〉, where α ∈ Λ and γ < β < α.
Given distinct triples 〈α, γ, β〉 and 〈α′, γ′, β′〉, we say that they are nonover-
lapping if either α 6= α′, or α = α′ and [γ, β) ∩ [γ′, β′) = ∅; otherwise they
are overlapping. Given a triple 〈α, γ, β〉 and M ∈ X , we say that 〈α, γ, β〉
and M are nonoverlapping if α ∈ M implies that either γ and β are in M
or sup(M ∩ α) < γ; otherwise they are overlapping.

Clearly if M and N are isomorphic and a and b are nonoverlapping
triples in Sk(M), then σM,N (a) and σM,N (b) are nonoverlapping triples.
And if K ∈ Sk(M)∩X and a and K are nonoverlapping, then σM,N (a) and
σM,N (K) are nonoverlapping.

Definition 4.1. Let P be the forcing poset whose conditions are pairs
(x,A) satisfying:

(1) x is a finite pairwise nonoverlapping set of triples;
(2) A is a finite coherent adequate set;
(3) for all M ∈ A and 〈α, γ, β〉 ∈ x, M and 〈α, γ, β〉 are nonoverlapping;
(4) if M and M ′ are in A and M ∩ βM,M ′ = M ′ ∩ βM,M ′ , then for any

triple 〈α, γ, β〉 ∈ Sk(M) ∩ x we have σM,M ′(〈α, γ, β〉) ∈ x.

Let (y,B) ≤ (x,A) if x ⊆ y and A ⊆ B.

If p = (x,A), we write xp := x and Ap := A.
We will prove that P preserves all cardinals. For each α ∈ Λ, let ċα be a

P-name for the set

{γ : ∃p ∈ Ġ ∃β (〈α, γ, β〉 ∈ xp)}.
We will show that each ċα is a cofinal subset of α with order type ω1, and
whenever ξ is a common limit point of ċα and ċα′ , ċα ∩ ξ = ċα′ ∩ ξ.

Lemma 4.2. Let A be a coherent adequate set and x a set of triples. Let
y be the set

x ∪ {σM,M ′(a) : M,M ′ ∈ A, M ∩ ω1 = M ′ ∩ ω1, a ∈ x ∩ Sk(M)}.
Then for all N and N ′ in A which are isomorphic and any a∈y, σN,N ′(a)∈y.

Proof. Let N and N ′ be isomorphic sets in A, and a ∈ y. If a ∈ x, then
σN,N ′(a) ∈ y by definition. Otherwise there are M and M ′ in A which are
isomorphic and b in x such that a = σM,M ′(b). So a is in Sk(M ′) ∩ Sk(N)
= Sk(M ′ ∩N).

First assume that M ′ ∩ βM ′,N ∈ Sk(N). By Lemma 2.5 there is M∗ in
Sk(N) which is isomorphic to M ′ such that M ′ ∩ βM ′,N = M∗ ∩ βM ′,N .
In particular, a ∈ Sk(M ′ ∩ N) = Sk(M ′ ∩ βM ′,N ) = Sk(M∗ ∩ βM ′,M ). By
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Lemma 2.8, σM∗,M (a) = σM ′,M (a) = b. So σM,M∗(b) = σM,M ′(b) = a. Let
P := σN,N ′(M

∗). Then σN,N ′�Sk(M∗) = σM∗,P . By Lemma 2.8, σM ′,P �
Sk(M ′∩M∗)=σM∗,P �Sk(M ′∩M∗). Hence σM ′,P (a)=σM∗,P (a)=σN,N ′(a).
So σM,P (b) = σM∗,P (σM,M∗(b)) = σM∗,P (a) = σN,N ′(a). Since b ∈ x, we
have σM,P (b) ∈ y by definition. So σN,N ′(a) ∈ y.

Now suppose that M ′ ∩ βM ′,N = N ∩ βM ′,N . Then by Lemma 2.8,
σM ′,N ′�Sk(M ′ ∩ N) = σN,N ′�Sk(M ′ ∩ N). Since a is in Sk(M ′ ∩ N), we
have σN,N ′(a) = σM ′,N ′(a) = σM ′,N ′(σM,M ′(b)) = σM,N ′(b), which is in y
since b ∈ x.

Finally assume that N ∩ βM ′,N ∈ Sk(M ′). Fix N∗ ∈ Sk(M ′) which is
isomorphic to N such that N ∩ βM ′,N = N∗ ∩ βM ′,N . Let L := σM ′,M (N∗).
Then a ∈ Sk(M ′ ∩N) = Sk(N ∩ βM ′,N ) = Sk(N∗ ∩ βM ′,N ), so a ∈ Sk(N∗).
Also σM ′,M�N∗ = σN∗,L. Hence σN∗,L(a) = σM ′,M (a) = b. By Lemma 2.8,
σN,N ′�Sk(N ∩N∗) = σN∗,N ′�Sk(N ∩N∗). Therefore σN,N ′(a) = σN∗,N ′(a).
So σN,N ′(a) = σN∗,N ′(a) = σN∗,N ′(σM,M ′(b)) = σN∗,N ′(σL,N∗(b)) = σL,N ′(b),
which is in y since b ∈ x.

