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The entropy of algebraic actions
of countable torsion-free abelian groups

by

Richard Miles (Stockholm)

Abstract. This paper is concerned with the entropy of an action of a countable
torsion-free abelian group G by continuous automorphisms of a compact abelian group X.
A formula is obtained that expresses the entropy in terms of the Mahler measure of a
greatest common divisor, complementing earlier work by Einsiedler, Lind, Schmidt and
Ward. This leads to a uniform method for calculating entropy whenever G is free. In
cases where these methods do not apply, a possible entropy formula is conjectured. The
entropy of subactions is examined and, using a theorem of P. Samuel, it is shown that a
mixing action of an infinitely generated group of finite rational rank cannot have a finitely
generated subaction with finite non-zero entropy. Applications to the concept of entropy
rank are also considered.

1. Introduction and statement of results. Let G be a countable
torsion-free abelian group and X a compact metrizable abelian group with
Borel σ-algebra B(X) and normalized Haar measure µX . If α is a G-action
by µX -preserving transformations αg of X, since G is amenable, we may
consider the metric entropy h(α) with respect to µX . A detailed theory
of metric entropy for amenable group actions can be found in the seminal
article [20]. In this paper we will be interested in the case where α is an
algebraic G-action, that is, each αg is a continuous automorphism of X.
Therefore, there is also a notion of topological entropy whose correspondence
with metric entropy is summarized in [4].

In [15], Kitchens and Schmidt develop a framework for the study of
algebraic G-actions; the resulting theory is the subject of Schmidt’s mono-
graph [22]. A fundamental observation is that there is a correspondence
between these actions and modules over the group ring ZG, facilitated by
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Pontryagin duality (see Section 2). Write αM for the action corresponding
to a ZG-module M .

When G = Zd, d <∞, ZG can be identified with a ring of Laurent poly-
nomials and the formula of Lind, Schmidt and Ward [16] expresses h(αM )
in terms of Mahler measures of Laurent polynomials associated with M .
For a Laurent polynomial f = f(u±1

1 , . . . , u±1
n ) with integer coefficients, the

Mahler measure of f is

m(f) =
1�

0

· · ·
1�

0

log |f(e2πit1 , . . . , e2πitn)| dt1 . . . dtn.

For background on Mahler measure, consult [12]. If αM corresponds to a
ZG-module M = ZG/(f), f ∈ ZG, then h(αM ) = m(f). Lind, Schmidt and
Ward’s full results cover all ZG-modules M and generalize earlier formulae
for single automorphisms due to Yuzvinskĭı [25] and Lind and Ward [17].

More recently, Deninger and Schmidt [4], [5] have studied the entropy
of actions of residually finite groups, relaxing the assumption that G is
abelian. In [5], their main result is that if f is a unit in the convolution
algebra L1(G), ZGf ⊂ ZG is a left ideal and M = ZG/ZGf , then h(αM ) is
given by the logarithm of a Fuglede–Kadison–Lück determinant ([4, Sec. 3]
describes the relationship between these determinants and Mahler measure).
In the setting of C∗-dynamical systems, the entropy of actions of infinitely
generated torsion-free abelian groups has been considered by Golodets and
Neshveyev [14]. The study of algebraic actions of such groups was initiated
in [18] in relation to the dynamical property of expansiveness and continues
here with the investigation of entropy.

When dealing with algebraic G-actions with G infinitely generated, a sig-
nificant obstacle is that ZG is non-Noetherian; the importance of this con-
dition and its dynamical interpretation is discussed in [22, Sec. 3]. When G
is free, G ∼= Zd for some d ≤ ∞ (for a countable abelian group Γ , Γ∞

is used to mean
⊕

N Γ ), so ZG is a unique factorization domain and the
greatest common divisor of any non-trivial subset of ZG is well defined. For
our purposes, this condition turns out to be more important than whether
or not ZG is Noetherian. Also, whenever G is free, ZG can be viewed as a
Laurent polynomial ring in countably many variables. By using the work of
Lind, Schmidt and Ward as a foundation, the following result is obtained.

Theorem 1.1. Let G be a countable torsion-free abelian group and let
a ⊂ ZG be a non-zero ideal. If there is a free group G′ ≤ G such that
a = (a ∩ ZG′)ZG then

(1) h(αZG/a) = m(gcd(a ∩ ZG′)).

In particular , such a G′ exists if G itself is free or if a is finitely generated.



Entropy of algebraic actions 263

The use of greatest common divisors for calculating the entropy of al-
gebraic actions of finitely generated G was initiated by Einsiedler [6] and
developed by Einsiedler and Ward [9].

Using Theorem 1.1, a general entropy formula is established for the case
G = Z∞. For continuity with Lind, Schmidt and Ward’s work, the result
is phrased to include all free G. The fact that the Z∞ case is so similar
to that of Zd, d < ∞, is a little surprising, since this is certainly not true
for all dynamical properties (see [19], for example). When G is free, for a
ZG-module M , let Ass1(M) be the set of non-zero principal prime ideals
in ZG that are annihilators of elements of M . Upon identifying ZG with a
ring of Laurent polynomials, if p ⊂ ZG is a non-zero principal prime, m(p)
is defined in an obvious way.

Theorem 1.2. Let G = Zd, d ≤ ∞, and suppose M is a finitely gener-
ated ZG-module. If M is a torsion module, then

(2) h(αM ) =
∑

p∈Ass1(M)

m(p) dimK(p)Mp,

where K(p) is the field of fractions of ZG/p and Mp is the localization of M
at p. If M is not a torsion module then h(αM ) =∞.

Standard results for algebraic G-actions allow one to extend Theorem 1.2
to the case where M is not finitely generated (see Remark 5.2). If neither
Theorem 1.1 nor Theorem 1.2 can be applied, the situation is somewhat
more complicated. In Section 5, a general formula for the entropy of ac-
tions arising from cyclic modules is proposed (Conjecture 5.4) and support-
ing evidence considered. The formula arises from a fundamental inequality
(Theorem 5.3) that turns out to be useful for identifying actions with zero
entropy.

In Section 6, the entropy of subactions is investigated. Some well-known
examples of infinitely generated actions have finitely generated subactions
with finite non-zero entropy (Example 6.1). However, the following theorem
isolates a large class of algebraic actions for which this is not the case.

Theorem 1.3. Suppose G is an infinitely generated torsion-free abelian
group of finite rational rank and α is a mixing algebraic G-action on a
compact abelian group X. Then α has no finitely generated subactions with
finite non-zero entropy.

The proof of Theorem 1.3 relies on an application of Samuel’s theorem
on finitely generated unit groups [21], reflecting the algebraic nature of this
phenomenon. If the mixing assumption is dropped, the same conclusion
cannot be reached (Example 6.6).

