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Borel–Wadge degrees

by
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Abstract. Two sets of reals are Borel equivalent if one is the Borel pre-image of the
other, and a Borel–Wadge degree is a collection of pairwise Borel equivalent subsets of R.
In this note we investigate the structure of Borel–Wadge degrees under the assumption of
the Axiom of Determinacy.

1. Introduction and statements of the results. Let X be a Pol-
ish (i.e., separable, completely metrizable) space, and let A,B ⊆ X. We
say that A is Borel reducible to B, in symbols A ≤B B, if A = f−1“B for
some Borel f : X → X. (The function f is called a reduction of A to B.)
Since ≤B is a pre-order, we can consider the associated equivalence rela-
tion A ≡B B ⇔ A ≤B B & B ≤B A. The equivalence classes under ≡B

are called the Borel–Wadge degrees, and [A]B is the degree of A. This is
analogous to the usual notion of Wadge reducibility ≤W and Wadge degree,
where the reduction f is taken to be continuous. (For more on the Wadge
hierarchy, see e.g. [Kec95, §21.E], [And03] and the references therein.) Since
all uncountable Polish spaces are Borel isomorphic, the Borel–Wadge hier-
archy does not depend on X, and therefore we can restrict ourselves to the
Baire space ωω. (If X is countable, then the structure of the Borel–Wadge
hierarchy becomes trivial.) This should be contrasted with the Wadge and
Lipschitz hierarchies which are quite sensitive to the topological structure
of the underlying Polish space.

The work of Wadge and others has shown that the Axiom of Determi-
nacy, AD from now on, imposes a rich and detailed structure on the Wadge
degrees. In this paper it is shown that the Borel–Wadge degrees exhibit a
similar behavior, namely: the relation ≤B is well-founded; self-dual degrees
and non-self-dual pairs alternate, with a self-dual degree at limit levels of
countable cofinality and non-self-dual pairs at limit levels of uncountable co-
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finality. In §4 we go further and characterize the non-self-dual Borel–Wadge
degrees.

Instead of using the full AD as our hypothesis, we shall use one or the
other of SLOB and SLOW, which are both consequences of AD closely related
to reducibility. SLOB, the semi-linear ordering principle for Borel reducibil-
ity, is the statement: if A,B ⊆ ωω then A ≤B B or ¬B ≤B A. SLOW is
the analogous statement with “≤W” replacing “≤B”. Since SLOB follows
at once from SLOW and since AD implies SLOW (Wadge’s Lemma), SLOB

follows from AD. It has been conjectured that AD follows from SLOW, and
a similar conjecture can be made for SLOB, or even for more generous no-
tions of reducibilities. There are essentially two reasons to adopt SLOB or
SLOW rather than AD. The first is that it is interesting to develop the the-
ory of the Borel–Wadge degrees from purely order-theoretic—and possibly
weaker—assumptions. For example, the well-foundedness of ≤B is a trivial
consequence of the well-foundedness of ≤W (which holds under AD), but
the proof under SLOB is not just a matter of re-writing the usual proof.
Moreover, knowing that SLOB is strong enough to civilize the Borel–Wadge
hierarchy may prove to be useful in trying to show that AD follows from
SLOB. The second—and more important—reason to use SLOB or SLOW

instead of AD is that there is no analogue of the Wadge/Lipschitz games for
Borel functions, hence many of the standard proofs for the Wadge hierar-
chy do not generalize in a straightforward way to the Borel set-up. On the
other hand, the ideas needed to prove standard consequences of AD under
more parsimonious assumptions turn out to be useful for the study of the
Borel–Wadge hierarchy.

The results in this paper are closely related to the ones in [And03], where
it is shown that SLOW is strong enough to prove many of the standard results
on the Wadge hierarchy. The second author realized that the techniques used
in that paper could be extended to the Borel context and proved the results
in §3. Then the first author found a simpler proof of them. The results in
§4 are joint work.

2. Preliminaries. Our base theory is ZF+DC(R), the Zermelo–Frænkel
set theory augmented with the axiom of dependent choices over the reals.
For certain proofs we will need to assume BP, the assertion that all sets of
reals have the property of Baire.

2.1. Notation. Our set-theoretic notation is standard—for all unex-
plained facts on Descriptive Set Theory the reader should consult [Mos80]
and [Kec95].

A tree on a non-empty set X is a non-empty T ⊆ <ωX closed under
subsequences. A tree T is pruned if ∀t ∈ T ∃s ∈ T (t ⊂ s). A branch of T is
a b ∈ ωX such that ∀n (b�n ∈ T ), and [T ] is the set of all branches of T . If
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s ∈ T , then Tbsc = {t | sat ∈ T} is a tree. We will mostly be interested in
trees on ω.

As customary in the subject, R is identified with the Baire space ωω
endowed with the topology given by the usual metric d(x, y) = 2−n if x�n =
y�n and x(n) 6= y(n), and d(x, y) = 0 if x = y. The basic open neighborhood
determined by s ∈ <ωω is Ns = {x ∈ R | s ⊂ x}, and a non-empty closed
set is of the form [T ] where T is a pruned tree. Given A ⊆ R and s ∈ <ωω,
let saA = {sax | x ∈ A}, and let Absc = {x ∈ R | sax ∈ A}. When s = 〈n〉
we will write Abnc rather than Ab〈n〉c. For An ⊆ R let

⊕
nAn =

⋃
n〈n〉aAn,

and let B ⊕ C =
⊕

nAn with A2n = B and A2n+1 = C.
A set F ⊆ ω2 is a flip-set iff

∀x, y ∈ ω2 (∃!k ∈ ω (x(k) 6= y(k))⇒ (x ∈ F ⇔ y 6∈ F )).

It is easy to see that a flip-set neither has the property of Baire nor is
Lebesgue measurable.

A map ϕ : <ωω → <ωω is:

• monotone if s ⊆ t⇒ ϕ(s) ⊆ ϕ(t);
• Lipschitz if it is monotone and lh(ϕ(s)) = lh(s);
• continuous if it is monotone and limn→∞ lh(ϕ(x�n)) = ∞ for any
x ∈ R.