Recall that a forcing poset Q is strongly proper if for all sufficiently large
regular cardinals θ with Q ∈ H(θ), there are club many sets N in Pω1(H(θ))
such that for all p ∈ N ∩ Q there exists q ≤ p which is strongly N -generic,
which means that for any dense subset D of the forcing poset Q ∩N , D is
predense below q in Q ([5]). Strong properness implies properness, which in
turn implies that ω1 is preserved.

Proposition 4.3. The forcing poset P is strongly proper.

Proof. Fix a regular cardinal θ > ω2, and let N∗ be a countable elemen-
tary substructure of H(θ) such that P and π are in N∗ and N := N∗ ∩ ω2

∈ X . Clearly there are club many such sets N∗. Note that since π ∈ N∗,
Sk(N) = π[N ] = N∗ ∩H(ω2). In particular, P ∩N∗ ⊆ Sk(N).

Let p be a condition in N∗ ∩ P. Define q = (xp, Ap ∪ {N}). Then q is a
condition and q ≤ p. We will prove that q is strongly N∗-generic. So let D
be a dense subset of N∗ ∩ P; we will show that D is predense below q.

Fix r ≤ q; we will find a condition w in D which is compatible with r.
Since N ∈ Ar, Ar ∩ Sk(N) is a coherent adequate set by Lemma 2.7. Let
v = (xr ∩ Sk(N), Ar ∩ Sk(N)). Then v is a condition in P. Since D is dense
in N∗∩P, we can fix w which is an extension of v in D. Then Ar ∩Sk(N) ⊆
Aw ⊆ Sk(N).

Let C be the set

{M ∈ Ar : N ∩ ω1 ≤M ∩ ω1}
∪ {σN,N ′(K) : N ′ ∈ Ar, N ∩ ω1 = N ′ ∩ ω1, K ∈ Aw}.

By Proposition 3.5, C is a coherent adequate set which contains Ar ∪ Aw.
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Let y be the set

(xr \ Sk(N)) ∪ {σN,N ′(a) : N ′ ∈ Ar, N ∩ ω1 = N ′ ∩ ω1, a ∈ xw}.
Let s := (y, C).

We claim that s is a condition and s ≤ r, w, which completes the proof
since w is in D. If a is in xw, then σN,N (a) = a is in y. And if a is in xr,
then either a is in xr \ Sk(N), and hence is in y by definition, or else a is
in xw, and hence is in y as just noted. So xr and xw are subsets of y. Also
Ar and Aw are subsets of C. Thus if s is a condition then s ≤ r, w.

(1) We show that y is a set of nonoverlapping triples. So let a0 and a1
be in y. Let a0 = 〈α0, γ0, β0〉 and a1 = 〈α1, γ1, β1〉. If α0 6= α1, then a0
and a1 are nonoverlapping, so assume that α0 = α1. If a0 and a1 are both
in xr \ Sk(N), then they are nonoverlapping since r is a condition.

Suppose that a0 ∈ xr \ Sk(N) and a1 = σN,N ′(a) for some a ∈ xw
and N ′ in Ar which is isomorphic to N . Since α0 ∈ N ′, either γ0 and β0
are in N ′, or sup(N ′ ∩ α0) < γ0. In the latter case, β1 < γ0 and hence
a0 and a1 are nonoverlapping. In the former case, a0 is in Sk(N ′) ∩ xr.
Hence a∗ := σN ′,N (a0) is in Sk(N) ∩ xr ⊆ xw. So a∗ and a are nonover-
lapping. Therefore their images under σN,N ′ , namely a0 and a1, are non-
overlapping.

Now suppose that a0 = σN,N ′(a
∗
0) and a1 = σN,N∗(a

∗
1), where a∗0 and a∗1

are in xw and N ′ and N∗ are isomorphic in Aw. If N ′ = N∗, then since
a∗0 and a∗1 are nonoverlapping, so are their images under σN,N∗ , namely
a0 and a1. Suppose N 6= N ′. By Lemma 2.8, fix β ∈ N ∩ Λ such that
σN,N ′�Sk(N ∩β) = σN,N∗�Sk(N ∩β) is an isomorphism of N ∩β to N ′∩N∗.
But α0 = α1 implies that βN ′,N∗ > α0. Hence a0 and a1 are in Sk(N ′∩N∗).
Since a∗0 and a∗1 are nonoverlapping, their images under σN,N ′�Sk(N ∩ β),
namely a0 and a1, are also nonoverlapping.

(2) We already noted that C is a finite coherent adequate set.
(3) Let M be in C and a in y; we will show that M and a are nonover-

lapping. If M ∩ ω1 ≥ N ∩ ω1 and a is in xr \ Sk(N), then we are done since
r is a condition. Let a = 〈α, γ, β〉. If α /∈M , then a and M are nonoverlap-
ping, so assume that α ∈M . We will show that either γ and β are in M or
sup(M ∩ α) < γ.

