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The consistency of b = κ and s = κ+

by

Vera Fischer (Wien) and Juris Steprāns (Toronto)

Abstract. Using finite support iteration of ccc partial orders we provide a model of
b = κ < s = κ+ for κ an arbitrary regular, uncountable cardinal.

1. Introduction. S. Shelah obtains the consistency of b = ω1 < s = ω2

using countable support iteration of a proper forcing notion which adds
a real not split by the ground model reals and which satisfies the almost
ωω-bounding property (see [9]). This paper will show that it is possible to
find ccc suborders of Shelah’s original order which behave very similarly to
the larger order. Being ccc, they can be iterated with finite support. Under
the assumption that the covering number of the meagre ideal is κ it will be
shown that for any unbounded family H ⊆ ωω of size κ, such that every
subfamily of size smaller than κ is dominated by an element of H, there is
a ccc forcing notion which preserves H unbounded and adds a real not split
by the ground model reals. Thus under a suitable finite support iteration
of length κ+ of ccc forcing notions, the consistency of b = κ < s = κ+ for
arbitrary regular κ will be established (Section 6). Using a different model
Joerg Brendle obtains the consistency of b = ω1 < s = κ for arbitrary
regular κ (see [5, Theorem 12.16] and [4]).

2. Preliminaries. Let f and g be functions in ωω. The function f
is dominated by the function g if there is n ∈ ω such that f ≤n g, i.e.
(∀i ≥ n)(f(i) ≤ g(i)). Then <∗ =

⋃
n∈ω ≤n is called the bounding relation

on ωω. A family of functions F in ωω is dominated by the function g, denoted
F <∗ g, if f <∗ g for every f ∈ F . Also, F is unbounded (equiv. not
dominated) if and only if there is no function g which dominates it. Then
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the bounding number b is defined as the minimal size of an unbounded family.
That is, b = min{|B| : B ⊆ ωω and B is unbounded}. A family S of infinite
subsets of ω is splitting if for every A ∈ [ω]ω there is B ∈ S such that A∩B
and A∩Bc are infinite. Then the splitting number s is defined as the minimal
size of a splitting family. That is, s = min{|S| : S ⊆ [ω]ω and S is splitting}.
A family H ⊆ ωω is <∗-directed if every subfamily of size less than |H| is
dominated by an element of H.

3. Centred families of pure conditions. The notion of logarithmic
measure is due to S. Shelah. In the presentation of logarithmic measures
and their basic properties (Definitions 3.1, 3.4, 3.8, Lemmas 3.3, 3.5, 3.7)
we follow [1].

Definition 3.1. Let s ⊆ ω and let h : [s]<ω → ω where [s]<ω is the
family of finite subsets of s. Then h is a logarithmic measure if for all A ∈
[s]<ω and all A0, A1 such that A = A0 ∪ A1, h(Ai) ≥ h(A) − 1 for i = 0
or i = 1 unless h(A) = 0. Whenever s is a finite set and h a logarithmic
measure on s, the pair x = (s, h) is called a finite logarithmic measure. The
value h(s) = ‖x‖ is called the level of x; the underlying set of integers s is
denoted int(x).

Definition 3.2. Whenever h is a finite logarithmic measure on x and
e ⊆ x is such that h(e) > 0, we will say that e is h-positive.

Lemma 3.3. If h is a logarithmic measure and h(A0∪· · ·∪An−1) ≥ l+1
then h(Aj) ≥ l − j for some j, 0 ≤ j ≤ n− 1.

Definition 3.4. Let P ⊆ [ω]<ω be an upwards closed family. Then
P induces a logarithmic measure h on [ω]<ω defined inductively on |s| for
s ∈ [ω]<ω as follows:

(1) h(e) ≥ 0 for every e ∈ [ω]<ω;
(2) h(e) > 0 iff e ∈ P ;
(3) for l ≥ 1, h(e) ≥ l + 1 iff |e| > 1 and whenever e0, e1 ⊆ e are such

that e = e0 ∪ e1, then h(e0) ≥ l or h(e1) ≥ l.