The concept of entropy rank was introduced by Boyle and Lind [2] in
relation to the expansive subdynamics of Zd-actions, d < ∞, although the
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definition given by Einsiedler and Lind [7] extends more easily to our setting
(Definition 6.8). Roughly speaking, entropy rank expresses the least rank
such that all subactions of that rank have finite entropy. Applying results
from Section 5, it is possible to characterize the relationship between entropy
rank and algebraic dependence (Theorem 6.9), in line with the situation for
finitely generated actions [8].

2. Preliminaries. Let G be a countable torsion-free abelian group. The
rational rank, or simply the rank, of G is rk(G) = dimQ Q ⊗ G. A Følner
sequence (Fi) in G is a sequence of finite sets Fi ⊂ G for which, given any
g ∈ G,

|Fi 4 g + Fi|/|Fi| → 0

as i→∞. Note that Følner sequences can always be found in G. Suppose X
is a compact metrizable abelian group with Borel σ-algebra B(X) and nor-
malized Haar measure µX . If α is a G-action by µX -preserving transforma-
tions αg of X, the metric entropy of α with respect to µX is the quantity

h(α) = sup
ξ
h(α, ξ),

where ξ runs over all finite measurable partitions of X and

h(α, ξ) = lim
i→∞

1
|Fi|

H(ξFi),

H(·) being the entropy of a partition with respect to µX and ξFi =
∨
g∈Fi

αgξ.
It can be shown that the definition of entropy is independent of the choice
of the Følner sequence. For any finite measurable partitions ξ, η of X,

h(α, ξ) ≤ h(α, η) +H(ξ | η),

so the Rokhlin inequality holds. If (ξn) is an increasing sequence of finite
measurable partitions such that σ(

∨
n≥1

∨
g∈G α

gξn) = B(X), then

h(α) = sup
n≥1

h(α, ξn) = lim
n→∞

h(α, ξn).

For further background and explanation of these statements, see [20] and [24].
Now suppose α is an algebraic action, that is, each αg is a continuous

automorphism of X. If Y is a closed α-invariant subgroup of X, the subscript
notation αY , αX/Y is also used for the induced actions on Y and X/Y
respectively. Note that

h(αX/Y ) ≤ h(αX) and h(αY ) ≤ h(αX).

If Y1 ⊃ Y2 ⊃ · · · is a sequence of closed α-invariant subgroups of X with⋂
n≥1 Yn = {0}, then

(3) h(α) = lim
n→∞

h(αX/Yn
).
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These results are straightforward generalizations of the situation for Zd-
actions [22, Sec. 13]. Note also that Haar measure is a “dominant” mea-
sure for entropy in the sense of the variational principle (the proof of [22,
Prop. 13.5] can be adapted to show this).

When α is an algebraic action, via Pontryagin duality, the discrete count-
able dual group M = X̂ becomes a module over the group ring ZG by setting

fa =
∑
g∈G

cg(f)α̂g(a),

where a ∈ M , cg(f) ∈ Z and f =
∑

g∈G cgg has cg = 0 for all but finitely
many g ∈ G. Conversely, any countable ZG-module M gives rise to an alge-
braic G-action αM on the compact abelian group XM = M̂ by setting αg,
g ∈ G, to be the automorphism dual to multiplication by g on M . For any
module homomorphism φ : M → N , the continuous (and hence measur-
able) dual homomorphism φ̂ : XN → XM satisfies φ̂ · αgN = αgM · φ̂ for all
g ∈ G. For further details of the correspondence between algebraic G-actions
and ZG-modules, consult [22]. When it is necessary to emphasize the acting
group G, write αGM . If J ≤ G, then M is naturally a ZJ-module and αJM
denotes the induced subaction on XM .

Any cyclic ZG-module may be written in the form M = ZG/a, where
a ⊂ ZG is an ideal. Let A be a set of generators for a. Then XM may be
identified with the subgroup of TG consisting of elements x = (xg) satisfying

(4)
∑
g∈G

cg(f)xg+g′ = 0

for all g′ ∈ G and f ∈ A. Set

(5) S(A) = {g ∈ G : cg(f) 6= 0 for some f ∈ A}.
According to the description of XM just given, for each g′ ∈ G, the auto-
morphism αg

′
identifies with the appropriate restriction of the G-shift ; that

is, for x = (xg) ∈ XM ,
αg
′
(x)g = xg+g′ .

3. Realization of actions and Følner sequences. Suppose G is in-
finitely generated. Let a ⊂ ZG be an ideal with generating set A ⊂ ZG, let
S(A) be given by (5) and set M = ZG/a. Consider the following two cases:

(1) G is free and a is finitely generated. Then G splits as J ⊕K, where
J ∼= Zd, d <∞, J contains S(A) and K ∼= Z∞.

(2) G is not free and there exists a free subgroup G′ ≤ G such that
a = (a ∩ ZG′)ZG. In this case, without loss of generality, we may
assume A ⊂ ZG′. By the axiom of choice, we can find G′ ≤ J ≤ G
such that J ∼= Zd, d ≤ ∞, and K = G/J is a torsion group.
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In case (2), identify J with Zd and use the subsequent embedding of G
into Q ⊗ J = Qd to identify K with a subgroup of (Q/Z)d, choosing coset
representatives for Q/Z in the unit interval. This gives rise to a bijection
G→ J ×K, with addition in G corresponding to

(a, q) + (b, q) = (a+ b+ δ(q, r), q + r),

where (a, q) = (an, qn), (b, r) = (bn, rn) ∈ J ×K, and

δ(q, r)n =

{
0 if qn +Q rn < 1,
1 if qn +Q rn ≥ 1.

Since S(A) lies in J , for any (b, r) ∈ J×K, the left hand side of (4) becomes∑
(a,q)∈J×K

c(a,q)(f)x(a,q)+(b,r) =
∑
a∈J

ca(f)x(a,0)+(b,r) =
∑
a∈J

ca(f)x(a+b,r),

where ca = c(a,0). Hence, XM may be identified with the subgroup of TJ×K
consisting of the elements x = (x(a,q)) satisfying

(6)
∑
a∈J

ca(f)x(a+b,r) = 0

for all (b, r) ∈ J×K and f ∈ A. For any (b, r) ∈ J×K and x = x(a,q) ∈ XM ,

(7) α(b,r)(x)(a,q) = x(a+b+δ(q,r),q+r).

In the simpler case (1), XM identifies with the subgroup of TJ⊕K =
TJ×K consisting of the elements x = (x(a,q)) satisfying (6) for all (b, r) ∈
J ×K. The G-action is given by (7) with δ ≡ 0.

