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Extensions with the approximation
and cover properties have no new large cardinals

by

Joel David Hamkins (New York)

Abstract. If an extension V ⊆ V satisfies the δ approximation and cover properties
for classes and V is a class in V , then every suitably closed embedding j : V → N in
V with critical point above δ restricts to an embedding j�V amenable to the ground
model V . In such extensions, therefore, there are no new large cardinals above δ. This
result extends work in [Ham01].

1. Introduction. While an important theme in set theory concerns
the preservation of large cardinals from a ground model to various forcing
extensions, set theorists often expect conversely that a forcing extension
will not exhibit new instances of large cardinals. After all, the smallest large
cardinals, such as inaccessible and Mahlo cardinals, are downwards absolute
to any model; those large cardinals not implying 0] are downwards absolute
to L, and many stronger notions are downwards absolute to the core models.
Kunen [Kun78] discovered, however, that forcing sometimes can create new
large cardinals: a non-weakly compact cardinal κ can become measurable or
more after adding a branch to a κ Suslin tree. Other examples show that
adding even a Cohen subset to a nonmeasurable cardinal κ can make it
supercompact or more.

Despite these examples, the Main Theorem of this article confirms the
general expectation by showing that for a large class of extensions V ⊆V ,
every suitably closed embedding j : V → N in the extension V lifts an em-
bedding j�V : V → N amenable to the ground model. Since these ground
model embeddings typically witness the corresponding large cardinal prop-
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erty in V , it follows that the extension V has no new large cardinals. This
work generalizes [Ham01].

The Main Theorem therefore concerns the lifting property for V ⊆ V , the
property asserting that every suitable embedding in V lifts an embedding
in V . This property is of course already well known in many cases, often with
little or no restriction on V . For example, 0] cannot be added by set forcing
over L, and every embedding j : L[µ] → L[j(µ)] in a forcing extension of
L[µ] is necessarily an iteration of µ. Similar results hold for larger cardinals
with respect to the core models.

Nevertheless, there are easy counterexamples to the lifting property when
the embeddings lack closure. If there are two normal measures on a mea-
surable cardinal κ, for example, and x is a Cohen real, then in V [x] the
iteration j of the extensions of these measures, chosen by the digits of x,
cannot lift an embedding amenable to V , because from j�P (κ)V one easily
reconstructs x. Jensen observed (in the 1980s) that the lifting property can
fail without the closure requirement, by pointing out that the core model is
not the union of all mice when there are mice with more than one normal
measure.

Other counterexamples satisfy the closure requirement. For example,
many large cardinals κ are preserved by the forcing to add a Cohen sub-
set A ⊆ κ; but no embedding j : V [A] → N [j(A)] can lift an embedding
amenable to V , because necessarily A = j(A) ∩ κ ∈ N [j(A)] and so A ∈ N
by the closure of j(A), leading to N 6⊆ V . By adding a Cohen subset to
every inaccessible cardinal below κ, and then finally at κ, one can arrange
that a large cardinal κ is killed in V [G] and resurrected in V [G][A], leading
to a strong violation of the lifting property for V [G] ⊆ V [G][A].

Several open questions remain. The extent of the lifting property for
extensions without the approximation and cover properties is not known.
Countably (strategically) closed forcing, such as many forward Easton prod-
ucts, can usually be handled by first adding a Cohen real, so that the com-
bined forcing has a closure point at ω. For forcing without a closure point,
the question is largely open. Gitik has constructed a counterexample to the
lifting property for iterated Prikry forcing, perhaps a worst-case example for
lacking closure points. It is open whether one can reduce the closure require-

ment of the Main Theorem to N
<δ ⊆ N , which would allow for N

ω ⊆ N in
extensions with the countable approximation and cover properties.

2. The Main Theorem. Let me now state and prove the main the-
orem. By a model of set theory, I mean a model of some fixed large finite
fragment of zfc, sufficiently powerful to carry out such standard arguments
as the construction of the cumulative hierarchy Vα, Mostowski collapses and
so on. For definiteness, take it to mean a model of the Σ100 fragment of zfc.
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Throughout this article, V ⊆ V is an extension consisting of two transitive
class models of zfc, viewed as the respective universes of all sets, with the
principal example occurring when V is a forcing extension of V .

Definition 1. A pair of transitive classes M ⊆ N satisfies the δ ap-
proximation property if whenever A ⊆ M is a set in N and A ∩ a ∈ M
for any a ∈ M of size less than δ in M , then A ∈ M . For models of set
theory equipped with classes, the pair M ⊆ N satisfies the δ approximation
property for classes if whenever A ⊆ M is a class of N and A ∩ a ∈ M for
any a of size less than δ in M , then A is a class of M . I will refer to the
sets A∩ a, where a has size less than δ in M , as the δ approximations to A
over M .

Definition 2. The pair M ⊆ N satisfies the δ cover property if for
every set A in N with A ⊆ M and |A|N < δ, there is a set B ∈ M with
A ⊆ B and |B|M < δ.

Main Theorem 3. Suppose that V ⊆ V satisfies the δ approximation
and cover properties, δ is regular, M is a transitive submodel of V such that
M = M ∩ V is also a model of set theory, and j : M → N is a (possibly
external) cofinal elementary embedding of M into a transitive class N ⊆ V .

Suppose further that δ < cp(j), P (δ)V ⊆M and that M
<δ ⊆M and N

δ ⊆ N
in V . Let N =

⋃
j "M, so that j�M : M → N . Then:

(i) If M is a set in V , then M is a set in V .
(ii) N ⊆ V ; indeed, N = N ∩ V .
(iii) If j is amenable to V , then j�M is amenable to V . In particular, if

j is a set in V , then the restricted embedding j�M is a set in V .
(iv) If j and M are classes in V and V ⊆ V satisfies the δ approxima-

tion property for classes, then j�M is a class of V . V ⊆ V satisfies
the δ approximation property classes, then j�M is definable in V .

Proof. Let me focus at first on the central case, where M = V and
consequently M = V . After this, I will explain how to modify the argument
for the general case. In the central case, we have an embedding j : V → N

with N ⊆ V and N
δ ⊆ N in V . If N =

⋃
j " V , then a simple induction on

formulas shows that the restricted embedding j�V : V → N is elementary.

Lemma 3.1. N ⊆ N satisfies the δ approximation and cover properties.

Proof. We apply the elementarity of j to the corresponding properties
for V ⊆ V . Specifically, suppose that A ∈ N and all δ approximations to A
over N are in N . Since the embedding is cofinal, there is some B ∈ V with
A ⊆ j(B). In V , any subset of B having all δ approximations over P (B)V in
P (B)V , is in P (B)V . Thus, the corresponding fact is true in N about subsets
of j(B) and their j(δ) = δ approximations over j(P (B)V ) = P (j(B))N . In
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particular, since A ⊆ j(B) has all its δ approximation over N in N , I
conclude that A ∈ N , as desired. The δ cover property is similar.

Lemma 3.2. If A ⊆ ordN is a set of size less than δ in V , then there is
a set B ∈ V ∩N of size at most δ with A ⊆ B.

