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Typical multifractal box dimensions of measures
by

L. Olsen (St. Andrews)

Abstract. We study the typical behaviour (in the sense of Baire’s category) of the
multifractal box dimensions of measures on R?. We prove that in many cases a typical
measure y is as irregular as possible, i.e. the lower multifractal box dimensions of y attain
the smallest possible value and the upper multifractal box dimensions of p attain the
largest possible value.

1. Statement of results. In this paper we study the typical (in the
sense of Baire) multifractal box dimensions of measures. In Section 1.1 we
define multifractal box dimensions of sets and in Section 1.2 we define multi-
fractal box dimensions of measures. Finally, in Section 1.3 we state our main
results. Section 2 contains applications to typical multifractal box dimen-
sions of measures on self-similar sets, and the proofs of the main results are
given in Sections 3 and 4.

1.1. Multifractal box dimensions of sets. Fix a Borel probability
measure 7 on R% with support K. For a bounded subset E of K, the mul-
tifractal box dimensions of E with respect to 7 are defined as follows. For
r > 0 and a real number ¢ write
(1.1) MY(E;r) = inf > w(B(xi,r))".

(B(z;,7)); is a cover of E
T, €K

The lower and upper covering multifractal box dimensions of E of order ¢
with respect to 7 are defined by

log M2(E:
dim? o (F) = lim inf 08 Mri&iT) (E:r)
7 ™0 —logr

E— log M (E;
dim! g(F) = limsup w.
v P g

(1.2)
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The main significance of multifractal box dimensions is their relationship
with the so-called multifractal spectrum of 7. During the 1990’s there has
been an enormous interest in computing multifractal box dimensions and
multifractal spectra of measures, and within the last 15 years the multifractal
box dimensions and the multifractal spectra of various classes of measures in
R? exhibiting some degree of self-similarity have been computed rigorously
(cf. |[Fal [Pe] and the references therein).

1.2. Multifractal box dimensions of measures. While multifractal
box dimensions of measures have played a central role in multifractal analysis
for the past 15 years, recently their importance in the study of fractal geom-
etry and dynamical systems has been recognized (see, for example, [Pe, [Yol).
The multifractal box dimensions of a Borel probability measure p on R? with
respect to m are defined as follows. For a real number ¢, we define the small
and big lower multifractal box dimensions of u of order g with respect to the
measure m by

a4
dlm*ﬁ,B

= inf dim?(F
(1) “(IEHNﬂW,B( )

1.3
(13) @;?B(u):lim inf  dim?

E).
eN\O0 u(B)>1—¢ ”’B( )

Similarly, the small and big upper multifractal box dimensions of p of order
q with respect to 7 are
dim? = inf dimlg(E),

W,B(/’L) w(E)>0 7T,B( )

dim,g (1) = lim it dimy g(E).

(1.4)

1.3. Typical multifractal box dimensions of measures. In this
paper we study the multifractal box dimensions of a typical measure in the
sense of Baire. For a compact subset K of R?, we denote the family of Borel
probability measures on K by P(K) and we equip P(K) with the weak
topology. We will say that a typical probability measure on K has property
P if the set of probability measures that do not have property P is meagre
with respect to the weak topology on P(K). The typical behaviour of various
other quantities related to multifractal analysis has also been studied. In
particular, the local dimension of a typical measure has been studied by
Haase [Hal| and investigated further by Genyuk [Ge]. We also note that the
multifractal spectrum of a typical continuous function has been studied by
several authors (cf. [BuNa), Jall, [Ja2]).

To state the main results in the paper, we need a few definitions. Firstly,
the upper moment scaling function of m is defined by

(1.5) Tr(q) = dimz g (K).
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We also define its local versions: first the local upper box dimension of K at
x is defined by

(1.6) dimy g joc(w; K) = }%Mi,s(3($7r) N K);

then we define the local upper moment scaling functions of ™ by

?WJOC(Q) = Ilgf( diIn;Zr,B,Ioc (‘T; K)?

(1.7)

Tﬂoc(q) = sup dimgr,BJoc(m; K).
zeK

Finally, let
log sup,ex 7(B(x, 7))

D = liminf ,
(18) ™0 logr
D. = limsup loginf,cx m(B(z, 7)) '

™0 log r
Proposition 1.1 below gives the relationships between the dimensions intro-
duced in (1.5)—(1.8).

PROPOSITION 1.1. Let w be a Borel probability measure on R® with com-
pact support K. We have
Qﬂ' q < ?Tl’,loc(q} < ?TF(Q) fO?“ all q < 0;
A A
_EW q < Tﬂ,loc(Q) < ?F(Q) f07’ all ¢ <0,
and
—Drq < Trjoc(q) <Trlq)  forall ¢ >0,
A A
D, q < Trioc(q) <Tr(q) forallqg>0.