Clearly, if ϕ is Lipschitz then it is also continuous, and in both cases we can
define the induced function

fϕ : R→ R, x 7→ ⋃
n ϕ(x�n).

If ϕ is continuous then so is fϕ, and if ϕ is Lipschitz then fϕ is Lipschitz with
constant ≤ 1. Recall that a function f : (X, dX) → (Y, dY ) between metric
spaces is Lipschitz with constant C if dY (f(x1), f(x2)) ≤ CdX(x1, x2) for all
x1, x2 ∈ X. If the constant C is < 1 then we will say that f is a contraction.
Any f : R → R which is continuous, respectively Lipschitz with constant
≤ 1, is of the form fϕ with ϕ continuous, respectively Lipschitz. If f : R→ R
is a contraction, then the Lipschitz constant is ≤ 1/2 and f = fϕ for some
ϕ monotone and such that ∀s (lh(ϕ(s)) = lh(s) + 1). Let Lip = {f ∈ RR |
f is Lipschitz with constant ≤ 1}.

2.2. Reducibilities. Let F ⊆ RR be a family of functions closed under
composition and containing the identity function. For A,B ⊆ R, say that A
is F-reducible to B, in symbols A ≤F B, if ∀x ∈ R (x ∈ A ⇔ f(x) ∈ B) for
some f ∈ F. By our hypothesis ≤F is reflexive and transitive. Set A ≡F B
iff A ≤F B & B ≤F A, and A <F B iff A ≤F B & B �F A. An F-degree
is an equivalence class of ≡F, and [A]F = {B | B ≡F A} is the F-degree
of A. A set A is F-self-dual iff A ≤F ¬A iff A ≡F ¬A, otherwise it is
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F-non-self-dual . Since self-duality is invariant under ≡F, it can be applied
to F-degrees as well. The dual of [A]F is [¬A]F, and a pair of distinct degrees
of the form ([A]F, [¬A]F) is a non-self-dual pair . The pre-order ≤F induces a
partial order ≤ on the F-degrees: [A]F ≤ [B]F whenever A ≤F B. Similarly
define [A]F < [B]F ⇔ ([A]F ≤ [B]F & [A]F 6= [B]F) ⇔ A <F B. Notice that
[R]F = {R} and [∅]F = {∅} are the <-least F-degrees and form a non-self-
dual pair. We say that [A]F is a successor degree if there is a [B]F < [A]F such
that [B]F < [C]F < [A]F for no C ⊆ R. If an F-degree is not a successor and
it is neither [R]F nor [∅]F, then we say it is a limit degree. A limit degree is of
countable cofinality if it is the least upper bound of an increasing sequence
[A0]F < [A1]F < . . . of F-degrees.

SLOF is the statement:

∀A,B ⊆ R (A ≤F B ∨ ¬B ≤F A).

Thus if each degree is identified with its dual, then ≤ is a linear order on
the F-degrees. If F is the set of all functions from R to R, then the structure
of the F-degrees is trivial, since there are only three degrees: [R]F, [∅]F,
and P(R) \ {R, ∅}. Thus it is natural to put some restriction on the size
of F. For example, if F is the surjective image of R, then a straightforward
generalization of [Sol78, Lemma 0.2] (see also [And03, Lemma 18]) shows
that there is no largest F-degree, assuming SLOF. More precisely

Lemma 1 (Solovay). Suppose there is a surjection R� F and that SLOF

holds. Then there is a map J : P(R)→P(R) such that

∀A ⊆ R (A <F J(A) & ¬A <F J(A)).

In order to prove more results on the F-degrees we must impose further
restrictions on the set F.

Definition 2. F ⊆ RR is amenable if either F = Lip, or else:

(1) there is a surjection R� F,
(2) F ⊇ Lip,
(3) F is closed under composition,
(4) if each fn ∈ F then

⊕
nfn ∈ F, where

⊕
nfn (x) = fx(0)(x−),

and x− = 〈x(n+ 1) | n ∈ ω〉.
Typical examples of amenable F are the collections of all Lipschitz func-

tions, all continuous functions, and all Borel functions. The “F” in ≤F, [A]F,
SLOF etc. will be replaced by “L” in the Lipschitz case, by “W” in the con-
tinuous case (after Wadge), and by “B” in the Borel case. Notice that Lip
satisfies (1), (2), and (3), but not (4).

Lemma 3. Let F 6= Lip be amenable and let A ⊆ R.
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(a) A ⊕ ¬A is F-self-dual and A,¬A ≤F A ⊕ ¬A. Moreover if A,¬A
≤F C, then A ⊕ ¬A ≤F C. In particular [A ⊕ ¬A]F is the ≤F-least degree
above [A]F and [¬A]F.

(b) Assume SLOF and suppose [A]F is limit of countable cofinality. Then
[A]F is self-dual.

Proof. (a) The first part is trivial by (2) of Definition 2. For the second
part, notice that if f−1“C = A and g−1“C = ¬A, then

⊕
nfn witnesses

A⊕ ¬A ≤F C, where f2n = f and f2n+1 = g.
(b) Let A0 <F A1 <F . . . witness that [A]F is limit of countable cofinality.

Since An+1 �F An, there is f ′n ∈ F witnessing ¬An ≤F An+1 by SLOF. The
functions fn(x) = 〈n+ 1〉af ′n(x) belong to F by (2) and (3) of Definition 2.
Therefore

⊕
nfn witnesses that

⊕
n¬An ≤F

⊕
nAn, that is,

⊕
nAn is F-self-

dual. Clearly (2) implies that Ai ≤F

⊕
nAn for each i, and if gn witnesses

An ≤F C then
⊕

ngn witnesses
⊕

nAn ≤F C. In other words
⊕

nAn is a
least upper bound of the An’s. Therefore

⊕
nAn ≡F A.

The lemma is still true if F=Lip (and hence it is true for all amenable F)
but the argument is more involved and SLOL must be assumed also for case
(a)—see [And03].