Proof. Suppose that A = A0 ⊆ ordN has size less than δ in V . It follows
that A ∈ N and so by Lemma 3.1 there is a set of ordinals A1 ∈ N of size
less than δ with A0 ⊆ A1. Since also A1 ∈ V there is a set A2 ∈ V of size
less than δ with A1 ⊆ A2. We may continue bouncing between N ⊆ N and
V ⊆ V , using the regularity of δ at limit stages, in order to build a sequence
〈Aα | α < δ〉 in V such that α < β ⇒ Aα ⊆ Aβ , all Aα are subsets of ordN

having size less than δ, and unboundedly often Aα ∈ V and unboundedly

often Aα ∈ N . Let B =
⋃
α<δ Aα. Since N

δ ⊆ N and B has size at most δ

in V , we conclude that B is in N and has size at most δ there. If a is any
set of ordinals of size less than δ in V , then B ∩ a = Aα ∩ a for sufficiently
large α, and so B ∩ a ∈ V . Thus, all the δ approximations to B over V are
in V , and so B ∈ V . Similarly, all the δ approximations to B over N are in
N , and so B ∈ N . Therefore B ∈ V ∩N , as desired.

Lemma 3.3. V and N have the same subsets of ordN of size less than δ.

Proof. Suppose that A ⊆ ordN has size less than δ in V . By Lemma 3.2
there is a set B ∈ V ∩ N of size at most δ in V with A ⊆ B. Enumerate
B = {βα | α < δ̄} in the natural order, where δ̄ = ot(B) < δ+, and let
a = {α < δ̄ | βα ∈ A}. If A is in either V or N , then so is a, since it is
constructible from A and B. Since δ̄ is below the critical point of j, we know
that j(a) = a. Since j(P (δ̄)V ) = P (δ̄)N , it follows that a ∈ V if and only if
a = j(a) ∈ N . So a must be in both V and N . Finally, as A is constructible
from B and a, we conclude that A is in both V and N as well.

Lemma 3.4. N ⊆ V . Indeed, N = N ∩ V .

Proof. For the forward inclusion, it suffices to show that every set of
ordinals in N is in V . Suppose that A ⊆ ordN and A ∈ N . Fix any a ∈ V
of size less than δ in V , and consider A ∩ a. We may assume a ⊆ ordN . It
follows by Lemma 3.3 that a ∈ N and so also A ∩ a ∈ N . By Lemma 3.3
again, it follows that A ∩ a ∈ V , and so every δ approximation to A over V
is in V . Consequently, by the δ approximation property, A ∈ V , as desired.

Conversely, suppose that A ∈ N ∩ V , considering first the case when A
is a set of ordinals. If a ⊆ ord has size less than δ in N , then a ∈ V by
Lemma 3.3, and so A∩a ∈ V . Thus, A∩a ∈ N by Lemma 3.3 again, and so all
the δ approximations to A over N are inN . By the δ approximation property
of N ⊆ N , we conclude A ∈ N , as desired. For the general case, suppose
that A is any set in N ∩V . By ∈-induction, suppose that every element of A
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is in N . Thus, A ⊆ B for some set B ∈ N . Enumerate B = {bα | α < β} in
N ⊆ V , and consider A0 = {α < β | bα ∈ A}. This is constructible from A
and the enumeration of B, and so it is in both N and V . Therefore, A0 ∈ N
by the earlier argument of this paragraph. And since A is constructible from
A0 and the enumeration of B, we conclude A ∈ N , as desired.

Lemma 3.5. If j is amenable to V , then j�V is amenable to V .

Proof. Assume that j is amenable to V and suppose A ∈ V . In order
to show j�A ∈ V , it suffices to show that all δ approximations to j�A over
V are in V . And for this, it suffices to show that j�a ∈ V for any a of size
less than δ in V . Enumerate a as ~a = 〈aα | α < β〉 in V , and observe that
j(~a) = 〈j(aα) | α < β〉 because β < δ < cp(j). Since j(~a) ∈ N ⊆ V , we may
construct j�a = {〈aα, j(aα)〉 | α < β} from ~a and j(~a) in V .

In particular, if j and V are classes in V and we have the δ approxi-
mation property for classes, then the previous argument shows that all δ
approximations to j�V over V are in V , and so j�V is a class in V . This
completes the proof of the Main Theorem for the special case when M = V
and M = V .

Let me now describe the modifications that are required for the general
proof. Let N =

⋃
j"M , so that j�M : M → N is an elementary embedding.

Lemma 3.6. M ⊆M satisfies the δ approximation and cover properties.

Proof. For the δ approximation property, suppose that A ∈ M , A ⊆ M
and A ∩ a ∈M whenever a has size less than δ in M . Fix any σ of size less
than δ in V , and let a = σ ∩M . Since this is the same as σ ∩ (Vβ)M for
sufficiently large β, we know a ∈ V . Since a ⊆ M has size less than δ, it is
in M and hence in M ∩ V = M . So A ∩ a ∈ M . Since A ∩ σ = A ∩ a and
M ⊆ V , this means that all δ approximations to A over V are in V , and so
A ∈ V by the δ approximation property of V ⊆ V . Thus, A ∈M ∩ V = M ,
as desired.

For the δ cover property, suppose that A ⊆M has size less than δ in M .
Since A ⊆ V , A ∈ V and A has size less than δ in V , there is a set B0 of
size less than δ in V with A ⊆ B0. Using a sufficiently large (Vβ)M , there
is a set B1 ∈ M ⊆ V with A ⊆ B1. Thus, A ⊆ B0 ∩ B1 and B0 ∩ B1 ⊆ M
has size less than δ in V . It follows that B0 ∩B1 is in M and consequently
in M ∩ V = M . Furthermore, any bijection witnessing that this set has size
less than δ in V will be in M and hence in M ∩ V = M as well.

Next, I claim that if M is a set in V , then M is a set in V . This is because
all the δ approximations to M over V are in V : if a has size less than δ in V ,
then M ∩ a ⊆ B for some B ∈ M ⊆ V , and so M ∩ a = B ∩ a ∈ V . In
the general case, one proves Lemma 3.1 by applying j to Lemma 3.6 rather
than to the inclusion V ⊆ V , and in Lemma 3.3 one uses the hypothesis that
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P (δ)V ⊆ M in order to know that a ∈ M and also δ̄ < cp(j), which gives
j(a) = a, so that a ∈ V if and only if a ∈ N . In Lemma 3.5, one shows that
j�M has all its δ approximations in V . It follows that if j is amenable to V ,
then j�M is amenable to V . For the same reason, if j and M are classes in
V and one has the δ approximation property for classes, then j�M is a class
in V . So if j is a set in V , then j�M is a set in V , without any consideration
of classes. This completes the proof of the Main Theorem.

Let me prove a bit more about the situation of the Main Theorem.

Corollary 4. Under the hypothesis of the theorem, for any λ,

(i) If N
λ ⊆ N in V , then Nλ ⊆ N in V .

(ii) If Vλ ⊆ N, then Vλ ⊆ N .

