The consistency of $\mathfrak{b}=\kappa$ and $\mathfrak{s}=\kappa^{+}$

by

Vera Fischer (Wien) and Juris Steprāns (Toronto)

Abstract

Using finite support iteration of ccc partial orders we provide a model of $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$for κ an arbitrary regular, uncountable cardinal.

1. Introduction. S. Shelah obtains the consistency of $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\omega_{2}$ using countable support iteration of a proper forcing notion which adds a real not split by the ground model reals and which satisfies the almost ${ }^{\omega} \omega$-bounding property (see [9]). This paper will show that it is possible to find ccc suborders of Shelah's original order which behave very similarly to the larger order. Being ccc, they can be iterated with finite support. Under the assumption that the covering number of the meagre ideal is κ it will be shown that for any unbounded family $\mathcal{H} \subseteq \omega^{\omega} \omega$ of size κ, such that every subfamily of size smaller than κ is dominated by an element of \mathcal{H}, there is a ccc forcing notion which preserves \mathcal{H} unbounded and adds a real not split by the ground model reals. Thus under a suitable finite support iteration of length κ^{+}of ccc forcing notions, the consistency of $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$for arbitrary regular κ will be established (Section 6). Using a different model Joerg Brendle obtains the consistency of $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\kappa$ for arbitrary regular κ (see [5, Theorem 12.16] and [4]).
2. Preliminaries. Let f and g be functions in ${ }^{\omega} \omega$. The function f is dominated by the function g if there is $n \in \omega$ such that $f \leq_{n} g$, i.e. $(\forall i \geq n)(f(i) \leq g(i))$. Then $<^{*}=\bigcup_{n \in \omega} \leq_{n}$ is called the bounding relation on ${ }^{\omega} \omega$. A family of functions \mathcal{F} in ${ }^{\omega} \omega$ is dominated by the function g, denoted $\mathcal{F}<^{*} g$, if $f<^{*} g$ for every $f \in \mathcal{F}$. Also, \mathcal{F} is unbounded (equiv. not dominated) if and only if there is no function g which dominates it. Then

[^0]the bounding number \mathfrak{b} is defined as the minimal size of an unbounded family. That is, $\mathfrak{b}=\min \left\{|\mathcal{B}|: \mathcal{B} \subseteq{ }^{\omega} \omega\right.$ and \mathcal{B} is unbounded $\}$. A family S of infinite subsets of ω is splitting if for every $A \in[\omega]^{\omega}$ there is $B \in S$ such that $A \cap B$ and $A \cap B^{c}$ are infinite. Then the splitting number \mathfrak{s} is defined as the minimal size of a splitting family. That is, $\mathfrak{s}=\min \left\{|S|: S \subseteq[\omega]^{\omega}\right.$ and S is splitting $\}$. A family $\mathcal{H} \subseteq{ }^{\omega} \omega$ is $<^{*}$-directed if every subfamily of size less than $|\mathcal{H}|$ is dominated by an element of \mathcal{H}.
3. Centred families of pure conditions. The notion of logarithmic measure is due to S . Shelah. In the presentation of logarithmic measures and their basic properties (Definitions 3.1, 3.4, 3.8, Lemmas 3.3, 3.5, 3.7) we follow [1].

Definition 3.1. Let $s \subseteq \omega$ and let $h:[s]^{<\omega} \rightarrow \omega$ where $[s]^{<\omega}$ is the family of finite subsets of s. Then h is a logarithmic measure if for all $A \in$ $[s]^{<\omega}$ and all A_{0}, A_{1} such that $A=A_{0} \cup A_{1}, h\left(A_{i}\right) \geq h(A)-1$ for $i=0$ or $i=1$ unless $h(A)=0$. Whenever s is a finite set and h a logarithmic measure on s, the pair $x=(s, h)$ is called a finite logarithmic measure. The value $h(s)=\|x\|$ is called the level of x; the underlying set of integers s is denoted $\operatorname{int}(x)$.

Definition 3.2. Whenever h is a finite logarithmic measure on x and $e \subseteq x$ is such that $h(e)>0$, we will say that e is h-positive.

LEmma 3.3. If h is a logarithmic measure and $h\left(A_{0} \cup \cdots \cup A_{n-1}\right) \geq l+1$ then $h\left(A_{j}\right) \geq l-j$ for some $j, 0 \leq j \leq n-1$.

Definition 3.4. Let $P \subseteq[\omega]^{<\omega}$ be an upwards closed family. Then P induces a logarithmic measure h on $[\omega]^{<\omega}$ defined inductively on $|s|$ for $s \in[\omega]^{<\omega}$ as follows:
(1) $h(e) \geq 0$ for every $e \in[\omega]^{<\omega}$;
(2) $h(e)>0$ iff $e \in P$;
(3) for $l \geq 1, h(e) \geq l+1$ iff $|e|>1$ and whenever $e_{0}, e_{1} \subseteq e$ are such that $e=e_{0} \cup e_{1}$, then $h\left(e_{0}\right) \geq l$ or $h\left(e_{1}\right) \geq l$.

Then $h(e)=l$ if l is maximal for which $h(e) \geq l$. The elements of P are called positive sets and h is said to be induced by P.

Lemma 3.5. If h is a logarithmic measure induced by positive sets and $h(e) \geq l$, then $h(a) \geq l$ for every a such that $e \subseteq a$.

Example 1 (Shelah, [10]). Let $P \subseteq[\omega]^{<\omega}$ be the family of sets containing at least two points and h the logarithmic measure induced by P. Then $h(x)=\min \left\{i:|x| \leq 2^{i}\right\}$ for all $x \in P$. This measure is called the standard logarithmic measure.

REmark 3.6. From now on we assume that all logarithmic measures have the additional property that singletons are not positive sets.

Lemma 3.7. Let $P \subseteq[\omega]^{<\omega}$ be an upwards closed family and let h be the logarithmic measure induced by P. If for every $n \in \omega$ and every partition of ω into n sets $\omega=A_{0} \cup \cdots \cup A_{n-1}$ there is $j \in n$ such that A_{j} contains a positive set, then for every $k \in \omega$, every $n \in \omega$ and every partition $\omega=A_{0} \cup \cdots \cup A_{n-1}$ there is $j \in n$ such that A_{j} contains a set of h-measure greater than or equal to k.