Then h(e) = l if l is maximal for which h(e) ≥ l. The elements of P are
called positive sets and h is said to be induced by P .

Lemma 3.5. If h is a logarithmic measure induced by positive sets and
h(e) ≥ l, then h(a) ≥ l for every a such that e ⊆ a.

Example 1 (Shelah, [10]). Let P ⊆ [ω]<ω be the family of sets contain-
ing at least two points and h the logarithmic measure induced by P . Then
h(x) = min{i : |x| ≤ 2i} for all x ∈ P . This measure is called the standard
logarithmic measure.
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Remark 3.6. From now on we assume that all logarithmic measures
have the additional property that singletons are not positive sets.

Lemma 3.7. Let P ⊆ [ω]<ω be an upwards closed family and let h be the
logarithmic measure induced by P . If for every n ∈ ω and every partition of ω
into n sets ω = A0∪· · ·∪An−1 there is j ∈ n such that Aj contains a positive
set , then for every k ∈ ω, every n ∈ ω and every partition ω = A0∪· · ·∪An−1

there is j ∈ n such that Aj contains a set of h-measure greater than or equal
to k.

Definition 3.8. Let Q be the set of all pairs (u, T ) where u ∈ [ω]<ω

and T = 〈(si, hi) : i ∈ ω〉 is a sequence of finite logarithmic measures such
that maxu < min s0, max si < min si+1 for all i ∈ ω and 〈hi(si) : i ∈ ω〉 is
unbounded. If u = ∅ we say that (∅, T ) is a pure condition and denote it
by T . The underlying set

⋃
{si : i ∈ ω} of integers is denoted int(T ). We say

that (u1, T1) is extended by (u2, T2), where Tl = 〈(sli, hli) : i ∈ ω〉 for l = 1, 2,
and write (u2, T2) ≤ (u1, T1), if the following conditions hold:

(1) u2 is an end-extension of u1 and u2\u1 ⊆ int(T1);
(2) int(T2) ⊆ int(T1) and there is an infinite sequence 〈Bi : i ∈ ω〉

of finite subsets of ω such that maxu2 < min s1
j for j = minB0,

max(Bi) < min(Bi+1) and s2
i ⊆

⋃
{s1
j : j ∈ Bi};

(3) for every subset e of s2
i such that h2

i (e) > 0 there is j ∈ Bi such that
h1
j (e ∩ s1

j ) > 0.

In the case of u1 = u2, (u2, T2) is called a pure extension of (u1, T1).

Whenever T = 〈ti : i ∈ ω〉 is a pure condition and k ∈ ω, let iT (k) =
min{i : k < min int(ti)} and T\k = TiT (k) = 〈ti : i ≥ iT (k)〉. For u ∈ [ω]<ω

let (u, T ) = (u, T\u) = (u, TiT (maxu)). Note that if R ≤ T and k ∈ int(R),
then R\k ≤ T\k.

Definition 3.9. If F is a family of pure conditions, then Q(F) is the
suborder of Q consisting of all (u, T ) ∈ Q such that (∃R ∈ F)(R ≤ T ).

Observe that if C is a centred family of pure conditions, then any two
conditions in Q(C) with equal stems have a common extension in Q(C) and
so Q(C) is σ-centred. From now on by a centred family we mean a centred
family of pure conditions. We also assume that all centred families are closed
with respect to final segments, that is, if C is a centred family and T ∈ C
then T\v ∈ C for every v ∈ [ω]<ω.

Lemma 3.10. Any two conditions of Q(C) are compatible as conditions
in Q(C) if and only if they are compatible in Q.

Lemma 3.11. Let T = 〈ti : i ∈ ω〉, where ti = (si, hi), be a pure condition
and ω = A0 ∪ · · · ∪ An−1 a finite partition. Then there is j ∈ n such that
〈hi(si ∩Aj) : i ∈ ω〉 is unbounded.
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Definition 3.12. Whenever T = 〈(si, hi) : i ∈ ω〉 is a pure condition
and A ⊆ ω, let T �A = 〈(si ∩A, hi�P(si ∩A)) : i ∈ ω〉.

