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Abstract. The basic result of this note is a statement about the existence of families
of partitions of the set of natural numbers with some useful properties, the n-optimal
matrices of partitions. We use this to improve a decomposition result for strongly homo-
geneous Souslin trees. The latter is in turn applied to separate strong notions of rigidity
of Souslin trees, thereby answering a considerable portion of a question of Fuchs and
Hamkins.

Introduction. In many models of set theory, Souslin trees offer a vari-
ety of different homogeneity or rigidity properties. Probably the most promi-
nent homogeneity property for Souslin trees is strong homogeneity (cf. Sec-
tion 2.2 for the definition) which implies that the tree is in a certain sense
minimal with respect to its automorphism group. On the other hand, a
great number of rigidity notions (i.e. absence of nontrivial automorphisms)
for Souslin trees and an array of implications between most of them are
known. In this paper, which resulted out of a part of the author’s PhD
thesis [SF08], we present some interrelations between the class of strongly
homogeneous Souslin trees and that of free trees, the latter consisting of
those Souslin trees which have the strongest known rigidity properties.

The key result which leads to these correspondences is a certain method
for decomposing a strongly homogeneous Souslin tree into n free factors
(Theorem 2.4, which is a strengthening of a known though unpublished re-
sult). This decomposition uses an elementary, but apparently new combina-
torial tool, an n-optimal matrix of partitions, which we introduce in the first
section. As will be seen in Section 2, there are several ways to decompose
a strongly homogeneous Souslin tree into n free trees. But the construction
we give using an n-optimal matrix of partitions enables us to prove strong
consequences about the behaviour of the factors which are finally used in the
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third section to separate certain notions of parametrized rigidity for Souslin
trees (which are all weakenings of freeness) in Corollaries 3.5 and 3.7.

A few words on the structure of the paper and the assumed background
which differs strongly from section to section. The first section is about
the very elementary notion of n-optimal matrices of partitions and does
not assume any prerequisites. The other two sections treat Souslin trees
and their structural properties. In Section 2 we review strong homogeneity
and freeness for Souslin trees and prove two decomposition theorems for
strongly homogeneous Souslin trees. The final section collects several rigidity
notions for Souslin trees (most of them taken from [FH09]) and gives the
aforementioned separation results. Some definitions and proofs in Section 3
refer to the technique of forcing which we do not review here. And even
though we give the necessary definitions concerning Souslin trees at the
beginning of Section 2, some acquaintance with this subject will certainly
enhance the reader’s understanding of the constructions in Section 2 (very
good references, also on forcing, are, e.g., [DJ74, Kun80, Jec03]). Anyway,
we have made an effort to write a paper that is accessible to an audience
exceeding the circle of experts on Souslin trees.

1. Optimal matrices of partitions. The main idea is as follows: Con-
sider an infinite matrix with ω rows and n columns where n is a natural
number larger than 1:

P0,0 . . . P0,m . . . P0,n−1

...
...

...
...

...
Pk,0 . . . Pk,m . . . Pk,n−1

...
...

...
...

...


Suppose that the entries of this matrix are partitions of the set ω of natural
numbers. We want to choose these partitions in such a way that (i) we get an
infinite set whenever we intersect a finite family of subsets of ω coming from
(distinct) partitions of a single column and (ii) we get a singleton when-
ever we intersect n sets belonging to partitions each coming from different
columns. In the following definition the latter requirement is stated in a
slightly stronger form: we want to obtain a singleton whenever we intersect
n sets not all coming from the same column. The construction in the proof of
Lemma 1.2 actually yields matrices that satisfy this stronger condition, and
we will use it in the proof of Proposition 2.5 to derive an additional result.

Definition 1.1. For n ∈ ω, an n-optimal matrix of partitions is a family
(Pk,m | k ∈ ω, m < n) of infinite partitions Pk,m = (ak,mi | i ∈ ω) of ω with
the following properties.
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(i) Columnwise agreement: For all m < n and all i : k → ω where
k ∈ ω, the intersection

⋂
`<k a

`,m
i(`) is infinite.

(ii) n-optimality: For all maps (i, k,m) : n→ ω×ω×n with (k(j),m(j))
6= (k(`),m(`)) for all j < ` < n and m(j) 6= m(`) for at least one
pair j, ` < n the intersection⋂

j<n

a
k(j),m(j)
i(j) is a singleton.

Note that if in (ii) the domain of (i, k,m) is restricted to a proper sub-
set of n, i.e., if we intersect over less than n sets, then the corresponding
intersection has to be infinite as well.

Lemma 1.2. There is an n-optimal matrix of partitions for every natural
number n > 1.

Proof. To start we fix a bijective enumeration h = (h0, . . . , hn−1) : ω →
ωn and define a0,m

i to be the preimage of i under hm. Let P0,m := {a0,m
i |

i ∈ ω}.
The rest of the construction consists of a three-fold recursion. The outer

loop is indexed by (k,m) ∈ ω × n, and goes row by row, from left to right.
One could also say that the progression of the indices follows the lexico-
graphic order of ω × n, i.e., m grows up to n − 1 and then drops down to
0 while k increases to k + 1. (The first n stages of the outer loop, where
k = 0, have been included in the recursive anchor in the first line of the
proof.)

The inner recursion loops are common ω-recursions. In each stage of
the middle one we define one element ak,mi of the partition Pk,m, and the
innermost consists of a choice procedure for the elements of that set ak,mi .

So assume that the partitions P`,m = {a`,mi | i ∈ ω} have already been
defined for (`,m) <lex (k, n) and also the i first sets ak,m0 = a0, . . . , a

k,m
i−1 =

ai−1 of Pk,m have been fixed. Assume also that the family constructed so
far has the properties (i) and (ii) from Definition 1.1. We inductively choose
three sequences x`, y` and z` of members of ω \

⋃
h<i ah and afterwards set

ai := {x`, y` | ` ∈ ω}. The members of the x sequence will make the matrix
satisfy columnwise agreement (requirement (i)) while the y` guarantee that
the intersections for (ii) (n-optimality) are non-empty. The elements z` go
back to the stack and build the pool for the construction of the further
members of Pk,m.

