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Shape index in metric spaces

by

Francisco R. Ruiz del Portal and José M. Salazar (Madrid)

Abstract. We extend the shape index, introduced by Robbin and Salamon and
Mrozek, to locally defined maps in metric spaces. We show that this index is additive.
Thus our construction answers in the affirmative two questions posed by Mrozek in [12].
We also prove that the shape index cannot be arbitrarily complicated: the shapes of q-adic
solenoids appear as shape indices in natural modifications of Smale’s horseshoes but there
is not any compact isolated invariant set for any locally defined map in a locally com-
pact metric ANR whose shape index is the shape of a generalized solenoid. We also show
that, for maps defined in locally compact metric ANRs, the shape index can always be
computed in the Hilbert cube. Consequently, the shape index is the shape of the inverse
limit of a sequence {Pn, gn} where Pn = P is a fixed ANR and gn = g : P → P is a fixed
bonding map.

1. Introduction. The problem of constructing an analogue to the ho-
motopical Conley index for discrete dynamical systems, posed in Conley’s
book [2], was solved by Robbin and Salamon [15] for diffeomorphisms of a
compact manifold. The main problem with using Conley’s ideas in the dis-
crete case is the absence of homotopies along the orbits of the flow. Robbin
and Salamon use shape theory to overcome this problem. However the set-
ting is quite restrictive and the bijectivity and differentiability of the maps
are strongly used. Independently, Mrozek [11] introduced an algebraic (coho-
mological) invariant for homeomorphisms of locally compact metric spaces,
and Mrozek and Rybakowski [14] extended Mrozek’s ideas to arbitrary maps
defined in metric spaces. Later Mrozek [12] presented a general scheme for
the construction of several Conley type indices that unifies the results in
[15] and [11] for locally defined maps in locally compact metric spaces. This
simplification of the hypotheses is important because the theory can be
applied to the study of Poincaré maps associated to periodic phenomena.
Then Mrozek obtained, in a unified way and in this general setting, the
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cohomological and shape indices. The shape index is introduced as the in-
verse limit of a certain inverse sequence in the pointed shape category (Sh∗).
Szymczak [17] introduced, in the language of category theory, an index such
that all variants of the Conley index are functors on this categorical defini-
tion. More recently Franks and Richeson [4], using the notions of filtration
pairs and shift equivalences, introduced a Conley index that is equivalent to
Szymczak’s. However, for the class of inverse sequences that appear when
computing the shape index, shape and shift equivalences are so close that it
seems difficult to give examples where the induced indices do not coincide.
On the other hand, shape is a very developed theory with well known invari-
ants that make the study and computation of Conley index more accessible.

In [12], Mrozek posed two problems:

a) Is the shape index additive?
b) Can this theory be extended to arbitrary metric spaces?

The main obstacle for solving the second problem is that the shape and
inverse limit functors do not commute if the spaces involved are not compact.

In Sections 3 and 4 of this paper we solve both problems in the affirma-
tive, using Rybakowski’s conditions as in [14]. We use resolution theory to
prove that in our case the shape and inverse limit functors commute, even
though our spaces are not compact.

Section 5 is dedicated to studying which shape types can appear as
shape indices of compact isolated invariant sets of a semidynamical system.
While for continuous dynamical systems on manifolds the Conley index is
the homotopy type of a polyhedron, for the discrete case the shapes of non-
movable spaces can appear. In fact, we obtain the shapes of q-adic solenoids
as the shape indices of natural modifications of Smale’s horseshoes. Never-
theless, shape indices cannot be arbitrarily complex. The shapes of gener-
alized solenoids are never realized in locally compact ANRs. The main tool
for this is that for computations one can always assume that the dynamical
system is defined in the Hilbert cube. Then we can always assume the exis-
tence of prismatic index pairs. Consequently, the shape index is the shape
of the inverse limit of a sequence {Pn, gn} where Pn = P is a fixed ANR and
gn = g : P → P is a fixed bonding map.

In order to make this paper as selfcontained as possible, we begin by
recalling briefly the basic notions of shape theory that we will use. The
main reference is the book of Mardešić and Segal [9].

2. Basic notions of shape theory. Let C be a category and let pro-C
be the category whose objects are inverse systems in C and whose morphisms
are equivalence classes of morphisms of inverse systems with respect to the
equivalence relation given in [9, p. 7].
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Let HTop∗ be the homotopy category of pointed topological spaces and
P = HPol∗ the full subcategory of HTop∗ whose objects are the spaces which
have the homotopy type of ANRs.

Definition 1 ([9, p. 19]). Let T be a category and let P be a subcate-
gory of T . Given an object X ∈ T , a T -expansion of X (with respect to P )
is a morphism

p : X → X = (Xλ, pλλ′ , Λ)

in pro-T with the following universal property:
For any inverse system Y = (Yβ, qββ′ , B) in the subcategory P , and any

morphism h : X → Y in pro-T , there is a unique morphism f : X → Y in
pro-T such that h = f ◦ p.

