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Abstract. We introduce higher order spreading models associated to a Banach
space X. Their definition is based on F-sequences (xs)s∈F with F a regular thin family
and on plegma families. We show that the higher order spreading models of a Banach
space X form an increasing transfinite hierarchy (SMξ(X))ξ<ω1 . Each SMξ(X) contains
all spreading models generated by F-sequences (xs)s∈F with order of F equal to ξ. We
also study the fundamental properties of this hierarchy.

1. Introduction. Spreading models were invented by A. Brunel and
L. Sucheston [7] in the middle 70’s and since then have a constant presence
in the evolution of Banach space theory. Recall that a sequence (en)n in a
seminormed space (E, ‖ · ‖∗) is called a spreading model of the space X if
there exists a sequence (xn)n in X which is Schreier almost isometric to
(en)n, that is, for some null sequence (δn)n of positive reals we have

(1.1)
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for every k ≤ n1 < · · · < nk and (ai)
k
i=1 ∈ [−1, 1]k. We also say that the

sequence (xn)n which satisfies (1.1) generates (en)n as a spreading model. By
an iterated use of Ramsey’s theorem [18], Brunel and Sucheston proved that
every bounded sequence in a Banach space X has a subsequence generating
a spreading model.

It is easy to see that any sequence (en)n satisfying (1.1) is spreading (1).
The importance of spreading models comes from the fact that they con-
nect in an asymptotic manner the structure of an arbitrary Banach space
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(1) A sequence (en)n in a seminormed space (E, ‖ · ‖∗) is called spreading if for every
n ∈ N, k1 < · · · < kn in N and a1, . . . , an ∈ R we have ‖

∑n
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∑n
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X to the corresponding one of spaces generated by spreading sequences.
The definition of spreading model resembles the finite representability (2)
of the space generated by the sequence (en)n into the space (X, ‖ · ‖). How-
ever there exists a significant difference between the two concepts. Indeed
in the realm of finite representability there are two classical achievements:
Dvoretsky’s theorem [9] asserting that `2 is finitely representable in every
Banach space X and Krivine’s theorem [13] asserting that for every linearly
independent sequence (xn)n in X there exists a 1 ≤ p ≤ ∞ such that `p is
block finitely representable in the subspace generated by (xn)n. On the other
hand, E. Odell and Th. Schlumprecht [16] have shown that there exists a
reflexive space X admitting no `p as a spreading model. Thus the spreading
models of a space X lie strictly between the finitely representable spaces in
X and the spaces that are isomorphic to a subspace of X.

The spreading models associated to a Banach space X can be considered
as a cloud of Banach spaces, including many members with regular struc-
ture, surrounding the space X and offering information concerning the local
structure of X in an asymptotic manner. Our aim is to enlarge that cloud
and to fill in the gap between spreading models and the spaces which are
finitely representable in X. More precisely we extend the Brunel–Sucheston
concept of a spreading model and we show that under the new definition the
spreading models associated to a Banach space X form a whole hierarchy
of classes of spaces indexed by the countable ordinals. The first class of this
hierarchy is the classical spreading models. The initial step of this exten-
sion has already been done in [4] where the class of k-spreading models was
defined for every positive integer k. The transfinite extension introduced
in the present paper requires analogous ingredients that we are about to
describe.

The first one is F-sequences, that is, sequences of the form (xs)s∈F where
the index set F is a regular thin family of finite subsets of N (see Definition
2.7). Typical examples of such families are the k-element subsets of N and
also the maximal elements of the ξth Schreier family Sξ (see [2]). A sub-
sequence of (xs)s∈F is a restriction of the F-sequence to an infinite subset
of N, i.e. it is of the form (xs)s∈F�M where F�M = F ∩ [M ]<∞. Among
other things we study the convergence of F-sequences in a topological space
(X, T ). In this setting we show that when the closure of (xs)s∈F in (X, T )
is a compact metrizable space then we can always restrict to an infinite
subset M of N where the subsequence (xs)s∈F�M is subordinated, that is, if

F̂ = {t ∈ [N]<∞ : ∃s ∈ F such that t is an initial segment of s} then there

(2) A Banach space Y is finitely representable in X if for every finite-dimensional
subspace F of Y and every ε > 0 there exists a bounded linear injection T : F → Y such
that ‖T‖ · ‖T−1‖ < 1 + ε.
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exists a continuous map ϕ : F̂�M → X with ϕ(s) = xs for every s ∈ F�M
(see Definition 5.8 and Theorem 5.10).

The second ingredient is the notion of plegma families which extends
the corresponding notion in [4]. Roughly speaking a plegma family is a
sequence (s1, . . . , sl) of nonempty finite subsets of N where the first elements
of s1, . . . , sl are in increasing order and they lie before their second elements
which are also in increasing order and so on (see Definition 3.1). Here plegma
families do not necessarily consists of sets of equal size.
F-sequences and plegma families are the key components for the def-

inition of higher order spreading models which goes as follows. Given an
F-sequence (xs)s∈F in a Banach space X and a sequence (en) in a semi-
normed space (E, ‖ · ‖∗) we will say that (xs)s∈F generates (en)n as an
F-spreading model if for some null sequence (δn)n of positive reals we have

(1.2)
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min s1. Note that the F-sequences (xs)s∈F generate a higher order spreading
model just as the ordinary sequences (xn)n do in the classical definition.
Moreover, since the family of all k-element subsets of N is a regular thin
family, the above definition extends the classical definition of the spreading
model as well as the one of k-spreading models given in [4].

Brunel–Sucheston’s theorem [6] extends to bounded F-sequences (xs)s∈F
in a Banach space X. Namely, every bounded F-sequence in X contains a
subsequence (xs)s∈F�M generating an F-spreading model. The proof is based
on the fact that plegma families with elements in a regular thin family have
strong Ramsey properties. It is notable that the concept of F-spreading
model is independent of the particular family F and actually depends only
on the order (3) of the family F . Namely, if (en)n is an F-spreading model
then it is also a G-spreading model for every regular thin family G with
o(G) ≥ o(F). This fact allows us to classify all the F-spreading models
of a Banach space X as an increasing transfinite hierarchy of the form
(SMξ(X))ξ<ω1 . Let us point out that the ξ-spreading models of X have
a weaker asymptotic relation to the space X as ξ increases to ω1.

The infinite graphs with vertices from a regular thin family and edges
the plegma pairs are the key for the proof of the above results. Specifically,
it is shown that if G and F are two regular thin families with o(G) ≥ o(F)
then there exist an infinite subset M of N and a plegma preserving map

(3) The order of F , denoted by o(F), is a countable ordinal which measures the
complexity of F (see Section 2 for the precise definition). For example the family of
k-element subsets of N has order k, while the ξth Schreier family has order o(Sξ) = ωξ.
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ϕ : G�M → F (that is, (ϕ(s1), ϕ(s2)) is a plegma pair in F whenever (s1, s2)
is plegma pair in G�M). Moreover, it is also shown that such an embedding
is forbidden if we wish to go from families of lower order to families of
higher order. More precisely, if o(F) < o(G) then for every M ∈ [N]∞ and
ϕ : F�M → G there exists L ∈ [M ]∞ such that for every plegma pair (s1, s2)
in F�L neither (φ(s1), φ(s2)) nor (φ(s2), φ(s1)) is a plegma pair in G (see
Theorems 3.17 and 3.19).

The paper is organized as follows. In Section 2 we review some basic facts
concerning families of finite subsets of N and we define regular thin families.
In Section 3 we study plegma families and their properties. In Section 4
we introduce the definition of higher order spreading models. In Section 5
we deal with F-sequences (xs)s∈F in a general topological space. Finally, in
Section 6 we study F-sequences which generate several classes of spreading
sequences as spreading models. In this last section we show that several well
known results concerning the classical spreading models remain valid in the
higher order setting. For instance, we show that a subordinated, seminor-
malized and weakly null F-sequence generates an unconditional spreading
model.

The present paper is an updated version of the first part of [3]. The
second part which deals with certain examples will be presented elsewhere.

1.1. Preliminary notation and definitions. By N = {1, 2, . . .} we
denote the set of all positive integers. Throughout the paper we shall identify
strictly increasing sequences in N with their corresponding range i.e. we view
every strictly increasing sequence in N as a subset of N and conversely every
subset of N as the sequence resulting from the increasing ordering of its ele-
ments. We will use capital letters L,M,N, . . . to denote infinite subsets and
lower case letters s, t, u, . . . to denote finite subsets of N. For every infinite
subset L of N, [L]<∞ (resp. [L]∞) stands for the set of all finite (resp. infinite)
subsets of L. For an L = {l1 < l2 < · · · } ∈ [N]∞ and a positive integer k ∈ N,
we set L(k) = lk. Similarly, for a finite subset s = {n1 < · · · < nm} of N and
for 1 ≤ k ≤ m we set s(k) = nk. For an L = {l1 < l2 < · · · } ∈ [N ]∞ and a
finite subset s = {n1 < · · · < nm} (resp. for an infinite subset N = {n1 <
n2 < · · · } of N) we set L(s) = {ln1 , . . . , lnm} = {L(s(1)), . . . , L(s(m))} (resp.
L(N) = {ln1 , ln2 , . . .} = {L(N(1)), L(N(2)), . . .}).

For s ∈ [N]<∞ by |s| we denote the cardinality of s. For L ∈ [N]∞ and
m ∈ N we denote by [L]m the set of all s ∈ [L]<∞ with |s| = m. Also for
every nonempty s ∈ [N]<∞ and 1 ≤ k ≤ |s| we set s|k = {s(1), . . . , s(k)}
and s|0 = ∅. Moreover, for s, t ∈ [N]<∞, we write t v s (resp. t @ s)
to denote that t is an initial (resp. proper initial) segment of s. Also, for
s, t ∈ [N]<∞ we write t < s if either at least one of them is the empty set,
or max t < min s.
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Concerning Banach space theory, although our notation is standard, we
present for completeness some basic concepts that we will need. Let X be a
Banach space. We say that a sequence (xn)n in X is bounded (resp. seminor-
malized) if there exists M > 0 (resp. M1,M2 > 0) such that ‖xn‖ ≤M (resp.
M1 ≤ ‖xn‖ ≤M2) for all n ∈ N. The sequence (xn)n is called Schauder basic
if there exists a constant C ≥ 1 such that

(1.3)
∥∥∥ k∑
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C-unconditional if for every m ∈ N, F ⊆ {1, . . . ,m} and a1, . . . , am ∈ R,
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2. Regular thin families. In this section we define regular thin families

of finite subsets of N and we study their basic properties. The definition is
based on two well known concepts, namely that of regular families traced
back to [2] and that of thin families defined in [15] and extensively studied
in [17] and [14].

2.1. On families of finite subsets of N. We start with a review of the
basic concepts concerning families of finite subsets of N. For a more detailed
exposition the reader is referred to [5].

2.1.1. Ramsey properties of families of finite subsets of N. For a family
F ⊆ [N]<∞ and L ∈ [N]∞, we set

(2.1) F�L = {s ∈ F : s ⊆ L} = F ∩ [L]<∞.

Recall some terminology from [12]. Let F ⊆ [N]<∞ and M ∈ [N]∞. We
say that F is large in M if for every L ∈ [M ]∞, F�L is nonempty. We say
that F is very large in M if for every L ∈ [M ]∞ there exists s ∈ F such that
s v L. The following is a restatement (see [12]) of a well known theorem of
F. Galvin and K. Prikry [10].

Theorem 2.1. Let F ⊆ [N]<∞ and M ∈ [N]∞. If F is large in M then
there exists L ∈ [M ]∞ such that F is very large in L.

2.1.2. The order of a family of finite subsets of N. Let F ⊆ [N]<∞ be a
nonempty family of finite subsets of N. The order of F ⊆ [N]<∞ is defined
as follows (see also [17]). First, we assign to F its (v-)closure, i.e. the set

(2.2) F̂ = {t ∈ [N]<∞ : ∃s ∈ F with t v s},

which is a tree under the initial segment ordering. If F̂ is ill-founded (i.e.

there exists an infinite sequence (sn)n in F̂ such that sn @ sn+1) then we set
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o(F) = ω1. Otherwise for every maximal element s of F̂ we set oF̂ (s) = 0

and recursively for every s in F̂ we define

(2.3) oF̂ (s) = sup{oF̂ (t) + 1 : t ∈ F̂ and s @ t}.
The order of F , denoted by o(F), is defined to be the ordinal oF̂ (∅). For

instance o({∅}) = 0 and o([N]k) = k for every k ∈ N.
For every n ∈ N, we define

(2.4) F(n) = {s ∈ [N]<∞ : n < s and {n} ∪ s ∈ F},
where n < s means that either s = ∅ or n < min s. It is easy to see that for
every nonempty family F ⊆ [N]<∞ we have

(2.5) o(F) = sup{o(F(n)) + 1 : n ∈ N}.
2.1.3. Regular families. A family R ⊆ [N]<∞ is said to be hereditary

if for every s ∈ F and t ⊆ s we have t ∈ F , and spreading if for any
n1 < · · · < nk and m1 < · · · < mk with n1 ≤ m1, . . . , nk ≤ mk we have
{m1, . . . ,mk} ∈ R whenever {n1, . . . , nk} ∈ R. Also, R is called compact if
the set {χs ∈ {0, 1}N : s ∈ R} of characteristic functions of the members of
R is a closed subset of {0, 1}N under the product topology.

A family R of finite subsets of N will be called regular if it is compact,
hereditary and spreading. Notice that for every regular family R, R̂ = R
and R(n) is also regular for every n ∈ N. Moreover, using (2.5), by induction
on the order of R we easily get the following.

Proposition 2.2. Let R be a regular family. Then o(R�L) = o(R) for
every L ∈ [N]∞.

Exploiting the method of [17] we obtain the next result.

Proposition 2.3. For every ξ < ω1 there exists a regular family Rξ
with o(Rξ) = ξ.

Proof. For ξ = 0 we set R0 = {∅}. We proceed by induction on ξ < ω1.
Assume that for some ξ < ω1 and for each ζ < ξ we have defined a regular
family Rζ with o(Rζ) = ζ. If ξ is a successor ordinal, i.e. ξ = ζ + 1, then we
set

Rξ = {{n} ∪ s : n ∈ N, s ∈ Rζ and n < s}.
If ξ is a limit ordinal, then we choose a strictly increasing sequence (ζn)n
such that ζn → ξ and we set

Rξ =
⋃
n

{
s ∈ Rζn : min s ≥ n

}
=
⋃
n

Rζn�[n,∞).

It is easy to check that Rξ is regular with o(Rξ) = ξ for all ξ < ω1.

We will need some combinatorial properties of regular families. To this
end we give the following definition.
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For every R ⊆ [N]<∞ and L ∈ [N]∞, let

(2.6) L(R) = {L(s) : s ∈ R}.

Notice that o(R) = o(L(R)) and if R is compact (or hereditary) then so is
L(R). It is also easily verified that if R is spreading then L1(R) ⊆ L2(R)
for every L1 ⊆ L2 in [N]∞, and more generally,

(2.7) L1(R(k)) ⊆ L2(R(k))

for every k ∈ N and L1, L2 ∈ [N]∞ satisfying {L1(j) : j > k} ⊆ {L2(j) :
j > k} (where L(R(k)) = {L(s) : s ∈ R(k)}).

Proposition 2.4. Let R,S be regular families of finite subsets of N with
o(R) ≤ o(S). Then for every M ∈ [N]∞ there exists L ∈ [M ]∞ such that
L(R) ⊆ S.

Proof. If o(R) = 0, i.e. R = {∅}, then the conclusion trivially holds.
Suppose that for some ξ < ω1 the proposition is true for any regular families
R′,S ′ ⊆ [N]<∞ such that o(R′) < ξ and o(R′) ≤ o(S ′). Let R,S be regular
with o(R) = ξ and let M ∈ [N]∞. By (2.5) we have o(R(1)) < o(R). Hence
o(R(1)) < o(S) and so there is some l1 ∈ N such that o(R(1)) ≤ o(S(l1)).
Since S is spreading we have o(S(l1)) ≤ o(S(n)) for all n ≥ l1 and therefore
we may suppose that l1 ∈ M . Since R(1) and S(l1) are regular families, by
our inductive hypothesis there is L1 ∈ [M ]∞ such that L1(R(1)) ⊆ S(l1).

Proceeding in the same way we construct a strictly increasing sequence
(lj)j in M and a decreasing sequence M = L0 ⊃ L1 ⊃ · · · of infinite subsets
of M such that (i) lj+1 ∈ Lj , (ii) lj+1 > Lj(j), and (iii) Lj(R(j)) ⊆ S(lj), for
all j ≥ 1.

