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Function spaces and shape theories

by

Jerzy Dydak (Knoxville, TN) and Sławomir Nowak (Warszawa)

Abstract. The purpose of this paper is to provide a geometric explanation of strong
shape theory and to give a fairly simple way of introducing the strong shape category
formally. Generally speaking, it is useful to introduce a shape theory as a localization at
some class of “equivalences”. We follow this principle and we extend the standard shape
category Sh(HoTop) to Sh(pro-HoTop) by localizing pro-HoTop at shape equivalences.
Similarly, we extend the strong shape category of Edwards–Hastings to sSh(pro-Top) by
localizing pro-Top at strong shape equivalences. A map f : X → Y is a shape equivalence
if and only if the induced function f∗ : [Y,P ] → [X,P ] is a bijection for all P ∈ ANR.
A map f : X → Y of k-spaces is a strong shape equivalence if and only if the induced
map f∗ : Map(Y, P ) → Map(X,P ) is a weak homotopy equivalence for all P ∈ ANR.
One generalizes the concept of being a shape equivalence to morphisms of pro-HoTop
without any problem and the only difficulty is to show that a localization of pro-HoTop
at shape equivalences is a category (which amounts to showing that the morphisms form
a set). Due to peculiarities of function spaces, extending the concept of strong shape
equivalence to morphisms of pro-Top is more involved. However, it can be done and we
show that the corresponding localization exists. One can introduce the concept of a super
shape equivalence f : X → Y of topological spaces as a map such that the induced map
f∗ : Map(Y, P ) → Map(X,P ) is a homotopy equivalence for all P ∈ ANR, and one can
extend it to morphisms of pro-Top. However, the authors do not know if the corresponding
localization exists. Here are applications of our methods:

Theorem. A map f : X → Y of k-spaces is a strong shape equivalence if and only if
f × idQ : X ×k Q→ Y ×k Q is a shape equivalence for each CW complex Q.

Theorem. Suppose f : X → Y is a map of topological spaces.

(a) f is a shape equivalence if and only if the induced function f∗ : [Y,M ] → [X,M ]
is a bijection for all M = Map(Q,P ), where P ∈ ANR and Q is a finite CW complex.

(b) If f is a strong shape equivalence, then the induced function f ∗ : [Y,M ]→ [X,M ]
is a bijection for all M = Map(Q,P ), where P ∈ ANR and Q is an arbitrary CW complex.

(c) If X, Y are k-spaces and the induced function f∗ : [Y,M ]→ [X,M ] is a bijection
for all M = Map(Q,P ), where P ∈ ANR and Q is an arbitrary CW complex , then f is a
strong shape equivalence.
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0. Introduction. K. Borsuk (see [Bo]) introduced the shape category
of subcompacta of the Hilbert cube Q as follows: a morphism f : X → Y
is the homotopy class of a sequence {fn : X → Q}n≥1 of maps with the
property that for any neighborhood U of Y there is m so that fn(X) ⊂ U
for all n > m. Two sequences {fn : X → Q}n≥1 and {gn : X → Q}n≥1 are
homotopic if, for each neighborhood U of Y , there is m so that fn(X) ∪
gn(X) ⊂ U for all n > m and fn : X → U is homotopic to gn : X → U in U
for all n > m. Morita and Mardešić generalized this construction to arbitrary
topological spaces by looking at fs : X → Ys, s ∈ S, where {Y → Ys}s∈S
is a certain “resolution” of Y (see [M-S]). An alternative description of a
shape morphism φ : X → Y is as a natural transformation from [Y, ?] to
[X, ?]. That is, given a homotopy class f : Y → P ∈ ANR, φ(f) : X → P is
a homotopy class so that α ◦ φ(f) = φ(g) whenever α : P → Q ∈ ANR and
g = α ◦ f .

Shape theory has been very useful in tackling many geometrical problems
(see [D-S1] and [M-S]). However, it is plagued with some problems. For ex-
ample, it is unknown if a map f : X → Y of compacta which induces a shape
isomorphism, also induces a shape isomorphism f : (X,x0) → (Y, f(x0))
in the pointed category (see [D2]). This problem was remedied by Quigley
(see [Q1,2]) who introduced what is now known as the strong shape category
of compacta. Instead of a sequence {fn : X → Q}n≥1 of maps one considers
a continuous family of maps ft : X → Q, t ≥ 1, arising from a map F :
X × [1,∞)→ Q via ft(x) = F (x, t) for all (x, t) ∈ X × [1,∞). One requires
that for any neighborhood U of Y there is m so that ft(X) ⊂ U for all t > m.
Two sequences arising from F : X × [1,∞) → Q and G : X × [1,∞) → Q
are homotopic if there is a homotopy H : X× [1,∞)× I → Q joining F and
G so that for any neighborhood U of Y there is m so that H(x, t, s) ⊂ U for
all t > m, all s ∈ I, and all x ∈ X. There are ways to extend that procedure
to arbitrary topological spaces (see [Gu1]) but they are all quite complex.
In this paper we offer a new way of looking at the strong shape category
of topological spaces. Recall that a map f : X → Y is a shape equivalence
if and only if the induced function f ∗ : [Y, P ] → [X,P ] is a bijection for
all P ∈ ANR (see the alternative description of the shape category above).
Since [A,P ] = π0(PA) for most spaces A (for example, if A is a k-space),
one might consider the following generalizations of shape equivalences:

1. f : X → Y is a strong shape equivalence if f∗ : PY → PX is a weak
homotopy equivalence for all P ∈ ANR.

2. f : X → Y is a super strong shape equivalence if f∗ : PY → PX is a
homotopy equivalence for all P ∈ ANR.

In the case of compact spaces the above two concepts are identical and,
in the case of compacta, one can create a new category by formally inverting
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all strong shape equivalences. This is known as localization (see [G-Z]) of the
homotopy category of compacta at strong shape equivalences. It turns out
(see 2.4) that this localization is isomorphic to the strong shape category
of compacta. One might introduce strong shape equivalences between pro-
spaces as in [D-N]. However, one faces the difficulty of proving that the
corresponding localization exists (in the case of compacta one deals with a
small category and any localization can be constructed as in [G-Z]). In this
paper we offer a simplification of that step. Recall that the concept of a
homotopy equivalence can be introduced in two steps:

(a) An inclusion i : A → X of topological spaces is called an SDR map
(A is a strong deformation retract of X) if there is a homotopy Ht : X → X
rel. A starting at idX and ending at a retraction r : X → A (sometimes
i : A→ X is called a trivial cofibration in this case).

(b) f : X → Y is a homotopy equivalence if the inclusion X → M(f)
from X to the mapping cylinder of f is an SDR map.

One can dualize (a) using trivial fibrations and arrive at the concept of
an SSDR map f : X → Y (X is a strong shape deformation retract of Y ) by
requiring that the induced map f ∗ : PY → PX be a trivial Serre fibration.
An equivalent condition is to require that any commutative diagram

X Map(K,P )

Y Map(L,P )

a //

f

��
i∗

��
b //

has a filler Y → Map(K,P ) provided K is a finite CW complex, L is a
subcomplex of K, i : L → K is the inclusion, and P ∈ ANR. It turns out
that the above condition generalizes easily to pro-maps and one verifies that
a level pro-map f : X → Y is a strong shape equivalence if and only if the
inclusion X →M(f) is an SSDR pro-map. Finally, we construct a resolution
X → R(X) for any pro-space X which is an SSDR pro-map. This seems to
be a resolution which is stronger than those previously known (see [M-S]).
Using that resolution one proves easily that the localization of π(pro-Top)
at strong shape equivalences exists and is isomorphic (when restricted to
topological spaces) to the strong shape category of topological spaces.

We offer another simplification of a concept from strong shape theory,
namely, the strong homology groups. Following our approach to the strong
shape category one deduces easily that, for any topological space X, there
exists a strong shape morphism s : K → X so that K is a CW complex and s
induces a bijection s∗ : Mor(L,K)→ Mor(L,X) of strong shape morphisms
for any CW complex L. This is in direct analogy to the singular complex
of a space X and we conjecture that the cellular homology of K represents
the strong homology of X.
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1. Localizations and adjoint functors. Given a small category C
(i.e., a category whose objects and morphisms form a set) and a class Σ
of morphisms of C, Gabriel and Zisman [G-Z] described a general way of
constructing the localization Σ−1C of C at Σ together with a functor lΣ :
C → Σ−1C so that lΣ(f) is an isomorphism for all f ∈ Σ. The functor lΣ is
universal for all functors inverting the elements of Σ. That means, given any
functor F : C → D such that F (f) is an isomorphism of D for all f ∈ Σ,
there is a unique functor G : Σ−1C → D with F = G ◦ lΣ . Here is a short
description of the construction. First, one takes the diagram scheme of C
(the directed graph with vertices being the objects of C and with directed
edges corresponding to the morphisms of C) and enlarges it to T by adding
the “inverses” of elements of Σ. Let f−1 be the “inverse” of f ∈ Σ. One
takes the category Pa(T ) of paths in T and Σ−1C is its quotient under
obvious relations:

(a) the path (f, g) is equal to (f ◦ g) if the composition is defined,
(b) the path (f, f−1) is equal to (idY ) if f ∈ Σ and f : X → Y ,
(c) the path (f−1, f) is equal to (idX) if f ∈ Σ and f : X → Y ,
(d) the path (idX) is equal to the identity of Pa(T ) at X for all objects

X of C.

Clearly, the assumption of C being small is needed only to conclude
that the morphisms from X to Y in Σ−1C form a set. In this section we
will show that the Gabriel–Zisman construction yields a category in the
following special case: there is a full subcategory D of C and a functor
F : C → D which is left-adjoint (respectively, right-adjoint) to the inclusion
functor i : D → C so that F (f) is an isomorphism of D if and only if f ∈ Σ.
This is probably well known as it simply generalizes Proposition 1.3 of [G-Z]
(see p. 7) but is of such importance to our construction of the strong shape
category that we decided to provide the essential details.

1.1. Definition. Suppose D is a full subcategory of C and X is an
object of C. A D-reflection rX : X → F (X) (respectively, a D-coreflection
rX : F (X) → X) is a morphism so that F (X) is an object of D and the
induced function r∗X : Mor(F (X), P ) → Mor(X,P ) (respectively, (rX)∗ :
Mor(P,F (X))→Mor(P,X)) is a bijection for all objects P of D.

1.2. Theorem. Suppose D is a full subcategory of C and Σ is the class
of all morphisms f : X → Y of C such that the induced function f∗ :
Mor(Y,Z) → Mor(X,Z) (respectively , f∗ : Mor(Z,X) → Mor(Z, Y )) is a
bijection for all objects Z of D. If , for every object X of C, there is a D-
reflection rX : X → F (X) (respectively , a D-coreflection rX : F (X)→ X),
then:
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(a) There is a functor F : C → D which is left-adjoint (respectively ,
right-adjoint) to the inclusion i : D → C.

