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On simple partitions of [κ]κ

by

David Asperó (Wien)

Abstract. For every uncountable regular cardinal κ, every κ-Borel partition of the
space of all members of [κ]κ whose enumerating function does not have fixed points has a
homogeneous club.

1. Notation. Let 〈L,<〉 be a linearly ordered set. Given x, y ∈ L, let
(x, y) = {z ∈ L : x < z < y}. We also define [x, y), (←, y], [x, y] and so
on in the natural way. An open interval of L is any subset of L of the form
(x, y), (←, y) or (x,→) for some x, y ∈ L. The collection of all unions of
open intervals of L is a topology on L if L has at least two points. It is
called the order topology on L.

We shall be interested in spaces constructed in a canonical way from some
ordinal endowed with the order topology derived from the ordinal ordering.
Given two ordinals α and β, the product topology on αβ is obtained by
giving α the order topology and αβ the corresponding product topology.
Notice that given any topological space X and any two ordinals β and γ,
if β is infinite and 1 ≤ γ < |β|+, then Xβ and (Xβ)γ are homeomorphic
spaces (when regarded as carrying the corresponding product topologies).

For any set A of ordinals let Ã denote the strictly increasing enumeration
of the elements of A. Also, whenever α and ξ are ordinals, κ is a cardinal
and X ⊆ α, Xκ

ξ denotes either the set of all A ∈ [α]κ such that Ã(ξ) ∈ X
or the set of all A ∈ ακ such that A(ξ) ∈ X. If α = κ, then we may drop
the superscript κ.

Given an ordinal α and a cardinal κ such that κ ≤ |α|, the topology on
[α]κ obtained by identifying each A ∈ [α]κ with Ã inside α<κ

+
, where αβ

is given the product topology for each β < κ+ and α<κ
+

is given the sum
topology, will be called the product topology on [α]κ. With this topology
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[α]κ is homeomorphic, in a canonical way, to the subspace of α<κ
+

consist-
ing of all strictly increasing functions of size κ. Notice that the set of all⋂
j<n[αj , βj)κξj , where 1 ≤ n < ω and for all j < n, αj < βj < α, ξj < κ+

(ξj < κ if κ = α) and αj is either 0 or a successor ordinal, is a basis for the
product topology on [α]κ.

Also, if we give α the discrete topology, αβ the corresponding product
topology for each β < κ+, and α<κ

+
the sum topology, then the topology on

[α]κ obtained by identifying each A ∈ [α]κ with Ã inside ακ
+

will be called
the product topology on [α]κ corresponding to the discrete topology and has
as a basis the collection of all

⋂
j<n{αj}κξj , where 1 ≤ n < ω and ξj < κ+,

αj < α for all j.
Of course both topologies above coincide on [ω]ℵ0 . Unless otherwise spec-

ified, if α and β are ordinals, αβ (and also [α]β if β is a cardinal) will be
assumed to carry the product topology.

Recall that a set A ⊆ [ω]ℵ0 is said to be Ramsey if there is some
X ∈ [ω]ℵ0 such that either [X]ℵ0 ⊆ A or [X]ℵ0 ∩ A = ∅. Of course it is
a theorem of ZFC that there is a non-Ramsey subset of [ω]ℵ0 . However, it
is also well known that all sufficiently simple subsets of [ω]ℵ0 are (perhaps
under some additional hypothesis) Ramsey. For example, Galvin and Prikry
([G-P]) proved that all Borel sets are Ramsey, and then Silver ([S]) extended
this result to all analytic sets and also proved that even all Σ∼

1
2 sets are Ram-

sey if ωL[a]
1 is countable for every real a. We shall be interested in proving or

disproving Ramsey-type regularity properties of subsets of [κ]κ according to
their complexity. It seems reasonable to use, as a measure of the complexity
of a subset A of a topological space, the first place (when available) in some
given Borel hierarchy at which A occurs.

Definition 1.1. Let X be a topological space and let µ be an infinite
cardinal. Bµ(X), the algebra of µ-Borel subsets of X, is the µ-subalgebra of
P(X) generated by the open subsets of X. That is, Bµ(X) is the ⊆-minimal
collection S of subsets of X such that

(1) every open subset of X belongs to S,
(2) if A ∈ S, then X\A ∈ S,
(3) if λ < µ and 〈Ai : i < λ〉 is a sequence of elements of S, then⋃

i<λAi ∈ S.