The Lipschitz game on A,B ⊆ R, GL(A,B), introduced by Wadge in
[Wad83] is the game on ω where I plays a real a, II plays a real b, and II
wins iff a ∈ A ⇔ b ∈ B. Wadge’s Lemma is the simple, but fundamental
observation that a winning strategy for II yields a Lipschitz map witnessing
A ≤L B, while a winning strategy for I yields a Lipschitz map (in fact: a
contraction) witnessing ¬B ≤L A. Therefore AD implies SLOL, and since
the smaller the F the stronger the SLOF,

AD ⇒ SLOL ⇒ SLOW ⇒ SLOB .

We do not know whether any of these implications can be reversed—see
[And03] for more on this. In fact, a well known open problem (probably first
formulated by R. Solovay) asks whether SLOL or even SLOW implies AD,
assuming V = L(R). A similar question can be asked for SLOB or, more
boldly, for SLOF:

Open Problem 4. Assume V = L(R). Does SLOB ⇒ AD? Does SLOF

⇒ AD if F is amenable?

A less ambitious goal would be to prove some of the standard conse-
quences of AD (like BP and LM, the assertion that all sets of reals are
Lebesgue measurable) from some form of semi-linear ordering principle. This
would yield some evidence for positive solutions to these open problems. For
example it is known that the perfect set property [Wad83] and the axiom
of countable choices for sets of reals [And03] follow from SLOW, but the
following seems to be open:
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Open Problem 5. Assume V = L(R) and let F be amenable. Does
SLOF ⇒ BP? Does SLOF ⇒ LM?

This is open even when F is the smallest amenable set of functions (and
hence SLOF is the strongest semi-linear ordering principle), that is, when
F = Lip, the collection of all Lipschitz functions.

More partial evidence for a positive answer to Open Problem 4 would
be provided by a proof of the equivalence between the various semi-linear
ordering principles, say between SLOL, SLOW, and SLOB; again see [And03].

2.3. The Wadge and Lipschitz hierarchies. Assuming AD + DC(R), the
following properties of the Wadge degrees hold:

(1) <W is well-founded,
(2) immediately above a self-dual degree there is a non-self-dual pair of

degrees, and immediately above a non-self-dual pair of degrees there is a
self-dual degree,

(3) at limit levels of countable cofinality there is a single self-dual degree,
and at uncountable cofinality there is a non-self-dual pair.

For the Lipschitz degrees we have the following:

(4) <L is well-founded,
(5) every self-dual Wadge degree is the union of ω1 consecutive Lipschitz

self-dual degrees, while the non-self-dual pairs of Wadge degrees coincide
exactly with the non-self-dual pairs of Lipschitz degrees,

(6) at limit levels of countable cofinality there is a single self-dual degree,
and at uncountable cofinality there is a non-self-dual pair.

Therefore the Wadge hierarchy looks like this:

• • • • •
• • • · · · · · · • • · · · · · · • · · ·

• • • • •
↑

cof = ω

↑
cof > ω

and the Lipschitz hierarchy looks like this:

• • • •
• • • · · ·︸ ︷︷ ︸

ω1

• • • · · ·︸ ︷︷ ︸
ω1

· · · · · · • · · · · · · · · · · · ·
• • • •

↑
cof = ω

↑
cof > ω

with each ω1-block of self-dual Lipschitz degrees collapsing to a single self-
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dual Wadge degree. In [And03] it is shown that (1)–(3) follow from SLOW +
BP, and that (4)–(6) follow from SLOL +BP. Therefore, if F is amenable—so
that the F-degrees are coarser than (or equal to) the Lipschitz degrees—
and if AD (or even just SLOL + BP) is assumed, then <F is well-founded
and every non-self-dual F-degree is a non-self-dual Lipschitz degree, i.e.,
A 6≡F ¬A⇒ [A]F = [A]L.

3. The Borel–Wadge hierarchy. We now focus on Borel–Wadge de-
grees. Our first goal is to prove that the well-foundedness of <B follows
from SLOB + BP. The standard proof of the non-existence of an infinite
<L-descending sequence 〈An | n ∈ ω〉 uses AD to pick winning strategies
for I in GL(An, An+1), and in GL(An,¬An+1). By pitting them against each
other, a flip-set is constructed, contradicting BP. If we start from an infinite
<B-descending sequence 〈An | n ∈ ω〉 we would like to argue, assuming
SLOB, that I wins GL(An, An+1) and GL(An,¬An+1), and proceed as be-
fore. In order to do this we need a few preliminary results.

A topological space is 0-dimensional if its topology is generated by the
clopen sets. A metric space (X, d) is Polish if it is separable and d is com-
plete. The collection of Borel subsets of (X, d) is denoted by B(X, d).

Lemma 6. Suppose (X, d) is a Polish space and 〈An | n ∈ ω〉 is a se-
quence of Borel subsets of (X, d). Then there is a metric d′ on X such
that

(1) (X, d′) is Polish and 0-dimensional ;
(2) the new topology is finer than the old one, i.e., every d-open set is

also d′-open;
(3) each An is d′-clopen;
(4) the two topologies give rise to the same Borel sets, that is, B(X, d) =

B(X, d′).

See [Kec95, Theorem 13.1 and Exercise 13.5] for a proof. An easy con-
sequence of this is the following result—see [Kec95, Theorem 13.11].

Lemma 7. Let (X, d) be a Polish space, let B ∈ B(X, d), and let f :
B → B be a Borel function. There is a metric d′ on B such that

(1) (B, d′) is Polish and 0-dimensional ;
(2) the topology τ ′ generated by d′ on B refines the topology that B

inherits from X, i.e., τ ′ ⊇ {U ∩B | U ∈ τ}, where τ is the topology on X;
(3) (B, d′) has the same Borel structure as B, that is: for every C ⊆ B,

C ∈ B(X, d) ⇔ C ∈ B(B, d′);

(4) f : (B, d′)→ (B, d) is continuous.
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By [Kec95, Theorem 7.8] every 0-dimensional Polish space is homeomor-
phic to a closed subset of the Baire space, so using Lemmata 6 and 7 will
not take us outside of P(R).

