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Taylor towers of symmetric and exterior powers
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Brenda Johnson (Schenectady, NY) and
Randy McCarthy (Urbana, IL)

Abstract. We study the Taylor towers of the nth symmetric and exterior power
functors, Spn and Λn. We obtain a description of the layers of the Taylor towers, Dk Spn

and DkΛ
n, in terms of the first terms in the Taylor towers of Spt and Λt for t < n. The

homology of these first terms is related to the stable derived functors (in the sense of Dold
and Puppe) of Spt and Λt. We use stable derived functor calculations of Dold and Puppe
to determine the lowest nontrivial homology groups for Dk Spn and DkΛ

n.

0. Introduction. To any functor F : C → A (where C is a pointed
category with finite coproducts and A is an abelian category) one can as-
sociate a sequence of functors known as its Taylor tower. The Taylor tower
of F behaves much like the Taylor series for a real-valued function—it is a
sequence of functors and natural transformations
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· · · // Pk+1F
qk+1 // PkF

qk // Pk−1F // · · · // P0F = F (∗)
in which each PkF can be treated as a degree k approximation to F . Typi-
cally, the approximation improves as k increases. At this point in time, we
understand much about the formal structure of Taylor towers. A general
method for constructing the functors PkF was given in [JM2]. This method
has been useful both in establishing properties of Taylor towers ([JM2]) and
classifying degree k functors in terms of modules over a particular differential
graded algebra ([JM3]).

As discussed in Section 6 of [JM2], the domain categories of the functors
one wishes to study often carry more structure than is required for the
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construction of PkF . To guarantee that PkF behaves well with respect to
this additional structure can require enhancing the standard construction of
PkF . For example, in this paper, we study functors of abelian groups. The
first term in the Taylor tower of such functors was originally developed by
Dold and Puppe [DP] to serve the role of derived functors for nonadditive
functors. To ensure that P1F takes short exact sequences to long exact
sequences in homology, one replaces an abelian group with a projective
resolution of that group. This necessitates extending F to a functor of chain
complexes in such a way that it will preserve chain homotopy equivalences.
One accomplishes this by using the prolongation of F as defined in Section 1.

With the formal theory of Taylor towers well-established, we focus our
attention on identifying the Taylor tower of two specific classes of functors,
the symmetric and exterior power functors. Our purposes in doing so are
twofold. First, by determining the Taylor towers for particular examples, we
would like to show how the general construction and properties for Taylor
towers set up in [JM2] can be used to gather information about Taylor towers
of specific functors. Secondly, we would like to improve our understanding
of degree k functors, by better understanding the structure of the differen-
tial graded algebra over which the functors are classified in [JM3, §5]. The
DGA is constructed from the kth term in the Taylor tower of the functor
Z[Hom(

∨
k C,−)] which is stably equivalent to the k-fold tensor product of

the infinite symmetric power functor by work of Dold, Thom and Puppe
([DP], [DT]).

The present paper is a first step towards understanding the Taylor tow-
ers of the symmetric and exterior power functors. We produce a functorial
description of the fibers of the natural transformations qk in these Taylor
towers and use some of the formal properties of Taylor towers in conjunc-
tion with stable derived functor calculations of Dold and Puppe to determine
some homology of the towers. The calculations are driven by two results of
earlier papers:

(1) As we mentioned above, in certain contexts the first term in the
Taylor tower of F is equivalent to the Dold–Puppe stabilization of F
([JM1]).

(2) The kth layer in the Taylor tower of F , DkF = fiber(PkF → Pk−1F ),
can be expressed in terms of homotopy orbits of the kth cross effect
functor associated to F ([JM2]).

For the nth symmetric power functor Spn and the nth exterior power
functor Λn, the equivalence of (2) is used to express the layers of the Taylor
towers of Spn and Λn in terms of homotopy orbits of tensor products of lower
order symmetric and exterior powers. The main results are the following.
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Theorems 2.9, 2.11. Let 1 ≤ k ≤ n. Then

Dk Spn '
⊕

[t]=[(t1,...,tk)]∈[Vk(n)]

(D1 Spt1 ⊗ · · · ⊗D1 Sptk)hst(t)

and

DkΛ
n '

⊕
[t]=[(t1,...,tk)]∈[Vk(n)]

(D1Λ
t1 ⊗ · · · ⊗D1Λ

tk)σhst(t)

where Vk(n) = {(t1, . . . , tk) ∈ N×k | t1 + · · ·+ tk = n}, [t] is the equivalence
class of t under the Σk action that permutes the coordinates of (t1, . . . , tk),
[Vk(n)] is the set of all equivalence classes under this action, st(t) is the
stabilizer group of t under this action, hst(t) denotes the homotopy orbits
with respect to this subgroup of Σk, and (−)σ indicates that st(t) acts with
signature.

The homology of D1 Spn(P ) and D1Λ
n(P ), where P is a projective res-

olution of an abelian group A, is equivalent under (1) to the stable derived
functors of Spn and Λn as defined by Dold and Puppe ([DP]). The stable
derived functors have been studied extensively by Dold and Puppe ([DP]),
Bousfield ([Bo]), Betley ([Be]), and Simson and Tyc ([ST], [S]). We use their
computations and our Theorems 2.9 and 2.11 to determine the first nontriv-
ial homology groups of Dk Spn(P ) and DkΛ

n(P ) for k > 1. This leads to
the computations below.

Theorem 4.1. Let A be a finitely generated abelian group, P be a pro-
jective resolution of A, and n, k > 1. The lowest degree in which Dk Spn(P )
can have nontrivial homology is 2n− 2k. For k = n,

H2n−2kDk Spn(P ) ∼= Spn(A).