We say that p is a P -expansion of X if X and f are in pro-P .

If T = HTop∗ and P = HPol∗, then every object (X, ∗) in HTop∗ admits
an HPol∗-expansion.

The objects of the pointed shape category, Sh∗, are pointed topological
spaces and given topological spaces (X, ∗) and (Y, ∗), a shape morphism is
an equivalence class of morphisms in pro-HPol∗ between (X, ∗) and (Y, ∗),
with respect to a certain equivalence relation ([9, p. 25]), where p : (X, ∗)→
(X, ∗) = ((Xλ, ∗), pλλ′ , Λ) and q : (Y, ∗) → (Y, ∗) = ((Yβ, ∗), qββ′ , B) are
fixed HPol∗-expansions of (X, ∗) and (Y, ∗) respectively.

Two pointed spaces (X, ∗) and (Y, ∗) have the same (pointed) shape if
they are isomorphic in Sh∗; we will then write S(X, ∗) = S(Y, ∗). The shape
categories of unpointed topological spaces as well as that of pairs of topo-
logical spaces are introduced in a similar way.

Definition 2 ([9, pp. 74, 86]). Let (X, ∗) be a pointed topological
space. A resolution of (X, ∗) is an inverse system (X, ∗) = ((Xλ, ∗), pλλ′ , Λ) ∈
pro-Top∗ and a morphism p : (X, ∗)→ (X, ∗) in pro-Top∗ with the following
two properties:

(R1) Let (P, ∗) be a pointed ANR, V an open covering of P and h :
(X, ∗)→ (P, ∗) a map. Then there is λ ∈ Λ and a map f : (Xλ, ∗)→ (P, ∗)
such that f ◦ pλ and h are V-near.

(R2) Let (P, ∗) be a pointed ANR and V be an open covering of P . Then
there is an open covering V ′ of P with the following property: If λ ∈ Λ and
f, f ′ : (Xλ, ∗) → (P, ∗) are maps such that f ◦ pλ and f ′ ◦ pλ are V ′-near
then there exists λ′ ≥ λ such that f ◦ pλλ′ and f ′ ◦ pλλ′ are V-near.

Denote by H : Top∗ → HTop∗ the homotopy functor. Resolutions are
of interest because if p : (X, ∗) → (X, ∗) is a resolution of (X, ∗) then
H(p) : (X, ∗)→ H((X, ∗)) is an HTop∗-expansion of (X, ∗) ([9, Theorem 2,
p. 75]).
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Theorem 1 ([9, p. 79]). Let p : (X, ∗) → (X, ∗) be a morphism in
pro-Top∗. Assume that p has the following properties:

(B1) Let λ ∈ Λ and let U be an open subset of Xλ containing cl(pλ(X)).
Then there is λ′ ≥ λ such that pλλ′(Xλ′) ⊆ U .

(B2) For every normal covering U of X there is λ ∈ Λ and a normal
covering V of Xλ such that p−1

λ (V) refines U .

Then p is a resolution.

The continuity theorem is one of our basic tools.

Theorem 2 ([9, p. 28]). Let q : (X, ∗)→ (X, ∗) be an HTop∗-expansion
of (X, ∗) ∈ HTop∗. Then q is the inverse limit of (X, ∗) in the pointed
shape category.

3. Shape index in metric spaces. Let X be a metric space. Let
f : U → X be a (continuous) map where U is an open subset of X. A map
σ : J → U ⊂ X, where J is an interval in Z, is called a solution of f if
f(σ(i− 1)) = σ(i) for every i− 1, i ∈ J . If 0 ∈ J and σ(0) = x, we say that
σ is a solution through x.

Let N ⊂ U . The sets
Inv+(N) = {x ∈ X : f i(x) ∈ N for every i ∈ N},
Inv−(N) = {x ∈ X : there exists a solution σ : Z− → N through x},

Inv(N) = Inv+(N) ∩ Inv−(N)

are called the positively invariant, negatively invariant and invariant sets
with respect to f in N , respectively.

Definition 3. A subset A ⊂ U is called invariant with respect to f
if Inv(A) = A. In a similar way, we say that A is positively invariant if
Inv+(A) = A and negatively invariant if Inv−(A) = A.

Definition 4. A subset N ⊂ U is admissible if for any pair of sequences
{xn : n ∈ N} and {mn : n ∈ N} such that {f i(xn) : 1 ≤ i ≤ mn} ⊂ N for
every n and {mn} → ∞, there exists an accumulation point of {fmn(xn) :
n ∈ N}. In particular, every compact subset of U is admissible.

Proposition 1. If N ⊂ U is admissible then Inv−(N), Inv(N) are com-
pact. If {xn : n ∈ N} and {mn : n ∈ N} are such that {f i(xn) : 1 ≤ i
≤ mn} ⊂ N for every n and {mn} → ∞, then every accumulation point of
{fmn(xn) : n ∈ N} belongs to Inv−(N).