Lemma 8. (a) If A ≤B B then there is A∗ ≡B A such that A∗ ≤L A
and A∗ ≤L B.

(b) Assume SLOB and A <B B. Then there is A∗ ≡B A such that I has
a winning strategy in GL(¬B,A∗) and in GL(B,A∗).

Proof. (a) Let f : R → R be Borel such that f−1“B = A. By Lemma 7
there is a 0-dimensional Polish topology τ on R that is finer than the stan-
dard one and makes f continuous. Let G : C → (R, τ) be a homeomorphism
with C ⊆ R a closed set, and by [Kec95, Proposition 2.8] let π : R � C be
Lipschitz and such that π�C is the identity. Let

A′ = (G ◦ π)−1“A.

Then A′ ≤W A via G ◦ π, and A ≤B A′ via G−1 : R → C ⊆ R. Since
f ◦G ◦ π : R→ R is continuous and

x ∈ A′ ⇔ G(π(x)) ∈ A ⇔ f(G(π(x))) ∈ B
we have A′ ≤W B. We need the following result from [And03, Lemma 19,
part (a)]:

Lemma 9. If A′ ≤W A then there is A′′ ≡W A′ such that A′′ ≤L A
′ and

A′′ ≤L A.

Let A′′ be as in Lemma 9. Since A′′ ≤L A′ ≤W B, we have A′′ ≤W B,
so by Lemma 9 again there is A∗ such that A∗ ≤L A′′, A′′ ≤W A∗, and
A∗ ≤L B, which is what we had to prove.

(b) If ∀n (A �B Bbnc) or ∀n (A �B ¬Bbnc), then by SLOB we would
have ∀n (Bbnc ≤B ¬A) or ∀n (Bbnc ≤B A), hence B ≤B ¬A or B ≤B A,
contradicting our assumption in either case. Therefore there are n0,m0 ∈ ω
such that A ≤B Bbn0c and A ≤B ¬Bbm0c via Borel functions f and g. By
successive applications of Lemma 7 there is a 0-dimensional Polish topology
on R that is finer than the standard one and makes f and g continuous.
Arguing as in part (a) shows that there is an A′ ≤L A such that A ≤B A′ and
A′ ≤L Bbn0c, and since A′ ≤B ¬Bbm0c, there is A∗ ≤L A

′ such that A′ ≤B

A∗ and A∗ ≤L ¬Bbm0c. By playing m0 and then following the reduction
witnessing A∗ ≤L ¬Bbm0c, I wins GL(B,A∗); similarly I has a winning
strategy in GL(¬B,A∗).

Corollary 10. Assume SLOB + BP. Then <B is a well-founded rela-
tion on P(R).

Proof. Suppose 〈An | n ∈ ω〉 is a <B-descending sequence of sets. Then
An+1 ≤B An and An �B An+1, and hence, by SLOB, An+1 <B An and
¬An+1 <B An. By Lemma 8 we can construct inductively A∗0 = A0 and
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A∗n ≡B An such that I has a winning strategy σ1
n in GL(A∗n, A

∗
n+1) and σ0

n in
GL(¬A∗n, A∗n+1). For any z ∈ ω2 let xn = xzn be the real in the nth row of the

following diagram where I uses σz(n)
n on the nth row against his opponent

on the (n+ 1)st row:

σ
z(0)
0 x0(0) x0(1) · · · = x0

σ
z(1)
1 x1(0) x1(1) · · · = x1
...

...
...

...

Thus xzn is the result of applying σz(n)
n to xzn+1. Then {z ∈ ω2 | xz0 ∈ A∗0} is

a flip-set, contradicting BP.
Lastly, to show that <B is well-founded on P(R), it is enough to show

that <B is well-founded on {B ∈ P(R) | B ≤B A} for any A ⊆ R. So fix
A ⊆ R. Since there is a surjection R � {f ∈ RR | f is Borel}, x 7→ fx,
consider the pre-order on R defined by

x ≺ y ⇔ f−1
x “A <B f−1

y “A.

Then <B is well-founded on {B ∈ P(R) | B ≤B A} iff ≺ is well-founded
on R, which by DC(R) is equivalent to the non-existence of an infinite
≺-descending sequence. But any ≺-descending sequence in R yields a <B-
descending sequence in {B ∈ P(R) | B ≤B A}, hence we are done by the
first part of the proof.

Thus, assuming SLOB + BP, the canonical rank function for the well-
founded relation <B on P(R) can be defined. It is called the Borel–Wadge
rank and it is denoted by A 7→ ‖A‖B. It is immediate that [A]B is a limit
degree iff ‖A‖B is a limit ordinal, and that [A]B is of countable cofinality
iff cof(‖A‖B) = ω. For technical reasons (see [And03, Proposition 13]) it
is convenient to assume that the Wadge rank ‖A‖W of a set is a non-zero
ordinal, and hence, by analogy, we make the same assumption on the Borel–
Wadge rank. Thus ‖∅‖B = ‖R‖B = 1.

The tree T (A) = {s ∈ <ωω | Absc ≡W A} is a standard tool to investigate
the structure of the Wadge degrees. For example [A]W, the Wadge degree of
A, is self-dual iff T (A) is well-founded, i.e., if the converse of the extension
relation on T (A) is well-founded. Notice that if T (A) is well-founded, then

{Ns | s 6∈ T (A) & s� lh(s)− 1 ∈ T (A)}
is a partition of R into countably many clopen sets D such that D∩A <W A.
This suggests the correct generalization of T (A) to the Borel context.

Definition 11. Let B ⊆ R. A Borel partition of B is a family {Bn |
n < N} of non-empty pairwise disjoint Borel sets such that B =

⋃
n<N Bn

and 2 ≤ N ≤ ω.
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First a trivial but useful fact:

Lemma 12. Let B ⊆ B′ be Borel sets. If A ∩ B′ 6= R, then A ∩ B ≤B

A ∩B′. In particular if B is Borel and A 6= R, then A ∩B ≤B A.

