Taylor towers of symmetric and exterior powers

by
Brenda Johnson (Schenectady, NY) and Randy McCarthy (Urbana, IL)

Abstract

We study the Taylor towers of the nth symmetric and exterior power functors, Sp^{n} and Λ^{n}. We obtain a description of the layers of the Taylor towers, $D_{k} \mathrm{Sp}^{n}$ and $D_{k} \Lambda^{n}$, in terms of the first terms in the Taylor towers of Sp^{t} and Λ^{t} for $t<n$. The homology of these first terms is related to the stable derived functors (in the sense of Dold and Puppe) of Sp^{t} and Λ^{t}. We use stable derived functor calculations of Dold and Puppe to determine the lowest nontrivial homology groups for $D_{k} \mathrm{Sp}^{n}$ and $D_{k} \Lambda^{n}$.

0. Introduction. To any functor $F: \mathcal{C} \rightarrow \mathcal{A}$ (where \mathcal{C} is a pointed category with finite coproducts and \mathcal{A} is an abelian category) one can associate a sequence of functors known as its Taylor tower. The Taylor tower of F behaves much like the Taylor series for a real-valued function-it is a sequence of functors and natural transformations

in which each $P_{k} F$ can be treated as a degree k approximation to F. Typically, the approximation improves as k increases. At this point in time, we understand much about the formal structure of Taylor towers. A general method for constructing the functors $P_{k} F$ was given in [JM2]. This method has been useful both in establishing properties of Taylor towers ([JM2]) and classifying degree k functors in terms of modules over a particular differential graded algebra ([JM3]).

As discussed in Section 6 of [JM2], the domain categories of the functors one wishes to study often carry more structure than is required for the

[^0]construction of $P_{k} F$. To guarantee that $P_{k} F$ behaves well with respect to this additional structure can require enhancing the standard construction of $P_{k} F$. For example, in this paper, we study functors of abelian groups. The first term in the Taylor tower of such functors was originally developed by Dold and Puppe [DP] to serve the role of derived functors for nonadditive functors. To ensure that $P_{1} F$ takes short exact sequences to long exact sequences in homology, one replaces an abelian group with a projective resolution of that group. This necessitates extending F to a functor of chain complexes in such a way that it will preserve chain homotopy equivalences. One accomplishes this by using the prolongation of F as defined in Section 1.

With the formal theory of Taylor towers well-established, we focus our attention on identifying the Taylor tower of two specific classes of functors, the symmetric and exterior power functors. Our purposes in doing so are twofold. First, by determining the Taylor towers for particular examples, we would like to show how the general construction and properties for Taylor towers set up in [JM2] can be used to gather information about Taylor towers of specific functors. Secondly, we would like to improve our understanding of degree k functors, by better understanding the structure of the differential graded algebra over which the functors are classified in [JM3, §5]. The DGA is constructed from the k th term in the Taylor tower of the functor $\mathbb{Z}\left[\operatorname{Hom}\left(\bigvee_{k} C,-\right)\right]$ which is stably equivalent to the k-fold tensor product of the infinite symmetric power functor by work of Dold, Thom and Puppe ([DP], [DT]).

The present paper is a first step towards understanding the Taylor towers of the symmetric and exterior power functors. We produce a functorial description of the fibers of the natural transformations q_{k} in these Taylor towers and use some of the formal properties of Taylor towers in conjunction with stable derived functor calculations of Dold and Puppe to determine some homology of the towers. The calculations are driven by two results of earlier papers:
(1) As we mentioned above, in certain contexts the first term in the Taylor tower of F is equivalent to the Dold-Puppe stabilization of F ([JM1]).
(2) The k th layer in the Taylor tower of $F, D_{k} F=\operatorname{fiber}\left(P_{k} F \rightarrow P_{k-1} F\right)$, can be expressed in terms of homotopy orbits of the k th cross effect functor associated to F ([JM2]).

For the nth symmetric power functor Sp^{n} and the nth exterior power functor Λ^{n}, the equivalence of (2) is used to express the layers of the Taylor towers of Sp^{n} and Λ^{n} in terms of homotopy orbits of tensor products of lower order symmetric and exterior powers. The main results are the following.

Theorems 2.9, 2.11. Let $1 \leq k \leq n$. Then

$$
D_{k} \mathrm{Sp}^{n} \simeq \bigoplus_{[\mathrm{t}]=\left[\left(t_{1}, \ldots, t_{k}\right)\right] \in\left[V_{k}(n)\right]}\left(D_{1} \mathrm{Sp}^{t_{1}} \otimes \cdots \otimes D_{1} \mathrm{Sp}^{t_{k}}\right)_{h \mathrm{st}(\mathbf{t})}
$$

and

$$
D_{k} \Lambda^{n} \simeq \bigoplus_{[\mathbf{t}]=\left[\left(t_{1}, \ldots, t_{k}\right)\right] \in\left[V_{k}(n)\right]}\left(D_{1} \Lambda^{t_{1}} \otimes \cdots \otimes D_{1} \Lambda^{t_{k}}\right)_{h \mathrm{st}(\mathbf{t})}^{\sigma}
$$

where $V_{k}(n)=\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{N}^{\times k} \mid t_{1}+\cdots+t_{k}=n\right\}$, $[\mathbf{t}]$ is the equivalence class of \mathbf{t} under the Σ_{k} action that permutes the coordinates of $\left(t_{1}, \ldots, t_{k}\right)$, $\left[V_{k}(n)\right]$ is the set of all equivalence classes under this action, st (\mathbf{t}) is the stabilizer group of \mathbf{t} under this action, $h \mathrm{st}(\mathbf{t})$ denotes the homotopy orbits with respect to this subgroup of Σ_{k}, and $(-)^{\sigma}$ indicates that $\mathrm{st}(\mathbf{t})$ acts with signature.

The homology of $D_{1} \mathrm{Sp}^{n}(P)$ and $D_{1} \Lambda^{n}(P)$, where P is a projective resolution of an abelian group A, is equivalent under (1) to the stable derived functors of Sp^{n} and Λ^{n} as defined by Dold and Puppe ([DP]). The stable derived functors have been studied extensively by Dold and Puppe ([DP]), Bousfield ([Bo]), Betley ([Be]), and Simson and Tyc ([ST], [S]). We use their computations and our Theorems 2.9 and 2.11 to determine the first nontrivial homology groups of $D_{k} \mathrm{Sp}^{n}(P)$ and $D_{k} \Lambda^{n}(P)$ for $k>1$. This leads to the computations below.

Theorem 4.1. Let A be a finitely generated abelian group, P be a projective resolution of A, and $n, k>1$. The lowest degree in which $D_{k} \operatorname{Sp}^{n}(P)$ can have nontrivial homology is $2 n-2 k$. For $k=n$,

$$
H_{2 n-2 k} D_{k} \operatorname{Sp}^{n}(P) \cong \operatorname{Sp}^{n}(A) .
$$

For $k<n$,

By A / p we mean $A \otimes_{\mathbb{Z}} \mathbb{Z} / p$. For $a_{1}=0$, we set $\mathrm{Sp}^{a_{1}}(A)=\mathbb{Z}$.
Theorem 4.8. Let A be a finitely generated abelian group, P be a projective resolution of A, and $n, k>1$. The lowest degree in which $D_{k} \Lambda^{n}(P)$ can have nontrivial homology is $n-k$. For $k=n$,

$$
H_{n-k} D_{k} \Lambda^{n}(P) \cong \Lambda^{n}(A) .
$$

For $k<n$,

$$
H_{n-k} D_{k} \Lambda^{n}(P) \cong \bigoplus_{\substack{a_{1}+a_{2} p^{r_{2}}+\cdots+a_{s} p^{r_{s}=n} \\ \text { pis prime }, 0<r_{2}<\cdots<r_{s} \\ a_{1}+\cdots+a_{s}=k \\ a_{2}, \ldots, a_{s} \geq 1 ; a_{1} \geq 0}} \Lambda^{a_{1}}(A) \otimes \Lambda_{a_{2} p^{r_{2}, \ldots, a_{s} p^{r_{s}}}}(A)
$$

where

$$
\Lambda_{a_{2} p^{r_{2}, \ldots, a_{s}} p^{r_{s}}}(A) \cong \begin{cases}\Lambda^{a_{2}}(A / p) \otimes \cdots \otimes \Lambda^{a_{s}}(A / p) & \text { if } p \text { is odd } \\ S^{a_{2}}(A / 2) \otimes \cdots \otimes \operatorname{Sp}^{a_{s}}(A / 2) & \text { if } p=2\end{cases}
$$

The paper is organized as follows. In Section 1, we review basic facts about Taylor towers and degree k functors that are needed in this paper. In Section 2, we review the equivalence alluded to in (2) above and use it to prove Theorems 2.9 and 2.11. Section 3 is devoted to recovering the calculations of $H_{*} D_{1} \mathrm{Sp}^{n}(P)$ and $H_{*} D_{1} \Lambda^{n}(P)$ originally carried out by Dold and Puppe. The results of Sections 2 and 3 are combined in Section 4 to produce the first nontrivial homology of $D_{k} \operatorname{Sp}^{n}(P), D_{k} \Lambda^{n}(P)$, and $P_{k} \operatorname{Sp}^{n}(P)$.