Definition 5. Let K ⊂ U be an invariant set. Assume that N is an
admissible neighborhood of K such that K = Inv(N). Then we say that
K is an isolated invariant set and N is said to be an admissible isolating
neighborhood of K.
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Remark. If K is an isolated invariant set then K is compact. ∅ is an
admissible isolating neighborhood of itself.

For the notion of index pair associated to an isolated invariant set we
will adopt the definition of [14, Definitions 4.1 and 4.2].

Definition 6. Let A ⊂ N ⊂ U . We say that A is N -positively invariant
if f(A) ∩N ⊂ A.

Let N be an admissible isolating neighborhood of a compact isolated
invariant set K. The pair of closed subsets of N , P = (P1, P2), is an index
pair of K in N (with respect to f) if the following properties are satisfied:

a) P1, P2 are N -positively invariant.
b) K ⊂ int(P1 \ P2).
c) cl(P1 \ P2) ⊂ int(N) ∩ f−1(int(N)).

IP(N) will denote the class of index pairs of N .

The next results are contained in [14] and their proofs are identical for
locally defined maps.

Theorem 3 ([14, Theorem 4.4]). Let N and N ′ be admissible isolating
neighborhoods of K such that N ⊂ int(N ′) ∩ f−1(int(N ′)). Then, for every
open neighborhood W of K, there exists P ∈ IP(N) such that cl(P1\P2)⊂W .

Corollary 1. For every compact isolated invariant set K there exists
a small enough admissible isolating neighborhood N such that IP(N) 6= ∅.

As in [12, p. 28], we consider the category of pairs Prs. In our case, the
objects are pairs P = (P1, P2) of topological spaces such that P2 ⊂ P1 is a
closed subset. We also have a covariant functor Quot : Prs→ Top∗.

Let f : U → X be a locally defined map. Let P,Q ∈ Prs be closed subsets
of X such that P1 ⊂ U . Define fPQ : P1 ∩ f−1(Q1) 3 x 7→ f(x) ∈ Q1.

This map is not in general a morphism in Prs. Sufficient conditions for
fPQ to be a morphism in Prs are given in the next proposition.

Proposition 2 ([12, p. 31]). Let f be such that :

1) P1 \ P2 ⊂ f−1(Q1).
2) P2 ∩ f−1(Q1) ⊂ f−1(Q2).

Then fPQ ∈ Prs(P,Q).

Let f : U ⊂ X → X be a locally defined map and let N ⊂ U be an
admissible isolating neighborhood of a compact invariant set K. We can
associate, to any P = (P1, P2) ∈ IP(N), a pair in Prs (that we will denote
again by P ) defined as P = (P1, P1 ∩ P2) ∈ Prs. It is easy to see that
fPP ∈ Prs(P,P ).

The homotopy relation of morphisms in Prs is introduced as in [12, p. 30].
If f and g are homotopic in Prs then Quot(f) and Quot(g) are homotopic
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in Top∗ ([12, Prop. 5.7]). HPrs will denote the homotopy category of pairs
defined in the obvious way.

fP = Quot(fPP ) : (P1/P2, [P2]) → (P1/P2, [P2]) is a morphism in Top∗.
Define Quot([fPP ]) = [fP ], with [fPP ] and [fP ] the corresponding classes in
HPrs and HTop∗ respectively.

Let S : HTop∗ → Sh∗ be the shape functor (see [9, p. 26]) and let

T = S ◦Quot : HPrs→ Sh∗ .

Now we are in a position to introduce the shape index. Let X be a metric
space. Let f : U ⊂ X → X be a locally defined map and let N ⊂ U be an
admissible isolating neighborhood of a compact invariant set K. Let P be
an index pair of K in N .

Definition 7. We define the shape index of K, Clim,S(K, f), as

Clim,S(K, f) = (limS[(X, ∗)], lim({S([fP ])}n))

where S[(X, ∗)] = ((P1/P2, [P2])n, S([fP ]),N) ∈ pro-Sh∗ and {S([fP ])}n is a
level morphism ([9, p. 12]) from S[(X, ∗)] to itself.

We will say that the pairs (Y, g) and (Y ′, g′) (where Y, Y ′ ∈ Top∗ and
g : Y → Y , g′ : Y ′ → Y ′ are morphisms in Sh∗) are isomorphic if there is
a shape isomorphism ϕ : Y → Y ′ such that ϕ ◦ g = g′ ◦ ϕ. In particular, if
(Y, g) and (Y ′, g′) are isomorphic, then S(Y ) = S(Y ′).

Our next purpose is to check that the above definition is consistent, i.e.:

1) limS[(X, ∗)] exists (and consequently lim({S([fP ])}n) exists).
2) (limS[(X, ∗)], lim({S([fP ])}n)) does not depend, up to isomorphism,

on the previous choices of N and P ∈ IP(N).

As we said in the introduction, to check 1), Mrozek [12] used the com-
mutativity of the shape and inverse limit functors (Continuity Theorem) for
inverse systems of compact spaces. Now, if the local compactness of X is
not required, the spaces of the inverse systems in the last definition are not
compact and in this case, in general, the shape and inverse limit functors
do not commute. However, the admissibility of the isolating neighborhoods
is enough to get (closed) index pairs P = (P1, P2) for which the above
commutativity holds.