We need the objects f , b, I, c, τ and d below for book-keeping and assume
that they have been fixed at the start of the definition of the members of
the partition Pm,k, before the construction of a0.
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Let f : ω → kω be onto and ℵ0-to-1 and set, for ` ∈ ω,

b(`) :=
⋂
j<k

aj,mf(`)(j).

These sets b(`) have to be met by ai infinitely many times. So we will choose
x` from b(`). Let I be the set of subsets σ of (ω× k×n)∪ (ω× (k+ 1)×m)
of cardinality n − 1 such that pr2,3�σ is injective and pr3�σ is not equal to
the constant function whose only value is m, where pr3 and pr2,3 are the
projections to the third and to the second and third component of a triple
respectively. So if σ ∈ I then the elements of σ are indices for n−1 members
of pairwise distinct partitions and and at least one of these partitions lies
outside of the mth column of the n-optimal matrix. For σ ∈ I let

c(σ) :=
⋂

(j,p,q)∈σ

ap,qj

and note that this set is infinite, because if Pr,s is a partition which is not
involved in σ then c(σ) meets every element of Pr,s in exactly one natural
number by n-optimality.

Also the sets c(σ) have to be met by ai. So we fix a bijective enumeration
τ of I and choose y` from c(τ(`)) unless that set has already been hit by
earlier members of ai.

Condition (ii) imposes that each set c(σ) be met in only one element. So
once the intersection of ai and c(σ) is non-empty, that particular set c(σ)
has to be avoided in later choices of members of ai. We thus define for every
natural number x the set

d(x) :=
⋃
{c(σ) | σ ∈ I and x ∈ c(σ)}

and choose x` and y` from outside
⋃
j<` d(xj) ∪ d(yj).

We now turn to the formal definition of our three sequences x`, y` and z`
and argue afterwards why these choices are always possible. Set e =

⋃
h<i ah

and let inductively

x` := min
(
b(`) \

(
e ∪

⋃
j<`

(d(xj) ∪ d(yj) ∪ {zj})
))
,

y` :=
{
x`, c(τ(`)) ∩

⋃
j<`{xj , yj , xj+1} 6= ∅,

min c(τ(`))\(e ∪ {z0, . . . , z`−1}), otherwise,

z` := min
(
b(`) \

(
e ∪

⋃
j<`

{xj , yj , zj , xj+1, yj+1}
))
.

We finally show that this construction does not break down, i.e., the sets
from which x` or z` are picked are non-empty for all `. (A variation shows
that the choice y` is always possible, as well.) The argument splits depending
on whether k is less than or at least n − 1. So let k < n − 1 and ` ∈ ω,
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set ρ = ρ(`) = {(f(`)(j), j,m) : j < k} and fix σ ∈ I such that ρ ⊂ σ, say
σ = ρ ∪ {(j1, p1, q1), . . . , (jr, pr, qr)} for r = n− 1− k. Now let

F := F (`, σ) := {{(g1, p1, q1), . . . , (gr, pr, qr)} : (g1, . . . , gr) ∈ ωr}
and note that b(`) is the disjoint union of the family {c(ρ ∪ τ) : τ ∈ F}:

b(`) =
⋃̇
τ∈F

c(ρ ∪ τ).

In order to prove that we can always choose our new element of the x-, y-
or z-sequence, we first state two consequences of n-optimality:

(1) For every τ ∈ F and h < i the intersection c(ρ∪τ)∩ah is a singleton.
(2) Given any σ′ ∈ I, for every τ ∈ F with σ′ 6= ρ ∪ τ the intersection

c(ρ ∪ τ) ∩ c(σ′) has at most one element.

Now note that in order to define x` or z`, we subtract only finitely many
sets of the form ah or c(σ′) from b(`). So in any case, infinitely many natural
numbers remain in the pool.

Next let k ≥ n− 1. Then any set of the form c(σ) meets b(`) in at most
one member by a direct application of n-optimality. Furthermore the z-part
of the construction implies by induction on i that b(`) \ e = b(`) \

⋃
h<i ah

is an infinite set.
We leave to the reader the verification that this construction indeed

yields an n-optimal matrix of partitions.

There is also a proof of Lemma 1.2 which uses a more sophisticated
forcing style argument in the construction of the partition Pk,m, but since
it does not significantly decrease the length of the proof we stuck to the
elementary recursive construction given above.

2. Strongly homogeneous and free Souslin trees

2.1. Preliminaries on Souslin trees. A tree is a partial order (T,<T )
where for all t ∈ T the set of predecessors {s | s <T t} is well-ordered
by <T . The elements of a tree are called nodes. For a node t ∈ T we let
succ(t) be the set of t’s immediate successors. The height of the node t in
T is the order type of the set of its predecessors under the ordering of T ,
htT (t) := ot({s | s <T t}, <T ). For an ordinal α we let Tα denote the set of
nodes of T with height α. If htT (s) > α we let s�α be the unique predecessor
of s in level α.

The height of a tree T , htT , is the minimal ordinal α such that Tα is
empty. An antichain is a set of pairwise incomparable nodes of T , so for
α < htT , the level Tα is an antichain of T .

Nodes that do not have <T -successors are called leaves, and T is called
κ-splitting or κ-branching, κ a cardinal, if all nodes of T have exactly κ
immediate successors, except for the leaves.
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A branch is a subset b of T that is linearly ordered by <T and downwards
closed, i.e. if s <T t ∈ b then s ∈ b. Under the notion of a normal tree we
subsume the following four conditions:

(a) there is a single minimal node called the root ;
(b) each node s with ht(s) + 1 < htT has at least two immediate suc-

cessors;
(c) each node has successors in every higher non-empty level;
(d) branches of limit length have unique limits (if they are extended in

the tree), i.e., if s, t are nodes of T of limit height whose sets of
predecessors coincide, then s = t.

Note that by condition (c), leaves can only appear in the top level of a
normal tree.