It will often be useful to consider the coordinate restriction homomor-
phism πJ : TJ×K → TJ given by

(8) πJ(x(a,q)) = (ya),

where ya = x(a,0) for all a ∈ J . Let β be the J-shift on TJ and W = πJ(XM ).
Notice that XM may also be regarded as WK and its Haar measure as the
product measure obtained from Haar measure on W . Furthermore,

πJ · α(b,0) = βbW · πJ
for all b ∈ J . So, αJZJ/a∩ZJ is algebraically isomorphic to βW .

It is straightforward to obtain Følner sequences in G. However, we wish
to use a specific form of Følner sequence to complement the description of
the dynamical system (XM , αM ) given above.

Lemma 3.1. Let d ≤ ∞. For d =∞ set s(i) =
⌊

1
2 log2 i

⌋
and for d <∞

set s(i) = d, i ≥ 1. The sequence (Fi) defined by

Fi = {(an) ∈ Zd : −i ≤ xn ≤ i when n ≤ s(i), xn = 0 when n > s(i)}



Entropy of algebraic actions 267

is a Følner sequence in Zd. If G is not free and J and K are as above,
there is a sequence K1 ≤ K2 ≤ · · · of finite subgroups of K such that
(Ei) = (Fi ×Ki) corresponds to a Følner sequence in G.

Proof. Let b = (bn) ∈ Zd and let ‖b‖ = max{bn}. For a group of the
form Γ∞ and any γ = (γn) ∈ Γ∞, set `(γ) = max{n : γn 6= 0}. Then

|Fi 4 b+ Fi| � (2i+ 1)s(i) − (2i+ 1)s(i)−`(b)(2i+ 1− ‖b‖)`(b) � |Fi|i−1,

so (Fi) is a Følner sequence. At this stage, (s(i)) could be any sequence of
positive integers tending to infinity.

Let K1 ≤ K2 ≤ · · · be a sequence of finite subgroups of K such that⋃
i≥1Ki = K. Each Ki can be chosen so that `(q) ≤ s(i) for all q ∈ Ki. Let

r ∈ K and suppose i is large enough so that Fi contains b and Ki contains r.
Notice that

(b, r) + Ei = {(a+ b+ δ(p− r, r), p) : a ∈ Fi, p ∈ Ki},

with δ(p − r, r)n = 0 for all n > s(i). Set Λi = {δ(p − r, r) : p ∈ Ki}. Then
the sets Ki(λ) = {p ∈ Ki : δ(p− r, r) = λ}, λ ∈ Λi, partition Ki and

Ei 4 (b, r) + Ei =
⋃
λ∈Λi

(Fi 4 b+ λ+ Fi)×Ki(λ).

Therefore,

(9) |Ei 4 (b, r) + Ei| =
∑
λ∈Λi

|Ki(λ)| |Fi 4 b+ λ+ Fi|.

Furthermore,

|Fi 4 b+ λ+ Fi|� (2i+ 1)s(i)− (2i)s(i)−`(b)(2i−‖b‖)`(b)�
s(i)−1∑
j=0

(
s(i)
j

)
(2i)j

≤ (2i)s(i)−1

s(i)∑
j=0

(
s(i)
j

)
= (2i)s(i)−12s(i).

Substituting into (9) gives

|Ei 4 (b, r) + Ei| � (2i)s(i)−12s(i)
∑
λ∈Λi

|Ki(λ)| ≤ (2i)s(i)−1i1/2|Ki|.

So, |Ei 4 (b, r) + Ei|/|Ei| � i−1/2.

Finally, note that if G is free and G′ ≤ G has finite index, then

(10) h(αG
′
) = |G/G′|h(αG).

To see this, first establish a bijection G → J × K, where J = G′ and
K = G/G′. As in Lemma 3.1, it follows that Ei = Fi ×K corresponds to a
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Følner sequence in G. For any finite measurable partition ξ of X,

1
|Fi|

H
( ∨
b∈Fi

α(b,0)
∨
r∈K

α(0,r)ξ
)

=
|K|
|Ei|

H(ξEi).

Hence,

h
(
αG
′
,
∨
r∈K

α(0,r)ξ
)

= |K|h(αG, ξ).

From the same argument as for a single transformation, the result follows.

4. Entropy and the greatest common divisor. In this section, the
proof of Theorem 1.1 is given. We begin by expressing Lind, Schmidt and
Ward’s formula in a form more suitable for our needs. The following result is
a more straightforward version of [6, Lem. 4.5] and we supply an alternative
proof.

Lemma 4.1. Suppose J = Zd, d < ∞, and let b ⊂ ZJ be a non-zero
ideal. Then

h(αZJ/b) = m(gcd(b)).

Proof. Let R = ZJ and note that this ring is a Noetherian unique fac-
torization domain. Let g = gcd(b). Since b ⊂ (g), there is a surjective
R-module homomorphism R/b→ R/(g) and a corresponding dual inclusion
XR/(g) → XR/b yielding

h(αR/b) ≥ h(αR/(g)) = m(g),

by [16, Th. 4.2].
If g 6= 1, we may write g = ge11 · · · gem

m , where each gi is prime and ei ≥ 1
for all 1 ≤ i ≤ m. If g = 1, set m = 0. There is a list p1, . . . , pn of associated
primes of R/b such that b has an irredundant primary decomposition b =⋂n
i=1 bi, where each bi is a pi-primary ideal, pi = (gi) for all 1 ≤ i ≤ m, and

the remaining primes are non-principal. For each 1 ≤ i ≤ m,

bi = bRpi ∩R = {f ∈ R : sf ∈ b for some s ∈ R \ pi}.

By the definition of the greatest common divisor, there exists s ∈ R \ pi

such that sgei
i ∈ bi. Therefore, gei

i ∈ bi and there is a surjective R-module
homomorphism R/(gei

i )→ R/bi. Hence,

(11) h(αR/bi
) ≤ h(αR/(gei

i )).

The R-module homomorphism R → N =
⊕n

i=1R/bi given by sending
f to (f + b1) ⊕ · · · ⊕ (f + bn) has kernel b, so there is a dual projection
XN → XR/b. For m < i ≤ n, each of the modules R/bi has no principal
associated primes, and therefore h(αR/bi

) = 0, by [16, Lem. 4.3 and Th. 4.2].
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Thus, by (11),

h(αR/b) ≤ h(αN ) =
∑

1≤i≤n
h(αR/bi

) ≤
∑

1≤i≤m
m(gei

i ) = m(g).

Proof of Theorem 1.1. First note that if G is finitely generated, the result
follows from Lemma 4.1, so let G be infinitely generated. Assume that either
case (1) or case (2) of Section 3 holds. According to the hypotheses of the
theorem, the only remaining possibility is that G is free and the ideal a is
infinitely generated; we return to this in a moment.

Let M = ZG/a, α = αM and, as in Section 3, let XM be regarded as the
subgroup of TJ×K defined by the relations (6). Let πJ be given by (8), set
W = πJ(XM ) and let βW be the restriction of the J-shift to W . Write HX

and HW for the entropy functions with respect to µX and µW .
If G is not free, let (Ei) be the Følner sequence defined in Lemma 3.1.