If T = 〈(si, hi) : i ∈ ω〉 is a pure condition, A ⊆ ω and 〈hi(si∩A) : i ∈ ω〉
is bounded, then T has no pure extension R with int(R) ⊆ A. A pure
condition T compatible with every element of a family F of pure conditions
is said to be compatible with F , denoted T 6⊥ F . If C ′ is a centred family
such that C ⊆ Q(C ′) then C ′ is said to extend C.

Lemma 3.13. Let C be a centred family , T a pure condition compatible
with C, and ω = A0 ∪ · · · ∪An−1 a finite partition. Then there is j ∈ n such
that T �Aj is a pure condition compatible with C.

Proof. By Lemma 3.11, I = {j ∈ n : T �Aj is a pure condition} 6= ∅.
Suppose that for every j ∈ I there is Tj ∈ Cj such that T �Aj and Tj are
incompatible. However, I is finite, C is centred and so there exists X ∈ C
such that (∀j ∈ I)(X ≤ Tj). By hypothesis X and T have a common
extension R ∈ Q. By Lemma 3.11 again, there exists i ∈ n such that R�Ai
is a pure condition. However, R�Ai ≤ T �Ai and so i ∈ I. Also, R�Ai ≤ R ≤
X ≤ Ti and so Ti and T �Ai are compatible, which is a contradiction.

Definition 3.14. Let Qfin be the partial order of all sequences r =
〈r0, . . . , rn〉, n ∈ ω, of finite logarithmic measures ri = (si, hi) such that
for all i ∈ n, max(si) < min(si+1) and hi(si) < hi+1(si+1) with extension
relation being end-extension. The level of the sequence r = 〈r0, . . . , rn〉 is
the level of rn, denoted ‖r‖.

Definition 3.15. The sequence r ∈ Qfin extends the pure condition T if
there is R ≤ T such that r ⊆ R. The finite logarithmic measure r extends T
if r = 〈r〉 extends T .

Definition 3.16. Let τ = 〈Tn : n ∈ ω〉 be a sequence of pure conditions
such that (∀n)(Tn+1 ≤ Tn). Then Pτ is the suborder of Qfin of all r such
that (∀i ∈ |r|)(ri ≤ Tji) where j0 = 0 and for i ≥ 1, ji = max int(ri−1).

Lemma 3.17. Let X be a pure condition compatible with τ and n ∈ ω.
Then Dτ (X,n) = {r ∈ Pτ : (∃rj ∈ r)(rj ≤ X and ‖rj‖ ≥ n)} is dense.

Proof. Let r ∈ Pτ and j = max int(r). Since Tj\int(r) and X are compat-
ible, there is a finite logarithmic measure r such that ‖r‖ > max{‖r‖, n},
which is their common extension. Then ra〈r〉 is an extension of r which
belongs to Dτ (X,n).

Corollary 3.18. Let C be a centred family such that (∀X ∈ C)(X 6⊥ τ)
and let G be a Pτ -generic filter. Then R =

⋃
G = 〈ri : i ∈ ω〉 is a pure

condition of finite logarithmic measures of strictly increasing levels. In V [G]
there is a centred family C ′ such that |C ′| = |C| and C ∪ τ ⊆ Q(C ′).
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Proof. For every X ∈ C and n ∈ ω the set Dτ (X,n) is dense in Pτ
and so G ∩ Dτ (X,n) 6= ∅. Then IX = 〈i : ri ≤ X〉 is infinite and so
R∧X := 〈ri : i ∈ IX〉 is a pure condition which is a common extension of R
and X. Furthermore, if X ≤ Y then IX ⊆ IY , which implies R∧X ≤ R∧Y
and so the family {R ∧X}X∈C is centred.

4. Preprocessed conditions. We use the fact that all reals have simple
names of the form ḟ =

⋃
{〈〈i, jip〉, p〉 : p ∈ Ai, i ∈ ω, jip ∈ ω}, where for

every i ∈ ω, Ai = Ai(ḟ) is a maximal antichain of conditions deciding ḟ(i).