Definition 3.8. Let Q be the set of all pairs (u, T) where $u \in[\omega]^{<\omega}$ and $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle$ is a sequence of finite logarithmic measures such that $\max u<\min s_{0}$, max $s_{i}<\min s_{i+1}$ for all $i \in \omega$ and $\left\langle h_{i}\left(s_{i}\right): i \in \omega\right\rangle$ is unbounded. If $u=\emptyset$ we say that (\emptyset, T) is a pure condition and denote it by T. The underlying set $\bigcup\left\{s_{i}: i \in \omega\right\}$ of integers is denoted $\operatorname{int}(T)$. We say that $\left(u_{1}, T_{1}\right)$ is extended by $\left(u_{2}, T_{2}\right)$, where $T_{l}=\left\langle\left(s_{i}^{l}, h_{i}^{l}\right): i \in \omega\right\rangle$ for $l=1,2$, and write $\left(u_{2}, T_{2}\right) \leq\left(u_{1}, T_{1}\right)$, if the following conditions hold:
(1) u_{2} is an end-extension of u_{1} and $u_{2} \backslash u_{1} \subseteq \operatorname{int}\left(T_{1}\right)$;
(2) $\operatorname{int}\left(T_{2}\right) \subseteq \operatorname{int}\left(T_{1}\right)$ and there is an infinite sequence $\left\langle B_{i}: i \in \omega\right\rangle$ of finite subsets of ω such that $\max u_{2}<\min s_{j}^{1}$ for $j=\min B_{0}$, $\max \left(B_{i}\right)<\min \left(B_{i+1}\right)$ and $s_{i}^{2} \subseteq \bigcup\left\{s_{j}^{1}: j \in B_{i}\right\} ;$
(3) for every subset e of s_{i}^{2} such that $h_{i}^{2}(e)>0$ there is $j \in B_{i}$ such that $h_{j}^{1}\left(e \cap s_{j}^{1}\right)>0$.
In the case of $u_{1}=u_{2},\left(u_{2}, T_{2}\right)$ is called a pure extension of $\left(u_{1}, T_{1}\right)$.
Whenever $T=\left\langle t_{i}: i \in \omega\right\rangle$ is a pure condition and $k \in \omega$, let $i_{T}(k)=$ $\min \left\{i: k<\operatorname{minint}\left(t_{i}\right)\right\}$ and $T \backslash k=T_{i_{T}(k)}=\left\langle t_{i}: i \geq i_{T}(k)\right\rangle$. For $u \in[\omega]^{<\omega}$ let $(u, T)=(u, T \backslash u)=\left(u, T_{i_{T}(\max u)}\right)$. Note that if $R \leq T$ and $k \in \operatorname{int}(R)$, then $R \backslash k \leq T \backslash k$.

Definition 3.9. If \mathcal{F} is a family of pure conditions, then $Q(\mathcal{F})$ is the suborder of Q consisting of all $(u, T) \in Q$ such that $(\exists R \in \mathcal{F})(R \leq T)$.

Observe that if C is a centred family of pure conditions, then any two conditions in $Q(C)$ with equal stems have a common extension in $Q(C)$ and so $Q(C)$ is σ-centred. From now on by a centred family we mean a centred family of pure conditions. We also assume that all centred families are closed with respect to final segments, that is, if C is a centred family and $T \in C$ then $T \backslash v \in C$ for every $v \in[\omega]^{<\omega}$.

Lemma 3.10. Any two conditions of $Q(C)$ are compatible as conditions in $Q(C)$ if and only if they are compatible in Q.

Lemma 3.11. Let $T=\left\langle t_{i}: i \in \omega\right\rangle$, where $t_{i}=\left(s_{i}, h_{i}\right)$, be a pure condition and $\omega=A_{0} \cup \cdots \cup A_{n-1}$ a finite partition. Then there is $j \in n$ such that $\left\langle h_{i}\left(s_{i} \cap A_{j}\right): i \in \omega\right\rangle$ is unbounded.

Definition 3.12. Whenever $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle$ is a pure condition and $A \subseteq \omega$, let $T \upharpoonright A=\left\langle\left(s_{i} \cap A, h_{i} \upharpoonright \mathcal{P}\left(s_{i} \cap A\right)\right): i \in \omega\right\rangle$.

If $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle$ is a pure condition, $A \subseteq \omega$ and $\left\langle h_{i}\left(s_{i} \cap A\right): i \in \omega\right\rangle$ is bounded, then T has no pure extension R with $\operatorname{int}(R) \subseteq A$. A pure condition T compatible with every element of a family \mathcal{F} of pure conditions is said to be compatible with \mathcal{F}, denoted $T \not \not \mathcal{F}$. If C^{\prime} is a centred family such that $C \subseteq Q\left(C^{\prime}\right)$ then C^{\prime} is said to extend C.

Lemma 3.13. Let C be a centred family, T a pure condition compatible with C, and $\omega=A_{0} \cup \cdots \cup A_{n-1}$ a finite partition. Then there is $j \in n$ such that $T \upharpoonright A_{j}$ is a pure condition compatible with C.

Proof. By Lemma 3.11, $I=\left\{j \in n: T \upharpoonright A_{j}\right.$ is a pure condition $\} \neq \emptyset$. Suppose that for every $j \in I$ there is $T_{j} \in C_{j}$ such that $T \upharpoonright A_{j}$ and T_{j} are incompatible. However, I is finite, C is centred and so there exists $X \in C$ such that $(\forall j \in I)\left(X \leq T_{j}\right)$. By hypothesis X and T have a common extension $R \in Q$. By Lemma 3.11 again, there exists $i \in n$ such that $R \upharpoonright A_{i}$ is a pure condition. However, $R \upharpoonright A_{i} \leq T \upharpoonright A_{i}$ and so $i \in I$. Also, $R \upharpoonright A_{i} \leq R \leq$ $X \leq T_{i}$ and so T_{i} and $T \upharpoonright A_{i}$ are compatible, which is a contradiction.

Definition 3.14. Let $Q_{\text {fin }}$ be the partial order of all sequences $\bar{r}=$ $\left\langle r_{0}, \ldots, r_{n}\right\rangle, n \in \omega$, of finite logarithmic measures $r_{i}=\left(s_{i}, h_{i}\right)$ such that for all $i \in n, \max \left(s_{i}\right)<\min \left(s_{i+1}\right)$ and $h_{i}\left(s_{i}\right)<h_{i+1}\left(s_{i+1}\right)$ with extension relation being end-extension. The level of the sequence $\bar{r}=\left\langle r_{0}, \ldots, r_{n}\right\rangle$ is the level of r_{n}, denoted $\|\bar{r}\|$.