Proof. For (i), any λ sequence over N in V is in N ∩V , and hence in N .
For (ii), if Vλ is a subset of N , then it is a subset of N ∩ V = N .

Remark 5. The assumption in the Main Theorem that N
δ ⊆ N in

V can be weakened to the assumption that N ⊆ V satisfies the δ+ cover
property, that is, that every subset of N of size δ in V is covered by an
element of N of size δ in N . With the other hypotheses, this cover property

is equivalent to N
δ ⊆ N , because if σ ⊆ τ and τ has size δ in N , then

one can enumerate τ = {bα | α < δ} in N , and the set σ is picked out by a
certain subset of δ, which must be in M and hence in N .

The central case is summarized in the following corollary.

Corollary 6. Suppose that V ⊆ V satisfies the δ approximation and
cover properties for classes. If V is a class in V and j : V → N is a class

embedding in V with δ < cp(j) and N
δ ⊆ N in V , then the restriction

j�V : V → N, where N = N ∩ V, is a class elementary embedding in the
ground model.

Additional simplifications are possible when V = V [G] is a set forcing
extension of V and we equip the models with only their definable classes
(using the term definable here to mean definable from parameters).

Lemma 7. Suppose that V ⊆ V [G] is a set forcing extension satisfying
the δ approximation property (for sets). If the models are equipped with only
their definable classes, allowing a predicate for V in V [G], then V ⊆ V [G]
also satisfies the δ approximation property for classes.

Proof. Suppose that A ⊆ V is a class in V [G] all of whose δ approxima-
tions over V are in V . For any ordinal η, let Aη = A∩Vη. The δ approxima-
tions to Aη over V have the form Aη ∩ a for some a ∈ V of size less than δ
in V . But Aη ∩ a = (A ∩ Vη) ∩ a = (A ∩ a) ∩ Vη, which is the intersection of
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two sets in V and consequently in V . Thus, by the δ approximation property
for sets, it follows that Aη ∈ V for all η. Since we have assumed that A is
definable in V [G], there is a formula ϕ (allowing a predicate for the ground
model) and parameter z such that V [G] |= x ∈ A ⇔ ϕ(x, z). Let ż be a
name for z. Since A ∩ Vη = Aη ∈ V , there is some condition pη ∈ G such
that x ∈ Aη ⇔ pη 
 ϕ(x̌, ż). The mapping η 7→ pη exists in V [G] and G is a
set in V [G], so for unboundedly many η the value of pη is the same. Let p∗

be this common value. It follows that p∗ could be used for any pη, and so
we find for any η that x ∈ Aη ⇔ p∗ 
 ϕ(x̌, ż). Thus, x ∈ A ⇔ p∗ 
 ϕ(x̌, ż)
provides a definition of A as a class of V , using parameters ż, p∗ and the
forcing poset.

By Lemma 7, the need to consider classes explicitly in set forcing exten-
sions falls away, and the central case becomes the following.

Corollary 8. If V ⊆ V [G] is a set forcing extension with the δ approx-
imation and cover properties and j : V [G]→ N is a definable embedding in

V [G] with N
δ ⊆ N and δ < cp(j), then the restriction j�V : V → N, where

N = N ∩ V, is an elementary embedding definable in the ground model.

One can focus on the topic of the Main Theorem through the lens of
measures and extenders rather than through the embeddings to which they
give rise. Definition 9 may help to clarify matters. The term measure here
means any countably complete ultrafilter on any set; so this includes su-
percompactness and hugeness measures along with ordinary measures on
a measurable cardinal. For any measure µ, let jµ : V → M be the corre-
sponding ultrapower embedding. If cp(j) = κ, then it is easy to see that
Mκ ⊆M .

Definition 9. If V ⊆ V are two models of set theory with measures
µ ∈ V and ν ∈ V , then µ lifts to ν if jµ = jν�V and µ extends to ν if µ ⊆ ν.

The lift and extend relations, though closely related, are in general inde-
pendent. For two normal measures, lifting implies extending, but the con-
verse can fail, and forcing creates a number of interesting possibilities. If κ is
measurable, for example, then there is a forcing extension V ⊆ V [f ] where
every κ-complete measure on κ lifts to a normal measure in V [f ]. There
are other forcing extensions where every measure in V extends to V [G], but
none lift. If ν is a measure in V concentrating on a set D in V and the
ultrapower j : V → N by ν lifts an embedding j�V amenable to V , then
from j�P (D)V in V one can define a measure µ on D by X ∈ µ⇔ s ∈ j(X),
where s = [id]ν , and it is easy to see that µ = ν∩V . So µ extends to ν. There-
fore, if a measure ν in V concentrates on a set in V and jν�V is amenable
to V , then ν extends a measure in V .
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Because of this, the Main Theorem implies the measure extension prop-
erty for V ⊆ V , namely, every δ+ complete measure ν in V concentrating
on any set in V extends a measure µ in V . Theorem 10 proves this directly,
generalized to include filters and with weaker hypotheses than the Main
Theorem. Counterexamples show, however, that jν�V may not be the ul-
trapower by µ, or indeed the ultrapower by any measure or extender at all,
even when ν is a normal measure in V and jν�V is definable in V .

Theorem 10. Suppose δ ≤ κ and V ⊆ V satisfies the δ approximation
property. If ν is a κ-complete filter in V on a set D in V and ν measures
every subset of D in V, then ν ∩ V is in V . That is, ν extends a measure
in V .

Proof. This proof appeared in [AH01] for closure point forcing, but the
approximation property is enough. It suffices to show that every δ approxi-
mation to ν ∩V is in V . So suppose σ ∈ V has size less than δ, and consider
σ ∩ (ν ∩ V ) = σ ∩ ν. We may assume that every member of σ is a sub-
set of D. Let σ∗ be obtained by closing σ under complements in D. Since
σ∗∩ ν is a collection of fewer than δ many sets in the filter, it follows by the
κ-completeness of ν that A =

⋂
(σ∗ ∩ ν) is in ν. Choose any a ∈ A. Observe

now that if B ∈ σ ∩ ν then A ⊆ B and consequently a ∈ B. Conversely, if
a ∈ B and B ∈ σ then because a /∈ D \B it follows that A 6⊆ D \B and so
D \B /∈ ν. By the assumption that ν measures every set in V , we conclude
that B ∈ ν. Thus, we have proved for B ∈ σ that B ∈ ν ⇔ a ∈ B. So
σ ∩ ν is precisely the set of all B ∈ σ with a ∈ B, and this is certainly in V .
Therefore, I have proved that every δ approximation to ν over V is in V .
By the δ approximation property, it follows that ν ∩ V ∈ V .

A similar result holds for extenders, by combining techniques of the Main
Theorem with ideas of [HW00].

Theorem 11. Suppose δ < κ and V ⊆ V satisfies the δ approximation
and cover properties. If E is an extender in V whose embedding j : V → N

has cp(j) = κ and satisfies N
δ ⊆ N, then E ∩ V is an extender in V .