Definition 4.1. Let C be a centred family and let ḟ be a Q(C)-name
for a real. Then ḟ is a good name if for every centred family C ′ extending
C, ḟ is a Q(C ′)-name for a real.

Remark 4.2. If ḟ is a Q(C)-name for a real and there is a centred family
C ′ extending C such that ḟ is not a Q(C ′)-name for a real, then there is a
centred family C ′′ extending C which has the same cardinality as C and is
such that ḟ is not a Q(C ′′)-name for a real.

Definition 4.3. Let C be a centred family, ḟ a good Q(C)-name for a
real, and i, k ∈ ω. A pure condition T ∈ Q(C) such that k < min int(T ) is
preprocessed for ḟ(i), k, C (note that Abraham [1] uses the same terminol-
ogy) if for every v ⊆ k the following holds. If there is a centred family C ′

extending C such that |C ′| = |C|, a pure condition R ∈ Q(C ′) extending T
and a condition q ∈ Ai(ḟ) such that (v,R) ≤ q, then there is p ∈ Ai(ḟ) such
that (v, T ) ≤ p.

Remark 4.4. Let C be a centred family, ḟ a good Q(C)-name for a
real, i, k ∈ ω, and T ∈ Q(C) a pure condition preprocessed for ḟ(i), k, C.
Let C ′ be a centred family extending C with |C ′| = |C|, and T ′ ∈ Q(C ′) a
pure extension of T . Then T ′ is preprocessed for ḟ(i), k, C ′.

Corollary 4.5. Let C be a centred family , ḟ a good Q(C)-name for a
real , τ = 〈Tn : n ∈ ω〉 ⊆ Q(C) a decreasing sequence of pure conditions such
that for all n and i ≤ n, Tn is preprocessed for ḟ(i), n, C, and let G be a
Pτ -generic filter and R =

⋃
G = 〈ri : i ∈ ω〉. Then in V [G] there is a centred

family C ′ with C ∪ {R} ⊆ Q(C ′) and |C ′| = |C| such that for all n ∈ ω and
k ∈ int(Rn), Rn\k is preprocessed for ḟ(n), k, C ′, where Rn = R\int(rn−1).

Proof. Repeat the proof of Corollary 3.18 to obtain the family C ′. Let
n ∈ ω, k ∈ int(Rn) and iRn(k) = m. Then k ≤ jm = max int(rm−1). By
definition Tjm is preprocessed for ḟ(n), jm, C (note n ≤ m ≤ jm). Since
Rn\k = Rm ≤ Tjm , Rn\k is preprocessed for ḟ(n), k, C ′.

5. Induced logarithmic measures. For completeness we state
MAcountable(κ) (see [7]).
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Definition 5.1. MAcountable(κ) is the statement: for every countable
partial order P and every family D with |D| < κ of dense subsets of P there
is a filter G ⊆ P such that (∀D ∈ D)(G ∩D 6= ∅).

Let M be the ideal of meagre subsets of the real line. Recall that the
covering number of M, cov(M), is the minimal size of a family of meagre
sets which covers the real line. For every regular uncountable cardinal κ,
cov(M) ≥ κ if and only if MAcountable(κ) (see [3]).

Lemma 5.2. Let C be a centred family , |C| < cov(M), ḟ a good Q(C)-
name for a real , n ∈ ω, and T = 〈(si, hi) : i ∈ ω〉 ∈ Q(C) be such that
for all k ∈ int(T ), T\k is preprocessed for ḟ(n), k, C. Let v ∈ [ω]<ω. Then
the logarithmic measure induced by the family Pv(T, ḟ(n)) consisting of all
x ∈ [int(T )]<ω such that (∃i ∈ ω)(hi(x ∩ si) > 0) and (∃w ⊆ x)(∃p ∈
An(ḟ))((v ∪ w, T\x) ≤ p) takes arbitrarily high values.