Suppose that M ∩ ω1 ≥ N ∩ ω1 and a = σN,N ′(a
∗) for some N ′ in

Ar isomorphic to N and some a∗ in xw. Since M ∩ ω1 ≥ N ′ ∩ ω1, either
N ′ ∩ βN ′,M ∈ Sk(M) or N ′ ∩ βN ′,M = M ∩ βN ′,M . But α ∈ M ∩ N ′, so
βN ′,M > α. Thus γ and β are in N ∩ βN ′,M and hence in M .

Assume that M = σN,N ′(K), where N ′ ∈ Ar is isomorphic to N and
K ∈ Aw, and a ∈ xr \ Sk(N). Since M ⊆ N ′, it follows that α ∈ N ′. So
either γ and β are in N ′ or sup(N ′ ∩ α) < γ. In the latter case, clearly
sup(M ∩ α) < γ and we are done. Otherwise a is a member of Sk(N ′). So
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b := σN ′,N (a) ∈ xr ∩ Sk(N) ⊆ xw. Therefore K and b are nonoverlapping.
Hence their images under σN,N ′ , namely M and a, are nonoverlapping.

In the final case, suppose that M = σN,N ′(K), where N ′ ∈ Ar is
isomorphic to N and K ∈ Aw, and a = σN,N∗(b) for some N∗ in Ar
isomorphic to N and some b in xw. So K and b are nonoverlapping. If
N ′ = N∗, then the images of K and b under σN,N ′ , namely M and a, are
nonoverlapping. Otherwise by Lemma 2.8 we can fix β ∈ N ∩ Λ such that
σN,N ′�Sk(N ∩β) = σN,N∗�Sk(N ∩β) is an isomorphism of N ∩β to N ′∩N∗.
As α ∈ M , α is in N ′ ∩N∗. Since N ′ ∩N∗ is an initial segment of N ′ and
N∗, it follows that a ∈ Sk(N ′ ∩ N∗). Hence b is in Sk(N ∩ β). Therefore
a = σN,N∗(b) = σN,N ′(b). So a and M are the images of b and K under σN,N ′ ,
and b and K are nonoverlapping. Thus a and M are nonoverlapping.

(4) By Lemma 4.2 it suffices to show that y is equal to the set

xr∪xw∪{σM,M ′(a) : M,M ′ ∈ C, M∩ω1 = M ′∩ω1, a ∈ (xr∪xw)∩Sk(M)}.

Clearly y is a subset of this set. It was noted above that xr∪xw ⊆ y. Suppose
that M and M ′ are isomorphic sets in C and a ∈ (xr ∪ xw) ∩ Sk(M). We
will show that a∗ := σM,M ′(a) ∈ y.

Suppose that M ∩ ω1 > N ∩ ω1. Then also M ′ ∩ ω1 > N ∩ ω1. If a is
in xr, then we are done since r is a condition. Suppose that a is in xw.
Fix N∗ in Sk(M) which is isomorphic to N and such that N ∩ βM,N =
N∗∩βM,N . Then a ∈ Sk(N ∩βM,N ) = Sk(N∗∩βM,N ). Let P := σM,M ′(N

∗).
So σM,M ′�Sk(N∗)=σN∗,P . By Lemma 2.8, σM,M ′(a) = σN∗,P (a) = σN,P (a),
which is in y by definition.

Now assume that M ∩ ω1 = N ∩ ω1. Then M , M ′, and N are all iso-
morphic. If a ∈ xr then we are done since r is a condition. Suppose that
a ∈ xw. Since a ∈ Sk(M) ∩ Sk(N) = Sk(M ∩ N), by Lemma 2.8 we have
σM,M ′(a) = σN,M ′(a), which is in y by definition.

Finally, suppose that M ∩ ω1 < N ∩ ω1. By the definition of C, M =
σN,N ′(K) for some N ′ in Ar which is isomorphic to N and some K ∈ Aw.
Then also M ′ = σN,N∗(P ) for some N∗ in Ar which is isomorphic to N
and some P ∈ Aw. Since a is in Sk(M), a is in Sk(N ′). We claim that b :=
σN ′,N (a) is in xw. If a ∈ xr, then since r is a condition, b is in xr∩Sk(N) and
hence in xw. Otherwise a is in xw and hence in Sk(N ′)∩Sk(N) = Sk(N ′∩N).
But σN ′,N�Sk(N ′ ∩N) is the identity, so b = a.

We see that σN ′,N�Sk(M) = σM,K and σN∗,N�Sk(M ′) = σM ′,P . And
σM,M ′ = σP,M ′◦σK,P ◦σM,K = σN,N∗◦σK,P ◦(σN ′,N�Sk(M)). So σM,M ′(a) =
σN,N∗(σK,P (σN ′,N (a))) = σN,N∗(σK,P (b)). Since b ∈ xw and K and P are
in Aw, σK,P (b) is in xw. Hence σM,M ′(a) = σN,N∗(σK,P (b)) is in y by defi-
nition.