We set L = {lj}j and we claim that L(R) ⊆ S. Indeed, by the above
construction we see that for every k ∈ N, {L(j)}j>k ⊆ {Lk(j)}j>k. Therefore
by (2.7) and (iii) above, we get

(2.8) L(R(k)) ⊆ Lk(R(k)) ⊆ S(lk).

It is easy to see that L(R(k)) = L(R)(lk) and so (2.8) shows L(R)(lk) ⊆ S(lk).
Since this holds for every k ∈ N, we conclude that L(R) ⊆ S.

The next corollary is an immediate consequence.

Corollary 2.5. Let R,S be regular families of finite subsets of N with
o(R) = o(S). Then for every M ∈ [N]∞ there exists L ∈ [M ]∞ such that
L(R) ⊆ S and L(S) ⊆ R.

2.1.4. Thin families. A family F of finite subsets of N is called thin if
there do not exist s, t in F such that s is a proper initial segment of t. The
following result is due to C. St. J. A. Nash-Williams [15]. Since it plays a
crucial role in what follows, for the sake of completeness we present its proof.
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Proposition 2.6. Let F ⊆ [N]<∞ be a thin family. Then for every

finite partition F =
⋃k
i=1Fi (k ≥ 2) of F and every M ∈ [N]∞ there exist

L ∈ [M ]∞ and 1 ≤ i0 ≤ k such that F�L ⊆ Fi0.

Proof. It suffices to show the result for k = 2 since the general case
follows easily by induction. So let F = F1 ∪F2 and M ∈ [N]∞. Then either
there is L ∈ [M ]∞ such that F1�L = ∅ or F1 is large in M . In the first
case it is clear that F�L ⊆ F2. In the second case by Theorem 2.1 there is
L ∈ [M ]∞ such that F1 is very large in L. We claim that F�L ⊆ F1. Indeed,
let s ∈ F�L. We choose N ∈ [L]∞ such that s v N and let t v N be such
that t ∈ F1. Then s, t are v-comparable members of F and since F is thin,
s = t ∈ F1. Therefore F�L ⊆ F1.

2.2. Regular thin families. We are now ready to introduce the main
concept of this section.

Definition 2.7. A family F of finite subsets of N will be called regular
thin if (a) F is thin, and (b) the v-closure F̂ of F is a regular family.

The next lemma allows us to construct regular thin families from regular
ones. We will use the following notation. For a family R ⊆ [N]<∞ we set

(2.9) M(R) = {s ∈ R : s is v -maximal in R}.

Notice that a family F ⊆ [N]<∞ is thin if and only if F =M(F̂).

Lemma 2.8. Let R be a regular family. Then the family M(R) is thin

and M̂(R) = R. Therefore M(R) is regular thin with o(M(R)) = o(R).

Proof. Since M(R) ⊆ R and R is hereditary, we have M̂(R) ⊆ R. To

show that R ⊆ M̂(R) notice that for every s ∈ R there exists a t ∈ M(R)

such that s v t, otherwise R would not be compact. Hence M̂(R) = R and
clearlyM(R) is thin. ThusM(R) is regular thin. Finally, by the definition

of the order, we have o(M(R)) = o(M̂(R)), hence o(M(R)) = o(R).

Corollary 2.9. For every ξ < ω1 there is a regular thin family Fξ with
o(Fξ) = ξ.

Proof. Let ξ < ω1 and Rξ be a regular family with o(Rξ) = ξ. Then
Fξ =M(Rξ) is as desired.

Corollary 2.10. The map which sends F to F̂ is a bijection between
the set of all regular thin families and the set of all regular ones. Moreover,
the inverse map sends each regular family R to M(R).

Proof. By the definition of regular thin families, the map F → F̂ sends
each regular thin family to a regular one. By Lemma 2.8 we deduce that
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the map is 1-1, onto and the inverse map sends each regular family R to
M(R).

Remark 1. If F is a regular thin family with o(F) = k < ω, then
it is easy to see that there exists n0 such that F�[n0,∞) = {s ∈ [N]k :
min s ≥ n0}. Therefore, for each k < ω, the family [N]k is essentially the
unique regular thin family of order k. However this does not remain valid
for regular thin families of order ξ ≥ ω. For instance, for every unbounded
increasing map f : N→ N the family F = {s ∈ [N]<∞ : |s| = f(min s)} is a
regular thin family of order ω.

Lemma 2.11. Let R be a regular family and L ∈ [N]∞. ThenM(R)�L =

M(R�L), and setting M = M(R), we have M̂�L = R�L and o(M�L)
= o(R).

Proof. It is easy to see thatM(R)�L ⊆M(R�L). To show the converse
inclusion let s ∈ M(R�L) and assume that s /∈ M(R). Since R�L ⊆ R,
s ∈ R and therefore there exists some t ∈ M(R) with s @ t. Since R is
spreading this implies there exists t′ ∈ R�L with s @ t′. Thus s /∈M(R�L),
a contradiction. Therefore s ∈ M(R). Since s ∈ [L]<∞, we see that s ∈
M(R)�L. Therefore M(R�L) =M(R)�L.

Since M�L =M(R)�L ⊆ R�L and R�L is hereditary, we have M̂�L ⊆
R�L. Conversely, let s ∈ R�L. Since R�L is compact there is t ∈M(R�L) =

M(R)�L with s v t. Hence s ∈ M̂�L and M̂�L = R�L.

Finally, o(M�L) = o(M̂�L) = o(R�L) = o(R), where the last equality
follows by Proposition 2.2.

Corollary 2.12. Let F be a regular thin family and L ∈ [N]∞. Then

F�L =M(F̂�L), F̂�L = F̂�L, o(F�L) = o(F).

Proof. Since F is thin we have F = M(F̂). Setting R = F̂ in Lemma
2.11 yields the result.

Corollary 2.13. Let F be a regular thin family. Then for every
M ∈ [N]∞ there exists L ∈ [M ]∞ such that F�L is very large in L.

Proof. If F is regular thin then since F̂ is spreading, F̂�N is nonempty

for every N ∈ [N]∞. Since F̂�N = F̂�N , we see that F�N is nonempty too,
i.e. F is large in N. Therefore, by Theorem 2.1, for every M ∈ [N]∞ there
exists L ∈ [M ]∞ such that F�L is very large in L.

Definition 2.14. For two families F ,G of finite subsets of N, we write
F v G (resp. F @ G) if every element in F has an extension (resp. proper
extension) in G and every element in G has an initial (resp. proper initial)
segment in F .
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The following is a consequence of a more general result from [11].

Proposition 2.15. Let F ,G ⊆ [N]<∞ be regular thin families with
o(F) < o(G). Then for every M ∈ [N]∞ there exists L ∈ [M ]∞ such that
F�L @ G�L.

Proof. By Corollary 2.13 we deduce that there exists L1 ∈ [M ]∞ such
that both F ,G are very large in L1. So for every L ∈ [L1]

∞ and every
t ∈ G�L there exists s ∈ F�L such that s, t are comparable.

Let G1 be the set of all elements of G which have a proper initial segment
in F and G2 = G\G1. By Proposition 2.6 there exist i0 ∈ {1, 2} and L ∈ [L1]

∞

such that G�L ⊆ Gi0 . It suffices to show that i0 = 1. Indeed, if i0 = 2 then
for every t ∈ G�L there is s ∈ F such that t v s. This in conjunction with
Corollary 2.12 yields o(G) = o(G�L) ≤ o(F), which is a contradiction.

A similar but weaker result holds when o(F) = o(G).

Proposition 2.16. Let F ,G ⊆ [N]<∞ be regular thin families such that
o(F) = o(G). Then there exists L0 ∈ [N]∞ such that for every M ∈ [N]∞

there exists L ∈ [L0(M)]∞ such that L0(F)�L v G�L.

Proof. By Proposition 2.4 there exists L0 ∈ [N]∞ such that L0(F̂) ⊆ Ĝ.
Let M ∈ [N]∞. Notice that L0(F) and G are large in L0(M). Hence by
Theorem 2.1 there exists L ∈ [L0(M)]∞ such that L0(F) and G are very

large in N . Since L0(F̂) ⊆ Ĝ, we conclude that L0(F)�L v G�L.

Technically the above two propositions are incorporated in one as follows.

Corollary 2.17. Let F ,G ⊆ [N]<∞ be regular thin families with o(F) ≤
o(G). Then there exists L0 ∈ [N]∞ such that for every M ∈ [N]∞ there exists
L ∈ [L0(M)]∞ such that L0(F)�L v G�L.

Proof. If o(F) < o(G), we set L0 = N. Then L0(F) = F and L0(M) = M
and the conclusion follows by Proposition 2.15. If o(F) = o(G) the result is
immediate by Proposition 2.16.

3. Plegma families. In this section we introduce the notion of plegma
families initially defined in [4] for k-subsets of N. Here we do not assume
that all members of a plegma family are necessarily of the same cardinality.

3.1. Definition and basic properties. We begin by stating the defi-
nition of a plegma family.

Definition 3.1. Let l ∈ N and s1, . . . , sl be nonempty finite subsets
of N. The l-tuple (sj)

l
j=1 will be called a plegma family if the following are

satisfied:

(i) For every i, j∈{1, . . . , l} and k∈N with i < j and k ≤ min(|si|, |sj |),
we have si(k) < sj(k).
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(ii) For every i, j ∈ {1, . . . , l} and k ∈ N with k ≤ min(|si|, |sj | − 1), we
have si(k) < sj(k + 1).

For instance a pair ({n1}, {n2}) of singletons is plegma iff n1 < n2, and
a pair of doubletons ({n1,m1}, {n2,m2}) is plegma iff n1 < n2 < m1 < m2.
More generally for two nonempty s, t ∈ [N]<∞ with |s| ≤ |t| the pair (s, t) is
a plegma pair iff s(1) < t(1) < s(2) < t(2) < · · · < s(|s|) < t(|s|). Of course
the situation is more involved when the size of a plegma family is large.

As we have mentioned in [4] plegma families are related and, as we will
see, have similar Ramsey properties to, shift graphs on thin families of finite
subsets of N (see [8]).

Below we gather together some stability properties of plegma families.
We omit the proof as it is a direct application of the definition.

Proposition 3.2. Let (sj)
l
j=1 be a family of finite subsets of N. Then

the following are satisfied:

(i) If (sj)
l
j=1 is a plegma family then so is (sjm)km=1 for every 1 ≤ k ≤ l

and 1 ≤ j1 < · · · < jk ≤ l.
(ii) The family (sj)

l
j=1 is a plegma family iff (sj1 , sj2) is a plegma pair

for every 1 ≤ j1 < j2 ≤ l.
(iii) If (sj)

l
j=1 is a plegma family then so is (tj)

l
j=1 whenever ∅ 6= tj v sj

for 1 ≤ j ≤ l.
(iv) If (sj)

l
j=1 is a plegma family then so is (L(sj))

l
j=1 for every

L ∈ [N]∞.

For every family F ⊆ [N]<∞ and l ∈ N we denote by Plml(F) the set
of all (sj)

l
j=1 such that s1, . . . , sl ∈ F and (sj)

l
j=1 is a plegma family. We

also set Plm(F) =
⋃∞
l=1 Plml(F). Our main aim is to show that for every

l ∈ N, Plml(F) is a Ramsey family. To this end we need some preparatory
lemmas.

Lemma 3.3. Let F be a regular thin family and l ∈ N. Then for every
(sj)

l
j=1 ∈ Plml(F) we have |s1| ≤ · · · ≤ |sl|.

Proof. By Proposition 3.2(ii) it suffices to show the conclusion for l = 2.
Assume on the contrary that there exists a plegma pair (s1, s2) in F with
|s1| > |s2|. We pick s ∈ [N]<∞ such that |s| = |s1|, s2 @ s and s(|s2| + 1)
> max s1. By the definition of the plegma family, we see that for every
1 ≤ k ≤ |s2|, s1(k) < s2(k) = s(k). Hence, for every 1 ≤ k ≤ |s1|, we have

s1(k) ≤ s(k). By the spreading property of F̂ we get s ∈ F̂ . But since s2 is
a proper initial segment of s we get s2 6∈ F , which is a contradiction.

Lemma 3.4. Let F be a thin family of finite subsets of N and l ∈ N.
Let (sj)

l
j=1, (tj)

l
j=1 ∈ Plml(F) with |s1| ≤ · · · ≤ |sl|, |t1| ≤ · · · ≤ |tl| and
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j=1 sj v

⋃l
j=1 tj. Then (sj)

l
j=1 = (tj)

l
j=1 and consequently

⋃l
j=1 sj =⋃l

j=1 tj.

Proof. Suppose that for some 1 ≤ m ≤ l we have (si)i<m = (ti)i<m. We

will show that sm = tm. Let s =
⋃l
j=m sj and t =

⋃l
j=m tj . Then by our

assumptions s v t. Moreover since |sm| ≤ · · · ≤ |sl| and |tm| ≤ · · · ≤ |tl|, we
easily conclude that sm(j) = s((j − 1)(l −m + 1) + 1) for all 1 ≤ j ≤ |sm|
and similarly tm(j) = t((j−1)(l−m+ 1) + 1) for all 1 ≤ j ≤ |tm|. Hence, as
s v t, we see that for all 1 ≤ j ≤ min{|tm|, |sm|}, sm(j) = tm(j). Therefore
sm and tm are v-comparable. Since F is thin we have sm = tm. By induction
on 1 ≤ m ≤ l, we obtain sj = tj for every 1 ≤ j ≤ l.

By the above two lemmas we have the following.

Corollary 3.5. Let F be a regular thin family of finite subsets of N.
Let l ∈ N and set

U =
{ l⋃
i=1

si : (si)
l
i=1 ∈ Plml(F)

}
.

Then U is a thin family.

It is easy to check that the family U defined above is actually regular
thin. Since we will not make use of this fact, we omit its proof.

Theorem 3.6. Let M be an infinite subset of N, l ∈ N and F be a
regular thin family. Then for every finite partition Plml(F�M) =

⋃p
i=1 Pi,

there exist L ∈ [M ]∞ and 1 ≤ i0 ≤ p such that Plml(F�L) ⊆ Pi0.

Proof. Let U = {
⋃l
j=1 sj : (sj)

l
j=1 ∈ Plml(F�M)}. By Corollary 3.5 we

find that U is thin. Moreover, by Lemma 3.4 the map Φ : Plml(F�M)→ U
sending each plegma l-tuple (sj)

l
j=1 with si ∈ F�M for 1 ≤ i ≤ l to its union⋃l

j=1 sj is a bijection. We set Ui = Φ(Pi) for 1 ≤ j ≤ p. Then U =
⋃p
i=1 Ui

and since U is thin, by Proposition 2.6, there exist j0 and L ∈ [M ]∞ such
that U�L ⊆i0 Ui0 or equivalently Plml(F�L) ⊆ Pj0 .

3.2. Plegma paths. In this subsection we introduce the definition of
plegma paths in finite subsets of N and we present some of their properties.
Such paths will be used in the next subsection for the study of plegma
preserving maps.

Definition 3.7. Let k ∈ N and s0, . . . , sk be nonempty finite subsets
of N. We will say that (sj)

k
j=0 is a plegma path of length k tfrom s0 to sk if

for every 0 ≤ j ≤ k − 1, the pair (sj , sj+1) is plegma. Similarly, a sequence
(sj)j of nonempty finite subsets of N will be called an infinite plegma path
if for every j ∈ N the pair (sj , sj+1) is plegma.

The next simple lemma will prove very useful.
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Lemma 3.8. Let (s0, . . . , sk−1, s) be a plegma path of length k from s0 to
s such that s0 < s. Then

k ≥ min{|si| : 0 ≤ i ≤ k − 1}.
Proof. Suppose that k < min{|si| : 0 ≤ i ≤ k − 1}. Then s(1) <

sk−1(2) < sk−2(3) < · · · < s1(k) < s0(k + 1), which contradicts s0 < s.

For a family F ⊆ [N]<∞ a plegma path in F is a (finite or infinite) plegma
path which consists of elements of F . It is easy to verify the existence of
infinite plegma paths in F whenever F is very large in an infinite subset
L of N. In particular, let s ∈ F�L have the following property: for every
j = 1, . . . , |s| − 1 there exists l ∈ L such that s(j) < l < s(j + 1). Then
it is straightforward that there exists s′ ∈ F�L such that the pair (s, s′) is
plegma and moreover s′ shares the same property with s. Based on this one
can built an infinite plegma path in F of elements with the above property.

These remarks motivate the following definition. For every F ⊆ [N]<∞

and L ∈ [N]∞, we set

(3.1) F��L = {s ∈ F�L : ∀1 ≤ j ≤ |s|−1 ∃l ∈ L with s(j) < l < s(j+1)}.
The proof of the next lemma follows the lines of the one of Lemma 2.11.