(b) rX ∈ Σ for each object X of C, and F (f) is invertible if and only
if f ∈ Σ.

(c) Any path from X to Y is equivalent to the path ((rY )−1, h, rX) for
some morphism h : F (X) → F (Y ) and that morphism is the same for
equivalent paths.

(d) The localization Σ−1C exists.
(e) There is a functor F ′ : Σ−1C → D so that F = lΣ ◦ F ′ and F ′ is

an equivalence of categories.

Proof. (a) Given a morphism f : X → Y of C, one looks at rY ◦f : X →
F (Y ) (respectively, f ◦ rX : F (X) → Y ) and one picks the unique F (f)
so that rY ◦ f = F (f) ◦ rX (respectively, f ◦ rX = rY ◦ F (f)). One easily
checks that in that way one gets a functor which is left-adjoint (respectively,
right-adjoint) to i : D → C.

(b) Notice that rX ∈ Σ by the definition of D-reflections (respectively,
D-coreflections). If f ∈ Σ, then F (f)∗ : Mor(F (Y ), Z) → Mor(F (X), Z)
(respectively, F (f)∗ : Mor(Z,F (X)) → Mor(Z,F (Y ))) is a bijection for
all objects Z of D, which means that F (f) is invertible. If F (f) is in-
vertible, then f ∈ Σ, as rY ◦ f = F (f) ◦ rX (respectively, f ◦ rX =
rY ◦ F (f)).

(c) Notice that one can create F (p) for any path p in the diagram scheme
T associated with C and Σ. Since rY ◦g = F (g)◦rX for any morphism g of C,
we see that the path (g−1) is equivalent to ((rX)−1, F (g)−1, rY ) if g ∈ Σ,
and the path g is equivalent to ((rY )−1, F (g), rX) for all g : X → Y . Thus,
any path from X to Y is equivalent to ((rY )−1, h, rX) for some morphism
h : F (X) → F (Y ) and that morphism is the same for equivalent paths. F ′

is created using F (p) for any path p.

Our main illustration of Theorem 1.2 is the case of weak homotopy equiv-
alences: A map f : X → Y of topological spaces is defined to be a weak
homotopy equivalence if it induces a bijection f∗ : [P,X] → [P, Y ] for all
CW complexes P . For each space X there is a map iX : Sin(X) → X (we
will call it the singular complex of X) from a CW complex Sin(X) which is a
weak homotopy equivalence. Thus, there is a functor Sin : HoTop→ HoCW
from the homotopy category of topological spaces to the homotopy cate-
gory of CW complexes which is right-adjoint to the inclusion HoCW →
HoTop and Sin(f) is an isomorphism if and only if f is a weak homotopy
equivalence. Thus, one can localize HoTop at the class of weak homotopy
equivalences and the resulting category Sing (see [Ed-H]) is equivalent to
HoCW.
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Here is a quick outline of a construction of the singular complex of X
which we need in order to point out the differences and similarities with
shape theory. First, the 0-cells of Sin(X) are declared to be points of X.
Suppose the n-skeleton Sin(X)(n) of Sin(X) has been constructed together
with a map iX,n : Sin(X)(n) → X. Consider all commutative diagrams

(D)

∂In+1 Sin(X)(n)

In+1 X

f //

i

��
iX,n

��f ′ //

where f , f ′ are maps and i is the inclusion. For each diagram attach an
(n+ 1)-cell to Sin(X)(n) along f to obtain Sin(X)(n+1) and extend iX,n to
iX,n+1 : Sin(X)(n+1) → X using the map f ′ for the (n+ 1)-cell determined
by the diagram (D). Thus, one gets iX : Sin(X)→ X which is a trivial Serre
fibration in the following sense: any commutative diagram

L Sin(X)

K X

f //

i

��
iX

��f ′ //

has a filler K → Sin(X) provided K is a CW complex, L is a subcomplex
of K, i : L → K is the inclusion, and f is a cellular map (i.e., it sends
the n-skeleton of L to the n-skeleton of Sin(X) for each n). In particular,
iX : Sin(X)→ X is a weak homotopy equivalence.

Thus, the reason for existence of the singular complex of topological
spaces is that CW complexes are preserved under direct limits in which
bonding maps are inclusions.

The concept of shape equivalence is dual to that of weak homotopy
equivalence. Thus, f : X → Y is a shape equivalence if and only if the
induced function f∗ : [Y,Q]→ [X,Q] is a bijection for all CW complexes Q.
Is there a dual concept to the singular complex? Well, it turns out that
there are spaces X such that there is no map f : X → Q which is a shape
equivalence and Q is a CW complex. One of the simplest examples is the
dyadic solenoid DS. If f : DS→ Q were a shape equivalence of DS to a CW
complex Q, then f(DS) would be contained in a finite subcomplex K of Q
so that [K,P ] → [DS, P ] would be a surjection for all CW complexes P .
One gets a contradiction by picking P = S1 in which case [Y, P ] is the first
cohomology of Y and it is well known that the first cohomology of DS is
not finitely generated. The general reason for this failure is that if one tries
to dualize the construction of the singular complex, then one faces inverse
limits of CW complexes and the class of CW complexes is not preserved
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under inverse limits. It turns out that the best way to avoid this obstacle
is to enlarge the category of CW complexes to a category which has inverse
limits. The general construction is that of pro-categories (see [M-S]). Thus,
any category C can be embedded as a full category into a category pro-C
which has inverse limits. Now, if one dualizes the construction of the singular
complex, one arrives at a morphism X → ShS(X) of pro-HoANR (it is more
convenient to switch to ANRs while doing shape theory, and every CW
complex is homotopy equivalent to an ANR) which is a shape equivalence.
That is how shape theory is described in [D-S1] or [M-S]. In our paper
we will make one more step: namely, we will construct shape equivalences
iX : X → ShS(X) (called shape systems of X) for any object of pro-HoTop
so that ShS(X) is an object of pro-HoANR. One reason is that if we allow
the shape systems of topological spaces to be inverse systems, then it makes
sense, for symmetry reasons, to enlarge the class of topological spaces to
the class of inverse systems in HoTop. The second, and more important,
reason is that we can apply Theorem 1.2 immediately and construct the
localization Sh(pro-HoTop) (called the shape category) of pro-HoTop at
shape equivalences which is equivalent to pro-HoANR.

So what is the strong shape category? We will show that a map f :
X → Y of k-spaces is a strong shape equivalence if and only if the in-
duced map f∗ : Map(Y, P ) → Map(X,P ) is a weak homotopy equiva-
lence for each P ∈ ANR (equivalently, for each CW complex P ). Since
π0(Map(Z,P )) = [Z,P ] for k-spaces Z, one sees that strong shape equiva-
lences are indeed a subclass of shape equivalences. Since, outside of k-spaces,
the compact-open topology on function spaces does not have good proper-
ties, one has to define strong shape equivalences in an alternative way. The
general principle is to replace maps from K to Map(X,P ) by maps from
K × X to P and mimic the property of f∗ : Map(Y, P ) → Map(X,P ) be-
ing a weak homotopy equivalence that way. This is done in the paper and
we show that one can construct the strong shape category sSh(pro-Top)
by localizing π(pro-Top) (the simplest homotopy category on pro-Top) at
strong shape equivalences. This is done by constructing the strong shape
system iX : X → sShS(X) of every object X of pro-Top with sShS(X) be-
ing an object of SSDR-FIBRANT which is a full subcategory of π(pro-Top)
so that i∗X : Mor(sShS(X), P ) → Mor(X,P ) is a bijection for all objects P
of SSDR-FIBRANT. There is a natural functor from sSh(pro-Top) to the
homotopy category Ho(pro-Top) of [Ed-H]. We will provide an example of
a shape equivalence which is not a strong shape equivalence in the form of
a morphism of inverse sequences of CW complexes. In particular, one gets
a morphism of tow(CW) which induces an isomorphism of tow(HoCW) but
the induced morphism of Ho(tow(CW)) is not an isomorphism. This solves
problems 5.28 (p. 175) and 9.3 (p. 279) of [Ed-H].
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2. Strong shape category for compacta. In this section we assume
the following definition (the function spaces are equipped with the compact-
open topology):

2.1. Definition. A map f : X → Y of k-spaces is a strong shape
equivalence if the induced map f∗ : Map(Y, P ) → Map(X,P ) is a weak
homotopy equivalence for each P ∈ ANR (equivalently, for each CW com-
plex P ).

We start with this definition as it is the easiest way to introduce strong
shape theory to any topologist. It will be seen later that 2.1 is a special
case of strong shape equivalences as defined in [D-N] (see 3.8 in this pa-
per).

Using this definition, we will show that the homotopy category of com-
pacta localized at strong shape equivalences yields a category equivalent
to the strong shape category introduced by Edwards and Hastings [Ed-H].
First, let us prove the following:

2.2. Theorem. Suppose A is a closed subset of a compactum X. The
following conditions are equivalent :

(A) The inclusion i : A→ X of compacta is a strong shape equivalence.
(B) i∗ : Map(X,P )→ Map(A,P ) is a trivial Serre fibration for all P ∈

ANR.
(C) Any map from A to P ∈ ANR extends over X, and any map from

X × {0, 1} ∪ A× I to P ∈ ANR extends over X × I.

Proof. Notice that i∗ : Map(X,P )→ Map(A,P ) is a Serre fibration for
any P ∈ ANR. It is simply a reformulation of the Homotopy Extension
Theorem. Indeed, if

K × {0} Map(X,P )

K × I Map(A,P )

f //

j

��
i∗

��
g //

is a commutative diagram, where K is a finite CW complex and j is the
inclusion, then by switching to maps f ′ : K × {0} × X → P and g′ :
K × I × A → P one finds that f ′|K × {0} × A = g′|K × {0} × A. Thus,
by the Homotopy Extension Theorem, there is a map h : K × I ×X → P
extending both f ′ and g′. The map h induces H : K × I → Map(X,P )
which is an extension of f and which is a lift of g. This proves (A)⇒(B)
as a Serre fibration between metrizable spaces which is a weak homotopy
equivalence must be a trivial Serre fibration (see 9.2).
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Suppose any map from A to P ∈ ANR extends over X and any map
from X×{0, 1}∪A×I to P ∈ ANR extends over X×I. Our goal is to show
that, for any P ∈ ANR, the induced map i∗ : Map(X,P )→ Map(A,P ) is a
trivial Serre fibration. That is, any commutative diagram

(D)

L Map(X,P )

K Map(A,P )

f //

j

��
i∗

��
g //

where K is a finite CW complex, L is a subcomplex of K, and j is the
inclusion, has a filler f ′ (i.e., an extension f ′ : K → Map(X,P ) of f so
that i∗ ◦ f ′ = g). In particular, that implies that i∗ is a weak homotopy
equivalence. Notice that if every map from A to P ∈ ANR extends over X,
then it means that i∗ : Map(X,P ) → Map(A,P ) is a surjection, which is
the same as verifying the existence of a filler in diagrams (D), where K is of
dimension at most 0. In the same manner, if every map fromX×{0, 1}∪A×I
to P ∈ ANR extends over X × I, then it amounts to saying that there is
a filler in diagram (D) if K = I and L = ∂I. We can summarize both
conditions:

(1) any map from A to P ∈ ANR extends over X,
(2) any map from X × {0, 1} ∪ A× I to P ∈ ANR extends over X × I

as equivalent to existence of a filler in diagrams (D), where K is a finite CW
complex of dimension at most 1. In particular, (B)⇒(C).