Proposition 4.4. The forcing poset P is ω2-c.c.
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Proof. Fix θ > ω2 regular and let N∗ be an elementary substructure of
H(θ) of size ω1 such that π, X , Λ, and P are in N∗ and β := N∗ ∩ ω2 ∈ Λ.
Since π ∈ N∗, we have N∗ ∩ H(ω2) = π[N∗ ∩ ω2] = π[β] = Sk(β). In
particular, N∗ ∩ P ⊆ Sk(β). Note that since X ∩ P (β) ⊆ Sk(β), it follows
that N∗ ∩ X = P (β) ∩ X = Sk(β) ∩ X .

We will prove that the empty condition is N∗-generic. This implies that P
is ω2-c.c. by the following argument. Suppose for a contradiction that P has
a maximal antichain S of size at least ω2. By elementarity we may assume
that S is in N∗. Since N∗ has size ω1, we can fix a condition s ∈ S \ N∗.
Let D be the set of conditions which are below some member of S. Then
D is dense and lies in N∗. Since the empty condition is N∗-generic, N∗ ∩D
is predense in P. So s is compatible with some member of N∗ ∩ D. By
elementarity and the definition of D, s is compatible with some member of
N∗ ∩ S, which contradicts the assumption that S is an antichain.

Note that since 2ω = ω1 and ω1 ⊆ N∗, we have H(ω1) ⊆ N∗. Fix a dense
open set D in N∗; we will show that D ∩ N∗ is predense in P. Let p be a
given condition. Extend p to q which is in D.

Let A− := {M ∈ Aq : M ⊆ β}. Let A+ := {M ∈ Aq : M \ β 6= ∅} =
{M0, . . . ,Mk}. Since Λ ∈ N∗, the set Λ ∩ β is cofinal in β. Fix β∗ in Λ ∩ β
such that for all M ∈ Aq, sup(M∩β) < β∗, and for all 〈α, γ, ζ〉 in xr∩Sk(β),
α < β∗. Let R be the set of pairs 〈i, j〉 in k + 1 such that Mi ∈ Sk(Mj).
Note that the objects A−, M0 ∩ β, . . . ,Mk ∩ β, β∗, and R are in N∗.

For each i = 0, . . . , k, let Mi denote the transitive collapse of the struc-
ture Mi = (Sk(Mi),∈, πMi ,XMi , ΛMi). And for each 〈i, j〉 in R, let J〈i,j〉 :=

σMj (Mi). Note that each Mi is in H(ω1) and hence in N∗, and therefore
each J〈i,j〉 is in N∗.

Let a0, . . . , am enumerate the triples in xq whose first component is larger
than β. Let S be the set of pairs 〈i, j〉 where i ≤ m, j ≤ k, and ai ∈ Sk(Mj).
For each 〈i, j〉 in S, let b〈i,j〉 = σMj (ai).

As noted above, the following parameters all belong to N∗: xq ∩ Sk(β),
A−, D, M0∩β, . . . ,Mk∩β, π, X , Λ, M0, . . . ,Mk, R, J〈i,j〉 for each 〈i, j〉 ∈ R,
β∗, S, and b〈i,j〉 for each 〈i, j〉 ∈ S. Let ϕx0,...,xk,y0,...,ym be the formula in the
language of set theory with constants for these parameters which expresses
the following:

(i) the pair (
(xq ∩ Sk(β)) ∪ {y0, . . . , ym}, A− ∪ {x0, . . . , xk}

)
is in D;

(ii) for each i = 0, . . . , k, xi ∩ β∗ = Mi ∩ β;
(iii) for each i = 0, . . . , k, the transitive collapse of (Sk(xi),∈, πxi ,

Xxi , Λxi) is equal to Mi;
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(iv) for any i, j < k + 1, xi ∈ Sk(xj) iff 〈i, j〉 ∈ R, and in that case,
σxj (xi) = J〈i,j〉;

(v) for each i = 0, . . . ,m, the first component of yi is above β∗;
(vi) for each i ≤ m and j ≤ k, yi ∈ Sk(xj) iff 〈i, j〉 ∈ S, and in that

case, σxj (yi) = b〈i,j〉.

Note that H(θ) |= ϕ[M0, . . . ,Mk, a0, . . . , am]. By elementarity we can find
M ′0, . . . ,M

′
k and a′0, . . . , a

′
m inN∗ such thatH(θ) |=ϕ[M ′0, . . . ,M

′
k, a
′
0, . . . , a

′
m].

Let w denote the pair(
(xq ∩ Sk(β)) ∪ {a′0, . . . , a′m}, A− ∪ {M ′0, . . . ,M ′k}

)
.