Definition 3.15. The sequence $\bar{r} \in Q_{\text {fin }}$ extends the pure condition T if there is $R \leq T$ such that $\bar{r} \subseteq R$. The finite logarithmic measure r extends T if $\bar{r}=\langle r\rangle$ extends T.

Definition 3.16. Let $\tau=\left\langle T_{n}: n \in \omega\right\rangle$ be a sequence of pure conditions such that $(\forall n)\left(T_{n+1} \leq T_{n}\right)$. Then \mathbb{P}_{τ} is the suborder of $Q_{\text {fin }}$ of all \bar{r} such that $(\forall i \in|\bar{r}|)\left(r_{i} \leq T_{j_{i}}\right)$ where $j_{0}=0$ and for $i \geq 1, j_{i}=\max \operatorname{int}\left(r_{i-1}\right)$.

Lemma 3.17. Let X be a pure condition compatible with τ and $n \in \omega$. Then $D_{\tau}(X, n)=\left\{\bar{r} \in \mathbb{P}_{\tau}:\left(\exists r_{j} \in \bar{r}\right)\left(r_{j} \leq X\right.\right.$ and $\left.\left.\left\|r_{j}\right\| \geq n\right)\right\}$ is dense.

Proof. Let $\bar{r} \in \mathbb{P}_{\tau}$ and $j=\max \operatorname{int}(\bar{r})$. Since $T_{j} \backslash \operatorname{int}(\bar{r})$ and X are compatible, there is a finite logarithmic measure r such that $\|r\|>\max \{\|\bar{r}\|, n\}$, which is their common extension. Then $\bar{r}^{\wedge}\langle r\rangle$ is an extension of \bar{r} which belongs to $D_{\tau}(X, n)$.

Corollary 3.18. Let C be a centred family such that $(\forall X \in C)(X \not \perp \tau)$ and let G be a \mathbb{P}_{τ}-generic filter. Then $R=\bigcup G=\left\langle r_{i}: i \in \omega\right\rangle$ is a pure condition of finite logarithmic measures of strictly increasing levels. In $V[G]$ there is a centred family C^{\prime} such that $\left|C^{\prime}\right|=|C|$ and $C \cup \tau \subseteq Q\left(C^{\prime}\right)$.

Proof. For every $X \in C$ and $n \in \omega$ the set $D_{\tau}(X, n)$ is dense in \mathbb{P}_{τ} and so $G \cap D_{\tau}(X, n) \neq \emptyset$. Then $I_{X}=\left\langle i: r_{i} \leq X\right\rangle$ is infinite and so $R \wedge X:=\left\langle r_{i}: i \in I_{X}\right\rangle$ is a pure condition which is a common extension of R and X. Furthermore, if $X \leq Y$ then $I_{X} \subseteq I_{Y}$, which implies $R \wedge X \leq R \wedge Y$ and so the family $\{R \wedge X\}_{X \in C}$ is centred.
4. Preprocessed conditions. We use the fact that all reals have simple names of the form $\dot{f}=\bigcup\left\{\left\langle\left\langle i, j_{p}^{i}\right\rangle, p\right\rangle: p \in \mathcal{A}_{i}, i \in \omega, j_{p}^{i} \in \omega\right\}$, where for every $i \in \omega, \mathcal{A}_{i}=\mathcal{A}_{i}(\dot{f})$ is a maximal antichain of conditions deciding $\dot{f}(i)$.

Definition 4.1. Let C be a centred family and let \dot{f} be a $Q(C)$-name for a real. Then \dot{f} is a good name if for every centred family C^{\prime} extending C, \dot{f} is a $Q\left(C^{\prime}\right)$-name for a real.

REMARK 4.2. If \dot{f} is a $Q(C)$-name for a real and there is a centred family C^{\prime} extending C such that \dot{f} is not a $Q\left(C^{\prime}\right)$-name for a real, then there is a centred family $C^{\prime \prime}$ extending C which has the same cardinality as C and is such that \dot{f} is not a $Q\left(C^{\prime \prime}\right)$-name for a real.

DEFINITION 4.3. Let C be a centred family, \dot{f} a good $Q(C)$-name for a real, and $i, k \in \omega$. A pure condition $T \in Q(C)$ such that $k<\min \operatorname{int}(T)$ is preprocessed for $\dot{f}(i), k, C$ (note that Abraham [1] uses the same terminology) if for every $v \subseteq k$ the following holds. If there is a centred family C^{\prime} extending C such that $\left|C^{\prime}\right|=|C|$, a pure condition $R \in Q\left(C^{\prime}\right)$ extending T and a condition $q \in \mathcal{A}_{i}(\dot{f})$ such that $(v, R) \leq q$, then there is $p \in \mathcal{A}_{i}(\dot{f})$ such that $(v, T) \leq p$.

REMARK 4.4. Let C be a centred family, \dot{f} a good $Q(C)$-name for a real, $i, k \in \omega$, and $T \in Q(C)$ a pure condition preprocessed for $\dot{f}(i), k, C$. Let C^{\prime} be a centred family extending C with $\left|C^{\prime}\right|=|C|$, and $T^{\prime} \in Q\left(C^{\prime}\right)$ a pure extension of T. Then T^{\prime} is preprocessed for $\dot{f}(i), k, C^{\prime}$.

Corollary 4.5. Let C be a centred family, \dot{f} a good $Q(C)$-name for a real, $\tau=\left\langle T_{n}: n \in \omega\right\rangle \subseteq Q(C)$ a decreasing sequence of pure conditions such that for all n and $i \leq n, T_{n}$ is preprocessed for $\dot{f}(i), n, C$, and let G be a $\mathbb{P}_{\tau^{-}}$-generic filter and $R=\bigcup G=\left\langle r_{i}: i \in \omega\right\rangle$. Then in $V[G]$ there is a centred family C^{\prime} with $C \cup\{R\} \subseteq Q\left(C^{\prime}\right)$ and $\left|C^{\prime}\right|=|C|$ such that for all $n \in \omega$ and $k \in \operatorname{int}\left(R_{n}\right), R_{n} \backslash k$ is preprocessed for $\dot{f}(n), k, C^{\prime}$, where $R_{n}=R \backslash \operatorname{int}\left(r_{n-1}\right)$.