(C)⇒(B). To show that i∗ is a trivial Serre fibration it suffices to show
that the homotopy groups of each fiber F of i∗ are 0 (see 9.2). Suppose S
is the n-sphere, n ≥ 1, and a : S → F is a map. Let c : S → F be a con-
stant map. We need to show that there is a homotopy H : S × I → F
joining a and c. Let G : S × I → Map(A,P ) be the constant homo-
topy between i∗ ◦ a and i∗ ◦ c. By switching to Map(X,Map(S, P )) and
Map(A,Map(S, P )) one gets a map f : ∂I →Map(X,Map(S, P )) and a map
g : I →Map(A,Map(S, P )) so that g|∂I = i∗ ◦ f . Since Map(S, P ) ∈ ANR,
there is a lift G : I → Map(X,Map(S, P )) of g which is an extension of f .
The map G induces a map H : S × I → Map(X,P ) which is a homotopy
from a to c with values in F .

(B)⇒(A) is obvious.

Since the homotopy category HoCM of compacta is equivalent to a small
category, namely its full subcategory whose objects are closed subsets of
the Hilbert cube, one can localize HoCM at any class of morphisms. In
particular, the following definition makes sense.
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2.3. Definition. The strong shape category of compacta sSh(CM) is
defined to be the localization of the homotopy category HoCM of compacta
at the class of all strong shape equivalences.

2.4. Theorem. sSh(CM) is equivalent to the strong shape category in-
troduced by Edwards–Hastings.

Proof. Calder and Hastings [C-H] proved that the strong shape category
of compacta sSHEH(CM) introduced by Edwards and Hastings [Ed-H] is
equivalent to the localization of HoCM at all homotopy classes of inclusions
[i] such that i : A → X induces an isomorphism of sSHEH(CM). Dydak
and Segal [D-S2] proved that i induces an isomorphism of sSHEH(CM) if
and only if every map f : A → P ∈ ANR extends over X and every map
H : X × {0, 1} ∪ A × I → P ∈ ANR extends over X × I. By Theorem 2.2,
sSHEH(CM) is equivalent to sSH(CM).

3. Strong shape equivalences in pro-Top. One has a natural exten-
sion of the notion of the shape equivalence to morphisms of pro-HoTop:

3.1. Definition. A morphism f : X → Y of pro-HoTop is a shape equiv-
alence if the induced function f∗ : Mor(Y, P ) → Mor(X,P ) is a bijection
for all P ∈ ANR.

3.2. Proposition. f : X → Y is a shape equivalence in pro-HoTop if
and only if the induced function f∗ : Mor(Y, P )→ Mor(X,P ) is a bijection
for all objects P of pro-HoANR.

Proof. This follows easily from the fact that any object P = {Pa, pba, A}
of pro-HoANR is the inverse limit of projections P → Pa, a ∈ A.

To shorten the terminology we will make the following convention.

3.3. Definition. An object X of pro-Top is called a pro-space and a
morphism of pro-Top is called a pro-map.

In the proof of Theorem 2.2 we could see that an inclusion i : A→ X is
a strong shape equivalence of compacta if and only if every diagram

(D)

L Map(X,P )

K Map(A,P )

f //

j

��
i∗

��
g //

has a filler f ′ : K → Map(X,P ) for all finite CW complexes K and all
subcomplexes L of K where j is the inclusion. The existence of a filler f ′ for
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(D) is equivalent to the existence of a filler in the following adjoint diagram:

(D′)

A Map(K,P )

X Map(L,P )

g′ //

i

��
j∗

��
f ′ //

Diagram (D′) is much more appropriate for pro-spaces than diagram (D).

3.4. Definition. A pro-map f : X → Y is called an SSDR pro-map
provided any commutative diagram in pro-Top

X Map(K,P )

Y Map(L,P )

a //

f

��
i∗

��
b //

has a filler Y → Map(K,P ) whenever K is a finite CW complex, L is a
subcomplex of K, i : L→ K is the inclusion, and P ∈ ANR.

F. Cathey introduced SSDR inclusions of metrizable spaces in a way
equivalent to the following statement (see [C2], Theorem 1.2): a closed in-
clusion f : X → Y of metrizable spaces is an SSDR map if any commutative
diagram

X E

Y B

a //

f

��
p

��
b //

has a filler provided p : E → B is a Hurewicz fibration of ANRs. One
is tempted to define SSDR pro-maps in an analogous way. However, the
authors faced difficulties with constructing SSDR pro-maps sX : X → X ′

so that X ′ is a pro-ANR for arbitrary pro-space X (see Section 4). Thus,
instead of considering arbitrary Hurewicz fibrations p : E → B, we restrict
ourselves to fibrations i∗ : Map(K,P )→Map(L,P ), where K is a finite CW
complex, L is a subcomplex of K, i : L→ K is the inclusion, and P ∈ ANR.

Notice that SSDR pro-maps generalize a variety of useful notions from
general topology (see [D4] and [Se1,2]). In particular, every SSDR map f :
X → Y of paracompact spaces is an M -embedding (see 7.17).

3.5. Theorem. A pro-map f : X → Y is an SSDR pro-map if and only
if the following two conditions hold :

(a) For any pro-map g : X → P ∈ ANR there is a pro-map h : Y → P
such that g = h ◦ f .
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(b) For any two pro-maps u, v : Y → P ∈ ANR and any homotopy
H : X × I → P joining u ◦ f and v ◦ f , there is a homotopy G : Y × I → P
joining u and v such that H = G ◦ (f × idI).

Proof. Suppose f is an SSDR pro-map. Given a pro-map g : X → P
∈ ANR one generates

X Map(∗, P )

Y Map(∅, P )

a //

f

��
i∗

��
b //

where a(x) is the pro-map sending ∗ to g(x). A filler in the above diagram
induces a pro-map h : Y → P so that g = h ◦ f .

Suppose we have two pro-maps u, v : Y → P ∈ ANR and a homotopy
H : X × I → P joining u ◦ f and v ◦ f . One generates

X Map(I, P )

Y Map({0, 1}, P )

a //

f

��
i∗

��
b //

and a filler of this diagram induces a homotopy G : Y × I → P joining u
and v such that H = G ◦ (f × idI).

Suppose f : X → Y is a pro-map satisfying conditions (a) and (b) of the
theorem.

Our plan is to show that if P ∈ ANR then any commutative diagram

(D)

X Map(In, P )

Y Map(∂In, P )

a //

f

��
i∗

��
b //

has a filler for all n ≥ 1. The case n = 1 follows as above. The adjoint
diagram to (D) is

(D′)

X × ∂In X × In

Y × ∂In P

j //

f×id

��
a′

��
b′ //

Let π : ∂In × I → In be the quotient map such that π|∂In × {0} = id
and In = ∂In × I/∂In × {1}. Then a′|X × π(∂In × {1}) admits a pro-map
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u : Y → P so that u ◦ f = a′|X. Now, one generates a diagram

X × ∂In × {0, 1} X × ∂In × I

Y × ∂In × {0, 1} P

j //

f×id

��
a′

��
b′ //

with adjoint diagram being

X Map(I,Map(∂In, P ))

Y Map({0, 1},Map(∂In, P ))

a //

f

��
i∗

��
b //

The last diagram has a filler which induces a map Y × ∂In × I → P . That
map induces a map (see 9.3) Y × In → P , which is what we need.

Since every pro-map can be replaced by a level pro-map (see [M-S]), some
of the subsequent results deal with properties of level SSDR pro-maps.

3.6. Proposition. Suppose i = {ia}a∈A : X = {Xa, p
b
a, A} → Y =

{Yd, qba, A} is a level pro-inclusion such that Xa is a closed subset of Ya
for each a ∈ A. If i is an SSDR pro-map, then the induced pro-inclusion
j : Y × ∂I ∪X × I → Y × I is an SSDR pro-map.

Proof. Suppose g : Y ×∂I∪X×I → P ∈ ANR is a pro-map. Notice that
g|X×I is a homotopy joining g|X×{0} and g|X×{1}. There is a homotopy
G : Y ×I → P joining g|Y ×{0} and g|Y ×{1} so that g|X×I = G◦(i×idI).
Notice that G is an extension of g.

Consider two copies I1 and I2 of the unit interval. Suppose H : (Y ×∂I1∪
X× I1)× I2 → P ∈ ANR is a homotopy joining g1|(Y ×∂I1 ∪X × I1)×{0}
and g2|(Y × ∂I1 ∪X × I1)× {1} for some g1, g2 : Y × I1 → P . One arrives
at a commutative diagram

(D)

X Map(I1 × I2, P )

Y Map(I1 × ∂I2 ∪ ∂I1 × I2, P )

a //

f

��
i∗

��
b //

where a is induced by H, and b is induced by both H and g1, g2. The filler
G′ of diagram (D) induces a homotopy G : (X × I1) × I2 → P joining g1

and g2 so that G extends H.

If f : X → Y is a level pro-map, then one easily constructs the mapping
cylinder M(f) of f and the inclusion pro-map i : X → M(f). The double
mapping cylinder DM(f) of f is defined as X × I ∪M(f)× ∂I and one has
an inclusion pro-map J : DM(f)→M(f)× I.
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3.7. Proposition. Suppose f = {fa}a∈A : X = {Xa, p
b
a, A} → Y =

{Yd, qba, A} is a level pro-map.

(1) If f is an SSDR pro-map, then the inclusion i : X → M(f) is an
SSDR pro-map.

(2) If the inclusion i : X →M(f) is an SSDR pro-map, then the inclu-
sion j : DM(f)→M(f)× I is an SSDR pro-map.

Proof. It suffices to prove (1), as (2) follows from 3.6 and (1). Let p :
M(f) → Y be the natural projection. If g : X → P ∈ ANR is a pro-map,
then there is h′ : Y → P so that g = h′ ◦ f . Put h = h′ ◦ p and notice that
h ◦ i = h′ ◦ p ◦ i = h′ ◦ f = g. Suppose G : X × I → P ∈ ANR is a homotopy
joining g ◦ f and h ◦ f for some g, h : M(f) → P . Let q : X × I ′ → M(f)
be the natural pro-map, where I ′ is a copy of the unit interval I. Then
g and h induce a pro-map Y × {1} × ∂I → P , and G, g ◦ q, and h ◦ q
induce a pro-map X × ({0} × I ∪ I ′ × ∂I)→ P . Since there is a retraction
r : I ′ × I → {0} × I ∪ I ′ × ∂I one gets a pro-map X × I ′ × I → P and,
switching to function spaces, one gets a commutative diagram

(D)

X Map(I ′ × I, P )

Y Map({1} × ∂I, P )

a //

f

��
i∗

��
b //

The filler of (D) induces Y × I ′ × I → P , which gives rise to a homotopy
M(f)× I → P joining g and h and extending G.