For a node t ∈ T we denote by T (t) the set {s ∈ T : t ≤T s} of nodes
above (and including) t, which becomes a tree when equipped with the
ordering inherited from T . A tree T is said to be homogeneous if for all pairs
s, t ∈ T of the same height there is a tree isomorphism (of partial orders)
between T (s) and T (t), the trees of nodes in T above s and t respectively.
For many classes of trees, such as Souslin trees, this is equivalent to the
condition that for each pair s, t ∈ T of nodes of the same height there is an
automorphism of T mapping s to t. A tree is rigid if it does not admit any
non-trivial automorphism.

We will consider two operations on the class of trees: sum and prod-
uct. Given trees (T i, <i) for i ∈ I, the tree sum of this family, denoted by⊕

i∈I T
i, is the disjoint union of the sets T i plus a common root r /∈

⋃
T i.

The tree order < on
⊕
T i is given by the (disjoint) union of the tree orders

of the summands as well as the relation r < t for all t ∈
⋃
T i. The height

of
⊕
T i is given by the ordinal 1 + sup{htT i : i ∈ I}.

Let now all trees T i be of height µ. The tree product
⊗

i∈I T
i over

the family (T i)i∈I is given by the union over the cartesian products of the
levels T iα: ⊗

i∈I
T i :=

⋃
α<µ

∏
i∈I

T iα.

The product tree order is simply the conjunction of the relations <i.
In order to make a decomposition of a tree into a product feasible we also

introduce the notion of a nice tree equivalence relation. Let T be a normal
and ℵ0-splitting tree and ≡ an equivalence relation on T . Then we say that
≡ is a nice tree equivalence relation (nice t.e.r.) if ≡ respects levels (i.e.,
it refines T ⊗ T ), is compatible with the tree order (i.e., ht(s) = ht(r) and
s < t ≡ u > r imply s ≡ r), the quotient partial order T/≡ of ≡-classes
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ordered by the inherited partial order, i.e.

[s] <≡ [t] ⇔ s < t,

is a normal and ℵ0-splitting tree and the relation is nice, by which we mean
that for all triples of nodes s, r, t such that s ≡ r and t is above s there is
a node u ≡ t with u above r. Another way to formulate this last property
is that “niceness” associates to each branch b through T a subtree T b≡ :=⋃
s∈b s/≡ of T and requires that it satisfies point (c) in our definition of

normal trees, i.e., every node t ∈ T b≡ has successors in every higher level
of T b≡.

Now consider the case that a tree T carries nice tree equivalence relations
≡i for i < n such that for every level α and every n-sequence of equivalence
classes ci ∈ (T/≡i)α, i < n, the intersection

⋂
ci is a singleton {t} with

t ∈ Tα. Then we have a natural isomorphism between the tree T and the
product of its quotient trees,

⊗
i<n T/≡i given by t 7→ (t/≡i : i < n).

We finally come to Souslin trees. In general, a Souslin tree is a tree T of
height ω1 such that every family of pairwise incomparable nodes and also
every branch of T is at most countable. Unless stated otherwise, we will
only consider normal and ℵ0-splitting Souslin trees. In this case the sole
absence of uncountable antichains—referred to as the countable chain con-
dition (c.c.c.)—already implies that the tree has no cofinal branch. A main
elementary feature of Souslin trees is that their square is no longer Souslin:
T ⊗ T violates the c.c.c. for every Souslin tree T .

The naming Souslin of these trees stems from their tight connection to
the famous question of Mikhail Yakovlevich Souslin that was published as
Problème 3) on page 223 of the first issue of Fundamenta Mathematicae in
1920 (cf. also [DJ74] or [Kun80, II.4]; the latter transliterates the name as
Suslin). It is well known that the existence of Souslin trees is independent
of ZFC, so whenever we assume that there is some Souslin tree, we make an
extra assumption beyond the realm of standard set theory.

2.2. Strongly homogeneous and free trees. We take a closer look
at two classes of Souslin trees, that are widely known among set-theorists,
although often under different names, of which we try to state as many as
possible.

Strongly homogeneous Souslin trees occur quite often in set-theoretic
literature. In [LT02] they are called coherent Souslin trees and play a cen-
tral role in the solution of Katětov’s Problem on the metrizability of certain
compact spaces. Shelah and Zapletal show in [SZ99, Theorem 4.12] that
Todorčević’s term for a Souslin tree in one Cohen real is strongly homoge-
neous, Larson gives a direct ♦-construction ([Lar99, Lemma 1.2]), and also
Jensen’s construction (under the same hypothesis) of a 2-splitting, homo-
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geneous tree, as carried out in [DJ74, Chapter IV], is easily seen to yield a
strongly homogeneous tree.

Definition 2.1. A Souslin tree T is called strongly homogeneous if there
is a family (ψst | s, t ∈ T, ht s = ht t) which has the following properties:

(1) ψst is an isomorphism between the tree T (s) of nodes above s and
the tree T (t) of nodes above t and ψss is the identity.

(2) (Commutativity) For all nodes r, s, t of the same level of T we have
ψrt = ψst ◦ ψrs.

(3) (Coherence) For nodes r, s from the same level, t above r and u =
ψrs(t) we require that ψtu is the restriction of ψrs to the tree T (t)
⊂ T (r).

(4) (Transitivity) If t and u are nodes on the same limit level Tα, then
there is a level Tγ below such that for the corresponding predecessors
r of t and s of u we have ψrs(t) = u.

Some authors call such a family of tree isomorphisms associated to a
strongly homogeneous tree a coherent family.

Given any homogeneous tree, it is easy to define a family on T with the
properties (1)–(3) above. The crucial property of a coherent family is that
of transitivity, which means that every limit level is a minimal extension of
the initial segment below with respect to the coherent family on that initial
segment. Also the automorphism group of a strongly homogeneous Souslin
tree T is in a sense minimal, as shown in the following proposition.

Proposition 2.2. Every automorphism ϕ of a strongly homogeneous
Souslin tree T is eventually equal to the union of a subset of the coherent
family (ψst), i.e., there is a countable ordinal α such that for all nodes t of
height greater than α we have

ϕ(t) = ψt�α,ϕ(t�α)(t).

This implies that the automorphism group of such a tree has exactly 2ℵ0
elements.