Lemma 3.9. Let F be a regular thin family and L ∈ [N]∞. Then F̂��L =

F̂ ��L, i.e. s ∈ F��L iff s is v-maximal in F̂ ��L.

We are now ready to present the main result of this subsection. In terms
of graph theory it states that in the (directed) graph with vertices the el-
ements of F��L and edges the plegma pairs (s, t) in F��L, the distance
between two vertices s0 and s with s0 < s is equal to the cardinality of s0.

Theorem 3.10. Let F be a regular thin family and L ∈ [N]∞. Assume
that F is very large in L. Then for every s0, s ∈ F��L with s0 < s there
exists a plegma path (s0, . . . , sk−1, s) in F��L of length k = |s0|. Moreover
|s0| is the minimal length of a plegma path in F��L from s0 to s.

Proof. By Lemmas 3.8 and 3.3 every plegma path in F from s0 to s
is of length at least |s0|. Therefore for s0 < s a plegma path of the form
(s0, . . . , sk−1, s) with s0, . . . , sk−1, s ∈ F and k = |s0| certainly is of minimal
length.

We will actually prove a slightly more general result. Namely we will show
that for every t in F̂��L and s ∈ F��L with t < s there exists a plegma path
of length |t| from t to s such that all its elements except perhaps t belong
to F��L.

For the proof we will use induction on the length of t. The case |t| = 1
is trivial, since for every s ∈ [N]<∞ with t < s the pair (t, s) is already a
plegma path of length 1 from t to s. Suppose that for some k ∈ N the above
holds for all t in F̂��L with |t| = k.
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Let t ∈ F̂��L with |t| = k + 1 and s ∈ F��L with t < s. Then there
exist n1 < n2 < · · · < nk+1 in N such that nj − nj−1 > 1 for 2 ≤ j ≤ k and
t = {L(nj) : 1 ≤ j ≤ k + 1}. We set t0 = {L(nj − 1) : 2 ≤ j ≤ k + 1}. Since
nj − 1 > nj−1 we see that t0 is of equal cardinality and pointwise strictly

greater than t \ {max t}. Hence, since F̂ is spreading, we have t0 ∈ F̂��L
and moreover t0 cannot be a v-maximal element of F̂��L. By Lemma 3.9 we
find that F��L is the set of all v-maximal elements of F̂��L. Therefore, we
conclude that t0 ∈ F̂ \ F . Thus, since |t0| = k, by the inductive hypothesis,
there exists a plegma path (t0, s1, . . . , sk−1, s) of length k = |t0| from t0 to
s with all s1, . . . , sk−1, s in F��L.

Let l = |s1|. Since (t0, s1) is a plegma pair with t0 ∈ F̂ \ F and s1 ∈ F ,
arguing as in Lemma 3.3, we see that l ≥ k + 1. Moreover since s1 ∈ F��L,
there exist m1 < · · · < ml in N such that mj −mj−1 > 1 and s1 = {L(mj) :
1 ≤ j ≤ l}. Notice that n2 ≤ m1 < n3 ≤ m2 < · · · < nk ≤ mk−1 < mk+1−1.

We set w = t0 ∪ {L(mj − 1) : k + 1 ≤ j ≤ l} and let L′ ∈ [L]∞ be
such that w is an initial segment of L′. Notice that |w| = l. Since F is very
large in L there exists s0 ∈ F with s0 an initial segment of L′. Using again
the fact that F̂ is spreading it is shown that |t0| < |s0| ≤ l and therefore
t0 @ s0 v w.

It is easy to check that (t, s0) and (s0, s1) are plegma pairs. Hence the
sequence (t, s0, . . . , sk−1, s) is a plegma path of length k+ 1 from t to s with
s0, . . . , sk−1, s ∈ F��L. The proof of the inductive step as well as of the
theorem is complete.

We close this section by presenting an application of the above theorem.
We start with the following definition.

Let X be a set, M ∈ [N]∞, F ⊆ [N]<∞ and ϕ : F → X. We will say that
ϕ is hereditarily nonconstant in M if for every L ∈ [M ]∞ the restriction of
ϕ on F�L is nonconstant. In particular if M = N then we will simply say
that ϕ is hereditarily nonconstant.

Lemma 3.11. Let F be a regular thin family, X be a set and ϕ : F → X
be hereditarily nonconstant. Then for every N ∈ [N]∞ there exists L ∈ [N ]∞

such that for every plegma pair (s1, s2) in F�L, ϕ(s1) 6= ϕ(s2).

Proof. By Theorem 3.6 there exists an L ∈ [N ]∞ such that either
ϕ(s1) 6= ϕ(s2) for all plegma pairs (s1, s2) in F�L, or ϕ(s1) = ϕ(s2) for
all plegma pairs (s1, s2) in F�L. The second alternative is excluded. Indeed,
suppose that ϕ(s1) = ϕ(s2), for every plegma pair (s1, s2) in F�L. By Corol-
lary 2.13 we may also assume that F�L is very large in L. Let s0 be the
unique initial segment of L0 =

{
L(2ρ) : ρ ∈ N

}
in F�L and let k = |s0|. We

set L′0 =
{
L(2ρ) : ρ ∈ N and ρ > k

}
. By Theorem 3.10 for every s ∈ F�L′0

there exists a plegma path (s0, s1, . . . , sk−1, s) of length k in F�L. Therefore
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for every s ∈ F�L′0 we have ϕ(s) = ϕ(sk−1) = · · · = ϕ(s1) = ϕ(s0), which
contradicts that ϕ is hereditarily nonconstant.

Proposition 3.12. Let F be a regular thin family, M ∈ [N]∞ and ϕ :
F → N be hereditarily nonconstant in M . Let also g : N → N. Then there
exists N ∈ [M ]∞ such that for every plegma pair (s1, s2) in F�N , ϕ(s2) −
ϕ(s1) > g(n), where min s2 = N(n).

Proof. By Theorem 3.6 there exists L ∈ [M ]∞ such that one of the
following holds:

(i) For every plegma pair (s1, s2) in F�L, we have ϕ(s1) = ϕ(s2).
(ii) For every plegma pair (s1, s2) in F�L, we have ϕ(s1) > ϕ(s2).
(iii) For every plegma pair (s1, s2) in F�L, we have ϕ(s1) < ϕ(s2).

Since ϕ is hereditarily nonconstant in M , by Lemma 3.11, case (i) is ex-
cluded. Similarly (ii) cannot occur since otherwise (ϕ(sn))n would form a
strictly decreasing sequence in N whenever (sn)n is an infinite plegma path
in F�L. Therefore, (iii) holds. We choose N ∈ [L]∞ such that for every
n ≥ 2,

|{l ∈ L : N(n− 1) < l < N(n)}| ≥ max
j≤n

g(j).

Let (s1, s2) be a plegma pair in F�N and let n ∈ N be such that min s2 =
N(n). Notice for every 1 ≤ k ≤ |s1|,

|{l ∈ L : s1(k) < l < s2(k)}| ≥ g(n).

Similarly for every |s1| < k ≤ |s2|,
|{l ∈ L : s2(k − 1) < l < s2(k)}| ≥ g(n).

The above shows that there exist t1, . . . , tg(n) ∈ F�L such that the (g(n)+2)-
tuple (s1, t1, . . . , tg(n), s2) is plegma. Hence ϕ(s2)− ϕ(s1) > g(n).

Corollary 3.13. Let F be a regular thin family, M ∈ [N]∞ and ϕ :
F → N be hereditarily nonconstant in M . Then there exists N ∈ [M ]∞ such
that for every plegma pair (s1, s2) in F�N we have ϕ(s2)− ϕ(s1) > 1.

3.3. Plegma preserving maps. Let F ⊆ [N]<∞ and ϕ : F → [N]<∞.
We will say that the map ϕ is plegma preserving if (ϕ(s1), ϕ(s2)) is a plegma
pair whenever (s1, s2) is a plegma pair in F .

Lemma 3.14. Let F ⊆ [N]<∞ and ϕ : F → [N]<∞. If ϕ is plegma
preserving then for every l ∈ N and (sj)

l
j=1 ∈ Plm(F), (ϕ(sj))

l
j=1 is a

plegma l-tuple.

Proof. Let l ∈ N and (sj)
l
j=1 be a plegma l-tuple in F . Then for every

1 ≤ j1 < j2 ≤ l we deduce that (sj1 , sj2) is plegma and thus (ϕ(sj1), ϕ(sj2))
is plegma. Hence, by Proposition 3.2(ii), (ϕ(sj))

l
j=1 is a plegma l-tuple.



38 S. A. Argyros et al.

Proposition 3.15. Let F be a regular thin family and ϕ : F → [N]<∞.
Then for every M ∈ [N]∞ there is L ∈ [M ]∞ such that exactly one of the
following holds:

(i) The restriction of ϕ to F�L is plegma preserving.
(ii) For every (s1, s2) ∈ Plm2(F�L) neither the pair (ϕ(s1), ϕ(s2)) nor

the pair (ϕ(s2), ϕ(s1)) is plegma.

Proof. Assume that there is M ∈ [N]∞ such that for every L ∈ [M ]∞

neither (i) nor (ii) holds true. Then by Theorem 3.6 there exists L ∈ [M ]∞

such that for every (s1, s2) ∈ Plm2(F�N), (ϕ(s2), ϕ(s1)) is plegma. But this
is impossible. Indeed, otherwise for an infinite plegma path (sn)n in F�N
the sequence (min sn)n would form a strictly decreasing infinite sequence
in N.

For a family F ⊆ [N]<∞ and a plegma preserving map ϕ : F → [N]<∞

we will say that ϕ is normal provided that |ϕ(s1)| ≤ |ϕ(s2)| for every plegma
pair (s1, s2) in F and |ϕ(s)| ≤ |s| for every s ∈ F .

Theorem 3.16. Let F be a regular thin family, M be an infinite subset
of N and let ϕ : F�M → [N]<∞ be a plegma preserving map. Then there
exists L ∈ [M ]∞ such that the restriction of ϕ to F�L is a normal plegma
preserving map.

Proof. By Theorem 3.6 there exists N ∈ [M ]∞ such that either (a)
|ϕ(s1)| ≤ |ϕ(s2)| for every plegma pair (s1, s2) in F�N , or (b) |ϕ(s1)| >
|ϕ(s2)| for every plegma pair (s1, s2) in F�N . Alternative (b) cannot oc-
cur since otherwise for an infinite plegma path (sn)n in F�N the sequence
(|ϕ(sn)|)n would form a strictly decreasing sequence in N. By Proposition
2.6 there exists L ∈ [N ]∞ such that either (c) |ϕ(s)| ≤ |s| for every s ∈ F�L,
or (d) |ϕ(s)| > |s| for every s ∈ F�L. We claim that (d) cannot hold true.
Indeed, since ϕ on F�L is plegma preserving, using a plegma path of suffi-
ciently large length, we may choose s0, s in F��L such that min s0 < min s
and minϕ(s0) < minϕ(s). Let k0 = |s0|. Then by Proposition 3.10 there
exists a plegma path (si)

k0
i=0 in F��L from s0 to s = sk0 of length k0. By

Lemma 3.14, (ϕ(si))
k0
i=0 is also a plegma path of length k0 from ϕ(s0) to

ϕ(sk0) and by Lemma 3.8 we have

(3.2) min{|ϕ(si)| : 0 ≤ i ≤ k0 − 1} ≤ k0.
Moreover by Lemma 3.4, we have |s0| ≤ |s1| ≤ · · · ≤ |sk0 |. Hence if (d) holds
true then

(3.3) min{|ϕ(si)| : 0 ≤ i ≤ k0 − 1} > min{|si| : 0 ≤ i ≤ k0 − 1} ≥ k0,
which contradicts (3.2).

Therefore we conclude that (a) and (c) hold true, i.e. the restriction of
ϕ on F�L is a normal plegma preserving map.
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3.4. Plegma preserving maps between thin families. In this sub-
section we are concerned with the question of the existence of a plegma
preserving map ϕ : G → F where G and F are regular thin families. We
shall show that such maps exist only when o(G) ≥ o(F). We start with a
positive result.

Theorem 3.17. Let F ,G be regular thin families with o(F) ≤ o(G).
Then for every M ∈ [N]∞ there exist N ∈ [N]∞ and a plegma preserving map
ϕ : G�N → F�M . Moreover, for every l ∈ N and t ∈ G�N , if min t ≥ N(l)
then minϕ(t) ≥M(l).

Proof. Let M ∈ [N]∞. By Corollary 2.17 there exists L0 ∈ [N]∞ and N ∈
[L0(M)]∞ such that L0(F)�N v G�N . Thus for every t ∈ G�N there exists
a unique st ∈ F such that L0(st) v t. Moreover, L0(st) v t ⊆ N ⊆ L0(M)
and therefore st ⊆ M . We define ϕ : G�N → F�M by setting ϕ(t) = st.
To see that ϕ is plegma preserving, let (t1, t2) be a plegma pair in G�N .
Then L0(ϕ(ti)) v ti for i ∈ {1, 2}, and therefore by Proposition 3.2(iv),
(L0(ϕ(t1)), L0(ϕ(t2))) and (ϕ(t1), ϕ(t2)) are also plegma pairs. Hence ϕ is
plegma preserving.

Finally, let l ∈ N and t ∈ G�N with min t ≥ N(l). Since L0(ϕ(t)) v t, we
have minL0(ϕ(t)) = min t and therefore

L0(minϕ(t)) = minL0(ϕ(t)) = min t ≥ N(l) ≥ L0(M)(l) = L0(M(l)).

Hence minϕ(t) ≥M(l).

For the following we shall need the next definition. Let F ⊆ [N]<∞ and
L ∈ [N]∞. We define

(3.4) L−1(F) = {t ∈ [N]<∞ : L(t) ∈ F}.
It is easy to see that for every family F ⊆ [N]<∞ and L ∈ [N]∞ the following
are satisfied:

(a) If F is very large in L then the family L−1(F) is very large in N.
(b) If F is regular thin then so is L−1(F).
(c) o(L−1(F))=o(F�L). In particular if F is regular thin then o(L−1(F))

= o(F).

Lemma 3.18. Let F be a regular thin family, L ∈ [N]∞ be such that F is
very large in L. Let ϕ : F�L→ [N]<∞ be a normal plegma preserving map.
Define ψ : L−1(F)→ [N]<∞ by ψ(u) = ϕ(L(u)) for every u ∈ L−1(F). Then
ψ is a normal plegma preserving map which in addition has the following
property: If u ∈ L−1(F)��N and w = ψ(u) then u(i) ≤ w(i) for every
1 ≤ i ≤ |w|.

Proof. It is easy to check that ψ is a normal plegma preserving map.
Therefore we pass to the proof of the property of ψ. First, by induction
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on k = u(1), we shall show that u(1) ≤ ψ(u)(1) for all u ∈ L−1(F)��N.
Indeed, if u(1) = 1 then obviously ψ(u)(1) ≥ 1 = u(1). Suppose that for
some k ∈ N and every u ∈ L−1(F)��N with u(1) = k we have ψ1(u)(1) ≥ k.
Let u ∈ L−1(F)��N with u(1) = k + 1. Since L−1(F) is regular thin and
very large in N, we easily see that there exists a unique u′ ∈ L−1(F) with
u′ v {u(ρ)− 1 : 1 ≤ ρ ≤ |u|}. Notice that (u′, u) is a plegma pair in L−1(F)
and u′(1) = k. Since ψ is a normal plegma preserving map we infer that
(ψ(u′), ψ(u)) is also a plegma pair. Hence ψ(u)(1) > ψ(u′)(1) ≥ u′(1) = k,
that is, ψ(u)(1) ≥ k + 1 = u(1).

Suppose now that for some i ∈ N and every u ∈ L−1(F)��N with
i ≤ |ψ(u)|, u(i) ≤ ψ(u)(i). Let u ∈ L−1(F)��N with i + 1 ≤ |ψ(u)|.
Since L−1(F) is very large in N, there exists u′ ∈ L−1(F)��N such that
{u(ρ) − 1 : 2 ≤ ρ ≤ |u|} v u′. Observe that (u, u′) is plegma pair in
L−1(F), |u| ≤ |u′| and u(i + 1) = u′(i) + 1. Since ψ is normal plegma
preserving, we see that (ψ(u), ψ(u′)) is also a plegma pair and in addition
i+1 ≤ |ψ(u)| ≤ |ψ(u′)|. Hence, ψ(u)(i+1) > ψ(u′)(i) ≥ u′(i) = u(i+1)−1,
that is, ψ(u)(i + 1) ≥ u(i + 1). By induction on i ∈ N the proof is com-
plete.