For k < n,

H2n−2kDk Spn(P ) ∼=
⊕

a1+a2pr2+···+asprs=n
p is prime, 0<r2<···<rs

a1+···+as=k
a2,...,as≥1; a1≥0

Spa1(A)⊗
s⊗
j=2

Spaj (A/p).

By A/p we mean A⊗Z Z/p. For a1 = 0, we set Spa1(A) = Z.

Theorem 4.8. Let A be a finitely generated abelian group, P be a pro-
jective resolution of A, and n, k > 1. The lowest degree in which DkΛ

n(P )
can have nontrivial homology is n− k. For k = n,

Hn−kDkΛ
n(P ) ∼= Λn(A).
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For k < n,

Hn−kDkΛ
n(P ) ∼=

⊕
a1+a2pr2+···+asprs=n
p is prime, 0<r2<···<rs

a1+···+as=k
a2,...,as≥1; a1≥0

Λa1(A)⊗ Λa2pr2 ,...,asprs (A)

where

Λa2pr2 ,...,asprs (A) ∼=
{
Λa2(A/p)⊗ · · · ⊗ Λas(A/p) if p is odd,
Spa2(A/2)⊗ · · · ⊗ Spas(A/2) if p = 2.

The paper is organized as follows. In Section 1, we review basic facts
about Taylor towers and degree k functors that are needed in this paper. In
Section 2, we review the equivalence alluded to in (2) above and use it to
prove Theorems 2.9 and 2.11. Section 3 is devoted to recovering the calcu-
lations of H∗D1 Spn(P ) and H∗D1Λ

n(P ) originally carried out by Dold and
Puppe. The results of Sections 2 and 3 are combined in Section 4 to produce
the first nontrivial homology of Dk Spn(P ), DkΛ

n(P ), and Pk Spn(P ).

1. Cross effects and the Taylor tower. The method for constructing
the Taylor tower of a functor F described in [JM2] relies on a collection of
functors, called the cross effects, that can be associated to F . We use this
section to review cross effects and the basic properties of the Taylor tower of
use to us in this paper. Throughout this section, unless otherwise indicated,
we work with a functor F : C → A or F : C → Ch≥0A where C is a pointed
category (has an object that is both initial and final) with finite coproducts,
and A is an abelian category.

The functors of interest to us are all examples of prolongations—functors
of modules over a fixed ring R that have been extended to functors of chain
complexes of R-modules by passing through the category of simplicial R-
modules. Recall from the Dold–Kan theorem that Ch≥0A, the category
of chain complexes over an abelian category A, concentrated in degrees
greater than or equal to 0, is naturally equivalent to SimpA, the category
of simplicial objects over A. This equivalence is realized by the functors

C : SimpA → Ch≥0A and K : Ch≥0A → SimpA.

For more details about these functors and the Dold–Kan theorem, see [D],
[K], [We, pp. 270–276] or Section 2 of [JM1]. The prolongation of a functor
is defined as follows.

Definition 1.1. Let A and B be abelian categories and F be a functor
from A to B. The prolongation of F is the functor from Ch≥0A to Ch≥0 B
given by

C ◦ F ◦K
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where for an object A in Ch≥0A, F is applied degreewise to the simplicial
object KA. When restricted to objects in A, the prolongation of F agrees
with the original functor F .

At the risk of some confusion we will use F to denote both the original
functor and its prolongation. For example, we will use Spn to denote the
nth symmetric power functor both as a functor of modules and a functor
of chain complexes. Using prolongations guarantees that chain homotopy
equivalences will be preserved.

The kth cross effect of the functor F : C → A is a functor of k variables,
crk F : C×k → A, that can be defined inductively on objects C1, . . . , Ck as
shown below. For the original definition, see [EM]. We use ∨ to denote the
coproduct and ∗ to denote the initial/final object in C. For n = 1 and n = 2,
we have

F (C1) ∼= F (∗)⊕ cr1 F (C1),

and
cr1 F (C1 ∨ C2) ∼= cr1 F (C1)⊕ cr1 F (C2)⊕ cr2 F (C1, C2).

In general,
crk−1 F (C1 ∨ C2, C3, . . . , Ck)

is isomorphic to

crk−1 F (C1, C3, . . . , Ck)⊕ crk−1 F (C2, C3, . . . , Ck)⊕ crk F (C1, C2, . . . , Ck).

If F is the prolongation of a functor G, then it is straightforward to show
that the cross effects of F are isomorphic to the prolongation of the cross
effects of G. For more details see [JM1, §3].

The cross effect functors have the following properties.

Proposition 1.2. Let F : C → A, and C1, . . . , Ck be objects in C.

(1) crk F is symmetric with respect to its k variables. That is, for every
σ ∈ Σk, the kth symmetric group, crk F (C1, . . . , Ck) is isomorphic
to crk F (Cσ(1), . . . , Cσ(k)).

(2) crk F (C1, . . . , Ck) ∼= 0 if any Ci = ∗.
(3) F (C1 ∨ · · · ∨ Ck) ∼= F (∗)⊕

⊕k
t=1

⊕
j1<···<jt crt F (Cj1 , . . . , Cjt).

Cross effects also determine the degree of a functor.

Definition 1.3. A functor F : C → Ch≥0A is degree k iff crk+1 F is quasi-
isomorphic to 0.