Proof. To see that the induced measure takes arbitrarily high values
consider an arbitrary finite partition ω = A0 ∪ · · · ∪AM−1. By Lemma 3.13
there is j ∈ M such that T �Aj is a pure condition compatible with C. As
|C| < cov(M), by Corollary 3.18 there is a centred family C ′ extending C
with |C ′| = |C| and a pure extension R ∈ Q(C ′) of T �Aj . Then ḟ is a Q(C ′)-
name for a real and so An(ḟ) is a maximal antichain in Q(C ′). Therefore
there is a common extension (v ∪ w,R′) ∈ Q(C ′) of (v,R) and some q ∈
An(ḟ). Let r be a finite subsequence of R such that w ⊆ x = int(r). We
can assume that ‖r‖ > 0. However, R ≤ T and so there is i ∈ ω such that
hi(x ∩ si) > 0. Since R′ ≤ T and T\x is preprocessed for ḟ(n),maxx,C,
there is p ∈ An(ḟ) such that (v ∪ w, T\x) ≤ p.

Corollary 5.3. Let C be a centred family , |C| < cov(M), ḟ a good
Q(C)-name for a real , m,n ∈ ω, and let T = 〈(si, hi) : i ∈ ω〉 ∈ Q(C) be
such that for all k ∈ int(T ), T\k is preprocessed for ḟ(n), k, C. Then the
logarithmic measure induced by the family Pm(T, ḟ(n)) of all x ∈ [int(T )]<ω

such that (∃i ∈ ω)(hi(si ∩ x) > 0) and (∀v ⊆ m)(∃w ⊆ x)(∃p ∈ An(ḟ))
((v ∪ w, T\x) ≤ p) takes arbitrarily high values.

Proof. Let v0, . . . , vL−1 enumerate the subsets of m and let ω = A0 ∪
· · · ∪ AM−1 be a finite partition. By Lemma 3.13 there is j ∈ M such
that T �Aj is a pure condition compatible with C. Since |C| < cov(M), by
Corollary 3.18 there is a centred family C ′ extending C with |C ′| = |C| and a
pure extension R ∈ Q(C ′) of T �Aj . For every k ∈ int(R), R\k ≤ T\k and so
R\k is preprocessed for ḟ(n), k, C ′. Therefore by Lemma 5.2 for every i ∈ L
there is xi ∈ Pvi(R, ḟ(n)). It will be shown that x =

⋃
i∈L xi ∈ Pm(T, ḟ(n)).

Let v ⊆ m. Then v = vi for some i ∈ L. Since xi ∈ Pvi(R, ḟ(n)), there
is wi ⊆ xi and qi ∈ An(ḟ) such that (vi ∪ wi, R\xi) ≤ qi, and so (vi ∪
wi, R\x) ≤ qi. However, R ≤ T , C ′ extends C, |C ′| = |C| and T\x is
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preprocessed for ḟ(n),maxx,C. Hence for all i ∈ L there is pi ∈ An(ḟ) such
that (vi ∪ wi, T\x) ≤ pi.

Until the end of the section let C be a centred family, |C| < cov(M), ḟ a
good Q(C)-name for a real, and T = 〈ti : i ∈ ω〉 ∈ Q(C) be a pure condition
such that for all n ∈ ω and k ∈ int(Tn), T\k is preprocessed for ḟ(n), k, C,
where Tn = T\int(tn−1).

Definition 5.4. Let P(C, T, ḟ) be the suborder of Qfin of all sequences
r = 〈(xi, gi) : i ∈ l〉 extending T , such that for all i ∈ l, all v ⊆ maxxi−1

and all s ⊆ xi such that gi(s) > 0, (∃w ⊆ s)(∃p ∈ Ai(ḟ))((v ∪ w, T\s) ≤ p).

Lemma 5.5. Let X ∈ Q(C) and n ∈ ω. Then DX,n(C, T, ḟ) = {r ∈
P(C, T, ḟ) : (∃rj ∈ r)(rj ≤ X and ‖rj‖ ≥ n)} is dense.