If G is free, let (Fi) and (Ki) be Følner sequences for J and K respectively,
defined by Lemma 3.1 for groups of the form Zd, d ≤ ∞. In this case, set
Ei = Fi ×Ki, so that (Ei) corresponds to a Følner sequence in G.

Let η be any finite measurable partition of W . Even in the non-free case,
for a set of the form A = (Aq) ∈ WK with Aq = W for all q 6= 0, we have
α(0,r)A = (Bq), where Bq = A0 for q = r and Bq = W for q 6= r. Hence,

HX

( ∨
r∈Ki

α(0,r)π−1
J η

)
= |Ki|HW (η),

so
1
|Ei|

HX((π−1
J η)Ei) =

1
|Ei|

HX

( ∨
r∈Ki

α(0,r)π−1
J ηFi

)
=

1
|Fi|

HW (ηFi).

Therefore, h(α, π−1
J η) = h(βW , η). This means that for all i ≥ 1,

h(α, ξi(η)) = h(βW , η),

where ξi(η) =
∨
r∈Ki

α(0,r)π−1
J η. Thus,

sup
η,i
{h(α, ξi(η))} = h(βW ),

where η runs over all finite measurable partitions of W and i runs over all
natural numbers. Since the collection of partitions of the form ξi(η) is dense
in the space of all finite measurable partitions of XM (under the Rokhlin
metric), it follows that h(α) = h(βW ) = h(αJZJ/a∩ZJ).

When G is free and a is finitely generated, (1) follows from Lemma 4.1.
If G is free and a is not finitely generated, proceed as follows. Let g = gcd(a),
so a ⊂ (g). Since there is a finite set of elements in a which determines g,
there is a finitely generated ideal b ⊂ a with gcd(b) = g. Therefore, there is
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a chain of surjective ZG-module homomorphisms
ZG
b
→ ZG

a
→ ZG

(g)
.

Using the result established for finitely generated ideals, we deduce that

m(g) = h(αZG/(g)) ≤ h(αZG/a) ≤ h(αZG/b) = m(g).

Finally, note that in the case where G is not free, it has been shown that

h(α) = h(αJZJ/a∩ZJ) = m(gcd(a ∩ ZJ)).

When choosing J in Section 3, if J 6= G′, we can assume J ∼= G′⊕G′′ where
G′′ is also free. Since the generators of a lie in ZG′, the result follows.

5. Entropy for general modules. In this section, the calculation of
entropy for actions arising from more general modules is pursued. Yuzvin-
skĭı’s entropy addition formula [25] is useful here. This was generalized to
actions of Zd, d < ∞, by Lind, Schmidt and Ward in [16]. Schmidt’s proof
in [22] is more complete and can be adapted for actions of Z∞. The necessary
modifications are slightly technical and are consigned to the Appendix.

Proposition 5.1 (Yuzvinskĭı’s formula for actions of G = Z∞). Let
α be an algebraic Z∞-action on a compact abelian group X. Then for any
closed α-invariant subgroup Y of X,

(12) h(αX) = h(αY ) + h(αX/Y ).

When G = Zd, d < ∞, the ring ZG is Noetherian and the technique
of prime filtration, using associated primes, is very useful for decomposing
algebraic G-actions [22]. For non-Noetherian rings there are several different
notions of “associated prime” with a variety of uses [13], but there is no
method of prime filtration in general. Nonetheless, Theorem 1.1 facilitates
an algorithm similar to prime filtration, using principal primes, that can be
used to prove Theorem 1.2.

Let G = Zd, d ≤ ∞, and recall that ZG is a unique factorization domain.
For any ZG-module M , let Ass1(M) be the set of non-zero principal prime
ideals in ZG that are annihilators of elements of M . Write Ass1

ZG(M) if
emphasis of the underlying ring is required. Note that possibly Ass1(M) = ∅.
Suppose a ⊂ ZG is a non-zero ideal. Then Ass1(ZG/a) is the set of principal
primes that contain a. Hence, Ass1(ZG/a) = ∅ if and only if gcd(a) = 1. If
L ⊂M are ZG-modules then

(13) Ass1(M) = Ass1(L) ∪Ass1(M/L).

Proof of Theorem 1.2. Suppose that M is a torsion module. Since M is
finitely generated, Ass1(M) is finite. If Ass1(M) = ∅ then for all x ∈ M ,
Ass1(ZG/ ann(x)) = ∅, so h(αZG/ ann(x)) = 0 for all x ∈ M . Since there is
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a surjective module homomorphism
⊕

x∈M ZG/ann(x) → M , this means
h(αM ) = 0 and (2) follows.

Now assume Ass1(M) 6= ∅ and proceed using the following algorithm.
Set M0 = {0}. There exists x ∈ M such that ann(x) = p1 for some p1 ∈
Ass1(M). Let M1 = ZGx, consider M/M1 and note that Ass1(M/M1) ⊂
Ass1(M). If Ass1(M/M1) = ∅, terminate the algorithm. Otherwise, there
exists y ∈M \M1 such that ann(y +M1) = p2 for some p2 ∈ Ass1(M). Set
M2 = ZGy +M1. Note that Mi/Mi−1

∼= ZG/pi, i = 1, 2. Continuing in this
way, we obtain a chain of submodules

(14) M0 ⊂M1 ⊂ · · ·
of M , possibly terminating at Mn say, with Ass1(M/Mn) = ∅. If (14) does
terminate in this way, a simple induction using (13) shows that every prime
in Ass1(M) must appear at least once in p1, . . . , pn. If the chain does not ter-
minate, since Ass1(M) is finite, at least one prime in Ass1(M) must appear
infinitely often in the sequence (pi).

We may localize (14) at any prime q ∈ Ass1(M) to obtain a new module
chain

(M0)q ⊂ (M1)q ⊂ · · ·
and

(Mi)q/(Mi−1)q
∼= (Mi/Mi−1)q

∼= (ZG/pi)q =

{
K(pi) if pi = q,

{0} if pi 6= q.

If (14) terminates with Mn 6= M , note also that (M/Mn)q = {0} as M/Mn

is a torsion module and Ass1(M/Mn) = ∅. Thus, each q ∈ Ass1(M) appears
with a well-defined multiplicity, namely dimK(q)Mq. Formula (2) follows by
induction and Proposition 5.1.

Finally, if M is not a torsion module, then there is a submodule L ⊂M
such that L ∼= ZG and h(αM ) ≥ h(αL) =∞.

Remark 5.2. Just as for Zd-actions, d <∞, Theorem 1.2 and (3) com-
bine to give a method for calculating the entropy of any Z∞-action.

The following result is motivated by the subsequent conjecture; evidence
for the latter is discussed at the end of the section.