Examples 1.4. Let R be a commutative ring andMR denote the cate-
gory of modules over R.
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(1) For n ≥ 1, the nth symmetric power functor, Spn : MR → MR, is
defined for an object M in MR by

Spn(M) = ⊗n(M)/U(M)

where U(M) is the submodule of ⊗n(M) generated by all elements of the
form m1 ⊗ · · · ⊗mn −mσ(1) ⊗ · · · ⊗mσ(n) for σ ∈ Σn. When evaluated on a
direct sum, the nth symmetric power functor decomposes as a sum of tensor
products of symmetric powers. In particular, for R-modules M1, . . . ,Mk,

Spn(M1 ⊕ · · · ⊕Mk) ∼=
⊕

t1+···+tk=n

Spt1(M1)⊗ · · · ⊗ Sptk(Mk).

It follows by induction that

crk Spn(M1, . . . ,Mk) ∼=
⊕

t1+···+tk=n
t1,...,tk>0

Spt1(M1)⊗ · · · ⊗ Sptk(Mk).

If k > n, then crk Spn ∼= 0 and Spn is a degree n functor. When M1 =
· · · = Mk, the symmetric group Σk acts on this cross effect by σ(t1, . . . , tk;
m1, . . . ,mk) = (tσ(1), . . . , tσ(k); mσ(1), . . . ,mσ(k)). Here we are treating σ as
an endomorphism of the set {1, . . . , k} so that for τ, σ ∈ Σk, τσ = τ ◦ σ.
These results hold for the prolongation of Spn as well.

(2) The nth exterior power functor Λn : MR → MR is defined for an
object M in MR by

Λn(M) = ⊗n(M)/V (M)

where V (M) is the submodule of ⊗n(M) generated by all elements of the
form m1 ⊗ · · · ⊗mn with mi = mj for some 1 ≤ i < j ≤ n. In a manner
similar to that of the previous example, one can show that

crk Λn(M1, . . . ,Mk) ∼=
⊕

t1+···+tk=n
t1,...,tk>0

Λt1(M1)⊗ · · · ⊗ Λtk(Mk)

for R-modules M1, . . . ,Mk. However, when M1 = · · · = Mk the action of Σk
on this decomposition is now twisted by the signature. Hence

σ(t1, . . . , tk;m1, . . . ,mk) = sgn(σ) · (tσ(1), . . . , tσ(k);mσ(1), . . . ,mσ(k)).

This holds for the prolongation of Λn as well.

For more examples of cross effects, see Section 1 of [JM2].
The cross effects play a central role in the construction of the Taylor

tower of F . We review the basic features of the Taylor tower here and refer
the reader to [JM2] for the details of the construction.



Taylor towers of symmetric and exterior powers 203

Theorem 1.5 ([JM2, 2.12]). Given a functor F from C to A or to
Ch≥0A, there is a natural tower of functors:

F
pk+1

yysssssssss
pk

��

pk−1

%%KKKKKKKKK

· · · // Pk+1F
qk+1 // PkF

qk // Pk−1F // · · · // P0F = F (∗).

For each k, the functor PkF is a degree k functor. Moreover , the pairs
(Pk, pk) are universal (up to natural quasi-isomorphism) with respect to
maps from F to degree k functors.

The following properties of the Taylor tower functors will be of use to us.

Proposition 1.6. Let F be a functor from C to A or Ch≥0A and let
k ≥ 1.

(1) Pk is an exact functor of functors. That is, if F → G → H is an
exact sequence of functors, then PkF → PkG → PkH is an exact
sequence of functors or yields a long exact sequence in homology. In
particular, Pk(F ⊕G) ∼= PkF ⊕ PkG.

(2) If F is degree k, then PkF ' F .

2. The layers of the Taylor tower. As a first step towards under-
standing the kth term in the Taylor towers of Spn and Λn, we study the
kth layers of the Taylor towers of Spn and Λn. In this section we review
the definition of the layers of the Taylor tower and recall a result of Good-
willie’s, reproduced in our context in [JM2], that leads to descriptions of the
kth layers of the Taylor towers of Spn and Λn in terms of lower symmetric
and exterior powers. As in Section 1, C is a pointed category with finite
coproducts and A is an abelian category.

Definition 2.1. Let F : C → A and k ≥ 1. The kth layer of the Taylor
tower of F is the functor DkF given by

DkF := fiber(PkF
qkF−→ Pk−1F )

where fiber is the homotopy fiber of qkF , i.e., the mapping cone of qkF
shifted down one degree.

As an immediate consequence of this definition we note that the sequence
DkF → PkF → Pk−1F gives rise to a long exact sequence in homology:

(2.2) · · · → H∗+1Pk−1F → H∗DkF → H∗PkF → H∗Pk−1F → · · · .
In [JM2], we showed that DkF can be expressed as the multilineariza-

tion of the kth cross effect of F . This result, stated below, was inspired by
Goodwillie’s description [G] of the layers of the Taylor towers for functors
of spaces.
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Proposition 2.3 ([JM2, 3.9]). Let F : C → Ch≥0A. Then

DkF ' (D(k)
1 crk F )hΣk

.

Here D
(k)
1 denotes the multilinearization of crk F , which is the functor

Dk
1D

k−1
1 . . . D1

1 crk F where Di
1 crk F is the functor obtained by holding all

but the ith variable of crk F constant and applying D1 to the resulting func-
tor of one variable. By hΣk we mean the homotopy orbits of D(k)

1 crk F , in
other words, the total complex of Z[EΣk] ⊗Z[Σk] D

(k)
1 crk F where EΣk is a

free Σk-resolution of Z.

In Example 1.4, we saw that

(2.4) crk Spn ∼=
⊕

t1+···+tk=n
t1,...,tk>0

Spt1 ⊗ · · · ⊗ Sptk .

By applying Proposition 2.3 to this formula, we determine Dk Spn in Theo-
rem 2.9 below. Before doing so, we introduce some notation and terminology
for working with the partitions t1 + · · · + tk = n that index the summands
in the cross effect formula (2.4).