Theorem 3.19. Let F ,G be regular thin families with o(F) < o(G) and
let M ∈ [N]∞. Then there is no plegma preserving map from F�M to G.
More precisely for every M ∈ [N]∞ and ϕ : F�M → G there exists L ∈ [M ]∞

such that for every plegma pair (s1, s2) in F�L neither (φ(s1), φ(s2)) nor
(φ(s2), φ(s1)) is a plegma pair.

Proof. Assume that there exist M ∈ [N]∞ and ϕ : F�M → G such
that ϕ is plegma preserving. By Theorem 3.16 there exists L ∈ [M ]∞

such that the restriction of ϕ on F�L is a normal plegma preserving map.
By Corollary 2.13 we may also assume that F is very large in L. Since
o(L−1(F)) = o(F) < o(G), by Proposition 2.15 there exists N ∈ [N]∞ such
that L−1(F)�N @ G�N . We may assume that N(i + 1) − N(i) > 1 and
therefore L−1(F)�N ⊆ L−1(F)��N. Let ψ : L−1(F)→ [N]<∞ be defined by
ψ(u) = ϕ(L(u)) for every u ∈ L−1(F).

Pick u0 ∈ L−1(F)�N and set w0 = ψ(u0). Since L−1(F)�N @ G�N ,

we have u0 ∈ Ĝ \ G, and since ϕ takes values in G, we have w0 ∈ G. We
are now ready to derive a contradiction. Indeed, by Lemma 3.18, ψ is a
normal plegma preserving map, which implies that |w0| ≤ |u0|. Moreover,
since L−1(F)�N ⊆ L−1(F)��N, we have u0 ∈ L−1(F)��N. Hence, again by
Lemma 3.18, we get u0(i) ≤ w0(i) for every 1 ≤ i ≤ |w0|. Summarizing

we have u0 ∈ Ĝ \ G, |w0| ≤ |u0| and u0(i) ≤ w0(i) for every 1 ≤ i ≤ |w0|.
Since Ĝ is spreading we conclude that w0 ∈ Ĝ \ G, which is impossible.
Therefore there is no M ∈ [N]∞ and ϕ : F�M → G such that ϕ is plegma
preserving. By Proposition 3.15, for every M ∈ [N]∞ and ϕ : F�M → G
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there is L ∈ [M ]∞ such that for every plegma pair (s1, s2) in F�L neither
(φ(s1), φ(s2)) nor (φ(s2), φ(s1)) is plegma.

4. The hierarchy of spreading models. In this section we define the
class of ξ-spreading models of a Banach space X for every countable ordinal
1 ≤ ξ < ω1. The definition is a transfinite extension of the corresponding
one of finite order spreading models given in [4]. The basic ingredients of this
extension are the concepts of F-sequences in X, i.e. sequences of the form
(xs)s∈F with xs ∈ X for every s ∈ F , and plegma families with members in
F where F is a regular thin family.

4.1. The F-spreading models of a Banach space X. Let X be a
Banach space and F ⊆ [N]<∞ be a regular thin family. By an F-sequence
in X we will mean a map ϕ : F → X. An F-sequence in X will be usually
denoted by (xs)s∈F , where xs = ϕ(s) for all s ∈ F . Also, for every M ∈ [N]∞,
the map ϕ : F�M → X will be called an F-subsequence of (xs)s∈F and will
be denoted by (xs)s∈F�M . An F-sequence (xs)s∈F inX will be called bounded
(resp. seminormalized) if there exists C > 0 (resp. 0 < c < C) such that
‖xs‖ ≤ C (resp. c ≤ ‖xs‖ ≤ C) for every s ∈ F .

Lemma 4.1. Let (xs)s∈F be a bounded F-sequence in X. Let k ∈ N,
N ∈ [N]∞ and δ > 0. Then there exists M ∈ [N ]∞ such that

(4.1)

∣∣∣∣∥∥∥ k∑
j=1

ajxtj

∥∥∥− ∥∥∥ k∑
j=1

ajxsj

∥∥∥∣∣∣∣ ≤ δ
for every (tj)

k
j=1, (sj)

k
j=1 ∈ Plmk(F�M) and a1, . . . , ak ∈ [−1, 1].

Proof. Let (an)n0
n=1 be a δ/(3l)-net of the unit ball of (Rk, ‖·‖∞). Setting

an = (an1 , . . . , a
n
k) for every 1 ≤ n ≤ n0, we inductively construct N = N0 ⊇

N1 ⊇ · · · ⊇ Nn0 satisfying

(4.2)

∣∣∣∣∥∥∥ k∑
j=1

anj xtj

∥∥∥− ∥∥∥ k∑
j=1

anj xsj

∥∥∥∣∣∣∣ ≤ δ/3
for every 1 ≤ n ≤ n0 and every (sj)

k
j=1, (tj)

k
j=1 ∈ Plmk(F�Nn).

The inductive step is as follows. Suppose that N0, . . . , Nn−1 have been
constructed. Define gn : Plmk(F�Nn−1) → [0, lC] by gn((sj)

k
j=1) =

‖
∑k

j=1 a
n
j xsj‖. By dividing [0, lC] into disjoint intervals of length δ/3 and

applying Theorem 3.6, there is Nn ⊆ Nn−1 such that

|gn((tj)
k
j=1)− gn((sj)

k
j=1)| ≤ δ/3

for every (tj)
k
j=1, (sj)

k
j=1 ∈ Plmk(F�Nn).

We set M = M(Nn0). By (4.2) and since (an)n0
n=1 is a δ/3-net of the unit

ball of (Rk, ‖ · ‖∞), it is easy to see that L is as desired.
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Lemma 4.2. Let (xs)s∈F be a bounded F-sequence in X. Let l ∈ N,
N ∈ [N]∞ and δ > 0. Then there exists M ∈ [N ]∞ such that

(4.3)

∣∣∣∣∥∥∥ k∑
j=1

ajxtj

∥∥∥− ∥∥∥ k∑
j=1

ajxsj

∥∥∥∣∣∣∣ ≤ δ
for every 1 ≤ k ≤ l, (tj)

k
j=1, (sj)

k
j=1 ∈ Plmk(F�M) and a1, . . . , ak ∈ [−1, 1].

Proof. This follows easily by an iterated use of Lemma 4.1.

Lemma 4.3. Let (xs)s∈F be a bounded F-sequence in X. Then for every
sequence (δn)n of positive real numbers and N ∈ [N]∞ there exists M ∈ [N ]∞

satisfying

(4.4)

∣∣∣∣∥∥∥ k∑
j=1

ajxtj

∥∥∥− ∥∥∥ k∑
j=1

ajxsj

∥∥∥∣∣∣∣ ≤ δl
for every 1 ≤ k ≤ l, a1, . . . , ak ∈ [−1, 1] and (tj)

k
j=1, (sj)

k
j=1 ∈ Plmk(F�M)

such that s1(1), t1(1) ≥M(l).

Proof. This is straightforward by Lemma 4.2 and a standard diagonal-
ization.

Hence, assuming in the above lemma that (δn)n is a null sequence, we
deduce that for every l ∈ N and every sequence ((snj )lj=1)n of plegma l-tuples

in F�M with sn1 (1) → ∞ the sequence (‖
∑l

j=1 ajx
n
sj‖)n is convergent and

its limit is independent of the choice of ((snj )lj=1)n. Actually, we may define
a seminorm ‖ · ‖∗ on c00(N) for which the natural Hamel basis (en)n satisfies

(4.5)

∣∣∣∣∥∥∥ k∑
j=1

ajxsj

∥∥∥− ∥∥∥ k∑
j=1

ajej

∥∥∥
∗

∣∣∣∣ ≤ δl
for all 1 ≤ k ≤ l, (ai)

k
i=1 in [−1, 1] and (sj)

k
j=1 ∈ Plmk(F�M) with s1(1) ≥

M(l).

Let us notice here that there exist bounded F-sequences in Banach spaces
such that no seminorm resulting from Lemma 4.3 is a norm. For example
this happens in the case where (xs)s∈F is constant. Moreover, even if ‖ · ‖∗
is a norm on c00(N), the sequence (en)n is not necessarily Schauder basic.

We are now ready to give the definition of F-spreading models of a
Banach space X.

Definition 4.4. Let X be a Banach space, F be a regular thin family,
(xs)s∈F be an F-sequence in X. Let (E, ‖ · ‖∗) be an infinite-dimensional
seminormed linear space with Hamel basis (en)n. Also let M ∈ [N]∞ and
(δn)n be a null sequence of positive real numbers.
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We will say that the F-subsequence (xs)s∈F�M generates (en)n as an
F-spreading model (with respect to (δn)n) if for every l ∈ N, 1 ≤ k ≤ l,
(ai)

k
i=1 in [−1, 1] and (sj)

k
j=1 ∈ Plmk(F�M) with s1(1) ≥M(l), we have

(4.6)

∣∣∣∣∥∥∥ k∑
j=1

ajxsj

∥∥∥− ∥∥∥ k∑
j=1

ajej

∥∥∥
∗

∣∣∣∣ ≤ δl.
We will also say that (xs)s∈F admits (en)n as an F-spreading model if there
exists M ∈ [N]∞ such that (xs)s∈F�M generates (en)n as an F-spreading
model.

Finally, for a subset A of X, we will say that (en)n is an F-spreading
model of A if there exists an F-sequence (xs)s∈F in A which admits (en)n
as an F-spreading model.

The next remark is straightforward.

Remark 2. Let M ∈ [N]∞ be such that (xs)s∈F�M generates (en)n as
an F-spreading model. Then the following are satisfied:

(i) The sequence (en)n is spreading, i.e. for every n ∈ N, k1 < · · · < kn
in N and a1, . . . , an ∈ R we have ‖

∑n
j=1 ajej‖∗ = ‖

∑n
j=1 ajekj‖∗.

(ii) For every M ′ ∈ [M ]∞, (xs)s∈F�M ′ generates (en)n as an F-spreading
model.

(iii) For every null sequence (δ′n)n of positive reals there exists M ′ ∈
[M ]∞ such that (xs)s∈F�M ′ generates (en)n as an F-spreading model
with respect to (δ′n)n.

By Lemma 4.3 we get the following.

Theorem 4.5. Let F be a regular thin family and X be a Banach space.
Then every bounded F-sequence in X admits an F-spreading model. In par-
ticular for every bounded F-sequence (xs)s∈F in X and every N ∈ [N]∞ there
exists M ∈ [N ]∞ such that (xs)s∈F�M generates an F-spreading model.

4.2. Spreading models of order ξ. In this subsection we show that
Definition 4.4 is independent of the particular regular thin family F and
actually depends on the order of F . More precisely we have the following.

Lemma 4.6. Let F ,G be regular thin families with o(F) ≤ o(G). Let X
be a Banach space and (xs)s∈F be an F-sequence in X which admits an
F-spreading model (en)n. Then there exists a G-sequence (wt)t∈G such that
{wt : t ∈ G} ⊆ {xs : s ∈ F} and which admits (en)n as a G-spreading model.

Proof. Let M ∈ [N]∞ and (δn) ↘ 0 be such that (xs)s∈F�M generates
(en)n as an F-spreading model with respect to (δn)n. By Theorem 3.17 there
exist N ∈ [N]∞ and a plegma preserving map ϕ : G�N → F�M such that
minϕ(t) ≥ M(l) for every l ∈ N and t ∈ G�N with min t ≥ N(l). For every
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t ∈ G�N let wt = xϕ(t) and for every t ∈ G \ (G�N) let wt = xs0 where s0
is an arbitrary element of F . We claim that (wt)t∈G�N generates (en)n as a
G-spreading model with respect to (δn)n.

Indeed, fix l ∈ N, 1 ≤ k ≤ l, (aj)
k
j=1 in [0, 1] and (tj)

k
j=1 ∈ G�N with

t1(1) ≥ N(l). Let sj = ϕ(tj) for all 1 ≤ j ≤ k. Then (sj)
k
j=1 ∈ Plml(F�M)

and s1(1) ≥ M(l). Therefore, since (xs)s∈F�M generates (en)n as an F-
spreading model with respect to (δn)n, we have∣∣∣∣∥∥∥ k∑

j=1

ajwtj

∥∥∥− ∥∥∥ k∑
j=1

ajej

∥∥∥
∗

∣∣∣∣ =

∣∣∣∣∥∥∥ k∑
j=1

ajxsj

∥∥∥− ∥∥∥ k∑
j=1

ajej

∥∥∥
∗

∣∣∣∣ ≤ δl
and the proof is complete.

Corollary 4.7. Let X be a Banach space, A ⊆ X and F ,G be regular
thin families with o(F) = o(G). Then (en)n is an F-spreading model of A
iff (en)n is a G-spreading model of A.

The above permits us to give the following definition.

Definition 4.8. Let A be a subset of a Banach space X and ξ ≥ 1
be a countable ordinal. We will say that (en)n is a ξ-spreading model of A
if there exists a regular thin family F with o(F) = ξ such that (en)n is
an F-spreading model of A. The set of all ξ-spreading models of A will be
denoted by SMξ(A).

Notice that by Lemma 4.6 we have

(4.7) SMζ(A) ⊆ SMξ(A)

for every 1 ≤ ζ < ξ < ω1.
The following is an extension of Example 1 in [4]. It shows that for a

given ξ < ω1 and a regular thin family G there exists a norm on c00(G) such
that setting A = {es : s ∈ G} (where (es)s∈F is the natural Hamel basis of
c00(G)), we have SMζ(A) ( SMξ(A) for every ζ < ξ.

Example 1. Let 1 ≤ ξ < ω1, G be a regular thin family of order ξ and
(es)s∈G be the natural Hamel basis of c00(G). Let (E, ‖ · ‖) be a Banach
space with a normalized spreading and 1-unconditional basis (en)n which in
addition is not equivalent to the usual basis of c0. Let XG be the completion
of c00(G) under the norm ‖ · ‖G defined by

(4.8) ‖x‖G = sup
{∥∥∥ l∑

i=1

atiei

∥∥∥ : l ∈ N, (ti)
l
i=1 ∈ Plml(G) and l ≤ t1(1)

}
for every x =

∑
t∈G atet ∈ c00(G).

Let A = {et : t ∈ G}. It is easy to see that (et)t∈G generates (en)n as
a G-spreading model, i.e. (en)n belongs to SMξ(A). Let ζ < ξ. We claim
that for every (e′n)n ∈ SMζ(A) either (e′n)n is generated by a constant
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F-sequence with o(F) = ζ, or it is isometric to the usual basis of c0. Thus
(en)n /∈ SMζ(A).

Indeed, let (e′n)n ∈ SMζ(A). Then there exists a regular thin family F
of order ζ, an F-sequence (xs)s∈F in A and M ∈ [N]∞ such that (xs)s∈F�M
generates (e′n)n as an F-spreading model. Since {xs}s∈F ⊆ A, we may define
ϕ : F�M → G by choosing for each s ∈ F�M an element ϕ(s) ∈ G satisfying
eϕ(s) = xs.

Assume now that (e′n)n ∈ SMζ(A) is not generated by a constant F-
sequence with o(F) = ζ. By Remark 2(ii) we deduce that ϕ is hereditarily
nonconstant and by Lemma 3.11 there exists N ∈ [M ]∞ such that for every
plegma pair (s1, s2) in F�N , ϕ(s1) 6= ϕ(s2). Moreover since o(F) < o(G) by
Theorem 3.19 we find that there exists L ∈ [N ]∞ such that for every plegma
pair (s1, s2) in G�L neither (ϕ(s1), ϕ(s2)) nor (ϕ(s2), ϕ(s1)) is a plegma pair.
Therefore, by Proposition 3.2(i), for every 1 ≤ k ≤ l, (sj)

k
j=1 ∈ Plmk(F�L)

and (ti)
l
i=1 ∈ Plml(G), we must have

(4.9) |{j ∈ {1, . . . , k} : ϕ(sj) ∈ {ti : 1 ≤ i ≤ l}}| ≤ 1.

Hence, for every k ∈ N, a1, . . . , ak ∈ R and (sj)
k
j=1 ∈ Plmk(F�L), we have

(4.10)
∥∥∥ k∑
j=1

ajxsj

∥∥∥
G

=
∥∥∥ k∑
j=1

ajeϕ(sj)

∥∥∥
G

(4.8), (4.9)
= max

1≤j≤k
|aj |,

i.e. (e′n)n is isometric to the usual basis of c0.

A natural question arising from the above is the following.

Question. Let X be a separable Banach space. Is it true that there
exists a countable ordinal ξ such that SMζ(X) = SMξ(X) for every ζ > ξ?

The above question can also be stated in an isomorphic version, i.e.
whether every sequence in SMζ(X) is equivalent to some sequence in
SMξ(X) and vice versa.