Definition 1.2. Let X be a topological space and let µ be an infinite
cardinal. We define the collections Σ∼

0
ξ,µ(X), Π∼

0
ξ,µ(X) and ∆∼

0
ξ,µ(X) of subsets

of X in the following way.

(a) A ∈ Σ∼
0
1,µ(X) iff A is an open subset of X,

and, for every ordinal ξ ≥ 1,
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(b) A ∈ Π∼
0
ξ,µ(X) iff X \ A ∈ Σ∼

0
ξ,µ(X),

(c) if ξ > 1, then A ∈ Σ∼
0
ξ,µ(X) if and only if there is λ < µ and a

sequence 〈Ai : i < λ〉 of elements of
⋃
ζ<ξ Π∼

0
ζ,µ(X) such that A =

⋃
i<λAi,

(d) ∆∼
0
ξ,µ(X) = Σ∼

0
ξ,µ(X) ∩ Π∼

0
ξ,µ(X).

Of course, for every topological space X and A ⊆ X, A is a Borel subset
of X iff A is an ω1-Borel subset of X, and for every 1 ≤ ξ < ω1, A belongs
to Σ∼

0
ξ(X) (resp. Π∼

0
ξ(X), ∆∼

0
ξ(X)) iff A belongs to Σ∼

0
ξ,ω1

(X) (resp. Π∼
0
ξ,ω1

(X),
∆∼

0
ξ,ω1

(X)).

Remark 1.1. Let X and Y be topological spaces, let µ < µ′ be infinite
cardinals and let 1 ≤ ξ < ξ′ be ordinals.

(i) Σ∼
0
ξ,µ(X) ⊆ Σ∼

0
ξ,µ′(X), and similarly for Π∼ and ∆∼.

(ii) Σ∼
0
ξ,µ(X) ⊆ Π∼

0
ξ′,µ and Π∼

0
ξ,µ(X) ⊆ Σ∼

0
ξ′,µ.

(iii) If ξ ≥ 2, then Σ∼
0
ξ,µ(X) ∪ Π∼

0
ξ,µ(X) ⊆ ∆∼

0
ξ′,µ.

(iv) If f : X → Y is a continuous mapping and A belongs to Σ∼
0
ξ,µ(Y ),

then f−1(A) belongs to Σ∼
0
ξ,µ(X), and similarly for Π∼ and ∆∼.

(v) Σ∼
0
ξ,µ(X) (resp. Π∼

0
ξ,µ(X)) is closed under unions (resp. intersections)

of families of less than cf(µ) elements. Σ∼
0
n,µ(X) and Π∼

0
n,µ(X) are closed

under finite unions and finite intersections for n ≤ 2, and if every closed set
of X is in Π∼

0
2,µ(X), then Σ∼

0
ξ,µ(X) and Π∼

0
ξ,µ(X) are also closed under finite

unions and finite intersections.

The extra hypothesis in (v) above does not always hold. For example,
if we let X be ω1 + 1 with the order topology, then A = {ω1} is a closed
subset of X but it is not in Π∼

0
2,ω1

(X). This example was given by the referee
of this paper.

Fact 1.2. Let X be a topological space and let µ be an infinite regular
cardinal. Then Bµ(X) =

⋃
ξ<µ Σ∼

0
ξ,µ(X) =

⋃
ξ<µ Π∼

0
ξ,µ(X).

Remark 1.3. Note that given a cardinal κ, [κ]κ is homeomorphic to a
Π∼

0
2,κ+ subset of κκ, both [κ]κ and κκ viewed as carrying the correspond-

ing product topologies. To see this, note that the set of strictly increasing
functions from κ into κ can be written as

⋂
ξ<ξ′<κ

⋃
γ<κ([0, γ+1)ξ∩(γ, κ)ξ′).

If we want to extend our classification of subsets of a topological space
beyond a given Borel hierarchy, a natural thing to do is to consider some
generalization of the projective hierarchy of Polish spaces. The following
looks like a natural frame for these generalizations.

Definition 1.3. Let Γ be a class of topological spaces and let X be
a topological space. We say that Γ is X-cartesian closed if X ∈ Γ and
Y ×X ∈ Γ for each Y ∈ Γ .
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Given a family {Xi : i < α} of sets and i0 < α, πi0 denotes the canonical
projection of

∏
i<αXi onto Xi0 .