Proof. We suppose E has the form E = {〈A, s〉 | s ∈ j(A) & s ∈ [λ]<ω}.
To show E ∩ V ∈ V , it suffices to show that all the δ approximations to E
over V are in V . Fix any set a of size less than δ in V , and consider E ∩ a.
Let σ be the set of all ordinals mentioned in the second coordinate of a. This
is a set of ordinals in V of size less than δ, and consequently it is in N . By
Lemma 3.2, there is a set τ ∈ V ∩N , where N =

⋃
j " V , of size δ in both

V and N such that σ ⊆ τ . Let ν = {X ⊆ Vκ | τ ∈ j(X)}. Since τ is in N ,
this is a κ-complete measure on Vκ in V , and so by Theorem 10, we know
that µ = ν ∩ V is a measure in V . I claim now that E ∩ a is constructible
from µ and τ in V . Suppose that 〈A, s〉 ∈ a, and I want to determine in
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V whether 〈A, s〉 ∈ E. Enumerate s = 〈α0, . . . , αk〉, where αi ∈ τ . Each
ordinal αi is the βith element of τ for some unique βi. If f(t) is the finite
sequence consisting of the β0th, . . . , βkth elements of t, then s = j(f)(τ).
Consequently, s ∈ j(A) if and only if j(f)(τ) ∈ j(A), which holds if and only
if τ ∈ j(f−1A). This last property holds if and only if f−1A ∈ µ, which can
be computed in V . Therefore, I have shown that every δ approximation to
E over V is in V , and so by the δ approximation property, E ∩ V is in V .

I stress again that counterexamples show that the corresponding ground
model extender embedding jE∩V is not necessarily the same as j�V .

For the remainder of this section, I will show that forcing extensions
obtained by forcing with a closure point at δ exhibit the δ+ approximation
and δ+ cover properties. Such closure point forcing extensions, therefore,
fall under the scope of the Main Theorem, and the results of this article
consequently generalize [Ham01]. An abundance of reverse Easton iterations
in the literature, such as the Laver preparation or the Silver iteration to add
Cohen subsets to regular cardinals, admit numerous closure points, and so
the Main Theorem is applicable. Recall that a poset Q is ≤δ strategically
closed if there is a strategy for the second player in the game of length
δ + 1 allowing her to continue play, where the players alternate to build a
descending sequence in Q, with the second player playing at limit stages.
By nontrivial forcing, I mean one that necessarily adds a new set.

Definition 12. A forcing notion has a closure point at δ when it factors
as P ∗ Q̇, where P is nontrivial, |P| ≤ δ and 
 Q̇ is ≤δ strategically closed.

Lemma 13. Forcing with a closure point at δ satisfies the δ+ approxi-
mation and δ+ cover properties.

Proof. Suppose that V [g][H] has a closure point at δ, so that g∗H ⊆ P∗Q̇
is V -generic, |P| ≤ δ and 
P “Q̇ is ≤δ strategically closed”. The δ+ cover
property is easy to verify for V ⊆ V [g][H], because it holds separately for
each step of the forcing. For the δ+ approximation property, we reduce to the
case of sets of ordinals, or binary ordinal sequences, simply by enumerating
sets in V and considering approximations on the indices. So, suppose a
sequence s ∈ 2θ is in V [g][H] and s�σ ∈ V whenever σ has size at most δ
in V . We want to show that s itself is in V . By induction, we may assume
that all proper initial segments of s are in V .

The easy case occurs when cof(θ) ≤ δ. It follows that s ∈ V [g], and so
there is a P-name ṡ in V with s = ṡg. In V , let T be the tree of all possible

initial segments of s, that is, T = {t ∈ 2<θ | [[ ť ⊆ ṡ ]]P 6= 0}. The sequence
s is a branch through T in V [g]. Since incomparable elements of this tree
give rise to incompatible elements of P, it is easy to see that there are at
most δ many branch points in T , elements t ∈ T such that t a 0 and t a 1
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are both in T . Thus, the set σ, consisting of the lengths of any such branch
point, has size at most δ in V , and so s�σ is in V . But s�σ gives exactly the
information one needs to know, specifying which way to turn at any branch
point, in order to follow the branch s through T . So s ∈ V , as desired.

For the remaining case, assume cof(θ) > δ. Settling this case is exactly
[Ham01, Key Lemma], but we include the proof here for convenience. The
idea is simply that if s /∈ V , then any new small set h added by P is forced
by the closure of Q̇ to be embedded into s, giving an approximation not in
the ground model. Let ṡ be a P ∗ Q̇-name for s, and suppose 〈p0, q̇0〉 ∈ g ∗H
forces that ṡ is not in V̌ , but all proper initial segments of ṡ are in V̌ .
For each λ < θ, choose in V [g][H] a condition 〈pλ, q̇λ〉 ∈ g ∗ H deciding
ṡ�λ in V . Since |P| ≤ δ, there must be a single condition repeated for
unboundedly many pλ, and so we may in fact assume that pλ = p0 for
all λ. By strengthening further if necessary, we may assume that 〈p0, q̇0〉
forces that p0 has this property. Thus, for any λ < θ and any condition
of the form 〈p0, q̇〉 ≤ 〈p0, q̇0〉, there is a stronger condition 〈p0, ṙ〉 ≤ 〈p0, q̇〉
deciding ṡ�λ̌. Since P is nontrivial, there is some h ∈ (2β)V [g] for some β ≤ δ
with h /∈ V , but all initial segments of h are in V . Let σ̇ be the name of a
strategy witnessing that Q̇ is ≤δ strategically closed. We construct in V a
tree of names q̇t for t ∈ 2<β for possible moves for the first player in the Q̇
game, with the second player obeying the strategy σ̇. Player one begins with
q̇∅ = q̇0. If q̇t is defined, let ṙt name the result of applying the strategy σ̇ to
the already constructed play 〈q̇u | u ⊆ t〉 for player one, and let bt ∈ 2<θ be
the longest binary sequence such that 〈p0, ṙt〉 
 b̌t ⊆ ṡ. By our assumption
on 〈p0, q̇0〉, there are conditions q̇ta0 and q̇ta1 such that 〈p0, q̇tai〉 ≤ 〈p0, q̇t〉
and 〈p0, q̇tai〉 
 b̌ta ǐ ⊆ ṡ. If t has limit length and q̇u is defined for all u ( t,
then because these name conditions corresponding to a play according to σ̇,
there is a name ṙt for the result of applying σ̇ to that play, and we let q̇t name
any stronger condition. In V [g], after interpreting the names, the sequence
〈qt | t ( h〉 gives by construction the moves of player one in a play of length
β in Q according to σ, and so there is a condition q ≤ qt for all t ⊆ h. Thus,
q forces that b =

⋃
t⊆h bt is a proper initial segment of s, and so b ∈ V . But

from b we can reconstruct h in V by observing that t deviates from h exactly
when bt deviates from b. This contradicts our assumption that h /∈ V .

Mitchell [Mit03] has provided a proof of (a generalization of) Lemma 13
that avoids the tree construction by using master conditions.

Corollary 14. The conclusions of the Main Theorem and its conse-
quences hold for embeddings in any closure point forcing extension.