Then:

Lemma 13. Let {Bn | n < N} be a Borel partition of R, and let A 6= R.

(a) ∀n < N (A ∩ Bn ≤B A), and if C is such that ∀n < N (A ∩ Bn
≤B C), then A ≤B C. In other words: [A]B is the ≤B-least upper bound of
{[Bn ∩A]B | n < N}.

(b) Assume SLOB. If ∀n < N (A∩Bn <B A) then A ≤B ¬A. Moreover ,
if N < ω then [A]B is a successor degree.

Proof. (a) The first part follows from Lemma 12. If gn witnesses Bn ∩
A ≤B C, then g =

⋃
n gn�Bn is Borel and witnesses A ≤B C.

(b) A ∩ Bn <B A implies, by SLOB, that there are Borel functions
fn : R → R witnessing A ∩ Bn ≤B ¬A. Then f =

⋃
n fn�Bn is Borel and

f−1“¬A = A. Suppose now, towards a contradiction, that [A]B is a limit
degree and N < ω. Let C0 = B0 ∩ A and, for n + 1 < N , let Cn+1 =
Cn ⊕ (Bn+1 ∩ A). By induction, using Lemma 3(a) and the fact that [A]B
is limit, we see that ∀n < N (Cn <B A). But Bn ∩ A ≤B CN−1 for n < N ,
hence A ≤B CN−1 by part (a): a contradiction.

Definition 14. For A ⊆ R, let

I(A) = {B | B is Borel and ∃〈Bn | n ∈ ω〉 Borel sets such that

B =
⋃
nBn and Bn ∩ A <B A}.

By Lemma 12, the sets Bn in the definition can be taken to form a
partition of B, since I(A) is empty when A = R or A = ∅. The following
result can be easily verified.

Lemma 15. Assume SLOB.

(a) If B ∈ I(A) and C ⊆ B is Borel , then C ∈ I(A).
(b) If Bn ∈ I(A), then

⋃
nBn ∈ I(A).

Recall that a σ-ideal of Borel sets is a non-empty collection J of Borel
subsets of R, closed under Borel subsets and countable unions. A σ-ideal of
Borel sets J is proper if R 6∈ J. Then Lemma 15 says that I(A) is a σ-ideal
of Borel sets, and Lemma 13(b) says that if I(A) is not proper, then [A]B is
self-dual.

Theorem 16. Assume BP and suppose A ≤B ¬A. Then there is a Borel
partition {Bn | n ∈ ω} of R such that ∀n < N (Bn ∩ A <B A).
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Proof. Towards a contradiction, suppose that R 6∈ I = I(A).

Claim 16.1. If B is Borel and B 6∈ I, then there is a Borel function
f : B → B witnessing

∀x ∈ B (x ∈ A ∩B ⇔ f(x) ∈ ¬A ∩B).

Proof of Claim. By case assumption B 6= ∅, and if B = R the result
follows at once, so we may assume B 6= ∅,R. By Lemma 12, A ∩ B ≤B A
and ¬A ∩ B ≤B ¬A. If A ∩ B <B A, then taking Bn = B in Definition 14,
we would have B ∈ I: a contradiction. Therefore ¬A ∩B ≤B ¬A ≤B A ≡B

A∩B. Let h : R→ R be a Borel function witnessing that ¬A∩B ≤B A∩B,
and let k : R� B be defined as

k(x) =
{
x if x ∈ B,

b otherwise,

where b is some fixed element of ¬A∩B. Then f = (k ◦h)�B is the required
function.

We will construct a sequence of Borel sets R = B0 ⊇ B1 ⊇ . . . such that
Bn 6∈ I. Using the Claim, let fn : Bn → Bn be Borel and such that

∀x ∈ Bn (x ∈ A ∩Bn ⇔ fn(x) ∈ ¬A ∩Bn).

We will also choose a separable complete metric dn on Bn such that d0 is
the usual metric on R, and the topologies τn generated by the metrics dn are
all 0-dimensional and τn+1 refines τn, that is, {U ∩ Bn+1 | U ∈ τn} ⊆ τn+1.
We also require that fn�Bn+1 : (Bn+1, dn+1)→ (Bn, dn) be continuous, and
that for any m ≤ n and every a, b ∈ Bn+1,

dm(gm ◦ . . . ◦ gn(a), gm ◦ . . . ◦ gn(b)) < 2−n,(1)

where each gi is either fi�Bi+1 or the identity on Bi+1. Then we can apply
the Martin–Monk method as follows:

Fix z ∈ ω2 and let

gn =
{
fn�Bn+1 if z(n) = 1,

id�Bn+1 if z(n) = 0.

For each n, pick yn+1 ∈ Bn+1 and let

xnm = gm ◦ . . . ◦ gn(yn+1) ∈ Bm
for all m ≤ n. By construction, for any fixed m,

∀n > m (gm(xnm+1) = xnm)(2)

and {xnm | n ≥ m} ⊆ Bm is a Cauchy sequence with respect to dm, since
dm(xnm, x

k
m) < 2−min(n,k) by (1). Therefore we get an

xm = lim
n→∞

xnm ∈ Bm
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and by continuity of gm : (Bm+1, dm+1)→ (Bm, dm) and by (2),

gm(xm+1) = xm.

Naturally xm really depends on z ∈ ω2, so we should write xm = xm(z). By
construction, if ∀n > n0 (z(n) = w(n)) then

∀n > n0 (xn(z) = xn(w))

and if z(n0) 6= w(n0) then

xn0(z) ∈ A ∩Bn0 ⇔ xn0(w) 6∈ A ∩Bn0 .

The usual argument shows that {z ∈ ω2 | x0(z) ∈ A} is a flip-set, contra-
dicting the property of Baire.

Therefore it is enough to construct the Bn’s and dn’s. As required, set
B0 = R, d0 the usual distance on R, and let f0 : R→ R be a Borel function
witnessing A ≤B ¬A.