Definition 2.5. For 1 ≤ k ≤ n, let

Vk(n) = {(t1, . . . , tk) ∈ N×k | t1 + · · ·+ tk = n}.
In other words, Vk(n) is the set of partitions of n into k positive integers.

Examples 2.6. (1) For n = 6 and k = 3, Vk(n) is the set

{(1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 2, 3), (1, 3, 2),
(2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 2, 2)}.

(2) Note that under the notation of Definition 2.5, (2.4) becomes

crk Spn ∼=
⊕

t=(t1,...,tk)∈Vk(n)

Spt1 ⊗ · · · ⊗ Sptk .

The kth symmetric group, Σk, acts on Vk(n) by permuting the terms
within a partition. Associated with this action, we have the following.

Definition 2.7. Let 1 ≤ k ≤ n and t = (t1, . . . , tk) ∈ Vk(n).

(1) The stabilizer of t is the group

st(t) = {σ ∈ Σk | σ(t) = t}.
(2) The orbit of t is the set

[t] = {σ(t) | σ ∈ Σk}.
(3) Recall that the orbits form a partition of Vk(n). We use [Vk(n)] to

denote the set of orbits of Vk(n) under the Σk action.
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Example 2.8. For n = 6 and k = 3, the orbits of the Σk action on Vk(n)
are

[(1, 1, 4)] = {(1, 1, 4), (1, 4, 1), (4, 1, 1)},
[(1, 2, 3)] = {(1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1)},
[(2, 2, 2)] = {(2, 2, 2)}.

The stabilizer subgroups are
st(1, 1, 4) = {(1), (12)}, st(1, 4, 1) = {(1), (13)}, st(4, 1, 1) = {(1), (23)},
st(1, 2, 3) = st(1, 3, 2) = st(2, 1, 3) = st(2, 3, 1) = st(3, 1, 2)

= st(3, 2, 1) = {(1)},
st(2, 2, 2) = Σ3.

With these ideas, we obtain the following.

Theorem 2.9. Let 1 ≤ k ≤ n. Then

Dk Spn '
⊕

[t]∈[Vk(n)]

(D Spt)hst(t)

where for t = (t1, . . . , tk),

D Spt = D1 Spt1 ⊗ · · · ⊗D1 Sptk .

Proof. We prove this result by first showing that for each t ∈ Vk(n) there
is a Σk-equivariant isomorphism

Φ : D Spt×st(t)Σk
∼=−→
⊕
v∈[t]

D Spv .

The map Φ takes D Spt×σ (for σ ∈ Σk) isomorphically to D Spσ(t). That Φ
is well-defined follows from the observation that α◦σ(t) = σ(t) for α ∈ st(t).
That Φ is an isomorphism comes from the facts that |[t]| = |Σk|/|st(t)| and
that D Spσ(t) 6= D Spτ(t) for σ, τ ∈ Σk with στ−1, τσ−1 6∈ st(t).

Furthermore, for τ ∈ Σk, we have

Φ(τ(D Spt×σ)) = Φ(D Spt×τ ◦ σ) = D Spτ(σ(t)) = τ(D Spσ(t)).

Hence, Φ is Σk-equivariant. It follows that

(2.10)
( ⊕

[t]∈[Vk(n)]

⊕
v∈[t]

D Spv
)
hΣk

∼=
( ⊕

[t]∈[Vk(n)]

D Spt×st(t)Σk

)
hΣk

=
⊕

[t]∈[Vk(n)]

D Spt×st(t)Σk ⊗Z[Σk] EΣk

∼=
⊕

[t]∈[Vk(n)]

D Spt⊗Z[st(t)]EΣk ∼=
⊕

[t]∈[Vk(n)]

(D Spt)hst(t)

where the last isomorphism comes from the fact that a free Σk resolution of
Z is also a free st(t) resolution of Z.
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By Proposition 2.3,

Dk Spn ' (D(k)
1 crk Spn)hΣk

∼=
(
D

(k)
1

⊕
t=(t1,...,tk)∈Vk(n)

Spt1 ⊗ · · · ⊗ Sptk
)
hΣk

.

It follows from the definition of P1F in [JM2] that Di
1(Spt1 ⊗ · · · ⊗ Sptk) ∼=

Spt1 ⊗ · · · ⊗D1 Spti ⊗ · · · ⊗ Sptk . By Proposition 1.6, we know that Di
1 com-

mutes with direct sums. From this and (2.10), we have

Dk Spn '
( ⊕

t=(t1,...,tk)∈Vk(n)

D1 Spt1 ⊗ · · · ⊗D1 Sptk
)
hΣk

=
( ⊕

[t]∈[Vk(n)]

⊕
v∈[t]

D Spv
)
hΣk

∼=
⊕

[t]∈[Vk(n)]

(
D Spt

)
hst(t)

,

as desired.

A similar result can be proved for the exterior power functors using the
same techniques.

Theorem 2.11. Let 1 ≤ k ≤ n. Then

DkΛ
n '

⊕
[t]∈[Vk(n)]

(DΛt)σhst(t)

where for t = (t1, . . . , tk),

DΛt = D1Λ
t1 ⊗ · · · ⊗D1Λ

tk ,

and (−)σ indicates that st(t) acts with the signature.