Lemma 1. Let P = (P1, P2) ∈ IP(N) be an index pair associated to K.
Then the inverse limit in Top∗, (X, ∗), of the inverse system ((P1/P2, [P2])n,
fP ,N) exists and it is compact.

Proof. Let

Q = (Q1, Q2) = (Inv−(N) ∩ P1, Inv−(N) ∩ P2).

It is easy to see that Q ∈ Prs and, by Proposition 2, fQQ ∈ Prs(Q,Q). Thus
Quot(fQQ) = fQ is continuous.
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Let (X ′, ∗) ∈ Top∗ be the inverse limit of the system ((Q1/Q2, [Q2])n,
fQ,N). Then X ′ is compact because Q1/Q2 6= ∅ is compact.

Consider now the inclusion (in pro-Top∗)

j = (jn, φ) : ((Q1/Q2, [Q2])n, fQ,N)→ ((P1/P2, [P2])n, fP ,N)

where φ = id. The following diagram commutes:

(X ′, ∗) . . . (Q1/Q2, [Q2]) (Q1/Q2, [Q2])

(X, ∗) . . . (P1/P2, [P2]) (P1/P2, [P2])

fQ fQ

fP fP

u jn+1 jn6 6 6

- -

- -

where (X ′, ∗) u−→ (X, ∗) is defined as u(([x′n])n) = (jn([x′n]))n.
It is enough to check that u is onto (in fact u is a homeomorphism).

Given ([xn])n 6= ∗ with ([xn])n ∈ X ⊂ ∏n (P1/P2)n there is n0 ≥ 0 such
that [xn] = ∗ for every n ≤ n0, and [xn] 6= ∗ for every n > n0.

Then xn ∈ P1 \ P2 for all n > n0 with f(xn) = xn−1. Therefore xn ∈
Inv−(N) ∩ (P1 \ P2) for every n > n0.

Take ([x′n])n where [x′n] = [xn] for every n > n0 and [x′n] = [Q2] for
n ≤ n0. It is clear that u(([x′n])n) = ([xn])n with ([x′n])n ∈ X ′.

Proposition 3. Let P be an index pair such that P2 ⊂ P1. Consider
the inverse system (X, ∗) = ((P1/P2, [P2])n, fP ,N) and the inverse limit in
Top∗

(X, ∗) . . . fP−→ (P1/P2, [P2])
fP−→ (P1/P2, [P2]).

Then the corresponding morphism p : (X, ∗) → (X, ∗) in pro-Top∗ is a
resolution.

Proof. It suffices to prove the properties (B1) and (B2) of Theorem 1.
Let us see (B1).

If there exist n ∈ N and U such that (B1) is not true, then for all m ≥ n,
Ym = (P1/P2) \ (fP )−1

nm(U) 6= ∅.
Since (fP )mm′(Ym′) ⊆ Ym, we obtain Y = (Ym, qmm′ ,M), where qmm′ =

(fP )mm′ |Ym′ and M = {m ∈ N : m ≥ n}. We have ∗ 6∈ Ym for all m. Thus
we can identify Ym with a subset of P1 \ P2 for all m.

The inclusion map im : Ym → (P1/P2)m, m ∈ M , gives us a morphism
i : Y → X′ of inverse systems where X′ = ((P1/P2)m, fP ,M). Let X ′ be the
inverse limit of X′ (as in X), and let Y be the inverse limit of Y. Let us see
that Y 6= ∅:

Since Ym 6= ∅ for m ≥ n, we can take yn+1 ∈ Yn+1, yn+2 ∈ Yn+2, . . .
Therefore (fP )mm′(ym′) = (fP )m

′−m(ym′) ∈ Ym.
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We have {yn+1, yn+2, . . .} = {[x1], [x2], . . .} for some xm ∈ (P1 \P2) ⊂ P1
admissible. The sequences {m : m ∈ N} and {xm : m ∈ N} are such that
{f i(xm) : 1 ≤ i ≤ m} ⊂ P1 \ P2 ⊂ P1 for all m, and m → ∞. Since P1 is
admissible, the sequence {fm(xm)}m has a convergent subsequence and, by
Proposition 1, there exists an accumulation point x0 ∈ Inv−(P1).

It is easy to see that fmP ([xm]) = [fm(xm)] ∈ Yn ⊂ (P1/P2)n. Since x0
is an accumulation point of {fm(xm)}m, [x0] is an accumulation point of
{fmP ([xm])}m. On the other hand, as fmP ([xm]) ∈ Yn (closed in (P1/P2)n) for
all m, it follows that [x0] ∈ Yn, and x0 ∈ P1 \ P2.