Proof. This follows easily from the definitions and the proof is therefore
omitted. m

A measure 7 on R? is called a doubling measure if there is a constant ¢
such that
B(x,2
wp T(BE.20) _
wesuppr m(B(z,7))
r>0

We can now state the main results, Theorems 1.2 and 1.3, giving bounds
for the multifractal box dimensions of measures p € P(K). The first result,
which is easily proved and only included for completeness, provides bounds
that are valid for all measures, whereas the second result provides bounds
that are valid for typical measures.
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THEOREM 1.2 (Results for all measures in P(K)). Let w be a Borel prob-
ability measure on R* with compact support K.

(1) All measures p € P(K) satisfy
—D.q <dim!_g(p) <dim5(n)  for all g <0,
Dg < din? () < dimy () for allg >0
(2) All measures u € P(K) satisfy
dim, g(p) < dim; g () < 7r(q)  for all g.

Proof. This follows easily from the definitions. =

THEOREM 1.3 (Results for typical measures in P(K)). Let m be a Borel
probability measure on R® with compact support K.

(1) A typical measure p € P(K) satisfies
—D,q <dim!_ g(u )<d1m7rB(u)< —D.q forallq<o,
—Dyq < dim] g(p) <dim 'y(u) < =D,q forallg>0.

(2) If 7 is a doubling measure, then a typical measure p € P(K) satisfies
Trloc(q) < dlm*w s(n) < diifﬂjﬁa(ﬂ) <7Tx(q) forallg<0.

If w is a doubling measure and K does not contain isolated points,
then a typical measure p € P(K) satisfies

Trjoc(q) < dim} g(p) < dim,g(1) < 7r(q) for allq.

Part (1) of Theorem 1.3 is proved in Section 3, and part (2) in Section 4.
Comparing the statements in Theorems 1.2 and 1.3, we see that a typical
measure p is very close to being as irregular as possible. Namely, for all g,
the lower multifractal box dimensions @Zﬂ7s(y) and @;?B(u) are close
to the smallest possible value, and the upper multifractal box dimensions
dlm*ﬂ. g(u) and MZ?B(M) are close to the largest possible value. Figure 1
below illustrates Theorem 1.3.

For ¢ = 0, Theorem 1.3 gives the following interesting result due to Myjak
& Rudnicki [MyRu]. To state it we need a few definitions. For a set E C R,
we let dimg(E) denote the upper box dimension. Also, for a probability
measure u we define the small and big lower multifractal box dimensions of
p by

di = f d FE
dim, g (1) (glbo dimg(F),

d = i f  dimg(E).
dimg (1) E%M(éﬁl _, dimg(E)

Similarly, we define the small and big upper multifractal box dimensions of
p by

(1.9)
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—Drq

Fig. 1. This figure illustrates the statement in Theorem 1.3. (In the figure the graphs are
drawn such that —Dx ¢ < Tr,0c(q) for all ¢ <0 and —D_q < Troc(q) for all ¢ > 0; it

follows from Proposition 1.1 that if T joc(¢) = T'x,loc(q), then this is the case. The condition
Trtoc(@) = Troc(q) is, for example, satisfied if 7 is a self-similar measure satisfying the
Strong Separation Condition; see Section 2.) Theorem 1.3 shows that the lower ¢ box
dimensions of a typical measure p lie in the lightly shaded region bounded by the dashed
lines, and if the measure 7 is doubling, then the upper ¢ box dimensions of a typical

measure p lie in the darkly shaded region bounded by the solid curves.
dim,pg = inf dimg(F
o) = inf dime(E)

dimg(p) = li inf  dimg(E).
img (1) lim anf img (E)

Finally, we define the local upper box dimension of E at x by
(1.11) dimg joc(7; E) = 1{13)%5(3(:5, r)NE).

(1.10)

It is clear that if we put ¢ = 0 in (1.3), (1.4) and (1.6), then we obtain
(1.9), (1.10) and (1.11), respectively. The following result due to Myjak &
Rudnicki [MyRu| therefore follows from Theorem 1.3 by putting ¢ = 0. This

result gives bounds for the box dimensions of typical measures.

COROLLARY 1.4 (Results for typical measures in P(K) [MyRu|). Let K
be a compact set in RE. Write

Sioc = inf dimgjoc(z; K), 5= dimg(K).
zeK
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(1) A typical measure p € P(K) satisfies
dim,g(p) = dimg(p) = 0.
(2) A typical measure p € P(K) satisfies
Sloc < M*B(N) < RE(M) <s.

2. An application. Typical multifractal box dimensions of mea-
sures on self-similar sets. As an application of Theorem 1.3, we will now
compute the multifractal box dimensions of typical measures on self-similar
sets. Fix an integer N with N > 2. Next, let S; : R - R fori=1,..., N
be contracting similarities and let (p1,...,pn) be a probability vector. For
each i, we denote the Lipschitz constant of S; by r; € (0,1). Let K and 7
be the self-similar set and the self-similar measure associated with the list

(S1,..-,SN,p1,---,PN), i.e. K is the unique non-empty compact subset of
R? such that

(2.1) K = J8i(K),

and 7 is the unique Borel probability measure on R¢ such that

(2.2) T = Zpﬂr oS!