Suppose Bm, fm, and dm have been defined for all m ≤ n. Fix an s ∈
n+12, and for i ≤ n, let gsi = gi be fi or the identity, depending on whether
s(i) = 1 or s(i) = 0. For each m ≤ n let {C i

m | i ∈ ω} be a Borel partition
of Bm such that dm-diam(Cim) < 2−n. We now inductively construct Bn ⊇
B0 ⊇ B1 ⊇ . . . ⊇ Bn as follows. By the σ-additivity of I there is i0 ∈ ω such
that

B0 = (g0 ◦ . . . ◦ gn)−1“Ci00 6∈ I,

and by σ-additivity again, inductively choose im ∈ ω such that

Bm+1 = Bm ∩ (gm ◦ . . . ◦ gn)−1“Cimm 6∈ I

for m < n. Since the construction above depends on the chosen s ∈ n+12,
let B(s) = Bn. Now we can repeat the construction above for each element
of n+12: let 〈si | 1 ≤ i ≤ 2n+1〉 be an enumeration of n+12, and construct
B(s1) as above, then construct B(s2) using B(s1) instead of Bn, and so on.
This gives a sequence of Borel sets not in I

Bn ⊇ B(s1) ⊇ . . . ⊇ B(s2n) = Bn+1

and by construction, for any a, b ∈ Bn+1, any m ≤ n, and any s ∈ n+12,

dm(gsm ◦ . . . ◦ gsn(a), gsm ◦ . . . ◦ gsn(b)) < 2−n.

Since Bn+1 6∈ I, we have A ∩Bn+1 ≤B ¬A ∩Bn+1; let fn+1 : Bn+1 → Bn+1
witness this. In order to complete the construction we need to prove the
existence of dn+1 on Bn+1. This follows at once from Lemma 7 if we take
(X, d) = (Bn, dn), f = fn+1, and B = Bn+1.

Notice that the property of Baire is used in a “local way” in the proof
of Theorem 16: if

∏
nBn ⊂ ωR is endowed with the product topology of the
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τn’s, rather than with the topology induced by ωR, then the map
ω2→

∏

n

Bn, z 7→ 〈xm(z) | m ∈ ω〉,

is continuous by (1), hence the map ω2→ B0 = R, z 7→ x0(z), is continuous,
and hence the flip-set is the continuous pre-image of A. Therefore the proof
only requires the property of Baire for sets which are Wadge reducible to A.

Suppose [A]B is limit and self-dual, and let {Bn | n < ω} be a Borel
partition of R as in Theorem 16. If C <B A were an upper bound for the
A ∩ Bn’s, i.e., ∀n (A ∩ Bn ≤B C), then Lemma 13 implies that A ≤B C, a
contradiction. Since by Lemma 12,

A ∩B0 ≤B A ∩ (B0 ∪B1) ≤B A ∩ (B0 ∪B1 ∪B2) ≤B . . . ≤B A,

and A ∩Bn ≤B A ∩⋃i≤nBi, it follows that ‖A‖B = supn ‖A ∩
⋃
i≤nBi‖B.

Therefore if [A]B is limit and cof(‖A‖B) > ω, then [A]B is non-self-dual.
We have already seen that immediately above a non-self-dual pair

([A]B, [¬A]B) there is a self-dual degree [A ⊕ ¬A]B. We will now argue
that immediately above a self-dual degree there is a non-self-dual pair. This
amounts to proving that if [A]B < [B]B are both self-dual then A <B

C <B B for some C. Let {Dn | n ∈ ω} be a Borel partition of R such that
∀n (B∩Dn <B B). If B∩Dn ≤B A for all n then B ≤B A, which is absurd,
so let n0 ∈ ω be such that B ∩Dn0 �B A. By SLOB, ¬A ≤B B ∩Dn0 and
since A ≡B ¬A, then A <B B ∩Dn0 <B B. Thus we have proved:

Corollary 17. Assume SLOB + BP.

(a) A limit Borel–Wadge degree of uncountable cofinality is non-self-dual.
(b) Immediately above a self-dual Borel–Wadge degree there is a non-

self-dual pair.

Therefore the structure of the Borel degrees is isomorphic to the structure
of the Wadge degrees:

• • • • •
• • • . . . . . . • • . . . . . . • . . .

• • • • •
↑

cof = ω

↑
cof > ω

At the bottom of the hierarchy there is the non-self-dual pair ([R]B, [∅]B)
which—as already pointed out in Section 2.2—is ({R}, {∅}). Immediately
above it there is the least self-dual degree, ∆1

1 \ {∅,R}. We call these three
degrees [R]B, [∅]B, and ∆1

1\{∅,R} trivial ; in other words, [A]B is non-trivial
just in case ‖A‖B ≥ 3. Lastly we prove the converse to the second half of
Lemma 13(b).



188 A. Andretta and D. A. Martin

Proposition 18. Assume SLOB + BP. If [A]B is a non-trivial self-dual
successor degree, then there is a Borel partition of R, {B0, B1}, such that
Bi ∩A <B A for i = 0, 1.

Proof. Let [C]B be the immediate predecessor of [A]B. Then [C]B is non-
self-dual and [C ⊕ ¬C]B is its immediate successor, that is, A ≡B C ⊕ ¬C.
Let f : R→ R be Borel witnessing A ≤B C ⊕¬C, let D0 = {x ∈ R | x(0) is
even} and D1 = {x ∈ R | x(0) is odd}, and let Bi = f−1“Di. Then {B0, B1}
is a Borel partition of R, and f witnesses Bi ∩ A ≤B Di ∩ (C ⊕ ¬C). Since
C 6= R, ∅, it follows that D0 ∩ (C ⊕ ¬C) ≡B C, and since C <B A we have
B0 ∩ A <B A. Similarly, B1 ∩A ≤B D1 ∩ (C ⊕ ¬C) ≡B ¬C <B A.

Corollary 19. Assume SLOB +BP. [A]B is a non-trivial self-dual suc-
cessor degree iff there is a Borel partition {Bn | n < N} of R such that
∀n < N (Bn ∩ A <B A). Moreover [A]B is a successor degree iff N can be
taken to be finite, and in fact N can be taken to be 2.