3. Stable derived functors of symmetric and exterior powers.
With Theorems 2.9 and 2.11 we saw that the kth layers in the Taylor towers
of Spn and Λn are determined by tensor products of terms of the form D1 Spt

or D1Λ
t for t ≤ n. The functors D1 Spt and D1Λ

t have been analyzed in
detail by Dold and Puppe ([DP]), Simson and Tyc ([S], [ST]), Bousfield
([Bo]), and Betley ([Be]). We review some of their results in this section,
and use these results to determine the first nontrivial homology groups of
Dk Spn and DkΛ

n in Section 4.
The language used in the references listed in the previous paragraph is

not that of Taylor towers. Instead, the functor D1F is used to construct
“stable derived functors.” Dold and Puppe were the first to consider such
functors. For a nonadditive functor F : A → B between abelian categories
A and B, they sought to construct derived functors for F . They did so by
first stabilizing F to produce the functor DF : Ch≥0A → Ch≥0 B given by

DF = lim
n

sh−n F shn
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where shn is the functor that shifts a chain complex by n degrees and F has
been replaced by its prolongation. The functor DF preserves direct sums up
to quasi-isomorphism, and when F is the prolongation of a functor from A
to B, D1F is naturally equivalent to DF (see [JM1, 7.5], [JM2, 2.14]). When
A has enough projectives, the nth stable derived functor of F evaluated at
an object A in A, denoted Ls

nF (A), is obtained from DF by evaluating it
on a projective resolution P of A and taking the nth homology group. Thus,

Ls
nF (A) := Hn(DF (P )) ∼= Hn(D1F (P )).

As with derived functors, stable derived functors are independent of the
choice of projective resolution. When the original functor F is additive (or
degree one), the stable derived functors of F are isomorphic to the derived
functors of F .

In this section we determine the degree in which the first nontrivial
stable derived functors of Spn and Λn arise and identify these groups. These
results date back to Dold and Puppe’s original paper on stable derived
functors ([DP]). We provide proofs in this section in terms of the Taylor
tower constructions defined in [JM1] and [JM2]. To determine the location
of the lowest nontrivial group we use the following lemma.

Lemma 3.1 ([DP], [P]). Let F and G be functors from the abelian category
A to the abelian category B. If F (0) ∼= G(0) ∼= 0, then D1(F ⊗G) ∼= 0 as a
functor from Ch≥0A to Ch≥0 B.

Proof. Let P be a chain complex in Ch≥0A. From Example 2.14 of
[JM2], we know that

D1(F ⊗G)(P ) ' D(F ⊗G)(P ) ∼= lim
n

sh−n(F ⊗G)(shn P ).

Consider (F⊗G)(shn P ). By the Eilenberg–Zilber theorem, this is equivalent
to the total complex of the bicomplex F (shn P ) ⊗ G(shn P ). But F (shn P )
and G(shn P ) will be 0 in degrees less than n. As a result, the total complex
(F ⊗G)(shn P ) is 0 in degrees less than 2n, and sh−n(F ⊗G)(shn P ) is 0 in
degrees less than n. Hence, in the limit, D1(F ⊗G)(P ) is quasi-isomorphic
to 0.

To determine the connectivity and first nontrivial homology of D1 Spn

and D1Λ
n, we introduce functors that are closely related to the symmetric

and exterior power functors, the divided powers.

Definition 3.2. Let R be a commutative ring andMR be the category
of modules over R. The divided power functor or gamma functor is the
functor that takes an R-module A to the commutative ring Γ (A) generated
by elements of the form x(r) for each x ∈ A and integer r ≥ 0, subject to
the following relations:
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(1) x(0) = 1,
(2) x(r)x(s) =

(
r+s
r

)
x(r+s),

(3) (x+ y)(t) =
∑

r+s=t x
(r)y(s),

(4) (nx)(r) = nrx(r) for n ∈ R.

An element of Γ (A) of the form x
(r1)
1 . . . x

(rn)
n has degree r1 + · · · + rn.

We use Γn(A) to denote the R-module generated (additively) by the degree
n elements of Γ (A). This yields a functor, Γn, from MR to itself. We refer
to this functor as the nth divided power functor. Clearly,

Γ (A) ∼=
∞⊕
i=1

Γ i(A).

(For more about divided powers see [E, Appendix 2], or [EM, §18].)

Remark 3.3. The cross effects of the divided power functors can be
identified in a fashion similar to that of Example 1.4. For n ≥ 1, Γn is a
degree n functor. For k ≤ n, and R-modules A1, . . . , Ak,

crk Γn(A1, . . . , Ak) ∼=
⊕

t1+···+tk=n
ti≥1

Γ t1(A1)⊗ · · · ⊗ Γ tk(Ak).

In the case k = 2, the isomorphism comes from the isomorphism

Γn(A1 ⊕A2) ∼=
⊕

t1+t2=n
ti≥0

Γ t1(A1)⊗ Γ t2(A2)

that assigns m(t1)
1 ⊗ m

(t2)
2 ∈ Γ t1(A1) ⊗ Γ t2(A2) to (m1, 0)(t1)(0,m2)(t2) ∈

Γn(A1 ⊕ A2). We will make use of this isomorphism in the proof of Propo-
sition 3.7.

The stable derived functors of the symmetric and exterior powers can be
obtained from those of the divided powers via a dimension shift. We prove
this next.

Proposition 3.4 ([DP]). Let n ≥ 2. Then

HiD1Γ
n ∼= Hi+n−1D1Λ

n ∼= Hi+2n−2D1 Spn .

Proof. To establish the second isomorphism, recall that the symmetric
and exterior power functors are related by the following Koszul complex:

0→ Λn → Λn−1 ⊗ Sp1 → Λn−2 ⊗ Sp2 → · · · → Λ1 ⊗ Spn−1 → Spn → 0.