(cf. [Fa, Hul). It is well-known that suppm = K (cf. [Fa, [Hul). We say
that the list (Si,...,Sy) satisfies the Open Set Condition (OSC) if there
exists an open non-empty and bounded subset U of R? with S;U C U for
all @ and S;U N S;U = 0 for all 4,5 with i # j. Also, we say that the list
(S1,...,SnN) satisfies the Strong Separation Condition (SSC) if S;K N S; K
= () for all 4,7 with ¢ # j. Define 8 : R — R by

(2.3) Sopl 9 =1,

The next result computes the multifractal box dimensions for typical mea-
sures u € P(K) supported on a self-similar set K satisfying the OSC.

THEOREM 2.1. Let K and 7 be as in (2.1) and (2.2), and assume that
the OSC s satisfied. Next, let

_ . logpi _ log pi
Smin = Min ——  and Spmax — Max ——.
i logr; i logr;

(1) Results for all measures p € P(K).
o All measures p € P(K) satisfy
—$min ¢ < dim? g (p) < dim f () for all ¢ <0,
—Smax ¢ < @ZW,B(M) < @;?B(M) for all ¢ > 0.
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o All measures p € P(K) satisfy

dim, g(p) < dim g (1) < Blg)  for all q.
(2) Results for typical measures p € P(K).
e A typical measure p € P(K) satisfies
—Smin ¢ < dim{ g(p) < dim %5 (1) < —Smaxq  for all ¢ <0,
—Smax ¢ < dim!, g(p) < dim %5 (1) < —sming  for all ¢ > 0.
e [f 7 is a doubling measure (this is, for example, easily seen to be
the case if the SSC is satisfied; see [Yu] for a proof of this and for

other conditions guaranteeing that 7 is a doubling measure), then
a typical measure p € P(K) satisfies

dim{; g (1) = dim; g (1) = B(q)  for all q.

Before proving Theorem 2.1 we make various comments and list two
corollaries.
If we define emin, €max > 0 by

2 : €min __ E € —
,rimln — , ,r.imax — 1’

. logp; . logp; —s
? logr; ? logr; max

=Smin
then it is well known (see, for example, [CaMa]) that

B(q) — (émin — Sming) \\0 as ¢ — oo,
ﬂ(Q) - (emax - SmaXQ) N0 asqg— —oo;
see Figure 2 below. In particular, together with Theorem 2.1 this shows that

if the OSC is satisfied and 7 is a doubling measure, then

mzﬂ73(u) — @;?B(u) > emax for all ¢ <0,

dimy, g (p) — dimy% (1) > emin  for all ¢ >0,

for a typical measure p € P(K). The reader is referred to Figure 2 for an
illustration of this.
We now list two corollaries of Theorem 2.1.

COROLLARY 2.2. Let K be as in (2.1), and assume that the OSC is
satisfied. Next, let s € R be defined by > ,ri = 1, i.e. s = dimpy(K) =
dimg(K), and let H® denote the s-dimensional Hausdorff measure and write
H?L K for its restriction to K.

(1) Results for all measures p € P(K).
o All measures pu € P(K) satisfy

—sq < dim’q., o (0) < diml o) for allg.
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Fig. 2. This figure illustrates the statement in Theorem 2.1. Theorem 2.1 shows that if
the OSC is satisfied, then the lower ¢ box dimensions of a typical measure p lie in the
shaded region bounded by the dashed lines, and if the OSC is satisfied and the measure
B(q)

7 is a doubling measure, then the upper ¢ box dimensions of a typical measure u equal

o All measures p € P(K) satisfy

dim e e, (1) < dimygs () < s(1 - q)

for all q.
(2) Results for typical measures p € P(K).
o A typical measure p € P(K) satisfies
dim ., (1) = dim% g (1) = —sq  for all q.
o A typical measure p € P(K) satisfies

dimye, e (1) = dimyge, g g(p) = s(1—q)  for all q.
Proof. Define the probability vector (p1,...,pn) by (p1,...,pN) =
(r{,...,m%), and let m be the self-similar measure satisfying (2.2). For this
particular choice of (p1,...,pn) it follows from [Hu| that 7 = H5%LK/H*(K),
and it follows from [Yul Corollary 1.2] that 7 is a doubling measure. Corol-
lary 2.2 therefore follows immediately from Theorem 2.1.

It follows from Corollary 2.2 that a typical measure u on a self-similar set
satisfying the OSC is as irregular as possible. Namely, for all ¢, the lower mul-
tifractal box dimensions dim?, . x.g(1) and dim3?, x.g(1) attain the small-
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est possible value, and the upper multifractal box dimensions dimsys_ xB(1)

and dim;fs,_ i B(1) attain the largest possible value. Specializing even further
we obtain the following result about the multifractal box dimensions of mea-
sures on the unit cube in R?.

COROLLARY 2.3. Let I? = [0,1]% be the closed unit cube in R%. Neat,
let £¢ denote the d-dimensional Lebesque measure and write L4 I for its
restriction to 1¢.