Proof. Let r ∈ P(C, T, ḟ), j = |r|, m = max int(r). Let Y ∈ C be a
common extension of X and T\int(r). For every k ∈ int(Y ), Y \k ≤ Tj\k
and so Y \k is preprocessed for ḟ(j), k, C. By Corollary 5.3 the logarith-
mic measure h induced by Pm(Y, ḟ(j)) takes arbitrarily high values and so
(∃x)(h(x) > max{‖r‖, n}). Let r = (x, h�P(x)), v ⊆ m, and let s ⊆ x be
such that h(s) > 0. By definition of h there are w ⊆ s and q ∈ Aj(ḟ) such
that (v ∪ w, Y \s) ≤ q. But Tj\s is preprocessed for ḟ(j),max s, C and so
there is p ∈ Aj(ḟ) such that (v ∪ w, T\s) ≤ p.

Corollary 5.6. Let G be a filter in P(C, T, ḟ) meeting DX,n(C, T, ḟ)
for all X ∈ C, n ∈ ω, and let R =

⋃
G = 〈ri : i ∈ ω〉. Then for all

i and v ⊆ i and every s ⊆ int(ri) which is ri-positive, (∃w ⊆ s)(∃p ∈
Ai(ḟ))((v∪w,R) ≤ p). Moreover , in V [G] there is a centred family C ′ such
that C ∪ {R} ⊆ Q(C ′) and |C ′| = |C|.

Proof. Let i ∈ ω, v ⊆ i and let s ⊆ int(ri) be ri-positive. Then by
definition there are w ⊆ s and p ∈ Ai(ḟ) such that (v ∪ w, T\s) ≤ p.
However, R ≤ T and so (v ∪ w,R) = (v ∪ w,R\s) ≤ p.

Remark 5.7. If X /∈ Q(C), then the analogous DX,n(C, T, ḟ) is not
necessarily dense. In fact, the notion of a preprocessed condition is not
defined for such X. Thus P(C, T, ḟ) and Pτ are distinct forcing notions.

6. Mimicking the almost bounding property

Theorem 6.1. Let κ be a regular uncountable cardinal , cov(M) = κ,
H ⊆ ωω an unbounded , <∗-directed family with |H| = κ, C a centred family
with |C| < κ, and let ḟ be a good Q(C)-name for a real. Then there are a
centred family C ′ extending C, |C ′| = |C| and h ∈ H such that for every
centred family C ′′ extending C ′, Q(C′′) “ȟ 6<∗ ḟ”.



290 V. Fischer and J. Steprāns

Proof. Let T ∈ Q(C). There is a centred family C0 extending C with
|C0| = |C| and a sequence τ = 〈Tn : n ∈ ω〉 ⊆ Q(C0) such that for all n,
Tn ≤ Tn−1 where T−1 = T and, for all n and i ≤ n, Tn is preprocessed
for ḟ(i), n, C0. By Corollary 4.5 and as |C| < cov(M), there is a centred
family C1 extending C with |C1| = |C| and a pure condition T1 ∈ Q(C1)
such that if T1 = 〈t1i : i ∈ ω〉 then, for all n ∈ ω and k ∈ int(T1)\int(t1n−1),
T1\k is preprocessed for ḟ(n), k, C1. Since |C1| < cov(M) there is a filter
G ⊆ P(C1, T1, ḟ) meeting DX,n(C1, T1, ḟ) for all n ∈ ω and X ∈ C1. Then
by Corollary 5.6 the pure condition T2 =

⋃
G = 〈ri : i ∈ ω〉 extends T1

and for all i ∈ ω and v ⊆ i, and each s ⊆ int(ri) which is ri-positive,
(∃w ⊆ s)(∃p ∈ Ai(ḟ))((v ∪ w, T2) ≤ p).

For all i ∈ ω let g(i) be the maximal k such that there are v ⊆ i,
w ⊆ int(ri) and p ∈ Ai(ḟ) such that p  ḟ(i) = ǩ and (v ∪ w, T2) ≤ p. We
can assume that g is nondecreasing. For all X ∈ C1 let JX = {i : ri ≤ X}
and let FX be the following step function:

FX(l) = g(JX(i+ 1)) iff l ∈ (JX(i), JX(i+ 1)],

where JX(m) is the mth element of JX . Since H is unbounded, for all X ∈
C1 there is hX ∈ H such that hX 6≤∗ FX . However, |C1| < |H| and so
there exists h ∈ H such that (∀X ∈ C1)(hX ≤∗ h). We can assume that
h is nondecreasing. Note that (∀X ∈ C1)(g ≤0 FX) and so J = {i ∈ ω :
g(i) < h(i)} is infinite. Furthermore, (∃∞i ∈ JX)(FX(i) < h(i)) and since
(∀i ∈ JX)(FX(i) = g(i)), the set IX = JX ∩J is infinite. Let R = 〈ri : i ∈ J〉
and for all X ∈ C1 let R ∧X := 〈ri : i ∈ IX〉. Then C ′ = {R ∧X}X∈C1 is a
centred family such that C1 ∪ {T} ⊆ Q(C ′) and |C| = |C ′|.

Let C ′′ be centred, C ′ ⊆ Q(C ′′), a ∈ [ω]<ω, k0 ∈ ω and let (b, R′) ∈
Q(C ′′) be an extension of (a,R). There is i ∈ J with i > k0 such that
b ⊆ i and s = int(R′) ∩ int(ri) is ri-positive. Then there are w ⊆ s and
p ∈ Ai(ḟ) such that (b ∪ w, T2) ≤ p. However, R′\w ≤ T2\w. Therefore
(b∪w,R′) ≤ (b, R′) and (b∪w,R′) ≤ p. Let k ∈ ω be such that p  ḟ(i) = ǩ.
Then k ≤ g(i) by definition of g, and g(i) < h(i) since i ∈ J . Thus
(b ∪ w,R′) Q(C′′) “ḟ(i) = ǩ ≤ ǧ(i) < ȟ(i)”.

Lemma 6.2 (Main Lemma). Let κ be a regular uncountable cardinal ,
cov(M) = κ, H ⊆ ωω an unbounded , <∗-directed family with |H| = κ, and
(∀λ < κ)(2λ ≤ κ). Then there is a centred family C with |C| = κ such that
(H is unbounded)V

Q(C)
and Q(C) adds a real not split by V ∩ [ω]ω.

Proof. Let N = {ḟα}α<κ enumerate all names for functions in ωω for
partial orders Q(C ′) where C ′ is a centred family with |C ′| < κ, and let
A = {Aα+1}α<κ enumerate [ω]ω ∩V . The centred family C will be obtained
by transfinite induction of length κ. Begin with an arbitrary pure condition T
and C0 = {T\v : v ∈ [ω]<ω}. If α = β + 1 and we have defined the centred
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family Cβ, let ġα be the name with least index in N\{ġγ+1}γ<β which is a
Q(Cβ)-name for a real. If ġα is a good Q(Cβ)-name, by Theorem 6.1 there
are a centred family C ′α extending Cβ with |C ′α| = |Cβ| and hα ∈ H such
that for every centred family C ′′ extending C ′α, Q(C′′) “ȟα 6<∗ ġα”. If ġα is
not a good Q(Cβ)-name, then by Remark 4.2 there is a centred family C ′α
extending Cβ with |C ′α| = |Cβ| such that ġα is not a Q(C ′α)-name for a real.
In either case, let T ′ ∈ Q(C ′α). Then by Lemma 3.13 there is Tα ≤ T ′ such
that int(Tα) ⊆ Aα or int(Tα) ⊆ Ac

α and Tα 6⊥ C ′α. By Corollary 3.18 applied
to the sequence of all final segments of Tα and |C ′α| < cov(M) there is a
centred family Cα such that C ′α ∪ {Tα} ⊆ Q(Cα) and |Cα| = |C ′α|. If α is a
limit let Cα =

⋃
β<αCβ. Then |Cα| < κ and (∀β < α)(Cβ ⊆ Q(Cα)). With

this the inductive construction is complete. Let C =
⋃
α<κCα. Then C is

centred, |C| = κ and (∀α < κ)(Cα ⊆ Q(C)).
Let ḟ be a Q(C)-name for a real and let α < κ be minimal such that ḟ is

a Q(Cα)-name. Then ḟ is a name in N and there is δ < κ (with α ≤ δ) such
that ḟ is the name with least index in N\{ġγ+1}γ<δ which is a Q(Cδ)-name
and so ḟ = ġδ+1. Note also that ḟ is a good Q(Cδ)-name. Then by the
choice of C ′δ+1, Q(C) “ȟδ+1 6<∗ ḟ”. Let G be a Q(C) generic filter and⋃
G =

⋃
{u : (∃T )((u, T ) ∈ G)}. For every α ∈ κ the set Dα+1 = {(u, T ) ∈

Q(C) : T ≤ Tα+1} is dense and so
⋃
G ⊆∗ int(Tα+1), which implies that⋃

G is almost contained in Aα+1 or in Ac
α+1.