We have x0 ∈ Inv−(P1) \ P2. Let {x′m} be a sequence in P1 such that
f(x′k) = x′k−1 and f(x′1) = x0. It is easy to see that {x′m} ⊂ Inv−(P1) \ P2

and therefore fkP ([x′k]) = [fk(x′k)] = [x0] ∈ Yn for all [x′k] ∈ (P1/P2)n+k.
Then [x′k] ∈ Yn+k for all k. We have fP ([x′k]) = [f(x′k)] = [x′k−1].

In this way we construct y = ([x′k])k ∈ Y , the inverse limit of Y, and
thus Y 6= ∅.

Let us consider the following inverse systems and morphisms:

i : Y → X′, inclusion.
j : X→ X′ with jm = id : (P1/P2)m → (P1/P2)m for all m ∈M .
q : Y → Y, inverse limit of the inverse system Y.
p : X → X, inverse limit of the inverse system X.
p : X ′ → X′, inverse limit of the inverse system X′.
i0 : Y → X ′, inverse limit of i, lim(i) = i0.
j0 : X → X ′, inverse limit of j, lim(j) = j0.

Let y ∈ Y . Then (pn ◦ i0)(y) = (in ◦ qn)(y) ∈ in(Yn) = (P1/P2) \ U . On
the other hand, (pn ◦ i0)(y) = (pn ◦ j0)(x) = pn(x) ∈ U for some x ∈ X, and
this is a contradiction. The proof of (B1) is thus finished.

Let us see (B2). For every x ∈ X, we can select m(x) ∈ N and an
open set Wx ⊆ (P1/P2)m(x) such that x ∈ (pm(x))−1(Wx) ⊆ Ux for some
Ux ∈ U (see [9, Remark 3, p. 58]). By Lemma 1, X is compact and there
exists a finite set {m1, . . . ,mn} ⊂ N and open subsets Wi ⊆ (P1/P2)mi

such that {(pmi)
−1(Wi)}i∈{1,...,n} is an open covering of X which refines U .

Take m ≥ m1, . . . ,mn and set Vi = ((fP )mim)−1(Wi), i ∈ {1, . . . , n}. Then
V = {V1, . . . , Vn, (P1/P2)m \ pm(X)} is an open covering of (P1/P2)m and
(pm)−1(V) = {(pm)−1(V1), . . . , (pm)−1(Vn)} refines U .

Since paracompactness is preserved for closed maps (see Michael’s theo-
rem in [3]) and since the projection qP : P1 → P1/P2 is closed we find that
P1/P2 is paracompact and hence V is normal.

Corollary 2. The inverse limit p : (X, ∗) → (X, ∗), which is a res-
olution of (X, ∗), is such that H(p) : (X, ∗) → H((X, ∗)) is an HTop∗-
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expansion. Consequently , S[(X, ∗)] admits an inverse limit , limS[(X, ∗)] =
S(lim(X, ∗)) = S((X, ∗)).

The proof follows automatically from Theorem 2.
To guarantee the consistence of Clim,S(K, f) we only have to check that

condition 2) is satisfied, i.e. (limS[(X, ∗)], lim({S([fP ])}n)) does not depend,
up to isomorphism, on the previous choices of N and P ∈ IP(N). This
proof, which we do not give here, needs various steps which appear, slightly
modified, in [14, Section 5].

Remark. The shape index of the empty set is Clim,S(∅, f) = (∗, id). It
suffices to get the index pair P = (P1, P2) = (∅, ∅). If the shape index in the
admissible isolating neighborhood N is not (∗, id), we have K 6= ∅.

4. Main properties of the shape index. Additivity

Definition 8. Let (Y1, ∗), (Y2, ∗) ∈ Top∗ be pointed topological spaces.
We denote by (Y1, ∗) ∨ (Y2, ∗) ∈ Top∗ the union of Y1 and Y2 with the
base points identified. If we have pointed maps (morphisms of Top∗) h1 :
(Y1, ∗) → (Y1, ∗) and h2 : (Y2, ∗) → (Y2, ∗), we define the map h1 ∨ h2 :
(Y1, ∗) ∨ (Y2, ∗) → (Y1, ∗) ∨ (Y2, ∗) by setting (h1 ∨ h2)(yi) = hi(yi) for
yi ∈ Yi, i ∈ {1, 2}. The map h1 ∨ h2 is a morphism of Top∗.

Theorem 4. Let K be an isolated invariant set which is the disjoint sum
of two isolated invariant sets K1 and K2. Then Clim,S(K, f) is the coproduct
Clim,S(K1, f) ∨ Clim,S(K2, f). More precisely ,

Clim,S(K, f) = (S(lim(X, ∗) ∨ lim(Y, ∗)), S([lim({fP }n) ∨ lim({fQ}n)]))

where

(X, ∗) = ((P1/P2, ∗)n, fP ,N), (Y, ∗) = ((Q1/Q2, ∗)n, fQ,N)

with P = (P1, P2) ∈ IP(N1) and Q = (Q1, Q2) ∈ IP(N2), for N1 and N2
small enough isolating neighborhoods of K1 and K2; {fP }n and {fQ}n are
level morphisms of (X, ∗) and (Y, ∗) in themselves.