(1) A typical measure u € P(I?) satisfies

diim:cdl_ld’B(:u) = @2%L1d78(u) = _dq fOT’ all q.

(2) A typical measure p € P(I?) satisfies

mZEdle7B(M) = ﬁz%dd,B(u) =d(l—gq) forallg.
Proof. This follows immediately from Corollary 2.2. m

We now turn towards the proof of Theorem 2.1. We start by introducing
the following notation. If (Si,...,Sn) is a list of similarities and r; denotes
the Lipschitz constant of S;, then we will write S; = S;, o--- 0 5;, and
Ty = 1iy - -7y, for all lists i = 4y...4, with entries iy, € {1,...,N}. Also, if
i=141...0y is a list with entries i, € {1,..., N} we will write |i|] = n for
the “length” of i. Finally, if (p1,...,pn) is a probability vector, then we will
write p; = p;, - - - pi,, for all lists i =4y ...4, with entries i, € {1,..., N}.

In order to prove Theorem 2.1 we need the following result.

PROPOSITION 2.4. Let m and K be as in (2.1) and (2.2), and assume
that the OSC' is satisfied. Then the following hold.

(1) The set K does not have isolated points.

(2) D, = min, iggfz_' and D = max; }gg%

(3) Troc(q) = Tr(q) = Bla) for all ¢ € R.

Proof. (1) This is well-known: see, for example, [Fal.

(2) This is well-known: see, for example, [Pat].

(3) It is clear that T, oc(q) < Tr(q). Hence, it suffices to show that
B(q) < Trioc(q) and Tr(gq) < B(q). The latter follows immediately from the
fact that

log M (K;
(2.4) lim 08 Ma (K1)
™NO0  —logr
for all ¢ € R (see [Patl).
Next, we prove that 3(¢) < Troc(q). Therefore fix x € K and r > 0. We

may clearly choose a list i = 7; ...4, with entries i € {1,..., N} such that
Si(K) C B(x,7) N K. Hence,

(2.5) i g (S4(K)) < dim, g(B(x,r) N K).

= B(q)
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Next, we show that
(2.6) dimy g(K) = dimy g(Si(K)).

Indeed, since S;(K) C K, we conclude that dlmfT (Si(K)) < R;B(K). We
will now show that @W’B( ) < dim? 5 (S;(K)). We first note that it follows

from [MoRe, Theorem 2.1] (see also [Pat]) that 7(S;(K)) N S;(K)) = 0 for
all j with i # j and |i|] = |j|. This implies that if 2 € K and r > 0, then
(2.7) 7(SiB(x,r)) = > pyw(S;  SiB(z, 7)) = pim(S; ' SiB(x, 7))
lil=lil
= pim(B(z,71)).

Next, fix p > 0 and let (B(z;,p)); be a centred cover of Sj(K). Then
(S;'B(w4,p))i is a cover of K. Also, for each i, we can thus choose y; € K
such that z; = Sjy;, whence Si_lB(xz-,p) = Si_lB(Siyi,p) = B(yi,ri_lp).
Therefore (B(yi,rflp)) is a cover of K, and so (using (2.7)) we obtain

MY(K;ry <Z (yi, it q—Zpl (SiB(yi, ;1 p))?

:p;qZTF(B iYi, P qz l"La
%

Taking infimum over all centred covers (B(xi, p))i of S;(K) now gives
ME(K;ri ' p) < py "ME(Si(K); p)
for all p > 0. This clearly implies that dlmmB(K) < diimfr’B(Si(K)), and

completes the proof of (2.6).
Combining (2.4)—(2.6) now shows that

B(q) = dimy g(K) = dimy g(Si(K)) < dimy g(B(z,r) N K).

Finally, taking infimum over all x € K and all r > 0 gives the desired
result. m

We can now prove Theorem 2.1.

Proof of Theorem 2.1. Theorem 2.1 follows immediately from Theorem
1.2, Theorem 1.3 and Proposition 2.4. =

3. Proof of part (1) in Theorem 1.3. The purpose of this section is
to prove

THEOREM 1.3(1). Let m be a Borel probability measure on R with com-
pact support K. A typical measure p € P(K) satisfies

—D.q < dim! g(p) < dim %(p) < —Drq  for all ¢ <0,
—Drq < dim! g(p) < dim %(n) < —=Drq  for all ¢ > 0.
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It is well-known (cf., for example, [Ed, pp. 105-107| or [Paxl p. 51, The-
orem 6.8]) that the weak topology on P(K) is induced by the metric L on
P(K) defined as follows. Let Lip(K') denote the family of Lipschitz functions
f: K — Rwith |f| <1 and Lip(f) < 1 where Lip(f) denotes the Lipschitz
constant of f. The metric L is now defined by

L(p,v) = sup Hfdu—Sde’
feLip(K)

for p,v € P(K). We will always equip P(K) with the metric L and all balls
in P(K) will be with respect to the metric L, i.e. if p € P(K) and r > 0,
we will write B(u,r) = {v € P(K)| L(u,v) < r} for the ball with centre at
1 and radius r.