Definition 1.4. Let X be a topological space. We define, by induction
on n < ω, the classes Σ∼

1
n(Y,X), Π∼

1
n(Y,X) and ∆∼

1
n(Y,X) for all topological

spaces Y .
Suppose Y is a topological space and A ⊆ Y . Then

(a) A ∈ Σ∼
1
0(Y,X) iff A is an open subset of Y ,

and, for every n < ω,

(b) A ∈ Π∼
1
n(Y,X) iff Y \A ∈ Σ∼

1
n(Y,X),

(c) A ∈ Σ∼
1
n+1(Y,X) iff A = π0“B for some B ∈ Π∼

1
n(Y ×X,X),

(d) ∆∼
1
n(Y,X) = Σ∼

1
n(Y,X) ∩ Π∼

1
n(Y,X).

A ⊆ Y is a projective subset of Y relative to X if A ∈ ⋃n[Σ∼
1
n(Y,X) ∪

Π∼
1
n(Y,X)].

If Γ is an X-cartesian closed class of topological spaces, the projective
hierarchy on Γ relative to X consists of all projective subsets of Y relative
to X for all Y ∈ Γ . Also, for every natural number n we define Σ∼

1
n(Γ,X) =⋃{Σ∼

1
n(Y,X) : Y ∈ Γ} and Π∼

1
n(Γ,X) =

⋃{Π∼
1
n(Y,X) : Y ∈ Γ}.

There are several general facts on the usual projective hierarchy for Pol-
ish spaces whose proof can be easily adapted to work in the context of the
present abstract notion of projective hierarchy. Here are some examples.

Fact 1.4. For every topological space X, every X-cartesian closed class
Γ of topological spaces and every natural number n, Σ∼

1
n(Γ,X) and Π∼

1
n(Γ,X)

are closed under continuous preimages, in the sense that whenever Y,Z ∈ Γ ,
f : Y → Z is a continuous function and A ∈ Σ∼

1
n(Z,X) (resp. ∈ Π∼

1
n(Z,X)),

then f−1(A) ∈ Σ∼
1
n(Y,X) (resp. ∈ Π∼

1
n(Y,X)).

Fact 1.5. Let X and Y be topological spaces and suppose there are B and
P of the same size such that B is a basis for Y consisting of clopen sets and P
is a partition of X into nonempty clopen sets. Then Σ∼

1
0(Y,X)∪Π∼

1
0(Y,X) ⊆

∆∼
1
1(Y,X).

Corollary 1.6. Suppose X and Y are topological spaces and suppose
there are B, C and P all of the same size such that B and C are, respectively ,
bases of X and Y consisting of clopen sets and P is a partition of X into
nonempty clopen sets. Then Σ∼

1
n(Y,X) ∪ Π∼

1
n(Y,X) ⊆ ∆∼

1
n+1(Y,X) for every

n < ω.

Fact 1.7. Let κ be an infinite cardinal , let Y be a topological space and
suppose κ is endowed with a topology so that there is a closed set J ⊆ κ of
size κ which is a union of clopen singletons. Then, giving κκ the correspond-
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ing product topology , Σ∼
1
n(Y, κκ) and Π∼

1
n(Y, κκ) are closed under unions and

intersections of families of at most κ elements for all n ≥ 1.

Remark 1.8. Suppose Y , κ and X = κκ are such that the conclusions
of Facts 1.5 and 1.7 hold for X, Y and κ. Then Bκ+(Y ) ⊆ Σ∼

1
1(Y,X).

On the other hand, as the referee has shown with the example I am
about to quote, there are elementary properties of the projective hierarchy
for Polish spaces which do not hold in general for the projective hierarchy
on the class of all [κ]κ× j. . . ×[κ]κ relative to [κ]κ ([κ]κ given the product
topology).

Fact 1.9 (Referee). Let κ ≥ ω1 be a regular cardinal and let X = Y =
[κ]κ with the product topology. Then the set of all those members of Y
whose first element is a successor ordinal is an open subset of Y , yet A 6∈
Σ∼

1
1(Y,X).

2. Simple partitions. We are interested in finding large homogeneous
sets of partitions of [κ]κ, where κ is an uncountable regular cardinal. As
Remark 2.1 below shows, the product topology on [κ]κ corresponding to the
discrete topology is too large in general, in the sense that there are often
partitions of [κ]κ both open (and in fact of a very simple form) and without
large homogeneous sets.

Remark 2.1. Given a cardinal κ, every partition χ : [κ]2 → 2 translates
naturally into a partition of [κ]κ. For such a χ let A be the union of all
{α}0 ∩ {β}1 such that α < β < κ and χ({α, β}) = 1. Let A ∈ [κ]κ. If
[A]κ ⊆ A, then χ“[A]2 = {1}, and if [A]κ ∩ A = ∅, then χ“[A]2 = {0}. This
shows that if κ 9 (κ)2

2, then there is a set A =
⋃
i<κ({αi}0 ∩ {βi}1) such

that [A]κ ∩ A 6= ∅ and [A]κ \ A 6= ∅ for every A ∈ [κ]κ.