Then w is in D by (i).
Let us verify that the assumptions of Proposition 3.6 hold for the map

which sends M to M ′ for each M ∈ A+. Let M and K be in A+. Then
(iii) implies that M and M′ have the same transitive collapse and hence are
isomorphic, and (ii) implies that M ′ ∩ β∗ = M ∩ β = M ∩ β∗. Let M = Mj

and K = Mi for i, j ≤ k. By (iv), K ∈ Sk(M) iff 〈i, j〉 ∈ R iff K ′ ∈ Sk(M ′),
and in that case, σM (K) = J〈i,j〉 by definition and σM ′(K

′) = J〈i,j〉 by (iv).

But σM,M ′ = σ−1M ′ ◦ σM . So σM,M ′(K) = σ−1M ′(σM (K)) = σ−1M ′(J〈i,j〉) = K ′.
Finally, A− ∪ {M ′0, . . . ,M ′k} is a coherent adequate set by (i). It follows by
Proposition 3.6 that

C := Aq ∪ {M ′ : M ∈ A+}
is a coherent adequate set.

By (vi), for each i ≤ m and j ≤ k, ai ∈ Sk(Mj) iff 〈i, j〉 ∈ J iff
a′i ∈ Sk(M ′j). Also, if ai ∈ Sk(Mj), then σMj ,M ′j

(ai) = σM−1
j

(σMj (ai)) =

σM−1
j

(b〈i,j〉) = a′j . So σMi,M ′i
(aj) = a′j . Let

y := xq ∪ {a′j : j = 0, . . . ,m}.
By (v) the first component of each a′j is above β∗. Hence any element of y
is in xq ∩ Sk(β), {a′j : j = 0, . . . ,m}, or xq \ Sk(β) depending on whether its
first component is in [0, β∗), [β∗, β), or [β∗, ω2).

We claim that s = (y, C) is a condition. Then clearly s ≤ r, w, and since
w is in D, we are done.

(1) Let 〈α, γ, ζ〉 and 〈α′, γ′, ζ ′〉 be in y; we will show that they are
nonoverlapping. If these triples are either both in xq or both in xw, then
we are done. Otherwise we may assume that 〈α, γ, ζ〉 is equal to ai for some
i = 0, . . . ,m and 〈α′, γ′, ζ ′〉 is equal to a′j for some j = 0, . . . ,m. Then
α′ < β ≤ α, so these triples are nonoverlapping.

(2) The set C is a finite coherent adequate set as previously noted.
(3) Let M be in C and 〈α, γ, ζ〉 in y; we will show that they are nonover-

lapping. If α is not in M , then we are done, so assume that α ∈ M . If
these objects are either both in q or both in w, then we are done. Assume
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that M ∈ C \ Sk(β) and 〈α, γ, ζ〉 ∈ y ∩ Sk(β). Since α is in M ∩ β, it is in
M ′ ∩ β∗. But the triple and M ′ are nonoverlapping, and since α < β∗ this
clearly implies that the triple and M are nonoverlapping. Next assume that
M ∈ C ∩Sk(β) and 〈α, γ, ζ〉 ∈ y \Sk(β). Then α ≥ β. But this is impossible
since M ⊆ β.

(4) Let M and K be isomorphic sets in C and a ∈ y ∩ Sk(M). We will
show that σM,K(a) ∈ y. Let a = 〈α, γ, ζ〉.

Suppose that M ∈ Aq. Then α /∈ [β∗, β), hence a ∈ xq. If K is in Aq,
then we are done; otherwise K = P ′ for some P ∈ A+. Then σM,P (a) ∈
xq ∩ Sk(P ). Assume that σM,P (α) ≥ β. Then σM,P (a) = ai for some i ≤ m.
So σP,P ′(a) = a′i. Hence σM,K(a) = σP,P ′(σM,P (a)) = a′i ∈ y. Now assume
that σM,P (α) < β∗. Then σP,P ′(σM,P (a)) = σM,P (a) since σP,P ′�β∗ is the
identity. So σM,K(a) = σP,P ′(σM,P (a)) = σM,P (a), which is in y.

Now suppose that M = L′ for some L ∈ A+. Then M ∈ Aw. So a is
in (xq ∩ Sk(β)) ∪ {a′0, . . . , a′m} = xw. If K ∈ Aw, then we are done since
w is a condition. Otherwise K ∈ C \ Sk(β). Then K ′ ∈ Aw, so σM,K′(a)
∈ xw. If σM,K′(a) < β∗, then σK′,K(σM,K′(a)) = σM,K′(a) since σK′,K�β∗

is the identity. Hence σM,K(a) = σK′,K(σM,K′(a)) = σM,K′(a), which is
in y. Otherwise σM,K′(a) is equal to a′i for some i = 0, . . . ,m. Thus
a′i ∈ Sk(K ′), which implies that ai ∈ Sk(K) and σK,K′(ai) = a′i. Hence
σM,K(a) = σK′,K(σM,K′(a)) = σK′,K(a′i) = ai, which is in y.

This completes the proof that P preserves cardinals.
Recall that for each α ∈ Λ, ċα is a P-name such that P forces

ċα = {γ : ∃p ∈ Ġ ∃β 〈α, γ, β〉 ∈ xp}.
We will show that P forces that ċα is a cofinal subset of α. Property (3)
in the definition of P will imply that ċα is forced to have order type ω1.
Property (4) will imply that P forces that whenever ξ is a common limit
point of ċα and ċα′ , then ċα ∩ ξ = ċα′ ∩ ξ.