Remark 3. In a forthcoming paper we will provide examples establish-
ing the hierarchy of higher order spreading models and also illustrating the
boundaries of the theory. Specifically we will show the following:

(1) For every countable limit ordinal ξ there exist a Banach space X such
that SMξ(X) properly includes

⋃
ζ<ξ SMζ(X) up to equivalence.

(2) There exist a Banach space X such that, for every ξ < ω1 and every
(en)n ∈ SMξ(X), the space E generated by (en)n does not contain
any isomorphic copy of c0 or `p for 1 ≤ p <∞.

The above results require a deeper study of the structure of F-sequences
generating `1-spreading models (see also [4] for the finite order case).
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5. F-sequences in topological spaces. Let (X, T ) be a topological
space and F be a regular thin family. As we have already defined in the
previous section, an F-sequence in X is any map of the form ϕ : F → X
and generally an F-subsequence in X is any map of the form ϕ : F�M → X.
In this section we will study the topological properties of F-sequences. The
particular case where F = [N]k, k ∈ N, has been studied in [4].

5.1. Convergence of F-sequences. We introduce the following nat-
ural definition of convergence of F-sequences.

Definition 5.1. Let (X, T ) be a topological space, F a regular thin
family, M ∈ [N]∞, x0 ∈ X and (xs)s∈F an F-sequence in X. We will say
that the F-subsequence (xs)s∈F�M converges to x0 if for every U ∈ T with
x0 ∈ U there exists m ∈ N such that for every s ∈ F�M with min s ≥M(m)
we have xs ∈ U .

It is immediate that if an F-subsequence (xs)s∈F�M in a topological
space X is convergent to some x0, then every further F-subsequence is
also convergent to x0. Also notice that if o(F) ≥ 2 then the convergence
of (xs)s∈F�M does not in general imply that {xs : s ∈ F�M} is a rela-
tively compact subset of X. For instance, let (xs)s∈[N]2 be the [N]2-sequence

in c0 defined by xs =
∑s(2)

i=s(1) ei, where (ei)i is the usual basis of c0. By

Definition 5.1 the [N]2-sequence (xs)s∈[N]2 weakly converges to zero but

{xs : s ∈ [N]2}w = {xs : s ∈ [N]2} ∪ {0}, which is not a weakly compact
subset of c0.

Proposition 5.2. Let (X, TX), (Y, TY ) be two topological spaces and
f : Y → X be a continuous map. Let F be a regular thin family, M ∈ [N]∞

and (ys)s∈F an F-sequence in Y . Suppose that the F-subsequence (ys)s∈F�M
is convergent to some y ∈ Y . Then the F-subsequence (f(ys))s∈F�M is con-
vergent to f(y).

Proof. Let UX ∈ TX , with f(y) ∈ UX . By the continuity of f there exists
UY ∈ TY such that y ∈ UY and f [UY ] ⊆ UX . Since (ys)s∈F�M is convergent
to y, there exists m ∈ N such that for every s ∈ F�M with min s ≥ M(m)
we have ys ∈ UY and therefore f(ys) ∈ f [UY ] ⊆ UX .

For the rest of this section we shall restrict to F-sequences in metric
spaces.

Definition 5.3. Let (X, ρ) be a metric space, F a regular thin family,
M ∈ [N]∞ and (xs)s∈F an F-sequence in (X, ρ). We will say that the F-
subsequence (xs)s∈F�M is Cauchy if for every ε > 0 there exists m ∈ N
such that for every s1, s2 ∈ F�M with min s1,min s2 ≥ M(m), we have
ρ(xs1 , xs2) < ε.
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Proposition 5.4. Let M ∈ [N]∞, F be a regular thin family and (xs)s∈F
be an F-sequence in a complete metric space (X, ρ). Then the F-subsequence
(xs)s∈F�M is Cauchy if and only if (xs)s∈F�M is convergent.

Proof. If the F-subsequence (xs)s∈F�M is convergent, then it is straight-
forward that (xs)s∈F�M is Cauchy. Concerning the converse we have the
following. Suppose that the F-subsequence (xs)s∈F�M is Cauchy. Let (sn)n
be a sequence in F�M such that min sn → ∞. It is immediate that (xsn)n
forms a Cauchy sequence in X. Since (X, ρ) is complete, there exists x ∈ X
such that the sequence (xsn)n converges to x. We will show that the F-
subsequence (xs)s∈F�M converges to x. Indeed, let ε > 0. Since (xs)s∈F�M
is Cauchy, there exists k0 ∈ N such that for every t1, t2 ∈ F�M with
min t1,min t2 ≥ M(k0) we have ρ(xt1 , xt2) < ε/2. Since (xsn)n converges
to x and min sn → ∞, there exists n0 ∈ N such that min sn0 ≥ M(k0) and
ρ(x, xsn0 ) < ε/2. Hence for every s ∈ F�M such that min s ≥ M(k0), we
have ρ(x, xs) ≤ ρ(x, xsn0 ) + ρ(xsn0 , xs) < ε and the proof is complete.

Lemma 5.5. Let M ∈ [N]∞, F be a regular thin family and (xs)s∈F an
F-sequence in a metric space (X, ρ). Suppose that for every ε > 0 and L ∈
[M ]∞ there exists a plegma pair (s1, s2) in F�L such that ρ(xs1 , xs2) < ε.
Then the F-subsequence (xs)s∈F�M has a further Cauchy subsequence.

Proof. Let (εn)n be a sequence of positive reals such that
∑∞

n=1 εn <∞.
Using Theorem 3.6, we inductively construct a decreasing sequence (Ln)n
in [M ]∞ such that for every n ∈ N and for every plegma pair (s1, s2) in
F�Ln we have ρ(xs1 , xs2) < εn. Let L′ be a diagonalization of (Ln)n, i.e.
L′(n) ∈ Ln for all n ∈ N, and L = {L′(2n) : n ∈ N}.

We claim that the F-subsequence (xs)s∈F�L is Cauchy. Indeed, let ε > 0.
There exists n0 ∈ N such that

∑∞
n=n0

εn < ε/2. Let s0 be the unique initial
segment of {L(n) : n ≥ n0} in F . If max s0 = L(k) then we set k0 = k + 1.
Then for every s1, s2 ∈ F�L with min s1,min s2 ≥ L(k0), by Theorem 3.10

there exist plegma paths (s1j )
|s0|
j=1, (s

2
j )
|s0|
j=1 in F�L′ from s0 to s1, s2 respec-

tively. Then for i = 1, 2 we have

ρ(xs0 , xsi) ≤
|s0|−1∑
j=0

ρ(xsij
, xsij+1

) <

|s0|−1∑
j=0

εn0+j < ε/2,

which implies that ρ(xs1 , xs2) < ε.

Definition 5.6. Let ε > 0, L ∈ [N]∞, F be a regular thin family and
(xs)s∈F an F-sequence in a metric spaceX. We will say that the subsequence
(xs)s∈F�L is plegma ε-separated if for every plegma pair (s1, s2) in F�L,
ρ(xs1 , xs2) > ε.

The following proposition is actually a restatement of Lemma 5.5.
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Proposition 5.7. Let M ∈ [N]∞, F be a regular thin family and (xs)s∈F
an F-sequence in a metric space X. Then the following are equivalent:

(i) The F-subsequence (xs)s∈F�M has no further Cauchy subsequence.
(ii) For every N ∈ [M ]∞ there exist ε > 0 and L ∈ [N ]∞ such that the

subsequence (xs)s∈F�L is plegma ε-separated.

Proof. (i)⇒(ii). Assume that (ii) is not true. Then there is N ∈ [M ]∞

such that for every ε > 0 and L ∈ [N ]∞ there exists a plegma pair (s1, s2) in
F�L such that ρ(xs1 , xs2) < ε. By Lemma 5.5 the F-subsequence (xs)s∈F�N
has a further Cauchy subsequence. Since N ⊆M this means that (xs)s∈F�M
has a further Cauchy subsequence, which is a contradiction.

(ii)⇒(i). Suppose (i) does not hold. Then there exists N ∈ [M ]∞ such
that (xs)s∈F�N is Cauchy. Let ε > 0 and L ∈ [N ]∞. Then (xs)s∈F�L is also
Cauchy and therefore (xs)s∈F�L is not plegma ε-separated, a contradiction.

5.2. Subordinated F-sequences. By identifying every subset of N
with its characteristic function, a thin family F becomes a discrete subspace
of {0, 1}N (under the usual product topology) with F̂ being its closure. This
in particular implies that every φ : F → (X, T ) is automatically continu-
ous. In this subsection we show that for every regular thin family F , any
M ∈ [N]∞ and ϕ : F�M → (X, T ) such that the closure of ϕ(F�M) is a
compact metrizable subspace of X, there exist L ∈ [M ]∞ and a continuous

extension ϕ̂ : F̂�L→ (X, T ). We start with the following definition.

Definition 5.8. Let (X, T ) be a topological space, F be a regular
thin family, M ∈ [N]∞ and (xs)s∈F be an F-sequence in X. We say that
(xs)s∈F�M is subordinated (with respect to (X, T )) if there exists a contin-

uous map ϕ̂ : F̂�M → (X, T ) with ϕ̂(s) = xs for every s ∈ F�M .

Assume that (xs)s∈F�M is subordinated. Then since F is dense in F̂ ,

there exists a unique continuous map ϕ̂ : F̂�M → (X, T ) witnessing this.

Moreover, for the same reason we have {xs : s ∈ F�M} = ϕ̂(F̂�M), where
{xs : s ∈ F�M} is the T -closure of {xs : s ∈ F�M} in X. Therefore
{xs : s ∈ F�M} is a countable compact metrizable subspace of (X, T ) with
Cantor–Bendixson index at most o(F)+1. Another property of subordinated
F-sequences is stated in the next proposition.

Proposition 5.9. Let (X, T ) be a topological space, F be a regular thin
family and (xs)s∈F be an F-sequence in X. Let M ∈ [N]∞ be such that
(xs)s∈F�M is subordinated. Then (xs)s∈F�M is a convergent F-subsequence

in X. In particular, if ϕ̂ : F̂�M → (X, T ) is the continuous map witnessing
the fact that (xs)s∈F�M is subordinated then (xs)s∈F�M is convergent to ϕ̂(∅).

Proof. Via the identity map we may consider the family F as an F-
sequence in the metric space Y = F̂ , i.e. let (ys)s∈F be the F-sequence in
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Y with ys = s for every s ∈ F . As already noticed, (ys)s∈F converges to the

empty set. Since ϕ̂ : F̂�M → (X, T ) is continuous, by Proposition 5.2 we
find that (ϕ̂(ys))s∈F�M converges to ϕ̂(∅). Since ϕ̂(ys) = ϕ̂(s) = xs for every
s ∈ F�M , this means that (xs)s∈F�M is convergent to ϕ̂(∅).

Theorem 5.10. Let F be a regular thin family and (xs)s∈F be an F-
sequence in a topological space (X, T ). Then for every M ∈ [N]∞ such
that {xs : s ∈ F�M} is a compact metrizable subspace of (X, T ) there exists
L ∈ [M ]∞ such that (xs)s∈F�L is subordinated.

Proof. We will use induction on the order of the regular thin family F .
If o(F) = 0 (i.e. the family F is the singleton F = {∅}) the result trivially
holds. Let ξ < ω1 and assume that the theorem is true when o(F) < ξ.

We fix a regular thin family F with o(F) = ξ, an F-sequence (xs)s∈F
in a topological space (X, T ) and M ∈ [N]∞ such that {xs : s ∈ F�M} is
a compact metrizable subspace of (X, T ). By passing to an infinite subset
of M if necessary, we may also suppose that F is very large in M . Let ρ
be a compatible metric for the subspace X0 = {xs : s ∈ F�M}. We shall
construct (a) a strictly increasing sequence (mn)n in M , (b) a decreasing
sequence M = M0 ⊇ M1 ⊇ · · · of infinite subsets of M , (c) a sequence ϕ̂n
of maps with ϕ̂n : F̂(mn)�Mn → X, and (d) a decreasing sequence of closed
balls (Bn)n in X0 such that for every n ∈ N the following are satisfied:

(i) mn = minMn−1 and Mn ⊆Mn−1 \ {mn},
(ii) diamBn < 1/n,

(iii) the map ϕ̂n is continuous,
(iv) ϕ̂n(u) = x{mn}∪u for every u ∈ F(mn)�Mn, and

(v) {ϕ̂n(u) : u ∈ F̂(mn)�Mn} ⊆ Bn.

We shall present the general inductive step of the above construction so let
us assume that the construction has been carried out up to some n ∈ N. We
set mn+1 = minMn. Since F is very large in M we see that G = F(mn+1) =
{u ∈ [N]<∞ : mn+1 < u and {mn+1} ∪ u ∈ F} is a regular thin family. For
each u ∈ G we set yu = x{mn+1}∪u and we form the G-sequence (yu)u∈G .

Let M ′n = Mn \ {mn+1}. Since Y = {yu : u ∈ G�M ′n} ⊆ {xs : s ∈ F�M},
the closure of Y in (X, T ) is also a compact metrizable subspace of (X, T ).
Thus Y is a totally bounded metric space and therefore, by Theorem 2.1
and passing to an infinite subset of M ′n if necessary, we may also suppose
that there exists a ball Bn+1 of X0 with diamBn+1 < (n+ 1)−1 and

(5.1) {yu : u ∈ G�M ′n} ⊆ Bn+1.

Moreover, o(G) = o(F(mn+1)) < o(F) = ξ. Hence, by our inductive hypothe-
sis, there exists an infinite subset Mn+1 of M ′n = Mn \{mn+1} such that the

G-subsequence (yu)u∈G�Mn+1 is subordinated. Let ϕ̂n+1 : Ĝ�Mn+1 → X be
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the continuous map witnessing this fact. Then ϕ̂n+1(u) = yu = x{mn+1}∪u
for every u ∈ F(mn+1)�Mn+1, and by the continuity of ϕ̂n+1 we have

(5.2) {
ϕ̂n+1(u) : u ∈ F̂(mn+1)�Mn+1

}
⊆ {yu : u ∈ F(mn+1)�Mn+1}

(5.1)

⊆ Bn+1,

which completes the proof of the inductive step.
We set M ′ = {mn : n ∈ N}. Since lim diamBn = 0 and X0 is a compact

metric space there exists a strictly increasing sequence (kn)n and x0 ∈ X0

such that

(5.3) lim dist(x0, Bkn) = 0.

We set L = {mkn : n ∈ N} and we define ϕ̂ : F̂�L → X as follows. For
s = ∅, we set ϕ̂(∅) = x0. Otherwise, if n is the unique positive integer
such that mkn = min s we set ϕ̂(s) = ϕ̂kn(s \ {min s}) = xt. It is easy
to check that ϕ̂ is well defined. To see that ϕ̂ is continuous let (sn)n be a

sequence in F̂�L and s ∈ F̂�L such that sn → s. If s = ∅ then min sn →∞,
thus using (v) and (5.3) we obtain ϕ̂(sn) → x0 = ϕ̂(∅). Otherwise, let
mkn0

= min s. Then min sn = min s = mkn0
for all but finitely many n.

Therefore, ϕ̂(sn) = ϕ̂kn0 (sn), for all but finitely many n, and since ϕ̂kn0 is
continuous, ϕ̂(sn)→ ϕ̂(s).

6. F-sequences generating spreading models. Let (xn)n be a se-
quence in a Banach space X generating a spreading model (en)n. It is well
known (see [6], [7]) that if (xn)n is norm convergent then the seminorm in the
space generated by the sequence (en)n is not a norm. On the other hand, if
(xn)n is weakly null and seminormalized then (en)n is 1-unconditional ([7]).
In this section we show that analogues of the above results remain true in
the higher order setting of ξ-spreading models.

To make the presentation more clear and self-contained we start with a
short review of the basic properties of spreading sequences. We divide the
spreading sequences into four disjoint categories. The first category consists
of those spreading sequences which we call trivial. A spreading sequence
(en)n in a seminormed space (E, ‖ · ‖∗) is trivial if the restriction of the
seminorm ‖ · ‖∗ to the linear subspace generated by (en)n is not a norm
(see Definition 6.1). The nontrivial spreading sequences are divided into
three classes, namely the singular, the unconditional and the conditional
ones. The singular ones are the nontrivial spreading sequences which are not
Schauder basic, while the conditional ones are the Schauder basic spreading
sequences which are not unconditional (see Definition 6.3). It is shown that
every singular sequence (en)n admits a natural decomposition as en = e′n+e
where e is the weak limit of (en)n and (e′n)n is a 1-unconditional and Cesàro
summable to the zero spreading sequence (Proposition 6.5).
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In §6.2 we provide characterizations for F-sequences generating a trivial
spreading model (Theorem 6.6). Among other things it is shown that an
F-sequence generates a trivial spreading model if and only if it contains a
further norm Cauchy subsequence. We also give a sufficient condition for
an F-sequence to generate a Schauder basic spreading model (see Theo-
rem 6.9).