Remark 2.2. If [κ]κ is given the product topology instead of the prod-
uct topology corresponding to the discrete topology, then the partition in
Remark 2.1 is still clearly κ+-Borel and in fact belongs to Σ∼

0
2,κ+([κ]κ). This

shows that the natural generalization (even with respect to the product
topology) of the Galvin–Prikry result does not apply to [κ]κ if κ9 (κ)2

2.

The following negative result was pointed out by the referee in response
to a false version of Theorem 2.5.

Fact 2.3 (Referee). Suppose κ is an uncountable regular cardinal. Then
there is A ⊆ [κ]κ, A open in the product topology , such that [S]κ ∩ A 6= ∅
and [S]κ \ A 6= ∅ for every stationary S ⊆ κ.

Proof. Let A consist of all those A ∈ [κ]κ such that Ã(ξ) = ξ for some ξ.
Then A is open since it can be written as

⋃
ξ<κ[0, ξ + 1)ξ. However, it is

clear that if S ⊆ κ is stationary, then [S]κ ∩A 6= ∅ and [S]κ \A 6= ∅: on the
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one hand, S ∩ C ∈ A, where C = {ξ < κ : ot(S ∩ ξ) = ξ}, and on the other
hand, every A ∈ [κ]κ can be easily refined to a set B in [κ]κ \ A.

The proof of Fact 2.3 suggests restricting ourselves to partitions of the
closed subspace of [κ]κ consisting of all those members of [κ]κ whose enu-
merating function does not have fixed points. We will denote this space
by Xκ. For this space we do have positive homogeneity results. Our main
result (Theorem 2.5) is that all open partitions A of Xκ have a homoge-
neous club modulo Xκ (meaning that there is a club C ⊆ κ such that either
[C]κ ∩ Xκ ⊆ A or [C]κ ∩ Xκ ∩ A = ∅). From this it trivially follows (Corol-
lary 2.6) that in contrast to Remark 2.2 (1), all κ-Borel partitions of Xκ
have large (actually closed and unbounded) homogeneous sets modulo Xκ.

For every natural number n ≥ 1, every cardinal κ and every sequence
I = 〈〈(αi,j , βi,j) : j < n〉 : i < κ〉 of n-sequences of open intervals of ordinals
in κ, let cI : [κ]n → 2 be the partition given by cI({γ0, . . . , γn−1}) = 1 iff
γ0 < . . . < γn−1 and, for some i < κ, αi,j < γj < βi,j for every j < n.

Part (ii) of the following lemma and its proof will be crucial in the proof
of Theorem 2.5.

Lemma 2.4. Let κ be an uncountable regular cardinal. Then for every n
with 1 ≤ n < ω and every sequence I = 〈〈(αi,j , βi,j) : j < n〉 : i < κ〉 of
n-sequences of open intervals of ordinals in κ there is a club C ⊆ κ such
that either cI“[C]n = {0} or cI“[C]n = {1}.

Proof. This is proved by induction on n. Take first n = 1. If there is no
club C ⊆ κ such that cI“[C]1 = {1}, i.e., such that C ⊆ ⋃i<κ(αi,0, βi,0),
then A = κ \⋃i<κ(αi,0, βi,0) is stationary. In particular A is an unbounded
subset of κ, and being the complement of an open subset of κ, it is closed.
Hence, A is a club of κ such that cI“[A]1 = {0}. Now suppose that n > 1
and that the lemma holds for n− 1.

Suppose first that there is some stationary set S ⊆ κ such that for
every γ ∈ S there is some Aγ ∈ [C \ (γ + 1)]κ so that cI({γ} ∪ s) = 0
for all s ∈ [Aγ ]n−1. For every γ ∈ S let Cγ be the club of all limit points
of Aγ (and let Cγ = κ if γ ∈ κ \ S′). Let T = S ∩ ∆γ<κCγ and pick
γ0 < . . . < γn−1 in T . For every j (0 < j ≤ n − 1), γj = supk<cf(γj) γ

k
j ,

where for all kj < cf(γj) (0 < j ≤ n− 1), cI({γ0, γ
k1
1 , . . . , γ

kn−1
n−1 }) = 0. But

then, since all intervals of ordinals occurring in the members of I are open,
it follows that cI({γ0, γ1, . . . , γn−1}) = 0. Finally, let C be the club of limit
points of T . Again, since T is 0-homogeneous for cI and since the intervals

(1) The argument for Remark 2.1 also shows that if κ is a regular cardinal such that
κ9 (κ)2

2, then there is a set A =
⋃
i<κ({αi}0 ∩ {βi}1) such that [A]κ ∩ Xκ ∩ A 6= ∅ and

([A]κ ∩ Xκ) \ A 6= ∅ for every A ∈ [κ]κ.
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of ordinals occurring in the members of I are open, it follows that C itself
is 0-homogeneous for cI .