Theorem 5.3. Let G be a countable torsion-free abelian group and let
a ⊂ ZG be a non-zero ideal. Then there exists a chain G0 ≤ G1 ≤ · · · of
free subgroups of G with

⋃
n≥0Gn = G and Gn/G0 finite such that

(15) h(αZG/a) ≤ lim
n→∞

∑
p∈P

m(p) dimK(p) (Mn)p

|Gn/G0|
,

where Mn = ZGn/a ∩ ZGn and P = Ass1
ZG0

(M0).
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Conjecture 5.4. Equality holds in (15).

Corollary 5.5. If P = ∅, then h(αZG/a) = 0.

A complete algebraic characterization of the property of zero entropy
seems difficult, even if equality holds in (15). For further consideration of
this issue, see Proposition 6.10 and Section 7.

Proof of Theorem 5.3. Let G0 ≤ G be such that G0 is free and G/G0

is a torsion group. Since ZG0 ⊂ ZG is an integral extension and a 6= 0,
a ∩ ZG0 6= 0. Let G0 ≤ G1 ≤ · · · ≤ G be a sequence of subgroups such that
Gn/G0 is finite for all n ≥ 1 (therefore, each Gn is free). Let N = ZG/a
and for each n ≥ 0, set an = a ∩ ZGn, Mn = ZGn/an and Nn = ZG/anZG.
There is a chain of surjective ZG-module homomorphisms

N0 → N1 → N2 → · · · → N

and hence a corresponding dual chain of embeddings with the arrows re-
versed. It follows that (h(αGNn

)) is decreasing and

(16) h(αGN ) ≤ lim
n→∞

h(αGNn
).

Let n ≥ 1. The proof of Theorem 1.1 shows that

(17) h(αGNn
) = h(αGn

Mn
).

On the other hand, since G0 has finite index in Gn, by (10),

(18) h(αG0
Mn

) = |Gn/G0|h(αGn
Mn

).

Combining (17) and (18) gives

(19) h(αGNn
) =

1
|Gn/G0|

h(αG0
Mn

).

Let P = Ass1
ZG0

(M0), so P is finite. If p ∈ Ass1
ZG0

(Mn), then p is a
principal prime containing a0, so p ∈ P . On the other hand, since there
is an injective ZG0-module homomorphism M0 → Mn, P ⊂ Ass1

ZG0
(Mn).

Hence, Ass1
ZG0

(Mn) = P and it follows from Theorem 1.2 that

h(αG0
Mn

) =
∑
p∈P

m(p) dimK(p) (Mn)p .

Combined with (19) and (16), this gives (15).

From the proof of Theorem 5.3, it can be seen that equality holds in (15)
if, given an algebraic G-action α on a compact abelian group X, a subgroup
Y ⊂ X and a decreasing sequence Y1 ⊃ Y2 ⊃ · · · of closed α-invariant
subgroups of X whose intersection is Y , we have

h(αY ) = lim
n→∞

h(αYn).
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This is true if h(αY1) < ∞ and Yuzvinskĭı’s formula (12) holds for the
G-action in question, for (12) implies

h(αY ) + h(αY1/Y ) = h(αY1) = h(αYn) + h(αY1/Yn
),

and (3) shows h(αY1/Yn
) → h(αY1/Y ) as n → ∞. Unfortunately, all proofs

of Yuzvinskĭı’s formula [22], [23], [25] use a scaling argument that requires
the presence of finite index subgroups in the acting group G. In general,
G may have a shortage of these or no finite index subgroups whatsoever.

6. Subactions and entropy rank. In this section, the entropy of sub-
actions of infinitely generated algebraic actions is considered. This is partly
motivated by the potential for obtaining additional information concerning
the structure of zero entropy actions. The following example recalls some in-
finitely generated actions that have finitely generated subactions with finite
non-zero entropy.

Example 6.1 (Berend’s group flows [1]). Berend refers to the following
algebraic actions as group flows. Let G be a countable torsion-free abelian
group and X a finite-dimensional compact connected abelian group, or more
briefly, a solenoid. If α is a mixing algebraic G-action on X, then for each
g ∈ G, we have 0 < h(αg) < ∞. One of the simplest examples of an
infinitely generated action of this kind is given by taking an infinite set
P = {p1, p2, . . . } of distinct rational primes and considering the collection
of automorphisms {x 7→ px}p∈P on the one-dimensional solenoid X = Q̂.
This generates an algebraic action of G = Z∞. The corresponding ZG-
module is obtained by identifying ZG with the ring of Laurent polynomials
Z[u±1

1 , u±1
2 , . . . ] and defining a ring homomorphism ZG→ Q via the evalu-

ation map f 7→ f(p1, p2, . . .).

We now turn to the proof of Theorem 1.3. This requires the following
result, which is sometimes considered to be a generalization of Dirichlet’s
unit theorem.

Theorem 6.2 (Samuel [21]). If A is a finitely generated reduced Z-
algebra then the group of units A× is finitely generated.

It is also helpful to have an algebraic characterization of mixing. This is
provided by [22, Th. 1.6].

Lemma 6.3. Let G be a countable torsion-free abelian group and αM an
algebraic G-action. Then αM is mixing if and only if given any non-zero
x ∈M we have (g − 1)x 6= 0 for all non-zero g ∈ G.

The following results are also required.

Lemma 6.4. Let G = Zd, d <∞, and let A be a ZG-algebra which is a
domain. Then h(αF ) = h(αA), where F is the field of fractions of A.
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Proof. For the non-trivial case, suppose A is a torsion ZG-module. There
is a unique non-zero prime ideal p ⊂ ZG such that ann(x) = p for all non-
zero x ∈ A. Furthermore, p ( ann(y) for all non-zero y ∈ K/A. Therefore,
Ass1(K/A) = ∅. The result now follows from Proposition 5.1 and Theo-
rem 1.2.

Lemma 6.5. Let J = Zd, d <∞, and let I ≤ J be a non-trivial subgroup.
If K is a Noetherian ZJ-module and h(αIK) > 0, then h(αIZJ/p) > 0 for some
p ∈ AssZJ(K).

Proof. For a contradiction, suppose h(αIZJ/p) = 0 for all associated
primes p ∈ AssZJ(K). Hence, if q ⊃ p is an ideal of ZJ then the sur-
jective ZI-module homomorphism ZJ/p → ZJ/q induces a dual inclusion.
Therefore, h(αIZJ/q) = 0. Since K is a Noetherian ZJ-module, it is possible
to take a prime filtration of K over ZJ . With the use of this filtration, an
induction argument applying Proposition 5.1 now shows h(αIK) = 0, giving
a contradiction.

Proof of Theorem 1.3. Let M = X̂ be the dual ZG-module and let I be
a finitely generated subgroup of G with h(αIM ) > 0. Our aim is to show that
h(αIM ) =∞.