Lemma 4.5. For each α ∈ Λ, P forces that ċα is a cofinal subset of α
with order type ω1.

Proof. First we show that ċα is forced to be a cofinal subset of α. Let p
be a condition and δ < α. Choose an ordinal γ with δ < γ < α such that for
all M ∈ Ap, sup(M ∩ α) < γ, and for all triples in xp of the form 〈α, τ, β〉,
τ and β are less than γ. Define q = (xp ∪ {〈α, γ, γ + 1〉}, Ap). It is easy to
check that q is a condition, and clearly q ≤ p. Also, q forces that ċα \ δ is
nonempty. Thus P forces that ċα is a cofinal subset of α.

Suppose for a contradiction that a condition p forces that ċα has order
type greater than ω1. Extending p if necessary, assume that for some δ < α,
p forces that ċα ∩ δ has size ω1. Fix M in X such that p, α, and δ are
in Sk(M). Then easily q = (xp, Ap∪{M}) is a condition. Since q forces that
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ċα∩δ is uncountable, we can extend q to r such that for some triple 〈α, γ, β〉
in xr, γ is δ \M . Since M ∈ Ar and α ∈M , we have sup(M ∩α) < γ, which
contradicts δ ∈M .

Now we prove that the sequence of ċα’s is coherent. Namely, we will show
that P forces that whenever ξ is a common limit point of ċα and ċα′ , then
ċα ∩ ξ = ċα′ ∩ ξ.

Lemma 4.6. Let α be in Λ, ξ < α, and suppose that p is a condition
which forces that ξ is a limit point of ċα. Then there is M ∈ Ap such that
α ∈M and sup(M ∩ α) = ξ.

Proof. Note that for all q ≤ p, since q forces that ξ is a limit point of ċα,
if 〈α, γ, β〉 ∈ xq and γ < ξ, then β < ξ. Suppose for a contradiction that for
all M ∈ Ap, if α ∈M then sup(M ∩ α) 6= ξ.

We claim that if M ∈ Ap, α ∈M , and sup(M ∩ ξ) < ξ, then sup(M ∩α)
< ξ. Otherwise fix a counterexample M . Then α ∈M , sup(M ∩ ξ) < ξ, and
sup(M ∩α) ≥ ξ. Since ξ is forced to be a limit point of ċα, we can find q ≤ p
and γ, β < ξ such that 〈α, γ, β〉 ∈ xq and sup(M ∩ ξ) < γ. Then γ and β
are not in M , but sup(M ∩ α) ≥ ξ > γ, which contradicts the fact that q is
a condition.

It follows from the claim that A is the union of the sets A0, A1, and A2

defined by

A0 = {M ∈ Ap : α /∈M},
A1 = {M ∈ Ap : α ∈M, sup(M ∩ α) < ξ},
A2 = {M ∈ Ap : α ∈M, sup(M ∩ ξ) = ξ}.

Since we are assuming that there is no M in Ap with α ∈M and sup(M ∩α)
= ξ, every set in A2 meets the interval [ξ, α). Observe that if N ∈ A1 and
M ∈ A2, then since α ∈ M ∩ N , we have βM,N > α; hence sup(N ∩ α) <
ξ < sup(M ∩ α) implies that N ∩ βM,N ∈ Sk(M).

Fix M in A2 such that M ∩ ω1 is minimal. Let τ = min(M \ ξ). Then
ξ ≤ τ < α. Since sup(M ∩ ξ) = ξ, we can fix γ < ξ in M such that for all
N ∈ A1, sup(N ∩ α) < γ, and for all 〈α, ζ, β〉 ∈ xp, if ζ < ξ then ζ, β < γ.

Let y be the set of triples of the form σN,N ′(〈α, γ, τ〉), where N and N ′

are isomorphic sets in Ap and 〈α, γ, τ〉 ∈ Sk(N). Let q = (xp ∪ y,Ap). We
claim that q is a condition. Then clearly q ≤ p and q forces that ξ is not a
limit point of ċα, which is a contradiction.

Let us note that 〈α, γ, τ〉 is nonoverlapping with every triple in xp. Let
〈α, γ′, β′〉 be in xp. If γ′ < ξ, then γ′ and β′ are below γ, so we are done.
Suppose that γ′ ≥ ξ. Since M ∈ Ap, either γ′ and β′ are in M or sup(M ∩α)
< γ′. In the former case, τ = min(M \ ξ) ≤ γ′. In the latter case, τ <
sup(M∩α) < γ′. In either case, τ ≤ γ′, which implies that [γ, τ)∩[γ′, β′) = ∅.
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Next we claim that if K ∈ Ap then K and 〈α, γ, τ〉 are nonoverlapping. If
α is not inK then we are done, so assume that α ∈ K. Then eitherK ∈ A1 or
K ∈ A2. If K ∈ A1, then sup(K∩α) < γ by the choice of γ. If K ∈ A2, then
since M ∩ω1 ≤ K∩ω1, either M ∩βK,M ∈ Sk(K) or M ∩βK,M = K∩βK,M .
In either case, M ∩ βK,M ⊆ K. But since α ∈ K ∩M , we have βK,M > α.
So γ and τ are in K.