Now suppose there is no stationary set S ⊆ κ as above. Notice that
for every γ < κ, the partition cI,γ of [κ \ (γ + 1)]n−1 given by cI,γ(s) =
cI({γ}∪s) is cI

′�[κ\ (γ+1)]n−1 for some sequence I ′ (2) of n−1-sequences
of open intervals of ordinals in κ. But then, by our assumption and by the
induction hypothesis, there is a club C ⊆ κ such that for every γ ∈ C ∩ S
there is a club Cγ ⊆ κ so that cI({γ} ∪ s) = 1 for all s ∈ [Cγ ]n−1. Let
C ′ = C∩∆γ<κCγ and pick γ0 < . . . < γn−1 in C ′. Since γ1, . . . , γn−1 ∈ Cγ0 ,
cI({γ0, . . . , γn−1}) = 1.

Theorem 2.5. Let κ be an uncountable regular cardinal. Then for every
A ⊆ [κ]κ which is open in the product topology there is a club C ⊆ κ such
that either [C]κ ∩ Xκ ⊆ A or else [C]κ ∩ Xκ ∩ A = ∅.

Proof. First note that if A is an open subset of [κ]κ, then there is an
open A′ ⊆ A such that A∩Xκ ⊆ A′ and A′ is a union of intersections of the
form

⋂
j<n(αj , βj)ξj , where n < ω and ξj ≤ αj < βj < κ for all j. Hence

it suffices to prove that if A is of the form
⋃
i<κ

⋂
j<n(αi,j , βi,j)ξi,j , where

n ≥ 1 is some fixed natural number, ξi,j ≤ αi,j < βi,j for each i and j, and
ξi,j < ξi,j′ for all j < j′ < n, then there is a club C ⊆ κ such that either
[C]κ ⊆ A or else [C]κ ∩ Xκ ∩ A = ∅.

For every ξ < κ let I〈ξ〉 = 〈〈(αi,j , βi,j) : j < n〉 : i < κ, ξi,0 = ξ〉.
Consider first the case in which for every ξ < κ there is some Xξ ∈ [κ]κ such
that cI〈ξ〉“[Xξ]n = {0}. As in the proof of Lemma 2.4, for every ξ < κ, let
Cξ be the club of limit points of Xξ. Since the intervals (αi,j , βi,j) are open,
it follows that [∆ξ<κCξ]κ ∩Xκ ∩A = ∅. To see this, suppose A ∈ [∆ξ<κCξ]κ

is in Xκ ∩ A. Then there is some i such that ξi,j ≤ αi,j < Ã(ξi,j) < βi,j for
all j < ni. But then Ã(ξi,j) is a limit point of ordinals in Xξi,0 for all j. Since
the intervals (αi,j , βi,j) are open, there are some γ0 < . . . < γn−1 in Xξi,0

such that αi,j < γj < βi,j for all j < ni, which of course is a contradiction.
In the other case, by Lemma 2.4 there is some ξ0 < κ and some club

C0 ⊆ κ such that cI〈ξ0〉“[C0]n = {1}. Let also T0 = {〈ξ0〉}. We will check
that in this case [C]κ ⊆ A for some club C ⊆ κ.

For every γ ∈C0 and every ξ < κ let I〈ξ0,γ,ξ〉 = 〈〈(αi,j , βi,j) : 1≤ j < n〉 :
i < κ, ξi,0 = ξ0, αi,0 < γ < βi,0 and ξi,1 = ξ〉. Again, given such a γ, consider
first the case in which for every ξ < κ there is some Xγ

ξ ∈ [C0]κ such that
cI〈ξ0,γ,ξ〉“[Xγ

ξ ]n−1 = {0}. Then we say that γ is a 〈ξ0〉-bad ordinal. Also, for
every ξ let Dγ

ξ be the club of all limit points of Xγ
ξ and let Dγ = ∆ξ<κD

γ
ξ .