4. Non-self-dual pointclasses. Assuming AD, Steel and Van Wesep
independently showed that A ≤W ¬A ⇒ A ≤L ¬A, hence [A]W = [A]L if
A 6≡W ¬A. In fact both statements are provable assuming SLOL + BP—see
[And03]. The analogue of the first statement for ≤B and ≤W is clearly false:
if U is open but not closed, then U ≤B ¬U but U �W ¬U . Nevertheless the
second statement can be generalized to the Borel case.

Proposition 20. Assume SLOW +BP. If A 6≡B ¬A, then [A]B = [A]W.

Proof. If B ∈ [A]B and B 6≡W A, then, since A ≡W ¬B cannot hold,
either B <W A or A <W B. For the sake of definiteness, assume the former.
Then C ∈ [A]B for any B ≤W C <W A. Since by SLOW + BP we can
certainly find such a C which is Wadge self-dual, we conclude that A ≡B

C ≡W ¬C ≡B ¬A, a contradiction.

Each non-self-dual pair of Wadge–Borel degrees is a non-self-dual pair
of Wadge degrees, but not vice versa. Notice that assuming SLOL + BP the
conclusion for non-self-dual [A]B can be strengthened to [A]B = [A]L. On
the other hand, the self-dual Borel degrees are obtained by glueing together
many Wadge degrees. For example, the first self-dual degree is the collection
of all Borel sets except for R and ∅. For A ≡B ¬A let h([A]B) be the
length of the interval of Wadge degrees used to construct [A]B. Thus, if
A ∈∆1

1 \ {∅,R}, then [A]B = ∆1
1 \ {∅,R} and

h([A]B) = δ

= the length of the Wadge hierarchy restricted to ∆1
1

= ‖B‖W, where B ∈ Σ1
1 ∪Π1

1 \∆1
1.

In analogy with the case of the Lipschitz-vs-Wadge hierarchies, where each
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self-dual Wadge degree is the union of ω1 consecutive Lipschitz degrees, it
is tempting to conjecture that h([A]B) = δ for any self-dual [A]B. However
this is not true. In fact, h([A]B) > ‖A‖W for all self-dual [A]B, and therefore
the Borel–Wadge hierarchy is obtained by collapsing to a single self-dual
Borel–Wadge degree larger and larger blocks of the Wadge hierarchy. To see
this we need to recall the definition—due to Wadge—of addition of sets of
reals. For A,B ⊆ R let

A+B = {(s+ 1)a〈0〉a(x+ 1) | s ∈ <ωω & x ∈ A} ∪ {x+ 1 | x ∈ B},
where y+ 1 = 〈y(n) + 1 | n < lh(y)〉 for any (finite or infinite) sequence y. If
A ≡W ¬A and assuming SLOW + BP, we have ‖A+B‖W = ‖A‖W + ‖B‖W
(see [Wad83] or [And03] for more on this). In particular, if B ≤B A and f
witnesses this, then

g(x) =
{
f(x− 1) if ∀n (x(n) 6= 0),

y if x = (s+ 1)a〈0〉ay for some s ∈ <ωω,

is Borel and witnesses A+B ≤B A. Therefore h([A]B) ≥ ‖A‖W + ‖A‖W >
‖A‖W.

Assuming SLOW we can now describe the first few Borel degrees. Im-
mediately above the trivial degrees [R]B, [∅]B, and ∆1

1 \ {R, ∅} there is, by
Proposition 20, the non-self-dual pair (Σ1

1 \∆1
1,Π

1
1 \∆1

1). At the next level
we have a self-dual degree: it is the collection of all Borel-separated-unions
of a true Σ1

1 and a true Π1
1,

{A ∪B | A ∈ Σ1
1 \∆1

1 & B ∈ Π1
1 \∆1

1 & ∃C ∈∆1
1 (A ⊆ C & B ∩ C = ∅)}.

In order to compute the next non-self-dual pair of degrees it is more con-
venient to work with pointclasses rather than with degrees. Recall that
a collection Γ ⊆ P(R) of sets is a boldface pointclass if it is non-empty
and closed under continuous pre-images. It is self-dual if it is closed under
complements, otherwise it is non-self-dual. The dual of Γ is the pointclass
Γ̆ = {¬A | A ∈ Γ}, and let ∆ = ∆Γ be the pointclass Γ ∩ Γ̆. Under SLOW,
the non-self-dual boldface pointclasses are of the form {X ⊆ R | X ≤W A}
with [A]W non-self-dual, while the self-dual ones are of the form {X ⊆ R |
X <W A} with A 6= R, ∅. Conversely, if Γ is non-self-dual, then Γ \ Γ̆ is a
non-self-dual Wadge degree by SLOW. Therefore SLOW implies that bold-
face pointclasses are (essentially) well-ordered under inclusion: either Γ ⊆ Λ
or Λ ⊆ Γ̆. By Proposition 20 and the discussion following its proof, [A]B is
a non-self-dual degree iff {X | X ≤W A} is closed under Borel pre-images.
A set U is Γ-universal if it R-parametrizes Γ and belongs to Γ, i.e., U ⊆ R2,
Γ = {Ux | x ∈ R} where Ux = {y | (x, y) ∈ U}, and U (or better: its image
under the standard homeomorphism R2 ≈ R) is in Γ. If Γ has a universal set
then it is non-self-dual. Conversely, SLOL +BP implies every non-self-dual Γ
has a universal set: choose an R-parametrization 〈gx | x ∈ R〉 of all Lipschitz
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functions such that (x, y) 7→ gx(y) is continuous; by the theorem of Steel and
Van Wesep mentioned at the beginning of this section, Γ = {X | X ≤L A}
for some A 6≡L ¬A, and let U = {(x, y) | gx(y) ∈ A}. Similarly, by choos-
ing a parametrization 〈fx | x ∈ R〉 of all continuous functions such that
(x, y) 7→ fx(y) is Borel, SLOW implies that if [A]B is non-self-dual then
Γ = {X | X ≤W A} has a universal set.