Now we prove that q is a condition.

(1) Consider a triple 〈α′, γ′, β′〉 in xp and a triple σN,N ′(〈α, γ, τ〉), where
N and N ′ are isomorphic in Ap and 〈α, γ, τ〉 ∈ Sk(N). If α′ 6= σN,N ′(α)
then we are done, so assume that α′ = σN,N ′(α). If γ′ and β′ are not
in Sk(N ′), then sup(N ′ ∩α′) < γ′, so clearly the triples are nonoverlapping.
Otherwise γ′ and β′ are both in Sk(N ′). Then 〈α′, γ′, β′〉 ∈ xp ∩ Sk(N ′), so
σN ′,N (〈α′, γ′, β′〉) is in xp. By the comments above, σN ′,N (〈α′, γ′, β′〉) and
〈α, γ, τ〉 are nonoverlapping. Hence the images of these triples under σN,N ′
are nonoverlapping and we are done.

Now consider σN0,N ′(〈α, γ, τ〉) and σN1,N∗(〈α, γ, τ〉), where N0 and N ′

are isomorphic in Ap and 〈α, γ, τ〉 ∈ Sk(N0), and N1 and N∗ are isomorphic
in Ap and 〈α, γ, τ〉 ∈ Sk(N1). If σN0,N ′(α) 6= σN1,N∗(α) then the triples
are nonoverlapping, so assume that α∗ := σN0,N ′(α) = σN1,N∗(α). Then
βN0,N1 > α and βN ′,N∗ > α∗.

We will show that σN0,N ′(〈α, γ, τ〉) = σN1,N∗(〈α, γ, τ〉). By symmetry it
suffices to consider the cases when N0 ∩βN0,N1 ∈ Sk(N1) and N0 ∩βN0,N1 =
N1 ∩ βN0,N1 . Suppose the former case. Then also N ′ ∩ βN ′,N∗ ∈ Sk(N∗).
Fix N∗0 in Sk(N1) ∩ Ap which is isomorphic to N0 such that N0 ∩ βN0,N1 =
N∗0 ∩ βN0,N1 . Then 〈α, γ, τ〉 ∈ Sk(N∗0 ). Also fix P ∈ Sk(N∗) ∩ Ap which is
isomorphic to N ′ such that N ′ ∩ βN ′,N∗ = P ∩ βN ′,N∗ . Since βN ′,N∗ > α∗,
we have α∗ ∈ P .

Since σN1,N∗(α)=α∗, we have α∗∈P∩σN1,N∗(N
∗
0 ). As P and σN1,N∗(N

∗
0 )

are isomorphic and are in the adequate set Ap, it follows that P ∩ α∗ =
σN1,N∗(N

∗
0 ) ∩ α∗. Now σN0,N ′�α is the unique order preserving map from

N0 ∩ α = N∗0 ∩ α onto N ′ ∩ α∗ = P ∩ α∗ = σN1,N∗(N
∗
0 ) ∩ α∗. But also

σN1,N∗�(N
∗
0∩α) is an order preserving map fromN∗0∩α onto σN1,N∗(N

∗
0 )∩α∗.

It follows that σN0,N ′�α = σN1,N∗�(N
∗
0 ∩α). In particular, σN0,N ′(〈α, γ, τ〉) =

σN1,N∗(〈α, γ, τ〉).
Now suppose that N0 ∩ βN0,N1 = N1 ∩ βN0,N1 . Then also N ′ ∩ βN ′,N∗ =

N∗ ∩ βN ′,N∗ . In particular, N0 ∩ α = N1 ∩ α and N ′ ∩ α∗ = N∗ ∩ α∗. But
σN0,N ′�α is the unique order preserving map from N0 ∩α onto N ′ ∩α∗, and
σN1,N∗�α is the unique order preserving map from N1∩α onto N∗∩α. Hence
σN0,N ′�α = σN1,N∗�α. So σN0,N ′(〈α, γ, τ〉) = σN1,N∗(〈α, γ, τ〉).

(2) is immediate.
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(3) Let K be in Ap and consider 〈α∗, γ∗, τ∗〉 := σN,N ′(〈α, γ, τ〉), where
N and N ′ are isomorphic sets in Ap and 〈α, γ, τ〉 is in Sk(N). We will prove
that K and 〈α∗, γ∗, τ∗〉 are nonoverlapping. If α∗ is not in K, then we are
done, so assume that α∗ ∈ K. Then βK,N ′ > α∗.