In the other case there is some ξ〈ξ0,γ〉 < κ and, by Lemma 2.4, some club

(2) Specifically, I ′ = 〈〈(αi,j , βi,j) : 1 ≤ j < n〉 : i < κ, αi,0 < γ < βi,0〉.
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Dγ ⊆ κ such that cIϕ“[C0 ∩Dγ ]n−1 = {1}, where ϕ = 〈ξ0, γ, ξ〈ξ0,γ〉〉. If this
happens, then we say that γ is a 〈ξ0〉-good ordinal.

Suppose that the set S ⊆ C0 of 〈ξ0〉-bad ordinals were stationary. Let
T = S ∩∆γ∈SDγ . Then, for all γ0 < γ1 < . . . < γn−1 in T , γ1, . . . , γn−1 ∈
∆ξ<κD

γ0
ξ . Now, by an argument as in the second paragraph of this proof,

it follows that cI〈ξ0〉({γ0, γ1, . . . , γn−1}) = 0, which is a contradiction.
Hence, there is a club C ⊆ κ such that all γ ∈ C are 〈ξ0〉-good ordinals.

Let C1 = C ∩ ∆γ∈C∩SDγ . Then, for all γ0 < γ1 < . . . < γn−1 in C1,
γ1, . . . , γn−1 ∈ Dγ0 , and so cIϕ({γ1, . . . , γn−1}) = 1 for ϕ = 〈ξ0, γ0, ξ〈ξ0,γ0〉〉.
Let T1 = {〈ξ0, γ, ξ〈ξ0,γ〉〉 : γ ∈ C1}.

Now suppose 1 < j < n and suppose that for every k < j, Ck and Tk
have been defined, Ck is a club of κ and Tk is a set of sequences

ϕ = 〈ξ0, γϕ0 , ξϕ1 , γϕ1 , . . . , ξϕk−1, γ
ϕ
k−1, ξ

ϕ
k 〉,

where γϕ0 < γϕ1 < . . . < γϕk−1 range over Ck, ξϕl < γϕl for all l < k and ϕ is
such that cIϕ({γk, . . . , γn−1}) = 1 for all γk < . . . < γn−1 in Ck \ (γϕk−1 + 1),
where Iϕ = 〈〈(αi,j , βi,j) : k ≤ j < n〉 : i < κ, ξi,l = ξϕl and αi,l < γϕl < βi,l
for every l < k, and ξi,k = ξϕk 〉. Suppose also that for every ϕ ∈ Tk, ϕ is the
only ψ ∈ Tk such that ψ�2k = ϕ�2k.

For every ϕ ∈ Tj−1, every γ ∈ Cj−1 and every ξ < κ define Iϕ,〈γ,ξ〉
(whenever ϕ and ψ are two sequences, ϕ,ψ will denote their concatenation)
in the obvious way. Similarly to the j = 1 case, say that γ ∈ Cj−1 is a
ϕ-bad ordinal if for every ξ < κ there is some Xγ

ξ ∈ [Cj−1]κ such that
cIϕ,〈γ,ξ〉“[Xγ

ξ ]n−j = {0}. Otherwise call it a ϕ-good ordinal. If 〈Xγ
ξ : ξ < κ〉

witnesses that γ is a ϕ-bad ordinal, then for every ξ let Dγ
ξ be the club of all

limit points of Xγ
ξ and letDγ = ∆ξ<κD

γ
ξ . If γ is ϕ-good, by Lemma 2.4 there

is some ξϕ,〈γ〉 < κ and some club Dγ
ϕ ⊆ κ such that cIϕ′ “[Dγ

ϕ]n−j = {1},
where ϕ′ = ϕ, 〈γ, ξϕ,〈γ〉〉.

Suppose that for some ϕ ∈ Tj−1 the set S ⊆ Cj−1 of ϕ-bad ordinals were
stationary. Let T = S ∩∆γ∈SDγ . Then for all γj−1 < γj < . . . < γn−1 in T ,
γj , . . . , γn−1 ∈ ∆ξ<κD

γj−1

ξ , and arguing as in the j = 1 case it would follow
that cIϕ({γj−1, γj , . . . , γn−1}) = 0, which is a contradiction.