1. Cross effects and the Taylor tower. The method for constructing the Taylor tower of a functor F described in [JM2] relies on a collection of functors, called the cross effects, that can be associated to F. We use this section to review cross effects and the basic properties of the Taylor tower of use to us in this paper. Throughout this section, unless otherwise indicated, we work with a functor $F: \mathcal{C} \rightarrow \mathcal{A}$ or $F: \mathcal{C} \rightarrow \mathrm{Ch}_{\geq 0} \mathcal{A}$ where \mathcal{C} is a pointed category (has an object that is both initial and final) with finite coproducts, and \mathcal{A} is an abelian category.

The functors of interest to us are all examples of prolongations-functors of modules over a fixed ring R that have been extended to functors of chain complexes of R-modules by passing through the category of simplicial R modules. Recall from the Dold-Kan theorem that $\mathrm{Ch}_{\geq 0} \mathcal{A}$, the category of chain complexes over an abelian category \mathcal{A}, concentrated in degrees greater than or equal to 0 , is naturally equivalent to $\operatorname{Simp} \mathcal{A}$, the category of simplicial objects over \mathcal{A}. This equivalence is realized by the functors

$$
C: \operatorname{Simp} \mathcal{A} \rightarrow \mathrm{Ch}_{\geq 0} \mathcal{A} \quad \text { and } \quad K: \mathrm{Ch}_{\geq 0} \mathcal{A} \rightarrow \operatorname{Simp} \mathcal{A}
$$

For more details about these functors and the Dold-Kan theorem, see [D], [K], [We, pp. 270-276] or Section 2 of [JM1]. The prolongation of a functor is defined as follows.

Definition 1.1. Let \mathcal{A} and \mathcal{B} be abelian categories and F be a functor from \mathcal{A} to \mathcal{B}. The prolongation of F is the functor from $\mathrm{Ch}_{\geq 0} \mathcal{A}$ to $\mathrm{Ch}_{\geq 0} \mathcal{B}$ given by

$$
C \circ F \circ K
$$

where for an object A in $\mathrm{Ch}_{\geq 0} \mathcal{A}, F$ is applied degreewise to the simplicial object $K A$. When restricted to objects in \mathcal{A}, the prolongation of F agrees with the original functor F.

At the risk of some confusion we will use F to denote both the original functor and its prolongation. For example, we will use Sp^{n} to denote the nth symmetric power functor both as a functor of modules and a functor of chain complexes. Using prolongations guarantees that chain homotopy equivalences will be preserved.

The k th cross effect of the functor $F: \mathcal{C} \rightarrow \mathcal{A}$ is a functor of k variables, $\operatorname{cr}_{k} F: \mathcal{C}^{\times k} \rightarrow \mathcal{A}$, that can be defined inductively on objects C_{1}, \ldots, C_{k} as shown below. For the original definition, see $[\mathrm{EM}]$. We use \vee to denote the coproduct and $*$ to denote the initial/final object in \mathcal{C}. For $n=1$ and $n=2$, we have

$$
F\left(C_{1}\right) \cong F(*) \oplus \operatorname{cr}_{1} F\left(C_{1}\right)
$$

and

$$
\operatorname{cr}_{1} F\left(C_{1} \vee C_{2}\right) \cong \operatorname{cr}_{1} F\left(C_{1}\right) \oplus \operatorname{cr}_{1} F\left(C_{2}\right) \oplus \operatorname{cr}_{2} F\left(C_{1}, C_{2}\right) .
$$

In general,

$$
\operatorname{cr}_{k-1} F\left(C_{1} \vee C_{2}, C_{3}, \ldots, C_{k}\right)
$$

is isomorphic to

$$
\operatorname{cr}_{k-1} F\left(C_{1}, C_{3}, \ldots, C_{k}\right) \oplus \operatorname{cr}_{k-1} F\left(C_{2}, C_{3}, \ldots, C_{k}\right) \oplus \operatorname{cr}_{k} F\left(C_{1}, C_{2}, \ldots, C_{k}\right)
$$

If F is the prolongation of a functor G, then it is straightforward to show that the cross effects of F are isomorphic to the prolongation of the cross effects of G. For more details see [JM1, $\S 3]$.

The cross effect functors have the following properties.
Proposition 1.2. Let $F: \mathcal{C} \rightarrow \mathcal{A}$, and C_{1}, \ldots, C_{k} be objects in \mathcal{C}.
(1) $\mathrm{cr}_{k} F$ is symmetric with respect to its k variables. That is, for every $\sigma \in \Sigma_{k}$, the k th symmetric group, $\operatorname{cr}_{k} F\left(C_{1}, \ldots, C_{k}\right)$ is isomorphic to $\operatorname{cr}_{k} F\left(C_{\sigma(1)}, \ldots, C_{\sigma(k)}\right)$.
(2) $\operatorname{cr}_{k} F\left(C_{1}, \ldots, C_{k}\right) \cong 0$ if any $C_{i}=*$.
(3) $F\left(C_{1} \vee \cdots \vee C_{k}\right) \cong F(*) \oplus \bigoplus_{t=1}^{k} \bigoplus_{j_{1}<\cdots<j_{t}} \mathrm{cr}_{t} F\left(C_{j_{1}}, \ldots, C_{j_{t}}\right)$.

Cross effects also determine the degree of a functor.
Definition 1.3. A functor $F: \mathcal{C} \rightarrow \mathrm{Ch}_{\geq 0} \mathcal{A}$ is degree k iff $\mathrm{cr}_{k+1} F$ is quasiisomorphic to 0 .

Examples 1.4. Let R be a commutative ring and \mathcal{M}_{R} denote the category of modules over R.
(1) For $n \geq 1$, the nth symmetric power functor, $\mathrm{Sp}^{n}: \mathcal{M}_{R} \rightarrow \mathcal{M}_{R}$, is defined for an object M in \mathcal{M}_{R} by

$$
\operatorname{Sp}^{n}(M)=\otimes^{n}(M) / U(M)
$$

where $U(M)$ is the submodule of $\otimes^{n}(M)$ generated by all elements of the form $m_{1} \otimes \cdots \otimes m_{n}-m_{\sigma(1)} \otimes \cdots \otimes m_{\sigma(n)}$ for $\sigma \in \Sigma_{n}$. When evaluated on a direct sum, the nth symmetric power functor decomposes as a sum of tensor products of symmetric powers. In particular, for R-modules M_{1}, \ldots, M_{k},

$$
\operatorname{Sp}^{n}\left(M_{1} \oplus \cdots \oplus M_{k}\right) \cong \bigoplus_{t_{1}+\cdots+t_{k}=n} \operatorname{Sp}^{t_{1}}\left(M_{1}\right) \otimes \cdots \otimes \operatorname{Sp}^{t_{k}}\left(M_{k}\right) .
$$

It follows by induction that

$$
\operatorname{cr}_{k} \operatorname{Sp}^{n}\left(M_{1}, \ldots, M_{k}\right) \cong \bigoplus_{\substack{t_{1}+\cdots+t_{k}=n \\ t_{1}, \ldots, t_{k}>0}} \operatorname{Sp}^{t_{1}}\left(M_{1}\right) \otimes \cdots \otimes \operatorname{Sp}^{t_{k}}\left(M_{k}\right) .
$$

If $k>n$, then $\mathrm{cr}_{k} \mathrm{Sp}^{n} \cong 0$ and Sp^{n} is a degree n functor. When $M_{1}=$ $\cdots=M_{k}$, the symmetric group Σ_{k} acts on this cross effect by $\sigma\left(t_{1}, \ldots, t_{k}\right.$; $\left.m_{1}, \ldots, m_{k}\right)=\left(t_{\sigma(1)}, \ldots, t_{\sigma(k)} ; m_{\sigma(1)}, \ldots, m_{\sigma(k)}\right)$. Here we are treating σ as an endomorphism of the set $\{1, \ldots, k\}$ so that for $\tau, \sigma \in \Sigma_{k}, \tau \sigma=\tau \circ \sigma$. These results hold for the prolongation of Sp^{n} as well.
(2) The nth exterior power functor $\Lambda^{n}: \mathcal{M}_{R} \rightarrow \mathcal{M}_{R}$ is defined for an object M in \mathcal{M}_{R} by

$$
\Lambda^{n}(M)=\otimes^{n}(M) / V(M)
$$

where $V(M)$ is the submodule of $\otimes^{n}(M)$ generated by all elements of the form $m_{1} \otimes \cdots \otimes m_{n}$ with $m_{i}=m_{j}$ for some $1 \leq i<j \leq n$. In a manner similar to that of the previous example, one can show that

$$
\operatorname{cr}_{k} \Lambda^{n}\left(M_{1}, \ldots, M_{k}\right) \cong \bigoplus_{\substack{t_{1}+\cdots+t_{k}=n \\ t_{1}, \ldots, t_{k}>0}} \Lambda^{t_{1}}\left(M_{1}\right) \otimes \cdots \otimes \Lambda^{t_{k}}\left(M_{k}\right)
$$

for R-modules M_{1}, \ldots, M_{k}. However, when $M_{1}=\cdots=M_{k}$ the action of Σ_{k} on this decomposition is now twisted by the signature. Hence

$$
\sigma\left(t_{1}, \ldots, t_{k} ; m_{1}, \ldots, m_{k}\right)=\operatorname{sgn}(\sigma) \cdot\left(t_{\sigma(1)}, \ldots, t_{\sigma(k)} ; m_{\sigma(1)}, \ldots, m_{\sigma(k)}\right) .
$$

This holds for the prolongation of Λ^{n} as well.
For more examples of cross effects, see Section 1 of [JM2].
The cross effects play a central role in the construction of the Taylor tower of F. We review the basic features of the Taylor tower here and refer the reader to [JM2] for the details of the construction.