Proof. It suffices to show that above every node r ∈ T there is a node
s such that all t > s are mapped by the automorphism ϕ according to the
rule stated above with α = ht(s).

To reach a statement contradicting the transitivity of the family (ψst),
we assume that there is a node r ∈ T such that for each successor s of r
there is a node t ≥ s such that ϕ(t) 6= ψsϕ(s)(t). We can inductively choose
an increasing sequence of ordinals αn such that for all nodes t ∈ Tαn+1 we
have

ϕ(t) 6= ψt�αnϕ(t�αn)(t).
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Let α be the supremum of the αn and pick any node t ∈ Tα. Since α is a
limit ordinal and by transitivity of the coherent family we find an n ∈ ω
such that ϕ(t) = ψt�αnϕ(t�αn)(t), which is of course impossible by the choice
of the αn.

Now we come to free trees. Also this property has several different names,
e.g. full (Jensen, Todorčević [Jen, Tod84]) or “Souslin and all derived trees
Souslin” (Abraham and Shelah, [AS85, AS93]). In the context of [FH09] (cf.
Section 3.1 of the present article) free trees could also be called “<ω-fold
Souslin off the generic branch”.

Definition 2.3. A normal tree T of height ω1 is free if for every finite
(and non-empty) set of nodes s0, . . . , sn of T of the same height, the tree
product

⊗n
i=0 T (si) satisfies the c.c.c.

Free trees are easily seen to be rigid Souslin trees as the product of two
isomorphic relative trees T (s) and T (t) would clearly not be Souslin. In
Section 3 we will also consider weaker, parametrized forms of freeness.

2.3. Decompositions of strongly homogeneous Souslin trees. We
now come to the key result of this paper. The following theorem is stated in
[SZ99, p. 246] in the case n = 2 without proof. Larson gives the construction
of a single free subalgebra of a strongly homogeneous Souslin algebra in
terms of trees in the proof of Theorem 8.5 in his paper [Lar99]. Some ideas
in the following proof are borrowed from that construction.

Theorem 2.4. For every natural number n > 1 and every ℵ0-branching,
strongly homogeneous Souslin tree T there are free Souslin trees S0, . . . , Sn−1

such that T ∼=
⊗

m<n Sm.

Proof. Let T be a strongly homogeneous Souslin tree and denote by ψs,t
the members of the coherent family of T . We inductively (level by level)
define n nice t.e.r.s ≡0, . . . ,≡n−1 with the following properties:

• T/≡m is a free Souslin tree for m < n.
• For any sequence (s0, . . . , sn−1) ∈ Tα the intersection of the classes
sm/≡m for m < n is a singleton:

⋂
m<n(sm/≡m) = {r} for some

r ∈ Tα.

The second claim entails the existence of the isomorphism between T and⊗
m<n T/≡m.
Let (Pk,m : m < n, k ∈ ω) be an n-optimal matrix of partitions, where

we view each Pk,m as enumerated by ak,mi , i ∈ ω. In order to define t.e.r.s
we transfer the whole matrix of the Pk,m to every set succ(s) for s ∈ T in
a coherent way: Choose for every α < ω1 an anchor node rα ∈ Tα and a
bijection σα : ω → succ(rα), and define for s ∈ Tα and all indices i, k,m the
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sets
ak,mi (s) := (ψrα,s ◦ σα)′′ak,mi .

Then clearly for every s ∈ T , k ∈ ω and m < n, the set Pk,m(s) := {ak,mi (s) |
i ∈ ω} forms a partition of succ(s), and these partitions are linked to each
other by the coherent family in a coherent way, i.e., ψs,t transfers Pk,m(s)
to Pk,m(t).

Fix m < n in order to define ≡m on T by recursion on height. We will
also enumerate the ≡m-classes of each level in order type ω, i.e., we will fix
an onto mapping h : T → ω such that for s, t ∈ Tα we have s ≡m t if and
only if h(s) = h(t).

Choose P0,m(root) as the partition of the set T1 = succ(root) and let
≡m on level T1 be the equivalence relation with classes a0,m

i (root) for i ∈ ω.
Let h(root) = 0 and choose h on T1 in such a way that nodes s and t are
≡m-equivalent just in case that their h-values coincide.

Next we consider the case where α is a successor ordinal, α = γ + 1 for
some γ < ω1. Let s, t ∈ Tα and let s− <T s and t− <T t be their direct
predecessors on level γ. We let s ≡m t if and only if their direct predecessors
are ≡m-equivalent, s− ≡m t− (so in particular h(s−,m) = h(t−,m)), and if
there is i ∈ ω such that

s ∈ ah(s
−),m

i (s−) and t ∈ ah(t
−),m

i (t−).

In words, the ≡m-equivalence of the direct predecessors gives us a natural
number h(s−) and we apply Ph(s−),m on level α to decide whether or not s
and t are ≡m-equivalent. Extend h to level Tα as described above.

On limit stages λ the relation ≡m is already determined by its behaviour
below, and we choose the h�Tλ once more in any way such that h(s) = h(t)
is equivalent to ≡m-equivalence for nodes s, t ∈ Tλ.

Having finished the construction of the relation ≡m, we show that it
produces a nice t.e.r., where all properties but niceness follow rather easily
from the construction. So we only deduce niceness. Letting s ≡m r on level
α and t above s we claim that ψs,r(t) ≡m t and show this by induction on
the height of t above s. For successor stages the claim follows directly from
the construction and the inductive hypothesis, since the relevant partition
Pj,m is transferred via ψs,r by the coherence of the coherent family. The limit
case follows directly from the inductive assumption. (This property of ≡m,
that ≡m-equivalence lifts from s and r to preimages and images under ψs,r,
will be used again in the proof of the Claim below.)