It follows that for every ϕ ∈ Tj−1 there is a club Cϕ ⊆ κ such that all
γ ∈ Cϕ are ϕ-good ordinals. Let Dϕ = Cϕ ∩∆γ∈CϕDγ

ϕ. For every γ < κ let
D′γ be the intersection of all Dϕ for ϕ ∈ Tj−1 such that γϕj−2 < γ. Finally,
let Cj be the club of limit ordinals in ∆γ<κD

′
γ and let Tj be the set of all

ϕ, 〈γ, ξϕ,〈γ〉〉, where ϕ ∈ Tj−1 and γϕ0 < . . . < γϕj−2 < γ range over Cj . Now
fix such an element ϕ, 〈γ, ξϕ,〈γ〉〉 of Tj and pick γj < . . . < γn−1 in Cj with
γj > γ. Since γj , . . . , γn−1 belong to D′γ , they also belong to Dϕ. As γ ∈ Cϕ,
it follows that these ordinals are in Dγ

ϕ, and so cIϕ′ ({γj , . . . , γn−1}) = 1 for
ϕ′ = ϕ, 〈γ, ξϕ,〈γ〉〉.
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Let us finally check that [Cn−1]κ ⊆ A:
Pick X ∈ [Cn−1]κ and let γ0 = X̃(ξ0). Let ξ1 be the unique ξ such that

〈ξ0, γ0, ξ〉 ∈ T1 and let γ1 = X̃(ξ1). Proceeding in this way, we find ϕ ∈ Tn−1,
ϕ = 〈ξ0, γ0, . . . , ξn−2, γn−2, ξn−1〉 such that X̃(ξj) = γj for all j < n − 1.
Let also γn−1 = X̃(ξn−1). Then cIϕ({γn−1}) = 1, which means that there is
some i < κ such that for every j < n, ξi,j = ξj and αi,j < γj = X̃(ξj) < βi,j .
Hence, X ∈ A.

Corollary 2.6. If κ is an uncountable regular cardinal and A is a
κ-Borel subset of [κ]κ (relative to the product topology on [κ]κ), then there
is a club C ⊆ κ such that either [C]κ ∩ Xκ ⊆ A or else [C]κ ∩ Xκ ∩ A = ∅.

The next result shows that Theorem 2.5 is in some sense optimal: if we
allow unions not only of finite intersections, but of countable intersections
of elements in the natural basis for the product topology, then we can easily
build partitions of Xκ without homogeneous sets.

Fact 2.7. Let κ be an uncountable regular cardinal. Then there is a
collection {Aγ : γ < κ} of pairwise disjoint subsets of [κ∩ cf(ω)]κ such that

(i) for every γ < κ, Aγ =
⋃
i<κ

⋂
j<ω(αγi,j , β

γ
i,j)ξγi,j for some αγi,j , β

γ
i,j , ξ

γ
i,j

< κ,
(ii) for every A ∈ [κ]κ and every γ < κ, [A]κ ∩ Xκ ∩ Aγ 6= ∅.
Proof. Let 〈Sγ : γ < κ〉 be a partition of κ∩cf(ω) into stationary subsets.

Fix also, for every α < κ of countable cofinality, an increasing ω-sequence
eα converging to α. For every γ let Aγ =

⋃
α∈Sγ

⋂
j<ω(eα(j), α)j . If γ < κ

and A ∈ Aγ , then supj<ω Ã(j) ∈ Sγ , and so Aγ ∩ Aγ′ = ∅ if γ 6= γ′. Now
take A ∈ [κ]κ and γ < κ. Since the set of all ordinals in κ which are limit
points of A is a club of κ, there is such an ordinal α in Sγ with α > ω. Take
a strictly increasing sequence (αj)j<ω of elements in A such that ω < α0

and eα(j) < αj < α for all j. Then we may take B ⊆ A \ α of size κ such
that {αj : j < ω} ∪B ∈ Xκ. But also {αj : j < ω} ∪B ∈ Aγ .

Remark 2.8. AllAγ in Fact 2.7 are also in Σ∼
0
3,κ+([κ]κ). Hence, Corollary

2.6 is also optimal.

The following fact shows that there cannot be any version of Theorem
2.5 for open partitions of the open space [κ]κ \Xκ; more precisely, there are
always open A ⊆ [κ]κ such that both ([C]κ \ Xκ) ∩ A and ([C]κ \ Xκ) \ A
are nonempty for every club C ⊆ κ.

Fact 2.9. Let κ ≥ ω1 be a regular cardinal. Then there is A ⊆ [κ]κ, open
in the product topology , such that for every club C ⊆ κ there are stationary
S, T ⊆ C (hence in particular S and T belong to [κ]κ \Xκ) such that S ∈ A
and T 6∈ A.
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Proof. Fix a stationary and co-stationary set S ⊆ κ and define A =⋃{[0, ξ + 1)ξ : ξ ∈ S}. Note that a member A of [κ]κ belongs to A if and
only if there is some ξ ∈ A∩ S such that ot(A∩ ξ) = ξ. Now the conclusion
follows trivially.