Proof. Let U1, U2 be open sets in U such that K1 ⊂ U1, K2 ⊂ U2 and
cl(U1) ∩ cl(U2) = ∅.

For i = 1, 2 we select admissible isolating neighborhoods Ni of Ki such
that Ni ⊂ Ui∩f−1(Ui). It is not difficult to see that N1∪N2 is an admissible
isolating neighborhood of K1 ∪K2.

Let P ∈ IP(N1) and Q ∈ IP(N2). It is an exercise to prove that P ∪Q =
(P1 ∪Q1, P2 ∪Q2) is an index pair of K in N1 ∪N2.

Observe that

((P1 ∪Q1)/(P2 ∪Q2), ∗) ' (P1/P2, ∗) ∨ (Q1/Q2, ∗).
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We define the pointed map

fP ∨ fQ : (P1/P2, ∗) ∨ (Q1/Q2, ∗)→ (P1/P2, ∗) ∨ (Q1/Q2, ∗).
It is clear, by the construction of N1 and N2, that

fP∪Q ≡ fP ∨ fQ
determines a topological conjugation.

Let
(Z, ∗) = (((P1 ∪Q1)/(P2 ∪Q2), ∗)n, fP∪Q,N),

(W, ∗) = (((P1/P2, ∗) ∨ (Q1/Q2, ∗))n, fP ∨ fQ,N).

It is easy to see that lim(W, ∗) = lim(X, ∗) ∨ lim(Y, ∗). Then

Clim,S(K, f) = (limS[(Z, ∗)], lim({S([fP∪Q])}n))

= (S(lim(Z, ∗)), S([lim({fP∪Q}n)]))

= (S(lim(W, ∗)), S([lim({fP ∨ fQ}n)]))

= (S(lim(X, ∗) ∨ lim(Y, ∗)), S([lim({fP }n) ∨ lim({fQ}n)])).

The second equality (up to isomorphism) follows from Corollary 2. The
equality of morphisms

lim({S([fP∪Q])}n) = S([lim({fP∪Q}n)])

is obvious by the uniqueness of the inverse limit morphism.

The homotopy property of the shape index follows from the results of
[14, Section 6], and we will not give its proof here.

Let f : Λ×U → X be a continuous map with Λ ⊂ R a compact interval.
We denote by fλ : U → X the partial map fλ(x) = f(λ, x).

If J is a subinterval of Λ then we consider the map

fJ : J × U 3 (λ, x) 7→ (λ, fλ(x)) ∈ J ×X.
We denote by Inv(N, fλ) the invariant set with respect to fλ in N .

Theorem 5 (Homotopy property, [14, p. 167]). Let f : Λ × U → X be
a continuous map and let N ⊂ U be a closed subset of X such that for all
µ ∈ Λ there exists a neighborhood J of µ in Λ with J × N ⊂ J × U being
an admissible isolating neighborhood with respect to fJ in J × X. Then
Clim,S(Inv(N, fλ), fλ) is independent of λ ∈ Λ.

Let X,Y be metric spaces with open subsets U ⊂ X and V ⊂ Y . Let
ϕ : U → Y and ψ : V → X be continuous maps such that K ⊂ U is an
isolated invariant set with respect to f = ψ ◦ ϕ.

Theorem 6 (Commutativity property). ϕ(K) is an isolated invariant
set with respect to g = ϕ ◦ ψ. Moreover , Clim,S(K, f) = Clim,S(ϕ(K), g).

Proof. For the first assertion, it is enough to take M,N of the proof
of [12, p. 35], with M ⊂ dom(f) = ϕ−1(V ) being an admissible isolating
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neighborhood of K with respect to f . The equality Inv(N, g) = ϕ(K) is
proved in [12]. The proof of the admissibility of N is simple.

For the second assertion, let ψ′ : ψ−1(U) → U be the restriction of ψ.
We define

f0 = ψ′ ◦ ϕ : ϕ−1(ψ−1(U))→ U, g0 = ϕ ◦ ψ′ : ψ−1(U)→ Y.

We have g0 = g and Clim,S(K, f) = Clim,S(K, f0).
Let N be an admissible isolating neighborhood of ϕ(K) for g. It is not

hard to see that ϕ−1(N) is an admissible isolating neighborhood of K for f0.
Let (Q1, Q2) ∈ IP(N) with Q2 ⊂ Q1. We define P1 = ϕ−1(Q1) and

P2 = ϕ−1(Q2). It is not difficult to prove that P = (P1, P2) ∈ IP(ϕ−1(N)).
For the rest of the proof see [12].

5. Shape types which can appear as shape indices. While the
shape (homotopic) index for continuous dynamical systems on manifolds is
the shape (homotopic) type of a compact polyhedron ([15]), the index for
the discrete case can be more complicated.