Proof. Repeat the proof of Corollary 3.18 to obtain the family C^{\prime}. Let $n \in \omega, k \in \operatorname{int}\left(R_{n}\right)$ and $i_{R_{n}}(k)=m$. Then $k \leq j_{m}=\operatorname{maxint}\left(r_{m-1}\right)$. By definition $T_{j_{m}}$ is preprocessed for $\dot{f}(n), j_{m}, C$ (note $n \leq m \leq j_{m}$). Since $R_{n} \backslash k=R_{m} \leq T_{j_{m}}, R_{n} \backslash k$ is preprocessed for $\dot{f}(n), k, C^{\prime}$.
5. Induced logarithmic measures. For completeness we state $\mathrm{MA}_{\text {countable }}(\kappa)$ (see $[7]$).

Definition 5.1. $\mathrm{MA}_{\text {countable }}(\kappa)$ is the statement: for every countable partial order \mathbb{P} and every family \mathcal{D} with $|\mathcal{D}|<\kappa$ of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $(\forall D \in \mathcal{D})(G \cap D \neq \emptyset)$.

Let \mathcal{M} be the ideal of meagre subsets of the real line. Recall that the covering number of $\mathcal{M}, \operatorname{cov}(\mathcal{M})$, is the minimal size of a family of meagre sets which covers the real line. For every regular uncountable cardinal κ, $\operatorname{cov}(\mathcal{M}) \geq \kappa$ if and only if $\mathrm{MA}_{\text {countable }}(\kappa)$ (see [3]).

LEMMA 5.2. Let C be a centred family, $|C|<\operatorname{cov}(\mathcal{M}), \dot{f}$ a $\operatorname{good} Q(C)$ name for a real, $n \in \omega$, and $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle \in Q(C)$ be such that for all $k \in \operatorname{int}(T), T \backslash k$ is preprocessed for $\dot{f}(n), k, C$. Let $v \in[\omega]^{<\omega}$. Then the logarithmic measure induced by the family $\mathcal{P}_{v}(T, \dot{f}(n))$ consisting of all $x \in[\operatorname{int}(T)]^{<\omega}$ such that $(\exists i \in \omega)\left(h_{i}\left(x \cap s_{i}\right)>0\right)$ and $(\exists w \subseteq x)(\exists p \in$ $\left.\mathcal{A}_{n}(\dot{f})\right)((v \cup w, T \backslash x) \leq p)$ takes arbitrarily high values.

Proof. To see that the induced measure takes arbitrarily high values consider an arbitrary finite partition $\omega=A_{0} \cup \cdots \cup A_{M-1}$. By Lemma 3.13 there is $j \in M$ such that $T \upharpoonright A_{j}$ is a pure condition compatible with C. As $|C|<\operatorname{cov}(\mathcal{M})$, by Corollary 3.18 there is a centred family C^{\prime} extending C with $\left|C^{\prime}\right|=|C|$ and a pure extension $R \in Q\left(C^{\prime}\right)$ of $T \upharpoonright A_{j}$. Then \dot{f} is a $Q\left(C^{\prime}\right)$ name for a real and so $\mathcal{A}_{n}(\dot{f})$ is a maximal antichain in $Q\left(C^{\prime}\right)$. Therefore there is a common extension $\left(v \cup w, R^{\prime}\right) \in Q\left(C^{\prime}\right)$ of (v, R) and some $q \in$ $\mathcal{A}_{n}(\dot{f})$. Let \bar{r} be a finite subsequence of R such that $w \subseteq x=\operatorname{int}(\bar{r})$. We can assume that $\|\bar{r}\|>0$. However, $R \leq T$ and so there is $i \in \omega$ such that $h_{i}\left(x \cap s_{i}\right)>0$. Since $R^{\prime} \leq T$ and $T \backslash x$ is preprocessed for $\dot{f}(n), \max x, C$, there is $p \in \mathcal{A}_{n}(\dot{f})$ such that $(v \cup w, T \backslash x) \leq p$.

Corollary 5.3. Let C be a centred family, $|C|<\operatorname{cov}(\mathcal{M})$, \dot{f} a good $Q(C)$-name for a real, $m, n \in \omega$, and let $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle \in Q(C)$ be such that for all $k \in \operatorname{int}(T), T \backslash k$ is preprocessed for $\dot{f}(n), k, C$. Then the logarithmic measure induced by the family $\mathcal{P}_{m}(T, \dot{f}(n))$ of all $x \in[\operatorname{int}(T)]^{<\omega}$ such that $(\exists i \in \omega)\left(h_{i}\left(s_{i} \cap x\right)>0\right)$ and $(\forall v \subseteq m)(\exists w \subseteq x)\left(\exists p \in \mathcal{A}_{n}(\dot{f})\right)$ $((v \cup w, T \backslash x) \leq p)$ takes arbitrarily high values.

Proof. Let v_{0}, \ldots, v_{L-1} enumerate the subsets of m and let $\omega=A_{0} \cup$ $\cdots \cup A_{M-1}$ be a finite partition. By Lemma 3.13 there is $j \in M$ such that $T \upharpoonright A_{j}$ is a pure condition compatible with C. Since $|C|<\operatorname{cov}(\mathcal{M})$, by Corollary 3.18 there is a centred family C^{\prime} extending C with $\left|C^{\prime}\right|=|C|$ and a pure extension $R \in Q\left(C^{\prime}\right)$ of $T \upharpoonright A_{j}$. For every $k \in \operatorname{int}(R), R \backslash k \leq T \backslash k$ and so $R \backslash k$ is preprocessed for $\dot{f}(n), k, C^{\prime}$. Therefore by Lemma 5.2 for every $i \in L$ there is $x_{i} \in \mathcal{P}_{v_{i}}(R, \dot{f}(n))$. It will be shown that $x=\bigcup_{i \in L} x_{i} \in \mathcal{P}_{m}(T, \dot{f}(n))$. Let $v \subseteq m$. Then $v=v_{i}$ for some $i \in L$. Since $x_{i} \in \mathcal{P}_{v_{i}}(R, \dot{f}(n))$, there is $w_{i} \subseteq x_{i}$ and $q_{i} \in \mathcal{A}_{n}(\dot{f})$ such that $\left(v_{i} \cup w_{i}, R \backslash x_{i}\right) \leq q_{i}$, and so $\left(v_{i} \cup\right.$ $\left.w_{i}, R \backslash x\right) \leq q_{i}$. However, $R \leq T, C^{\prime}$ extends $C,\left|C^{\prime}\right|=|C|$ and $T \backslash x$ is
preprocessed for $\dot{f}(n), \max x, C$. Hence for all $i \in L$ there is $p_{i} \in \mathcal{A}_{n}(\dot{f})$ such that $\left(v_{i} \cup w_{i}, T \backslash x\right) \leq p_{i}$.