In §6.3 we proceed to an analysis of the spreading models generated by
subordinated F-sequences. Specifically, we show that seminormalized weakly
null subordinated F-sequences generate 1-unconditional spreading models
(Theorem 6.11). Moreover, we present a classification of the spreading mod-
els generated by non-weakly null subordinated F-sequences. In this case we
show that the generated spreading model is either equivalent to the usual
basis of `1, or singular (Theorem 6.14). These results imply that a nontriv-
ial spreading model generated by a weakly relatively compact F-sequence
is either singular or unconditional (Corollary 6.17).

Finally, in §6.4 we study the F-sequences which generate singular spread-
ing models. In particular we show that the aforementioned natural decompo-
sition of the singular spreading model is also reflected back to its generating
F-sequence (see Theorem 6.19 and Corollary 6.21).

6.1. Spreading sequences. Let (E, ‖ · ‖∗) be a seminormed linear
space. A sequence (en)n in E is called spreading if∥∥∥ n∑

j=1

ajej

∥∥∥
∗

=
∥∥∥ n∑
j=1

ajekj

∥∥∥
∗

for every n ∈ N, a1, . . . , an ∈ R and k1 < · · · < kn in N. As already men-
tioned, every spreading model of any order of a Banach space is a spreading
sequence. In this subsection we shall briefly recall some well known results
on spreading sequences that we shall later use (for a more detailed exposi-
tion see [1], [5], [6], [7]). Towards a classification of spreading sequences, we
start with the following definition.

Definition 6.1. Let (E, ‖ · ‖∗) be a seminormed linear space and (en)n
be a spreading sequence in E. We will say that (en)n is trivial if there exist

k ∈ N and a1, . . . , ak ∈ R, not all zero, such that ‖
∑k

j=1 aiei‖∗ = 0.

Concerning the trivial sequences, we have the following elementary lemma.

Lemma 6.2. Let (E, ‖ · ‖∗) be a seminormed linear space and (en)n be
a spreading sequence in E. Then the sequence (en)n is trivial if and only if
for every n,m ∈ N we have ‖en − em‖∗ = 0.

Proof. Let (en)n be a trivial sequence. Pick k ∈ N and a1, . . . , an ∈ R,

not all zero, such that ‖
∑k

j=1 ajej‖∗ = 0. Since (en)n is spreading we may
suppose that aj 6= 0 for all 1 ≤ j ≤ n. Moreover notice that
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(6.1)
∥∥∥ k−1∑
j=1

ajej + akek

∥∥∥
∗

=
∥∥∥ k−1∑
j=1

ajej + akek+1

∥∥∥
∗

= 0.

Hence,

(6.2) ‖ek−ek+1‖∗ ≤
1

|ak|

(∥∥∥ k−1∑
j=1

ajej+akek

∥∥∥
∗
+
∥∥∥ k−1∑
j=1

ajej+anek+1

∥∥∥
∗

)
= 0.

Since (en)n is spreading we get ‖en − em‖∗ = 0 for every n,m ∈ N. The
converse implication is straightforward.

Let us observe that if a sequence (en)n is nontrivial then the restriction
of the seminorm ‖ ·‖∗ to the linear subspace generated by (en)n is actually a
norm. Thus every nontrivial sequence can always be considered as a sequence
in a Banach space. Following [4] we consider the classification of nontrivial
sequences described by the next definition.

Definition 6.3. We classify all nontrivial spreading sequences into the
following three categories:

(1) singular spreading sequences, i.e. those nontrivial spreading sequences
which are not Schauder basic,

(2) unconditional spreading sequences, and
(3) conditional Schauder basic spreading sequences, i.e. spreading se-

quences which are Schauder basic but not unconditional.

Proposition 6.4. Let (en)n be a nontrivial spreading sequence.

(i) If (en)n is weakly null then it is 1-unconditional.
(ii) If (en)n is unconditional then either it is equivalent to the usual basis

of `1 or it is norm Cesàro summable to 0 (i.e. lim
∥∥ 1
n

∑n
i=1 ei

∥∥ = 0).

Proof. (i) See [1].
(ii) Since (en)n is unconditional there exists C>0 such that ‖

∑n
i=1 εiaiei‖

≤ C‖
∑n

i=1 aiei‖ for any n ∈ N, a1, . . . , an ∈ R and ε1, . . . , εn ∈ {−1, 1}. Also
since it is spreading and nontrivial there exists M > 0 such that ‖en‖ = M
for all n ∈ N. Suppose that (en)n is not Cesàro summable to zero. Then there
exist θ > 0 and a strictly increasing sequence of natural numbers (pn)n such
that

∥∥ 1
pn

∑pn
i=1 ei

∥∥ > θ for all i ∈ {1, . . . , pn}. Hence for every n ∈ N there

exists x∗n with ‖x∗n‖ = 1 such that x∗n
(

1
pn

∑pn
i=1 ei

)
> θ. For every n ∈ N, we

set In = {1, . . . , pn} and let An = {i ∈ In : x∗n(ei) > θ/2}. Then

θ < x∗n

(
1

pn

∑
i∈In

ei

)
=

1

pn
x∗n

( ∑
i∈An

ei

)
+

1

pn
x∗n

( ∑
i∈In\An

ei

)
≤ 1

pn
|An|C +

θ

2
.

Hence |An| ≥ θ
2C pn, which gives limn→∞ |An| = ∞. We are now ready to

show that (en)n is equivalent to the usual basis of `1. Indeed, let n ∈ N,
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a1, . . . , an ∈ R and choose n0 ∈ N such that |An0 | ≥ n. Then

M
n∑
i=1

|ai| ≥
∥∥∥ n∑
i=1

aiei

∥∥∥ ≥ 1

C

∥∥∥ n∑
i=1

|ai|ei
∥∥∥ =

1

C

∥∥∥ n∑
i=1

|ai|eAn0 (i)
∥∥∥

≥ 1

C
· x∗n

( n∑
i=1

|ai|eAn0 (i)
)
≥ θ

2C

n∑
i=1

|ai|.

Proposition 6.5. Let (en)n be a singular sequence and let E be the
space generated by (en)n. Then there is e ∈ E \ {0} such that (en)n is
weakly convergent to e. Moreover if e′n = en − e then (e′n)n is spreading,
1-unconditional and Cesàro summable to zero.

Proof. Since (en)n is equivalent to all its subsequences and it is not
Schauder basic, no subsequence of (en)n is Schauder basic. In particular,
a subsequence of (en)n cannot be nontrivial weak-Cauchy or weakly null.
Hence, by Rosenthal’s `1-theorem [19], (en)n is weakly convergent to a
nonzero element e ∈ E.

Let e′n = en−e. To show that (e′n)n is spreading, let n ∈ N, λ1, . . . , λn ∈ R
and k1 < · · · < kn in N. If

∑n
i=1 λi = 0, then

(6.3)
∥∥∥ n∑
i=1

λie
′
i

∥∥∥ =
∥∥∥ n∑
i=1

λiei

∥∥∥ =
∥∥∥ n∑
i=1

λieki

∥∥∥ =
∥∥∥ n∑
i=1

λie
′
ki

∥∥∥.
Generally let

∑n
i=1 λi = λ. Since (e′n)n is weakly null we may choose a

convex block subsequence (wm)m of (e′n)n which norm converges to zero.
Let m0 ∈ N be such that kn < supp(wm) for all m ≥ m0. Then by (6.3),

(6.4)
∥∥∥ n∑
i=1

λie
′
i − λwm

∥∥∥ =
∥∥∥ n∑
i=1

λie
′
ki
− λwm

∥∥∥
for all m ≥ m0. Hence, by taking limits, we get∥∥∥ n∑

i=1

λie
′
i

∥∥∥ =
∥∥∥ n∑
i=1

λie
′
ki

∥∥∥,
that is, the sequence (e′n)n is spreading. Moreover, since

‖en − em‖ = ‖e′n − e′m‖,

by Lemma 6.2 we deduce that (e′n)n is nontrivial. Finally, since (e′n)n is
weakly null, by Proposition 6.4 it is also 1-unconditional and norm Cesàro
summable to zero.

The above decomposition en = e′n + e of a singular spreading sequence
(en)n will be called the natural decomposition of (en)n.
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6.2. F-sequences generating nonsingular spreading models. We
start with a characterization of those F-sequences in a Banach space X
which generate a trivial spreading model.

Theorem 6.6. Let X be a Banach space, F be a regular thin family
and (xs)s∈F be an F-sequence in X and M ∈ [N]∞. Let (E, ‖ · ‖∗) be an
infinite-dimensional seminormed linear space with Hamel basis (en)n such
that (xs)s∈F�M generates (en)n as an F-spreading model. Then the following
are equivalent:

(i) The sequence (en)n is trivial.
(ii) For every ε > 0 and every L ∈ [M ]∞, there exists a plegma pair

(s1, s2) in F�L such that ‖xs1 − xs2‖ < ε.
(iii) The F-subsequence (xs)s∈F�M contains a further norm Cauchy sub-

sequence.
(iv) There exists x ∈ X such that every subsequence of (xs)s∈F�M con-

tains a further subsequence convergent to x.

Proof. (i)⇒(ii). Let ε > 0 and L ∈ [M ]∞. Since the F-subsequence
(xs)s∈F�L also generates (en)n as an F-spreading model (see Remark 2),
there exists n0 ∈ N such that for every plegma pair (s1, s2) in F�L with
min s1 ≥ L(n0),

(6.5)
∣∣‖xs1 − xs2‖ − ‖e1 − e2‖∗∣∣ < ε.

Let (s1, s2) be such a plegma pair. Since (en)n is trivial we have ‖e1−e2‖∗ = 0
and therefore by (6.5) we obtain ‖xs1 − xs2‖ < ε.

(ii)⇒(iii). This follows by Lemma 5.5.

(iii)⇒(i). Using the fact that (xs)s∈F�M contains a further norm Cauchy
subsequence, we easily construct a sequence ((sn1 , s

n
2 ))n of plegma pairs in

F�M such that sn1 (1)→∞ and ‖xsn1 − xsn2 ‖ < 1/n. Then

(6.6)
∥∥e1 − e2‖∗ = lim

n→∞
‖xsn1 − xsn2 ‖ = 0

and therefore the sequence (en)n is trivial.

(iv)⇒(iii). This is straightforward.

(i)⇒(iv). Since every subsequence of (xs)s∈F�M generates (en)n as an
F-spreading model we see that, for every L ∈ [M ]∞, (xs)s∈F�M generates
a trivial spreading model. By the implication (i)⇒(iii) and Proposition 5.4,
every subsequence of (xs)s∈F�M contains a further convergent subsequence.
It remains to show that all the convergent subsequences of (xs)s∈F�M have
a common limit.

To this end, let L1, L2 ∈ [M ]∞, x1, x2 ∈ X be such that (xs)s∈F�Li
converges to xi for i ∈ {1, 2} and let ε > 0. Hence there exists n0 ∈ N
such that for every s ∈ F�L1 and t ∈ F�L2 with min s ≥ L1(n0) and
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min t ≥ L2(n0) we have

(6.7) ‖x1 − xs‖, ‖x2 − xt‖ < ε/3.

Since (xs)s∈F�M generates the trivial sequence (en)n as an F-spreading
model, we may also assume that

(6.8) ‖xs1 − xs2‖ =
∣∣‖xs1 − xs2‖ − ‖e1 − e2‖∗∣∣ < ε/3

for every plegma pair (s1, s2) in F�M with min s1 ≥M(n0).

It is easy to see that we can choose s1 ∈ F�L1 with min s1 ≥ L1(n0) and
s2 ∈ F�L2 with min s2 ≥ L2(n0) such that (s1, s2) is a plegma pair. Then
by (6.7) and (6.8) we have

(6.9) ‖x1 − x2‖ ≤ ‖x1 − xs1‖+ ‖xs1 − xs2‖+ ‖x2 − xs2‖ < ε.

Since (6.9) holds for every ε > 0 we get x1 = x2.

We proceed to present a sufficient condition for an F-sequence to gener-
ate a Schauder basic spreading model. We need the next definition.

Definition 6.7. Let A be a countable seminormalized subset of a Ba-
nach space X. We say that A admits a Skipped Schauder Decomposition
(SSD) if there exist C ≥ 1 and a pairwise disjoint sequence (Ak)k of finite
subsets of A such that the following are satisfied:

(i)
⋃∞
k=1Ak = A.

(ii) For every N ∈ [N]∞ not containing two successive integers, and for
every sequence (xk)k∈N with xk ∈ Ak for all n ∈ N , (xk)k∈N is a
Schauder basic sequence with constant C.

The following proposition is well known but for the sake of completeness
we outline its proof.

Proposition 6.8. Let (xn)n be a seminormalized weakly null sequence
in a Banach space X. Then for every ε > 0 the set A = {xn : n ∈ N} admits
a SSD with constant C = 1 + ε.

Proof. We may assume that X has a Schauder basis (en)n with basis
constant K = 1 (for example we may assume that X = C[0, 1]). By induc-
tion and using the sliding hump argument, we define (1) a partition (Fn)n
of N into finite pairwise disjoint sets, and (2) a sequence (yn)n of finitely
supported vectors in X such that:

(i) For every k ∈ N and n ∈ Fk, we have ‖xn − yn‖ < ε/2k, and
(ii) for every k2 > k1 with k2 − k1 > 1, n1 ∈ Fk1 and n2 ∈ Fk2 , we have

max supp(yn1) < min supp(yn2).

Setting Ak = {xn : n ∈ Fk}, k ∈ N, it is easy to check that (Ak)k satisfies
conditions (i) and (ii) of Definition 6.7.
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Theorem 6.9. Let A be a subset of a Banach space X. If A admits a
SSD with constant C, then every nontrivial spreading model of any order of
A is Schauder basic with constant C.

Proof. Let 1 ≤ ξ be a countable ordinal and (en)n be a nontrivial spread-
ing model of order ξ of A. Let F be a regular thin family with o(F) = ξ,
(xs)s∈F be an F-sequence in A and M ∈ [N]∞ be such that (xs)s∈F�M gener-
ates (en)n as an F-spreading model. Let (Ak)k be a partition of A satisfying
condition (ii) of Definition 6.7. Finally, let ϕ : F�M → N be defined by
ϕ(s) = k if xs ∈ Fk.

Observe that ϕ is hereditarily nonconstant in M . Indeed, otherwise there
exist L ∈ [M ]∞ and k0 ∈ N such that xs ∈ Fk0 for s ∈ F�L and s ∈ F�L.
Since Fk0 is finite, by Proposition 2.6 there exists N ∈ [L]∞ such that
(xs)s∈F�N is constant. By part (ii) of Remark 2, the F-sequence (xs)s∈F�N
also generates (en)n as an F-spreading model. But then, since (xs)s∈F�N
is constant, the sequence (en)n should be trivial, which is a contradiction.
Hence ϕ is hereditarily nonconstant in M and therefore by Corollary 3.13
there exists N ∈ [M ]∞ such that ϕ(s2) − ϕ(s1) > 1 for every plegma pair
(s1, s2) in F�N . By the SSD property of A we deduce that for every 1 ≤
m < l ∈ N,

(6.10)
∥∥∥ m∑
j=1

ajxsj

∥∥∥ ≤ C∥∥∥ l∑
j=1

ajxsj

∥∥∥
for every plegma l-tuple (sj)

l
j=1 in F�N and a1, . . . , al ∈ R. This easily

implies that (en)n is a Schauder basic sequence with constant C.

6.3. Spreading models generated by subordinated F-sequences.
Let (xn)n be a weakly convergent sequence in a Banach space X which is
not norm Cauchy and assume that it generates a spreading model (en)n. It
is well known (see [6], [7]) that (en)n is either an unconditional or a singular
spreading sequence. In [4] we extended this fact to subordinated k-sequences.
Here we will show that similar results also hold true for F-sequences where
F is a regular thin family.

6.3.1. Unconditional spreading models. Let n ∈ N and for every 1 ≤
i ≤ n let Fi ⊆ [N]<∞. We will say that (Fi)

n
i=1 is completely plegma con-

nected if for every choice of si ∈ Fi, the n-tuple (si)
n
i=1 is a plegma family.

Also, for a subset A of a Banach space X, convA denotes the convex hull
of A.

Lemma 6.10. Let X be a Banach space, n ∈ N, F1, . . . ,Fn be regular
thin families, and L ∈ [N]∞. Assume that for every i = 1, . . . , n there exists

a continuous map ϕ̂i : F̂i�L → (X,w). Then for every ε > 0 there exists
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a completely plegma connected family (Fi)
n
i=1 such that Fi ⊆ [Fi�L]<∞ and

dist(ϕ̂i(∅), conv ϕ̂i(Fi)) < ε for every i = 1, . . . , n.