Theorem 1.5 ([JM2, 2.12]). Given a functor F from \mathcal{C} to \mathcal{A} or to $\mathrm{Ch}_{\geq 0} \mathcal{A}$, there is a natural tower of functors:

For each k, the functor $P_{k} F$ is a degree k functor. Moreover, the pairs $\left(P_{k}, p_{k}\right)$ are universal (up to natural quasi-isomorphism) with respect to maps from F to degree k functors.

The following properties of the Taylor tower functors will be of use to us.
Proposition 1.6. Let F be a functor from \mathcal{C} to \mathcal{A} or $\mathrm{Ch}_{\geq 0} \mathcal{A}$ and let $k \geq 1$.
(1) P_{k} is an exact functor of functors. That is, if $F \rightarrow G \rightarrow H$ is an exact sequence of functors, then $P_{k} F \rightarrow P_{k} G \rightarrow P_{k} H$ is an exact sequence of functors or yields a long exact sequence in homology. In particular, $P_{k}(F \oplus G) \cong P_{k} F \oplus P_{k} G$.
(2) If F is degree k, then $P_{k} F \simeq F$.
2. The layers of the Taylor tower. As a first step towards understanding the k th term in the Taylor towers of Sp^{n} and Λ^{n}, we study the k th layers of the Taylor towers of Sp^{n} and Λ^{n}. In this section we review the definition of the layers of the Taylor tower and recall a result of Goodwillie's, reproduced in our context in [JM2], that leads to descriptions of the k th layers of the Taylor towers of Sp^{n} and Λ^{n} in terms of lower symmetric and exterior powers. As in Section $1, \mathcal{C}$ is a pointed category with finite coproducts and \mathcal{A} is an abelian category.

Definition 2.1. Let $F: \mathcal{C} \rightarrow \mathcal{A}$ and $k \geq 1$. The k th layer of the Taylor tower of F is the functor $D_{k} F$ given by

$$
D_{k} F:=\operatorname{fiber}\left(P_{k} F \xrightarrow{q_{k} F} P_{k-1} F\right)
$$

where fiber is the homotopy fiber of $q_{k} F$, i.e., the mapping cone of $q_{k} F$ shifted down one degree.

As an immediate consequence of this definition we note that the sequence $D_{k} F \rightarrow P_{k} F \rightarrow P_{k-1} F$ gives rise to a long exact sequence in homology:

$$
\begin{equation*}
\cdots \rightarrow H_{*+1} P_{k-1} F \rightarrow H_{*} D_{k} F \rightarrow H_{*} P_{k} F \rightarrow H_{*} P_{k-1} F \rightarrow \cdots \tag{2.2}
\end{equation*}
$$

In [JM2], we showed that $D_{k} F$ can be expressed as the multilinearization of the k th cross effect of F. This result, stated below, was inspired by Goodwillie's description [G] of the layers of the Taylor towers for functors of spaces.

Proposition 2.3 ([JM2, 3.9]). Let $F: \mathcal{C} \rightarrow \mathrm{Ch}_{\geq 0} \mathcal{A}$. Then

$$
D_{k} F \simeq\left(D_{1}^{(k)} \mathrm{cr}_{k} F\right)_{h \Sigma_{k}} .
$$

Here $D_{1}^{(k)}$ denotes the multilinearization of $\operatorname{cr}_{k} F$, which is the functor $D_{1}^{k} D_{1}^{k-1} \ldots D_{1}^{1} \mathrm{cr}_{k} F$ where $D_{1}^{i} \mathrm{cr}_{k} F$ is the functor obtained by holding all but the ith variable of $\mathrm{cr}_{k} F$ constant and applying D_{1} to the resulting functor of one variable. By $h \Sigma_{k}$ we mean the homotopy orbits of $D_{1}^{(k)} \mathrm{cr}_{k} F$, in other words, the total complex of $\mathbb{Z}\left[E \Sigma_{k}\right] \otimes_{\mathbb{Z}\left[\Sigma_{k}\right]} D_{1}^{(k)} \operatorname{cr}_{k} F$ where $E \Sigma_{k}$ is a free Σ_{k}-resolution of \mathbb{Z}.

In Example 1.4, we saw that

$$
\begin{equation*}
\mathrm{cr}_{k} \mathrm{Sp}^{n} \cong \bigoplus_{\substack{t_{1}+\cdots+t_{k}=n \\ t_{1}, \ldots, t_{k}>0}} \mathrm{Sp}^{t_{1}} \otimes \cdots \otimes \mathrm{Sp}^{t_{k}} \tag{2.4}
\end{equation*}
$$

By applying Proposition 2.3 to this formula, we determine $D_{k} \mathrm{Sp}^{n}$ in Theorem 2.9 below. Before doing so, we introduce some notation and terminology for working with the partitions $t_{1}+\cdots+t_{k}=n$ that index the summands in the cross effect formula (2.4).

Definition 2.5. For $1 \leq k \leq n$, let

$$
V_{k}(n)=\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{N}^{\times k} \mid t_{1}+\cdots+t_{k}=n\right\} .
$$

In other words, $V_{k}(n)$ is the set of partitions of n into k positive integers.
Examples 2.6. (1) For $n=6$ and $k=3, V_{k}(n)$ is the set

$$
\begin{aligned}
\{(1,1,4),(1,4,1),(4,1,1), & (1,2,3),(1,3,2) \\
& (2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2)\} .
\end{aligned}
$$

(2) Note that under the notation of Definition 2.5, (2.4) becomes

$$
\mathrm{cr}_{k} \mathrm{Sp}^{n} \cong \bigoplus_{\mathrm{t}=\left(t_{1}, \ldots, t_{k}\right) \in V_{k}(n)} \mathrm{Sp}^{t_{1}} \otimes \cdots \otimes \mathrm{Sp}^{t_{k}}
$$

The k th symmetric group, Σ_{k}, acts on $V_{k}(n)$ by permuting the terms within a partition. Associated with this action, we have the following.

Definition 2.7. Let $1 \leq k \leq n$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right) \in V_{k}(n)$.
(1) The stabilizer of \mathbf{t} is the group

$$
\operatorname{st}(\mathbf{t})=\left\{\sigma \in \Sigma_{k} \mid \sigma(\mathbf{t})=\mathbf{t}\right\} .
$$

(2) The orbit of \mathbf{t} is the set

$$
[\mathbf{t}]=\left\{\sigma(\mathbf{t}) \mid \sigma \in \Sigma_{k}\right\} .
$$

(3) Recall that the orbits form a partition of $V_{k}(n)$. We use $\left[V_{k}(n)\right]$ to denote the set of orbits of $V_{k}(n)$ under the Σ_{k} action.