Let us recall the definition of strong shape equivalences (see [D-N]).

3.8. Definition. A pro-map f : X → Y is called a strong shape equiv-
alence provided the following two conditions hold:

(a) for any pro-map g : X → P ∈ ANR there is a pro-map h : Y → P
such that g ≈ h ◦ f ,

(b) for any two pro-maps u, v : Y → P ∈ ANR and any homotopy
H : X × I → P joining u ◦ f and v ◦ f , there is a homotopy G : Y × I → P
joining u and v such that H ≈ G ◦ (f × idI) rel. X × {0, 1}.

3.9. Theorem. Suppose f = {fa}a∈A : X = {Xa, p
b
a, A} → Y =

{Yd, qba, A} is a level pro-map. The following conditions are equivalent :

(1) f is a strong shape equivalence.
(2) The inclusion i : X → M(f) from X to the mapping cylinder of f

is an SSDR pro-map.

Proof. (1)⇒(2). Suppose f is a strong shape equivalence. Suppose g :
X → P ∈ ANR. There is h : Y → P and a homotopy H : X×I → P joining
g and h ◦ f . Notice that H induces an extension H ′ : M(f)→ P of g.
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Suppose H : X × I → P is a homotopy joining a|X and b|X for some
a, b : M(f) → P ∈ ANR. We can paste the three maps a, b, and H, to
produce a homotopy F on X × I joining (a|Y ) ◦ f and (b|Y ) ◦ f . There is
a homotopy G : Y × I → P so that G ◦ (f × id) is homotopic to F rel.
X×{0, 1}. This produces a homotopy on M(f)×I extending H and joining
a and b.

(2)⇒(1). Suppose i : X →M(f) is an SSDR pro-map. Suppose g : X →
P ∈ ANR. There is an extension h′ : M(f)→ P of g. Let h = h′|Y . Define
H : X × I → P by H(x, t) = h′[x, t] for t ∈ I and x ∈ X.

Suppose H : X × I → P ∈ ANR is a homotopy joining a ◦ f and b ◦ f
for some a, b : Y → P . Let A,B : M(f)→ P be A = a ◦ π, B = b ◦ π, where
π : M(f) → Y is the projection. There is a homotopy G : M(f) × I → P
extending H and joining A and B. Notice that (G|Y × I) ◦ (f × id) is
homotopic rel. X × {0, 1} to H.

Given two spaces X and Y , one can create the k-product X ×k Y as
k(X×Y ), where kZ is the universal k-space on the set Z so that id : kZ → Z
is continuous (see [D4]). In the case of Hausdorff spaces Z, a subset U of
Z is declared open in kZ if and only if U ∩ C is open in C for all compact
subsets C of Z (see [Wh]).

3.10. Theorem. A map f : X → Y of k-spaces is a strong shape equiv-
alence if and only if f × idQ : X ×k Q→ Y ×k Q is a shape equivalence for
each CW complex Q.

Proof. Suppose f : X → Y is a strong shape equivalence. By switching to
the inclusion from X to the mapping cylinder of f , we may assume that f is
an SSDR map. Suppose Q is a CW complex and g : X×kQ→ P ∈ ANR is a
map. It induces adj(g) : Q→Map(X,P ) which lifts to h′ : Q→Map(Y, P )
as f∗ : Map(Y, P ) → Map(X,P ) is a trivial Serre fibration (it is a Serre
fibration by Theorem 7.8 (p. 31) of [Wh], it is a weak homotopy equivalence,
and 9.2 says it is a trivial Serre fibration). Then h′ induces h : Y ×k Q→ P
so that g = h ◦ (f × idQ).

Suppose a, b : Y ×k Q → P ∈ ANR and H : (X ×k Q) × I → P is a
homotopy joining (f × idQ) ◦ a and (f × idQ) ◦ b. Dualize to a′, b′ : Q →
Map(Y, P ) and H ′ : Q× I →Map(X,P ). Lift H ′ to Map(Y, P ), which gives
a homotopy joining a and b.

Suppose i : X →M(f) has the property that i× idQ is a shape equiva-
lence for all CW complexes Q.

Claim 1. Map(M(f), P )→Map(X,P ) is a weak homotopy equivalence
for all P ∈ ANR.

Proof. Given a : Q → Map(X,P ) convert it to a′ : X ×k Q → P and
extend it to b′ : M(f)×k Q→ P . Switch to b : Q→Map(M(f), P ). Then b
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is a lift of a. Suppose a, b : Q→ Map(M(f), P ) are two maps so that i∗ ◦ a
and i∗ ◦ b are joined by a homotopy H : Q× I → Map(X,P ). By dualizing
we have a′, b′ : M(f) ×k Q → P so that a′|X ×k Q ≈ b′|X ×k Q. Since
X×kQ→M(f)×kQ is a shape equivalence, we have a′ ≈ b′, which implies
a ≈ b.

Claim 2. Map(M(f), P )→ Map(X,P ) is a Serre fibration for all P ∈
ANR.

Proof. This follows from Theorem 7.8 (p. 31) of [Wh].

By 9.2, Map(M(f), P ) → Map(X,P ) is a trivial Serre fibration for all
P ∈ ANR, which means that i is an SSDR map. 3.10

3.11. Theorem. Suppose f = {fn}n≥1 : {Xn, p
m
n } → {Yn, qmn } is a

level pro-map between inverse sequences of ANRs which is a strong shape
equivalence. If there are points xn ∈ Xn, yn ∈ Yn for n ≥ 1 such that
pmn (xm) = xn, qmn (ym) = yn for m ≥ n and fn(xn) = yn for all n, then f =
{fn}n≥1 : {(Xn, xn), pmn } → {(Yn, yn), qmn } is a pointed shape equivalence.

Proof. Fix n ≥ 1. There is m > n and a map u : Ym → Xn such
that fn ◦ u ≈ qmn and u ◦ fm ≈ pmn . By homotoping u we may achieve
that u(ym) = xn and u ◦ fm ≈ pmn rel. xm (see [D-G1,2]). Notice that
there is a homotopy H from (fn ◦ u) ◦ fm to qmn ◦ fm rel. xm. Since f
is a strong shape equivalence, there is a homotopy G : Yk × I → Yn for
some k > m such that G ◦ (fk × idI) is homotopic to H ◦ (pkm × idI) rel.
Xk × {0, 1} and G joins fn ◦ u ◦ qkm and qkn. In particular, G|{yk} × I is
homotopic to the trivial loop, which means that fn ◦ u ◦ qkm ≈ qkn rel. yn.
Thus, f = {fn}n≥1 : {(Xn, xn), pmn } → {(Yn, yn), qmn } is a pointed shape
equivalence.

3.12. Corollary. There is a pro-map f : X → Y of CW-sequences
which is not a strong shape equivalence but f × idQ : X ×k Q→ Y ×k Q is
a shape equivalence for each CW complex Q.

Proof. In [D2] an example of a pro-map f : (X,x0) → (Y, y0) of CW-
sequences is given such that f is not a pointed shape equivalence but f :
X → Y is a shape equivalence. Notice that f × idQ : X ×k Q→ Y ×k Q is
a shape equivalence for each CW complex Q.

Notice that in the case of a map F : X → Y of k-spaces we have two
definitions of being a strong shape equivalence: 2.1 and 3.8. The purpose of
the next result is to confirm that the two definitions are equivalent.

3.13. Proposition. Suppose f : X → Y is a map of k-spaces. The
following conditions are equivalent.



Function spaces and shape theories 133

(a) The induced map f∗ : Map(Y, P )→Map(X,P ) is a weak homotopy
equivalence for each P ∈ ANR.

(b) For any map g : X → P ∈ ANR there is a map h : Y → P such that
g ≈ h ◦ f , and for any two maps u, v : Y → P ∈ ANR and any homotopy
H : X × I → P joining u ◦ f and v ◦ f , there is a homotopy G : Y × I → P
joining u and v such that H ≈ G ◦ (f × idI) rel. X × {0, 1}.

Proof. Consider the inclusion i : X → M(f) from X to the mapping
cylinder of f . Notice that the M(f) is the quotient space of the disjoint
union X × I ⊕ Y which is a k-space. Therefore M(f) is a k-space.

(a)⇒(b). Notice that i∗ : Map(M(f), P ) → Map(X) is a fibration for
each p ∈ ANR. Since i∗ is a weak homotopy equivalence, it must be a trivial
Serre fibration, which amounts to i being an SSDR map. Use 3.9.

(b)⇒(a). By 3.9, i is an SSDR map, which is equivalent to i∗ being a
trivial Serre fibration. Since Y → M(f) is a homotopy equivalence, we see
that f∗ : Map(Y, P )→ Map(X,P ) is a weak homotopy equivalence for each
P ∈ ANR.

4. SSDR resolutions of pro-spaces. The purpose of this section is
to provide a construction of SSDR pro-maps X → X ′ for every pro-space
X so that X ′ is a pro-ANR.

4.1. Theorem. For every pro-space X there is a pro-map rX : X →
R(X) such that R(X) is an object of pro-ANR and any commutative dia-
gram

X Map(K,P )

R(X) Map(L,P )

u //

rX

��
i∗
��

v //

has a filler R(X)→ Map(K,P ) provided P ∈ ANR, K is a compact metriz-
able space, L is a closed subspace of K, and i : L→ K is the inclusion. In
particular , rX is an SSDR pro-map.

Proof. Suppose X = {Xa, p
b
a, A} and choose a cardinal number m ≥ ℵ0

such that the density of each Xa is at most m. Let ANR(m) be the set of
all ANRs contained in the Tikhonov cube Im. Thus, any ANR of density
at most m is homeomorphic to an element of ANR(m). Given a pro-map
f : X → Y from X to a topological space Y we say that U contains an
image of f provided there is a representative fa : Xa → Y of f so that
fa(Xa) ⊂ U . Also, given a finite sequence fi : X → Yi, i ≤ n, of pro-
maps from X to topological spaces Yi, one easily constructs the diagonal
∆i≤nfi : X →∏

i≤n Yi of all fi.
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Consider the set M =
⋃
P∈ANR(m) Mor(X,P ) and let Ω be the set of

all pairs (S,U) such that S is a finite subset of M (in particular, elements
of S are mutually different) and U is a neighborhood of an image of X in∏
s∈S Ps under the diagonal ∆s∈Sfs, where S consists of fs : X → Ps, s ∈ S.