Firstly, there is a surjective ZG-module homomorphism
⊕

x∈M ZGx→M.
So, h(αIL) > 0 for a cyclic submodule L ⊂ M which may be identified
with ZG/a for some ideal a ⊂ ZG. Let J be a finitely generated subgroup
of G containing I and having rk(J) = rk(G). There is a surjective ZJ-
module homomorphism

⊕
x∈L ZJx→ L, which implies h(αIK) > 0 for some

cyclic ZJ-submodule K ⊂ L. Using Lemma 6.5, we deduce that there exists
p ∈ AssZJ(K) with h(αIZJ/p) > 0. Thus,

(20) h(αIK(p)) > 0.

Because rk(J) = rk(G), ZG is an integral ZJ-algebra. Furthermore, the
prime ideal p necessarily contains a∩ZJ . Therefore, by [10, Prop 9.2], there
is a prime ideal q ⊂ ZG containing a such that

(21) q ∩ ZJ = p.

Since a ⊂ q, there is a surjective ZI-module homomorphism L → ZG/q. It
follows that

(22) h(αIM ) ≥ h(αIL) ≥ h(αIZG/q).

Considering ZG/q as a ZJ-algebra, by (21), we see that there is an
induced inclusion of fields

(23) K(p)→ K(q),
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and K(q) is a K(p)-vector space. So,

h(αIZG/q) = h(αIK(q))(24)

= h(αIK(p)) dimK(p)(K(q))

= h(αIZJ/p) dimK(p)(K(q)),(25)

where the equalities in (24) and (25) are obtained using Lemma 6.4.
We claim that (ZG/q)× is infinitely generated. Suppose not. Then the

natural map ZG→ ZG/q is not injective on G. That is, there is a non-trivial
element g ∈ G such that g−1 ∈ q. Since rk(J) = rk(G), it follows that there
is a non-trivial g′ ∈ J such that g′ − 1 ∈ q. So, g′ − 1 ∈ p by (21). Since
p ∈ AssZJ(K), there exists a non-zero x ∈ L such that (g′ − 1)x = 0. By
Lemma 6.3, this contradicts the mixing hypothesis. Therefore, (ZG/q)× is
infinitely generated.

Now, suppose (23) is a finite extension. Then [10, Th. 4.14] implies that
the integral closure of ZJ/p in K(q) is a finitely generated ZJ/p-module
and hence so is ZG/q, as the integral closure contains ZG/q. It follows that
ZG/q is a finitely generated Z-algebra, which by Theorem 6.2 means ZG/q
has a finitely generated unit group. This contradiction shows that (23) is
not finite.

Thus, (25) and (20) give h(αIZG/q) =∞ and hence h(αIM ) =∞ by (22).

The following example illustrates the need for the mixing hypothesis in
Theorem 1.3.

Example 6.6. Let G = Z × Q, let X be the shift space {0, 1}Z and
denote the Z-shift on X by β. For each (a, q) ∈ G, define an automorphism
α(a,q) of X by

α(a,q)(x) = βa(x).

This produces an algebraic G-action which is not mixing as α(0,1) is the
identity. Moreover, 0 < h(α(1,0)) = log 2 <∞.

If α is not an algebraic action, Theorem 1.3 also fails to hold.

Example 6.7. Suppose {αt : X → X}t∈R is a geodesic flow on a com-
pact Riemannian manifold X of negative curvature (see [3, Ch. 7, Sec. 4.1]).
Then the flow is mixing and 0 < h(α1) < ∞. The maps αt, t ∈ Q, gener-
ate an action of Q and, by Abramov’s formula [3, Ch. 3, Th. 2.1], for each
non-zero t ∈ Q,

0 < h(αt) <∞.

For algebraic Q-actions, it is tempting to try to use Abramov’s formula
to obtain Theorem 1.3. However, the required conclusion would only follow
if the entropy of every element of the action was bounded below by some
uniform positive constant. The existence of such a constant would give a
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solution to Lehmer’s problem [12], which asks if zero is an isolated point in
the range of Mahler measure; this problem has been open for over seventy
years.

We now consider the concept of entropy rank, which generalizes easily
from actions of Zd, d < ∞, to actions of more general torsion-free abelian
groups G, as follows.

Definition 6.8. An algebraic G-action α has entropy rank k ≤ rk(G)
if h(αJ) < ∞ for all rank k subgroups J of G and k is minimal with this
property. The entropy rank of α is denoted entrk(α).

Example 6.1 describes some entropy rank one actions (see also [7]). The
definition of entropy rank applies only to actions for which, given any J ≤ G
with rk(J) = rk(G), we have h(αJM ) <∞. In some circumstances, this con-
dition can be difficult to resolve; for example, see [7, Sec. 4] for a connection
with Lehmer’s problem.

The next result shows how entropy rank is closely related to algebraic
dependence. In [7] and [8], the same idea is illustrated using Krull dimension.
However, this perspective does not extend directly to our setting; the obvious
extension of [8, Prop. 7.3] is violated by Example 6.1, with P as the set of
all rational primes.

Let G be a countable torsion-free abelian group and a ⊂ ZG an ideal.
A prime p ⊂ ZG is a minimal prime of a if, given any prime q with a ⊂ q ⊂ p,
we have q = p. The set of all such p is denoted Min(a). Let p ⊂ ZG be a
prime ideal and set

τ(p) =

{
1 + tr.deg(K(p)|Q) if char(K(p)) = 0,
tr.deg(K(p)|Fp) if char(K(p)) = p > 0.

Theorem 6.9. Let G be a countable torsion-free abelian group and αM
an algebraic G-action. Set

s = sup{τ(p) : p ∈ Min(ann(x)), x ∈M}.
If s < rk(G) then the entropy rank of αM is defined. Moreover , whenever it
is defined , entrk(αM ) ∈ {s, s+ 1}.

Proof. First, we show that if s<rk(G), then all subactions of rank at least
s + 1 have finite entropy. Let J ≤ G have rk(J) ≥ s + 1 and for any ideal
b ⊂ ZG, let b′ = b ∩ ZJ . Our aim is to show that h(αJM ) = 0. Note that

h(αJZG/ann(x)) = 0 for all x ∈ X ⇒ h(αJM ) = 0.

Let x ∈ X and a = ann(x). Then

h(αJZJ/a′) = 0 ⇒ h(αJZG/a) = 0.

Therefore, it suffices to calculate h(αJZJ/a′). Let I ≤ J be a free subgroup
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such that rk(I) = rk(J), and for any ideal b ⊂ ZG, set b′′ = b ∩ ZI.
Theorems 1.2 and 5.3 show that

(26) h(αJZJ/a′) ≤ h(αIZI/a′′),

which reduces the problem to showing h(αIZI/a′′) = 0.