Until the end of the section let C be a centred family, $|C|<\operatorname{cov}(\mathcal{M}), \dot{f}$ a good $Q(C)$-name for a real, and $T=\left\langle t_{i}: i \in \omega\right\rangle \in Q(C)$ be a pure condition such that for all $n \in \omega$ and $k \in \operatorname{int}\left(T_{n}\right), T \backslash k$ is preprocessed for $\dot{f}(n), k, C$, where $T_{n}=T \backslash \operatorname{int}\left(t_{n-1}\right)$.

Definition 5.4. Let $\mathbb{P}(C, T, \dot{f})$ be the suborder of $Q_{\text {fin }}$ of all sequences $\bar{r}=\left\langle\left(x_{i}, g_{i}\right): i \in l\right\rangle$ extending T, such that for all $i \in l$, all $v \subseteq \max x_{i-1}$ and all $s \subseteq x_{i}$ such that $g_{i}(s)>0,(\exists w \subseteq s)\left(\exists p \in \mathcal{A}_{i}(\dot{f})\right)((v \cup w, T \backslash s) \leq p)$.

Lemma 5.5. Let $X \in Q(C)$ and $n \in \omega$. Then $D_{X, n}(C, T, \dot{f})=\{\bar{r} \in$ $\mathbb{P}(C, T, \dot{f}):\left(\exists r_{j} \in \bar{r}\right)\left(r_{j} \leq X\right.$ and $\left.\left.\left\|r_{j}\right\| \geq n\right)\right\}$ is dense.

Proof. Let $\bar{r} \in \mathbb{P}(C, T, \dot{f}), j=|\bar{r}|, m=\max \operatorname{int}(\bar{r})$. Let $Y \in C$ be a common extension of X and $T \backslash \operatorname{int}(\bar{r})$. For every $k \in \operatorname{int}(Y), Y \backslash k \leq T_{j} \backslash k$ and so $Y \backslash k$ is preprocessed for $\dot{f}(j), k, C$. By Corollary 5.3 the logarithmic measure h induced by $\mathcal{P}_{m}(Y, \dot{f}(j))$ takes arbitrarily high values and so $(\exists x)(h(x)>\max \{\|\bar{r}\|, n\})$. Let $r=(x, h \upharpoonright \mathcal{P}(x)), v \subseteq m$, and let $s \subseteq x$ be such that $h(s)>0$. By definition of h there are $w \subseteq s$ and $q \in \mathcal{A}_{j}(\dot{f})$ such that $(v \cup w, Y \backslash s) \leq q$. But $T_{j} \backslash s$ is preprocessed for $\dot{f}(j), \max s, C$ and so there is $p \in \mathcal{A}_{j}(\dot{f})$ such that $(v \cup w, T \backslash s) \leq p$.

Corollary 5.6. Let G be a filter in $\mathbb{P}(C, T, \dot{f})$ meeting $D_{X, n}(C, T, \dot{f})$ for all $X \in C, n \in \omega$, and let $R=\bigcup G=\left\langle r_{i}: i \in \omega\right\rangle$. Then for all i and $v \subseteq i$ and every $s \subseteq \operatorname{int}\left(r_{i}\right)$ which is r_{i}-positive, $(\exists w \subseteq s)(\exists p \in$ $\left.\mathcal{A}_{i}(\dot{f})\right)((v \cup w, R) \leq p)$. Moreover, in $V[G]$ there is a centred family C^{\prime} such that $C \cup\{R\} \subseteq Q\left(C^{\prime}\right)$ and $\left|C^{\prime}\right|=|C|$.

Proof. Let $i \in \omega, v \subseteq i$ and let $s \subseteq \operatorname{int}\left(r_{i}\right)$ be r_{i}-positive. Then by definition there are $w \subseteq s$ and $p \in \mathcal{A}_{i}(\dot{f})$ such that $(v \cup w, T \backslash s) \leq p$. However, $R \leq T$ and so $(v \cup w, R)=(v \cup w, R \backslash s) \leq p$.

REmARK 5.7. If $X \notin Q(C)$, then the analogous $D_{X, n}(C, T, \dot{f})$ is not necessarily dense. In fact, the notion of a preprocessed condition is not defined for such X. Thus $\mathbb{P}(C, T, \dot{f})$ and \mathbb{P}_{τ} are distinct forcing notions.

6. Mimicking the almost bounding property

TheOrem 6.1. Let κ be a regular uncountable cardinal, $\operatorname{cov}(\mathcal{M})=\kappa$, $\mathcal{H} \subseteq{ }^{\omega} \omega$ an unbounded, $<^{*}$-directed family with $|\mathcal{H}|=\kappa, C$ a centred family with $|C|<\kappa$, and let \dot{f} be a good $Q(C)$-name for a real. Then there are a centred family C^{\prime} extending $C,\left|C^{\prime}\right|=|C|$ and $h \in \mathcal{H}$ such that for every centred family $C^{\prime \prime}$ extending $C^{\prime}, \vdash_{Q\left(C^{\prime \prime}\right)} " \breve{h} \nless^{*} \dot{f} "$.