If N ′ ∩ βK,N ′ is either in Sk(K) or equal to K ∩ βK,N ′ , then γ′ and τ ′

are in K and we are done. So assume that K ∩ βK,N ′ ∈ Sk(N ′). Then there
is K∗ in Sk(N ′) ∩ Ap which is isomorphic to K such that K∗ ∩ βK,N ′ =
K ∩βK,N ′ . Since α∗ < βK,N ′ , it suffices to show that K∗ and 〈α∗, γ∗, τ∗〉 are
nonoverlapping. But L := σN ′,N (K∗) is in Ap, and we showed above that
L is nonoverlapping with 〈α, γ, τ〉. Therefore the images of L and 〈α, γ, τ〉
under σN,N ′ , namely K∗ and 〈α∗, γ∗, τ∗〉, are nonoverlapping.

(4) By Lemma 4.2 it suffices to show that xp ∪ y is equal to

x∗p ∪ {σN,N ′(a) : N,N ′ ∈ Ap, N ∩ ω1 = N ′ ∩ ω1, a ∈ x∗p ∩ Sk(N)},
where x∗p = xp ∪ {〈α, γ, τ〉}. Clearly xp ∪ y is included in the second set by
definition, and x∗p ⊆ xp ∪ y. Consider a ∈ xp ∪ {〈α, γ, τ〉} and isomorphic
N and N ′ in Ap with a ∈ Sk(N). If a ∈ xp then σN,N ′(a) ∈ xp since p is a
condition. Otherwise a = 〈α, γ, β〉, and σN,N ′(a) ∈ y by the definition of y.

Proposition 4.7. Let α and α′ be distinct ordinals in Λ. Then P forces
that whenever ξ is a common limit point of ċα and ċα′, ċα ∩ ξ = ċα′ ∩ ξ.

Proof. Let p be a condition which forces that ξ is a common limit point
of ċα and ċα′ . Then by the previous lemma, there are M and M ′ in Ap such
that α ∈M and sup(M ∩ α) = ξ, and α′ ∈M ′ and sup(M ′ ∩ α′) = ξ. Since
ξ is a common limit point of M and M ′, it follows that ξ < βM,M ′ . It is
not possible that M ∩βM,M ′ ∈ Sk(M ′), since in that case ξ, which is a limit
point of M ∩βM,M ′ , would be in M ′. Similarly, M ′∩βM,M ′ is not in Sk(M).
So M ∩βM,M ′ = M ′∩βM,M ′ . It follows that M and M ′ are isomorphic. Also
σM,M ′�M ∩ βM,M ′ is the identity and σM,M ′(α) = α′.

Suppose that q ≤ p and q forces that γ is in ċα ∩ ξ. Extending q if
necessary, assume that 〈α, γ, β〉 ∈ xq for some β. Since γ < ξ = sup(M ∩α),
we see that γ and β are in M . So σM,M ′(〈α, γ, β〉) = 〈α′, γ, β〉 is in xq. Hence
q forces that γ is in ċα′ . This proves that p forces that ċα ∩ ξ ⊆ ċα′ . The
other inclusion is proved using a symmetric argument.

Let us show that �ω1 holds in any generic extension by P. This follows
from well-known arguments which we review for completeness. First note
that it suffices to find a sequence 〈dα : α ∈ ω2∩cof(ω1)〉 such that each dα is
a club subset of α with order type ω1, and for any α < α′ and ξ a common
limit point of dα and dα′ , dα ∩ ξ = dα′ ∩ ξ. For then we can extend this
sequence to a square sequence by defining dγ for γ ∈ ω2 ∩ cof(ω) by letting
dγ = dα∩γ for some (any) α in ω2∩cof(ω1) such that γ is a limit point of dα,
and if no such α exist, letting dγ be a cofinal subset of γ of order type ω.
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Recall that each α in Λ is in C∗ ∩ cof(ω1) and is a limit point of C∗. For
each α ∈ Λ let dα = lim(cα) ∩ C∗ ∩ α. Then by Lemma 4.5 and Proposi-
tion 4.7, the sequence 〈dα : α ∈ Λ〉 is such that each dα is a club subset of
α with order type ω1, and for all ξ in dα ∩ dα′ , dα ∩ ξ = dα′ ∩ ξ.

One can easily prove by induction that for any ξ < ω2, there exists a
sequence 〈eβ : β ∈ ξ∩cof(ω1)〉 such that each eβ is a club subset of β of order
type ω1 and any eβ and eβ′ share no common limit points. Consider β0 < β1
which are consecutive elements of C∗ ∪ {0}. Using the fact just mentioned,
we can transfer a sequence of clubs defined on ot(β1 \ β0) ∩ cof(ω1) to a
sequence 〈dα : α ∈ (β0, β1) ∩ cof(ω1)〉 so that each dα is a club subset of α
with minimum element greater than β0 and order type ω1, such that any
dα and dα′ share no common limit points. But any ordinal in ω2 ∩ cof(ω1)
which is not in C∗ belongs to such an interval. So we have defined dα for all
α ∈ ω2 ∩ cof(ω1). It is straightforward to check that the extended sequence
is as required.
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