If q ∈ Ass1
ZI(ZI/a′′), then

√
a′′ ⊂ q and there is a surjective ZI-module

homomorphism ZI/
√

a′′ → ZI/q. So, if h(αIZI/
√

a′′
) = 0, then h(αIZI/q) = 0

for all q ∈ Ass1(ZI/a′′). Therefore,

(27) h(αIZI/
√

a′′
) = 0 ⇒ h(αIZI/a′′) = 0.

Thus, in view of (26) and (27), it remains to show that h(αIZI/
√

a′′
) = 0.

Write Min(ZG/a) = {p1, p2, . . . }. Since
√

a = p1 ∩ p2 ∩ · · · , we have

(28)
√

a′′ = (
√

a)′′ = p′′1 ∩ p′′2 ∩ · · · .

By (28), it follows that the ZI-module homomorphism from ZI to N =
ZI/p′′1 ⊕ ZI/p′′2 ⊕ · · · given by f 7→ (f + p′′1, f + p′′2, . . . ) has kernel

√
a′′, so

h(αIZI/
√

a′′
) ≤ h(αIN ).

Hence, the required result will follow by showing h(αIZI/p′′) = 0 for all p =
p1, p2, . . . . To see this, note that there is a natural embedding of domains
ZI/p′′ → ZG/p, so τ(p′′) ≤ τ(p) ≤ s. Since I ∼= Zrk(J), if p′′ were principal, it
would follow that τ(p′′) = rk(J) ≥ s+ 1, which is a contradiction. Hence, p′′

is non-principal and h(αIZI/p′′) = 0.
Thus, if s < rk(G) then the entropy rank of αM is defined, and whenever

it is defined, entrk(αM ) ≤ s+ 1.
To complete the proof, it is necessary to show that, assuming it is de-

fined, entrk(αM ) ≥ s. Let x ∈ M , a = ann(x) and p ∈ Min(a). If τ(p) is
infinite, it is straightforward to find a subaction of αM with infinite rank
and infinite entropy. Hence, assume τ(p) is finite and let j be the transcen-
dence degree of K(p) over its prime subfield F. So, there exist g1, . . . , gj ∈ G
such that their images in ZG/p are algebraically independent over F. Let
I = 〈g1, . . . , gτ(p)−1〉, J = 〈I, gj〉 and note that rk(I) = τ(p)− 1.

For any ideal b ⊂ ZG, let b′ = b ∩ ZJ . There is an injective ZI-module
homomorphism ZJ/a′ → M , and a surjective ZI-module homomorphism
ZJ/a′ → ZJ/p′, so

(29) h(αIZJ/p′) ≤ h(αIZJ/a′) ≤ h(αIM ).

Due to the choice of J and the natural embedding K(p′) → K(p), we have
p′ = (char(F)). So, h(αIZJ/p′) =∞. Furthermore, by (29), h(αIM ) =∞. Since
x and p were arbitrary, we conclude that entrk(αM ) ≥ s.
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Entropy rank may or may not be defined for zero entropy actions. For
an example of a zero entropy action for which entropy rank is not defined,
consider the following action of G = Z∞. Let p ⊂ ZG be any finitely gen-
erated non-principal prime ideal with p ∩ Z = 0. Then h(αZG/p) = 0, but
there exists J ≤ G such that rk(J) = rk(G) and p ∩ ZJ = 0. So,

h(αJZJ/p∩ZJ) =∞ ⇒ h(αJZG/p) =∞.

When G has finite rank, the following proposition gives a rich supply of
zero entropy actions for which entropy rank is defined. It is not clear if the
proposition identifies all zero entropy actions (see Section 7). For an ideal
a ⊂ ZG, let Min1(a) be the subset of Min(a) consisting of height one primes
(that is, the primes p for which (ZG)p has Krull dimension one).

Proposition 6.10. Let G be a countable torsion-free abelian group and
αM an algebraic G-action. Suppose that for every non-zero x ∈M and every
p ∈ Min1(ann(x)), there exists a non-zero g ∈ G such that g − 1 ∈ p. Then
h(αJM ) = 0 for every J ≤ G such that G/J is a torsion group.

Proof. As in the proof of Theorem 6.9, this may be seen by considering
only free J . Let x ∈ M , a = ann(x) and consider ZG/a as a ZJ-algebra.
Since ZG is integral over ZJ , it follows from [10, Prop. 9.2] that

Ass1
ZJ(ZG/a) = {p ∩ ZJ : p ∈ Min1(a)}.

Hence, if Min1(a) = ∅, then h(αJZG/a) = 0. If Min1(a) 6= ∅, a similar
argument to that used in the proof of Theorem 1.3 shows that for each
p ∈ Ass1

ZJ(ZG/a), there exists a non-zero g′ ∈ G such that g′ − 1 ∈ p. So,
by [22, Th. 19.5], m(p) = 0 and again h(αJZG/a) = 0. Thus, h(αJM ) = 0.

Example 6.11. To see that the range {s, s+ 1} cannot be improved in
Theorem 6.9, consider the following two actions of G = Z×Q. Let Q be an
algebraic closure of Q. Define group homomorphisms φ′1, φ

′
2 : G→ Q× by

φ′1(a, b/n) = 2a and φ′2(a, b/n) = 2arbn,

where rn is the positive real nth root of 3. Then φ′1, φ
′
2 extend in an obvious

way to ring homomorphisms φ1, φ2 : ZG→ Q. Denote their kernels by p1, p2

respectively. Note that
τ(p1) = 1 and entrk(αZG/p1

) = 1,

because XZG/p1
is a solenoid. However,
τ(p2) = 1 and entrk(αZG/p2

) = 2.

To verify the final statement, first note that by Proposition 6.10, all rank 2
subactions have zero entropy. On the other hand, Lemma 6.3 shows αZG/p2

is mixing, and since h(α(1,0)
ZG/p2

) > 0, it follows that h(α(1,0)
ZG/p2

) = ∞, by
Theorem 1.3.
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7. Concluding remarks and problems. 1. For a Z∞-action αM aris-
ing from a cyclic module M , Theorem 1.1 shows that h(αM ) is also the
entropy of some algebraic Zd-action, d <∞. Is a similar statement true for
all algebraic Z∞-actions?

2. It is expected that Yuzvinskĭı’s formula (12) holds for all countable
residually finite (not necessarily abelian) groups. If (12) holds for all count-
able torsion-free abelian groups G, not only is Conjecture 5.4 true, but to-
gether with (12) and (3), this gives a method for calculating the entropy of
any algebraic G-action. Ward and Zhang’s [24] extension of the Abramov–
Rokhlin formula provides some hope that (12) might hold in the generality
required, although it is interesting to note that Elek [11] has found situations
where (12) fails in the non-amenable setting.