We declare λ = (S,U) ≤ µ = (T, V ) provided S ⊂ T and qµλ(V ) ⊂ U , where
qµλ :

∏
t∈T Pt →

∏
s∈S Ps is the projection.

Claim 1. (Ω,≤) is a directed set.

Proof. Clearly, λ ≤ µ and µ ≤ ν implies λ ≤ ν. We need to show that
given λ = (S,U) and µ = (T, V ) there is ν = (R,W ) so that ν ≥ λ and
ν ≥ µ. Put R = S ∪ T and W = (qνλ)−1(U) ∩ (qνµ)−1(V ).

Given λ = (S,U) we put Yλ = U and gλ : X → Yλ is induced by the
diagonal of fs : X → Ps, s ∈ S. Thus, we get a pro-ANR Y = {Yλ, qµλ , Ω}
and a pro-map g : X → Y . Since Ω is not cofinite, we will have to adjust it.

Claim 2. Any commutative diagram

(D)

X E

Y B

u //

g

��
p

��
v //

has a filler provided E,B ∈ ANR(m) and p is a Hurewicz fibration.

Proof. Switch to a commutative diagram

Xa E

Yλ B

u′ //

h

��
p

��
v′ //

We may assume that E does not appear as the range of maps involved in
the definition of Yλ. Let Z be the subset of Yλ×E consisting of all (y, e) so
that v′(y) = p(e). Then Z is a closed subset of Yλ × E and is an ANR (see
6.5). Therefore, one has a neighborhood V of Z in Yλ ×Q and a retraction
r : V → Z. Let π : Yλ × E → Yλ be the projection. Since π ◦ r|Z = π|Z,
one may assume that π ◦ r ≈ π|V rel. Z (decrease V if necessary). Notice
that π|Z : Z → Yλ is a fibration for metrizable spaces (see 6.5). We have a
commutative diagram

V × {0} ∪ Z × I Z

V × I Yλ

a //

i

��
π|Z
��

H //
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where H is a homotopy rel. Z joining π ◦ r and π, and a(v, t) = r(v) for all
(v, t) ∈ V ×{0}∪Z×I. Since fibrations of metrizable spaces are regular, the
above diagram has a filler G : V ×I → Z. Notice that r′ : V → Z defined by
r′(v) = G(v, 1) is a new retraction of V onto Z so that π ◦ r′ = π|V . Now,
V defines Yω, ω > λ, so that π′ ◦ r′ : Yω → E induces a filler of (D), where
π′ : Yλ × E → E is the projection.

Claim 3. Any commutative diagram

X Map(K,P )

Y Map(L,P )

u //

g

��
i∗
��

v //

has a filler provided P ∈ ANR, K is a compact metrizable space, L is a
closed subspace of K, and i : L→ K is the inclusion.

Proof. Switch to a commutative diagram

Xa Map(K,P )

Yλ Map(L,P )

u′ //

h

��
i∗
��

v′ //

and consider adj(u′) : Xa ×K → P and adj(v′) : Yλ×L→ P . The union of
their images is of density at most m, so by following the proof of Theorem 5
in [M-S] on p. 39 one finds P ′ ∈ ANR(m) containing that union so that
there is a map z : P ′ → P which is the identity on that union. Now, we
have a commutative diagram

X Map(K,P ′) Map(K,P )

Y Map(L,P ′) Map(L,P )

u′′ //

h

��

z∗ //

i∗
��

i∗
��

v′′ // z∗ //

where u′′ : X →Map(K,P ′) is constructed as follows: adj(u′) : Xa×K → P
factors through P ′ and induces Xa → Map(K,P ′), which followed by the
inverse of j gives u′′. By Claim 2, the left part of the diagram has a filler as
i∗ : Map(K,P ′)→ Map(L,P ′) is a fibration for metrizable spaces and both
Map(K,P ′) and Map(L,P ′) are homeomorphic to elements of ANR(m).

Finally, we have

Claim 4. If j : Y → R(X) is the reindexing isomorphism so that the
directed set of R(X) is cofinite, then j is an SSDR pro-map and j ◦ g is an
SSDR pro-map.
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Proof. Obvious, as lifting is not affected by composing with isomor-
phisms. 4.1

5. The shape category Sh(pro-HoTop). In this section we construct
a shape system shX : X → ShS(X) for any object X of pro-HoTop.

5.1. Definition. A shape system of an object X of pro-HoTop is a
morphism to an object of pro-HoANR which is a shape equivalence.

5.2. Theorem. For each object X of pro-HoTop there is a shape system
shX : X → ShS(X).

Proof. Notice that for any topological space X the morphism rX : X →
R(X) induces a shape system of X. If X = {Xa, [pba], A} is an object of
pro-HoTop, then for each pair b ≥ a there is a unique morphism qba : R(Xb)
→ R(Xa) of pro-HoTop so that qba ◦ rXb = rXa ◦ [pba]. Thus, {R(Xa), qba, A}
is an inverse system in pro-HoTop and its inverse limit gives a shape system
of X.

5.3. Corollary. The localization Sh(pro-HoTop) of pro-HoTop at the
class of shape equivalences exists and is equivalent to pro-HoANR.

Proof. Use 1.2.

6. Fibrations and cofibrations. Part of our strategy is to follow
Edwards–Hastings’ [Ed-H] use of closed model categories in the sense of
Quillen. However, we find it easier to avoid declaring up front which mor-
phisms of pro-Top are fibrations and which are cofibrations. For us, it is
more convenient to define fibrations (or cofibrations) depending on a given
family of morphisms. Our definitions apply to any category C with initial
object ∅ and terminal object ∗.

The following definition from [Ed-H] is useful:

6.1. Definition. An ordered pair (i, p) of morphisms i : A → X,
p : Y → B has the lifting property if for any diagram

A Y

X B

a //

i

��
p

��
b //

a filler f : X → Y exists.

6.2. Definition. Given a class Σ of morphisms of a category C, we call
i : A→ X a Σ-cofibration if (i, p) has the lifting property for all p ∈ Σ.

A morphism p : Y → B is called a Σ-fibration if (i, p) has the lifting
property for all i ∈ Σ.
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An object Y of C is called Σ-fibrant if the morphism Y → ∗ is a Σ-
fibration.

6.3. Examples. 1. A map p : Y → B is a Hurewicz fibration (respec-
tively, Serre fibration) if and only if it is a Σ-fibration for Σ being the class
of all inclusions X×0→ X×I, where X is a topological space (respectively,
a CW complex).

2. A map p : Y → B is a regular Hurewicz fibration if and only if it is a
Σ-fibration for Σ being the class of all inclusions X × 0 ∪ A × I → X × I,
where X is a topological space and A is a closed subset of X.

3. A metrizable space Y is an AR if it is Σ-fibrant for Σ being the class
of all inclusions A → X, where X is a metrizable space and A is a closed
subset of X.

4. Given a closed subset A of a metrizable space X let N(A,X) be the
object of pro-Top consisting of all neighborhoods of A in X bonded by
inclusions. One has a natural pro-map iA,X : A → N(A,X). Let Σ be the
class of all such pro-maps. Then:

(a) a metrizable space Y is an ANR if and only if it is Σ-fibrant,
(b) every Hurewicz fibration of ANRs p : Y → B is a Σ-fibration.

Proof. Only 4(b) needs detailed justification. Suppose

A Y

N(A,X) B

a //

iA,X

��
p

��
b //

is a commutative diagram. Since A is a closed subset of a metrizable
space X and Y is an ANR, there is an extension a′ : U → Y of
a : A → Y over a neighborhood U of A in X. Choose a representative
b′ : V → B of b : N(A,X) → B and notice that b′|A = p ◦ a. We
may assume that V ⊂ U and that p ◦ a′|V is homotopic to b′ rel. A.
Since p is a regular fibration in the class of metrizable spaces, the rela-
tive homotopy joining p ◦ a′|V and b′ can be lifted to Y starting from a′|V .
The end of the lifted homotopy determines a filler N(A,X) → Y of dia-
gram (D).

6.4. Proposition. Suppose

L E

B Y

a //

q

��
p

��
b //
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is a pull-back of
E

B Y

p

��
b //

in C. Suppose Σ is a class of morphisms of C such that p is a Σ-fibration.
Then q is a Σ-fibration, and if B is Σ-fibrant , then so is L.

Proof. Suppose

(D)

A L

X B

f //

i

��
q

��g //

is commutative and i ∈ Σ. Then

A E

X Y

a◦f //

i

��
p

��b◦g //

is commutative and, since p is a Σ-fibration, there is a filler u : X → E.
Now,

X E

B Y

u //

g

��
p

��
b //

is commutative and, by the property of pull-backs, there is a unique mor-
phism v : X → L so that g = q ◦ v and u = a ◦ v. To check that v is a
filler of (D) it remains to show that v ◦ i = f in view of g = q ◦ v. Put
f ′ = v ◦ i : A → L. Since L arises from a pull-back, it is sufficient to show
that a ◦ f = a ◦ f ′ and q ◦ f = q ◦ f ′. Now, q ◦ f ′ = q ◦ v ◦ i = g ◦ i = q ◦ f
and a ◦ f ′ = a ◦ v ◦ i = u ◦ i = a ◦ f .

Suppose B is Σ-fibrant and i : A→ X belongs to Σ. Suppose

(D′)

A L

X ∗

a //

i

��
const
��c //

is commutative. Then
A B

X ∗

q◦a //

i

��
const
��c //
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is commutative. Since B is Σ-fibrant, a filler g : X → B exists. Now,

A L

X B

a //

i

��
q

��g //

is commutative and, as we just proved that q is a Σ-fibration, a filler in that
diagram exists which is also a filler for (D′).

6.5. Corollary. Suppose

L C

B Y

a //

q

��
p

��
b //

is the pull-back of
C

B Y

p

��
b //

in Top, where p is a Hurewicz fibration and B,C, Y ∈ ANR. Then q is a
Hurewicz fibration and L ∈ ANR.

Proof. Let Σ be the class of all inclusions Z × 0 → Z × I, where Z is
a metrizable space. 6.3 implies that q is a Σ-fibration, i.e., a fibration for
metrizable spaces. Let Σ′ be the class of all pro-maps iA,X : A→ N(A,X),
where A is a closed subset of a metrizable space X. Examples 6.3.4(a),(b)
say that p is a Σ′-fibration and B is Σ′-fibrant. Thus, L is Σ′-fibrant, which
means that L ∈ ANR by 6.3.4(a).

Suppose D is a diagram in a category C. Given a vertex a of D, by D(a)
we denote the object of C at that vertex. Given two vertices a and b of
D, b < a means that there is an arrow from a to b in D. The morphism
corresponding to that arrow is denoted by D(a, b).

A cone over D is a diagram D′ containing D with one additional vertex
v so that there is a unique arrow from v to every vertex of D. The inverse
limit lim(D) of D is a terminal cone over D. By abusing notation, the object
at the initial vertex of lim(D) will also be denoted by lim(D).

A subdiagramD′ of D is called full provided every arrow of D connecting
two vertices of D′ is present in D′.