It remains to prove the two properties stated before the construction.
We start with the freeness of T/≡m. Let s0, . . . , sk−1 be pairwise non-m-
equivalent nodes of the same height α for some natural number k. We write
Si for (T/≡m)(si/≡m) and try to find for every antichain A of

⊗
i<k Si an
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antichain B of T of the same cardinality. This would prove that T/≡m is
a free tree. We get a hint about where to look for the members of such an
antichain B from the following

Claim. Fix m < n and pairwise non-m-equivalent nodes s0, . . . , sk−1

∈ Tα. For any sequence (t0, . . . , tk−1) of nodes in Tβ, with α < β and si < ti
for i < k, the intersection of the classes ti/≡m ∩ T (si) above the nodes si,
shifted above s0 by ψsi,s0, i.e., the set⋂

i<k

ψsi,s0
′′(ti/≡m),

is infinite and therefore non-empty.

Proof of the Claim. By induction on the height β of the nodes ti, start-
ing with β = α + 1. In this minimal case we have t−i = si. So the sets
ψsi,s0

′′(ti/≡m) belong to distinct partitions Ph(si),m(s0), i < k and therefore
have an infinite intersection by property (i) of the n-optimal matrix.

For the higher successor case β = γ + 1, α < γ, we simulate this initial
situation. By the inductive hypothesis pick a node

r0 ∈
⋃
i<k

ψsi,s0
′′(t−i /≡m) > s0,

and let ri := ψs0,si(r0) > si for i < k. We then know that ri ≡m t−i , so ti/≡m
has elements above ri. As a consequence

⋃
i<k ψri,r0

′′(ti/≡m) is infinite by
the same argument as above and furthermore a subset of

⋃
i<k ψsi,s0

′′(ti/≡m).
For the case where β is a limit ordinal we choose γ < β large enough,

such that letting qi = ti�γ for all i, j < k we have ψqi,qj (ti) = tj . This is
possible due to the transitivity of the coherent family. We also require α < γ.
The inductive hypothesis gives us a node

r0 ∈
⋃
i<k

ψsi,s0
′′(qi/≡m) ⊂ Tγ ,

which we copy to ri := ψs0,si(r0). By this choice, we also have ri ≡m qi. We
consider u = ψqi,r0(ti). By the commutativity of the coherent family this
definition of u is independent of the choice of i < k. But then

ψs0,si(u) = ψr0,ri(u) = ψr0,ri ◦ ψqi,r0(ti) = ψqi,ri(ti)

where the first equality follows from coherence, the second from the defi-
nition of u and the third one from commutativity. So the property stated
above right after the construction of ≡m implies that ψsi,s0(ti) ≡m u since
ri ≡m ti for all i < k. This completes the proof of the Claim.

By virtue of the Claim we can pick for every tuple (t0/≡m, . . . , tk−1/≡m)
of our antichain A ⊂

⊗
i<k Si a node u ∈

⋂
i<k ψsi,s0

′′(ti/≡m) and collect all
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these nodes in a set B. Then B is clearly an antichain of T with the same
cardinality as A. So we have shown that T/≡m is indeed a free tree.

Now for the second property. Let (s0, . . . , sn−1) be any sequence of nodes
of some Tα. We need to show that

⋂
m<n sm/≡m has a unique element.

This is done by induction on α > 0. Starting with α = 1 we know that
(sm/≡m) = akm,mim

(root) for some im and km. So property (ii) of our n-
optimal matrix is all we need here. For α = γ+1 we assume that the classes
s−m/≡m meet in a single node, say r ∈ Tγ . The set of elements of sm/≡m
which lie above r is then just ahm(r),m

im
(r) and again property (ii) of the

matrix proves the claim. In the limit case we once more use the transitivity
of the coherent family. So let α be a limit and γ < α large enough such that
ψqm,q`(sm) = s` where we abbreviate sm�γ = qm. For the last time in this
proof we use the commutativity of the coherent family: Let r be the unique
element of the intersection of the classes qm/≡m. Then t = ψqm,r(sm) is well
defined and independent of the choice of m < n. By the lifting property
of the equivalence relations stated above, it follows from qm ≡m r that
sm ≡m t.

We now state an algebraic feature which distinguishes our method of
decomposition as just carried out from other decompositions, namely that
partial products of our decomposition are always rigid (cf. Remark 2.7).

Proposition 2.5. Let T be a strongly homogeneous Souslin tree and
assume that it has been decomposed into a product of n free trees S0, . . . , Sn−1

by the procedure presented in the last proof. Then the product of less than n
pairwise distinct trees from the sequence S0, . . . , Sn−1 is a rigid Souslin tree.

Proof. It is clear that the product tree is Souslin and that it is suffi-
cient to show rigidity only for the case of n − 1 factors, where n > 2. So
assume that R :=

⊗
i<n−1 Si admits the automorphism ϕ′ 6= id and derive

a contradiction as follows.
Identifying T and R⊗Sn−1 we can lift ϕ′ to an automorphism ϕ = ϕ′⊗id

of T . By Proposition 2.2 there is a countable ordinal α such that above level
Tα the mapping ϕ is given by a subfamily of the coherent family of T .
As ϕ′ 6= id there must be a node s̄ = (s/≡0, . . . , s/≡n−1) ∈ R such that
ϕ′(s̄) 6= s̄. We certainly can assume that htR(s̄) = α.

Pick an ` < n− 1 such that the `th component s̄` of s̄ is not mapped to
itself under ϕ′. We fix a representative s ∈ s̄` = s/≡` ⊂ Tα and let q := ϕ(s)
in order to get ϕ(r) = ψsq(r) for all (immediate) successors of s. This is
where we will find a contradiction.

In the construction above we have associated to the class s/≡` a natural
number h(s, `) which defined the index of the partition that was used to
extend ≡` to the successors of the members of the class s/≡`. The same
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holds for q = ϕ(s), but as q 6≡` s we have h(q, `) 6= h(s, `). This implies that
≡` for immediate successors of s and of q is formed by virtue of different
partitions of column ` of our partition matrix. Fix any immediate successor
r of s. Since ϕ′ is assumed to be a well-defined mapping, ϕ should map the
intersection

⋂
i<n−1 r/≡i onto the set

⋂
i<n−1 ϕ(r)/≡i. In particular, the

equality

ψsq
′′
(
T (s) ∩

⋂
i<n−1

r/≡i
)

= T (q) ∩
⋂

i<n−1

ψsq(r)/≡i

should be true. But this is not the case, because, by n-optimality of the
matrix of partitions, the left-hand side of the above equality intersects every
≡`-class of the immediate successors of q in exactly one element, while the
right-hand side is a subset of such an ≡`-class and at the same time an
infinite set.