EXAMPLE 2.8. For $n=6$ and $k=3$, the orbits of the Σ_{k} action on $V_{k}(n)$ are

$$
\begin{aligned}
& {[(1,1,4)]=\{(1,1,4),(1,4,1),(4,1,1)\}} \\
& {[(1,2,3)]=\{(1,2,3),(1,3,2),(2,3,1),(2,1,3),(3,1,2),(3,2,1)\}} \\
& {[(2,2,2)]=\{(2,2,2)\}}
\end{aligned}
$$

The stabilizer subgroups are

$$
\begin{aligned}
\operatorname{st}(1,1,4) & =\{(1),(12)\}, \quad \operatorname{st}(1,4,1)=\{(1),(13)\}, \quad \operatorname{st}(4,1,1)=\{(1),(23)\} \\
\operatorname{st}(1,2,3) & =\operatorname{st}(1,3,2)=\operatorname{st}(2,1,3)=\operatorname{st}(2,3,1)=\operatorname{st}(3,1,2) \\
& =\operatorname{st}(3,2,1)=\{(1)\} \\
\operatorname{st}(2,2,2) & =\Sigma_{3}
\end{aligned}
$$

With these ideas, we obtain the following.
Theorem 2.9. Let $1 \leq k \leq n$. Then

$$
D_{k} \mathrm{Sp}^{n} \simeq \bigoplus_{[\mathbf{t}] \in\left[V_{k}(n)\right]}\left(D \mathrm{Sp}^{\mathbf{t}}\right)_{h \mathrm{st}(\mathbf{t})}
$$

where for $\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right)$,

$$
D \mathrm{Sp}^{\mathrm{t}}=D_{1} \mathrm{Sp}^{t_{1}} \otimes \cdots \otimes D_{1} \mathrm{Sp}^{t_{k}}
$$

Proof. We prove this result by first showing that for each $\mathbf{t} \in V_{k}(n)$ there is a Σ_{k}-equivariant isomorphism

$$
\Phi: D \mathrm{Sp}^{\mathbf{t}} \times_{\mathrm{st}(\mathbf{t})} \Sigma_{k} \cong \bigoplus_{\mathbf{v} \in[\mathbf{t}]} D \mathrm{Sp}^{\mathbf{v}}
$$

The map Φ takes $D \mathrm{Sp}^{\mathbf{t}} \times \sigma$ (for $\sigma \in \Sigma_{k}$) isomorphically to $D \mathrm{Sp}^{\sigma(\mathbf{t})}$. That Φ is well-defined follows from the observation that $\alpha \circ \sigma(\mathbf{t})=\sigma(\mathbf{t})$ for $\alpha \in \operatorname{st}(\mathbf{t})$. That Φ is an isomorphism comes from the facts that $|[\mathbf{t}]|=\left|\Sigma_{k}\right| /|\operatorname{st}(\mathbf{t})|$ and that $D \mathrm{Sp}^{\sigma(\mathbf{t})} \neq D \mathrm{Sp}^{\tau(\mathbf{t})}$ for $\sigma, \tau \in \Sigma_{k}$ with $\sigma \tau^{-1}, \tau \sigma^{-1} \notin \operatorname{st}(\mathbf{t})$.

Furthermore, for $\tau \in \Sigma_{k}$, we have

$$
\Phi\left(\tau\left(D \mathrm{Sp}^{\mathbf{t}} \times \sigma\right)\right)=\Phi\left(D \mathrm{Sp}^{\mathbf{t}} \times \tau \circ \sigma\right)=D \mathrm{Sp}^{\tau(\sigma(\mathbf{t}))}=\tau\left(D \mathrm{Sp}^{\sigma(\mathbf{t})}\right)
$$

Hence, Φ is Σ_{k}-equivariant. It follows that

$$
\begin{align*}
&\left(\bigoplus_{[\mathbf{t}] \in\left[V_{k}(n)\right]} \bigoplus_{\mathbf{v} \in[\mathbf{t}]} D \mathrm{Sp}^{\mathbf{v}}\right)_{h \Sigma_{k}} \cong\left(\bigoplus_{[\mathbf{t}] \in\left[V_{k}(n)\right]} D \mathrm{Sp}^{\mathbf{t}} \times_{\mathrm{st}(\mathbf{t})} \Sigma_{k}\right)_{h \Sigma_{k}} \tag{2.10}\\
&=\bigoplus_{[\mathbf{t}] \in\left[V_{k}(n)\right]} D \mathrm{Sp}^{\mathbf{t}} \times_{\mathrm{st}(\mathbf{t})} \Sigma_{k} \otimes_{\mathbb{Z}[\Sigma k]} E \Sigma_{k} \\
& \cong \bigoplus_{[\mathbf{t}] \in\left[V_{k}(n)\right]} D \mathrm{Sp}^{\mathbf{t}} \otimes_{\mathbb{Z}[\mathrm{st}(\mathbf{t})]} E \Sigma_{k} \cong \bigoplus_{[\mathbf{t}] \in\left[V_{k}(n)\right]}\left(D \mathrm{Sp}^{\mathbf{t}}\right)_{h \mathrm{st}(\mathbf{t})}
\end{align*}
$$

where the last isomorphism comes from the fact that a free Σ_{k} resolution of \mathbb{Z} is also a free $\operatorname{st}(\mathbf{t})$ resolution of \mathbb{Z}.

By Proposition 2.3,

$$
\begin{aligned}
D_{k} \mathrm{Sp}^{n} & \simeq\left(D_{1}^{(k)} \operatorname{cr}_{k} \mathrm{Sp}^{n}\right)_{h \Sigma_{k}} \\
& \cong\left(D_{1}^{(k)} \bigoplus_{\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right) \in V_{k}(n)} \mathrm{Sp}^{t_{1}} \otimes \cdots \otimes \mathrm{Sp}^{t_{k}}\right)_{h \Sigma_{k}} .
\end{aligned}
$$

It follows from the definition of $P_{1} F$ in [JM2] that $D_{1}^{i}\left(\mathrm{Sp}^{t_{1}} \otimes \cdots \otimes \mathrm{Sp}^{t_{k}}\right) \cong$ $\mathrm{Sp}^{t_{1}} \otimes \cdots \otimes D_{1} \mathrm{Sp}^{t_{i}} \otimes \cdots \otimes \mathrm{Sp}^{t_{k}}$. By Proposition 1.6 , we know that D_{1}^{i} commutes with direct sums. From this and (2.10), we have

$$
\begin{aligned}
D_{k} \mathrm{Sp}^{n} & \simeq\left(\bigoplus_{\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right) \in V_{k}(n)} D_{1} \mathrm{Sp}^{t_{1}} \otimes \cdots \otimes D_{1} \mathrm{Sp}^{t_{k}}\right)_{h \Sigma_{k}} \\
& =\left(\bigoplus_{\left.[t] \in\left[V_{k}(n)\right]\right]} \bigoplus_{\mathbf{v} \in[t]} D \mathrm{Sp}^{\mathbf{v}}\right)_{h \Sigma_{k}} \cong \bigoplus_{[\mathrm{t}] \in\left[V_{k}(n)\right]}\left(D \mathrm{Sp}^{\mathrm{t}}\right)_{h \mathrm{st}(\mathbf{t})},
\end{aligned}
$$

as desired.
A similar result can be proved for the exterior power functors using the same techniques.

Theorem 2.11. Let $1 \leq k \leq n$. Then

$$
D_{k} \Lambda^{n} \simeq \bigoplus_{\left[\mathrm{t} \in \in\left[V_{k}(n)\right]\right.}\left(D \Lambda^{\mathbf{t}}\right)_{h \mathrm{st}(\mathbf{t})}^{\sigma}
$$

where for $\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right)$,

$$
D \Lambda^{\mathrm{t}}=D_{1} \Lambda^{t_{1}} \otimes \cdots \otimes D_{1} \Lambda^{t_{k}}
$$

and $(-)^{\sigma}$ indicates that $\mathrm{st}(\mathbf{t})$ acts with the signature.
3. Stable derived functors of symmetric and exterior powers. With Theorems 2.9 and 2.11 we saw that the k th layers in the Taylor towers of Sp^{n} and Λ^{n} are determined by tensor products of terms of the form $D_{1} \mathrm{Sp}^{t}$ or $D_{1} \Lambda^{t}$ for $t \leq n$. The functors $D_{1} \mathrm{Sp}^{t}$ and $D_{1} \Lambda^{t}$ have been analyzed in detail by Dold and Puppe ([DP]), Simson and Tyc ([S], [ST]), Bousfield ([Bo]), and Betley ([Be]). We review some of their results in this section, and use these results to determine the first nontrivial homology groups of $D_{k} \mathrm{Sp}^{n}$ and $D_{k} \Lambda^{n}$ in Section 4.

The language used in the references listed in the previous paragraph is not that of Taylor towers. Instead, the functor $D_{1} F$ is used to construct "stable derived functors." Dold and Puppe were the first to consider such functors. For a nonadditive functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between abelian categories \mathcal{A} and \mathcal{B}, they sought to construct derived functors for F. They did so by first stabilizing F to produce the functor $D F: \mathrm{Ch}_{\geq 0} \mathcal{A} \rightarrow \mathrm{Ch}_{\geq 0} \mathcal{B}$ given by

$$
D F=\lim _{n} \operatorname{sh}_{-n} F \operatorname{sh}_{n}
$$

where sh_{n} is the functor that shifts a chain complex by n degrees and F has been replaced by its prolongation. The functor $D F$ preserves direct sums up to quasi-isomorphism, and when F is the prolongation of a functor from \mathcal{A} to $\mathcal{B}, D_{1} F$ is naturally equivalent to $D F$ (see [JM1, 7.5], [JM2, 2.14]). When \mathcal{A} has enough projectives, the nth stable derived functor of F evaluated at an object A in \mathcal{A}, denoted $L_{n}^{\mathrm{s}} F(A)$, is obtained from $D F$ by evaluating it on a projective resolution P of A and taking the nth homology group. Thus,

$$
L_{n}^{\mathrm{s}} F(A):=H_{n}(D F(P)) \cong H_{n}\left(D_{1} F(P)\right)
$$

As with derived functors, stable derived functors are independent of the choice of projective resolution. When the original functor F is additive (or degree one), the stable derived functors of F are isomorphic to the derived functors of F.