By the cardinality of a finite diagram D we mean the number of its
vertices.

6.6. Proposition. Suppose C is a full subcategory of C ′, Σ is a class
of morphisms of C ′, and every finite diagram in C has an inverse limit.
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Suppose D is a finite diagram in C so that no two vertices of D are
connected by more than one arrow. Define the following statements for
n ≥ 1:

P (n): Given two full subdiagrams E ⊂ F of D of cardinality at most n,
the projection limF → limE is a Σ-fibration.

Q(n): The projection D(a)→ limb<aD(b) is a Σ-fibration for all a such
that {b | b < a} has cardinality at most n.

R(n): limE is Σ-fibrant for all full subdiagrams E of D of cardinality
at most n.

The following implications hold for all n ≥ 1:

(a) (P (n) and Q(n))⇒ P (n+ 1),
(b) (P (n), Q(n) and R(n))⇒ R(n+ 1).

Proof. (a) Suppose E ⊂ F are full subdiagrams of D so that card(F ) ≤
n+ 1. Choose a ∈ F − E (if F = E, then there is no work needed) so that
there is no b ∈ F with b > a. Let G = {b | b < a} and F ′ = F − {a}. Notice
that the pull-back of

(D)

limF ′

D(a) limG
��

//

is limF . Since D(a)→ limG is a Σ-fibration, we infer that limF → limF ′ is
a Σ-fibration and the composition limF → limF ′ → limE is a Σ-fibration.

(b) Suppose F is a full subdiagram of D so that card(F ) ≤ n+1. Choose
a ∈ F such that there is no b ∈ F with b > a. Define G and F ′ as in the
proof of (a). Again, the pull-back of (D) is limF . By Proposition 6.4, limF
is Σ-fibrant.

6.7. Theorem. Suppose C is a category with inverse limits of finite dia-
grams and Σ is a class of morphisms of pro-C. Suppose Y = {Ya, pba, A} is
an object of pro-C such that A is cofinite and the projection Ya → limb<a Yb
is a Σ-fibration for all a ∈ A. Let ΣC be the class of all morphisms
f : X → Z of Σ such that Z is an object of C. Then:

(a) If Ya is Σ-fibrant for all a ∈ A, then Y is Σ-fibrant.
(b) If Ya is ΣC-fibrant for all a ∈ A and C has inverse limits, then

limY is ΣC-fibrant.

Proof. Suppose i : B → X is a morphism of Σ and g : B → Y is a
morphism of pro-C. Given a ∈ A let n(a) be the cardinality of {b | b < a}.
Let us construct, by induction on n(a), morphisms ha : X → Ya such that
ha◦i = pa◦g and pba◦hb = ha for a < b, where pa : Y → Ya is the projection.
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The morphisms ha generate h : X → Y so that h ◦ i = g, which proves that
Y is Σ-fibrant.

If n(a) = 0, then we choose any ha : X → Ya so that ha ◦ i = pa ◦ g.
The existence of ha is guaranteed by the fact that Ya is Σ-fibrant. Suppose
ha exists for all a with n(a) ≤ n. Given a ∈ A with n(a) = n+ 1 one has a
morphism v from X to limb<a Yb so that

B Ya

X limb<a Yb

pa◦g //

i

��
p

��
v //

is commutative. The filler of that diagram is chosen as ha.
Suppose X is an object of C, i : B → X belongs to Σ, and g : B → limY .

By the same construction as above, there is h : X → Y so that h ◦ i = p ◦ g,
where p : limY → Y is the projection morphism. Then h induces limh :
X → limY so that (limh) ◦ i = g.

6.8. Proposition. Given a map f : X → Y of metrizable ANRs there
is a metrizable ANR Z containing X as a strong deformation retract and
an extension f ′ : Z → Y of f so that f ′ is an SSDR-fibration.

Proof. This follows the standard way of replacing a map by a Hurewicz
fibration (see [Sp], Theorem 9 on p. 99). Define Z as pairs (ω, x), where
x ∈ X and ω is a path in Y starting at f(x). In other words, Z is the
pull-back of

Map(I, Y )

X Y

p

��f //

where p(ω) = ω(0). By 6.4, Z is an ANR and f ′ is an SSDR-fibration
as p is an SSDR-fibration (that follows from the definition of SSDR pro-
maps). As in [Sp], Theorem 9 on p. 99, X is a strong deformation retract
of Z.

6.9. Theorem. Suppose X = {Xa, p
b
a, A} is a pro-ANR and A is

cofinite. There is a pro-ANR Y = {Ya, pba, A} and a level pro-map f =
{fa}a∈A from X to Y such that f is an SSDR pro-map and Y is SSDR-
fibrant.

Proof. Given a ∈ A let n(a) be the cardinality of {b | b < a}. Let us
construct, by induction on n(a), an ANR-space Ya, inclusion fa : Xa → Ya,
and maps qab : Ya → Yb, b < a, such that fb ◦ pab = qab ◦ fa for b < a.

If n(a) = 0, then we put Ya = Xa and fa = id. Suppose the objects are
constructed for all a with n(a) ≤ n so that P (n−1), Q(n−1), and R(n−1)
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of 6.6 are satisfied. Given a ∈ A with n(a) = n + 1, limb<a Yb is an ANR
by 6.5–6.6 and we replace the map pa : Xa → limb<a Yb by an inclusion
fa : Xa → Ya so that pa extends to an SSDR-fibration qa : Ya → limb<a Yb.
Then qac : Ya → Yc, c < a, is defined as the composition of SSDR-fibrations
Ya → limb<a Yb → Yc. This way, we ensure Q(n) of 6.6, which allows us to
continue the induction process. 6.7 verifies that Y is SSDR-fibrant, and f is
clearly an SSDR pro-map.

7. Strong shape category sSh(pro-Top). Let π(pro-Top) be the basic
homotopy category of pro-Top. Its classes of morphisms will be denoted by
[X,Y ]. Let SSDR-FIBRANT be the full subcategory of π(pro-Top) whose
objects are SSDR-fibrant.

7.1. Theorem. For each pro-space X there is an SSDR pro-map sX :
X → sShS(X) such that sShS(X) is SSDR-fibrant and is an object of pro-
ANR.

Proof. Use 4.1 and 6.9.

7.2. Definition. The morphism constructed above is called the strong
shape system of X. Any strong shape equivalence f : X → Z such that Z is
an SSDR-fibrant pro-ANR is called a strong shape system of X.

7.3. Theorem. A pro-map f : X → Y is a strong shape equivalence if
and only if f∗ : [Y,Z] → [X,Z] is a bijection for all Z which are SSDR-
fibrant.

Proof. It suffices to consider f which is a level morphism. Let i : X →
M(f) be the inclusion pro-map. Suppose f is a strong shape equivalence.
By 3.9, i is an SSDR pro-map and, given g : X → Z with Z being SSDR-
fibrant, there is h : M(f) → Y with h|X = g. Thus f ∗ : [Y,Z] → [X,Z] is
a surjection for all strong shape equivalences f and all Z which are SSDR-
fibrant. Since DM(f)→M(f)×I is an SSDR pro-map if f is a strong shape
equivalence (see 3.6 and 3.9), we see that f ∗ : [Y,Z]→ [X,Z] is a injection.
Suppose f∗ : [Y,Z]→ [X,Z] is a bijection for all Z which are SSDR-fibrant.
That implies the existence of a commutative diagram in π(pro-Top)

X sShS(X)

Y sShS(Y )

sX //

f

��
f ′

��
sY //

in which f ′ is a homotopy equivalence. From this one concludes easily that
f is a strong shape equivalence.

7.4. Corollary. (a) There is a functor π(pro-Top)→SSDR-FIBRANT
which is left-adjoint to the inclusion SSDR-FIBRANT→ π(pro-Top).
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(b) The localization sSh(pro-Top) of π(pro-Top) at strong shape equiv-
alences exists and is equivalent to SSDR-FIBRANT.

Proof. Use 2.1 and 7.3.

Remark. A. V. Prasolov [P] defines the strong shape category as
π(pro-Top) localized at strong shape equivalences. His definition requires
the usage of the Axiom of Universe plus the usual ZFC. Corollary 7.4 avoids
a deeper understanding of set theory and shows that the strong shape theory
constructed in this paper is equivalent to that of A. V. Prasolov.

7.5. Proposition. If X is a space and Z is a pro-space which is
SSDR-fibrant , then the natural functions [X, limZ] → [X,Z], [X,Z] →
MorsSh(X,Z) are bijections.

Proof. [X, limZ] ∼ [X,Z] holds for all pro-spaces Z and all spaces X.
Suppose Z is SSDR-fibrant and f, g : X → Z are equal in sSh(pro-Top).
That means iZ ◦ f ∼ iZ ◦ g, where iZ : Z → sShS(Z) is the strong shape
system of Z. Notice that iZ is a homotopy equivalence (see 7.3), which
proves [X,Z] ∼ MorsSh(X,Z).

7.6. Theorem. Suppose f : X → Y is a map of topological spaces.

(a) If f∗ : [Y, limZ] → [X, limZ] is a bijection for all SSDR-fibrant
pro-spaces Z, then f is a strong shape equivalence.

(b) f is a strong shape equivalence if and only if f∗ : [Y,Z]→ [X,Z] is
a bijection for all spaces Z which are SSDRTop-fibrant.

Proof. (a) Follows from 7.5 and 7.3 as [A, limZ] ∼ [A,Z].
(b) Suppose f is a strong shape equivalence. We may assume that f is

an SSDR map, which implies that [Y,Z] → [X,Z] is epi. Since DM(f) →
M(f)× I is an SSDR map, [Y,Z]→ [X,Z] is mono.

7.7. Theorem. Suppose G : X → Y is a morphism of sSh(pro-Top) and
X,Y are topological spaces. Given two strong shape systems sX : X → F (X)
and sY : Y → F (Y ), there is a homotopy class f : limF (X) → limF (Y )
and a pro-map G′ : F (X)→ F (Y ) so that

X Y

limF (X) limF (Y )

F (X) F (Y )

G //

lim sX
��

lim sY
��

f //

jX

��
jY

��
G′ //



144 J. Dydak and S. Nowak

is commutative in sSh(pro-Top). If

X Y

limF (X) limF (Y )

F (X) F (Y )

G //

lim sX
��

lim sY
��

f ′ //

jX

��
jY

��
G′′ //

is another commutative diagram in sSh(pro-Top), then f=f ′ and G′ ≈ G′′.

Proof. By 7.3 and 7.5, sY ◦ G is generated by a unique G′ : F (X) →
F (Y ) with G′ ◦ sX = sY ◦ G. In particular, G′′ ≈ G′. There is a unique
f : limF (X)→ limF (Y ) with G′ ◦ jX = jY ◦ f .