In the next section we will find corollaries of Theorem 2.4 in a similar
vein. I especially mention Lemma 3.6 which states that forcing with such a
partial product (as above) turns the complementary partial product, which
was rigid in the ground model, into a strongly homogeneous Souslin tree in
the generic extension.

The following complements Theorem 2.4.

Theorem 2.6. Every ℵ0-branching, strongly homogeneous Souslin tree
T is (isomorphic to) the tree product of n strongly homogeneous Souslin trees
for any given natural number n > 0.

Proof. This is just a simpler variant of the construction in the proof of
Theorem 2.4 where we use only the first row of the matrix of partitions
(or just any bijection between ωn and ω). It is then easy to verify that the
coherent family of T descends to the factor trees thus obtained and renders
them strongly homogeneous.

Remark 2.7.

(i) Though, of course, not every tree product of two strongly homo-
geneous Souslin trees is Souslin again (e.g. take T ⊗ T ), there is a
converse to the last theorem: If S and T are strongly homogeneous
Souslin trees and the tree product S ⊗ T satisfies the c.c.c., then
S ⊗ T is a strongly homogeneous Souslin tree as well.

(ii) We see that there are two essentially distinct ways to decompose
a strongly homogeneous tree into (at least three) free factors. An
application of Theorem 2.6 to decompose a given strongly homoge-
neous Souslin tree T into ` strongly homogenous factors S0, . . . , S`−1

followed by an `-fold application of the procedure used in the proof
of Theorem 2.4 to decompose the tree Sk into mk free trees Rki for
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0 ≤ i < mk never results in the same decomposition as directly
using the proof of Theorem 2.4 to decompose T into

∑`−1
k=0mk free

factors. The partial products of the latter decomposition are all rigid
by Proposition 2.5 while the first also has partial products that are
strongly homogeneous.

3. Separating high degrees of rigidity. In this section we review
several families of rigidity notions for Souslin trees, all of them weaker than
freeness. These definitions (except for that of an n-free Souslin tree) are all
taken from [FH09]. Most of these definitions refer to the technique of forcing
applied with a Souslin tree as the forcing partial order. We do not review
forcing here. But recall that forcing with a Souslin tree always assumes the
inverse order on the tree (i.e., trees grow downwards when considered as
forcing partial orders, the root is the maximal element, etc.) and adjoins a
cofinal branch.

This section is divided into five short subsections. The first two introduce
the rigidity notions to be considered and the last three state many and
prove some separations between them. We only give proofs that either are
elementary or use the proof of the Decomposition Theorem 2.4.

3.1. Parametrized freeness. Considering the definition of the prop-
erty of being free for Souslin trees it is natural to ask whether or not it makes
any difference if the number of factors in the tree products that are required
to be Souslin is bounded. This leads to the following definition which we
rightaway connect to the definition of being n-fold Souslin off the generic
branch met in [FH09].

Definition 3.1. Let n be a positive natural number.

(a) We say that a Souslin tree T is n-free if for every subset P of size n
of some level Tα, α < ω1, the tree product

⊗
s∈P T (s) satisfies the

c.c.c.
(b) A Souslin tree is said to be n-fold Souslin off the generic branch if for

any sequence~b = (b0, . . . , bn−1) generic for the n-fold forcing product
of (the inverse partial order of) T and any node s ∈ T \

⋃
i∈n bi, the

subtree T (s) of all nodes of T above s is a Souslin tree in the generic
extension M [~b] (which amounts to requiring that the adjunction of
~b does not collapse ω1 and preserves the c.c.c. of the T (s), s /∈

⋃
bi).

It is easy to see that a 2-free Souslin tree or a tree which is Souslin off the
generic branch cannot be decomposed as the product of two Souslin trees.
And this common feature is no coincidence.

Proposition 3.2. For a positive natural number n and a normal Souslin
tree T the following statements are equivalent.
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(a) T is n-fold Souslin off the generic branch.
(b) T is (n+ 1)-free.

Proof. We start with the implication (b)⇒(a). Assume that T is n+ 1-
free and let ~b = (b0, . . . , bn−1) be generic for T⊗n, the n-fold tree product of
T with itself. Choose α < ω1 large enough such that the nodes ti := bi(α)
are pairwise incompatible. Finally, pick a node tn ∈ Tα distinct from all
the bi(α). By our freeness assumption on T , the product tree

⊗
i∈n+1 T (ti)

satisfies the countable chain condition. But then M [~b] � “T (tn) is Souslin”
by a standard argument concerning chain conditions in forcing iterations.
Now it is easy to see that T is n-fold Souslin off the generic branch.

For the other direction we inductively show that T ism-free form ≤ n+1,
assuming that T is n-fold Souslin off the generic branch. The inductive claim
is trivial for m = 1. So let m ≥ 1 and let s0, . . . , sm be pairwise distinct
nodes of the same height. Then for any generic sequence ~b = (b0, . . . , bm−1)
for

⊗
i∈m T (si) we know that T (sm) is Souslin in the generic extension

M [~b]. Finally the two-step iteration
⊗

i∈m T (si) ∗ Ť (sm) is isomorphic to⊗
i∈m+1 T (si) and satisfies the countable chain condition.

This proposition implies that a free tree T is also free off the generic
branch in the sense that in the generic extension obtained by adjoining a
cofinal branch b through T , for every node t ∈ T \b, the tree T (t) is still free.

3.2. Further types of rigidity. In Sections 1–4 of [FH09] different
notions of rigidity for Souslin trees are collected: (ordinary) rigidity, to-
tal rigidity and the unique branch property and their absolute counter-
parts, where absoluteness refers to forcing extensions obtained by adjoining
a generic branch to the Souslin tree under consideration. In this context
also the stronger notion of being (n-fold) Souslin off the generic branch is
introduced, which we already considered in the last section.

Definition 3.3.