We now turn to the proof of part (1) of Theorem 1.3. Let

I'={peP(K)| — Drq < dim] g(p) < dim %5(11) < —Drq for all ¢ <0,
- Eﬂ'q < dlimzw B(M) < dlimqu(ru’) <-D.q for all ¢ > 0}
dim %5 (1) < —Dxq for all ¢ <0,
dim %5 (1) < —D,q for all ¢ > 0}

= {n e P(K)

We must now prove that I" is a co-meagre subset of P(K). It clearly
suffices to construct a set M C P(K) satisfying the following conditions:

(1) M C T
(2) M is dense in P(K);
(3) M is Gs in P(K).

For a positive integer n, write

1
Gn = U B</.L, 3|supp,u|+n> )

LEP(K)
|supp | <oco

M:ﬂGn.

Below we show that the set M has the above three properties (1)-(3) (Propo-
sitions 3.1-3.3).

ProposiTION 3.1. M CTI'.

Proof. Let p € M = (,, Gyn. To prove that p € I', we first make a few
observations. Since p € (), Gp, for each positive integer n we can find a
measure (i, € P(K) with |supp u,| < oo such that

and define

<
L, pn) < SFupp T
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Now put

1

TESUPD fin n>m

Next, we prove the following two claims.
CramM 1. We have u(Ey) > 1—(2/3)™.
Proof of Claim 1. Define f, : K — R by

ful@) = max < !

Slsupp fimltn dist(z, supp fin), 0>.
It is clear that f,, € Lip(K), and we therefore conclude that

1 1
L(Ma#n)ZandMn—and#Z S Wdﬂn—gmdﬂ

Supp fin En
1 1
~ Qlsuppun|+n 9lsupp pnl+n

M(En)v
and so

W) > 1 — 2Pt n Ly )

> 1 — olsupppn|+n 1 -1 2 !
3lsupp pn|+n 3)

CrAM 2. We have p(Fy,) — 1.

Proof of Claim 2. This follows from Claim 1: indeed, u(K \ F,) =
Unzm (KN En)) < 30 (K \ Bn) < 35,5,(3)" = 0.

We can now prove that u € I', i.e. we must show that

{ _Dﬂ'q for q S Oa
_Qﬂ'q fOI‘ q 2 0.

We therefore fix € > 0. We must show that there is a subset £ C K with
(3.1) uw(E)>1—¢

lm nf dim! o (E) = dim () <

and

-D <
CHIHZB(E)S{ Drq for g <o,
’ _Q’)Tq forqzo

It follows from Claim 2 that we can choose a positive integer mg such
that p(Fp,) > 1—e. Now put E = F,,,, so E satisfies (3.1). To show that it
also satisfies (3.2), fix n > mg and write r,, = 1/25WPP#al+7 Tt i5 clear that
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Fry € En = Ugesupp p, (B(@,72) N K). This implies that
Mi(Fpim) < Y w(B(x,15))"
TESUPD Un
. q <
[supp pin| (inf 7(B(z,m)))"  for ¢ <0,
|supp pin| (sup (B(z,74)))?  for ¢ >0,
zeK
and so

log M3 (Fingi 7) 10g M (Fing: )

diiman(E) = liminf < lim inf

™0 —logr —logry,
( 1 inf B q
lim inf Og(\SuppunKm :UEKﬂ—( (xvrn))) ) for q < 07
< n —logry,
- T log(\suppun\(supxeK W(B(.%',Tn)))q) for ¢ > 0,
n —logry,
1 log inf B
lim inf < 0og [Supp fin| q oginf ek 7( (.Z‘,T‘n))> for ¢ < 0,
- n \ (|supp pin| 4+ n)log 2 —logmy,
hminf< log [supp fin| log sup,e i 7T(B(:v,rn))> for ¢ > 0,
(7 \(lsupp ptn| + n)log2 —log 7y

< { —Drq for ¢ <0,
_qu fOI‘ q Z 0.
This completes the proof of Proposition 3.1. =

PROPOSITION 3.2. M is dense in P(K).

Proof. Since P(K) is a complete metric space and M = (), G, where
each G,, is open, it suffices to show that GG, is dense for all n. We therefore
fix a positive integer n. Next, let u € P(K) and r > 0. We must now find a
measure A € G, such that L(p, \) < r. Indeed, it is clear that we can find
A € P(K) such that [supp A| < oo and L(p, A) < r. Also, since [supp A| < oo,
we conclude that A € B(\, 1/38WPA+7) € @,

PROPOSITION 3.3. M is G5 in P(K).

Proof. This is clear. =

4. Proof of part (2) of Theorem 1.3. The purpose of this section is
to prove

THEOREM 1.3(2). Let 7 be a Borel probability measure on R% with com-
pact support K. If w is doubling, then a typical measure u € P(K) satisfies

?W,IOC(Q) < HZW,B(M) < M:,JB(“) < ?ﬂ’(Q) fOT’ all q< 0.
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If m is doubling and K does not contain isolated points, then a typical measure
p € P(K) satisfies
Troc(q) < dimi g (u) < dimg(p) < 7rlq)  for all g.