By Proposition 1.6(1), applying D1 to the Koszul complex produces the
exact sequence

(3.5) 0→ D1Λ
n → D1(Λn−1 ⊗ Sp1)→ · · ·

· · · → D1(Λ1 ⊗ Spn−1)→ D1 Spn → 0.
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By Lemma 3.1, terms of the form D1(Λi ⊗ Spn−i) for 0 < i < n are quasi-
isomorphic to 0. So if we consider the spectral sequence associated to the
bicomplex (3.5) we see that it has two nontrivial columns in the E2 term:

...
... . . .

...
H2D1 Spn 0 . . . 0 H2D1Λ

n

H1D1 Spn 0 . . . 0 H1D1Λ
n

H0D1 Spn 0 . . . 0 H0D1Λ
n

0 n

Since (3.5) is exact, the spectral sequence converges to 0. The only nontrivial
differentials occur in En and provide the isomorphisms

HiD1Λ
n ∼= Hi+n−1D1 Spn .

In a similar fashion, one can use the Koszul complex relating the exterior
and divided powers

0→ Γn → Γn−1 ⊗ Λ1 → · · · → Γ 1 ⊗ Λn−1 → Λn → 0

to obtain the isomorphism HiD1Γ
n ∼= Hi+n−1D1Λ

n.

Since D1Γ
n has no homology below degree 0, Proposition 3.4 also yields

the following results.

Corollary 3.6. For n ≥ 2, Ht(D1 Spn) ∼= 0 when t < 2n − 2 and
Hs(D1Λ

n) ∼= 0 when s < n− 1.

By calculating H0D1Γ
n(P ) explicitly for a projective resolution P , we

can identify the first nontrivial stable derived functors of Γn, Λn, and Spn.

Proposition 3.7 ([DP]). Let A be a finitely generated abelian group and
P be a projective resolution of A. If n = pr for a prime p and r ≥ 1, then

H2n−2D1 Spn(P ) ∼= Hn−1D1Λ
n(P ) ∼= H0D1Γ

n(P ) ∼= A⊗Z Z/pZ.

If n = 1, we have

H0D1Γ
n(P ) ∼= H0D1Λ

n(P ) ∼= H0D1 Spn(P ) = H0(P ) ∼= A.

Otherwise,

H2n−2D1 Spn(P ) ∼= Hn−1D1Λ
n(P ) ∼= H0D1Γ

n(P ) ∼= 0.

Proof. By Proposition 3.4, it suffices to determine H0P1Γ
n(P ), and since

P1Γ
n is right exact, it is enough to compute H0P1Γ

n on a free module B.
Since A is a finitely generated abelian group and P1Γ

n preserves direct sums,
we may restrict our attention to the case where B = Z.
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It follows from the construction of the Taylor tower in [JM2, §2] that
H0P1Γ

n(Z) is the cokernel of the map

(3.8) cr2 Γn(Z,Z)
Γn(+)−−→ Γn(Z).

From [JM2, 2.8], the homomorphism Γn(+) is the composite

cr2 Γn(Z,Z) ↪→ Γn(Z⊕ Z) +−→ Γn(Z)

where + is induced by the fold map Z⊕Z→ Z that takes (a, b) to a+b. Recall
from Remark 3.3 that cr2 Γn(Z,Z) ∼=

⊕n−1
i=1 Γ

i(Z)⊗ Γn−i(Z) and that this
isomorphism takes m(i)

1 ⊗m
(n−i)
2 ∈ Γ i(Z)⊗Γn−i(Z) to (m1, 0)(i)(0,m2)(n−i)

∈ cr2 Γn(Z,Z) ⊆ Γn(Z⊕ Z). Composing with the fold map yields

m
(i)
1 ⊗m

(n−i)
2 → (m1, 0)(i)(0,m2)(n−i) +−→ (m1)(i)(m2)(n−i).

Using the defining relations for Γ (Definition 3.2), one finds that

(m1)(i)(m2)(n−i) = mi
1m

n−i
2 1(i)1(n−i) = mi

1m
n−i
2

(
n

i

)
1(n).

Since 1(n) generates Γn(Z) ∼= Z it follows that the image of Γn(+) in Γn(Z)
is generated by the set {

(
n
i

)
1(n) | 1 ≤ i ≤ n−1}. Since the greatest common

divisor of {
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n−1

)
} is p when n = pr for some prime p, r ≥ 1,

and is 1 otherwise, we see that

(3.9) imΓn(+)(Z) ∼=
{
pZ if n = pr,
Z otherwise.

Hence, we have

H0D1Γ
n(P ) ∼=

{
Z/pZ if n = pr for a prime p, and r ≥ 1,
0 otherwise.

4. The first nontrivial homology of Dk Spn and DkΛ
n. In Section 2

we showed that Dk Spn and DkΛ
n can be expressed in terms of linearizations

of lower symmetric and exterior powers. Coupling this with the calculations
of Section 3 enables us to completely determine the first nontrivial homology
groups of Dk Spn and DkΛ

n. We begin with the symmetric powers.

Theorem 4.1. Let A be a finitely generated abelian group, P be a pro-
jective resolution of A, and n, k > 1. The lowest degree in which Dk Spn(P )
can have nontrivial homology is 2n− 2k. For k = n,

H2n−2kDk Spn(P ) ∼= Spn(A).
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For k < n,

H2n−2kDk Spn(P ) ∼=
⊕

a1+a2pr2+···+asprs=n
p is prime, 0<r2<···<rs

a1+···+as=k
a2,a3,...,as≥1;a1≥0

Spa1(A)⊗
s⊗
j=2

Spaj (A/p).

By A/p we mean A⊗Z Z/p. For a1 = 0, we set Spa1(A) = Z.