3. Consequences of the Main Theorem. I will now apply the Main
Theorem to a variety of large cardinal notions in order to show that if an
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extension satisfies the approximation and cover properties, then it contains
no new large cardinals. The case of the smaller large cardinals makes use of
the following two lemmas.

Lemma 15. Suppose that V ⊆ V satisfies the δ approximation and cover

properties. If X
<δ ⊆ X in V and X ≺ V θ in the language with a predicate

for V, so that 〈X,X,∈〉 ≺ 〈V θ, Vθ,∈〉, where X = X ∩ V, then X ∈ V .
Further, if M is the Mostowski collapse of X, then the Mostowski collapse
of X is the same as M ∩ V .

Proof. First, I will show X ∈ V . Suppose that a ∈ V has size less than
δ in V . Since X ∩ a is a subset of X of size less than δ in V , it is in X. And
since it is an element of V θ of size less than δ, it is covered by an element
b ∈ Vθ of size less than δ in Vθ. By elementarity there is such a b in X. Since
b has size less than δ and δ ⊆ X, it follows that b ⊆ X. In summary, we
have X ∩ a ⊆ b ⊆ X, which implies X ∩ a = b ∩ a, and so X ∩ a is in V .
Since all the δ approximations to X over V are in V , it follows by the δ
approximation property that X ∈ V .

Now consider 〈M,M,∈〉, the Mostowski collapse of 〈X,X,∈〉. Since V θ

knows that Vθ is transitive, it follows that every element of X that is an
element of an element of X is itself in X, and so the Mostowski collapse of
X is the same as the image of X under the Mostowski collapse of X; that
is, M is the Mostowski collapse of X. In particular, M ∈ V . It follows that
M ⊆ M ∩ V . For the converse inclusion, let π : X ∼= M be the Mostowski
collapse of X and suppose that π(A) ∈M ∩V , where A ∈ X. I may assume
inductively that every element of π(A) is in M . Thus, A∩X ⊆ X. It follows
by elementarity that A ⊆ V . Suppose that a ∈ X has size less than δ in X.
It follows that A ∩ a is an element of X, of size less than δ there, and a
subset of X. Consequently, by the cover property, A∩ a ⊆ b for some b ∈ X
of size less than δ in X. Enumerate b = {bα | α < β} in V , where β < δ, and
let A0 = {α | bα ∈ A ∩ a}. Since π fixes all ordinals below δ and all subsets
of δ, we see that α ∈ π(A0) = A0 if and only if π(bα) ∈ π(A) ∩ π(a). Since
these latter sets are all in V , including the sequence 〈π(bα) | α < β〉, it
follows that A0 is in V , and consequently A ∩ a ∈ V . Thus also A ∩ a ∈ X,
and so all δ approximations to A using a ∈ X are in X. By elementarity,
it follows that all δ approximations to A over V are in V , and so by the
approximation property, we conclude A ∈ V . This implies π(A) ∈ M , as
desired.

If the hypotheses concerning the approximation and cover properties are
omitted from Lemma 15, then the conclusion can fail. For example, if one
adds a Prikry sequence s to a measurable cardinal κ > δ, then for any θ ≥ κ
there are elementary substructures X ≺ Vθ[s] of size δ<δ in V [s] such that
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X
<δ ⊆ X in V [s] and s ∈ X. In this case, X ∩ V is not in V , as it has size

at most δ<δ but is unbounded in κ, violating the regularity of κ in V .

Lemma 16. Suppose that V ⊆ V satisfies the δ approximation and cover
properties and κ ≥ δ is an inaccessible cardinal. If A ⊆ κ is any set in V ,
then there is a transitive model of set theory M of size κ in V such that
A ∈M, M

<κ ⊆M and M = M ∩ V ∈ V is a model of set theory.

Proof. Suppose zfc∗ is the fixed finite fragment of zfc used to define
the models of set theory. The proof of the well-known Lévy reflection theo-
rem establishes that there is an ordinal θ above κ such that every formula
appearing in zfc∗ reflects from the structure 〈V , V,∈〉 to 〈V θ, Vθ,∈〉. In par-
ticular, both V θ and Vθ are models of set theory. In V let X ≺ V θ be an
elementary substructure of size κ in the language with a predicate for V , so
that 〈X,X,∈〉 ≺ 〈V θ, Vθ,∈〉, where X = X ∩ V , such that X

<κ ⊆ X and
A ∈ X. By Lemma 15 the collapse M of X has the property that M = M∩V
is in V . And since M is the collapse of X, it is a model of set theory, as
desired.

Corollary 17. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every weakly compact cardinal above δ in V is weakly com-
pact in V .

Proof. Suppose κ is weakly compact in V . For any subset A ⊆ κ in V
there is by Lemma 16 a model of set theory M in V such that A ∈ M ,
M

<κ ⊆M and M = M ∩ V is a model of set theory in V . Since κ is weakly
compact in V , there is an embedding j : M → N in V with critical point κ,
and by using the induced normal M -measure, we may assume N

<κ ⊆ N
in V . Since this embedding satisfies the hypotheses of the Main Theorem,
it follows that j�M : M → N is an embedding in V . Since this restricted
embedding still has critical point κ and A ∈ M , it follows that κ is weakly
compact in V .

While the proof of the next theorem does not rely on the Main Theo-
rem and the hypotheses are weaker, the result fits into the sequence of this
section. Recall that a cardinal κ is ineffable if for any sequence 〈Aα | α<κ〉
with Aα ⊆ α there is a set A ⊆ κ such that {α < κ | Aα = A ∩ α} is sta-
tionary.

Theorem 18. Suppose V ⊆ V satisfies the δ approximation property.
Then every ineffable cardinal κ ≥ δ in V is ineffable in V .

Proof. Suppose κ ≥ δ is ineffable in V and 〈Aα | α < κ〉 is a sequence
in V with Aα ⊆ α. In V , there is a coherence set A ⊆ κ such that B =
{α < κ | Aα = A ∩ α} is stationary. In particular, all the initial segments of
A are in V , and so by the δ approximation property, the set A itself is in V .
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It follows that B ∈ V also, and there can be no club in V avoiding B, as
there is no such club in V . So κ is ineffable in V .

Kai Hauser [Hau91] provided a useful embedding characterization of in-
describable cardinals, to which the Main Theorem applies, by showing for
natural numbers m,n ≥ 1 that a cardinal κ is Πm

n indescribable if for any
transitive model of set theory M of size κ with M<κ ⊆M and κ ∈M , there
is a transitive set N and an elementary embedding j : M → N with critical
point κ such that N is Σm

n−1 correct, that is, such that (Vκ+m)N ≺n−1 Vκ+m

and N |Vκ+m−2| ⊆ N (meaning N<κ ⊆ N when m = 1). Since any first or-
der statement about Vκ+m is ∆0 in Vκ+m+1, using Vκ+m as a parameter,
it follows that Πm+1

1 indescribability implies Πm
n indescribability for any n.

A cardinal κ is totally indescribable when it is Πm
n indescribable for any

m,n ∈ ω, or equivalently, if it is Πm
1 indescribable for every m. Since Π1

1

indescribability is simply weak compactness, the next corollary generalizes
Corollary 17.