Proof. Let $T \in Q(C)$. There is a centred family C_{0} extending C with $\left|C_{0}\right|=|C|$ and a sequence $\tau=\left\langle T_{n}: n \in \omega\right\rangle \subseteq Q\left(C_{0}\right)$ such that for all n, $T_{n} \leq T_{n-1}$ where $T_{-1}=T$ and, for all n and $i \leq n, T_{n}$ is preprocessed for $\dot{f}(i), n, C_{0}$. By Corollary 4.5 and as $|C|<\operatorname{cov}(\mathcal{M})$, there is a centred family C_{1} extending C with $\left|C_{1}\right|=|C|$ and a pure condition $T_{1} \in Q\left(C_{1}\right)$ such that if $T_{1}=\left\langle t_{i}^{1}: i \in \omega\right\rangle$ then, for all $n \in \omega$ and $k \in \operatorname{int}\left(T_{1}\right) \backslash \operatorname{int}\left(t_{n-1}^{1}\right)$, $T_{1} \backslash k$ is preprocessed for $\dot{f}(n), k, C_{1}$. Since $\left|C_{1}\right|<\operatorname{cov}(\mathcal{M})$ there is a filter $G \subseteq \mathbb{P}\left(C_{1}, T_{1}, \dot{f}\right)$ meeting $D_{X, n}\left(C_{1}, T_{1}, \dot{f}\right)$ for all $n \in \omega$ and $X \in C_{1}$. Then by Corollary 5.6 the pure condition $T_{2}=\bigcup G=\left\langle r_{i}: i \in \omega\right\rangle$ extends T_{1} and for all $i \in \omega$ and $v \subseteq i$, and each $s \subseteq \operatorname{int}\left(r_{i}\right)$ which is r_{i}-positive, $(\exists w \subseteq s)\left(\exists p \in \mathcal{A}_{i}(\dot{f})\right)\left(\left(v \cup w, T_{2}\right) \leq p\right)$.

For all $i \in \omega$ let $g(i)$ be the maximal k such that there are $v \subseteq i$, $w \subseteq \operatorname{int}\left(r_{i}\right)$ and $p \in \mathcal{A}_{i}(\dot{f})$ such that $p \Vdash \dot{f}(i)=\check{k}$ and $\left(v \cup w, T_{2}\right) \leq p$. We can assume that g is nondecreasing. For all $X \in C_{1}$ let $J_{X}=\left\{i: r_{i} \leq X\right\}$ and let F_{X} be the following step function:

$$
F_{X}(l)=g\left(J_{X}(i+1)\right) \quad \text { iff } l \in\left(J_{X}(i), J_{X}(i+1)\right]
$$

where $J_{X}(m)$ is the m th element of J_{X}. Since \mathcal{H} is unbounded, for all $X \in$ C_{1} there is $h_{X} \in \mathcal{H}$ such that $h_{X} \not \mathbb{Z}^{*} F_{X}$. However, $\left|C_{1}\right|<|\mathcal{H}|$ and so there exists $h \in \mathcal{H}$ such that $\left(\forall X \in C_{1}\right)\left(h_{X} \leq^{*} h\right)$. We can assume that h is nondecreasing. Note that $\left(\forall X \in C_{1}\right)\left(g \leq_{0} F_{X}\right)$ and so $J=\{i \in \omega$: $g(i)<h(i)\}$ is infinite. Furthermore, $\left(\exists^{\infty} i \in J_{X}\right)\left(F_{X}(i)<h(i)\right)$ and since $\left(\forall i \in J_{X}\right)\left(F_{X}(i)=g(i)\right)$, the set $I_{X}=J_{X} \cap J$ is infinite. Let $R=\left\langle r_{i}: i \in J\right\rangle$ and for all $X \in C_{1}$ let $R \wedge X:=\left\langle r_{i}: i \in I_{X}\right\rangle$. Then $C^{\prime}=\{R \wedge X\}_{X \in C_{1}}$ is a centred family such that $C_{1} \cup\{T\} \subseteq Q\left(C^{\prime}\right)$ and $|C|=\left|C^{\prime}\right|$.

Let $C^{\prime \prime}$ be centred, $C^{\prime} \subseteq Q\left(C^{\prime \prime}\right), a \in[\omega]^{<\omega}, k_{0} \in \omega$ and let $\left(b, R^{\prime}\right) \in$ $Q\left(C^{\prime \prime}\right)$ be an extension of (a, R). There is $i \in J$ with $i>k_{0}$ such that $b \subseteq i$ and $s=\operatorname{int}\left(R^{\prime}\right) \cap \operatorname{int}\left(r_{i}\right)$ is r_{i}-positive. Then there are $w \subseteq s$ and $p \in \mathcal{A}_{i}(\dot{f})$ such that $\left(b \cup w, T_{2}\right) \leq p$. However, $R^{\prime} \backslash w \leq T_{2} \backslash w$. Therefore $\left(b \cup w, R^{\prime}\right) \leq\left(b, R^{\prime}\right)$ and $\left(b \cup w, R^{\prime}\right) \leq p$. Let $k \in \omega$ be such that $p \Vdash \dot{f}(i)=\check{k}$. Then $k \leq g(i)$ by definition of g, and $g(i)<h(i)$ since $i \in J$. Thus $\left(b \cup w, R^{\prime}\right) \vdash_{Q\left(C^{\prime \prime}\right)} " \dot{f}(i)=\check{k} \leq \check{g}(i)<\check{h}(i) "$.

Lemma 6.2 (Main Lemma). Let κ be a regular uncountable cardinal, $\operatorname{cov}(\mathcal{M})=\kappa, \mathcal{H} \subseteq{ }^{\omega} \omega$ an unbounded,$<^{*}$-directed family with $|\mathcal{H}|=\kappa$, and $(\forall \lambda<\kappa)\left(2^{\lambda} \leq \kappa\right)$. Then there is a centred family C with $|C|=\kappa$ such that $(\mathcal{H} \text { is unbounded })^{V^{Q(C)}}$ and $Q(C)$ adds a real not split by $V \cap[\omega]^{\omega}$.