For all n ∈ N take S1
n = {z ∈ C : |z| = 1} with base point 1 = zn ∈ S1

n.
Fot q ∈ Z the (pointed) q-adic solenoid, (Sq, ∗), is the inverse limit of the
inverse system ((S1

n, zn), qn,N) where the pointed maps qn : (S1
n+1, 1) →

(S1
n, 1) are defined as qn(z) = zq for all n ∈ N.
If {dn}n∈N is a sequence of integers and we take pointed maps hn :

(S1
n+1, 1) → (S1

n, 1), hn(z) = zdn for all n ∈ N, then the inverse limit is a
generalized solenoid.

In this section (T, ∗) denotes a pointed generalized solenoid obtained
from a sequence {dn}n∈N of mutually prime integers. The solenoids are com-
pact, connected, non-movable (pointed) spaces.

Our aim is to obtain the shape of the q-adic solenoids as the shape index
of isolated invariant sets of discrete dynamical systems (modifying Smale’s
G-horseshoe). On the other hand, the shape of a generalized solenoid T is
not the index of an isolated invariant set of a locally defined map in a locally
compact metric ANR. Thus, the index is not arbitrarily complex. We prove
that, in this context, the shape index is the shape of the inverse limit of an
inverse system ((Pn, zn), gn,N) where, for all n ∈ N, (Pn, zn) = (P, ∗) and
gn = g, with P a fixed finite polyhedron.

If f : N ⊂ X → X is a continuous map and K ⊂ int(N) is an isolated
invariant set, we denote by S(K, f) the shape type (without morphism) of
Clim,S(K, f).

Proposition 4. For all q ∈ N there exists a locally defined diffeomor-
phism fq : [0, 1]2 → R2 and an isolated invariant set Kq for fq such that
S(Kq, fq) = S(Sq, ∗). The case q = 2 is obtained from Smale’s G-horseshoe.
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Proof. Let us prove that S(K2, f2) = S(S2, ∗). Let (G2, ∗) be a (pointed)
compact set obtained as the inverse limit of the inverse sequence associated
to an index pair P = (P1, P2) such that P1/P2 is homotopically equivalent
to the pointed union of two circles (see Figure 1).

We have to prove that S(G2, ∗) = S(S2, ∗). The solenoid (S2, ∗) is the
inverse limit of the inverse sequence

. . .
z2

−→ (S1, 1) z2

−→ (S1, 1) z2

−→ (S1, 1).

On the other hand, (G2, ∗) is the inverse limit of the inverse sequence

. . .
φ−→ (S1 ∨ S1, ∗) φ−→ (S1 ∨ S1, ∗) φ−→ (S1 ∨ S1, ∗)

where φ : (S1 ∨S1, ∗)→ (S1 ∨S1, ∗) is a pointed map which transforms the
paths a and b into ab (see Figure 1).

Fig. 1

We define

ψ = (idS1 , idS1) : (S1 ∨ S1, ∗)→ (S1, 1).

Let % : (S1, 1) → (S1 ∨ S1, ∗) be a pointed map, morphism of HTop∗,
which transforms the path identity S1 → S1 into the path ab.

We therefore have the following commutative diagram (up to pointed
homotopy):

S1 S1

S1 ∨ S1 S1 ∨ S1

z2

φ

%%

�

�
? ?

ψ

HH
HH

HH
HHY

Now, using Morita’s Theorem for level isomorphisms in pro-categories
([9, p. 112]), we finish the proof for the case of q = 2.
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Let q be arbitrary. Take the locally defined diffeomorphism fq : [0, 1]2 →
R2 as in Figure 2.

Fig. 2

The proof is analogous to the case of q = 2.

We use, in our context, the techniques of [18, Lemma 5.1] (see also [16])
to guarantee the existence of suitable index pairs for isolated invariant sets
with respect to semidynamical systems defined in Q =

∏∞
n=1[0, 1/n], the

Hilbert cube.
Let f : Q→ Q be a continuous map. For ε > 0 set

A(ε) =
{
A∩Q : A =

∞∏

i=1

Ai, ∀i ∃k ∈ N with Ai = kε or Ai = [kε, (k+1)ε]
}
.

We define the multivalued maps Tε, Fε : Q→ P(Q) as

Tε(x) =
⋃
{A ∈ A(ε) : x ∈ A}, Fε(x) = (Tε ◦ f ◦ Tε)(x).

We say that a set A ⊂ Q is a prism if there exist m ∈ N and a finite
polyhedron P such that A = P ×Q ⊂ ∏m

n=1[0, 1/n]×Q (see [1, p. 104]).

Lemma 2 ([16, Lemma 2]). Let F : I×Q×Z→ P(Q) be the multivalued
map

F (ε, x, n) = F nε (x).

Then F is a compact valued upper semicontinuous map such that for all
ε ∈ I, Fε : Q× Z→ P(Q) is a discrete multivalued dynamical system in the
sense of Kaczynski and Mrozek [8].

Proposition 5. Let f : Q → Q be a continuous map and let K be an
isolated invariant set. Then there exists an admissible isolating neighborhood
M of K and an index pair (Q1, Q2) ∈ IP(M) such that Q1 and Q2 are
prisms.
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Proof. The proof is based on that of [18, Lemma 5.1], using the last
lemma and [8, Theorem 2.5 and Lemmas 2.6 and 2.7]. We modify the con-
struction of [18] in that we select a prismatic index pair for K. We need an
admissible isolating neighborhood M of K and a pair (Q1, Q2) ∈ IP(M) of
compact sets (prisms) in M .