Proof. We will use induction on o((Fi)li=1) := max{o(Fi) : 1 ≤ i ≤ n}.
If o((Fi)li=1) = 0, i.e. Fi = {∅} for all 1 ≤ i ≤ n, the result follows trivially.
Let 1 ≤ ξ < ω1 and suppose that the lemma holds true if o((Fi)ni=1) < ξ. Let
n ∈ N, L ∈ [N]∞ and F1, . . . ,Fn be regular thin families with o((Fi)li=1) = ξ

and assume that there exists a continuous map ϕ̂i : F̂i�L→ (X,w) for every
1 ≤ i ≤ n

Fix i ∈ {1, . . . , n}. We may suppose that Fi is very large in L and

therefore every singleton {l} with l ∈ L belongs to F̂i. By the continuity
of ϕ̂i, we find that w-liml∈L ϕ̂i({l}) = ϕ̂i(∅). By Mazur’s theorem, we may
choose a finite subset Λi = {li1 < · · · < limi} of L such that

(6.11) dist(ϕ̂i(∅), conv ϕ̂i(Λi)) < ε/2

for every 1 ≤ i ≤ n. We may also assume that

(6.12) Λ1 < · · · < Λn.

Let Λ =
⋃n
i=1 Λi and let M = {l ∈ L : l > maxΛ}. Fix 1 ≤ i ≤ n and

1 ≤ j ≤ mi. We set Gij = (Fi)(lij) = {s ∈ [N]<∞ : lij < s and {lij} ∪
s ∈ Fi} and let ϕ̂ij : Ĝij�M → (X,w) be defined by ϕ̂ij(s) = ϕ̂i({lij} ∪ s).
Notice that ϕ̂ij is a continuous map and since o(Gij) < o(Fi), it follows that

o(((Gij)
mi
j=1)

n
i=1) < o((Fi)ni=1) = ξ. Therefore using our inductive assumption

we may choose a completely plegma connected family ((Gij)
mi
j=1)

n
i=1 such that

Gij ⊆ [Gij�M ]<∞ and

(6.13) dist(ϕ̂ij(∅), conv ϕ̂ij(G
i
j)) < ε/2

for every 1 ≤ i ≤ n and 1 ≤ j ≤ mi.

For every 1 ≤ i ≤ n and 1 ≤ j ≤ mi we set F ij =
{
{lij} ∪ s : s ∈ Gij

}
.

By (6.12) and the choice of ((Gij)
mi
j=1)

n
i=1, we easily see that ((F ij )

mi
j=1)

n
i=1 is

completely plegma connected. Moreover, observe that ϕ̂ij(∅) = ϕ̂i({lij}) and

ϕ̂ij(G
i
j) = ϕ̂i(F

i
j ). Hence, (6.13) translates to

(6.14) dist(ϕ̂i({lij}), conv ϕ̂i(F
i
j )) < ε/2

for every 1 ≤ i ≤ n and 1 ≤ j ≤ mi.

For every 1 ≤ i ≤ n, let Fi =
⋃mi
j=1 F

i
j . Clearly (Fi)

n
i=1 is a completely

plegma connected family with Fi ⊆ [Fi�L]<∞ for every i = 1, . . . , n. Finally,
fix 1 ≤ i ≤ n. By (6.14) we have dist(x, conv ϕ̂i(Fi)) < ε/2 for every
x ∈ conv ϕ̂i(Λi), and therefore dist(ϕ̂i(∅), conv ϕ̂i(Fi)) < ε by (6.11).
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We are ready to obtain the following generalization of a well known
result about classical spreading models stating that every spreading model
(of order 1) generated by a seminormalized weakly null sequence is 1-
unconditional.

Theorem 6.11. Let X be a Banach space, F be a regular thin fam-
ily and L ∈ [N]∞. Let (xs)s∈F�L be an F-subsequence in X generating an
F-spreading model (en)n. Also assume that (xs)s∈F�L is seminormalized,
subordinated (with respect to the weak topology of X) and weakly null. Then
(en)n is a 1-unconditional spreading sequence.

Proof. We first show that (en)n is nontrivial. Indeed, otherwise by The-
orem 6.6 there exist M ∈ [L]∞ and x0 ∈ X such that the F-subsequence
(xs)s∈F�M is norm convergent to x0. Since M ⊆ L, (xs)s∈F�M is also weakly
null and therefore x0 = 0. But this is a contradiction since (xs)s∈F�L is
seminormalized.

We proceed to show that (en)n is 1-unconditional. Fix n ∈ N, 1 ≤ p
≤ n and a1, . . . , an ∈ [−1, 1]. It suffices to show that for every ε > 0 we have

(6.15)
∥∥∥ n∑
i=1
i 6=p

aiei

∥∥∥
∗
<
∥∥∥ n∑
i=1

aiei

∥∥∥
∗

+ ε.

Indeed, fix ε > 0. Since (xs)s∈F�L generates (en)n as an F-spreading
model, by passing to a final segment of L if necessary we may assume
that

(6.16)∣∣∣∣∥∥∥ n∑
i=1
i 6=p

aixsi

∥∥∥− ∥∥∥ n∑
i=1
i 6=p

aiei

∥∥∥
∗

∣∣∣∣ < ε

3
and

∣∣∣∣∥∥∥ n∑
i=1

aixsi

∥∥∥− ∥∥∥ n∑
i=1

aiei

∥∥∥
∗

∣∣∣∣ < ε

3

for every plegma n-tuple (si)
n
i=1 in F�L. Since (xs)s∈F�L is subordinated

with respect to the weak topology, there exists a continuous map ϕ̂ : F�L
→ (X,w) such that ϕ̂(s) = xs for every s ∈ F�L. Since (xs)s∈F�L is weakly
convergent to ϕ̂(∅) we have ϕ̂(∅) = 0. Therefore by Lemma 6.10 (for Fi = F
and ϕ̂i = ϕ̂ for all i = 1, . . . , n), there exist a completely plegma con-
nected family (Fi)

n
i=1 and a sequence (xi)

n
i=1 in X such that Fi ⊆ [F�L]<∞,

xi ∈ conv ϕ̂(Fi) and ‖xi‖ < ε/3 for every 1 ≤ i ≤ n. Let (µs)s∈Fp be a
sequence in [0, 1] such that

∑
s∈Fp µs = 1 and xp =

∑
s∈Fp µsϕ̂(t) and for

each i 6= p choose si ∈ Fi. By the above, for every s ∈ Fp the n-tuple
(s1, . . . , sp−1, s, sp+1, . . . , sn) is a plegma family and ‖xp‖ = ‖

∑
s∈Fp µsxs‖

< ε/3.
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Therefore by (6.16) we have∥∥∥ n∑
i=1
i 6=p

aiei

∥∥∥
∗
≤
∥∥∥ n∑
i=1
i 6=p

aixsi

∥∥∥+
ε

3
≤
∥∥∥ n∑
i=1
i 6=p

aixsi + ap
∑
s∈Fp

µsxs

∥∥∥+ |ap|
ε

3
+
ε

3

≤
∑
s∈Fp

µs

∥∥∥ n∑
i=1
i 6=p

aixsi + apxs

∥∥∥+
2ε

3

≤
∑
s∈Fp

µs

(∥∥∥ n∑
i=1

aiei

∥∥∥
∗

+
ε

3

)
+

2ε

3
=
∥∥∥ n∑
i=1

aiei

∥∥∥
∗

+ ε

and the proof is complete.

6.3.2. Singular or isomorphic to `1 spreading models. We proceed to
show an analogue of Theorem 6.11 for subordinated F-sequences which are
not weakly null. We will need the following lemma.

Lemma 6.12. Let (en)n and (ẽn)n be two nontrivial spreading sequences
which are both Cesàro summable to zero. Suppose that for every n ∈ N and
λ1, . . . , λn with

∑n
i=1 λi = 0 we have

(6.17)
∥∥∥ n∑
i=1

λiei

∥∥∥
∗

=
∥∥∥ n∑
i=1

λiẽi

∥∥∥
∗∗
.

Then the map en → ẽn extends to a linear isometry from 〈(en)n〉 onto
〈(ẽn)n〉.

Proof. Let n ∈ N and λ1, . . . , λn ∈ R. Since (en)n (resp. (ẽn)n) is Cesàro
summable to zero, we have limm→∞

1
m

∑m
j=1 en+j = 0 (resp.

limm
1
m

∑m
j=1 ẽn+j = 0). Let λ =

∑n
i=1 λi. Then

∑n
i=1 λi −

∑m
j=1 λ/m = 0

and therefore,∥∥∥ n∑
i=1

λiei

∥∥∥
∗

= lim
m→∞

∥∥∥ n∑
i=1

λiei −
λ

m

m∑
j=1

en+j

∥∥∥
∗

(6.17)
= lim

m→∞

∥∥∥ n∑
i=1

λiẽi −
λ

m

m∑
j=1

ẽn+j

∥∥∥
∗∗

=
∥∥∥ n∑
i=1

λiẽi

∥∥∥
∗∗
.

The next lemma is from [4]. We reproduce it for the sake of completeness.

Lemma 6.13. Let X be a Banach space, F be a regular thin family and
(xs)s∈F�L be an F-subsequence in X. Let x0 ∈ X and set x′s = xs − x0 for
all s ∈ F�L. Assume that (xs)s∈F�L and (x′s)s∈F�L generate F-spreading
models (en)n and (ẽn)n respectively. Then:

(i) ‖
∑n

i=1 aiei‖ = ‖
∑n

i=1 aiẽi‖ for every n ∈ N and a1, . . . , an ∈ R with∑n
i=1 ai = 0.
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(ii) The sequence (en)n is trivial if and only if (ẽn)n is trivial.
(iii) The sequence (en)n is equivalent to the usual basis of `1 if and only

if (ẽn)n is equivalent to the usual basis of `1.

Proof. (i) Notice that for every n ∈ N, s1, . . . , sn in F�L and a1, . . . , an
∈ R with

∑n
i=1 ai = 0, we have

∑n
i=1 aixsi =

∑n
i=1 aix

′
si . Since (en)n and

(ẽn)n are generated by (xs)s∈F�L and (xs)s∈F�L the result follows.
(ii) This follows by part (i) and the definition of a trivial sequence.
(iii) We fix ε > 0. If (ẽn)n is not equivalent to the usual basis of `1

then there exist n ∈ N and a′1, . . . , a
′
n ∈ R such that

∑n
i=1 |a′i| = 1 and

‖
∑n

i=1 a
′
iẽi‖ < ε. Setting ai = a′i/2 and an+i = −a′i/2 for all 1 ≤ i ≤ n,

we have
∑2n

i=1 ai = 0 and therefore ‖
∑2n

i=1 aiei‖ = ‖
∑2n

i=1 aiẽi‖ < ε. Since∑2n
i=1 |ai| = 1, (en)n is also not equivalent to the usual basis of `1.

Theorem 6.14. Let X be a Banach space, F be a regular thin family and
L ∈ [N]∞. Let (xs)s∈F�L be an F-subsequence in X generating a nontrivial
F-spreading model (en)n. Also assume that (xs)s∈F�L is subordinated and
let x0 be the weak limit of (xs)s∈F�L. Finally, let x′s = xs − x0 for every
s ∈ F�L. If x0 6= 0 then exactly one of the following holds:

(i) The sequence (en)n as well as every spreading model of (x′s)s∈F�L is
equivalent to the usual basis of `1.

(ii) The sequence (en)n is singular, and if en = e′n + e is its natu-
ral decomposition then ‖e‖ = ‖x0‖ and (e′n)n is the unique (up to
isometry) F-spreading model of (x′s)s∈F�L.

Proof. Let (ẽn)n be an F-spreading model of (x′s)s∈F�L. By passing to
an infinite subset of L if necessary we may assume that (x′s)s∈F�L generates
(ẽn)n as an F-spreading model.

If (en)n is equivalent to the usual basis of `1 then by Lemma 6.13 the same
holds for (ẽn)n and hence (i) is satisfied. Otherwise, again by Lemma 6.13,
(ẽn)n is also nontrivial and not equivalent to the `1-basis. Let us denote
by ‖ · ‖∗ (resp. ‖ · ‖∗∗) the norm of the space generated by (en)n (resp.
(ẽn)n). Since (ẽn)n is nontrivial, we have ‖ẽn‖∗∗ > 0 and therefore (by
passing to a final segment of L if necessary) we may assume that (x′s)s∈F�L
is seminormalized. It is also easy to see that (x′s)s∈F�M is subordinated and
weakly null. Therefore, by Theorem 6.11, (ẽn)n is 1-unconditional. Moreover,
since (ẽn)n is not equivalent to the usual basis of `1, by Proposition 6.4(ii),
we conclude that (ẽn)n is norm Cesàro summable to zero. Hence, by Lemma
6.13(i), we have

(6.18) lim
n→∞

∥∥∥∥ 1

n

n∑
j=1

ej−
1

n

2n∑
j=n+1

ej

∥∥∥∥
∗

= lim
n→∞

∥∥∥∥ 1

n

n∑
j=1

ẽj−
1

n

2n∑
j=n+1

ẽj

∥∥∥∥
∗∗

= 0.

For every n ∈ N choose (snj )nj=1 ∈ Plmn(F�L) such that min sn1 ≥ L(n).
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Since xs − x0 = x′s for every s ∈ F�L, we have

(6.19) lim
n→∞

∥∥∥∥x0− 1

n

n∑
j=1

xsnj

∥∥∥∥ = lim
n→∞

∥∥∥∥ 1

n

n∑
j=1

x′snj

∥∥∥∥ = lim
n→∞

∥∥∥∥ 1

n

n∑
j=1

ẽn

∥∥∥∥
∗∗

= 0.

Therefore

(6.20) lim
n→∞

∥∥∥∥ 1

n

n∑
j=1

ej

∥∥∥∥
∗

= lim
n→∞

∥∥∥∥ 1

n

n∑
j=1

xsnj

∥∥∥∥ = ‖x0‖ > 0.

By (6.18) and (6.20), we deduce that (en)n is not Schauder basic, i.e. it is
singular. Let en = e′n + e be the natural decomposition of (en)n. By (6.20)
and the fact that (e′n)n is Cesàro summable to zero, we have ‖e‖ = ‖x0‖.

To complete the proof it remains to show that (ẽn)n and (e′n)n are iso-
metrically equivalent. By Lemma 6.12 it suffices to show that

(6.21)
∥∥∥ n∑
i=1

λie
′
i

∥∥∥
∗

=
∥∥∥ n∑
i=1

λiẽi

∥∥∥
∗∗

for every n ∈ N and λ1, . . . , λn ∈ R with
∑n

i=1 λ1 = 0. Indeed, fix n ∈ N
and λ1, . . . λn ∈ R with

∑n
i=1 λi = 0. For each k ∈ N choose (skj )

n
j=1 ∈

Plmn(F�L) such that limk→∞min sk1 = +∞. Then∥∥∥ n∑
i=1

λie
′
i

∥∥∥
∗

=
∥∥∥ n∑
i=1

λiei

∥∥∥
∗

= lim
k→∞

∥∥∥ n∑
i=1

λixski

∥∥∥
= lim

k→∞

∥∥∥ n∑
i=1

λix
′
ski

∥∥∥ =
∥∥∥ n∑
i=1

λiẽi

∥∥∥
∗∗

and the proof is complete.

6.3.3. Weakly relatively compact F-sequences. Let X be a Banach space
and ξ < ω1. By SMwrc

ξ (X) we will denote the set of all spreading sequences
(en)n such that there exists a weakly relatively compact subset W of X
which admits (en)n as a ξ-spreading model. We also set

SMwrc(X) =
⋃
ξ<ω1

SMwrc
ξ (X).

Hence (en)n ∈ SMwrc
ξ (X) if and only if there exists an F-sequence (xs)s∈F

such that {xs : s ∈ F}w is a weakly compact subset of X and for some
L ∈ [N]∞, (xs)s∈F�L generates (en)n as an F-spreading model. The F-
sequences with weakly relatively compact range will be called weakly rela-
tively compact (“wrc” for short). The following proposition says that every
wrc F-sequence always contains a subordinated subsequence.

Proposition 6.15. Let X be a Banach space, F be a regular thin family
and (xs)s∈F be a weakly relatively compact F-sequence in X. Then for every
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M ∈ [N]∞ there exists L ∈ [M ]∞ such that the F-subsequence (xs)s∈F�L is
subordinated with respect to the weak topology.

Proof. Let M ∈ [N]∞. Since the weak topology on every separable
weakly compact subset of a Banach space is metrizable, we see that

{xs : s ∈ F}w is compact metrizable. By Theorem 5.10 the result follows.