In this section we determine the degree in which the first nontrivial stable derived functors of Sp^{n} and Λ^{n} arise and identify these groups. These results date back to Dold and Puppe's original paper on stable derived functors ([DP]). We provide proofs in this section in terms of the Taylor tower constructions defined in [JM1] and [JM2]. To determine the location of the lowest nontrivial group we use the following lemma.

Lemma 3.1 ([DP], $[\mathrm{P}])$. Let F and G be functors from the abelian category \mathcal{A} to the abelian category \mathcal{B}. If $F(0) \cong G(0) \cong 0$, then $D_{1}(F \otimes G) \cong 0$ as a functor from $\mathrm{Ch}_{\geq 0} \mathcal{A}$ to $\mathrm{Ch}_{\geq 0} \mathcal{B}$.

Proof. Let P be a chain complex in $\mathrm{Ch}_{\geq 0} \mathcal{A}$. From Example 2.14 of [JM2], we know that

$$
D_{1}(F \otimes G)(P) \simeq D(F \otimes G)(P) \cong \lim _{n} \operatorname{sh}_{-n}(F \otimes G)\left(\operatorname{sh}_{n} P\right)
$$

Consider $(F \otimes G)\left(\operatorname{sh}_{n} P\right)$. By the Eilenberg-Zilber theorem, this is equivalent to the total complex of the bicomplex $F\left(\operatorname{sh}_{n} P\right) \otimes G\left(\operatorname{sh}_{n} P\right)$. But $F\left(\operatorname{sh}_{n} P\right)$ and $G\left(\operatorname{sh}_{n} P\right)$ will be 0 in degrees less than n. As a result, the total complex $(F \otimes G)\left(\operatorname{sh}_{n} P\right)$ is 0 in degrees less than $2 n$, and $\operatorname{sh}_{-n}(F \otimes G)\left(\operatorname{sh}_{n} P\right)$ is 0 in degrees less than n. Hence, in the limit, $D_{1}(F \otimes G)(P)$ is quasi-isomorphic to 0 .

To determine the connectivity and first nontrivial homology of $D_{1} \mathrm{Sp}^{n}$ and $D_{1} \Lambda^{n}$, we introduce functors that are closely related to the symmetric and exterior power functors, the divided powers.

Definition 3.2. Let R be a commutative ring and \mathcal{M}_{R} be the category of modules over R. The divided power functor or gamma functor is the functor that takes an R-module A to the commutative ring $\Gamma(A)$ generated by elements of the form $x^{(r)}$ for each $x \in A$ and integer $r \geq 0$, subject to the following relations:
(1) $x^{(0)}=1$,
(2) $x^{(r)} x^{(s)}=\binom{r+s}{r} x^{(r+s)}$,
(3) $(x+y)^{(t)}=\sum_{r+s=t} x^{(r)} y^{(s)}$,
(4) $(n x)^{(r)}=n^{r} x^{(r)}$ for $n \in R$.

An element of $\Gamma(A)$ of the form $x_{1}^{\left(r_{1}\right)} \ldots x_{n}^{\left(r_{n}\right)}$ has degree $r_{1}+\cdots+r_{n}$. We use $\Gamma^{n}(A)$ to denote the R-module generated (additively) by the degree n elements of $\Gamma(A)$. This yields a functor, Γ^{n}, from \mathcal{M}_{R} to itself. We refer to this functor as the nth divided power functor. Clearly,

$$
\Gamma(A) \cong \bigoplus_{i=1}^{\infty} \Gamma^{i}(A)
$$

(For more about divided powers see [E, Appendix 2], or [EM, §18].)
Remark 3.3. The cross effects of the divided power functors can be identified in a fashion similar to that of Example 1.4. For $n \geq 1, \Gamma^{n}$ is a degree n functor. For $k \leq n$, and R-modules A_{1}, \ldots, A_{k},

$$
\operatorname{cr}_{k} \Gamma^{n}\left(A_{1}, \ldots, A_{k}\right) \cong \bigoplus_{\substack{t_{1}+\cdots+t_{k}=n \\ t_{i} \geq 1}} \Gamma^{t_{1}}\left(A_{1}\right) \otimes \cdots \otimes \Gamma^{t_{k}}\left(A_{k}\right)
$$

In the case $k=2$, the isomorphism comes from the isomorphism

$$
\Gamma^{n}\left(A_{1} \oplus A_{2}\right) \cong \bigoplus_{\substack{t_{1}+t_{2}=n \\ t_{i} \geq 0}} \Gamma^{t_{1}}\left(A_{1}\right) \otimes \Gamma^{t_{2}}\left(A_{2}\right)
$$

that assigns $m_{1}^{\left(t_{1}\right)} \otimes m_{2}^{\left(t_{2}\right)} \in \Gamma^{t_{1}}\left(A_{1}\right) \otimes \Gamma^{t_{2}}\left(A_{2}\right)$ to $\left(m_{1}, 0\right)^{\left(t_{1}\right)}\left(0, m_{2}\right)^{\left(t_{2}\right)} \in$ $\Gamma^{n}\left(A_{1} \oplus A_{2}\right)$. We will make use of this isomorphism in the proof of Proposition 3.7.

The stable derived functors of the symmetric and exterior powers can be obtained from those of the divided powers via a dimension shift. We prove this next.

Proposition 3.4 ([DP]). Let $n \geq 2$. Then

$$
H_{i} D_{1} \Gamma^{n} \cong H_{i+n-1} D_{1} \Lambda^{n} \cong H_{i+2 n-2} D_{1} \mathrm{Sp}^{n}
$$

Proof. To establish the second isomorphism, recall that the symmetric and exterior power functors are related by the following Koszul complex:

$$
0 \rightarrow \Lambda^{n} \rightarrow \Lambda^{n-1} \otimes \mathrm{Sp}^{1} \rightarrow \Lambda^{n-2} \otimes \mathrm{Sp}^{2} \rightarrow \cdots \rightarrow \Lambda^{1} \otimes \mathrm{Sp}^{n-1} \rightarrow \mathrm{Sp}^{n} \rightarrow 0
$$

By Proposition 1.6(1), applying D_{1} to the Koszul complex produces the exact sequence

$$
\begin{align*}
0 \rightarrow D_{1} \Lambda^{n} \rightarrow D_{1}\left(\Lambda^{n-1} \otimes\right. & \left.\mathrm{Sp}^{1}\right) \rightarrow \cdots \tag{3.5}\\
& \cdots \rightarrow D_{1}\left(\Lambda^{1} \otimes \mathrm{Sp}^{n-1}\right) \rightarrow D_{1} \mathrm{Sp}^{n} \rightarrow 0
\end{align*}
$$

By Lemma 3.1, terms of the form $D_{1}\left(\Lambda^{i} \otimes \mathrm{Sp}^{n-i}\right)$ for $0<i<n$ are quasiisomorphic to 0 . So if we consider the spectral sequence associated to the bicomplex (3.5) we see that it has two nontrivial columns in the E_{2} term:

$$
\begin{array}{ccccc}
\vdots & \vdots & \ldots & \vdots & \\
H_{2} D_{1} \mathrm{Sp}^{n} & 0 & \ldots & 0 & H_{2} D_{1} \Lambda^{n} \\
H_{1} D_{1} \mathrm{Sp}^{n} & 0 & \ldots & 0 & H_{1} D_{1} \Lambda^{n} \\
H_{0} D_{1} \mathrm{Sp}^{n} & 0 & \ldots & 0 & H_{0} D_{1} \Lambda^{n} \\
0 & & & & n
\end{array}
$$

Since (3.5) is exact, the spectral sequence converges to 0 . The only nontrivial differentials occur in E_{n} and provide the isomorphisms

$$
H_{i} D_{1} \Lambda^{n} \cong H_{i+n-1} D_{1} \mathrm{Sp}^{n}
$$

In a similar fashion, one can use the Koszul complex relating the exterior and divided powers

$$
0 \rightarrow \Gamma^{n} \rightarrow \Gamma^{n-1} \otimes \Lambda^{1} \rightarrow \cdots \rightarrow \Gamma^{1} \otimes \Lambda^{n-1} \rightarrow \Lambda^{n} \rightarrow 0
$$

to obtain the isomorphism $H_{i} D_{1} \Gamma^{n} \cong H_{i+n-1} D_{1} \Lambda^{n}$.
Since $D_{1} \Gamma^{n}$ has no homology below degree 0 , Proposition 3.4 also yields the following results.

Corollary 3.6. For $n \geq 2, H_{t}\left(D_{1} \mathrm{Sp}^{n}\right) \cong 0$ when $t<2 n-2$ and $H_{s}\left(D_{1} \Lambda^{n}\right) \cong 0$ when $s<n-1$.