(a) A Souslin tree T is called n-absolutely rigid if T is a rigid tree in the
generic extension obtained by forcing with Tn (or equivalently T⊗n).

(b) A Souslin tree is totally rigid if the trees T (s) and T (t) are non-
isomorphic for all pairs of distinct nodes s and t of T . It is n-abso-
lutely totally rigid if it is totally rigid after forcing with Tn.

(c) A Souslin tree T has the unique branch property (UBP) if forcing
with T adjoins only a single cofinal branch to T . For n > 0 we say
that T has the n-absolute UBP if forcing with Tn+1 adjoins exactly
n+ 1 cofinal branches to T .

Fuchs and Hamkins prove implications as well as some independencies
between these rigidity notions. They also give in [FH09, Section 4] a diagram
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of implications between the degrees of rigidity that we have approximately
reconstructed here for the convenience of the reader.

2-free ←− 3-free ←− 4-free ←− . . .

↓ ↓ ↓
UBP ←− absolutely UBP ←− 2-absolutely UBP ←− . . .

↓ ↓ ↓
totally rigid ←− abs. totally rigid ←− 2-abs. totally rigid ←− . . .

↓ ↓ ↓
rigid ←− absolutely rigid ←− 2-absolutely rigid ←− . . .

Diagram 1. Implications between degrees of rigidity for Souslin trees

Fuchs and Hamkins show that the part of the diagram to the left and
below “absolutely UBP” is complete in the sense that there are no further
general implications between these rigidity properties. They ask whether the
rest of the diagram is complete as well (cf. [FH09, Question 4.1]). We will
show (resp. state) below that there are neither implications from left to the
right (including downward diagonals, cf. Corollaries 3.5 and 3.7), nor from
the second to the top row (Theorem 3.9).

Remark 3.4. Using a standard ♦-construction scheme for a Souslin tree
(e.g., cf. [FH09, Section 2]) it is not hard to construct a Souslin tree T with
the following two features:

• On each level Tα no two distinct nodes have the same number of
immediate successors. So in particular T is n-absolutely totally rigid
for every n ∈ ω.
• The substructure R of T obtained by restricting the supporting set

to the nodes on the limit levels of T plus the root, is a homogeneous
Souslin tree. Then in a generic extension obtained by forcing with T
there are many cofinal branches in R and each of them gives rise to a
cofinal branch of T , which is thus not a UBP tree. (In fact, every ℵ0-
splitting Souslin tree can be extended to an n-absolutely totally rigid
Souslin tree by inserting new successor levels such that any two nodes
of the same height have a different number of immediate successors.)

This shows that in Diagram 1 there can be no arrows that point upwards
from the two bottom rows. So the only question left open is whether there
should be any more arrows between the two bottom rows, but a similar
construction as the one alluded to above should also eliminate those.

3.3. Distinct degrees of freeness. Our next corollary of (the proof
of) Theorem 2.4 gives the separation of the finite degrees of freeness, i.e.,
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it shows that the family of parametrized freeness conditions is properly
increasing in strength.

Corollary 3.5. If there is a strongly homogeneous Souslin tree, then
there is a tree that is n-free, but not n+ 1-free.

Proof. Let the strongly homogeneous Souslin tree T be decomposed as
the tree product of n free trees Si for i < n as in the proof of Theorem 2.4.
We show that the tree sum of the factors,

R :=
⊕
i<n

Si,

is an n-free but non-n+ 1-free Souslin tree. The Claim used in the proof of
Theorem 2.4 remains true in the following variant:

Claim′. For any pair of sequences (s0, . . . , sn−1) in Tα and ti > si in
Tβ and any sequence m : n→ n the intersection⋂

i<n

ψsi,s0
′′ti/≡m(i)

is not empty.

Modulo the obvious changes in the notation, the proof of the Claim′

remains completely the same as before, exploiting the n-optimality of the
matrix. And also with the same argument as above we can construct an
antichain of T from any given antichain of R maintaining the cardinality.
So R is n-free.

We now argue that R is not n-fold Souslin off the generic branch.
If bi is a cofinal branch through Si then in the generic extension obtained

by adjoining ~b = (b0, . . . , bn−1), the strongly homogeneous tree T has a
cofinal branch as well, thus destroying the Souslinity of all subtrees of R.

3.4. Freeness and absolute rigidity. In this section we improve upon
the result of the last one by showing that n-freeness of a tree does not even
imply (n− 1)-absolute rigidity.

Lemma 3.6. Let the strongly homogeneous Souslin tree T be decomposed
as the tree product of n free trees Si for i < n as in the proof of Theorem 2.4.
Let {a, b} be a partition of the set n with a, b 6= ∅ and set P :=

⊗
i∈a Si and

R :=
⊗

i∈b Si. Then

�P “Ř is strongly homogeneous”.

Proof. We adopt the notation from the statement of the lemma and
argue inside the generic extension obtained by adjoining a generic branch c to
the Souslin tree P. Then we have the natural isomorphism ρ : R ∼= c⊗R ⊂ T .
Denote the canonical projection T → R by π.
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We define the tree isomorphisms ϕrs (members of the coherent family
of R in the generic extension) for nodes r and s of Rα, α < ω1, from
the members ψρ(r)ρ(s) of the coherent family of T . For this, we refer to
the maps h(·, j) : T → ω used in the construction of the t.e.r.s ≡j in the
proof of Theorem 2.4. We collect them and define h : T → ω|b| by simply
concatenating the values h(t, j) for t ∈ T and j ∈ b.

If r, s ∈ Rα and h(ρ(r)) = h(ρ(s)), then we let

ϕrs := π ◦ ψρ(r)ρ(s) ◦ ρ : R(r)→ R(s).

It follows from the fact that the n-optimal partition matrices are transported
between the (sets of immediate successors of the) nodes by the members ψtu
of the coherent family of T that this definition is sound and indeed yields
an isomorphism.