Proposition 6.16. Let X be a Banach space, ξ < ω1 and let (en)n ∈
SMwrc

ξ (X). Then for every regular thin family G with o(G) ≥ ξ there exist a
weakly relatively compact G-sequence (wt)t∈G in X and L ∈ [N]∞ such that
(wt)t∈G�L is subordinated with respect to the weak topology and generates
(en)n as a G-spreading model. Consequently, SMwrc

ζ (X) ⊆ SMwrc
ξ (X) for

any 1 ≤ ζ < ξ < ω1.

Proof. Since (en)n ∈ SMwrc
ξ (X) there exists a weakly relatively compact

subset A of X such that A admits (en)n as a ξ-spreading model. Hence
there exists a regular thin family F of order ξ, an F-sequence (xs)s∈F in A
and M ∈ [N]∞ such that (xs)s∈F�M generates (en)n as an F-spreading
model. By Lemma 4.6 there exist a G-sequence (wt)t∈G and N ∈ [N]∞ such
that (wt)t∈G�N generates (en)n as a G-spreading model and moreover {wt :
t ∈ G} ⊆ {xs : s ∈ F} ⊆ A. Hence (wt)t∈G is a weakly relatively compact
G-sequence. By Proposition 6.15 there exists L ∈ [N ]∞ such that (wt)t∈G�L
is subordinated with respect to the weak topology. Clearly (wt)t∈G�L also
generates (en)n as a G-spreading model and the proof is complete.

Proposition 6.16 implies that every (en)n in SMwrc(X) is generated by a
subordinated F-subsequence. Hence, by Theorems 6.11 and 6.14 we obtain
the following.

Corollary 6.17. Let X be a Banach space, F be a regular thin fam-
ily and (xs)s∈F be a weakly relatively compact F-sequence. Let (en)n be a
spreading sequence and assume that (xs)s∈F admits (en)n as an F-spreading
model. Then exactly one of the following holds:

(i) The sequence (en)n is trivial.
(ii) The sequence (en)n is singular. In this case there exist L ∈ [N]∞

and x0 ∈ X such that if en = e′n + e is the natural decomposition of
(en)n then the F-subsequence (x′s)s∈F�L, defined by x′s = xs−x0 for
all s ∈ F�L, generates the sequence (e′n)n as an F-spreading model
and ‖x0‖ = ‖e‖.

(iii) The sequence (en)n is Schauder basic. In this case (en)n is uncon-
ditional.

6.4. F-sequences generating singular spreading models. Let X
be a Banach space and (xn)n be a sequence in X which generates a singular
spreading model (en)n and let en = e′n + e be the natural decomposition of
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(en)n. It can be shown that there exists x ∈ X \ {0} such that ‖x‖ = ‖e‖,
and setting x′n = xn − x, (e′n)n is the unique spreading model of (x′n)n. In
the following we will present an extension of this fact to F-sequences in a
Banach space X. We start with the next lemma.

Lemma 6.18. Let F be a regular thin family, M ∈ [N]∞ and (xs)s∈F
be an F-sequence in a Banach space X such that (xs)s∈F�M generates a
singular F-spreading model (en)n. Then there exists L ∈ [M ]∞ with the
following property: For every ε > 0 there exists m0 ∈ N such that

(6.22)

∥∥∥∥ 1

n

n∑
j=1

xsj −
1

m

m∑
j=1

xtj

∥∥∥∥ < ε,

for every n,m ≥ m0 and (sj)
n
j=1, (tj)

m
j=1 ∈ Plm(F�L) with s1(1) ≥ L(n)

and t1(1) ≥ L(m).

Proof. First, we notice that a weaker version of the lemma holds true,
that is, for every ε > 0 there exists k0 ∈ N such that for every n,m ≥ k0
and every (sj)

n+m
j=1 ∈ Plm(F�M) with s1(1) ≥M(n+m), we have

(6.23)

∥∥∥∥ 1

n

n∑
j=1

xsj −
1

m

m∑
j=1

xsn+j

∥∥∥∥ < ε.

Indeed, let ε > 0. Since (en)n is singular, it is weakly convergent to some e
and moreover, setting e′n = en − e, the sequence (e′n)n is Cesàro summable
to zero. Hence we may choose n0 ∈ N such that

∥∥ 1
n

∑n
i=1 e

′
i

∥∥
∗ < ε/4 for all

n ≥ n0. Therefore, for every n,m ≥ n0, we have

(6.24)

∥∥∥∥ 1

n

n∑
i=1

ei −
1

m

m∑
i=1

en+i

∥∥∥∥
∗

=

∥∥∥∥ 1

n

n∑
i=1

e′i −
1

m

m∑
i=1

e′n+i

∥∥∥∥
∗
< ε/2

Since (xs)s∈F�M generates (en)n as an F-spreading model we can find k0≥n0
such that for every n,m ≥ k0 and every (sj)

n+m
j=1 ∈ Plm(F�M) with s1(1) ≥

M(n+m) inequality (6.23) is satisfied.
Let (εk)k be a sequence of positive real numbers such that

∑
k εk < ∞.

By the above we can choose an increasing sequence (nk)k in N such that for
every k ∈ N, n,m ≥ nk and (sj)

n+m
j=1 ∈ Plm(F�M) with s1(1) ≥M(n+m),

(6.25)

∥∥∥∥ 1

n

n∑
j=1

xsj −
1

m

m∑
j=1

xsn+j

∥∥∥∥ < εk.

We may also assume that F is very large in M , and 2nk < nk+1 for every
k ∈ N.

We set L = {M(2nk + nk+1) : k ∈ N}; we shall show that L satisfies
the conclusion of the lemma. To this end we shall use an appropriate map
sending each s ∈ F�L to a plegma family in F�M . First, for every s ∈ F�L
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and p = 1, . . . , |s|, let k(s(p)) be the unique positive integer k satisfying
s(p) = L(k) = M(2nk + nk+1). We define Φ : F�L→ Plm(F�M) as follows.
To every s ∈ F�L, we assign the nk(s(1))-tuple Φ(s) = (vsj )

nk(s(1))
j=1 , where vsj

is the unique element of F�M satisfying

(6.26) vsj v {M(2nk(s(p)) + nk(s(p))+1 − nk(s(1)) + j) : p = 1, . . . , |s|}.
The existence of vsj , j = 1, . . . , nk(s(1)), follows easily from the fact that F
is regular thin and very large in M .

Below we state some useful properties of Φ. Their verification is straight-
forward.

(P1) For every s ∈ F�L, Φ(s) ∈ Plmnk(F�M), vs1(1) > M(nk + nk+1)
and vsnk = s, where k = k(s(1)).

(P2) For every (s1, s2) ∈ Plm2(F�L), the concatenation Φ(s1)
_Φ(s2)

belongs to Plm(F�M).

We are now ready to prove that L is actually the desired set. Fix a positive
integer k and denote by s the unique element of F�L such that s v {L(i) :
i ≥ k}. Notice that s(1) = L(k) = M(2nk+nk+1) and therefore k(s(1)) = k.
Also let mk = max{nk, k + |s|+ 1}. We claim that

(6.27)

∥∥∥∥ 1

nk

nk∑
j=1

xvsj −
1

m

m∑
j=1

xtj

∥∥∥∥ < k+|s|∑
l=k

εl

for every m ≥ mk and (tj)
m
j=1 ∈ F�L with t1(1) ≥ L(m).

Indeed, let m ≥ mk and (tj)
m
j=1 ∈ F�L with t1(1) ≥ L(m). Notice that

max s = L(k + |s| − 1) < L(m) ≤ t1(1) = min t1. Hence, by Theorem 3.10
there exists a plegma path (wl)

l0
l=0 in F�L from w0 = s to wl0 = t1 of length

l0 = |s|. Notice that k(wl(1)) ≥ k + l, which implies that nk(wl(1)) ≥ nk+l
and therefore (vwl1 , . . . , v

wl
nk+l

) is a subfamily of Φ(wl). Thus, by properties

(P1) and (P2) above, (vwl1 , . . . , v
wl
nk+l

, v
wl+1

1 , . . . , v
wl+1
nk+l+1) is a plegma family

in F�L of length nk+l + nk+l+1 with vwl1 (1) > M(nk(wl(1)) + nk(wl(1)+1)) >
M(nk+l + nk+l+1). Hence by (6.25) we get

(6.28)

∥∥∥∥ 1

nk+l

nk+l∑
j=1

xvwlj
− 1

nk+l+1

nk+l+1∑
j=1

x
v
wl+1
j

∥∥∥∥ < εk+l

for every l = 0, . . . , l0 − 1. Thus,

(6.29)

∥∥∥∥ 1

nk

nk∑
j=1

xvsj −
1

nk+|s|

nk+|s|∑
j=1

x
v
t1
j

∥∥∥∥ < k+|s|−1∑
l=k

εl.

Similarly, since m > k + |s| = k + |l0| we know that nm > nk+|s|. Also
since t1(1) ≥ L(m) = M(2nm + nm+1) we have k(t1(1)) ≥ m. Hence
nk(t1(1)) ≥ nm > nk+|s|, which implies that (vt11 , . . . , v

t1
nk+|s|

) is a proper
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subfamily of Φ(t1). Therefore, (vt11 , . . . , v
t1
nk+|s|

, t1, . . . , tm) is a plegma family

in F�L. Moreover t1(1) ≥ M(2nm + nm+1) ≥ M(nk+|s| + m) and so, again
by (6.25), we have

(6.30)

∥∥∥∥ 1

nk+|s|

nk+|s|∑
j=1

x
v
t1
j
− 1

m

m∑
j=1

xtj

∥∥∥∥ < εk+|s|.

Now (6.27) follows by (6.29) and (6.30).

Finally, by (6.27) and a triangle inequality we obtain

(6.31)

∥∥∥∥ 1

n

n∑
j=1

xsj −
1

m

m∑
j=1

xtj

∥∥∥∥ < 2

k+|s|∑
l=k

εl

for every k ∈ N, n,m ≥ mk and (sj)
n
j=1, (tj)

m
j=1 ∈ Plm(F�L) with s1(1) ≥

L(n) and t1(1) ≥ L(m). Since
∑

k εk <∞ the proof is complete.

Theorem 6.19. Let F be a regular thin family, M ∈ [N]∞ and (xs)s∈F
be an F-sequence in a Banach space X such that (xs)s∈F�M generates a sin-
gular F-spreading model (en)n. Let en = e′n+e be the natural decomposition
of (en)n. Then there exist x ∈ X with ‖x‖ = ‖e‖∗ and L ∈ [M ]∞ such that
setting x′s = xs − x the F-subsequence (x′s)s∈F�L admits (e′n)n as a unique
(up to isometry) F-spreading model.

Proof. We start by determining the element x ∈ X. Let L ∈ [M ]∞

satisfy Lemma 6.18. For every k ∈ N we set

Ak =

{
1

n

n∑
i=1

xsi : (si)
n
i=1 ∈ Plm(F�L) and s1(1) ≥ n ≥ k

}
.

Clearly the sequence (Ak)k is decreasing and, by Lemma 6.18, diam(Ak)→0.
Therefore there exists a unique x ∈ X such that

⋂∞
k=1Ak = {x}.

We proceed to show that ‖e‖ = ‖x‖. Notice that by the choice of x, for
every ε > 0 there exists n0 ∈ N such that for all n ≥ n0,

(6.32)

∥∥∥∥ 1

n

n∑
j=1

xsj − x
∥∥∥∥ < ε.

For each n ∈ N we pick (sni )ni=1 ∈ Plm(F�L), with sni (1) ≥ L(n). By (6.32),

(6.33) lim
n

∥∥∥∥ 1

n

n∑
i=1

xsni − x
∥∥∥∥ = 0.

Also, since (xs)s∈F�L generates (en)n as an F-spreading model,

(6.34) lim
n

∣∣∣∣∥∥∥∥ 1

n

n∑
i=1

xsni

∥∥∥∥− ∥∥∥∥ 1

n

n∑
i=1

ei

∥∥∥∥
∗

∣∣∣∣ = 0.
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Moreover, since (e′n)n is Cesàro summable to zero,

(6.35) lim
n

∥∥∥∥∑n
i=1 ei
n

− e
∥∥∥∥
∗

= 0.

Hence,

‖e‖∗
(6.35)

= lim
n

∥∥∥∥ 1

n

n∑
i=1

ei

∥∥∥∥
∗

(6.34)
= lim

n

∥∥∥∥ 1

n

n∑
i=1

xsni

∥∥∥∥ (6.33)
= ‖x‖.

We now proceed to show that (e′n)n is the unique F-spreading model
of (x′s)s∈F�L, where x′s = xs − x, s ∈ F�L. Let N ∈ [L]∞ be such that
(x′s)s∈F�N generates an F-spreading model (ẽn)n. We will show that (ẽn)n
is isometric to (e′n)n. Since

(6.36)
1

n

n∑
j=1

x′sj =
1

n

n∑
j=1

xsj − x

for every n ∈ N, by (6.32) we conclude that (ẽn)n is Cesàro summable to
zero. Hence by Lemma 6.12 it suffices to show that

(6.37)
∥∥∥ n∑
i=1

λie
′
i

∥∥∥
∗

=
∥∥∥ n∑
i=1

λiẽi

∥∥∥
∗∗

for every n ∈ N and λ1, . . . , λn ∈ R with
∑n

i=1 λ1 = 0. Indeed, let n ∈ N
and λ1, . . . , λn ∈ R with

∑n
i=1 λi = 0. Also let ((skj )

n
j=1)k be a sequence in

Plmn(F�L) such that limk→∞ s
k
1(1) =∞. Then∥∥∥ n∑

i=1

λie
′
i

∥∥∥
∗

=
∥∥∥ n∑
i=1

λiei

∥∥∥
∗

= lim
k→∞

∥∥∥ n∑
i=1

λixski

∥∥∥
= lim

k→∞

∥∥∥ n∑
i=1

λix
′
ski

∥∥∥ =
∥∥∥ n∑
i=1

λiẽi

∥∥∥
∗∗

and the proof is complete.

We close by a strengthening of Theorem 6.19 for Banach spaces with
separable dual. We will need the following lemma.

Lemma 6.20. Let F be a regular thin family and (ys)s∈F be an F-
sequence in a Banach space X. Let L ∈ [N]∞ and suppose that for every
ε > 0 and N ∈ [L]∞ there exist k ∈ N, λ1, . . . , λk > 0 and (sj)

k
j=1 ∈

Plm(F�N) such that
∑k

j=1 λj = 1 and ‖
∑k

j=1 λjysj‖ < ε. Then for every
x∗ ∈ X∗, ε > 0 and N ∈ [L]∞ there exists M ∈ [N ]∞ such that |x∗(ys)| < ε
for every s ∈ F�M .

Proof. Let x∗ ∈ X∗, ε > 0 and N ∈ [L]∞. By Proposition 2.6 there exists
M ∈ [N ]∞ such that exactly one of the following holds: (a) |x∗(ys)| < ε for
every s ∈ F�M , or (b) x∗(ys) ≥ ε for every s ∈ F�M , or (c) x∗(ys) ≤ −ε
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for every s ∈ F�M . It suffices to show that cases (b) and (c) cannot occur.
Indeed, suppose (b) holds true (the proof for case (c) is similar). By our
assumption there exist k ∈ N, λ1, . . . , λk > 0 and (sj)

k
j=1 ∈ Plm(F�M) such

that
∑k

j=1 λj = 1 and ‖
∑k

j=1 λjysj‖ < ε. But then

(6.38) ε >
∥∥∥ k∑
j=1

λjysj

∥∥∥ ≥ x∗( k∑
j=1

λjysj

)
=

k∑
j=1

λjx
∗(ysj ) ≥ ε,

which is a contradiction.

Corollary 6.21. Let X be a Banach space with separable dual. Let F
be a regular thin family, (xs)s∈F be an F-sequence in X and M ∈ [N]∞

be such that (xs)s∈F�M generates a singular F-spreading model (en)n. Let
en = e′n + e be the natural decomposition of (en)n. Then there exist x ∈ X
with ‖x‖ = ‖e‖∗ and N ∈ [M ]∞ such that setting x′s = xs − x, (x′s)s∈F�N
is weakly null and admits (e′n)n as a unique (up to isometry) F-spreading
model.

Proof. By Theorem 6.19, there exist x ∈ X with ‖x‖ = ‖e‖∗ and L ∈
[M ]∞ such that (x′s)s∈F�L admits (e′n)n as a unique F-spreading model. By
applying Lemma 6.20 (for xs in place of ys) and a standard diagonalization
for a countable dense subset of X∗ we may choose N ∈ [L]∞ such that the
F-subsequence (x′s)s∈F�N is in addition weakly null.
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2005.
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