Proof. Let $\mathcal{N}=\left\{\dot{f}_{\alpha}\right\}_{\alpha<\kappa}$ enumerate all names for functions in ${ }^{\omega} \omega$ for partial orders $Q\left(C^{\prime}\right)$ where C^{\prime} is a centred family with $\left|C^{\prime}\right|<\kappa$, and let $\mathcal{A}=\left\{A_{\alpha+1}\right\}_{\alpha<\kappa}$ enumerate $[\omega]^{\omega} \cap V$. The centred family C will be obtained by transfinite induction of length κ. Begin with an arbitrary pure condition T and $C_{0}=\left\{T \backslash v: v \in[\omega]^{<\omega}\right\}$. If $\alpha=\beta+1$ and we have defined the centred
family C_{β}, let \dot{g}_{α} be the name with least index in $\mathcal{N} \backslash\left\{\dot{g}_{\gamma+1}\right\}_{\gamma<\beta}$ which is a $Q\left(C_{\beta}\right)$-name for a real. If \dot{g}_{α} is a good $Q\left(C_{\beta}\right)$-name, by Theorem 6.1 there are a centred family C_{α}^{\prime} extending C_{β} with $\left|C_{\alpha}^{\prime}\right|=\left|C_{\beta}\right|$ and $h_{\alpha} \in \mathcal{H}$ such that for every centred family $C^{\prime \prime}$ extending $C_{\alpha}^{\prime}, \vdash_{Q\left(C^{\prime \prime}\right)}$ " $\breve{h}_{\alpha} \not \not^{*} \dot{g}_{\alpha}$ ". If \dot{g}_{α} is not a good $Q\left(C_{\beta}\right)$-name, then by Remark 4.2 there is a centred family C_{α}^{\prime} extending C_{β} with $\left|C_{\alpha}^{\prime}\right|=\left|C_{\beta}\right|$ such that \dot{g}_{α} is not a $Q\left(C_{\alpha}^{\prime}\right)$-name for a real. In either case, let $T^{\prime} \in Q\left(C_{\alpha}^{\prime}\right)$. Then by Lemma 3.13 there is $T_{\alpha} \leq T^{\prime}$ such that $\operatorname{int}\left(T_{\alpha}\right) \subseteq A_{\alpha}$ or $\operatorname{int}\left(T_{\alpha}\right) \subseteq A_{\alpha}^{\mathrm{c}}$ and $T_{\alpha} \not \perp C_{\alpha}^{\prime}$. By Corollary 3.18 applied to the sequence of all final segments of T_{α} and $\left|C_{\alpha}^{\prime}\right|<\operatorname{cov}(\mathcal{M})$ there is a centred family C_{α} such that $C_{\alpha}^{\prime} \cup\left\{T_{\alpha}\right\} \subseteq Q\left(C_{\alpha}\right)$ and $\left|C_{\alpha}\right|=\left|C_{\alpha}^{\prime}\right|$. If α is a limit let $C_{\alpha}=\bigcup_{\beta<\alpha} C_{\beta}$. Then $\left|C_{\alpha}\right|<\kappa$ and $(\forall \beta<\alpha)\left(C_{\beta} \subseteq Q\left(C_{\alpha}\right)\right)$. With this the inductive construction is complete. Let $C=\bigcup_{\alpha<\kappa} C_{\alpha}$. Then C is centred, $|C|=\kappa$ and $(\forall \alpha<\kappa)\left(C_{\alpha} \subseteq Q(C)\right)$.

Let \dot{f} be a $Q(C)$-name for a real and let $\alpha<\kappa$ be minimal such that \dot{f} is a $Q\left(C_{\alpha}\right)$-name. Then \dot{f} is a name in \mathcal{N} and there is $\delta<\kappa($ with $\alpha \leq \delta)$ such that \dot{f} is the name with least index in $\mathcal{N} \backslash\left\{\dot{g}_{\gamma+1}\right\}_{\gamma<\delta}$ which is a $Q\left(C_{\delta}\right)$-name and so $\dot{f}=\dot{g}_{\delta+1}$. Note also that \dot{f} is a good $Q\left(C_{\delta}\right)$-name. Then by the choice of $C_{\delta+1}^{\prime}, \Vdash_{Q(C)}$ " $\breve{h}_{\delta+1} \nless^{*} \dot{f} "$. Let G be a $Q(C)$ generic filter and $\bigcup G=\bigcup\{u:(\exists T)((u, T) \in G)\}$. For every $\alpha \in \kappa$ the set $D_{\alpha+1}=\{(u, T) \in$ $\left.Q(C): T \leq T_{\alpha+1}\right\}$ is dense and so $\bigcup G \subseteq^{*} \operatorname{int}\left(T_{\alpha+1}\right)$, which implies that $\bigcup G$ is almost contained in $A_{\alpha+1}$ or in $A_{\alpha+1}^{\mathrm{c}}$.

The proof of Theorem 6.3 can be found in [8].
THEOREM 6.3. Let $\mathcal{H} \subseteq{ }^{\omega} \omega$ be an unbounded family such that $\left(\forall \mathcal{H}^{\prime} \in[\mathcal{H}] \leq \omega\right)$ $(\exists h \in \mathcal{H})\left(\mathcal{H}^{\prime} \leq^{*} h\right)$ and let $\left\langle\mathbb{P}_{\gamma}: \gamma \leq \alpha\right\rangle$ be a finite support iteration of ccc forcing notions of length α with $\operatorname{cf}(\alpha)=\omega$ such that $(\forall \gamma<\alpha)$ $(\mathcal{H} \text { is unbounded })^{V^{\mathbb{P}} \gamma}$. Then $(\mathcal{H} \text { is unbounded })^{V^{\mathbb{P} \alpha}}$.

The proof of Lemma 6.4 can be found in [2].
LEMMA 6.4. Let κ be a regular uncountable cardinal, and $\mathcal{H} \subseteq{ }^{\omega} \omega$ an unbounded, $<^{*}$-directed family with $|\mathcal{H}|=\kappa$. Then for every partial order \mathbb{P} of size less than $\kappa,(\mathcal{H} \text { is unbounded })^{V^{\mathbb{P}}}$.

Recall that if $\mathcal{A} \subseteq{ }^{\omega} \omega$ is infinite then the Hechler forcing $\mathbb{H}(\mathcal{A})$ (see [7]) consists of all pairs (s, F) where $s \in \bigcup_{n \in \omega}{ }^{n} \omega$ and $F \in[\mathcal{A}]^{<\omega}$, with extension relation $\left(s_{1}, F_{1}\right) \leq\left(s_{2}, F_{2}\right)$ iff $s_{2} \subseteq s_{1}, F_{2} \subseteq F_{1}$ and for all $f \in F_{2}$ and $k \in \operatorname{dom}\left(s_{1}\right) \backslash \operatorname{dom}\left(s_{2}\right)$ we have $s_{1}(k) \geq f(k)$. Note that $\mathbb{H}(\mathcal{A})$ is σ-centred, adds a real dominating \mathcal{A}, and $|\mathbb{H}(\mathcal{A})|=|\mathcal{A}|$.