Hence, to find H2n−2kDk Spn(P ) one need only determine the ways in
which n can be expressed as the sum of k (not necessarily distinct) powers
of the same prime p. We illustrate this with the set of examples below.

Examples 4.2. Let P be a projective resolution of A.

(1) Consider k = 2 and n = 12. In this case, n can be written as a sum
of two powers of the same prime in three ways, and the ais and rjs have the
indicated values:

Sum a1 ai rj

22 + 23 0 a2 = 1, a3 = 1 r2 = 2, r3 = 3

31 + 32 0 a2 = 1, a3 = 1 r2 = 1, r3 = 2

110 + 111 1 a2 = 1 r2 = 1

It follows that

H20D2 Sp12(P ) ∼= (A/2⊗A/2)⊕ (A/3⊗A/3)⊕ (A⊗A/11).

(2) Consider k = 3 and n = 12. In this case, n can be written as a sum
of three powers of the same prime in two ways and the ais and rjs have the
indicated values:

Sum a1 ai rj

21 + 21 + 23 0 a2 = 2, a3 = 1 r2 = 1, r3 = 3

22 + 22 + 22 0 a2 = 3 r2 = 2

It follows that

H18D3 Sp12(P ) ∼= (Sp2(A/2)⊗A/2)⊕ Sp3(A/2).

(3) Consider k = 4 and n = 12. In this case, n can be written as a sum
of four powers of the same prime in five ways:

12 = 2 · 20 + 21 + 23

= 2 · 21 + 2 · 22

= 3 · 30 + 32

= 4 · 31

= 2 · 50 + 2 · 51.



212 B. Johnson and R. McCarthy

Hence,

H16D4 Sp12(P ) ∼= (Sp2(A)⊗A/2⊗A/2)⊕ (Sp2(A/2)⊗ Sp2(A/2))

⊕ (Sp3(A)⊗A/3)⊕ Sp4(A/3)

⊕ (Sp2(A)⊗ Sp2(A/5)).

(4) Suppose n is odd and k = 2. Then n can be expressed as a sum of
two prime powers if and only if n has the form n = 2k + 1 for some k ≥ 1.
It follows that

H2n−4D2 Spn(P ) =

{
A⊗A/2 if n = 2k + 1 for some k ≥ 1,
0 otherwise.

Proof of Theorem 4.1. Much of the work for this proof has been done
in Sections 2 and 3. We start with the formula of Theorem 2.9 and deter-
mine the needed homotopy orbits directly, before using the calculations of
Proposition 3.7 to obtain the result.

Recall from Theorem 2.9 that

Dk Spn '
⊕

[t]∈[Vk(n)]

(D Spt)hst(t)

where for t = (t1, . . . , tk),D Spt = D1 Spt1 ⊗ · · ·⊗D1 Sptk . The Künneth the-
orem, Corollary 3.6, and the fact that homotopy orbits preserve connectivity
guarantee that HtDk Spn(P ) ∼= 0 for t < (2t1−2)+ · · ·+(2tk−2) = 2n−2k.
Moreover, it follows directly from Corollary 3.6, the definition of homotopy
orbits (see, for example, [JM2, 3.5]), and Künneth that

H2n−2kDk Spn(P ) ∼=
⊕

[t]∈[Vk(n)]

H2n−2k(D Spt(P )hst(t))

∼=
⊕

[t]∈[Vk(n)]

(H2n−2kD Spt(P ))st(t)

∼=
⊕

[(t1,...,tk)]∈[Vk(n)]

( k⊗
i=1

H2ti−2D1 Spti(P )
)

st(t)
.

Recall that t = (t1, . . . , tk) ∈ Vk(n) represents a partition of n, i.e.,
t1 + · · · + tk = n. By grouping together equal tis, such a partition can be
written in the form

(4.3) c1u1 + c2u2 + · · ·+ csus = n

with ui 6= uj for i 6= j, c1 + · · · + cs = k, and c1, . . . , cs ≥ 1. Let u denote
the element of [t] corresponding to this rearrangement. Then clearly st(u) =
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Σc1 × · · · ×Σcs . Moreover,

(H2n−2k(D Spu))st(u)
∼=

s⊗
j=1

(⊗cjH2uj−2D1 Spuj )Σcj
.

To determine the orbits (⊗ciH2ui−2D1 Spui)Σci
, we consider the action of

an arbitrary transposition (jl) ∈ Σci on the complex ⊗ciD1 Spui . The trans-
position (jl) acts on ⊗ciD1 Spui by interchanging the jth and lth tensorands.
The careful reader will recognize that there must be a sign associated to the
(jl)-action in order to produce a chain map from ⊗ciD1 Spui to itself that is
consistent with the sign convention for total complexes. In particular, (jl)
acts by taking the element a1 ⊗ · · · ⊗ aj ⊗ · · · ⊗ al ⊗ · · · ⊗ aci of multidegree
(b1, . . . , bj , . . . , bl, . . . , bci) to the element

(−1)bj(bj+1+···+bl)+bl(bj+1+···+bl−1)a1 ⊗ · · · ⊗ al ⊗ · · · ⊗ aj ⊗ · · · ⊗ aci .
However, for the present computation, we are interested only in elements of
multidegree (2ui− 2, 2ui− 2, . . . , 2ui− 2) and so the sign is +1. As a result,

(4.4) (H2n−2k(D Spu(P )))st(u)
∼=

s⊗
j=1

Spcj (H2uj−2D1 Spuj (P )).

When u1 = 1, it follows by Proposition 3.7 that (4.4) is isomorphic to

(4.5) Spc1(A)⊗Spc2(H2u2−2D1 Spu2(P ))⊗· · ·⊗Spcs(H2us−2D1 Spus(P )).