Wadge gave a concrete description of the next non-self-dual pair of bold-
face pointclasses above a non-self-dual Γ: Suppose Γ = {X | X ≤W A} with
A non-self-dual and let

ΓO = {(U ∩X) ∪ (U ′ \X ′) | U,U ′ ∈ Σ0
1 & U ∩ U ′ = ∅ & X,X ′ ∈ Γ}.

Then Γ ∪ Γ̆ ⊆ ΓO, and ΓO and its dual (ΓO)̆ are the least non-self-dual
pair of pointclasses above Γ∪ Γ̆. Notice that the self-dual pointclass ∆ΓO =
{X | X ≤W B ⊕ ¬B} is made up of those (U ∩ X) ∪ (U ′ \X ′) ∈ ΓO such
that U ⊆ C ⊆ ¬U ′ for some clopen set C. This suggests the following
definition.

For Γ a boldface pointclass closed under Borel pre-images let

Γ∗ = {(P ∩X) ∪ (P ′ \X ′) | P,P ′ ∈ Π1
1 & P ∩ P ′ = ∅ & X,X ′ ∈ Γ},

and let ∆∗ = ∆Γ∗ . Taking P = R or P ′ = R we find that Γ ⊆ Γ∗ and
Γ̆ ⊆ Γ∗.

Lemma 21. Assume SLOW and let Γ be a non-self-dual pointclass closed
under Borel pre-images. Then Γ∗ is non-self-dual and is closed under Borel
pre-images.

Proof. As both Γ and Π1
1 have universal sets, Γ∗ also has a universal

set, hence it is non-self-dual. Since both Γ and Π1
1 are closed under Borel

pre-images, it follows that Γ∗ is closed under Borel pre-images.

Lemma 22. Let [A]B be non-self-dual and let Γ = {X | X ≤W A}. Then
any set in ∆∗ is Borel reducible to A⊕ ¬A.

Proof. Let Y ∈∆∗ and let P1, P
′
1 ∈ Π1

1 and X1,X
′
1 ∈ Γ witness that

Y = (P1 ∩X1) ∪ (P ′1 \X ′1) ∈ Γ∗,

and let P2, P
′
2 ∈ Π1

1, X2,X
′
2 ∈ Γ witness that

¬Y = (P2 ∩X2) ∪ (P ′2 \X ′2) ∈ Γ∗.

Then P1 ∪ P ′1 ∪ P2 ∪ P ′2 = R. By Reduction for Π1
1, let {B1, B

′
1, B2, B

′
2} be

a Borel partition of R such that B1 ⊆ P1, B′1 ⊆ P ′1, B2 ⊆ P2, and B′2 ⊆ P ′2.
Then

x ∈ B1 ⇒ (x ∈ Y ⇔ x ∈ X1),

x ∈ B′1 ⇒ (x ∈ Y ⇔ x 6∈ X ′1),
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x ∈ B2 ⇒ (x ∈ Y ⇔ x 6∈ X2),

x ∈ B′2 ⇒ (x ∈ Y ⇔ x ∈ X ′2).

This implies the desired conclusion.

Theorem 23. Assume SLOW. Let [A]B be non-self-dual and let Γ =
{X | X ≤W A}. Then

∆∗ = {X | X ≤B A⊕ ¬A}
= {X ∪ ¬X ′ | ∃B ∈∆1

1 (X ⊆ B ⊆ ¬X ′) & X,X ′ ∈ Γ}
and ∆∗ \ (Γ ∪ Γ̆) = [A ⊕ ¬A]B, i.e., it is the self-dual degree immediately
above ([A]B, [¬A]B) and (Γ∗ \∆∗, (Γ∗)̆ \∆∗) is the next non-self-dual pair
above it.

Proof. It is easy to check that A⊕¬A ∈∆∗ and that the sets which are
Borel-reducible to A ⊕ ¬A are of the form X ∪ ¬X ′ with X,X ′ ∈ Γ Borel
separated. Therefore we are done by Lemmata 21 and 22.

Wadge’s analysis shows that if Γn is an increasing sequence of boldface
pointclasses, then

Γ = {⋃n(Un ∩Xn) | Un ∈ Σ0
1 are pairwise disjoint and Xn ∈ Γn}

is non-self-dual, and Γ and its dual are the least non-self-dual pointclasses
above the Γn’s.

Similarly, if 〈Γn | n ∈ ω〉 is a strictly increasing sequence of pointclasses
closed under Borel pre-images, then let

∆ = {⋃n(Bn ∩Xn) | Bn ∈∆1
1 are pairwise disjoint and Xn ∈ Γn}

and let

Λ = {⋃n(Pn ∩Xn) | Pn ∈ Π1
1 are pairwise disjoint and Xn ∈ Γn}.

If An+1 ∈ Γn+1 \Γn and there are pairwise disjoint Borel sets Bn such that
An ⊆ Bn, then it is not hard to see that

⋃
nAn is Borel self-dual, that

∆ = {X | X ≤B
⋃
nAn}

is self-dual, that
⋃
n Γn ⊂ ∆, and that there is no pointclass closed under

Borel pre-images in between. Arguing as above we get:

Theorem 24. Assume SLOW + BP and suppose Γn, ∆ and Λ are as
above. Then Λ and Λ̆ are closed under Borel pre-images and are the least
non-self-dual pair of boldface pointclasses above the Γn’s, and ∆ = ∆Λ.

We can now give a complete description of the first ω1 levels of the ≤B

hierarchy. By Theorem 23 the least non-self-dual pair of pointclasses closed
under ≤B and above Σ1

1 and Π1
1 is (Γ, Γ̆), where Y ∈ Γ iff Y = P1∪(P2\P3)

with P1, P2, P3 ∈ Π1
1 and P1 ∩ P2 = ∅. Without loss of generality we may

assume P3 ⊆ P2, so Y = (P1∪P2)\P3, hence Γ is the collection Diff(2; Π1
1) of
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all differences of Π1
1 sets. Inductively, using Theorem 24, one can show that

the αth pair of non-self-dual pointclasses closed under Borel reducibility is
(Diff(α; Π1

1), D̆iff(α; Π1
1)).
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