7.8. Corollary. Given two strong shape systems s1 : X → Y and
s2 : X → Z of a topological space X, there is a homotopy equivalence f :
limY → limZ so that

X X

limY limZ

idX //

lim s1

��
lim s2

��f //

is commutative in HoTop.

Proof. Apply 7.7.

7.9. Corollary. If X is a compact metrizable space and s : X → F (X)
is a strong shape system of X, then lim s : X → limF (X) is a strong shape
equivalence.

Proof. Embed X in the Hilbert cube Q and consider the inclusion X →
N(X,Q) which is an SSDR pro-map by 6.3.4(b). One may choose a cofinal
subsequence Xn of N(X,Q) consisting of closed neighborhoods of X which
are ANRs. Apply 6.9 to {Xn} and obtain an SSDR-fibrant sequence {X ′n}
with bonding maps being Hurewicz fibrations. F. Cathey [C2] proved that
the inclusion X → lim{X ′n} is an SSDR map. Use 7.8 to see that lim s :
X → limF (X) is a strong shape equivalence.

Notice that 7.5 and 7.9 say that every compactum is strong shape equiv-
alent to a space Z so that [Y,Z] → MorsSh(Y,Z) is a bijection for every
space Y . This can be extended to compact Hausdorff spaces as in [Gu2]. It
would be interesting to find out if that property holds for separable metric
spaces (or for general metrizable spaces) (see [I-U] for related material).
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7.10. Corollary. There is a functor limsSh : sSh(Top) → HoTop so
that limsSh(X) = lim sShS(X) for each X. In particular , the singular ho-
mology groups of limsSh(X) are a strong shape invariant of X.

Proof. Use 7.7.

7.11. Theorem. For each topological space X there is a CW complex
XsSh and a strong shape morphism jX : XsSh → X such that (jX)∗ :
MorsSh(K,XsSh)→MorsSh(K,X) is a bijection for any CW complex K.

Proof. It is the singular complex of the limit of the strong shape system
of X.

Remark. As in the case of singular homology of topological spaces, the
cellular homology of XsSh should be the strong homology of X (see 8.3).

7.12. Theorem. Let FIB be the class of all topological spaces X such
that there is a pro-map s : X → Z so that lim s : X → limZ is a
strong shape equivalence and Z is SSDR-fibrant. The localization sSh(FIB)
of Ho(FIB) at strong shape equivalences exists and is equivalent to the full
subcategory of sSh(pro-Top) whose objects are those in FIB.

Proof. Consider the class F of all topological spaces Y equal to limY ′

for some pro-space Y ′ which is SSDR-fibrant. If sY : Y → s(Y ) is the
strong shape system of Y , then it is an SSDR pro-map (see 4.1) and there
is r : s(Y ) → Y ′ with r ◦ sY = π, where π : Y → Y ′ is the projection. Any
strong shape morphism f : X → Y from a topological space to Y can be
identified with the unique homotopy class f ′ : s(X) → s(Y ). Composing a
representative f ′′ : X → s(Y ) of f ′ ◦ [sX ] with r generates X → Y ′, and
by passing to the inverse limit one gets a map g : X → Y . That map is
unique up to homotopy as it is unique up to homotopy in Y ′. We can sum
up as follows: the full subcategory sSh(F ) of sSh(pro-Top) whose objects are
in F is naturally isomorphic to Ho(F ). Notice that sSh(FIB) is isomorphic
to sSh(F ) and any functor φ : Ho(FIB) → C inverting all strong shape
equivalences factors through sSh(F ) = Ho(F ).

7.13. Problems. (a) Characterize spaces X such that there is a pro-map
s : X → Z so that lim s : X → limZ is a strong shape equivalence and Z is
SSDR-fibrant.

(b) Characterize spaces X such that there is a strong shape system s :
X → Z of X so that lim s : X → limZ is a strong shape equivalence.

(c) Characterize spaces X such that there is a strong shape equivalence
s : X → Z of spaces so that Z is SSDRTop-fibrant.

FIB in 7.12 contains all compacta and all CW complexes. Does it contain
metrizable spaces? Does it contain compact Hausdorff spaces?
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As we mentioned before, F. Cathey introduced SSDR inclusions of
metrizable spaces in a way equivalent to the following statement (see [C2],
Theorem 1.2): a closed inclusion f : X → Y of metrizable spaces is an SSDR
map if any commutative diagram

X E

Y B

a //

f

��
p

��
b //

has a filler provided p : E → B is a Hurewicz fibration of ANRs.
Let us show that our definition of SSDR pro-maps extends Cathey’s

concept of SSDR inclusions.

7.14. Proposition. Suppose i = {ia}a∈A : X = {Xa, p
b
a, A} → Y =

{Yd, qba, A} is a level pro-inclusion such that Xa is a closed subset of Ya for
each a ∈ A. If i is an SSDR pro-map, then every commutative diagram

X E

Y B

a //

i

��
p

��
b //

has a filler if p is a Hurewicz fibration of ANRs.

Proof. We will show the details in the case of A being a one-point set
(i.e., X is a closed subset of a space Y ). The general case is similar. Pick
a map g : Y → E so that a = g|X. Now, p ◦ g|X = p ◦ b|X and there is
a homotopy H : Y × I → B joining g ◦ p and b so that H|X × I is the
constant homotopy joining p ◦ a to itself. Since p : E → B is a regular
fibration, there is a lift H ′ : Y × I → E of H starting at g so that H ′|X × I
is the constant homotopy joining a to itself. The map g′ : Y → E defined
by g′(y) = H ′(y, 1) for y ∈ Y is a filler of the diagram.

Ideally, a good way to generalize Cathey’s SSDR inclusions to SSDR
pro-maps would be to require that they have the property stated in 7.14.
However, the following problem remains open.

7.15. Problem. Suppose X is a pro-space. Is there a pro-map r :
X → Y so that Y is a pro-ANR and every commutative diagram

X E

Y B

a //

r

��
p

��
b //

has a filler Y → E if p is a Hurewicz fibration of ANRs?
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A related problem is to identify Hurewicz fibrations of ANRs which are
SSDR-fibrations.

7.16. Problem. Characterize all Hurewicz fibrations p : E → B of
ANRs so that every commutative diagram

X E

Y B

a //

r

��
p

��
b //

has a filler Y → E if r is an SSDR pro-map.

The authors do not know of any example of a Hurewicz fibrations of
ANRs which is not an SSDR-fibration.

Let us concentrate on SSDR maps of topological spaces.

7.17. Proposition. Suppose f : X → Y is an SSDR map of topological
spaces.

(a) If X is functionally Hausdorff , then f is one-to-one.
(b) If X is Tikhonov , then f is an embedding.
(c) If X is paracompact and Y is Hausdorff , then f is a closed embed-

ding.

Proof. (a) X being functionally Hausdorff means that for any x 6= y in
X there is a map g : X → I so that g(x) 6= g(y). Since g factors as h ◦ f for
some h : Y → I, we have f(x) 6= f(y).

(b)X being Tikhonov means that {g−1(U) | g : X → I, U = Int(U) ⊂ I}
forms a basis of X and X is functionally Hausdorff. Since every g factors as
h ◦ f for some h : Y → I, we have f(x) 6= f(y), {f−1(V ) | V = Int(V ) ⊂ Y }
forms a basis of X and f is an embedding.

(c) Since f is an embedding, we may assume X ⊂ Y and f = i is the
inclusion. Suppose y0 ∈ Y −X belongs to the closure of X in Y . For each
x ∈ X choose a pair of disjoint open sets Ux and Vx in Y so that x ∈ Ux
and y0 ∈ Vx. Choose a partition of unity on X subordinate to the covering
{Ux}x∈X of X. As seen in [D3], that partition of unity can be viewed as
a map π : X → K, where K is the full simplicial complex with vertices
{vx}x∈X , so that the point-inverse of the star of vertex vx is contained in
Ux. Extend π over Y and assume π(y0) =

∑
cx · vx. Since

∑
cx = 1, there

is z ∈ X so that cz 6= 0. Since y0 is in the closure of X, there is x′ ∈ X ∩ Vz
with π(x′) =

∑
dx · vx so that dz 6= 0. That implies x′ ∈ Uz, contradicting

x′ ∈ Vz.
7.17 and 7.14 imply that our definition of SSDR maps extends Cathey’s

definition of SSDR inclusions of metrizable spaces.



148 J. Dydak and S. Nowak

Let us point out differences between fibrant spaces as defined by Cathey
[C2] and SSDR-fibrant spaces. Recall that E is fibrant in the sense of Cathey
if, for any SSDR inclusion i : A→ X of metrizable spaces, any map g : A→
E extends over X. Clearly, these are our SSDRTop-fibrant spaces. As is
pointed out in [Gu2], all Hilbert cubes are fibrant (see also 7.19 here and
use Q discrete, P = I). See [I-U] for examples related to fibrant spaces.

7.18. Proposition. If a space E is SSDR-fibrant , then E is a metrizable
ANR.

Proof. Pick an SSDR pro-map r : E → s(E) so that s(E) is a pro-ANR
(see 4.1). Since E is SSDR-fibrant, there is a pro-map t : s(E)→ E so that
s ◦ r = idE and it is clear E is a retract of a term of s(E).

7.19. Proposition. If P ∈ ANR and Q is a CW complex , then
Map(Q,P ) is SSDRTop-fibrant.

Proof. If Q is finite, then Map(Q,P ) is SSDR-fibrant. Consider all finite
subcomplexes K of Q ordered by inclusion. We form the inverse system
{Map(K,P ) | K ⊂ Q} whose inverse limit is Map(Q,P ). If we prove that
the inverse system satisfies the conditions of 6.7(b), we are done. Given a
finite subcomplex K of Q, consider the union L of all proper subcomplexes
of K. Notice that limK′<K Map(K ′, P ) = Map(L,P ) and the projection
Map(K,P ) → limK′<K Map(K ′, P ) is the restriction operator f 7→ f |L,
which is an SSDR-fibration.

We can improve 3.10 as follows.

7.20. Theorem. Suppose f : X → Y is a map of topological spaces.

(a) f is a shape equivalence if and only if the induced function f∗ :
[Y,M ] → [X,M ] is a bijection for all M = Map(Q,P ), where P ∈ ANR
and Q is a finite CW complex.

(b) If f is a strong shape equivalence, then the induced function f∗ :
[Y,M ] → [X,M ] is a bijection for all M = Map(Q,P ), where P ∈ ANR
and Q is an arbitrary CW complex.

(c) If X, Y are k-spaces and the induced function f∗ : [Y,M ]→ [X,M ]
is a bijection for all M = Map(Q,P ), where P ∈ ANR and Q is an arbitrary
CW complex , then f is a strong shape equivalence.

Proof. (a) is obvious.
(b) Suppose f is a strong shape equivalence. By 3.7–3.9 both i : X →

M(f) and j : DM(f)→M(f)×I are SSDR maps. Since M = Map(Q,P ) is
SSDRTop-fibrant (see 7.19), any map g : X →M extends over M(f), which
proves that f∗ : [Y,M ]→ [X,M ] is onto. Given two maps g, h : Y →M and
a homotopyH : X×I →M joining g◦f and h◦f one formsG : DM(f)→M
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which is extendible over M(f)×I. The restriction of that extension to Y ×I
provides a homotopy joining g and h.