Theorem 6.5 (GCH). Let κ be a regular uncountable cardinal. Then there is a ccc generic extension in which $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$.

Proof. Obtain a model V of $\mathfrak{b}=\mathfrak{c}=\kappa$ by adding κ Hechler reals (see [6]) and let $\mathcal{H}=V \cap^{\omega} \omega$. Inductively define a finite support itera-
tion $\left\langle\mathbb{P}_{\alpha}: \alpha \leq \kappa^{+}\right\rangle$of ccc forcing notions as follows. Suppose that for all $\beta<\alpha, \mathbb{P}_{\beta}$ has been defined so that in $V^{\mathbb{P}_{\beta}}, \mathcal{H}$ is unbounded, $<^{*}$-directed and $(\forall \lambda<\kappa)\left(2^{\lambda} \leq \kappa\right)$. If α is a limit, let \mathbb{P}_{α} be the finite support iteration of $\left\langle\mathbb{P}_{\beta}: \beta<\alpha\right\rangle$. Then \mathbb{P}_{α} is ccc and by Theorem 6.3 the inductive hypothesis holds in $V^{\mathbb{P}_{\alpha}}$.

If $\alpha=\beta+1$ and \mathbb{P}_{β} has been defined, then let $V_{\beta}=V^{\mathbb{P}_{\beta}}$ and let \mathbb{H}_{1} be the forcing notion for adding κ Cohen reals. Then in $V_{\beta}^{\mathbb{H}_{1}}$ the family \mathcal{H} is unbounded, $<^{*}$-directed, $(\forall \lambda<\kappa)\left(2^{\lambda} \leq \kappa\right)$ and $\operatorname{cov}(\mathcal{M})=\kappa$. Therefore in $V_{\beta}^{\mathbb{H}_{1}}$ the hypothesis of Lemma 6.2 holds and so there is a centred family C such that $Q(C)$ adds a real not split by $V_{\beta}^{\mathbb{H}_{1}} \cap[\omega]^{\omega}$ and preserves \mathcal{H} unbounded. Let \mathbb{H}_{2} be an \mathbb{H}_{1}-name for $Q(C)$ and in $V_{\beta}^{\mathbb{H}_{1} * \mathbb{H}_{2}}$ let $\mathcal{A} \subseteq V_{\beta} \cap^{\omega} \omega$ be an unbounded family of cardinality less than κ. Let \mathbb{H}_{3} be an $\mathbb{H}_{1} * \mathbb{H}_{2}$ name for $\mathbb{H}(\mathcal{A})$. Then in $V_{\beta}^{\left(\mathbb{H}_{1} * \mathbb{H}_{2}\right) * \mathbb{H}_{3}}$ the family \mathcal{A} is dominated and since $|\mathbb{H}(\mathcal{A})|<\kappa, \mathcal{H}$ remains unbounded. Let $\dot{\mathbb{Q}}_{\beta}$ be a \mathbb{P}_{β}-name for $\left(\mathbb{H}_{1} * \mathbb{H}_{2}\right) * \mathbb{H}_{3}$, and let $\mathbb{P}_{\alpha}=\mathbb{P}_{\beta} * \dot{\mathbb{Q}}_{\beta}$.

Let $\mathbb{P}=\mathbb{P}_{\kappa^{+}}$. Let G be a \mathbb{P}-generic filter and let $\mathcal{A} \subseteq[\omega]^{\omega} \cap V[G]$, $|\mathcal{A}|<\kappa^{+}$. Then there exists $\alpha<\kappa^{+}$such that $\mathcal{A} \subseteq V\left[G_{\alpha}\right]$ where $G_{\alpha}=$ $G \cap \mathbb{P}_{\alpha}$. By the inductive construction of \mathbb{P}, in $V\left[G_{\alpha+1}\right]$ there is a real not split by \mathcal{A}. Therefore $V^{\mathbb{P}} \vDash \mathfrak{s}=\kappa^{+}$. By Theorem 6.3 and the construction of \mathbb{P} the family \mathcal{H} is unbounded in $V^{\mathbb{P}}$. Since every family of reals in $V^{\mathbb{P}}$ of size less than κ is obtained at some initial stage of the iteration, a suitable bookkeeping device can guarantee that any such family is bounded and so $V^{\mathbb{P}} \vDash \mathfrak{b}=\kappa$.

References

[1] U. Abraham, Proper forcing, for the Handbook of Set Theory.
[2] T. Bartoszyński and J. Ihoda [H. Judah], On the cofinality of the smallest covering of the real line by meager sets, J. Symbolic Logic 54 (1989), 828-832.
[3] A. Blass, Combinatorial cardinal characteristics of the continuum, for the Handbook of Set Theory.
[4] A. Blass and S. Shelah, Ultrafilters with small generating sets, Israel J. Math. 65 (1989), 259-271.
[5] J. Brendle, How to force it, lecture notes.
[6] S. Hechler, On the existence of certain cofinal subsets of ${ }^{\omega} \omega$, in: T. Jech (ed.), Axiomatic Set Theory, Proc. Sympos. Pure Math. 13, Part II, Amer. Math. Soc., 1974, 155-173.
[7] T. Jech, Set Theory, Springer, 2003.
[8] H. Judah and S. Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), J. Symbolic Logic 55 (1990), 909-927.
[9] S. Shelah, On cardinal invariants of the continuum, in: J. Baumgartner, D. Martin and S. Shelah (eds.), Axiomatic Set Theory, Contemp. Math. 31, Amer. Math. Soc., 1984, 184-207.
[10] S. Shelah, Vive la différence I. Nonisomorphism of ultrapowers of countable models, in: H. Judah, W. Just and H. Woodin (eds.), Set Theory of the Continuum, Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 357-405.

University of Vienna
Kurt Gödel Research Center
for Mathematical Logic
Department of Mathematics
York University

Währinger Straße 25
4700 Keele Street

A-1090 Wien, Austria
E-mail: vfischer@mathstat.yorku.ca

Received 14 January 2008; in revised form 11 June 2008

[^0]: 2000 Mathematics Subject Classification: 03E17, 03E35, 03E50.
 Key words and phrases: bounding number, splitting number, ccc forcing notion, pure condition, logarithmic measure.

 The second author acknowledges with thanks the support of NSERC and the Fields Institute.