Before proving this result we state and prove a few auxiliary results.
We begin with a definition. Let X be a metric space and let m be a Borel
probability measure on X. For a bounded subset £ of X, r > 0 and a real
number g write

NI(E;r) = sup > w(Blai,r)
(B(wi,7))i is a centred packing of £,

recall that a family of balls (B(z;,7)); is called a centred packing of E if
x; € E for all i and |z; — x| > 2r for all i # j. We now have the following
alternative expressions for dim? g(E) and diim;]nB(E).

LEMMA 4.1. Let m be a Borel probability measure on R% with compact
support K. If m is doubling, then

log NL(E:
dim? o (E) = lim inf o Vm\B ) n(B:r)
™ N0 —logr

- log NI(E:
dimgr g(E) = limsup o N\H ) (Eir)
’ N0 —logr

)

for all E C K and all ¢ € R.
Proof. The proof uses standard arguments and is therefore omitted. m
Next, we list a few more auxiliary results.

LEMMA 4.2. Let 7w be a Borel probability measure on R% with compact
support K, and let E C K.

(1) Ifm is doubling, then the map q — dimi’B(E) s convex, and therefore
i particular continuous.
(2) The map q — Trjoc(q) is decreasing.

Proof. (1) Let q1,q2 € R and ty,t3 > 0 with ¢t +t2 = 1. Fix » > 0.
For each centred packing (B(z;,r)); of E, it follows from Holder’s inequality
that

S w (B )t < (3 (B n)n) " (Y a(Bn)e)”

i
< NP ()" N2 (Er)™.
Taking supremum over all centred packings (B(z;,r)); of E now gives

NbaHee (B ) < N (E; )" N (B; ).
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Using this inequality and Lemma 4.1, we conclude that

L 1 N£1Q1+t2tI2 E:
dim;1(é1+t2q2 (E) — limsup 0og ( 77")
' NG —logr
q1 . t1 nT92 . to
<l sup BV (B ) N ()"
™0 —logr
log NIY(E: log N2 (E:
— limsup <t1 og Nx' ( ,7")+t2 og N*( ,7")>
™0 —logr —logr

log NA (E; log N*(E;
< ¢1 limsup log N (B ) + to lim sup log N (E: 1)
™0 —logr N0 —logr
(2) This follows immediately from the definitions. m

PROPOSITION 4.3. Let 7 be a Borel probability measure on R® with com-
pact support K. If w is doubling, then

{:u € P(K) ‘ ?WJOC(Q) < diimsz(/,L) fOT‘ all q}

= (V{1 € P(K) | Trjoclg) < dimi, g (1)}
qeQ
Proof. 1t is clear that the left-hand side is contained in the right-hand
side, so it suffices to prove the other inclusion. We therefore fix u € P(K)
such that

(41) ?ﬂ‘,'OC(Q) < miﬂ',B(M)

for all ¢ € Q. We must now prove (4.1) holds for all ¢ € R. Fix ¢ € R and
a set ' C K with u(E) > 0. Next, choose a sequence (g,), C Q such that
gn "\ ¢. Since g, > ¢ for all n and the function p — 7 oc(p) is decreasing

(by Lemma 4.2), we conclude that

(42) ?ﬂ,loc(Q) < hn}linf?ﬂ,loc(QH)-

Next, since ¢, € Q, it follows from (4.1) that

(4.3) Trjoc(dn) < dimyy g(n) = inf dimp’g(F) < dimyg(E).
’ ) M(F)>O ) )

Finally, since ¢, — ¢ and the function p — dimin(E) is continuous (by
Lemma 4.2), we conclude that

(4.4) lim inf dim}'5(E) = dim;, g(E).
Combining (4.2)—(4.4) gives

Trloc(q) < limninf Trloc(qn) < limninf diimg:B(E) = diimgr’B(E).
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Taking infimum over all E C K with u(E) > 0 yields

?WJOC(q) < inf dlim;]r B(E) - MZW B(M) u
n(E)>0 ’ ’

We can now prove part (2) in Theorem 1.3. Let
I'={peP(K)| Trioclq) < dimi, g(p) < dimg(u) < 7r(q) for all g}.
To prove that I' is co-meagre in P(K), for ¢,t,u € R write
If,={pePE)[t< inf dimgg(E)},
’ w(E)>u ’

and observe that it follows from Theorem 1.2 and Proposition 4.3 that
I'= {:u S P(K) | ?W,IOC(Q) < diiﬂliﬂg(,&) for all q}

= (Ve PE) | Trjocle) < inf dim7 g(E)}
w(E)>0

q€Q
=N N wePults i EmlgEi=) ()
geQ  tueQ R g€Q  tueQ
t<F7r,|oc(Q) t<F7r,|oc(q)
u>0 u>0