3. Is it possible that the sequence on the right hand side of (15) converges
to zero without being eventually zero? Since each term in the sequence can
also be expressed as a Mahler measure, an affirmative answer would require
a solution to Lehmer’s problem.

4. Let M be a countable ZG-module. In light of the situation for Zd-
actions, d <∞, is the following statement true: h(αM ) = 0 if and only if for
every non-zero x ∈ M and every p ∈ Min1(ann(x)), there exists a non-zero
g ∈ G such that g − 1 ∈ p? Note that the “if” statement is dealt with by
Proposition 6.10, and when G = Z∞ the “only if” statement follows from
Theorem 1.2.

5. If the above statement is true, then Proposition 6.10 shows that for
algebraic actions of finite rank groups, the property of zero entropy is suf-
ficient for entropy rank to be defined (this is obvious when G is finitely
generated).

6. A complete algebraic characterization of the property of zero entropy
holds potential for an explicit realization of the Pinsker algebra, as in [16,
Th. 6.5].

Appendix. The following proof of Proposition 5.1 uses ideas from
Schmidt’s proof [22, Sec. 14] for Zd-actions, d < ∞, as a basis. However,
there are some developments necessary for the infinite rank case that are
not necessarily obvious.

Set Z = X/Y and just as in [22, Sec. 14] take a Borel cross-section
s : Z → X, so that θ · s is the identity on Z, where θ : X → Z is the
quotient map. For each g ∈ G, define τ g : Z → Y by

τ g(z) = αgX(s(z))− s(αgZ(z)).

For every closed αY -invariant subgroup U of Y , define a measure preserving
G-action T(U) on (Z × Y/U, µZ × µY/U ) by

T g(U)(z, y + U) = (αgZ(z), τ g(z) + αgY/U (y + U)).
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Define ψ(U) : X/U → Z × Y/U by

ψ(U)(x+ U) = (θ(x) + U, (x+ U)− s(θ(x))).

Then ψU · αgX/U = T g(U)ψ(U) for all g ∈ G, and h(TG
′

(U)) = h(αG
′

X/U ) for any
non-trivial G′ ≤ G.

For any finite measurable partition ξ of Y/U and w ∈ Y/U , let w + η =
{w + B : B ∈ η}. For any finite set F ⊂ G and z ∈ Z, let ξF (z) =∨
g∈F τ

g(z) + αgY/U (ξ).
First assume Y can be described as the dual of a cyclic module ZG/a.

For a non-trivial case, suppose h(αY ) < ∞, so a 6= 0. Proceeding as in [22,
Sec. 14], with the aid of [24], we find that (12) holds if Y is zero-dimensional,
and more generally, for any non-trivial G′ ≤ G, we have

h(αG
′

Z × αG
′

Y/U ) ≤ h(αG
′

Z ) + sup
n≥1

lim
i→∞

1
|Fi|

�

Z

HY/U (ξFi
n |ξFi

n (z)) dµZ(z)(30)

+ sup
n≥1

lim
i→∞

1
|Fi|

�

Z

HY/U (ξFi
n (z)) dµZ(z)

and

h(TG
′

(U)) ≤ h(αG
′

Z ) + sup
n≥1

lim
i→∞

1
|Fi|

�

Z

HY/U (ξFi
n (z)|ξFi

n ) dµZ(z)(31)

+ sup
n≥1

lim
i→∞

1
|Fi|

�

Z

HY/U (ξFi
n ) dµZ(z),

where HY/U is the entropy function with respect to µY/U , (Fi) is a Følner
sequence in G′ and (ξn) is a sequence of finite measurable partitions of Y/U
satisfying σ(

∨
n≥1

∨
g∈G′ γ

gξn) = B(Y/U).
Since a 6= 0, we may write G = J ⊕K, where J ∼= Zd, d <∞, K ∼= Z∞

and a∩ZJ 6= 0. Set R = ZJ/a∩ZJ and note that there is a ring isomorphism
between ZG/a and RK/b, where b ⊂ RK is an ideal with b ∩ R = 0. This
means Y identifies with a closed subgroup ofWK , whereW = R̂. Let β = αJR
and define a G-action γ on WK by

γ(b,r)(w)q = βbwq+r,

where w = (wq) ∈ WK , (b, r) ∈ J × K. Under the same identification,
αY becomes the appropriate restriction of the G-action γ.

Let k ≥ 1. Since h(β) <∞, the proof of [22, Th. 14.1] shows that there
exists a subgroup Ik ≤ J of index kd, a closed zero-dimensional βIk -invariant
subgroup Vk of W and a sequence (ηk,n) of finite measurable partitions of
Wk = W/Vk that has the following properties:

σ
( ∨
n≥1

∨
b∈Ik

βbηk,n

)
= B(Wk),
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and for each n ≥ 1, w ∈Wk and A ∈ ηn,k, the number of non-empty sets in
{A ∩B : B ∈ w + ηn,k} does not exceed Ck = Cdk

d−1
, where C is a positive

integer constant independent of k and n.
Let Yk be the image of Y in WK

k . So Yk ∼= Y/Uk, where Uk is the
zero-dimensional group Y ∩ V K

k . Define φk : WK
k → Wk by φk((wq)) = w0.

Let ξk,n = Yk ∩ φ−1
k ηk,n and Gk = Ik ⊕K. Then

σ
( ∨
n≥1

∨
g∈Gk

γgξk,n

)
= B(Yk).

Furthermore, for each n ≥ 1, w ∈ Yk and A ∈ ξk,n, the number of non-empty
sets in {A ∩ B : B ∈ w + ξn,k} does not exceed Ck. Just as in [22, Sec. 14],
it follows from (30) and (31) that

h(αGk
Z × α

Gk
Yk

)− logCk ≤ h(T(Uk)) = h(αGk

X/Uk
) ≤ h(αGk

Z × α
Gk
Yk

) + logCk.

Since (12) holds when Y is zero-dimensional, adding h(αGk
Uk

) to both sides
and applying (10) gives

h(αZ) + h(αY )− logCk
kd

≤ h(αX) ≤ h(αZ) + h(αY ) +
logCk
kd

.

Since this holds for all k ≥ 1, (12) follows when Y is the dual of a cyclic
module.

For more general Y , consider the dual situation. Let M = X̂ be the dual
ZG-module and let L ⊂M be any submodule. Then there exists a chain of
ZG-modules

L = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂M
such that

⋃
n≥1 Ln = M and Ln/Ln−1 is isomorphic to a cyclic module for

all n ≥ 1. Hence, by the version of (12) just established and by induction,
h(αLn) = h(αL) + h(αLn/L) for all n ≥ 1. Applying (3) gives h(αLn) →
h(αM ) and h(αLn/L) → h(αM/L) as n → ∞. Thus, h(αM ) = h(αM/L) +
h(αL), which is precisely the dual statement of (12).
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