By calculating $H_{0} D_{1} \Gamma^{n}(P)$ explicitly for a projective resolution P, we can identify the first nontrivial stable derived functors of Γ^{n}, Λ^{n}, and Sp^{n}.

Proposition 3.7 ([DP]). Let A be a finitely generated abelian group and P be a projective resolution of A. If $n=p^{r}$ for a prime p and $r \geq 1$, then

$$
H_{2 n-2} D_{1} \mathrm{Sp}^{n}(P) \cong H_{n-1} D_{1} \Lambda^{n}(P) \cong H_{0} D_{1} \Gamma^{n}(P) \cong A \otimes_{\mathbb{Z}} \mathbb{Z} / p \mathbb{Z}
$$

If $n=1$, we have

$$
H_{0} D_{1} \Gamma^{n}(P) \cong H_{0} D_{1} \Lambda^{n}(P) \cong H_{0} D_{1} \mathrm{Sp}^{n}(P)=H_{0}(P) \cong A .
$$

Otherwise,

$$
H_{2 n-2} D_{1} \mathrm{Sp}^{n}(P) \cong H_{n-1} D_{1} \Lambda^{n}(P) \cong H_{0} D_{1} \Gamma^{n}(P) \cong 0 .
$$

Proof. By Proposition 3.4, it suffices to determine $H_{0} P_{1} \Gamma^{n}(P)$, and since $P_{1} \Gamma^{n}$ is right exact, it is enough to compute $H_{0} P_{1} \Gamma^{n}$ on a free module B. Since A is a finitely generated abelian group and $P_{1} \Gamma^{n}$ preserves direct sums, we may restrict our attention to the case where $B=\mathbb{Z}$.

It follows from the construction of the Taylor tower in [JM2, §2] that $H_{0} P_{1} \Gamma^{n}(\mathbb{Z})$ is the cokernel of the map

$$
\begin{equation*}
\operatorname{cr}_{2} \Gamma^{n}(\mathbb{Z}, \mathbb{Z}) \xrightarrow{\Gamma^{n}(+)} \Gamma^{n}(\mathbb{Z}) . \tag{3.8}
\end{equation*}
$$

From [JM2, 2.8], the homomorphism $\Gamma^{n}(+)$ is the composite

$$
\operatorname{cr}_{2} \Gamma^{n}(\mathbb{Z}, \mathbb{Z}) \hookrightarrow \Gamma^{n}(\mathbb{Z} \oplus \mathbb{Z}) \xrightarrow{+} \Gamma^{n}(\mathbb{Z})
$$

where + is induced by the fold map $\mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}$ that takes (a, b) to $a+b$. Recall from Remark 3.3 that $\mathrm{cr}_{2} \Gamma^{n}(\mathbb{Z}, \mathbb{Z}) \cong \bigoplus_{i=1}^{n-1} \Gamma^{i}(\mathbb{Z}) \otimes \Gamma^{n-i}(\mathbb{Z})$ and that this isomorphism takes $m_{1}^{(i)} \otimes m_{2}^{(n-i)} \in \Gamma^{i}(\mathbb{Z}) \otimes \Gamma^{n-i}(\mathbb{Z})$ to $\left(m_{1}, 0\right)^{(i)}\left(0, m_{2}\right)^{(n-i)}$ $\in \operatorname{cr}_{2} \Gamma^{n}(\mathbb{Z}, \mathbb{Z}) \subseteq \Gamma^{n}(\mathbb{Z} \oplus \mathbb{Z})$. Composing with the fold map yields

$$
m_{1}^{(i)} \otimes m_{2}^{(n-i)} \rightarrow\left(m_{1}, 0\right)^{(i)}\left(0, m_{2}\right)^{(n-i)} \xrightarrow{+}\left(m_{1}\right)^{(i)}\left(m_{2}\right)^{(n-i)} .
$$

Using the defining relations for Γ (Definition 3.2), one finds that

$$
\left(m_{1}\right)^{(i)}\left(m_{2}\right)^{(n-i)}=m_{1}^{i} m_{2}^{n-i} 1^{(i)} 1^{(n-i)}=m_{1}^{i} m_{2}^{n-i}\binom{n}{i} 1^{(n)}
$$

Since $1^{(n)}$ generates $\Gamma^{n}(\mathbb{Z}) \cong \mathbb{Z}$ it follows that the image of $\Gamma^{n}(+)$ in $\Gamma^{n}(\mathbb{Z})$ is generated by the set $\left\{\left.\binom{n}{i} 1^{(n)} \right\rvert\, 1 \leq i \leq n-1\right\}$. Since the greatest common divisor of $\left\{\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1}\right\}$ is p when $n=p^{r}$ for some prime $p, r \geq 1$, and is 1 otherwise, we see that

$$
\operatorname{im} \Gamma^{n}(+)(\mathbb{Z}) \cong \begin{cases}p \mathbb{Z} & \text { if } n=p^{r} \tag{3.9}\\ \mathbb{Z} & \text { otherwise } .\end{cases}
$$

Hence, we have

$$
H_{0} D_{1} \Gamma^{n}(P) \cong \begin{cases}\mathbb{Z} / p \mathbb{Z} & \text { if } n=p^{r} \text { for a prime } p, \text { and } r \geq 1, \\ 0 & \text { otherwise. }\end{cases}
$$

4. The first nontrivial homology of $D_{k} \mathrm{Sp}^{n}$ and $D_{k} \Lambda^{n}$. In Section 2 we showed that $D_{k} \mathrm{Sp}^{n}$ and $D_{k} \Lambda^{n}$ can be expressed in terms of linearizations of lower symmetric and exterior powers. Coupling this with the calculations of Section 3 enables us to completely determine the first nontrivial homology groups of $D_{k} \mathrm{Sp}^{n}$ and $D_{k} \Lambda^{n}$. We begin with the symmetric powers.

Theorem 4.1. Let A be a finitely generated abelian group, P be a projective resolution of A, and $n, k>1$. The lowest degree in which $D_{k} \operatorname{Sp}^{n}(P)$ can have nontrivial homology is $2 n-2 k$. For $k=n$,

$$
H_{2 n-2 k} D_{k} \mathrm{Sp}^{n}(P) \cong \operatorname{Sp}^{n}(A) .
$$

For $k<n$,

$$
H_{2 n-2 k} D_{k} \mathrm{Sp}^{n}(P) \cong \bigoplus_{\substack{a_{1}+a_{2} p^{r_{2}+\cdots+\cdots+a_{s} p^{r_{s}}=n} \\ p i s \\ \text { prime, } \\ a_{1}+\cdots<r_{2}<\ldots<r_{s} \\ a_{2}, a_{3}, \ldots, \ldots, a_{s} \geq 1 ; a_{1} \geq 0}} \mathrm{Sp}^{a_{1}}(A) \otimes \bigotimes_{j=2}^{s} \mathrm{Sp}^{a_{j}}(A / p) .
$$

By A / p we mean $A \otimes_{\mathbb{Z}} \mathbb{Z} / p$. For $a_{1}=0$, we set $\operatorname{Sp}^{a_{1}}(A)=\mathbb{Z}$.
Hence, to find $H_{2 n-2 k} D_{k} \mathrm{Sp}^{n}(P)$ one need only determine the ways in which n can be expressed as the sum of k (not necessarily distinct) powers of the same prime p. We illustrate this with the set of examples below.

Examples 4.2. Let P be a projective resolution of A.
(1) Consider $k=2$ and $n=12$. In this case, n can be written as a sum of two powers of the same prime in three ways, and the $a_{i} \mathrm{~s}$ and $r_{j} \mathrm{~s}$ have the indicated values:

Sum	a_{1}	a_{i}	r_{j}
$2^{2}+2^{3}$	0	$a_{2}=1, a_{3}=1$	$r_{2}=2, r_{3}=3$
$3^{1}+3^{2}$	0	$a_{2}=1, a_{3}=1$	$r_{2}=1, r_{3}=2$
$11^{0}+11^{1}$	1	$a_{2}=1$	$r_{2}=1$

It follows that

$$
H_{20} D_{2} \operatorname{Sp}^{12}(P) \cong(A / 2 \otimes A / 2) \oplus(A / 3 \otimes A / 3) \oplus(A \otimes A / 11) .
$$

(2) Consider $k=3$ and $n=12$. In this case, n can be written as a sum of three powers of the same prime in two ways and the $a_{i} \mathrm{~s}$ and r_{j} s have the indicated values:

\[

\]

It follows that

$$
H_{18} D_{3} \operatorname{Sp}^{12}(P) \cong\left(\operatorname{Sp}^{2}(A / 2) \otimes A / 2\right) \oplus \operatorname{Sp}^{3}(A / 2)
$$