Corollary 19. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every totally indescribable cardinal above δ in V is totally
indescribable in V . Indeed, for m ≥ 1 every Πm

1 indescribable cardinal above
δ in V is Πm

1 indescribable in V .

Proof. Suppose that κ is Πm
1 indescribable in V , and consider any tran-

sitive model of set theory M0 in V with M<κ
0 ⊆M0 and κ ∈M0. By Lemma

16, there is a transitive model of set theory M in V with M
<κ ⊆ M in V

and M0 ∈ M such that M = M ∩ V is also a model of set theory. Since
κ is Πm

1 indescribable in V , there is an embedding j : M → N such that
N is Σm

0 correct in V . By the Main Theorem, the restricted embedding
j�M : M → N lies in V . By restricting the embedding further, down to M0,
I obtain the embedding j0 = j�M0 : M0 → N0, where N0 = j(M0).

I claim that N0 is Σm
0 correct. To see this, observe first by Corollary 4

that N |Vκ+m−2| ⊆ N in V , since Vκ+m−2 ⊆ V κ+m−2 and N
|V κ+m−2| ⊆ N

in V , and consequently |Vκ+m−2|V < (|V κ+m−2|+)V . Since M knows that

M<κ
0 ⊆ M0, it follows that N knows that N

<j(κ)
0 ⊆ N0. Because N has all

the sequences over N0 of length up to |Vκ+m−2|, which is less than j(κ), it

follows that N
|Vκ+m−2|
0 ⊆ N0 in V , as required. Second, because (N0)κ+m

is a transitive subset of Vκ+m, it follows that Σ0 truth is preserved. So the
embedding j0 : M0 → N0 is Σm

0 correct, and the proof is complete.

Recall from [Vil98] that a cardinal κ is unfoldable if it is θ unfoldable
for every ordinal θ, meaning that for any transitive model of set theory M
of size κ there is a transitive set N and an embedding j : M → N with
critical point κ such that j(κ) > θ. It suffices if such embeddings j exist for
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arbitrarily large sets M , that is, if every A ⊆ κ can be placed into such an
M (proof: given any M ′, place it into an M , get the embedding and restrict
it to M ′). The cardinal κ is strongly unfoldable if it is θ strongly unfoldable
for every ordinal θ, meaning that for every transitive model of set theory M
of size κ with M<κ ⊆M there is an embedding j : M → N into a transitive
set N with critical point κ such that j(κ) > θ and Vθ ⊆ N . If θ is a successor
ordinal or has cofinality above κ, such an N can be found for which Nκ ⊆ N
(see [Ham]).

Corollary 20. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every strongly unfoldable cardinal above δ in V is strongly
unfoldable in V .

Proof. Fix any successor ordinal θ and any set A ⊆ κ in V . By Lemma 16
there is a transitive model M of size κ in V such that M

<κ ⊆ M in V ,
A ∈ M and M = M ∩ V is a model of set theory in V . Since κ is θ
strongly unfoldable in V , there is an embedding j : M → N with V θ ⊆ N
and N

κ ⊆ N in V . Thus, the Main Theorem applies, and so the restricted
embedding j�M : M → N exists in V . By Corollary 4 it follows that Vθ ⊆ N ,
and we know A ∈ M , so this restricted embedding serves to witness the θ
strong unfoldability (for A) in V .

We do not actually need N
κ ⊆ N in the previous argument, but rather

only N
δ ⊆ N . And since such an embedding can be found when θ is either

a successor ordinal or has cofinality above δ, we conclude the following.

Corollary 21. Suppose V ⊆ V satisfies the δ approximation and cover
properties and θ is a successor ordinal or has cofinality above δ. Then every
θ strongly unfoldable cardinal above δ in V is θ strongly unfoldable in V .

Corollary 22. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every measurable cardinal above δ in V is measurable in V .

Proof. Since κ is measurable in V , there is a normal ultrapower embed-
ding j : V → N . Since N

κ ⊆ N , the Main Theorem implies that the re-
stricted embedding j�V : V → N is amenable to V . In V one may construct
a normal measure µ on κ from j�P (κ)V by defining X ∈ µ⇔ κ ∈ j(X).

A cardinal κ is tall if it is θ tall for every θ, meaning that there is an
embedding j : V →M with critical point κ such that j(κ) > θ andMκ ⊆M .

Corollary 23. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every tall cardinal above δ in V is tall in V . Indeed, for
any θ, every θ tall cardinal above δ in V is θ tall in V .

Proof. This is immediate when we have the δ approximation property
for classes, because if a class j : V → N witnesses that κ is θ tall in V , then
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the restriction j�V : V → N witnesses that κ is θ tall in V . But in general we
only have amenability, so we work with the induced extenders. Suppose that
j : V → N witnesses that κ is θ tall in V . By the Main Theorem, we know
that j�V : V → N is amenable to V , where N = N ∩ V . By Corollary 4,
we know Nκ ∩ V ⊆ N . Let E = j�P (κ)V , which is in V by amenability,
and let jE : V → NE be the corresponding extender embedding. Thus,
jE�P (κ)V = j�P (κ)V and every element of NE has the form jE(f)(β) for
some f ∈ V κ ∩ V and β < j(κ). Now suppose that 〈jE(fα)(βα) | α < κ〉 is
a κ sequence from NE in V . We may assume 〈βα | α < κ〉 is also in V , and
so by the κ closure of N it is in N ∩ V = N . Because NE and N agree up
to rank j(κ), this means that 〈βα | α < κ〉 ∈ NE . Since 〈jE(fα) | α < κ〉 =
j(〈fα | α < κ〉)�κ is in NE as well, we see that 〈j(fα)(βα) | α < κ〉 is in NE ,
as desired.

Corollary 24. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every strong cardinal above δ in V is strong in V .

Proof. Suppose that κ is θ strong in V and θ is either a successor ordinal
or has cofinality above δ. In V there is a θ strongness extender embedding

j : V → N with cp(j) = κ, V θ ⊆ N and N
δ ⊆ N . By the Main The-

orem, the restricted embedding j�V : V → N is amenable to V , and by
Corollary 4, we know Vθ ⊆ N . Let E = j�P (κ)V in V and observe that the
corresponding extender embedding jE : V →ME has jE�P (κ)V = j�P (κ)V ,
and consequently Vθ ⊆ME . So κ is θ strong in V .

Corollary 25. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every Woodin cardinal above δ in V is Woodin in V .

Proof. If κ is Woodin in V , then for every A ⊆ κ in V there is γ ∈ (δ, κ)
such that for arbitrarily large λ < κ there is an extender embedding j : V →
N such that cp(j) = γ and j(A)∩λ = A∩λ. We may also assume N

γ ⊆ N .
It follows from the Main Theorem that the restriction j�V : V → N is
amenable to V . And of course it still satisfies j(A) ∩ λ = A ∩ λ. Since
j�P (κ)V ∈ V by amenability, the induced extender embeddings therefore
witness that κ is a Woodin cardinal in V .