Now let r, s ∈ Rα with h(ρ(r)) 6= h(ρ(s)). In order to define ϕrs we com-
pose the tree isomorphisms that we have already defined for the immediate
successors of r and s. For every direct successor u ∈ succ(r) there is exactly
one v ∈ succ(s) with h(ρ(u)) = h(ρ(v)). This follows from the n-optimality
of the partition matrix. Let ϕrs(u) be just this v. If x is a non-immediate
successor of r, then first find the immediate successor u of r below x and
the image v = ϕrs(u), and set

ϕrs(x) := ϕuv(x).

It remains to prove that the family of tree isomorphisms just defined
is coherent, commutative and transitive. Commutativity and coherence are
inherited from the coherent family of T . (Note that ϕrs(x) = y implies that
h(ρ(x)) = h(ρ(y)), so the two cases do not interfere.) As for transitivity, let
x, y ∈ Rλ for some countable limit ordinal λ. Then by the transitivity of the
family of the ψtu for T there are t < ρ(x) and u < ρ(y) with ψtu(ρ(x)) =
ρ(y). But then t and u lie in b⊗R, so there are r, s ∈ R such that ρ(r) = t
and ρ(s) = u and thus ϕrs(x) = y.

So, e.g. in the case n = 2, forcing with one free tree does not only
destroy the freeness of another one, but even turns the latter into a strongly
homogeneous Souslin tree, i.e., it adjoins many generic automorphisms.

Corollary 3.7. Let n > 1. If there is a strongly homogeneous Souslin
tree, then there is an n-free tree which is not (n− 1)-absolutely rigid.

Proof. We fix n > 1 and use the tree R from the proof of Corollary 3.5
obtained from a strongly homogeneous tree T as the tree sum R =

⊕
i<n Si

of the free factors Si, i < n, of T . From Corollary 3.5 we know that R is
n-free.

To show that R is not (n − 1)-absolutely rigid we refer to Lemma 3.6.
It follows directly from the case that a = n \ {i} for some i < n that R
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is not rigid in the generic extension obtained by adjoining a cofinal branch
through the trees Sj for j < n and j 6= i. But this generic extension can
also be reached by forcing with R⊗n−1.

3.5. Freeness and the unique branch property. We start with an
easy result deduced from the elementary properties of finitely free trees for
the second column of the diagram.

Proposition 3.8. If there is a 3-free Souslin tree, then there is also a
Souslin tree which has the UBP and is not 2-free.

Proof. Let T be 3-free and pick distinct nodes s, t ∈ T of the same
height. We show that the Souslin tree S = T (s) ⊗ T (t) has the UBP. Let
b ⊗ c be a generic, cofinal branch in S (we view b and c as trees). By the
2-fold Souslinity off the generic branch of T , every tree of the form T (r)
with r ∈ T \ (b ∪ c) is Souslin in the generic extension by b ⊗ c. On the
other hand, if there were a second cofinal branch through S in the generic
extension, then one of its components would have to pass through such a
node r /∈ b ∪ c, which yields a contradiction.

To prove that S is not 2-free, let u > s and v, w > t be of the same
height, where v 6= w. Then

S(u, v)⊗ S(u,w) ∼= T (u)⊗ T (v)⊗ T (u)⊗ T (w)

has an uncountable antichain, because it has the square of the Souslin tree
T (u) as a factor.

This result cannot be improved by simply requiring T to be free, because
by iterating the forcing with a tree product of two factors n + 1 times, we
adjoin at least 2n cofinal branches.

We do have the following non-implication result for the n-absolute UBP
and 2-freeness under the stronger assumption of ♦.

Theorem 3.9. Assume ♦. Then there is a Souslin tree which is not
2-free but has the n-absolute UBP for all n ∈ ω.

The methods of proof for this theorem lie beyond the scope of this paper.
It uses ideas from [FH09] and [SF09]. A proof sketch can be found in [SF08,
Theorem 1.6.3].

3.6. Further directions. As a closing remark we mention how Dia-
gram 1, which captures the implications between four families of rigidity
notions and implications between them, could possibly be extended.

Real rigidity: In [AS85] two Aronszajn trees are called really different if
there is no isomorphism between any of their restrictions to some club set
of levels. In this vein, we could call a Souslin tree really rigid if all of its
restrictions to club sets of levels are rigid. This property is clearly stronger
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than ordinary rigidity yet independent of total rigidity (cf. Remark 3.4) and
is implied by the unique branching property. Also the variant of real, total
rigidity and the n-absolute versions of real rigidity and of real, total rigidity
could be considered.

Self-specializing trees: A normal tree T of height ω1 is called special if
there is a countable family (An)n∈ω of antichains of T that covers all of T . As
T is uncountable, one of the An has to be uncountable as well, so a special
tree T is not Souslin. On the other hand, every branch of T meets each
antichain An in at most one node and is therefore countable.

A self-specializing tree is a Souslin tree T that specializes itself by forcing
a generic branch b through it, i.e., in the generic extension obtained by
adjoining b to the universe, the tree T \ b is special. Self-specializing trees
can be found in models of ♦. They are UBP: a second cofinal branch in T
would prevent T \ b from being special. But of course they are not Souslin
off the generic branch, and they can neither be 2-absolutely really rigid nor
absolutely UBP, because forcing with a special tree collapses ω1, and in this
second generic extension the limit levels of T form an ℵ0-splitting tree of
countable height which must be homogeneous by a result of Kurepa (cf.
[Kur35, p. 102]).

Now let us call a Souslin tree T n-self-specializing if it is n-free (i.e.
(n − 1)-fold Souslin off the generic branch) and forcing a generic branch
~b through Tn makes T \ b̃ special where b̃ is the set of components of the
elements of ~b. It is not yet verified but seems quite plausible that one can
construct an n-self-specializing tree under ♦. In the implication diagram
its place could be between n-free and (n − 1)-absolutely UBP, yet it is
stronger than both of these properties. And there would be no horizontal
implications, for an n-self-specializing tree is neither (n−1)-self-specializing
nor (n+ 1)-self-specializing.

As is clear from the outset, adding these families to Diagram 1 results
in a far more complicated directed graph which is in particular non-planar.
We leave such considerations for future work.

Acknowledgments. Thanks are due to Piet Rodenburg for pointing
out a flaw in an earlier version of the proof of Lemma 1.2.
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