Hence it suffices to prove that Fgu is co-meagre in P(K) for all ¢,t,u € Q

with ¢t < Troc(q) and u > 0. We fix such ¢,t,u and divide the proof into

two cases.
CASE 1: Trjoc(q) =infp dim? g(E). Since ¢t <7rjoc(q) =infp dim} g(E),
we conclude that

I, = {peP) [t< inf dmla(E)} =PK),
’ w(E)>u ’

and the set I}, is therefore (trivially) co-meagre in P(K).
CASE 2: Troc(q) > infg MZ’B(E). In order to show that I, is co-

meagre in P(K), it clearly suffices to construct a set M, C P(K) satisfying
the following conditions:
(2) M{, is dense in P(K);
(3) Mgu is G5 in P(K).
For all z € K and all s > 0, it follows from Lemma 4.1 that
t < Trloc(q) < m?T,B,loc(l’; K) < MZ,B(B(% s) N K)
log NX(B K;
oy 10N (Bl 5) N Kir)
N ~logr
and we can therefore choose r; s < s such that
- log NA(B(z,8) N K;ry.s)
—logry s

)
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This implies that
(4.5) NI B(z,s) N K;rys) > r;fg
We may also choose a centred packing (B(y,7z,s))yeA, . of B(x,s) N K such
that
g~ L

(4.6) > w(By,res)? > S NA(B(w,8) N K;7as).

yeAm,s
Now define the measure y, s € P(K) by

1
Ha,s = T(B(y,rz,s))%0y.
ZyeAz,s T(B(Y,72,s))? yezA;S Y

Next, for each F' C K with |F| < oo, we define pps € P(K) and rps > 0 by

1 Z .
ILLF,S = ‘F‘ M$,87 TF,S = Ixnelg rm,s-
el

Let (sp)n be a sequence of real numbers with s, > 0 for all n and s, — 0.
Finally, for a positive integer n, we put

Gn=|J Blurs,, u/6)rrs,),
PR
|F|<oo

and define the set M{, C P(K) by
M, =()Gn.
n
Below we show that M}, has the above three properties (1)—~(3) (Propositions
4.4-4.7).
PROPOSITION 4.4. M, CTY,.
Proof. Let p € M{,. To show that u € I}, i.e. we must show that

t < inf dim,g(E).
< B, Tmee(®)

We therefore fix F C K with pu(F) > u. We must prove that
t < dim, g(E).

Since p € [,, Gn, for each positive integer n there is a positive integer my,
and a set F,, C K with |F,| < oo such that

u
L(/"L’ lan,Smn) g ngn,smn .

Write p, = %rpmsmn and let E, denote the p,-neighbourhood of F, i.e.
E, ={y € K| dist(z, E) < pn}.
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CLAIM 1. We have
u _
Z W(B(ya TfEn,Smn ))q 2 eryf,smn .
Y€z, simy, NER
Proof of Claim 1. Define f, : K — R by

fnly) = max(pp — dist(y, En), 0).
It is clear that f,, € Lip(K), and we therefore conclude that

L(N7 NFn,smn) > an dp — S In dﬂFn,smn > S Pn dp — X Pn dﬂFn,smn
E E,

= pni(E) — PrlbFy smy, (En),
and so

1 1 u U
MFn75mn (En) Z IU’(E) - ?L(Mﬂ /’LFn,Smn) > U= 76TFn75mn =35

n pn 2

By the definition of up, s, , this implies that

1 U
] 20 M () = i, (Ba) > 5.
yeFy,
and so there is an element x,, € F}, such that
U
Hxn75mn (En) > 5

By the definition of g, s, , this implies that

1 Z 7T(B(3/,Txn,smn))q

ZyE/lxn,smn T(B(Y: Twn,5m, ) YE€Azp 5m,, NEn

u
= lzp,5m, (En) > 9"
We see from this inequality and (4.5) and (4.6) that
u
Z 71'(B(3/7 T:cn,smn))q Z 5 Z W(B(y) Txn,smn))q

yeAﬂCn,Smn OETL yeAmn,Smn

v

9 5]\77?(3(33”, Smn) NV KTy 500, )
U ot

> AT smn
This completes the proof of Claim 1.

Next, for each y € E,,, we may choose x, € E such that
1
|y - l‘y| < p’I’L = 7TFn,Sm S 7T$n:3mn‘
3 » =3

CraM 2. The family (B(zy, %mn,smn))yeAm,s7nn nE, 1S a centred packing
of E.
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Proof of Claim 2. It is clear that y, € E for all y € Ay, 5, N Ey.
Next, we show that |z, — xy,| > %TmmSm” for all y1,y2 € Az, s,,, N En with
y1 # y2. Indeed, if there are yi,y2 € Ay, 5, N E, with y1 # yo such that
|y, — Xy, | < %rmn’smn then

Smp,

ly1 — 12| < |y — $y1| + |xy1 - $y2| + |xy2 ]

1 1 _ 4
S §7a$n75mn + 3rxn73mn + §7arn78mn - grwnysmn S 2T1n,smn7

contradicting the fact that (B(y,72,,sm, ))yes, o, 1S @ packing. This com-
pletes the proof of Claim 2.