The proof of Theorem 6.3 can be found in [8].

Theorem 6.3. Let H⊆ωω be an unbounded family such that (∀H′∈ [H]≤ω)
(∃h ∈ H)(H′ ≤∗ h) and let 〈Pγ : γ ≤ α〉 be a finite support iteration
of ccc forcing notions of length α with cf(α) = ω such that (∀γ < α)
(H is unbounded)V

Pγ . Then (H is unbounded)V
Pα .

The proof of Lemma 6.4 can be found in [2].

Lemma 6.4. Let κ be a regular uncountable cardinal , and H ⊆ ωω an
unbounded , <∗-directed family with |H| = κ. Then for every partial order P
of size less than κ, (H is unbounded)V

P
.

Recall that if A ⊆ ωω is infinite then the Hechler forcing H(A) (see [7])
consists of all pairs (s, F ) where s ∈

⋃
n∈ω

nω and F ∈ [A]<ω, with extension
relation (s1, F1) ≤ (s2, F2) iff s2 ⊆ s1, F2 ⊆ F1 and for all f ∈ F2 and
k ∈ dom(s1)\dom(s2) we have s1(k) ≥ f(k). Note that H(A) is σ-centred,
adds a real dominating A, and |H(A)| = |A|.

Theorem 6.5 (GCH). Let κ be a regular uncountable cardinal. Then
there is a ccc generic extension in which b = κ < s = κ+.

Proof. Obtain a model V of b = c = κ by adding κ Hechler reals
(see [6]) and let H = V ∩ ωω. Inductively define a finite support itera-
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tion 〈Pα : α ≤ κ+〉 of ccc forcing notions as follows. Suppose that for all
β < α, Pβ has been defined so that in V Pβ , H is unbounded, <∗-directed
and (∀λ < κ)(2λ ≤ κ). If α is a limit, let Pα be the finite support iteration of
〈Pβ : β < α〉. Then Pα is ccc and by Theorem 6.3 the inductive hypothesis
holds in V Pα .

If α = β + 1 and Pβ has been defined, then let Vβ = V Pβ and let H1

be the forcing notion for adding κ Cohen reals. Then in V H1
β the family H

is unbounded, <∗-directed, (∀λ < κ)(2λ ≤ κ) and cov(M) = κ. Therefore
in V H1

β the hypothesis of Lemma 6.2 holds and so there is a centred family
C such that Q(C) adds a real not split by V H1

β ∩ [ω]ω and preserves H
unbounded. Let H2 be an H1-name for Q(C) and in V H1∗H2

β let A ⊆ Vβ ∩ωω
be an unbounded family of cardinality less than κ. Let H3 be an H1 ∗ H2

name for H(A). Then in V
(H1∗H2)∗H3

β the family A is dominated and since
|H(A)| < κ, H remains unbounded. Let Q̇β be a Pβ-name for (H1 ∗H2)∗H3,
and let Pα = Pβ ∗ Q̇β.

Let P = Pκ+ . Let G be a P-generic filter and let A ⊆ [ω]ω ∩ V [G],
|A| < κ+. Then there exists α < κ+ such that A ⊆ V [Gα] where Gα =
G ∩ Pα. By the inductive construction of P, in V [Gα+1] there is a real not
split by A. Therefore V P � s = κ+. By Theorem 6.3 and the construction
of P the family H is unbounded in V P. Since every family of reals in V P of
size less than κ is obtained at some initial stage of the iteration, a suitable
bookkeeping device can guarantee that any such family is bounded and so
V P � b = κ.
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