The case of strongly compact cardinals presents peculiar difficulties, and
it will be treated separately in Section 4. So I move now to the case of
supercompact cardinals.

Corollary 26. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every supercompact cardinal above δ in V is supercompact
in V . Indeed, for any θ, every θ supercompact cardinal above δ in V is θ
supercompact in V .
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Proof. If j : V → N is an embedding in V witnessing that κ is θ super-
compact in V , then by the Main Theorem the restriction j�V : V → N is
amenable to V and N = N ∩ V . By Corollary 4 we know N θ ⊆ N in V ,
and so j "θ ∈ N . Thus, from j�P (Pκθ)

V we may in V construct the induced
normal fine measure µ on Pκθ by defining X ∈ µ⇔ j " θ ∈ j(X). So κ is θ
supercompact in V .

Corollary 27. Suppose V ⊆ V satisfies the δ approximation and cover
properties. Then every almost huge, huge or superhuge cardinal above δ in
V exhibits the same large cardinal property in V .

Proof. Once again, suitable restrictions of these embeddings witness the
large cardinal property in V .

Let me close this section with some results on the question of making
a weakly compact or measurable cardinal κ indestructible by <κ directed
closed forcing. The only method currently known for doing this is to begin
with a supercompact cardinal κ and perform the Laver preparation. The
following theorem shows that if one produces an indestructible weakly com-
pact cardinal in any extension resembling the Laver preparation, that is,
one exhibiting the approximation and cover properties, then one must have
begun with a supercompact cardinal. This theorem generalizes a result in
[AH01].

Theorem 28. Suppose V ⊆ V satisfies the δ approximation and cover
properties for some δ < κ. If κ is weakly compact in V and (2θ

<κ
)V is

collapsed to κ in V , then κ was θ supercompact in V .

Proof. By Lemma 16 there is a transitive model of set theory M in V
of size κ such that P (Pκθ)

V ∈M , M
<κ ⊆M , M = M ∩ V is a model of set

theory and M knows that |θ| = κ. Since κ is weakly compact in V there is

an embedding j : M → N with critical point κ and N
<κ ⊆ N . Since θ has

size κ in M there is a relation � on κ with order type θ. Notice that if β < κ
has order type α with respect to �, then j(β) = β has order type j(α) with
respect to j(�). Therefore, j " θ is constructible in N from � and j(�), and
so j " θ ∈ N . By the Main Theorem, j�M : M → N , where N = N ∩ V , is
an embedding in V . In particular, j " θ is in V , and hence in N . In V , the
set µ of all X ⊆ Pκθ such that j "θ ∈ j(X) is a normal fine measure on Pκθ,
and so κ is θ supercompact there.

Using the results on closure point forcing, we obtain the following corol-
lary, one of the main theorems of [AH01].

Corollary 29 ([AH01]). If V ⊆ V [G] has a closure point below κ
and the weak compactness of κ is indestructible over V [G] by the forcing to
collapse cardinals to κ, then κ was supercompact in V .
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Proof. Such extensions, when followed by further <κ directed closed forc-
ing, still have the same closure point at some δ < κ, and consequently by
Lemma 13 exhibit the δ+ approximation and cover properties. So the corol-
lary follows from the previous theorem.

The same idea applies to indestructible measurable cardinals, but here
one only needs to know that θ is collapsed to κ, rather than 2θ

<κ
as above.

Theorem 30. Suppose V ⊆ V satisfies the δ approximation and cover
properties. If κ > δ is measurable in V and θ has cardinality κ in V , then κ
was θ supercompact in V .

Proof. Let j : V → N be the ultrapower embedding by a normal measure
on κ in V . It follows by the Main Theorem that the restriction j�V : V → N
is amenable to V , and so j " θ ∈ V . Furthermore, since |θ| = κ in V and
N
κ ⊆ N in V , it follows that j " θ ∈ N , and so j " θ ∈ N ∩ V = N . From

j�P (Pκθ)
V in V one can therefore construct a normal fine measure µ by

defining X ∈ µ⇔ j " θ ∈ j(X). So κ is θ supercompact in V .

4. The case of strongly compact cardinals. The case of strongly
compact cardinals presents special problems for the arguments of Section 3,
the main obstacle being that the restriction j�V of a strong compactness
embedding j : V → N does not seem immediately to reveal the full strength
of the original embedding, as it did so easily in the case of measurability,
supercompactness and so on. Here, in order to carry out the analysis for
strongly compact cardinals, I will make some additional assumptions about
the nature of the extension V ⊆ V .

Theorem 31. Suppose δ < κ and V ⊆ V satisfies the δ approximation
and cover properties, as well as the κ cover property. For any θ, if κ is θ
strongly compact in V , then it was θ strongly compact in V .

Proof. Suppose that j : V → N is a θ strong compactness embedding
in V , the ultrapower by a fine measure µ on Pκθ. Let s = [id]µ, so that

j " θ ⊆ s ⊆ j(θ) and |s| < j(κ) in N . Since N
κ ⊆ N in V , the Main

Theorem establishes that j�V : V → N , where N = N ∩ V , is amenable
to V . By j of the κ cover property, it follows that s ⊆ t for some t ∈ N
of size less than j(κ) in N . Without loss of generality, t ⊆ j(θ). Since also
j " θ ⊆ t, it follows that t generates a fine measure µ on Pκθ in V , defined
by X ∈ µ⇔ t ∈ j(X). So κ is θ strongly compact in V .

The κ cover property of V ⊆ V captures the operative power of mildness
in [Ham01, Corollary 16], where a poset P is mild relative to κ if every set
of ordinals of size less than κ in V P has a nice name of size less than κ. (The
definition in [Ham01] erroneously omitted the requirement that the name
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be nice, though this was used in the proofs.) I conjecture that the added
assumption of κ covering in Theorem 31 is unnecessary.

Conjecture 32. Suppose δ < κ and V ⊆ V satisfies the δ approxima-
tion and cover properties. For any θ, if κ is θ strongly compact in V , then
it is θ strongly compact in V .

The results of this section point towards a positive resolution of this
conjecture. First, I can improve Theorem 31 by weakening the assumption of
κ covering to the assumption only that no regular cardinal above κ in V has
cofinality below κ in V . This argument will rely on an old characterization
of strong compactness due to Ketonen. A filter on λ is uniform if it contains
the tail segments [β, λ) for every β < λ.

Fact 33 (Ketonen [Ket72]). A cardinal κ is θ strongly compact if and
only if for every regular cardinal λ ∈ [κ, θ] there is a κ complete uniform
ultrafilter on λ.

Imagine, for example, that we have an embedding j : V → N with
critical point κ that is discontinuous at λ in the sense that sup j " λ < j(λ).
For any α ∈ [sup j " λ, j(λ)) one may define a measure µ on λ by X ∈ µ if
and only if α ∈ j(X), and it is easy to see that this will be a κ complete
uniform ultrafilter on λ. Conversely, the ultrapower by any such measure µ
will be discontinuous at λ, as sup jµ " λ ≤ [id]µ < jµ(λ).