Since 7 is doubling it is easily seen that there is a constant ¢y > 0 such
that

m(B(y,4r))
m(B(y,r)) ~

for all y € suppm = K and all 7 > 0. We now deduce from Claim 2 and (4.7)
that

(4.7)

(4.8)  NIg(E;3720,5m,)
Z Z W(B(l'w %T‘wnysmn))q

yeAxn,smn NER

( Z W(B(xzn %Tl'n,Smn))q for ¢ <0,

yeAznysmn QEW

N B(zy, ir q
Z <7T( ( Yy i xn,Smn))> W(B(.Ty,%rxmsmn))q for ¢ > 0
Y€ A, 5my, NEn T(B(Ty; 372n.5mn )

( Z 7T(B(:I:y7 %T‘wnysmn))q fOI“ q é 0)

yEAa;n,smn NEn

1
Z T(B(zy, 372,,5m,))" for g > 0.

cd
0 yeAzn,smn QE”

Y

However, ify € A NEy, then |y —x,| < %Tl'nysmn7 whence B(y, 7z, sm,,)
C B(zy, %rmn,smn) and B(zy, %rmn’smn) C B(Y,T2p,5m,,)- 1t follows from this
and (4.8) and Claim 1 that

Tn,Smy

Z m(B(y, Tmn,smn))q for ¢ <0,
YE€EAzp 5m,, NEn
N;x]',B(E§ %Txn,smn) > 1

CTI Z W(B(yu Txmsmn))q for q > O;
0 yeAmn,smn NE,
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> Z W(B(yvrxn,smn))q

_ 1 —t
4 TnsSmn - C2(§Tﬂfn,8mn) )

where ¢; = min(1,1/c¢}) and ¢2 = ¢;u3~"/4. We immediately conclude from
this and Lemma 4.1 that

— log N (E;
dim, g(F) = limsup M
™0 —logr

1Og Nq (E’ 3T27n,8mn)

> lim sup
n — log 5 % Smn
logco(37 —t
> lim sup g ( Ensma) =t.
n - log §7q$n,smn

This completes the proof of Proposition 4.4. =

PROPOSITION 4.5. If K does not have any isolated points and q € R,
then M{, is dense in P(K).

Proof. For F C K with |F| < co write

= (7 o

zeF
We first prove that if s > 0, then

(4.9) L(pr, prs) < s
Indeed, writing wy y = m(B(y,74,s))? for x € F and y € A, 5, we have

(4.10)  L(pp,prs) = sup ‘SfduF—SfdMF,s

feLip(K)
1
= sup ' wx,yf(y)‘
e o |TF Z I ZF z ey 2o
1
<  sup ‘ Z Ziw Z wx7yf(y)'
fELlp xeF yE/lz R Y yeAz,s
1
sup Z Wy f(T) — 27“) Z wx,yf(y)‘
yeA PV yedss YEAg Y yeds.s
< sup = D, weylf(@) - ).
f€L1p(K ‘ 2€F We,y YENL s
yeA
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However, if f € Lip(K) and = € F and y € A, then [f(z) — f(y)| <
|z — y| < s. It follows from this and (4.10) that
Z Wy yS = S.

L(pp,prs) < sup Z
fGLip(K xGF ZyGAT s Ty YEAL 5
This completes the proof of (4.9).

We now turn to the proof of Proposition 4.5. Since P(K) is a complete
metric space and Mgu =),, Gn where each G, is open, it suffices to show
that G, is dense for all n. We therefore fix a positive integer n. Next, let
€ P(K) and r > 0. We must find a measure A € G,, such that L(u, \) <r
Since K does not contain isolated points we may choose a set F' C K with
|F'| < oo such that L(u, pp) < r/2. Next, since s, — 0, we may choose a
positive integer mg with mg > n such that s,,, < /2. Now put A = Fismg -
Then clearly, by (4.9),

1
L(p A) < L(ps o) + L(prs 1, ) < 5

and A = IU‘F,SmO € B(MF75m07 (U/6>7'F75m0) g Gn u
PROPOSITION 4.6. If ¢ <0, then Mgu is dense in P(K).

+Sm0§7+7:r

Proof. By Proposition 4.5, it suffices to prove that K does not have
isolated points. Indeed, if x( is an isolated point of K, it is not difficult to
see that dimiB,loc(:co; K) =0, and so

(4.11) Troc(q) < 0.

Furthermore, since ¢ < 0, it is also not difficult to see that dim?T,B(E) >0
for all £ C K, whence

(4.12) 0< i%fﬁan(E).
Combining (4.11) and (4.12) shows that

(4.13) Trloc(q) < i%fdiim;B(E),
contrary to the assumption of Case 2.

PROPOSITION 4.7. M{  is Gs in P(K).
Proof. This is clear. m
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