(c) Suppose the induced function f ∗ : [Y,M ]→ [X,M ] is a bijection for
all M = Map(Q,P ), where P ∈ ANR and Q is an arbitrary CW complex.
One can easily see that f × idQ : X ×k Q→ Y ×k Q is a shape equivalence
for all CW complexes Q. By 3.10, f is a strong shape equivalence.

7.20(c) fails if spaces are replaced by towers of spaces (see 3.12), which
means that one cannot introduce strong shape category of k-spaces as shape
category with ANRs being replaced by Map(Q,P ), where P ∈ ANR and Q
is an arbitrary CW complex.

By dualizing 7.20 one easily gets the following.

7.21. Corollary. Suppose f : X → Y is a map of k-spaces.

(a) f is a shape equivalence if and only if the induced function f∗ :
[Q,Map(Y, P )]→ [Q,Map(X,P )] is a bijection for all finite CW complexes
Q and all P ∈ ANR.

(b) f is a strong shape equivalence if and only if the induced function
f∗ : [Q,Map(Y, P )] → [Q,Map(X,P )] is a bijection for all CW complexes
Q and all P ∈ ANR.

We do not know of any map f satisfying (a) and not satisfying (b)
in 7.21. See [C-R] for results on detecting weak homotopy equivalences be-
tween function spaces Map(X,P ) and Map(Y,Q), where X and Y are CW
complexes.

8. Explaining and correcting errors in [D-N]. Much of the moti-
vation for this paper came from the desire to correct errors in [D-N] which
were first noticed by A. V. Prasolov. Namely, Theorem 4.6 of [D-N] has
errors in its proof. Notice that 4.1 and 6.9 of the present paper can be used
to give a different (and correct) proof of 4.6 of [D-N]. However, the authors’
perspective on strong shape theory has changed since then, so this section
of the paper is devoted to proofs of those results in [D-N] which depend
on Theorem 4.6. First, let us state that all results in [D-N] prior to 4.6 are
correct. The basic new idea of [D-N] was to introduce strong shape equiv-
alences first and use them to construct the strong shape category. 4.6 of
[D-N] attempted to solve 7.15 in the case of E,B having density bounded
by a fixed cardinal number m. The construction in 4.6 of [D-N] is too ab-
stract to be true, and 4.1 in the present paper provides a correct way to
solve 7.15 in the case of E,B having density bounded by a fixed cardinal
number m. Problem 7.15 is still of interest. However, the authors now be-
lieve that the right framework for the strong shape category is based on
function spaces, and the fibrations p : E → B which matter are of the form
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i∗ : Map(K,P )→ Map(L,P ), where P ∈ ANR, K is a finite CW complex,
L is a subcomplex of K, and i : L→ K is the inclusion.

Let us prove two most relevant results of Section 5 of [D-N].

8.1. Theorem (5.13 of [D-N]). Suppose X and Y are non-discrete,
shape equivalent compacta. If P ∈ ANR is separable with no isolated points,
then Map(X,P ) and Map(Y, P ) are homeomorphic.

Proof. By [D-S2] both X and Y are contained in a compactum Z so that
the inclusions X → Z and Y → Z are strong shape equivalences. It suffices
to prove that Map(X,P ) is homeomorphic to Map(Z,P ). By 2.2, they are
homotopy equivalent. Sakai [Sak] showed that they are l2-manifolds, and
[B-P] (p. 316) shows they are homeomorphic.

8.2. Theorem (5.15 of [D-N]). Suppose i : X → Y is an inclusion of
compacta, x0 ∈ X, and k ≥ 1 is an integer so that i∗ : Map((Y, x0), (Sk, s))
→Map((X,x0), (Sk, s)) is a homotopy equivalence. Then i is a strong shape
equivalence in the following cases:

(a) Y is a subset of the plane and k ≥ 2.
(b) k > 2 dim(Y ), and both X and Y are shape 1-connected.

Proof. Since Hq(Map((A, x0), (Sk, s))) is naturally isomorphic to the re-
duced cohomology group Hk−q(A) (see [Mo]), i∗ : Hp(Y ) → Hp(X) is an
isomorphism for p ≤ 1 in case (a), and for p ≤ dim(Y ) in case (b). Now, i is
a shape equivalence; use [Bo], p. 221, in case (a), and the cohomological ver-
sion of the Whitehead Theorem in [M-S] on p. 155 in case (b). Theorem 1.13
of [D-N] says that i is a strong shape equivalence.

Theorems 5.10 and 5.12 of [D-N] seem to require a more involved treat-
ment and the authors plan to do that in another paper. Section 6 of [D-N]
deals mostly with strong homology groups. The most relevant issue now is
the following.

8.3. Conjecture. Suppose f : X → Y is a strong shape morphism of
topological spaces. If f∗ : MorsSh(L,X)→MorsSh(L, Y ) is a bijection for all
CW complexes L, then f induces isomorphisms of strong homology groups
of X and Y .

If 8.3 is verified, it would complete the analogy between homotopy and
strong shape. Notice that 6.7 of [D-N] says that any shape equivalence
f : X → Y of paracompact spaces induces isomorphisms of strong shape
groups. 8.3 seems to be related to that result. For properties of strong ho-
mology groups see [L-M].
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9. Appendix. For the convenience of the reader, we provide detailed
proofs of some results which may be difficult to locate in the existing liter-
ature.

9.1. Proposition. Any unpointed weak homotopy equivalence p : E→B
induces a pointed weak homotopy equivalence p : (E, e) → (B, p(e)) for all
e ∈ E.

Proof. Clearly, πn(p) : πn(E, e) → πn(B, p(e)) is a monomorphism for
each n ≥ 1. We need to show that πn(p) : πn(E, e) → πn(B, p(e)) is an
epimorphism for each n ≥ 1. First, consider n = 1. Consider the wedge∨
α∈π1(B,p(e)) Sα, where each Sα is a copy of the unit circle. There is a

canonical map q :
∨
α∈π1(B,p(e)) Sα → B sending each Sα to a representative

of α. Pick a map q′ :
∨
α∈π1(B,p(e)) Sα → E so that p ◦ q′ ≈ q. Pick a

homotopy H joining p ◦ q′ and q. Notice that H(1, t), 0 ≤ t ≤ 1, defines
β ∈ π1(B, p(e)). By looking at H|Sβ one sees that p ◦ q′|Sβ is homotopic to
β relative the base point. Find q′′ :

∨
α∈π1(B,p(e)) Sα → E so that there is

a homotopy from q′′ to q′ which moves the base point along the inverse of
q′|Sβ . Now, p ◦ q′′ is homotopic to q relative the base point, which proves
that π1(p) : π1(E, e)→ π1(B, p(e)) is an epimorphism.

For n > 1 the proof relies on the case for fundamental groups as follows:
Consider the wedge

∨
α∈πn(B,p(e)) S

n
α, where each Snα is a copy of the n-

sphere. There is a canonical map q :
∨
α∈πn(B,p(e)) S

n
α → B sending each

Snα to a representative of α. Pick a map q′ :
∨
α∈πn(B,p(e)) S

n
α → E so that

p ◦ q′ ≈ q. Pick a homotopy H joining p ◦ q′ and q. Notice that H(1, t),
0 ≤ t ≤ 1, defines β ∈ π1((B, p(e)). Pick γ ∈ π1(E, e) so that p∗(γ) = β.
Find q′′ :

∨
α∈πn(B,p(e)) S

n
α → E so that there is a homotopy from q′′ to q′

which moves the base point along the inverse of γ. Now, p◦q′′ is homotopic to
q relative the base point, which proves that πn(p) : πn(E, e)→ πn(B, p(e))
is an epimorphism.

The following result is well known in the pointed category. We need it
in the unpointed category.

9.2. Proposition. Suppose p : E → B is a Serre fibration. The follow-
ing conditions are equivalent :

(a) p is a weak homotopy equivalence.
(b) The homotopy groups of each fiber of p are trivial.
(c) p is a trivial Serre fibration.

Proof. (a)⇒(b). By 9.1, p induces a pointed weak homotopy equivalence
p : (E, e)→ (B, p(e)) for each e ∈ E. From the homotopy exact sequence of
p one sees that each fiber is weak homotopy equivalent to a point.
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(b)⇒(c). Suppose

(D)

Sn E

In+1 B

f //

j

��
p

��g //

is a commutative diagram where j is the inclusion. We need to show that (D)
has a filler f ′, i.e., an extension f ′ : In+1 → E of f so that p ◦ f ′ = g. First,
consider a special case of Sn having a collar C in In+1 so that g|In+1−IntC
is constant. Then g|C can be lifted to E so that the lift g′ : C → E is an
extension of f . Let S be the component of ∂C different from Sn. Notice that
g′(S) is contained in a fiber of p. Since the homotopy groups of fibers are
trivial, g′ can be extended over In+1 so that the extension f ′ is a lift of g.
In the general case, we homotope g rel. Sn to h so that h|In+1 − IntC is
constant for some collar C of Sn. Let h′ : In+1 → E be a lift of h so that
h′|Sn = f . There is a homotopy H : In+1 × I → B rel. Sn joining g and
p ◦h′. Then H|(Sn× I ∪ In+1×{1}) has a lift G : Sn× I ∪ In+1×{1} → E
so that G|In+1×{1} = h′ and G|Sn× I = f × idI . Since the pair (In+1× I,
Sn × I ∪ In+1 × {1}) is topologically equivalent to (In+1 × I, In+1 × {0}),
G extends to G′ : In+1×I → E so that p◦G′ = H. Notice that G′|In+1×{0}
is a filler of (D) we were looking for.

(c)⇒(a). We know that every commutative diagram

(D)

K E

L B

f //

j

��
p

��g //

has a filler provided L is a CW complex, K is a subcomplex of L, and
j : K → L is the inclusion map. In the case of K = ∅ we find that p∗ :
[L,E]→ [L,B] is a surjection. For L = M × I and K = M ×∂I we see that
p∗ : [M,E]→ [M,B] is a injection for every CW complex M .

9.3. Proposition. If f : K → L is a quotient map which is proper
(i.e., it is closed and point-inverses are compact), then f × idX : K ×X →
L×X is a quotient map for any space X.

Proof. Suppose S ⊂ L×X and (f × idX)−1(S) = U is open in K ×X.
Given (a, x) ∈ S there are open subsets V of K and W of X so that f−1(x)×
{x} ⊂ V ×W ⊂ U . Let V ′ = f−1(L− f(K − V )). Then V ′ is open, f(V ′)
is open, and f−1(x) × {x} ⊂ V ′ × W ⊂ U . Notice that f(V ′) × W is a
neighborhood of (a, x) in S.
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