If k = n, the only partition of n into k positive integers is the trivial
partition n = 1 + · · ·+ 1. In this case, (4.5) gives us

H2n−2kDk Spn(P ) ∼= Spn(A).

For k < n, recall from Proposition 3.7 that H2t−2D1 Spt(P ) is nontriv-
ial if and only if t is 1 or t is a positive power of a prime. In particu-
lar, H2t−2D1 Spt(P ) ∼= A/p when t is a positive power of a prime p, and
H2t−2D1 Spt(P ) ∼= A when t = 1. As a result, the summands (4.4) and (4.5)
are nontrivial if and only if u1, . . . , us are all nonnegative powers of the same
prime, that is, if the partition (4.3) has the form c1p

r1 + · · · + csp
rs where

ri 6= rj if i 6= j. Applying Proposition 3.7 to (4.4) and (4.5), and setting a1

equal to the number of p0s appearing in a partition, we obtain the desired
result

H2n−2kDk Spn(P ) ∼=
⊕

a1+a2pr2+···+asprs=n
p is prime, 0<r2<···<rs

a1+···+as=k
a2,...,as≥1; a1≥0

Spa1(A)⊗
s⊗
j=2

Spaj (A/p).

Using the exact sequence Dk Spn → Pk Spn → Pk−1 Spn, we determine
the first nontrivial homology of Pk Spn as well.
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Lemma 4.6. Let P be a projective resolution of the abelian group A and
n, k ≥ 2. Then

H∗Pk Spn(P ) ∼= H∗Dk Spn(P )

for ∗ ≤ 2n− 2k.

Proof. We begin by noting that D1 Spn ∼= P1 Spn since P0 Spn = Spn(0)
∼= 0. Hence, the first nontrivial homology group of P1 Spn(P ) occurs no lower
than degree 2n − 2. From the sequence of functors D2 Spn → P2 Spn →
P1 Spn, we obtain a long exact sequence of homology groups

· · · → H∗D2 Spn(P )→ H∗P2 Spn(P )→ H∗P1 Spn(P )→ · · · .

Since D2 Spn(P ) is (2n−5)-connected and P1 Spn(P ) is (2n−3)-connected,
it must be the case that H∗P2 Spn(P ) ∼= H∗D2 Spn(P ) for ∗ ≤ 2n− 4. The
result follows inductively in this fashion, by using the long exact homology
sequence associated to Dk Spn → Pk Spn → Pk−1 Spn and the fact that
H∗Dk Spn vanishes for ∗ < 2n− 2k.

Corollary 4.7. Let A be a finitely generated abelian group, P be a
projective resolution of A and n, k ≥ 2. The lowest degree in which Pk Spn(P )
can have nontrivial homology is 2n− 2k. For k = n,

H2n−2kPk Spn(P ) ∼= Spn(A).

For k < n,

H2n−2kPk Spn(P ) ∼=
⊕

a1+a2pr2+···+asprs=n
p is prime, 0<r2<···<rs

a1+···+as=k
a2,...,as≥1; a1≥0

Spa1(A)⊗
s⊗
j=2

Spaj (A/p).

The lowest nontrivial homology of DkΛ
n(P ) can be determined in a

manner similar to that used for Dk Spn(P ). We note that for odd primes p
one works with even-dimensional homology classes and the Σk action is the
usual action with signature. When p = 2, one works with odd-dimensional
homology classes, except for D1Λ

1 ∼= Id, and so the permutation signature
is cancelled by the sign arising from the action on the tensor product of
chain complexes in homology above degree 0. This gives us the following.

Theorem 4.8. Let A be a finitely generated abelian group, P be a pro-
jective resolution of A, and n, k > 1. The lowest degree in which DkΛ

n(P )
can have nontrivial homology is n− k. For k = n,

Hn−kDkΛ
n(P ) ∼= Λn(A).
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For k < n,

Hn−kDkΛ
n(P ) ∼=

⊕
a1+a2pr2+···+asprs=n
p is prime, 0<r2<···<rs

a1+···+as=k
a2,...,as≥1; a1≥0

Λa1(A)⊗ Λa2pr2 ,...,asprs (A)

where

Λa2pr2 ,...,asprs (A) ∼=
{
Λa2(A/p)⊗ · · · ⊗ Λas(A/p) if p is odd ,
Spa2(A/2)⊗ · · · ⊗ Spas(A/2) if p = 2.

Remark 4.9. The gap between the lowest nontrivial homology ofDk Spn

and Dk−1 Spn is just large enough for us to conclude that

H2n−2kPk Spn(P ) ∼= H2n−2kDk Spn(P ).

An analogous result does not appear to hold for the exterior powers. To
determine Hn−kPkΛ

n(P ), one must consider possible extensions as well. We
leave this to another paper.
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Sci. École Norm. Sup. 33 (2000), 151–179.

[S] D. Simson, Stable derived functors of the second symmetric power functor, second
exterior power functor and Whitehead gamma functor, Colloq. Math. 32 (1974),
49–55.

[ST] D. Simson and A. Tyc, Connected sequences of stable derived functors and their
applications, Dissertationes Math. 111 (1974).

[We] C. Weibel, An Introduction to Homological Algebra, Cambridge Univ. Press, Cam-
bridge, 1994.

Department of Mathematics
Union College
Schenectady, NY 12308, U.S.A.
E-mail: johnsonb@union.edu

Department of Mathematics
University of Illinois at Urbana-Champaign

1409 W. Green St.
Urbana, IL 61801, U.S.A.

E-mail: randy@math.uiuc.edu

Received 6 May 2003;
in revised form 9 November 2006 and 4 August 2008