Theorem 34. Suppose δ < κ ≤ θ and V ⊆ V satisfies the δ approxi-
mation and cover properties and every regular cardinal of V in the interval
(κ, θ] has cofinality at least κ in V . If κ is θ strongly compact in V , then κ
was θ strongly compact in V .

Proof. Suppose that κ is θ strongly compact in V . Fix a θ strong com-
pactness ultrapower embedding j : V → N by a fine measure µ on Pκθ. Let
s = [id]µ, so that j " θ ⊆ s ⊆ j(θ) and |s| < j(κ) in N . Suppose λ is in the

interval [κ, θ] and regular in V . By assumption, κ ≤ cof(λ) in V . It follows
that t = s ∩ j(λ), which has size less than j(κ) in N , is bounded in j(λ),
and yet j " λ ⊆ t. Therefore sup j " λ < j(λ), and so j is discontinuous at λ.

Since j is the ultrapower by a measure on some set, it follows that
N
κ ⊆ N , and so the Main Theorem applies. Consequently, the restricted

embedding j�V : V → N , where N = N ∩ V , is amenable to V . Since the
restricted embedding of course still satisfies sup j " λ < j(λ), one can use
j�P (λ)V as above to construct a κ complete uniform ultrafilter on λ in V .
By Ketonen’s result, it follows that κ is θ strongly compact in V .

In particular, if V preserves all cardinals and cofinalities over V , then the
hypotheses of Theorem 34 are satisfied, and so Conjecture 32 holds for such
extensions. Note that Theorem 31 is an immediate corollary of Theorem 34,
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because the κ cover property implies that every cardinal with cofinality
below κ in V has cofinality below κ in V .

A perusal of Ketonen’s argument [Ket72] will reveal that in order to
establish Fact 33 one does not need that every regular λ has a κ complete
uniform ultrafilter on λ, but rather only that µ-almost every λ has that
property, where µ is any κ complete uniform weakly normal ultrafilter on θ,
concentrating on cardinals of cofinality at least κ. We may consequently also
weaken the corresponding hypothesis of Theorem 34.

I would like next to observe that the critical exception making Theo-
rem 34 weaker than Conjecture 32—the case of a cardinal κ that is θ strongly
compact for a cardinal θ that was regular in V but has cofinality less than κ
in V—simply does not not occur with supercompactness. The situation here
is rather similar to the fact that Prikry forcing above a strongly compact
cardinal destroys it. If one could extend Observation 35 to the case of strong
compactness, this would prove that Conjecture 32 is true.

Observation 35. Suppose V ⊆ V satisfies the δ approximation and
cover properties. If δ < κ ≤ θ and θ is a regular cardinal of V that has
cofinality less than κ in V , then κ is not θ supercompact in V .

Proof. Suppose κ is θ supercompact in V , so that there is a θ supercom-
pactness embedding j : V → N in V . In particular, j " θ ∈ N . Furthermore,
since cof(θ) < κ, it follows that sup j " θ = j(θ). By the Main Theorem,
however, the restricted embedding j�V : V → N is amenable to V , and
so j " θ is in V . Consequently, j " θ ∈ N ∩ V = N . Since j " θ has size
θ < j(κ) ≤ j(θ) and j(θ) is regular in N , it follows that sup j " θ < j(θ), a
contradiction.

Let me now prove the conjecture outright in the case of θ = κ+.

Theorem 36. Suppose δ < κ and V ⊆ V satisfies the δ approximation
and cover properties. If κ is κ+ strongly compact in V , then it is κ+ strongly
compact in V (interpreting κ+ separately in V and V, respectively).

Proof. The essential idea here was employed in [Apt03, Lemma 2.3].
There are two cases. If κ+ is preserved from V to V , this theorem is a
special case of Theorem 34. Alternatively, if κ+ is collapsed from V to V ,
then κ is κ+ supercompact in V by Theorem 30, and hence κ+ strongly
compact there, as desired.

Theorem 36 does not seem to rule out the possibility that the degree
of strong compactness of κ increased from V to V , since it appears to be
compatible with the conclusion of the theorem that κ is (κ+)V strongly

compact in V (but not more) and (κ+)V strongly compact in V , even when

(κ+)V < (κ+)V . Such a phenomenon, however, is exactly what Conjecture 32
rules out.
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So altogether the evidence in favor of Conjecture 32 is first, that it follows
the pattern of the results for all the other large cardinals in Section 3, such
as Corollary 26; second, it holds when there is a small additional degree
of cofinality preservation by Theorems 31 and 34; third, failures of this
additional preservation are incompatible with κ being θ supercompact in V
by Observation 35, suggesting that they might also be incompatible with κ
being θ strongly compact; and finally, fourth, it holds outright in the case
of θ = κ+ by Theorem 36.

I close the article with an application of the Main Theorem by showing
that it provides a new, easier proof of the second main Theorem of [HS98],
improving it to the case of strategically closed forcing.

Theorem 37. After any nontrivial forcing of size less than κ, any fur-
ther <κ strategically closed forcing that adds a new subset to any λ will
destroy the λ strong compactness of κ.

Proof. Suppose that g ∗G ⊆ P ∗Q is V generic for forcing with |P| < κ

and 
P Q̇ is <κ strategically closed. Let A ⊆ λ be a set that is in V [g][G] but
not in V [g]. Suppose that κ is λ strongly compact in V [g][G], so that there
is an ultrapower embedding j : V [g][G] → N [g][j(G)] by a fine measure
µ on Pκλ. By Lemma 13, this forcing has the δ approximation and cover
properties, where δ = |P|+. Further, the model N [g][j(G)] is closed under
κ sequences in V [g][G], since j is the ultrapower by a κ complete measure.
Thus, by the Main Theorem, N ⊆ V and j�V : V → N is amenable to V .

Let s = [id]µ, so that j " λ ⊆ s ⊆ j(λ) and |s|N [g][j(G)] < j(κ). Since
j(Q) is <j(κ) strategically closed, it follows that s ∈ N [g], a small forcing
extension, and so s ⊆ t for some t ∈ N with t ⊆ j(λ) and |t|N < j(κ). Using
the fact that j"λ ⊆ t, it follows that α ∈ A⇔ j(α) ∈ j(A)⇔ j(α) ∈ j(A)∩t.
And since j(A)∩ t is a set of ordinals in N [g][j(G)] of size less than j(κ), it
follows by the strategic closure of j(Q) that it is in N [g], which is a subclass
of V [g]. Therefore, we may construct A in V [g] by α ∈ A⇔ j(α) ∈ j(A)∩ t,
using the fact that j�λ ∈ V . So A is in V [g] after all, a contradiction.

It follows that small forcing always kills Laver indestructibility. The the-
orem can be improved with the observation that the proof used only the fact
that Q was ≤|P| strategically closed and did not add any new sequences of
ordinal of length less than κ. This establishes:

Theorem 38. After nontrivial forcing P of size δ < κ, any further forc-
ing Q which is ≤δ strategically closed and <κ distributive which adds a subset
to any λ destroys the λ strong compactness of κ.

For example, if one adds a Cohen subset to δ and then to λ, one destroys
all strongly compact cardinals in the interval (δ, λ].
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