Given a cardinal κ, a natural number n ≥ 1 and a linear order on [κ]κ,
the product topology on [[κ]κ]n is the topology on [[κ]κ]n obtained by giving
([κ]κ)n the product topology and identifying each element of [[κ]κ]n with its
strictly ≤-increasing enumeration. Notice that this definition is independent
of the particular choice of ≤.

Fact 2.10 shows that Theorem 2.5, which can be regarded as a result
concerning [[κ]κ]n for n = 1, cannot be extended to greater n.

Fact 2.10. Let κ be an infinite cardinal and let n ≥ 2 be a natural
number. Then there is an open subset A of [[κ]κ]n such that for every X ∈
[κ]κ there are Yj , Zj ∈ [X]κ for 1 ≤ j < n so that {X,Y1, . . . , Yn−1} ∈ A
and {X,Z1, . . . , Zn−1} ∈ [[κ]κ]n \ A.

Proof. We can clearly assume that n = 2. Let ≤lex be the lexicographic
order on [κ]κ, i.e., X <lex Y iff X̃(δ0) < Ỹ (δ0), where δ0 is the first δ such
that X̃(δ) 6= Ỹ (δ). For every γ < κ let Aγ be the set of all {X,Y } ∈ [[κ]κ]2

such that X <lex Y , X̃(0) < γ and Ỹ (0) > γ. Then Aγ is an open subset of
[[κ]κ]2 for every γ. Let A =

⋃
γ<κAγ . Pick X ∈ [κ]κ. Let Y = X\(X̃(0)+2).

Then X <lex Y and {X,Y } ∈ AX̃(0)+1 ⊆ A. Let Z = X \ {X̃(1)}. Then

X <lex Z but X̃(0) = Z̃(0), and so {X,Z} 6∈ A.

Question 2.1. Can one find true (or consistent) Open Coloring Axiom-
like statements for [[κ]κ]2? For κ = ω we have of course Todorčević’s Open
Coloring Axiom (see [F], [T], [V]).

Definition 2.1. If κ is a cardinal and A ⊆ [κ]κ, then A is a completely
Ramsey subset of [κ]κ if for every A ∈ [κ]κ there is some B ∈ [A]κ such that
either [B]κ ⊆ A or [B]κ ∩ A = ∅.

Fact 2.11. Suppose κ is a Ramsey cardinal and

A =
⋃

i<κ

⋂

j<ni

[αi,j , βi,j)ξi,j ,

where ni < ω for all i, αi,j , βi,j < κ and ξi,j < κ for all j < ni and all
i < κ, and furthermore, {ξi,j : j < ni, i < κ} is bounded in κ. Then A is a
completely Ramsey subset of [κ]κ.

Proof. We can clearly assume that (ξi,j : j < ni) is a one-to-one sequence
for each i. Let γ < κ be a bound for {ξi,j : j < ni, i < κ}. Pick A ∈ [κ]κ

and define χ : [A]<ω → γ<ω ∪ {γ} by letting χ(s) be, when available, some
t ∈ γ<ω for which there is some i < κ such that t = (ξi,j : j < ni), ni = |s|,
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and for each k < ni, if ξi,j is the kth member of t, then αi,j ≤ s̃(k) < βi,j ;
otherwise, let χ(s) = γ.

Recall that a cardinal κ is Ramsey if and only if κ→ (κ)<ωδ for all δ < κ
(see [K, Proposition 7.14]). It follows that there is some B ∈ [A]κ such that
for all n, χ(s) = χ(s′) for all s, s′ ∈ [B]n. Now suppose there is some n such
that χ“[B]n = {t} for some t = (ξj : j < n) ∈ γ<ω. Pick any B′ ∈ [B]κ

and let s = {B̃′(ξj)}j<n. Since χ(s) = t, we know that there is some i such
that t = (ξi,j : j < ni) and αi,j ≤ B̃′(ξj) = B̃′(ξi,j) < βi,j for all j < ni.
Hence, B′ ∈ A, and since B′ ∈ [B]κ was arbitrary, [B]κ ⊆ A. That [B]κ ∩A
is empty if χ“[B]<ω = {γ} also follows easily.

Question 2.2. Suppose κ is a Ramsey cardinal. Is every open subset of
[κ]κ completely Ramsey?
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