(3) Consider $k=4$ and $n=12$. In this case, n can be written as a sum of four powers of the same prime in five ways:

$$
\begin{aligned}
12 & =2 \cdot 2^{0}+2^{1}+2^{3} \\
& =2 \cdot 2^{1}+2 \cdot 2^{2} \\
& =3 \cdot 3^{0}+3^{2} \\
& =4 \cdot 3^{1} \\
& =2 \cdot 5^{0}+2 \cdot 5^{1} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
H_{16} D_{4} \mathrm{Sp}^{12}(P) \cong & \left(\mathrm{Sp}^{2}(A) \otimes A / 2 \otimes A / 2\right) \oplus\left(\mathrm{Sp}^{2}(A / 2) \otimes \mathrm{Sp}^{2}(A / 2)\right) \\
& \oplus\left(\operatorname{Sp}^{3}(A) \otimes A / 3\right) \oplus \operatorname{Sp}^{4}(A / 3) \\
& \oplus\left(\operatorname{Sp}^{2}(A) \otimes \operatorname{Sp}^{2}(A / 5)\right)
\end{aligned}
$$

(4) Suppose n is odd and $k=2$. Then n can be expressed as a sum of two prime powers if and only if n has the form $n=2^{k}+1$ for some $k \geq 1$. It follows that

$$
H_{2 n-4} D_{2} \mathrm{Sp}^{n}(P)= \begin{cases}A \otimes A / 2 & \text { if } n=2^{k}+1 \text { for some } k \geq 1, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof of Theorem 4.1. Much of the work for this proof has been done in Sections 2 and 3. We start with the formula of Theorem 2.9 and determine the needed homotopy orbits directly, before using the calculations of Proposition 3.7 to obtain the result.

Recall from Theorem 2.9 that

$$
D_{k} \mathrm{Sp}^{n} \simeq \bigoplus_{[\mathrm{t}] \in\left[V_{k}(n)\right]}\left(D \mathrm{Sp}^{\mathbf{t}}\right)_{h \mathrm{st}(\mathbf{t})}
$$

where for $\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right), D \mathrm{Sp}^{\mathbf{t}}=D_{1} \mathrm{Sp}^{t_{1}} \otimes \cdots \otimes D_{1} \mathrm{Sp}^{t_{k}}$. The Künneth theorem, Corollary 3.6, and the fact that homotopy orbits preserve connectivity guarantee that $H_{t} D_{k} \mathrm{Sp}^{n}(P) \cong 0$ for $t<\left(2 t_{1}-2\right)+\cdots+\left(2 t_{k}-2\right)=2 n-2 k$. Moreover, it follows directly from Corollary 3.6, the definition of homotopy orbits (see, for example, [JM2, 3.5]), and Künneth that

$$
\begin{aligned}
H_{2 n-2 k} D_{k} \mathrm{Sp}^{n}(P) & \cong \bigoplus_{\left[\mathrm{t} \in\left[V_{k}(n)\right]\right.} H_{2 n-2 k}\left(D \operatorname{Sp}^{\mathrm{t}}(P)_{h \mathrm{st}(\mathbf{t})}\right) \\
& \cong \bigoplus_{[\mathrm{t}] \in\left[V_{k}(n)\right]}\left(H_{2 n-2 k} D \mathrm{Sp}^{\mathrm{t}}(P)\right)_{\mathrm{st}(\mathbf{t})} \\
& \cong \bigoplus_{\left[\left(t_{1}, \ldots, t_{k}\right)\right] \in\left[V_{k}(n)\right]}\left(\bigotimes_{i=1}^{k} H_{2 t_{i}-2} D_{1} \operatorname{Sp}^{t_{i}}(P)\right)_{\mathrm{st}(\mathbf{t})} .
\end{aligned}
$$

Recall that $\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right) \in V_{k}(n)$ represents a partition of n, i.e., $t_{1}+\cdots+t_{k}=n$. By grouping together equal $t_{i} \mathrm{~s}$, such a partition can be written in the form

$$
\begin{equation*}
c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{s} u_{s}=n \tag{4.3}
\end{equation*}
$$

with $u_{i} \neq u_{j}$ for $i \neq j, c_{1}+\cdots+c_{s}=k$, and $c_{1}, \ldots, c_{s} \geq 1$. Let \mathbf{u} denote the element of $[\mathbf{t}]$ corresponding to this rearrangement. Then clearly st $(\mathbf{u})=$
$\Sigma_{c_{1}} \times \cdots \times \Sigma_{c_{s}}$. Moreover,

$$
\left(H_{2 n-2 k}\left(D \mathrm{Sp}^{\mathbf{u}}\right)\right)_{\mathrm{st}(\mathbf{u})} \cong \bigotimes_{j=1}^{s}\left(\otimes^{c_{j}} H_{2 u_{j}-2} D_{1} \mathrm{Sp}^{u_{j}}\right)_{\Sigma_{c_{j}}}
$$

To determine the orbits $\left(\otimes^{c_{i}} H_{2 u_{i}-2} D_{1} \mathrm{Sp}^{u_{i}}\right) \Sigma_{c_{i}}$, we consider the action of an arbitrary transposition $(j l) \in \Sigma_{c_{i}}$ on the complex $\otimes^{c_{i}} D_{1} \mathrm{Sp}^{u_{i}}$. The transposition $(j l)$ acts on $\otimes^{c_{i}} D_{1} \mathrm{Sp}^{u_{i}}$ by interchanging the j th and l th tensorands. The careful reader will recognize that there must be a sign associated to the $(j l)$-action in order to produce a chain map from $\otimes^{c_{i}} D_{1} \mathrm{Sp}^{u_{i}}$ to itself that is consistent with the sign convention for total complexes. In particular, $(j l)$ acts by taking the element $a_{1} \otimes \cdots \otimes a_{j} \otimes \cdots \otimes a_{l} \otimes \cdots \otimes a_{c_{i}}$ of multidegree $\left(b_{1}, \ldots, b_{j}, \ldots, b_{l}, \ldots, b_{c_{i}}\right)$ to the element

$$
(-1)^{b_{j}\left(b_{j+1}+\cdots+b_{l}\right)+b_{l}\left(b_{j+1}+\cdots+b_{l-1}\right)} a_{1} \otimes \cdots \otimes a_{l} \otimes \cdots \otimes a_{j} \otimes \cdots \otimes a_{c_{i}}
$$

However, for the present computation, we are interested only in elements of multidegree $\left(2 u_{i}-2,2 u_{i}-2, \ldots, 2 u_{i}-2\right)$ and so the sign is +1 . As a result,

$$
\begin{equation*}
\left(H_{2 n-2 k}\left(D \operatorname{Sp}^{\mathbf{u}}(P)\right)\right)_{\mathrm{st}(\mathbf{u})} \cong \bigotimes_{j=1}^{s} \operatorname{Sp}^{c_{j}}\left(H_{2 u_{j}-2} D_{1} \operatorname{Sp}^{u_{j}}(P)\right) \tag{4.4}
\end{equation*}
$$

When $u_{1}=1$, it follows by Proposition 3.7 that (4.4) is isomorphic to

$$
\begin{equation*}
\mathrm{Sp}^{c_{1}}(A) \otimes \operatorname{Sp}^{c_{2}}\left(H_{2 u_{2}-2} D_{1} \mathrm{Sp}^{u_{2}}(P)\right) \otimes \cdots \otimes \operatorname{Sp}^{c_{s}}\left(H_{2 u_{s}-2} D_{1} \mathrm{Sp}^{u_{s}}(P)\right) \tag{4.5}
\end{equation*}
$$

If $k=n$, the only partition of n into k positive integers is the trivial partition $n=1+\cdots+1$. In this case, (4.5) gives us

$$
H_{2 n-2 k} D_{k} \operatorname{Sp}^{n}(P) \cong \operatorname{Sp}^{n}(A)
$$

For $k<n$, recall from Proposition 3.7 that $H_{2 t-2} D_{1} \mathrm{Sp}^{t}(P)$ is nontrivial if and only if t is 1 or t is a positive power of a prime. In particular, $H_{2 t-2} D_{1} \mathrm{Sp}^{t}(P) \cong A / p$ when t is a positive power of a prime p, and $H_{2 t-2} D_{1} \mathrm{Sp}^{t}(P) \cong A$ when $t=1$. As a result, the summands (4.4) and (4.5) are nontrivial if and only if u_{1}, \ldots, u_{s} are all nonnegative powers of the same prime, that is, if the partition (4.3) has the form $c_{1} p^{r_{1}}+\cdots+c_{s} p^{r_{s}}$ where $r_{i} \neq r_{j}$ if $i \neq j$. Applying Proposition 3.7 to (4.4) and (4.5), and setting a_{1} equal to the number of p^{0} s appearing in a partition, we obtain the desired result

$$
H_{2 n-2 k} D_{k} \mathrm{Sp}^{n}(P) \cong \bigoplus_{\substack{a_{1}+a_{2} p^{r_{2}}+\cdots+a_{s} p^{r_{s}}=n \\ p \text { is prime, } 0<r_{2}<\cdots<r_{s} \\ a_{1}+\cdots+a_{s}=k \\ a_{2}, \ldots, a_{s} \geq 1 ; a_{1} \geq 0}} \mathrm{Sp}^{a_{1}}(A) \otimes \bigotimes_{j=2}^{s} \mathrm{Sp}^{a_{j}}(A / p)
$$

Using the exact sequence $D_{k} \mathrm{Sp}^{n} \rightarrow P_{k} \mathrm{Sp}^{n} \rightarrow P_{k-1} \mathrm{Sp}^{n}$, we determine the first nontrivial homology of $P_{k} \mathrm{Sp}^{n}$ as well.