We define M = Nε as in [18]. Consider (P1, P2) as in [18] such that

cl(P1 \ P2) ⊂ int(Nε) ∩ f−1(int(Nε)) = W.

Let d ∈ N. We define (Q1, Q2) as

Q1 = Tε/d(P1) ∩Nε, Q2 = Tε/d(P2) ∩Nε.

If d is large enough it is not difficult to prove that (Q1, Q2) ∈ IP(M).

Theorem 7. Let f : U ⊂ X → X be a continuous map with X a locally
compact metric ANR and U an open subset of X. Then for every isolated
invariant set K, S(K, f) = S(lim(X, ∗)) for (X, ∗) = ((Q1/Q2, ∗)n, gQ,N),
where (Q1, Q2) is a prismatic index pair of K with respect to a continuous
map g : Z ⊂ Q→ Q extending f .

Proof. Consider X to be embedded as a closed subset in a normed
space B. Let N be a compact isolating neighborhood of K. Take a retraction
r : UX ⊂ B → X where UX is an open neighborhood of X in B. From [5],
there is a compact ANR AN such that N ⊂ AN ⊂ UX .

Let V be an open subset of X such that K ⊂ V ⊂ N and f(V ) ⊂ N .
Define W = r−1(V ) ∩AN and consider the map

f1 = f ◦ r|W : W ⊂ AN → AN .

Using the commutativity property we see that S(K, f) = S(K, f1).
Now we can assume that AN ⊂ Q. Take a retraction

r1 : UA
N ⊂ Q→ AN

where UAN is an open neighborhood of AN in Q. Let Z = r−1
1 (W ) ⊂ UA

N

and define
g = f1 ◦ r1|Z : Z ⊂ Q→ Q.

Using commutativity again, we conclude that S(K, f1) = S(K, g).

Corollary 3. Let f : U ⊂ X → X be a continuous map with X a
locally compact metric ANR. Then S(K, f) 6= S(T, ∗) for every isolated
invariant set K.

Proof. We have S(K, f) =S(lim((Q1/Q2, [Q2])n, gQ,N)) =S(Z, ∗), with
(Z, ∗) the inverse limit.

If S(K, f) = S(T, ∗), then S(T, ∗) = S(Z, ∗). There exist l ∈ N and
pointed maps α : (Q1/Q2, [Q2])→ (S1, 1), β : (S1, 1)→ (Q1/Q2, [Q2]) such
that



Shape index in metric spaces 61

β ◦ α ' glQ : (Q1/Q2, [Q2])→ (Q1/Q2, [Q2])

where ' stands for the pointed homotopy relation.
Therefore, we have the following commutative diagram (up to pointed

homotopy):

Q1/Q2 Q1/Q2

S1 S1

glQ

α◦β

αα

�

�
? ?

β

HH
HH

HH
HH

HY

Thus S(K, f) = S(Z, ∗) = S(T, ∗) = S(Sq, ∗) where (Sq, ∗) is the pointed
solenoid obtained as the inverse limit of

. . . (S1, 1)
α◦β−→ (S1, 1)

α◦β−→ (S1, 1).

But this is a contradiction by [10, Theorem 17].

Corollary 4. The shape index of an isolated invariant set of a locally
defined map in a locally compact metric ANR is the shape of the inverse limit
of an inverse sequence ((Pn, zn), gn,N) where, for all n ∈ N, (Pn, zn) = (P, ∗)
is fixed and gn = g : (P, ∗)→ (P, ∗) is fixed with P a finite polyhedron.

The polyhedron P is finite because we can obtain Q1/Q2, a compact
ANR (see [6, Theorem 1.2, p. 178]) that, by West’s theorem [19], has the
homotopy type of a finite polyhedron. Thus the index is the shape of a
compact space of finite shape dimension.

Final remarks. From the last corollary we conclude that the shape
of a space of infinite shape dimension, like the pointed union of spheres∨∞
j=1 S

j , is not the index of a compact invariant isolated set of a dynamical
system in a locally compact metric ANR. Moreover, we can modify the proof
of Corollary 3 to prove that the shape of simpler spaces, as the hawaiian
earring H, of dimension 1, is not the index in a dynamical system.

On the other hand, if the inverse sequence of polyhedra is pointed mov-
able and the shape groups are countable, then the index is the shape of a
FANR ([9, Theorem 18, p. 235]). It seems hard to find indices which are
the shape of movable spaces and are not FANRs. In this sense, the example
of Corollary 3 is interesting because it is a one-dimensional, non-movable
continuum with trivial shape groups.

The last corollary is a generalized result about the finiteness of the Con-
ley index type (see [18]).
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Facultad de Matemáticas
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José Manuel Salazar
Departamento de Matemáticas
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