LEmma 4.6. Let P be a projective resolution of the abelian group A and $n, k \geq 2$. Then

$$
H_{*} P_{k} \operatorname{Sp}^{n}(P) \cong H_{*} D_{k} \operatorname{Sp}^{n}(P)
$$

for $* \leq 2 n-2 k$.
Proof. We begin by noting that $D_{1} \mathrm{Sp}^{n} \cong P_{1} \mathrm{Sp}^{n}$ since $P_{0} \mathrm{Sp}^{n}=\mathrm{Sp}^{n}(0)$ $\cong 0$. Hence, the first nontrivial homology group of $P_{1} \mathrm{Sp}^{n}(P)$ occurs no lower than degree $2 n-2$. From the sequence of functors $D_{2} \mathrm{Sp}^{n} \rightarrow P_{2} \mathrm{Sp}^{n} \rightarrow$ $P_{1} \mathrm{Sp}^{n}$, we obtain a long exact sequence of homology groups

$$
\cdots \rightarrow H_{*} D_{2} \operatorname{Sp}^{n}(P) \rightarrow H_{*} P_{2} \operatorname{Sp}^{n}(P) \rightarrow H_{*} P_{1} \operatorname{Sp}^{n}(P) \rightarrow \cdots
$$

Since $D_{2} \operatorname{Sp}^{n}(P)$ is $(2 n-5)$-connected and $P_{1} \operatorname{Sp}^{n}(P)$ is $(2 n-3)$-connected, it must be the case that $H_{*} P_{2} \operatorname{Sp}^{n}(P) \cong H_{*} D_{2} \operatorname{Sp}^{n}(P)$ for $* \leq 2 n-4$. The result follows inductively in this fashion, by using the long exact homology sequence associated to $D_{k} \mathrm{Sp}^{n} \rightarrow P_{k} \mathrm{Sp}^{n} \rightarrow P_{k-1} \mathrm{Sp}^{n}$ and the fact that $H_{*} D_{k} \mathrm{Sp}^{n}$ vanishes for $*<2 n-2 k$.

Corollary 4.7. Let A be a finitely generated abelian group, P be a projective resolution of A and $n, k \geq 2$. The lowest degree in which $P_{k} \mathrm{Sp}^{n}(P)$ can have nontrivial homology is $2 n-2 k$. For $k=n$,

$$
H_{2 n-2 k} P_{k} \operatorname{Sp}^{n}(P) \cong \operatorname{Sp}^{n}(A)
$$

For $k<n$,

$$
H_{2 n-2 k} P_{k} \mathrm{Sp}^{n}(P) \cong \bigoplus_{\substack{a_{1}+a_{2} p^{2}+\cdots+a_{s} p^{r_{s}=n} \\ \text { pis } p r i m e, 0<r_{2}<\cdots<r_{s} \\ a_{1}+\cdots+a_{s}=k \\ a_{2}, \ldots, a_{s} \geq 1 ; a_{1} \geq 0}} \operatorname{Sp}^{a_{1}}(A) \otimes \bigotimes_{j=2}^{s} \operatorname{Sp}^{a_{j}}(A / p)
$$

The lowest nontrivial homology of $D_{k} \Lambda^{n}(P)$ can be determined in a manner similar to that used for $D_{k} \mathrm{Sp}^{n}(P)$. We note that for odd primes p one works with even-dimensional homology classes and the Σ_{k} action is the usual action with signature. When $p=2$, one works with odd-dimensional homology classes, except for $D_{1} \Lambda^{1} \cong \mathrm{Id}$, and so the permutation signature is cancelled by the sign arising from the action on the tensor product of chain complexes in homology above degree 0 . This gives us the following.

Theorem 4.8. Let A be a finitely generated abelian group, P be a projective resolution of A, and $n, k>1$. The lowest degree in which $D_{k} \Lambda^{n}(P)$ can have nontrivial homology is $n-k$. For $k=n$,

$$
H_{n-k} D_{k} \Lambda^{n}(P) \cong \Lambda^{n}(A)
$$

For $k<n$,

$$
H_{n-k} D_{k} \Lambda^{n}(P) \cong \bigoplus_{\substack{a_{1}+a_{2} p^{r_{2}}+\cdots+a_{s} p^{r_{s}}=n \\ \text { pis prime } 0<r_{2}<\cdots<r_{s} \\ a_{1}+\cdots+a_{s}=k \\ a_{2}, \ldots, a_{s} \geq 1 ; a_{1} \geq 0}} \Lambda^{a_{1}}(A) \otimes \Lambda_{a_{2} p^{r_{2}, \ldots, a_{s} p^{r_{s}}}}(A)
$$

where

$$
\Lambda_{a_{2} p^{r_{2}}, \ldots, a_{s} p^{r_{s}}}(A) \cong \begin{cases}\Lambda^{a_{2}}(A / p) \otimes \cdots \otimes \Lambda^{a_{s}}(A / p) & \text { if } p \text { is odd } \\ S^{a_{2}}(A / 2) \otimes \cdots \otimes S^{a_{s}}(A / 2) & \text { if } p=2\end{cases}
$$

REMARK 4.9. The gap between the lowest nontrivial homology of $D_{k} \mathrm{Sp}^{n}$ and $D_{k-1} \mathrm{Sp}^{n}$ is just large enough for us to conclude that

$$
H_{2 n-2 k} P_{k} \operatorname{Sp}^{n}(P) \cong H_{2 n-2 k} D_{k} \operatorname{Sp}^{n}(P)
$$

An analogous result does not appear to hold for the exterior powers. To determine $H_{n-k} P_{k} \Lambda^{n}(P)$, one must consider possible extensions as well. We leave this to another paper.

Acknowledgements. This paper was written while the first author was visiting the mathematics department at Johns Hopkins University. She thanks the department for their hospitality.

References

[Be] S. Betley, Stable derived functors, the Steenrod algebra and homological algebra in the category of functors, Fund. Math. 168 (2001), 279-293.
[Bo] A. K. Bousfield, Homogeneous functors and their derived functors, unpublished manuscript.
[D] A. Dold, Homology of symmetric products and other functors of complexes, Ann. of Math. 68 (1958), 54-80.
[DP] A. Dold and D. Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier (Grenoble) 11 (1961), 201-312.
[DT] A. Dold and R. Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (1958), 239-281.
[EM] S. Eilenberg and S. Mac Lane, Homology theories for multiplicative systems, Trans. Amer. Math. Soc. 71 (1951), 294-330.
[E] D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, New York, 1995.
[G] T. Goodwillie, Calculus III: Taylor series, Geom. Topol. 7 (2003), 645-711.
[JM1] B. Johnson and R. McCarthy, Linearization, Dold-Puppe stabilization, and Mac Lane's Q-construction, Trans. Amer. Math. Soc. 350 (1998), 1555-1593.
[JM2] —, 一, Deriving calculus with cotriples, ibid. 356 (2003), 757-803.
[JM3] —, 一, A classification of degree n functors, II, Cahiers Topologie Géom. Différentielle Catég. 44 (2003), 163-216.
[K] D. M. Kan, Functors involving c.s.s. complexes, Trans. Amer. Math. Soc. 87 (1958), 330-346.
[P] T. Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup. 33 (2000), 151-179.
[S] D. Simson, Stable derived functors of the second symmetric power functor, second exterior power functor and Whitehead gamma functor, Colloq. Math. 32 (1974), 49-55.
[ST] D. Simson and A. Tyc, Connected sequences of stable derived functors and their applications, Dissertationes Math. 111 (1974).
[We] C. Weibel, An Introduction to Homological Algebra, Cambridge Univ. Press, Cambridge, 1994.

Department of Mathematics
Department of Mathematics
Union College
Schenectady, NY 12308, U.S.A.
E-mail: johnsonb@union.edu
University of Illinois at Urbana-Champaign
1409 W. Green St.
Urbana, IL 61801, U.S.A.
E-mail: randy@math.uiuc.edu

Received 6 May 2003;
in revised form 9 November 2006 and 4 August 2008

[^0]: 2000 Mathematics Subject Classification: 55P65, 18G99, 55U99.
 Key words and phrases: symmetric and exterior power functors, Taylor tower of a functor.

 The second author was partially supported by National Science Foundation grant DMS 00-71482.

